xref: /openbsd/gnu/usr.bin/binutils/gdb/infrun.c (revision 15135fad)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5    1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6    Software Foundation, Inc.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program; if not, write to the Free Software
22    Foundation, Inc., 59 Temple Place - Suite 330,
23    Boston, MA 02111-1307, USA.  */
24 
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48 
49 /* Prototypes for local functions */
50 
51 static void signals_info (char *, int);
52 
53 static void handle_command (char *, int);
54 
55 static void sig_print_info (enum target_signal);
56 
57 static void sig_print_header (void);
58 
59 static void resume_cleanups (void *);
60 
61 static int hook_stop_stub (void *);
62 
63 static int restore_selected_frame (void *);
64 
65 static void build_infrun (void);
66 
67 static int follow_fork (void);
68 
69 static void set_schedlock_func (char *args, int from_tty,
70 				struct cmd_list_element *c);
71 
72 struct execution_control_state;
73 
74 static int currently_stepping (struct execution_control_state *ecs);
75 
76 static void xdb_handle_command (char *args, int from_tty);
77 
78 static int prepare_to_proceed (void);
79 
80 void _initialize_infrun (void);
81 
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84 
85 /* When set, stop the 'step' command if we enter a function which has
86    no line number information.  The normal behavior is that we step
87    over such function.  */
88 int step_stop_if_no_debug = 0;
89 
90 /* In asynchronous mode, but simulating synchronous execution. */
91 
92 int sync_execution = 0;
93 
94 /* wait_for_inferior and normal_stop use this to notify the user
95    when the inferior stopped in a different thread than it had been
96    running in.  */
97 
98 static ptid_t previous_inferior_ptid;
99 
100 /* This is true for configurations that may follow through execl() and
101    similar functions.  At present this is only true for HP-UX native.  */
102 
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106 
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108 
109 /* If the program uses ELF-style shared libraries, then calls to
110    functions in shared libraries go through stubs, which live in a
111    table called the PLT (Procedure Linkage Table).  The first time the
112    function is called, the stub sends control to the dynamic linker,
113    which looks up the function's real address, patches the stub so
114    that future calls will go directly to the function, and then passes
115    control to the function.
116 
117    If we are stepping at the source level, we don't want to see any of
118    this --- we just want to skip over the stub and the dynamic linker.
119    The simple approach is to single-step until control leaves the
120    dynamic linker.
121 
122    However, on some systems (e.g., Red Hat's 5.2 distribution) the
123    dynamic linker calls functions in the shared C library, so you
124    can't tell from the PC alone whether the dynamic linker is still
125    running.  In this case, we use a step-resume breakpoint to get us
126    past the dynamic linker, as if we were using "next" to step over a
127    function call.
128 
129    IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130    linker code or not.  Normally, this means we single-step.  However,
131    if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132    address where we can place a step-resume breakpoint to get past the
133    linker's symbol resolution function.
134 
135    IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136    pretty portable way, by comparing the PC against the address ranges
137    of the dynamic linker's sections.
138 
139    SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140    it depends on internal details of the dynamic linker.  It's usually
141    not too hard to figure out where to put a breakpoint, but it
142    certainly isn't portable.  SKIP_SOLIB_RESOLVER should do plenty of
143    sanity checking.  If it can't figure things out, returning zero and
144    getting the (possibly confusing) stepping behavior is better than
145    signalling an error, which will obscure the change in the
146    inferior's state.  */
147 
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151 
152 /* This function returns TRUE if pc is the address of an instruction
153    that lies within the dynamic linker (such as the event hook, or the
154    dld itself).
155 
156    This function must be used only when a dynamic linker event has
157    been caught, and the inferior is being stepped out of the hook, or
158    undefined results are guaranteed.  */
159 
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163 
164 /* On some systems, the PC may be left pointing at an instruction that  won't
165    actually be executed.  This is usually indicated by a bit in the PSW.  If
166    we find ourselves in such a state, then we step the target beyond the
167    nullified instruction before returning control to the user so as to avoid
168    confusion. */
169 
170 #ifndef INSTRUCTION_NULLIFIED
171 #define INSTRUCTION_NULLIFIED 0
172 #endif
173 
174 /* We can't step off a permanent breakpoint in the ordinary way, because we
175    can't remove it.  Instead, we have to advance the PC to the next
176    instruction.  This macro should expand to a pointer to a function that
177    does that, or zero if we have no such function.  If we don't have a
178    definition for it, we have to report an error.  */
179 #ifndef SKIP_PERMANENT_BREAKPOINT
180 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
181 static void
default_skip_permanent_breakpoint(void)182 default_skip_permanent_breakpoint (void)
183 {
184   error ("\
185 The program is stopped at a permanent breakpoint, but GDB does not know\n\
186 how to step past a permanent breakpoint on this architecture.  Try using\n\
187 a command like `return' or `jump' to continue execution.");
188 }
189 #endif
190 
191 
192 /* Convert the #defines into values.  This is temporary until wfi control
193    flow is completely sorted out.  */
194 
195 #ifndef HAVE_STEPPABLE_WATCHPOINT
196 #define HAVE_STEPPABLE_WATCHPOINT 0
197 #else
198 #undef  HAVE_STEPPABLE_WATCHPOINT
199 #define HAVE_STEPPABLE_WATCHPOINT 1
200 #endif
201 
202 #ifndef CANNOT_STEP_HW_WATCHPOINTS
203 #define CANNOT_STEP_HW_WATCHPOINTS 0
204 #else
205 #undef  CANNOT_STEP_HW_WATCHPOINTS
206 #define CANNOT_STEP_HW_WATCHPOINTS 1
207 #endif
208 
209 /* Tables of how to react to signals; the user sets them.  */
210 
211 static unsigned char *signal_stop;
212 static unsigned char *signal_print;
213 static unsigned char *signal_program;
214 
215 #define SET_SIGS(nsigs,sigs,flags) \
216   do { \
217     int signum = (nsigs); \
218     while (signum-- > 0) \
219       if ((sigs)[signum]) \
220 	(flags)[signum] = 1; \
221   } while (0)
222 
223 #define UNSET_SIGS(nsigs,sigs,flags) \
224   do { \
225     int signum = (nsigs); \
226     while (signum-- > 0) \
227       if ((sigs)[signum]) \
228 	(flags)[signum] = 0; \
229   } while (0)
230 
231 /* Value to pass to target_resume() to cause all threads to resume */
232 
233 #define RESUME_ALL (pid_to_ptid (-1))
234 
235 /* Command list pointer for the "stop" placeholder.  */
236 
237 static struct cmd_list_element *stop_command;
238 
239 /* Nonzero if breakpoints are now inserted in the inferior.  */
240 
241 static int breakpoints_inserted;
242 
243 /* Function inferior was in as of last step command.  */
244 
245 static struct symbol *step_start_function;
246 
247 /* Nonzero if we are expecting a trace trap and should proceed from it.  */
248 
249 static int trap_expected;
250 
251 #ifdef SOLIB_ADD
252 /* Nonzero if we want to give control to the user when we're notified
253    of shared library events by the dynamic linker.  */
254 static int stop_on_solib_events;
255 #endif
256 
257 /* Nonzero means expecting a trace trap
258    and should stop the inferior and return silently when it happens.  */
259 
260 int stop_after_trap;
261 
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263    It is used after attach, due to attaching to a process;
264    when running in the shell before the child program has been exec'd;
265    and when running some kinds of remote stuff (FIXME?).  */
266 
267 enum stop_kind stop_soon;
268 
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270    situation when stop_registers should be saved.  */
271 
272 int proceed_to_finish;
273 
274 /* Save register contents here when about to pop a stack dummy frame,
275    if-and-only-if proceed_to_finish is set.
276    Thus this contains the return value from the called function (assuming
277    values are returned in a register).  */
278 
279 struct regcache *stop_registers;
280 
281 /* Nonzero if program stopped due to error trying to insert breakpoints.  */
282 
283 static int breakpoints_failed;
284 
285 /* Nonzero after stop if current stack frame should be printed.  */
286 
287 static int stop_print_frame;
288 
289 static struct breakpoint *step_resume_breakpoint = NULL;
290 
291 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
292    interactions with an inferior that is running a kernel function
293    (aka, a system call or "syscall").  wait_for_inferior therefore
294    may have a need to know when the inferior is in a syscall.  This
295    is a count of the number of inferior threads which are known to
296    currently be running in a syscall. */
297 static int number_of_threads_in_syscalls;
298 
299 /* This is a cached copy of the pid/waitstatus of the last event
300    returned by target_wait()/deprecated_target_wait_hook().  This
301    information is returned by get_last_target_status().  */
302 static ptid_t target_last_wait_ptid;
303 static struct target_waitstatus target_last_waitstatus;
304 
305 /* This is used to remember when a fork, vfork or exec event
306    was caught by a catchpoint, and thus the event is to be
307    followed at the next resume of the inferior, and not
308    immediately. */
309 static struct
310 {
311   enum target_waitkind kind;
312   struct
313   {
314     int parent_pid;
315     int child_pid;
316   }
317   fork_event;
318   char *execd_pathname;
319 }
320 pending_follow;
321 
322 static const char follow_fork_mode_child[] = "child";
323 static const char follow_fork_mode_parent[] = "parent";
324 
325 static const char *follow_fork_mode_kind_names[] = {
326   follow_fork_mode_child,
327   follow_fork_mode_parent,
328   NULL
329 };
330 
331 static const char *follow_fork_mode_string = follow_fork_mode_parent;
332 
333 
334 static int
follow_fork(void)335 follow_fork (void)
336 {
337   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
338 
339   return target_follow_fork (follow_child);
340 }
341 
342 void
follow_inferior_reset_breakpoints(void)343 follow_inferior_reset_breakpoints (void)
344 {
345   /* Was there a step_resume breakpoint?  (There was if the user
346      did a "next" at the fork() call.)  If so, explicitly reset its
347      thread number.
348 
349      step_resumes are a form of bp that are made to be per-thread.
350      Since we created the step_resume bp when the parent process
351      was being debugged, and now are switching to the child process,
352      from the breakpoint package's viewpoint, that's a switch of
353      "threads".  We must update the bp's notion of which thread
354      it is for, or it'll be ignored when it triggers.  */
355 
356   if (step_resume_breakpoint)
357     breakpoint_re_set_thread (step_resume_breakpoint);
358 
359   /* Reinsert all breakpoints in the child.  The user may have set
360      breakpoints after catching the fork, in which case those
361      were never set in the child, but only in the parent.  This makes
362      sure the inserted breakpoints match the breakpoint list.  */
363 
364   breakpoint_re_set ();
365   insert_breakpoints ();
366 }
367 
368 /* EXECD_PATHNAME is assumed to be non-NULL. */
369 
370 static void
follow_exec(int pid,char * execd_pathname)371 follow_exec (int pid, char *execd_pathname)
372 {
373   int saved_pid = pid;
374   struct target_ops *tgt;
375 
376   if (!may_follow_exec)
377     return;
378 
379   /* This is an exec event that we actually wish to pay attention to.
380      Refresh our symbol table to the newly exec'd program, remove any
381      momentary bp's, etc.
382 
383      If there are breakpoints, they aren't really inserted now,
384      since the exec() transformed our inferior into a fresh set
385      of instructions.
386 
387      We want to preserve symbolic breakpoints on the list, since
388      we have hopes that they can be reset after the new a.out's
389      symbol table is read.
390 
391      However, any "raw" breakpoints must be removed from the list
392      (e.g., the solib bp's), since their address is probably invalid
393      now.
394 
395      And, we DON'T want to call delete_breakpoints() here, since
396      that may write the bp's "shadow contents" (the instruction
397      value that was overwritten witha TRAP instruction).  Since
398      we now have a new a.out, those shadow contents aren't valid. */
399   update_breakpoints_after_exec ();
400 
401   /* If there was one, it's gone now.  We cannot truly step-to-next
402      statement through an exec(). */
403   step_resume_breakpoint = NULL;
404   step_range_start = 0;
405   step_range_end = 0;
406 
407   /* What is this a.out's name? */
408   printf_unfiltered ("Executing new program: %s\n", execd_pathname);
409 
410   /* We've followed the inferior through an exec.  Therefore, the
411      inferior has essentially been killed & reborn. */
412 
413   /* First collect the run target in effect.  */
414   tgt = find_run_target ();
415   /* If we can't find one, things are in a very strange state...  */
416   if (tgt == NULL)
417     error ("Could find run target to save before following exec");
418 
419   gdb_flush (gdb_stdout);
420   target_mourn_inferior ();
421   inferior_ptid = pid_to_ptid (saved_pid);
422   /* Because mourn_inferior resets inferior_ptid. */
423   push_target (tgt);
424 
425   /* That a.out is now the one to use. */
426   exec_file_attach (execd_pathname, 0);
427 
428   /* And also is where symbols can be found. */
429   symbol_file_add_main (execd_pathname, 0);
430 
431   /* Reset the shared library package.  This ensures that we get
432      a shlib event when the child reaches "_start", at which point
433      the dld will have had a chance to initialize the child. */
434 #if defined(SOLIB_RESTART)
435   SOLIB_RESTART ();
436 #endif
437 #ifdef SOLIB_CREATE_INFERIOR_HOOK
438   SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
439 #endif
440 
441   /* Reinsert all breakpoints.  (Those which were symbolic have
442      been reset to the proper address in the new a.out, thanks
443      to symbol_file_command...) */
444   insert_breakpoints ();
445 
446   /* The next resume of this inferior should bring it to the shlib
447      startup breakpoints.  (If the user had also set bp's on
448      "main" from the old (parent) process, then they'll auto-
449      matically get reset there in the new process.) */
450 }
451 
452 /* Non-zero if we just simulating a single-step.  This is needed
453    because we cannot remove the breakpoints in the inferior process
454    until after the `wait' in `wait_for_inferior'.  */
455 static int singlestep_breakpoints_inserted_p = 0;
456 
457 /* The thread we inserted single-step breakpoints for.  */
458 static ptid_t singlestep_ptid;
459 
460 /* If another thread hit the singlestep breakpoint, we save the original
461    thread here so that we can resume single-stepping it later.  */
462 static ptid_t saved_singlestep_ptid;
463 static int stepping_past_singlestep_breakpoint;
464 
465 
466 /* Things to clean up if we QUIT out of resume ().  */
467 static void
resume_cleanups(void * ignore)468 resume_cleanups (void *ignore)
469 {
470   normal_stop ();
471 }
472 
473 static const char schedlock_off[] = "off";
474 static const char schedlock_on[] = "on";
475 static const char schedlock_step[] = "step";
476 static const char *scheduler_mode = schedlock_off;
477 static const char *scheduler_enums[] = {
478   schedlock_off,
479   schedlock_on,
480   schedlock_step,
481   NULL
482 };
483 
484 static void
set_schedlock_func(char * args,int from_tty,struct cmd_list_element * c)485 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
486 {
487   /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
488      function clones the set command passed as a parameter.  The clone
489      operation will include (BUG?) any ``set'' command callback, if
490      present.  Commands like ``info set'' call all the ``show''
491      command callbacks.  Unfortunately, for ``show'' commands cloned
492      from ``set'', this includes callbacks belonging to ``set''
493      commands.  Making this worse, this only occures if
494      deprecated_add_show_from_set() is called after add_cmd_sfunc()
495      (BUG?).  */
496   if (cmd_type (c) == set_cmd)
497     if (!target_can_lock_scheduler)
498       {
499 	scheduler_mode = schedlock_off;
500 	error ("Target '%s' cannot support this command.", target_shortname);
501       }
502 }
503 
504 
505 /* Resume the inferior, but allow a QUIT.  This is useful if the user
506    wants to interrupt some lengthy single-stepping operation
507    (for child processes, the SIGINT goes to the inferior, and so
508    we get a SIGINT random_signal, but for remote debugging and perhaps
509    other targets, that's not true).
510 
511    STEP nonzero if we should step (zero to continue instead).
512    SIG is the signal to give the inferior (zero for none).  */
513 void
resume(int step,enum target_signal sig)514 resume (int step, enum target_signal sig)
515 {
516   int should_resume = 1;
517   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
518   QUIT;
519 
520   /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
521 
522 
523   /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
524      over an instruction that causes a page fault without triggering
525      a hardware watchpoint. The kernel properly notices that it shouldn't
526      stop, because the hardware watchpoint is not triggered, but it forgets
527      the step request and continues the program normally.
528      Work around the problem by removing hardware watchpoints if a step is
529      requested, GDB will check for a hardware watchpoint trigger after the
530      step anyway.  */
531   if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
532     remove_hw_watchpoints ();
533 
534 
535   /* Normally, by the time we reach `resume', the breakpoints are either
536      removed or inserted, as appropriate.  The exception is if we're sitting
537      at a permanent breakpoint; we need to step over it, but permanent
538      breakpoints can't be removed.  So we have to test for it here.  */
539   if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
540     SKIP_PERMANENT_BREAKPOINT ();
541 
542   if (SOFTWARE_SINGLE_STEP_P () && step)
543     {
544       /* Do it the hard way, w/temp breakpoints */
545       SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
546       /* ...and don't ask hardware to do it.  */
547       step = 0;
548       /* and do not pull these breakpoints until after a `wait' in
549          `wait_for_inferior' */
550       singlestep_breakpoints_inserted_p = 1;
551       singlestep_ptid = inferior_ptid;
552     }
553 
554   /* If there were any forks/vforks/execs that were caught and are
555      now to be followed, then do so.  */
556   switch (pending_follow.kind)
557     {
558     case TARGET_WAITKIND_FORKED:
559     case TARGET_WAITKIND_VFORKED:
560       pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561       if (follow_fork ())
562 	should_resume = 0;
563       break;
564 
565     case TARGET_WAITKIND_EXECD:
566       /* follow_exec is called as soon as the exec event is seen. */
567       pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568       break;
569 
570     default:
571       break;
572     }
573 
574   /* Install inferior's terminal modes.  */
575   target_terminal_inferior ();
576 
577   if (should_resume)
578     {
579       ptid_t resume_ptid;
580 
581       resume_ptid = RESUME_ALL;	/* Default */
582 
583       if ((step || singlestep_breakpoints_inserted_p)
584 	  && (stepping_past_singlestep_breakpoint
585 	      || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 	{
587 	  /* Stepping past a breakpoint without inserting breakpoints.
588 	     Make sure only the current thread gets to step, so that
589 	     other threads don't sneak past breakpoints while they are
590 	     not inserted. */
591 
592 	  resume_ptid = inferior_ptid;
593 	}
594 
595       if ((scheduler_mode == schedlock_on)
596 	  || (scheduler_mode == schedlock_step
597 	      && (step || singlestep_breakpoints_inserted_p)))
598 	{
599 	  /* User-settable 'scheduler' mode requires solo thread resume. */
600 	  resume_ptid = inferior_ptid;
601 	}
602 
603       if (CANNOT_STEP_BREAKPOINT)
604 	{
605 	  /* Most targets can step a breakpoint instruction, thus
606 	     executing it normally.  But if this one cannot, just
607 	     continue and we will hit it anyway.  */
608 	  if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 	    step = 0;
610 	}
611       target_resume (resume_ptid, step, sig);
612     }
613 
614   discard_cleanups (old_cleanups);
615 }
616 
617 
618 /* Clear out all variables saying what to do when inferior is continued.
619    First do this, then set the ones you want, then call `proceed'.  */
620 
621 void
clear_proceed_status(void)622 clear_proceed_status (void)
623 {
624   trap_expected = 0;
625   step_range_start = 0;
626   step_range_end = 0;
627   step_frame_id = null_frame_id;
628   step_over_calls = STEP_OVER_UNDEBUGGABLE;
629   stop_after_trap = 0;
630   stop_soon = NO_STOP_QUIETLY;
631   proceed_to_finish = 0;
632   breakpoint_proceeded = 1;	/* We're about to proceed... */
633 
634   /* Discard any remaining commands or status from previous stop.  */
635   bpstat_clear (&stop_bpstat);
636 }
637 
638 /* This should be suitable for any targets that support threads. */
639 
640 static int
prepare_to_proceed(void)641 prepare_to_proceed (void)
642 {
643   ptid_t wait_ptid;
644   struct target_waitstatus wait_status;
645 
646   /* Get the last target status returned by target_wait().  */
647   get_last_target_status (&wait_ptid, &wait_status);
648 
649   /* Make sure we were stopped either at a breakpoint, or because
650      of a Ctrl-C.  */
651   if (wait_status.kind != TARGET_WAITKIND_STOPPED
652       || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 	  && wait_status.value.sig != TARGET_SIGNAL_INT))
654     {
655       return 0;
656     }
657 
658   if (!ptid_equal (wait_ptid, minus_one_ptid)
659       && !ptid_equal (inferior_ptid, wait_ptid))
660     {
661       /* Switched over from WAIT_PID.  */
662       CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663 
664       if (wait_pc != read_pc ())
665 	{
666 	  /* Switch back to WAIT_PID thread.  */
667 	  inferior_ptid = wait_ptid;
668 
669 	  /* FIXME: This stuff came from switch_to_thread() in
670 	     thread.c (which should probably be a public function).  */
671 	  flush_cached_frames ();
672 	  registers_changed ();
673 	  stop_pc = wait_pc;
674 	  select_frame (get_current_frame ());
675 	}
676 
677       /* We return 1 to indicate that there is a breakpoint here,
678          so we need to step over it before continuing to avoid
679          hitting it straight away. */
680       if (breakpoint_here_p (wait_pc))
681 	return 1;
682     }
683 
684   return 0;
685 
686 }
687 
688 /* Record the pc of the program the last time it stopped.  This is
689    just used internally by wait_for_inferior, but need to be preserved
690    over calls to it and cleared when the inferior is started.  */
691 static CORE_ADDR prev_pc;
692 
693 /* Basic routine for continuing the program in various fashions.
694 
695    ADDR is the address to resume at, or -1 for resume where stopped.
696    SIGGNAL is the signal to give it, or 0 for none,
697    or -1 for act according to how it stopped.
698    STEP is nonzero if should trap after one instruction.
699    -1 means return after that and print nothing.
700    You should probably set various step_... variables
701    before calling here, if you are stepping.
702 
703    You should call clear_proceed_status before calling proceed.  */
704 
705 void
proceed(CORE_ADDR addr,enum target_signal siggnal,int step)706 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
707 {
708   int oneproc = 0;
709 
710   if (step > 0)
711     step_start_function = find_pc_function (read_pc ());
712   if (step < 0)
713     stop_after_trap = 1;
714 
715   if (addr == (CORE_ADDR) -1)
716     {
717       /* If there is a breakpoint at the address we will resume at,
718          step one instruction before inserting breakpoints
719          so that we do not stop right away (and report a second
720          hit at this breakpoint).  */
721 
722       if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
723 	oneproc = 1;
724 
725 #ifndef STEP_SKIPS_DELAY
726 #define STEP_SKIPS_DELAY(pc) (0)
727 #define STEP_SKIPS_DELAY_P (0)
728 #endif
729       /* Check breakpoint_here_p first, because breakpoint_here_p is fast
730          (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
731          is slow (it needs to read memory from the target).  */
732       if (STEP_SKIPS_DELAY_P
733 	  && breakpoint_here_p (read_pc () + 4)
734 	  && STEP_SKIPS_DELAY (read_pc ()))
735 	oneproc = 1;
736     }
737   else
738     {
739       write_pc (addr);
740     }
741 
742   /* In a multi-threaded task we may select another thread
743      and then continue or step.
744 
745      But if the old thread was stopped at a breakpoint, it
746      will immediately cause another breakpoint stop without
747      any execution (i.e. it will report a breakpoint hit
748      incorrectly).  So we must step over it first.
749 
750      prepare_to_proceed checks the current thread against the thread
751      that reported the most recent event.  If a step-over is required
752      it returns TRUE and sets the current thread to the old thread. */
753   if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
754     oneproc = 1;
755 
756   if (oneproc)
757     /* We will get a trace trap after one instruction.
758        Continue it automatically and insert breakpoints then.  */
759     trap_expected = 1;
760   else
761     {
762       insert_breakpoints ();
763       /* If we get here there was no call to error() in
764          insert breakpoints -- so they were inserted.  */
765       breakpoints_inserted = 1;
766     }
767 
768   if (siggnal != TARGET_SIGNAL_DEFAULT)
769     stop_signal = siggnal;
770   /* If this signal should not be seen by program,
771      give it zero.  Used for debugging signals.  */
772   else if (!signal_program[stop_signal])
773     stop_signal = TARGET_SIGNAL_0;
774 
775   annotate_starting ();
776 
777   /* Make sure that output from GDB appears before output from the
778      inferior.  */
779   gdb_flush (gdb_stdout);
780 
781   /* Refresh prev_pc value just prior to resuming.  This used to be
782      done in stop_stepping, however, setting prev_pc there did not handle
783      scenarios such as inferior function calls or returning from
784      a function via the return command.  In those cases, the prev_pc
785      value was not set properly for subsequent commands.  The prev_pc value
786      is used to initialize the starting line number in the ecs.  With an
787      invalid value, the gdb next command ends up stopping at the position
788      represented by the next line table entry past our start position.
789      On platforms that generate one line table entry per line, this
790      is not a problem.  However, on the ia64, the compiler generates
791      extraneous line table entries that do not increase the line number.
792      When we issue the gdb next command on the ia64 after an inferior call
793      or a return command, we often end up a few instructions forward, still
794      within the original line we started.
795 
796      An attempt was made to have init_execution_control_state () refresh
797      the prev_pc value before calculating the line number.  This approach
798      did not work because on platforms that use ptrace, the pc register
799      cannot be read unless the inferior is stopped.  At that point, we
800      are not guaranteed the inferior is stopped and so the read_pc ()
801      call can fail.  Setting the prev_pc value here ensures the value is
802      updated correctly when the inferior is stopped.  */
803   prev_pc = read_pc ();
804 
805   /* Resume inferior.  */
806   resume (oneproc || step || bpstat_should_step (), stop_signal);
807 
808   /* Wait for it to stop (if not standalone)
809      and in any case decode why it stopped, and act accordingly.  */
810   /* Do this only if we are not using the event loop, or if the target
811      does not support asynchronous execution. */
812   if (!target_can_async_p ())
813     {
814       wait_for_inferior ();
815       normal_stop ();
816     }
817 }
818 
819 
820 /* Start remote-debugging of a machine over a serial link.  */
821 
822 void
start_remote(void)823 start_remote (void)
824 {
825   init_thread_list ();
826   init_wait_for_inferior ();
827   stop_soon = STOP_QUIETLY;
828   trap_expected = 0;
829 
830   /* Always go on waiting for the target, regardless of the mode. */
831   /* FIXME: cagney/1999-09-23: At present it isn't possible to
832      indicate to wait_for_inferior that a target should timeout if
833      nothing is returned (instead of just blocking).  Because of this,
834      targets expecting an immediate response need to, internally, set
835      things up so that the target_wait() is forced to eventually
836      timeout. */
837   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
838      differentiate to its caller what the state of the target is after
839      the initial open has been performed.  Here we're assuming that
840      the target has stopped.  It should be possible to eventually have
841      target_open() return to the caller an indication that the target
842      is currently running and GDB state should be set to the same as
843      for an async run. */
844   wait_for_inferior ();
845   normal_stop ();
846 }
847 
848 /* Initialize static vars when a new inferior begins.  */
849 
850 void
init_wait_for_inferior(void)851 init_wait_for_inferior (void)
852 {
853   /* These are meaningless until the first time through wait_for_inferior.  */
854   prev_pc = 0;
855 
856   breakpoints_inserted = 0;
857   breakpoint_init_inferior (inf_starting);
858 
859   /* Don't confuse first call to proceed(). */
860   stop_signal = TARGET_SIGNAL_0;
861 
862   /* The first resume is not following a fork/vfork/exec. */
863   pending_follow.kind = TARGET_WAITKIND_SPURIOUS;	/* I.e., none. */
864 
865   /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
866   number_of_threads_in_syscalls = 0;
867 
868   clear_proceed_status ();
869 
870   stepping_past_singlestep_breakpoint = 0;
871 }
872 
873 /* This enum encodes possible reasons for doing a target_wait, so that
874    wfi can call target_wait in one place.  (Ultimately the call will be
875    moved out of the infinite loop entirely.) */
876 
877 enum infwait_states
878 {
879   infwait_normal_state,
880   infwait_thread_hop_state,
881   infwait_nullified_state,
882   infwait_nonstep_watch_state
883 };
884 
885 /* Why did the inferior stop? Used to print the appropriate messages
886    to the interface from within handle_inferior_event(). */
887 enum inferior_stop_reason
888 {
889   /* We don't know why. */
890   STOP_UNKNOWN,
891   /* Step, next, nexti, stepi finished. */
892   END_STEPPING_RANGE,
893   /* Found breakpoint. */
894   BREAKPOINT_HIT,
895   /* Inferior terminated by signal. */
896   SIGNAL_EXITED,
897   /* Inferior exited. */
898   EXITED,
899   /* Inferior received signal, and user asked to be notified. */
900   SIGNAL_RECEIVED
901 };
902 
903 /* This structure contains what used to be local variables in
904    wait_for_inferior.  Probably many of them can return to being
905    locals in handle_inferior_event.  */
906 
907 struct execution_control_state
908 {
909   struct target_waitstatus ws;
910   struct target_waitstatus *wp;
911   int another_trap;
912   int random_signal;
913   CORE_ADDR stop_func_start;
914   CORE_ADDR stop_func_end;
915   char *stop_func_name;
916   struct symtab_and_line sal;
917   int current_line;
918   struct symtab *current_symtab;
919   int handling_longjmp;		/* FIXME */
920   ptid_t ptid;
921   ptid_t saved_inferior_ptid;
922   int step_after_step_resume_breakpoint;
923   int stepping_through_solib_after_catch;
924   bpstat stepping_through_solib_catchpoints;
925   int enable_hw_watchpoints_after_wait;
926   int new_thread_event;
927   struct target_waitstatus tmpstatus;
928   enum infwait_states infwait_state;
929   ptid_t waiton_ptid;
930   int wait_some_more;
931 };
932 
933 void init_execution_control_state (struct execution_control_state *ecs);
934 
935 void handle_inferior_event (struct execution_control_state *ecs);
936 
937 static void step_into_function (struct execution_control_state *ecs);
938 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
939 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
940 						  struct frame_id sr_id);
941 static void stop_stepping (struct execution_control_state *ecs);
942 static void prepare_to_wait (struct execution_control_state *ecs);
943 static void keep_going (struct execution_control_state *ecs);
944 static void print_stop_reason (enum inferior_stop_reason stop_reason,
945 			       int stop_info);
946 
947 /* Wait for control to return from inferior to debugger.
948    If inferior gets a signal, we may decide to start it up again
949    instead of returning.  That is why there is a loop in this function.
950    When this function actually returns it means the inferior
951    should be left stopped and GDB should read more commands.  */
952 
953 void
wait_for_inferior(void)954 wait_for_inferior (void)
955 {
956   struct cleanup *old_cleanups;
957   struct execution_control_state ecss;
958   struct execution_control_state *ecs;
959 
960   old_cleanups = make_cleanup (delete_step_resume_breakpoint,
961 			       &step_resume_breakpoint);
962 
963   /* wfi still stays in a loop, so it's OK just to take the address of
964      a local to get the ecs pointer.  */
965   ecs = &ecss;
966 
967   /* Fill in with reasonable starting values.  */
968   init_execution_control_state (ecs);
969 
970   /* We'll update this if & when we switch to a new thread. */
971   previous_inferior_ptid = inferior_ptid;
972 
973   overlay_cache_invalid = 1;
974 
975   /* We have to invalidate the registers BEFORE calling target_wait
976      because they can be loaded from the target while in target_wait.
977      This makes remote debugging a bit more efficient for those
978      targets that provide critical registers as part of their normal
979      status mechanism. */
980 
981   registers_changed ();
982 
983   while (1)
984     {
985       if (deprecated_target_wait_hook)
986 	ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
987       else
988 	ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
989 
990       /* Now figure out what to do with the result of the result.  */
991       handle_inferior_event (ecs);
992 
993       if (!ecs->wait_some_more)
994 	break;
995     }
996   do_cleanups (old_cleanups);
997 }
998 
999 /* Asynchronous version of wait_for_inferior. It is called by the
1000    event loop whenever a change of state is detected on the file
1001    descriptor corresponding to the target. It can be called more than
1002    once to complete a single execution command. In such cases we need
1003    to keep the state in a global variable ASYNC_ECSS. If it is the
1004    last time that this function is called for a single execution
1005    command, then report to the user that the inferior has stopped, and
1006    do the necessary cleanups. */
1007 
1008 struct execution_control_state async_ecss;
1009 struct execution_control_state *async_ecs;
1010 
1011 void
fetch_inferior_event(void * client_data)1012 fetch_inferior_event (void *client_data)
1013 {
1014   static struct cleanup *old_cleanups;
1015 
1016   async_ecs = &async_ecss;
1017 
1018   if (!async_ecs->wait_some_more)
1019     {
1020       old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1021 					&step_resume_breakpoint);
1022 
1023       /* Fill in with reasonable starting values.  */
1024       init_execution_control_state (async_ecs);
1025 
1026       /* We'll update this if & when we switch to a new thread. */
1027       previous_inferior_ptid = inferior_ptid;
1028 
1029       overlay_cache_invalid = 1;
1030 
1031       /* We have to invalidate the registers BEFORE calling target_wait
1032          because they can be loaded from the target while in target_wait.
1033          This makes remote debugging a bit more efficient for those
1034          targets that provide critical registers as part of their normal
1035          status mechanism. */
1036 
1037       registers_changed ();
1038     }
1039 
1040   if (deprecated_target_wait_hook)
1041     async_ecs->ptid =
1042       deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1043   else
1044     async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1045 
1046   /* Now figure out what to do with the result of the result.  */
1047   handle_inferior_event (async_ecs);
1048 
1049   if (!async_ecs->wait_some_more)
1050     {
1051       /* Do only the cleanups that have been added by this
1052          function. Let the continuations for the commands do the rest,
1053          if there are any. */
1054       do_exec_cleanups (old_cleanups);
1055       normal_stop ();
1056       if (step_multi && stop_step)
1057 	inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1058       else
1059 	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1060     }
1061 }
1062 
1063 /* Prepare an execution control state for looping through a
1064    wait_for_inferior-type loop.  */
1065 
1066 void
init_execution_control_state(struct execution_control_state * ecs)1067 init_execution_control_state (struct execution_control_state *ecs)
1068 {
1069   /* ecs->another_trap? */
1070   ecs->random_signal = 0;
1071   ecs->step_after_step_resume_breakpoint = 0;
1072   ecs->handling_longjmp = 0;	/* FIXME */
1073   ecs->stepping_through_solib_after_catch = 0;
1074   ecs->stepping_through_solib_catchpoints = NULL;
1075   ecs->enable_hw_watchpoints_after_wait = 0;
1076   ecs->sal = find_pc_line (prev_pc, 0);
1077   ecs->current_line = ecs->sal.line;
1078   ecs->current_symtab = ecs->sal.symtab;
1079   ecs->infwait_state = infwait_normal_state;
1080   ecs->waiton_ptid = pid_to_ptid (-1);
1081   ecs->wp = &(ecs->ws);
1082 }
1083 
1084 /* Return the cached copy of the last pid/waitstatus returned by
1085    target_wait()/deprecated_target_wait_hook().  The data is actually
1086    cached by handle_inferior_event(), which gets called immediately
1087    after target_wait()/deprecated_target_wait_hook().  */
1088 
1089 void
get_last_target_status(ptid_t * ptidp,struct target_waitstatus * status)1090 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1091 {
1092   *ptidp = target_last_wait_ptid;
1093   *status = target_last_waitstatus;
1094 }
1095 
1096 /* Switch thread contexts, maintaining "infrun state". */
1097 
1098 static void
context_switch(struct execution_control_state * ecs)1099 context_switch (struct execution_control_state *ecs)
1100 {
1101   /* Caution: it may happen that the new thread (or the old one!)
1102      is not in the thread list.  In this case we must not attempt
1103      to "switch context", or we run the risk that our context may
1104      be lost.  This may happen as a result of the target module
1105      mishandling thread creation.  */
1106 
1107   if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1108     {				/* Perform infrun state context switch: */
1109       /* Save infrun state for the old thread.  */
1110       save_infrun_state (inferior_ptid, prev_pc,
1111 			 trap_expected, step_resume_breakpoint,
1112 			 step_range_start,
1113 			 step_range_end, &step_frame_id,
1114 			 ecs->handling_longjmp, ecs->another_trap,
1115 			 ecs->stepping_through_solib_after_catch,
1116 			 ecs->stepping_through_solib_catchpoints,
1117 			 ecs->current_line, ecs->current_symtab);
1118 
1119       /* Load infrun state for the new thread.  */
1120       load_infrun_state (ecs->ptid, &prev_pc,
1121 			 &trap_expected, &step_resume_breakpoint,
1122 			 &step_range_start,
1123 			 &step_range_end, &step_frame_id,
1124 			 &ecs->handling_longjmp, &ecs->another_trap,
1125 			 &ecs->stepping_through_solib_after_catch,
1126 			 &ecs->stepping_through_solib_catchpoints,
1127 			 &ecs->current_line, &ecs->current_symtab);
1128     }
1129   inferior_ptid = ecs->ptid;
1130 }
1131 
1132 static void
adjust_pc_after_break(struct execution_control_state * ecs)1133 adjust_pc_after_break (struct execution_control_state *ecs)
1134 {
1135   CORE_ADDR breakpoint_pc;
1136 
1137   /* If this target does not decrement the PC after breakpoints, then
1138      we have nothing to do.  */
1139   if (DECR_PC_AFTER_BREAK == 0)
1140     return;
1141 
1142   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
1143      we aren't, just return.
1144 
1145      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1146      affected by DECR_PC_AFTER_BREAK.  Other waitkinds which are implemented
1147      by software breakpoints should be handled through the normal breakpoint
1148      layer.
1149 
1150      NOTE drow/2004-01-31: On some targets, breakpoints may generate
1151      different signals (SIGILL or SIGEMT for instance), but it is less
1152      clear where the PC is pointing afterwards.  It may not match
1153      DECR_PC_AFTER_BREAK.  I don't know any specific target that generates
1154      these signals at breakpoints (the code has been in GDB since at least
1155      1992) so I can not guess how to handle them here.
1156 
1157      In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1158      would have the PC after hitting a watchpoint affected by
1159      DECR_PC_AFTER_BREAK.  I haven't found any target with both of these set
1160      in GDB history, and it seems unlikely to be correct, so
1161      HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here.  */
1162 
1163   if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1164     return;
1165 
1166   if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1167     return;
1168 
1169   /* Find the location where (if we've hit a breakpoint) the
1170      breakpoint would be.  */
1171   breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1172 
1173   if (SOFTWARE_SINGLE_STEP_P ())
1174     {
1175       /* When using software single-step, a SIGTRAP can only indicate
1176          an inserted breakpoint.  This actually makes things
1177          easier.  */
1178       if (singlestep_breakpoints_inserted_p)
1179 	/* When software single stepping, the instruction at [prev_pc]
1180 	   is never a breakpoint, but the instruction following
1181 	   [prev_pc] (in program execution order) always is.  Assume
1182 	   that following instruction was reached and hence a software
1183 	   breakpoint was hit.  */
1184 	write_pc_pid (breakpoint_pc, ecs->ptid);
1185       else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1186 	/* The inferior was free running (i.e., no single-step
1187 	   breakpoints inserted) and it hit a software breakpoint.  */
1188 	write_pc_pid (breakpoint_pc, ecs->ptid);
1189     }
1190   else
1191     {
1192       /* When using hardware single-step, a SIGTRAP is reported for
1193          both a completed single-step and a software breakpoint.  Need
1194          to differentiate between the two as the latter needs
1195          adjusting but the former does not.  */
1196       if (currently_stepping (ecs))
1197 	{
1198 	  if (prev_pc == breakpoint_pc
1199 	      && software_breakpoint_inserted_here_p (breakpoint_pc))
1200 	    /* Hardware single-stepped a software breakpoint (as
1201 	       occures when the inferior is resumed with PC pointing
1202 	       at not-yet-hit software breakpoint).  Since the
1203 	       breakpoint really is executed, the inferior needs to be
1204 	       backed up to the breakpoint address.  */
1205 	    write_pc_pid (breakpoint_pc, ecs->ptid);
1206 	}
1207       else
1208 	{
1209 	  if (software_breakpoint_inserted_here_p (breakpoint_pc))
1210 	    /* The inferior was free running (i.e., no hardware
1211 	       single-step and no possibility of a false SIGTRAP) and
1212 	       hit a software breakpoint.  */
1213 	    write_pc_pid (breakpoint_pc, ecs->ptid);
1214 	}
1215     }
1216 }
1217 
1218 /* Given an execution control state that has been freshly filled in
1219    by an event from the inferior, figure out what it means and take
1220    appropriate action.  */
1221 
1222 int stepped_after_stopped_by_watchpoint;
1223 
1224 void
handle_inferior_event(struct execution_control_state * ecs)1225 handle_inferior_event (struct execution_control_state *ecs)
1226 {
1227   /* NOTE: cagney/2003-03-28: If you're looking at this code and
1228      thinking that the variable stepped_after_stopped_by_watchpoint
1229      isn't used, then you're wrong!  The macro STOPPED_BY_WATCHPOINT,
1230      defined in the file "config/pa/nm-hppah.h", accesses the variable
1231      indirectly.  Mutter something rude about the HP merge.  */
1232   int sw_single_step_trap_p = 0;
1233   int stopped_by_watchpoint = -1;	/* Mark as unknown.  */
1234 
1235   /* Cache the last pid/waitstatus. */
1236   target_last_wait_ptid = ecs->ptid;
1237   target_last_waitstatus = *ecs->wp;
1238 
1239   adjust_pc_after_break (ecs);
1240 
1241   switch (ecs->infwait_state)
1242     {
1243     case infwait_thread_hop_state:
1244       /* Cancel the waiton_ptid. */
1245       ecs->waiton_ptid = pid_to_ptid (-1);
1246       /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1247          is serviced in this loop, below. */
1248       if (ecs->enable_hw_watchpoints_after_wait)
1249 	{
1250 	  TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1251 	  ecs->enable_hw_watchpoints_after_wait = 0;
1252 	}
1253       stepped_after_stopped_by_watchpoint = 0;
1254       break;
1255 
1256     case infwait_normal_state:
1257       /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1258          is serviced in this loop, below. */
1259       if (ecs->enable_hw_watchpoints_after_wait)
1260 	{
1261 	  TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1262 	  ecs->enable_hw_watchpoints_after_wait = 0;
1263 	}
1264       stepped_after_stopped_by_watchpoint = 0;
1265       break;
1266 
1267     case infwait_nullified_state:
1268       stepped_after_stopped_by_watchpoint = 0;
1269       break;
1270 
1271     case infwait_nonstep_watch_state:
1272       insert_breakpoints ();
1273 
1274       /* FIXME-maybe: is this cleaner than setting a flag?  Does it
1275          handle things like signals arriving and other things happening
1276          in combination correctly?  */
1277       stepped_after_stopped_by_watchpoint = 1;
1278       break;
1279 
1280     default:
1281       internal_error (__FILE__, __LINE__, "bad switch");
1282     }
1283   ecs->infwait_state = infwait_normal_state;
1284 
1285   flush_cached_frames ();
1286 
1287   /* If it's a new process, add it to the thread database */
1288 
1289   ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1290 			   && !ptid_equal (ecs->ptid, minus_one_ptid)
1291 			   && !in_thread_list (ecs->ptid));
1292 
1293   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1294       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1295     {
1296       add_thread (ecs->ptid);
1297 
1298       ui_out_text (uiout, "[New ");
1299       ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1300       ui_out_text (uiout, "]\n");
1301     }
1302 
1303   switch (ecs->ws.kind)
1304     {
1305     case TARGET_WAITKIND_LOADED:
1306       /* Ignore gracefully during startup of the inferior, as it
1307          might be the shell which has just loaded some objects,
1308          otherwise add the symbols for the newly loaded objects.  */
1309 #ifdef SOLIB_ADD
1310       if (stop_soon == NO_STOP_QUIETLY)
1311 	{
1312 	  /* Remove breakpoints, SOLIB_ADD might adjust
1313 	     breakpoint addresses via breakpoint_re_set.  */
1314 	  if (breakpoints_inserted)
1315 	    remove_breakpoints ();
1316 
1317 	  /* Check for any newly added shared libraries if we're
1318 	     supposed to be adding them automatically.  Switch
1319 	     terminal for any messages produced by
1320 	     breakpoint_re_set.  */
1321 	  target_terminal_ours_for_output ();
1322 	  /* NOTE: cagney/2003-11-25: Make certain that the target
1323 	     stack's section table is kept up-to-date.  Architectures,
1324 	     (e.g., PPC64), use the section table to perform
1325 	     operations such as address => section name and hence
1326 	     require the table to contain all sections (including
1327 	     those found in shared libraries).  */
1328 	  /* NOTE: cagney/2003-11-25: Pass current_target and not
1329 	     exec_ops to SOLIB_ADD.  This is because current GDB is
1330 	     only tooled to propagate section_table changes out from
1331 	     the "current_target" (see target_resize_to_sections), and
1332 	     not up from the exec stratum.  This, of course, isn't
1333 	     right.  "infrun.c" should only interact with the
1334 	     exec/process stratum, instead relying on the target stack
1335 	     to propagate relevant changes (stop, section table
1336 	     changed, ...) up to other layers.  */
1337 	  SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1338 	  target_terminal_inferior ();
1339 
1340 	  /* Reinsert breakpoints and continue.  */
1341 	  if (breakpoints_inserted)
1342 	    insert_breakpoints ();
1343 	}
1344 #endif
1345       resume (0, TARGET_SIGNAL_0);
1346       prepare_to_wait (ecs);
1347       return;
1348 
1349     case TARGET_WAITKIND_SPURIOUS:
1350       resume (0, TARGET_SIGNAL_0);
1351       prepare_to_wait (ecs);
1352       return;
1353 
1354     case TARGET_WAITKIND_EXITED:
1355       target_terminal_ours ();	/* Must do this before mourn anyway */
1356       print_stop_reason (EXITED, ecs->ws.value.integer);
1357 
1358       /* Record the exit code in the convenience variable $_exitcode, so
1359          that the user can inspect this again later.  */
1360       set_internalvar (lookup_internalvar ("_exitcode"),
1361 		       value_from_longest (builtin_type_int,
1362 					   (LONGEST) ecs->ws.value.integer));
1363       gdb_flush (gdb_stdout);
1364       target_mourn_inferior ();
1365       singlestep_breakpoints_inserted_p = 0;	/*SOFTWARE_SINGLE_STEP_P() */
1366       stop_print_frame = 0;
1367       stop_stepping (ecs);
1368       return;
1369 
1370     case TARGET_WAITKIND_SIGNALLED:
1371       stop_print_frame = 0;
1372       stop_signal = ecs->ws.value.sig;
1373       target_terminal_ours ();	/* Must do this before mourn anyway */
1374 
1375       /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1376          reach here unless the inferior is dead.  However, for years
1377          target_kill() was called here, which hints that fatal signals aren't
1378          really fatal on some systems.  If that's true, then some changes
1379          may be needed. */
1380       target_mourn_inferior ();
1381 
1382       print_stop_reason (SIGNAL_EXITED, stop_signal);
1383       singlestep_breakpoints_inserted_p = 0;	/*SOFTWARE_SINGLE_STEP_P() */
1384       stop_stepping (ecs);
1385       return;
1386 
1387       /* The following are the only cases in which we keep going;
1388          the above cases end in a continue or goto. */
1389     case TARGET_WAITKIND_FORKED:
1390     case TARGET_WAITKIND_VFORKED:
1391       stop_signal = TARGET_SIGNAL_TRAP;
1392       pending_follow.kind = ecs->ws.kind;
1393 
1394       pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1395       pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1396 
1397       stop_pc = read_pc ();
1398 
1399       stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1400 
1401       ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1402 
1403       /* If no catchpoint triggered for this, then keep going.  */
1404       if (ecs->random_signal)
1405 	{
1406 	  stop_signal = TARGET_SIGNAL_0;
1407 	  keep_going (ecs);
1408 	  return;
1409 	}
1410       goto process_event_stop_test;
1411 
1412     case TARGET_WAITKIND_EXECD:
1413       stop_signal = TARGET_SIGNAL_TRAP;
1414 
1415       /* NOTE drow/2002-12-05: This code should be pushed down into the
1416          target_wait function.  Until then following vfork on HP/UX 10.20
1417          is probably broken by this.  Of course, it's broken anyway.  */
1418       /* Is this a target which reports multiple exec events per actual
1419          call to exec()?  (HP-UX using ptrace does, for example.)  If so,
1420          ignore all but the last one.  Just resume the exec'r, and wait
1421          for the next exec event. */
1422       if (inferior_ignoring_leading_exec_events)
1423 	{
1424 	  inferior_ignoring_leading_exec_events--;
1425 	  if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1426 	    ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1427 						    parent_pid);
1428 	  target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1429 	  prepare_to_wait (ecs);
1430 	  return;
1431 	}
1432       inferior_ignoring_leading_exec_events =
1433 	target_reported_exec_events_per_exec_call () - 1;
1434 
1435       pending_follow.execd_pathname =
1436 	savestring (ecs->ws.value.execd_pathname,
1437 		    strlen (ecs->ws.value.execd_pathname));
1438 
1439       /* This causes the eventpoints and symbol table to be reset.  Must
1440          do this now, before trying to determine whether to stop. */
1441       follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1442       xfree (pending_follow.execd_pathname);
1443 
1444       stop_pc = read_pc_pid (ecs->ptid);
1445       ecs->saved_inferior_ptid = inferior_ptid;
1446       inferior_ptid = ecs->ptid;
1447 
1448       stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1449 
1450       ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1451       inferior_ptid = ecs->saved_inferior_ptid;
1452 
1453       /* If no catchpoint triggered for this, then keep going.  */
1454       if (ecs->random_signal)
1455 	{
1456 	  stop_signal = TARGET_SIGNAL_0;
1457 	  keep_going (ecs);
1458 	  return;
1459 	}
1460       goto process_event_stop_test;
1461 
1462       /* These syscall events are returned on HP-UX, as part of its
1463          implementation of page-protection-based "hardware" watchpoints.
1464          HP-UX has unfortunate interactions between page-protections and
1465          some system calls.  Our solution is to disable hardware watches
1466          when a system call is entered, and reenable them when the syscall
1467          completes.  The downside of this is that we may miss the precise
1468          point at which a watched piece of memory is modified.  "Oh well."
1469 
1470          Note that we may have multiple threads running, which may each
1471          enter syscalls at roughly the same time.  Since we don't have a
1472          good notion currently of whether a watched piece of memory is
1473          thread-private, we'd best not have any page-protections active
1474          when any thread is in a syscall.  Thus, we only want to reenable
1475          hardware watches when no threads are in a syscall.
1476 
1477          Also, be careful not to try to gather much state about a thread
1478          that's in a syscall.  It's frequently a losing proposition. */
1479     case TARGET_WAITKIND_SYSCALL_ENTRY:
1480       number_of_threads_in_syscalls++;
1481       if (number_of_threads_in_syscalls == 1)
1482 	{
1483 	  TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1484 	}
1485       resume (0, TARGET_SIGNAL_0);
1486       prepare_to_wait (ecs);
1487       return;
1488 
1489       /* Before examining the threads further, step this thread to
1490          get it entirely out of the syscall.  (We get notice of the
1491          event when the thread is just on the verge of exiting a
1492          syscall.  Stepping one instruction seems to get it back
1493          into user code.)
1494 
1495          Note that although the logical place to reenable h/w watches
1496          is here, we cannot.  We cannot reenable them before stepping
1497          the thread (this causes the next wait on the thread to hang).
1498 
1499          Nor can we enable them after stepping until we've done a wait.
1500          Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1501          here, which will be serviced immediately after the target
1502          is waited on. */
1503     case TARGET_WAITKIND_SYSCALL_RETURN:
1504       target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1505 
1506       if (number_of_threads_in_syscalls > 0)
1507 	{
1508 	  number_of_threads_in_syscalls--;
1509 	  ecs->enable_hw_watchpoints_after_wait =
1510 	    (number_of_threads_in_syscalls == 0);
1511 	}
1512       prepare_to_wait (ecs);
1513       return;
1514 
1515     case TARGET_WAITKIND_STOPPED:
1516       stop_signal = ecs->ws.value.sig;
1517       break;
1518 
1519       /* We had an event in the inferior, but we are not interested
1520          in handling it at this level. The lower layers have already
1521          done what needs to be done, if anything.
1522 
1523          One of the possible circumstances for this is when the
1524          inferior produces output for the console. The inferior has
1525          not stopped, and we are ignoring the event.  Another possible
1526          circumstance is any event which the lower level knows will be
1527          reported multiple times without an intervening resume.  */
1528     case TARGET_WAITKIND_IGNORE:
1529       prepare_to_wait (ecs);
1530       return;
1531     }
1532 
1533   /* We may want to consider not doing a resume here in order to give
1534      the user a chance to play with the new thread.  It might be good
1535      to make that a user-settable option.  */
1536 
1537   /* At this point, all threads are stopped (happens automatically in
1538      either the OS or the native code).  Therefore we need to continue
1539      all threads in order to make progress.  */
1540   if (ecs->new_thread_event)
1541     {
1542       target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1543       prepare_to_wait (ecs);
1544       return;
1545     }
1546 
1547   stop_pc = read_pc_pid (ecs->ptid);
1548 
1549   if (stepping_past_singlestep_breakpoint)
1550     {
1551       gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1552 		  && singlestep_breakpoints_inserted_p);
1553       gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1554       gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1555 
1556       stepping_past_singlestep_breakpoint = 0;
1557 
1558       /* We've either finished single-stepping past the single-step
1559          breakpoint, or stopped for some other reason.  It would be nice if
1560          we could tell, but we can't reliably.  */
1561       if (stop_signal == TARGET_SIGNAL_TRAP)
1562 	{
1563 	  /* Pull the single step breakpoints out of the target.  */
1564 	  SOFTWARE_SINGLE_STEP (0, 0);
1565 	  singlestep_breakpoints_inserted_p = 0;
1566 
1567 	  ecs->random_signal = 0;
1568 
1569 	  ecs->ptid = saved_singlestep_ptid;
1570 	  context_switch (ecs);
1571 	  if (deprecated_context_hook)
1572 	    deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1573 
1574 	  resume (1, TARGET_SIGNAL_0);
1575 	  prepare_to_wait (ecs);
1576 	  return;
1577 	}
1578     }
1579 
1580   stepping_past_singlestep_breakpoint = 0;
1581 
1582   /* See if a thread hit a thread-specific breakpoint that was meant for
1583      another thread.  If so, then step that thread past the breakpoint,
1584      and continue it.  */
1585 
1586   if (stop_signal == TARGET_SIGNAL_TRAP)
1587     {
1588       int thread_hop_needed = 0;
1589 
1590       /* Check if a regular breakpoint has been hit before checking
1591          for a potential single step breakpoint. Otherwise, GDB will
1592          not see this breakpoint hit when stepping onto breakpoints.  */
1593       if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1594 	{
1595 	  ecs->random_signal = 0;
1596 	  if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1597 	    thread_hop_needed = 1;
1598 	}
1599       else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1600 	{
1601 	  ecs->random_signal = 0;
1602 	  /* The call to in_thread_list is necessary because PTIDs sometimes
1603 	     change when we go from single-threaded to multi-threaded.  If
1604 	     the singlestep_ptid is still in the list, assume that it is
1605 	     really different from ecs->ptid.  */
1606 	  if (!ptid_equal (singlestep_ptid, ecs->ptid)
1607 	      && in_thread_list (singlestep_ptid))
1608 	    {
1609 	      thread_hop_needed = 1;
1610 	      stepping_past_singlestep_breakpoint = 1;
1611 	      saved_singlestep_ptid = singlestep_ptid;
1612 	    }
1613 	}
1614 
1615       if (thread_hop_needed)
1616 	{
1617 	  int remove_status;
1618 
1619 	  /* Saw a breakpoint, but it was hit by the wrong thread.
1620 	     Just continue. */
1621 
1622 	  if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1623 	    {
1624 	      /* Pull the single step breakpoints out of the target. */
1625 	      SOFTWARE_SINGLE_STEP (0, 0);
1626 	      singlestep_breakpoints_inserted_p = 0;
1627 	    }
1628 
1629 	  remove_status = remove_breakpoints ();
1630 	  /* Did we fail to remove breakpoints?  If so, try
1631 	     to set the PC past the bp.  (There's at least
1632 	     one situation in which we can fail to remove
1633 	     the bp's: On HP-UX's that use ttrace, we can't
1634 	     change the address space of a vforking child
1635 	     process until the child exits (well, okay, not
1636 	     then either :-) or execs. */
1637 	  if (remove_status != 0)
1638 	    {
1639 	      /* FIXME!  This is obviously non-portable! */
1640 	      write_pc_pid (stop_pc + 4, ecs->ptid);
1641 	      /* We need to restart all the threads now,
1642 	       * unles we're running in scheduler-locked mode.
1643 	       * Use currently_stepping to determine whether to
1644 	       * step or continue.
1645 	       */
1646 	      /* FIXME MVS: is there any reason not to call resume()? */
1647 	      if (scheduler_mode == schedlock_on)
1648 		target_resume (ecs->ptid,
1649 			       currently_stepping (ecs), TARGET_SIGNAL_0);
1650 	      else
1651 		target_resume (RESUME_ALL,
1652 			       currently_stepping (ecs), TARGET_SIGNAL_0);
1653 	      prepare_to_wait (ecs);
1654 	      return;
1655 	    }
1656 	  else
1657 	    {			/* Single step */
1658 	      breakpoints_inserted = 0;
1659 	      if (!ptid_equal (inferior_ptid, ecs->ptid))
1660 		context_switch (ecs);
1661 	      ecs->waiton_ptid = ecs->ptid;
1662 	      ecs->wp = &(ecs->ws);
1663 	      ecs->another_trap = 1;
1664 
1665 	      ecs->infwait_state = infwait_thread_hop_state;
1666 	      keep_going (ecs);
1667 	      registers_changed ();
1668 	      return;
1669 	    }
1670 	}
1671       else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1672 	{
1673 	  sw_single_step_trap_p = 1;
1674 	  ecs->random_signal = 0;
1675 	}
1676     }
1677   else
1678     ecs->random_signal = 1;
1679 
1680   /* See if something interesting happened to the non-current thread.  If
1681      so, then switch to that thread.  */
1682   if (!ptid_equal (ecs->ptid, inferior_ptid))
1683     {
1684       context_switch (ecs);
1685 
1686       if (deprecated_context_hook)
1687 	deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1688 
1689       flush_cached_frames ();
1690     }
1691 
1692   if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1693     {
1694       /* Pull the single step breakpoints out of the target. */
1695       SOFTWARE_SINGLE_STEP (0, 0);
1696       singlestep_breakpoints_inserted_p = 0;
1697     }
1698 
1699   /* If PC is pointing at a nullified instruction, then step beyond
1700      it so that the user won't be confused when GDB appears to be ready
1701      to execute it. */
1702 
1703   /*      if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1704   if (INSTRUCTION_NULLIFIED)
1705     {
1706       registers_changed ();
1707       target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1708 
1709       /* We may have received a signal that we want to pass to
1710          the inferior; therefore, we must not clobber the waitstatus
1711          in WS. */
1712 
1713       ecs->infwait_state = infwait_nullified_state;
1714       ecs->waiton_ptid = ecs->ptid;
1715       ecs->wp = &(ecs->tmpstatus);
1716       prepare_to_wait (ecs);
1717       return;
1718     }
1719 
1720   /* It may not be necessary to disable the watchpoint to stop over
1721      it.  For example, the PA can (with some kernel cooperation)
1722      single step over a watchpoint without disabling the watchpoint.  */
1723   if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1724     {
1725       resume (1, 0);
1726       prepare_to_wait (ecs);
1727       return;
1728     }
1729 
1730   /* It is far more common to need to disable a watchpoint to step
1731      the inferior over it.  FIXME.  What else might a debug
1732      register or page protection watchpoint scheme need here?  */
1733   if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1734     {
1735       /* At this point, we are stopped at an instruction which has
1736          attempted to write to a piece of memory under control of
1737          a watchpoint.  The instruction hasn't actually executed
1738          yet.  If we were to evaluate the watchpoint expression
1739          now, we would get the old value, and therefore no change
1740          would seem to have occurred.
1741 
1742          In order to make watchpoints work `right', we really need
1743          to complete the memory write, and then evaluate the
1744          watchpoint expression.  The following code does that by
1745          removing the watchpoint (actually, all watchpoints and
1746          breakpoints), single-stepping the target, re-inserting
1747          watchpoints, and then falling through to let normal
1748          single-step processing handle proceed.  Since this
1749          includes evaluating watchpoints, things will come to a
1750          stop in the correct manner.  */
1751 
1752       remove_breakpoints ();
1753       registers_changed ();
1754       target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);	/* Single step */
1755 
1756       ecs->waiton_ptid = ecs->ptid;
1757       ecs->wp = &(ecs->ws);
1758       ecs->infwait_state = infwait_nonstep_watch_state;
1759       prepare_to_wait (ecs);
1760       return;
1761     }
1762 
1763   /* It may be possible to simply continue after a watchpoint.  */
1764   if (HAVE_CONTINUABLE_WATCHPOINT)
1765     stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1766 
1767   ecs->stop_func_start = 0;
1768   ecs->stop_func_end = 0;
1769   ecs->stop_func_name = 0;
1770   /* Don't care about return value; stop_func_start and stop_func_name
1771      will both be 0 if it doesn't work.  */
1772   find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1773 			    &ecs->stop_func_start, &ecs->stop_func_end);
1774   ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1775   ecs->another_trap = 0;
1776   bpstat_clear (&stop_bpstat);
1777   stop_step = 0;
1778   stop_stack_dummy = 0;
1779   stop_print_frame = 1;
1780   ecs->random_signal = 0;
1781   stopped_by_random_signal = 0;
1782   breakpoints_failed = 0;
1783 
1784   /* Look at the cause of the stop, and decide what to do.
1785      The alternatives are:
1786      1) break; to really stop and return to the debugger,
1787      2) drop through to start up again
1788      (set ecs->another_trap to 1 to single step once)
1789      3) set ecs->random_signal to 1, and the decision between 1 and 2
1790      will be made according to the signal handling tables.  */
1791 
1792   /* First, distinguish signals caused by the debugger from signals
1793      that have to do with the program's own actions.  Note that
1794      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1795      on the operating system version.  Here we detect when a SIGILL or
1796      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
1797      something similar for SIGSEGV, since a SIGSEGV will be generated
1798      when we're trying to execute a breakpoint instruction on a
1799      non-executable stack.  This happens for call dummy breakpoints
1800      for architectures like SPARC that place call dummies on the
1801      stack.  */
1802 
1803   if (stop_signal == TARGET_SIGNAL_TRAP
1804       || (breakpoints_inserted
1805 	  && (stop_signal == TARGET_SIGNAL_ILL
1806 	      || stop_signal == TARGET_SIGNAL_SEGV
1807 	      || stop_signal == TARGET_SIGNAL_EMT))
1808       || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1809     {
1810       if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1811 	{
1812 	  stop_print_frame = 0;
1813 	  stop_stepping (ecs);
1814 	  return;
1815 	}
1816 
1817       /* This is originated from start_remote(), start_inferior() and
1818          shared libraries hook functions.  */
1819       if (stop_soon == STOP_QUIETLY)
1820 	{
1821 	  stop_stepping (ecs);
1822 	  return;
1823 	}
1824 
1825       /* This originates from attach_command().  We need to overwrite
1826          the stop_signal here, because some kernels don't ignore a
1827          SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1828          See more comments in inferior.h.  */
1829       if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1830 	{
1831 	  stop_stepping (ecs);
1832 	  if (stop_signal == TARGET_SIGNAL_STOP)
1833 	    stop_signal = TARGET_SIGNAL_0;
1834 	  return;
1835 	}
1836 
1837       /* Don't even think about breakpoints if just proceeded over a
1838          breakpoint.  */
1839       if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1840 	bpstat_clear (&stop_bpstat);
1841       else
1842 	{
1843 	  /* See if there is a breakpoint at the current PC.  */
1844 	  stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1845 					    stopped_by_watchpoint);
1846 
1847 	  /* Following in case break condition called a
1848 	     function.  */
1849 	  stop_print_frame = 1;
1850 	}
1851 
1852       /* NOTE: cagney/2003-03-29: These two checks for a random signal
1853          at one stage in the past included checks for an inferior
1854          function call's call dummy's return breakpoint.  The original
1855          comment, that went with the test, read:
1856 
1857          ``End of a stack dummy.  Some systems (e.g. Sony news) give
1858          another signal besides SIGTRAP, so check here as well as
1859          above.''
1860 
1861          If someone ever tries to get get call dummys on a
1862          non-executable stack to work (where the target would stop
1863          with something like a SIGSEGV), then those tests might need
1864          to be re-instated.  Given, however, that the tests were only
1865          enabled when momentary breakpoints were not being used, I
1866          suspect that it won't be the case.
1867 
1868          NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1869          be necessary for call dummies on a non-executable stack on
1870          SPARC.  */
1871 
1872       if (stop_signal == TARGET_SIGNAL_TRAP)
1873 	ecs->random_signal
1874 	  = !(bpstat_explains_signal (stop_bpstat)
1875 	      || trap_expected
1876 	      || (step_range_end && step_resume_breakpoint == NULL));
1877       else
1878 	{
1879 	  ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1880 	  if (!ecs->random_signal)
1881 	    stop_signal = TARGET_SIGNAL_TRAP;
1882 	}
1883     }
1884 
1885   /* When we reach this point, we've pretty much decided
1886      that the reason for stopping must've been a random
1887      (unexpected) signal. */
1888 
1889   else
1890     ecs->random_signal = 1;
1891 
1892 process_event_stop_test:
1893   /* For the program's own signals, act according to
1894      the signal handling tables.  */
1895 
1896   if (ecs->random_signal)
1897     {
1898       /* Signal not for debugging purposes.  */
1899       int printed = 0;
1900 
1901       stopped_by_random_signal = 1;
1902 
1903       if (signal_print[stop_signal])
1904 	{
1905 	  printed = 1;
1906 	  target_terminal_ours_for_output ();
1907 	  print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1908 	}
1909       if (signal_stop[stop_signal])
1910 	{
1911 	  stop_stepping (ecs);
1912 	  return;
1913 	}
1914       /* If not going to stop, give terminal back
1915          if we took it away.  */
1916       else if (printed)
1917 	target_terminal_inferior ();
1918 
1919       /* Clear the signal if it should not be passed.  */
1920       if (signal_program[stop_signal] == 0)
1921 	stop_signal = TARGET_SIGNAL_0;
1922 
1923       if (prev_pc == read_pc ()
1924 	  && !breakpoints_inserted
1925 	  && breakpoint_here_p (read_pc ())
1926 	  && step_resume_breakpoint == NULL)
1927 	{
1928 	  /* We were just starting a new sequence, attempting to
1929 	     single-step off of a breakpoint and expecting a SIGTRAP.
1930 	     Intead this signal arrives.  This signal will take us out
1931 	     of the stepping range so GDB needs to remember to, when
1932 	     the signal handler returns, resume stepping off that
1933 	     breakpoint.  */
1934 	  /* To simplify things, "continue" is forced to use the same
1935 	     code paths as single-step - set a breakpoint at the
1936 	     signal return address and then, once hit, step off that
1937 	     breakpoint.  */
1938 	  insert_step_resume_breakpoint_at_frame (get_current_frame ());
1939 	  ecs->step_after_step_resume_breakpoint = 1;
1940 	}
1941       else if (step_range_end != 0
1942 	       && stop_signal != TARGET_SIGNAL_0
1943 	       && stop_pc >= step_range_start && stop_pc < step_range_end
1944 	       && frame_id_eq (get_frame_id (get_current_frame ()),
1945 			       step_frame_id))
1946 	{
1947 	  /* The inferior is about to take a signal that will take it
1948 	     out of the single step range.  Set a breakpoint at the
1949 	     current PC (which is presumably where the signal handler
1950 	     will eventually return) and then allow the inferior to
1951 	     run free.
1952 
1953 	     Note that this is only needed for a signal delivered
1954 	     while in the single-step range.  Nested signals aren't a
1955 	     problem as they eventually all return.  */
1956 	  insert_step_resume_breakpoint_at_frame (get_current_frame ());
1957 	}
1958       keep_going (ecs);
1959       return;
1960     }
1961 
1962   /* Handle cases caused by hitting a breakpoint.  */
1963   {
1964     CORE_ADDR jmp_buf_pc;
1965     struct bpstat_what what;
1966 
1967     what = bpstat_what (stop_bpstat);
1968 
1969     if (what.call_dummy)
1970       {
1971 	stop_stack_dummy = 1;
1972       }
1973 
1974     switch (what.main_action)
1975       {
1976       case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1977 	/* If we hit the breakpoint at longjmp, disable it for the
1978 	   duration of this command.  Then, install a temporary
1979 	   breakpoint at the target of the jmp_buf. */
1980 	disable_longjmp_breakpoint ();
1981 	remove_breakpoints ();
1982 	breakpoints_inserted = 0;
1983 	if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
1984 	  {
1985 	    keep_going (ecs);
1986 	    return;
1987 	  }
1988 
1989 	/* Need to blow away step-resume breakpoint, as it
1990 	   interferes with us */
1991 	if (step_resume_breakpoint != NULL)
1992 	  {
1993 	    delete_step_resume_breakpoint (&step_resume_breakpoint);
1994 	  }
1995 
1996 	set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
1997 	ecs->handling_longjmp = 1;	/* FIXME */
1998 	keep_going (ecs);
1999 	return;
2000 
2001       case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2002       case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2003 	remove_breakpoints ();
2004 	breakpoints_inserted = 0;
2005 	disable_longjmp_breakpoint ();
2006 	ecs->handling_longjmp = 0;	/* FIXME */
2007 	if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2008 	  break;
2009 	/* else fallthrough */
2010 
2011       case BPSTAT_WHAT_SINGLE:
2012 	if (breakpoints_inserted)
2013 	  {
2014 	    remove_breakpoints ();
2015 	  }
2016 	breakpoints_inserted = 0;
2017 	ecs->another_trap = 1;
2018 	/* Still need to check other stuff, at least the case
2019 	   where we are stepping and step out of the right range.  */
2020 	break;
2021 
2022       case BPSTAT_WHAT_STOP_NOISY:
2023 	stop_print_frame = 1;
2024 
2025 	/* We are about to nuke the step_resume_breakpointt via the
2026 	   cleanup chain, so no need to worry about it here.  */
2027 
2028 	stop_stepping (ecs);
2029 	return;
2030 
2031       case BPSTAT_WHAT_STOP_SILENT:
2032 	stop_print_frame = 0;
2033 
2034 	/* We are about to nuke the step_resume_breakpoin via the
2035 	   cleanup chain, so no need to worry about it here.  */
2036 
2037 	stop_stepping (ecs);
2038 	return;
2039 
2040       case BPSTAT_WHAT_STEP_RESUME:
2041 	/* This proably demands a more elegant solution, but, yeah
2042 	   right...
2043 
2044 	   This function's use of the simple variable
2045 	   step_resume_breakpoint doesn't seem to accomodate
2046 	   simultaneously active step-resume bp's, although the
2047 	   breakpoint list certainly can.
2048 
2049 	   If we reach here and step_resume_breakpoint is already
2050 	   NULL, then apparently we have multiple active
2051 	   step-resume bp's.  We'll just delete the breakpoint we
2052 	   stopped at, and carry on.
2053 
2054 	   Correction: what the code currently does is delete a
2055 	   step-resume bp, but it makes no effort to ensure that
2056 	   the one deleted is the one currently stopped at.  MVS  */
2057 
2058 	if (step_resume_breakpoint == NULL)
2059 	  {
2060 	    step_resume_breakpoint =
2061 	      bpstat_find_step_resume_breakpoint (stop_bpstat);
2062 	  }
2063 	delete_step_resume_breakpoint (&step_resume_breakpoint);
2064 	if (ecs->step_after_step_resume_breakpoint)
2065 	  {
2066 	    /* Back when the step-resume breakpoint was inserted, we
2067 	       were trying to single-step off a breakpoint.  Go back
2068 	       to doing that.  */
2069 	    ecs->step_after_step_resume_breakpoint = 0;
2070 	    remove_breakpoints ();
2071 	    breakpoints_inserted = 0;
2072 	    ecs->another_trap = 1;
2073 	    keep_going (ecs);
2074 	    return;
2075 	  }
2076 	break;
2077 
2078       case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2079 	/* If were waiting for a trap, hitting the step_resume_break
2080 	   doesn't count as getting it.  */
2081 	if (trap_expected)
2082 	  ecs->another_trap = 1;
2083 	break;
2084 
2085       case BPSTAT_WHAT_CHECK_SHLIBS:
2086       case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2087 #ifdef SOLIB_ADD
2088 	{
2089 	  /* Remove breakpoints, we eventually want to step over the
2090 	     shlib event breakpoint, and SOLIB_ADD might adjust
2091 	     breakpoint addresses via breakpoint_re_set.  */
2092 	  if (breakpoints_inserted)
2093 	    remove_breakpoints ();
2094 	  breakpoints_inserted = 0;
2095 
2096 	  /* Check for any newly added shared libraries if we're
2097 	     supposed to be adding them automatically.  Switch
2098 	     terminal for any messages produced by
2099 	     breakpoint_re_set.  */
2100 	  target_terminal_ours_for_output ();
2101 	  /* NOTE: cagney/2003-11-25: Make certain that the target
2102 	     stack's section table is kept up-to-date.  Architectures,
2103 	     (e.g., PPC64), use the section table to perform
2104 	     operations such as address => section name and hence
2105 	     require the table to contain all sections (including
2106 	     those found in shared libraries).  */
2107 	  /* NOTE: cagney/2003-11-25: Pass current_target and not
2108 	     exec_ops to SOLIB_ADD.  This is because current GDB is
2109 	     only tooled to propagate section_table changes out from
2110 	     the "current_target" (see target_resize_to_sections), and
2111 	     not up from the exec stratum.  This, of course, isn't
2112 	     right.  "infrun.c" should only interact with the
2113 	     exec/process stratum, instead relying on the target stack
2114 	     to propagate relevant changes (stop, section table
2115 	     changed, ...) up to other layers.  */
2116 	  SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2117 	  target_terminal_inferior ();
2118 
2119 	  /* Try to reenable shared library breakpoints, additional
2120 	     code segments in shared libraries might be mapped in now. */
2121 	  re_enable_breakpoints_in_shlibs ();
2122 
2123 	  /* For PIE executables, we dont really know where the
2124 	     breakpoints are going to be until we start up the
2125 	     inferior.  */
2126           re_enable_breakpoints_at_startup ();
2127 
2128 	  /* If requested, stop when the dynamic linker notifies
2129 	     gdb of events.  This allows the user to get control
2130 	     and place breakpoints in initializer routines for
2131 	     dynamically loaded objects (among other things).  */
2132 	  if (stop_on_solib_events || stop_stack_dummy)
2133 	    {
2134 	      stop_stepping (ecs);
2135 	      return;
2136 	    }
2137 
2138 	  /* If we stopped due to an explicit catchpoint, then the
2139 	     (see above) call to SOLIB_ADD pulled in any symbols
2140 	     from a newly-loaded library, if appropriate.
2141 
2142 	     We do want the inferior to stop, but not where it is
2143 	     now, which is in the dynamic linker callback.  Rather,
2144 	     we would like it stop in the user's program, just after
2145 	     the call that caused this catchpoint to trigger.  That
2146 	     gives the user a more useful vantage from which to
2147 	     examine their program's state. */
2148 	  else if (what.main_action
2149 		   == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2150 	    {
2151 	      /* ??rehrauer: If I could figure out how to get the
2152 	         right return PC from here, we could just set a temp
2153 	         breakpoint and resume.  I'm not sure we can without
2154 	         cracking open the dld's shared libraries and sniffing
2155 	         their unwind tables and text/data ranges, and that's
2156 	         not a terribly portable notion.
2157 
2158 	         Until that time, we must step the inferior out of the
2159 	         dld callback, and also out of the dld itself (and any
2160 	         code or stubs in libdld.sl, such as "shl_load" and
2161 	         friends) until we reach non-dld code.  At that point,
2162 	         we can stop stepping. */
2163 	      bpstat_get_triggered_catchpoints (stop_bpstat,
2164 						&ecs->
2165 						stepping_through_solib_catchpoints);
2166 	      ecs->stepping_through_solib_after_catch = 1;
2167 
2168 	      /* Be sure to lift all breakpoints, so the inferior does
2169 	         actually step past this point... */
2170 	      ecs->another_trap = 1;
2171 	      break;
2172 	    }
2173 	  else
2174 	    {
2175 	      /* We want to step over this breakpoint, then keep going.  */
2176 	      ecs->another_trap = 1;
2177 	      break;
2178 	    }
2179 	}
2180 #endif
2181 	break;
2182 
2183       case BPSTAT_WHAT_LAST:
2184 	/* Not a real code, but listed here to shut up gcc -Wall.  */
2185 
2186       case BPSTAT_WHAT_KEEP_CHECKING:
2187 	break;
2188       }
2189   }
2190 
2191   /* We come here if we hit a breakpoint but should not
2192      stop for it.  Possibly we also were stepping
2193      and should stop for that.  So fall through and
2194      test for stepping.  But, if not stepping,
2195      do not stop.  */
2196 
2197   /* Are we stepping to get the inferior out of the dynamic
2198      linker's hook (and possibly the dld itself) after catching
2199      a shlib event? */
2200   if (ecs->stepping_through_solib_after_catch)
2201     {
2202 #if defined(SOLIB_ADD)
2203       /* Have we reached our destination?  If not, keep going. */
2204       if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2205 	{
2206 	  ecs->another_trap = 1;
2207 	  keep_going (ecs);
2208 	  return;
2209 	}
2210 #endif
2211       /* Else, stop and report the catchpoint(s) whose triggering
2212          caused us to begin stepping. */
2213       ecs->stepping_through_solib_after_catch = 0;
2214       bpstat_clear (&stop_bpstat);
2215       stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2216       bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2217       stop_print_frame = 1;
2218       stop_stepping (ecs);
2219       return;
2220     }
2221 
2222   if (step_resume_breakpoint)
2223     {
2224       /* Having a step-resume breakpoint overrides anything
2225          else having to do with stepping commands until
2226          that breakpoint is reached.  */
2227       keep_going (ecs);
2228       return;
2229     }
2230 
2231   if (step_range_end == 0)
2232     {
2233       /* Likewise if we aren't even stepping.  */
2234       keep_going (ecs);
2235       return;
2236     }
2237 
2238   /* If stepping through a line, keep going if still within it.
2239 
2240      Note that step_range_end is the address of the first instruction
2241      beyond the step range, and NOT the address of the last instruction
2242      within it! */
2243   if (stop_pc >= step_range_start && stop_pc < step_range_end)
2244     {
2245       keep_going (ecs);
2246       return;
2247     }
2248 
2249   /* We stepped out of the stepping range.  */
2250 
2251   /* If we are stepping at the source level and entered the runtime
2252      loader dynamic symbol resolution code, we keep on single stepping
2253      until we exit the run time loader code and reach the callee's
2254      address.  */
2255   if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2256       && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2257     {
2258       CORE_ADDR pc_after_resolver =
2259 	gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2260 
2261       if (pc_after_resolver)
2262 	{
2263 	  /* Set up a step-resume breakpoint at the address
2264 	     indicated by SKIP_SOLIB_RESOLVER.  */
2265 	  struct symtab_and_line sr_sal;
2266 	  init_sal (&sr_sal);
2267 	  sr_sal.pc = pc_after_resolver;
2268 
2269 	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2270 	}
2271 
2272       keep_going (ecs);
2273       return;
2274     }
2275 
2276   if (step_range_end != 1
2277       && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2278 	  || step_over_calls == STEP_OVER_ALL)
2279       && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2280     {
2281       /* The inferior, while doing a "step" or "next", has ended up in
2282          a signal trampoline (either by a signal being delivered or by
2283          the signal handler returning).  Just single-step until the
2284          inferior leaves the trampoline (either by calling the handler
2285          or returning).  */
2286       keep_going (ecs);
2287       return;
2288     }
2289 
2290   if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2291     {
2292       /* It's a subroutine call.  */
2293       CORE_ADDR real_stop_pc;
2294 
2295       if ((step_over_calls == STEP_OVER_NONE)
2296 	  || ((step_range_end == 1)
2297 	      && in_prologue (prev_pc, ecs->stop_func_start)))
2298 	{
2299 	  /* I presume that step_over_calls is only 0 when we're
2300 	     supposed to be stepping at the assembly language level
2301 	     ("stepi").  Just stop.  */
2302 	  /* Also, maybe we just did a "nexti" inside a prolog, so we
2303 	     thought it was a subroutine call but it was not.  Stop as
2304 	     well.  FENN */
2305 	  stop_step = 1;
2306 	  print_stop_reason (END_STEPPING_RANGE, 0);
2307 	  stop_stepping (ecs);
2308 	  return;
2309 	}
2310 
2311 #ifdef DEPRECATED_IGNORE_HELPER_CALL
2312       /* On MIPS16, a function that returns a floating point value may
2313          call a library helper function to copy the return value to a
2314          floating point register.  The DEPRECATED_IGNORE_HELPER_CALL
2315          macro returns non-zero if we should ignore (i.e. step over)
2316          this function call.  */
2317       /* FIXME: cagney/2004-07-21: These custom ``ignore frame when
2318          stepping'' function attributes (SIGTRAMP_FRAME,
2319          DEPRECATED_IGNORE_HELPER_CALL, SKIP_TRAMPOLINE_CODE,
2320          skip_language_trampoline frame, et.al.) need to be replaced
2321          with generic attributes bound to the frame's function.  */
2322       if (DEPRECATED_IGNORE_HELPER_CALL (stop_pc))
2323 	{
2324 	  /* We're doing a "next", set a breakpoint at callee's return
2325 	     address (the address at which the caller will
2326 	     resume).  */
2327 	  insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2328 	  keep_going (ecs);
2329 	  return;
2330 	}
2331 #endif
2332       if (step_over_calls == STEP_OVER_ALL)
2333 	{
2334 	  /* We're doing a "next", set a breakpoint at callee's return
2335 	     address (the address at which the caller will
2336 	     resume).  */
2337 	  insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2338 	  keep_going (ecs);
2339 	  return;
2340 	}
2341 
2342       /* If we are in a function call trampoline (a stub between the
2343          calling routine and the real function), locate the real
2344          function.  That's what tells us (a) whether we want to step
2345          into it at all, and (b) what prologue we want to run to the
2346          end of, if we do step into it.  */
2347       real_stop_pc = skip_language_trampoline (stop_pc);
2348       if (real_stop_pc == 0)
2349 	real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2350       if (real_stop_pc != 0)
2351 	ecs->stop_func_start = real_stop_pc;
2352 
2353       if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2354 	{
2355 	  struct symtab_and_line sr_sal;
2356 	  init_sal (&sr_sal);
2357 	  sr_sal.pc = ecs->stop_func_start;
2358 
2359 	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2360 	  keep_going (ecs);
2361 	  return;
2362 	}
2363 
2364       /* If we have line number information for the function we are
2365          thinking of stepping into, step into it.
2366 
2367          If there are several symtabs at that PC (e.g. with include
2368          files), just want to know whether *any* of them have line
2369          numbers.  find_pc_line handles this.  */
2370       {
2371 	struct symtab_and_line tmp_sal;
2372 
2373 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2374 	if (tmp_sal.line != 0)
2375 	  {
2376 	    step_into_function (ecs);
2377 	    return;
2378 	  }
2379       }
2380 
2381       /* If we have no line number and the step-stop-if-no-debug is
2382          set, we stop the step so that the user has a chance to switch
2383          in assembly mode.  */
2384       if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2385 	{
2386 	  stop_step = 1;
2387 	  print_stop_reason (END_STEPPING_RANGE, 0);
2388 	  stop_stepping (ecs);
2389 	  return;
2390 	}
2391 
2392       /* Set a breakpoint at callee's return address (the address at
2393          which the caller will resume).  */
2394       insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2395       keep_going (ecs);
2396       return;
2397     }
2398 
2399   /* If we're in the return path from a shared library trampoline,
2400      we want to proceed through the trampoline when stepping.  */
2401   if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2402     {
2403       /* Determine where this trampoline returns.  */
2404       CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2405 
2406       /* Only proceed through if we know where it's going.  */
2407       if (real_stop_pc)
2408 	{
2409 	  /* And put the step-breakpoint there and go until there. */
2410 	  struct symtab_and_line sr_sal;
2411 
2412 	  init_sal (&sr_sal);	/* initialize to zeroes */
2413 	  sr_sal.pc = real_stop_pc;
2414 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
2415 
2416 	  /* Do not specify what the fp should be when we stop since
2417 	     on some machines the prologue is where the new fp value
2418 	     is established.  */
2419 	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2420 
2421 	  /* Restart without fiddling with the step ranges or
2422 	     other state.  */
2423 	  keep_going (ecs);
2424 	  return;
2425 	}
2426     }
2427 
2428   /* NOTE: tausq/2004-05-24: This if block used to be done before all
2429      the trampoline processing logic, however, there are some trampolines
2430      that have no names, so we should do trampoline handling first.  */
2431   if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2432       && ecs->stop_func_name == NULL)
2433     {
2434       /* The inferior just stepped into, or returned to, an
2435          undebuggable function (where there is no symbol, not even a
2436          minimal symbol, corresponding to the address where the
2437          inferior stopped).  Since we want to skip this kind of code,
2438          we keep going until the inferior returns from this
2439          function.  */
2440       if (step_stop_if_no_debug)
2441 	{
2442 	  /* If we have no line number and the step-stop-if-no-debug
2443 	     is set, we stop the step so that the user has a chance to
2444 	     switch in assembly mode.  */
2445 	  stop_step = 1;
2446 	  print_stop_reason (END_STEPPING_RANGE, 0);
2447 	  stop_stepping (ecs);
2448 	  return;
2449 	}
2450       else
2451 	{
2452 	  /* Set a breakpoint at callee's return address (the address
2453 	     at which the caller will resume).  */
2454 	  insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2455 	  keep_going (ecs);
2456 	  return;
2457 	}
2458     }
2459 
2460   if (step_range_end == 1)
2461     {
2462       /* It is stepi or nexti.  We always want to stop stepping after
2463          one instruction.  */
2464       stop_step = 1;
2465       print_stop_reason (END_STEPPING_RANGE, 0);
2466       stop_stepping (ecs);
2467       return;
2468     }
2469 
2470   ecs->sal = find_pc_line (stop_pc, 0);
2471 
2472   if (ecs->sal.line == 0)
2473     {
2474       /* We have no line number information.  That means to stop
2475          stepping (does this always happen right after one instruction,
2476          when we do "s" in a function with no line numbers,
2477          or can this happen as a result of a return or longjmp?).  */
2478       stop_step = 1;
2479       print_stop_reason (END_STEPPING_RANGE, 0);
2480       stop_stepping (ecs);
2481       return;
2482     }
2483 
2484   if ((stop_pc == ecs->sal.pc)
2485       && (ecs->current_line != ecs->sal.line
2486 	  || ecs->current_symtab != ecs->sal.symtab))
2487     {
2488       /* We are at the start of a different line.  So stop.  Note that
2489          we don't stop if we step into the middle of a different line.
2490          That is said to make things like for (;;) statements work
2491          better.  */
2492       stop_step = 1;
2493       print_stop_reason (END_STEPPING_RANGE, 0);
2494       stop_stepping (ecs);
2495       return;
2496     }
2497 
2498   /* We aren't done stepping.
2499 
2500      Optimize by setting the stepping range to the line.
2501      (We might not be in the original line, but if we entered a
2502      new line in mid-statement, we continue stepping.  This makes
2503      things like for(;;) statements work better.)  */
2504 
2505   if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2506     {
2507       /* If this is the last line of the function, don't keep stepping
2508          (it would probably step us out of the function).
2509          This is particularly necessary for a one-line function,
2510          in which after skipping the prologue we better stop even though
2511          we will be in mid-line.  */
2512       stop_step = 1;
2513       print_stop_reason (END_STEPPING_RANGE, 0);
2514       stop_stepping (ecs);
2515       return;
2516     }
2517   step_range_start = ecs->sal.pc;
2518   step_range_end = ecs->sal.end;
2519   step_frame_id = get_frame_id (get_current_frame ());
2520   ecs->current_line = ecs->sal.line;
2521   ecs->current_symtab = ecs->sal.symtab;
2522 
2523   /* In the case where we just stepped out of a function into the
2524      middle of a line of the caller, continue stepping, but
2525      step_frame_id must be modified to current frame */
2526 #if 0
2527   /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2528      generous.  It will trigger on things like a step into a frameless
2529      stackless leaf function.  I think the logic should instead look
2530      at the unwound frame ID has that should give a more robust
2531      indication of what happened.  */
2532   if (step - ID == current - ID)
2533     still stepping in same function;
2534   else if (step - ID == unwind (current - ID))
2535     stepped into a function;
2536   else
2537     stepped out of a function;
2538   /* Of course this assumes that the frame ID unwind code is robust
2539      and we're willing to introduce frame unwind logic into this
2540      function.  Fortunately, those days are nearly upon us.  */
2541 #endif
2542   {
2543     struct frame_id current_frame = get_frame_id (get_current_frame ());
2544     if (!(frame_id_inner (current_frame, step_frame_id)))
2545       step_frame_id = current_frame;
2546   }
2547 
2548   keep_going (ecs);
2549 }
2550 
2551 /* Are we in the middle of stepping?  */
2552 
2553 static int
currently_stepping(struct execution_control_state * ecs)2554 currently_stepping (struct execution_control_state *ecs)
2555 {
2556   return ((!ecs->handling_longjmp
2557 	   && ((step_range_end && step_resume_breakpoint == NULL)
2558 	       || trap_expected))
2559 	  || ecs->stepping_through_solib_after_catch
2560 	  || bpstat_should_step ());
2561 }
2562 
2563 /* Subroutine call with source code we should not step over.  Do step
2564    to the first line of code in it.  */
2565 
2566 static void
step_into_function(struct execution_control_state * ecs)2567 step_into_function (struct execution_control_state *ecs)
2568 {
2569   struct symtab *s;
2570   struct symtab_and_line sr_sal;
2571 
2572   s = find_pc_symtab (stop_pc);
2573   if (s && s->language != language_asm)
2574     ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2575 
2576   ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2577   /* Use the step_resume_break to step until the end of the prologue,
2578      even if that involves jumps (as it seems to on the vax under
2579      4.2).  */
2580   /* If the prologue ends in the middle of a source line, continue to
2581      the end of that source line (if it is still within the function).
2582      Otherwise, just go to end of prologue.  */
2583   if (ecs->sal.end
2584       && ecs->sal.pc != ecs->stop_func_start
2585       && ecs->sal.end < ecs->stop_func_end)
2586     ecs->stop_func_start = ecs->sal.end;
2587 
2588   /* Architectures which require breakpoint adjustment might not be able
2589      to place a breakpoint at the computed address.  If so, the test
2590      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
2591      ecs->stop_func_start to an address at which a breakpoint may be
2592      legitimately placed.
2593 
2594      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
2595      made, GDB will enter an infinite loop when stepping through
2596      optimized code consisting of VLIW instructions which contain
2597      subinstructions corresponding to different source lines.  On
2598      FR-V, it's not permitted to place a breakpoint on any but the
2599      first subinstruction of a VLIW instruction.  When a breakpoint is
2600      set, GDB will adjust the breakpoint address to the beginning of
2601      the VLIW instruction.  Thus, we need to make the corresponding
2602      adjustment here when computing the stop address.  */
2603 
2604   if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2605     {
2606       ecs->stop_func_start
2607 	= gdbarch_adjust_breakpoint_address (current_gdbarch,
2608 					     ecs->stop_func_start);
2609     }
2610 
2611   if (ecs->stop_func_start == stop_pc)
2612     {
2613       /* We are already there: stop now.  */
2614       stop_step = 1;
2615       print_stop_reason (END_STEPPING_RANGE, 0);
2616       stop_stepping (ecs);
2617       return;
2618     }
2619   else
2620     {
2621       /* Put the step-breakpoint there and go until there.  */
2622       init_sal (&sr_sal);	/* initialize to zeroes */
2623       sr_sal.pc = ecs->stop_func_start;
2624       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2625 
2626       /* Do not specify what the fp should be when we stop since on
2627          some machines the prologue is where the new fp value is
2628          established.  */
2629       insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2630 
2631       /* And make sure stepping stops right away then.  */
2632       step_range_end = step_range_start;
2633     }
2634   keep_going (ecs);
2635 }
2636 
2637 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2638    This is used to both functions and to skip over code.  */
2639 
2640 static void
insert_step_resume_breakpoint_at_sal(struct symtab_and_line sr_sal,struct frame_id sr_id)2641 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2642 				      struct frame_id sr_id)
2643 {
2644   /* There should never be more than one step-resume breakpoint per
2645      thread, so we should never be setting a new
2646      step_resume_breakpoint when one is already active.  */
2647   gdb_assert (step_resume_breakpoint == NULL);
2648   step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2649 						     bp_step_resume);
2650   if (breakpoints_inserted)
2651     insert_breakpoints ();
2652 }
2653 
2654 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc.  This is used
2655    to skip a function (next, skip-no-debug) or signal.  It's assumed
2656    that the function/signal handler being skipped eventually returns
2657    to the breakpoint inserted at RETURN_FRAME.pc.
2658 
2659    For the skip-function case, the function may have been reached by
2660    either single stepping a call / return / signal-return instruction,
2661    or by hitting a breakpoint.  In all cases, the RETURN_FRAME belongs
2662    to the skip-function's caller.
2663 
2664    For the signals case, this is called with the interrupted
2665    function's frame.  The signal handler, when it returns, will resume
2666    the interrupted function at RETURN_FRAME.pc.  */
2667 
2668 static void
insert_step_resume_breakpoint_at_frame(struct frame_info * return_frame)2669 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2670 {
2671   struct symtab_and_line sr_sal;
2672 
2673   init_sal (&sr_sal);		/* initialize to zeros */
2674 
2675   sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2676   sr_sal.section = find_pc_overlay (sr_sal.pc);
2677 
2678   insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2679 }
2680 
2681 static void
stop_stepping(struct execution_control_state * ecs)2682 stop_stepping (struct execution_control_state *ecs)
2683 {
2684   /* Let callers know we don't want to wait for the inferior anymore.  */
2685   ecs->wait_some_more = 0;
2686 }
2687 
2688 /* This function handles various cases where we need to continue
2689    waiting for the inferior.  */
2690 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2691 
2692 static void
keep_going(struct execution_control_state * ecs)2693 keep_going (struct execution_control_state *ecs)
2694 {
2695   /* Save the pc before execution, to compare with pc after stop.  */
2696   prev_pc = read_pc ();		/* Might have been DECR_AFTER_BREAK */
2697 
2698   /* If we did not do break;, it means we should keep running the
2699      inferior and not return to debugger.  */
2700 
2701   if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2702     {
2703       /* We took a signal (which we are supposed to pass through to
2704          the inferior, else we'd have done a break above) and we
2705          haven't yet gotten our trap.  Simply continue.  */
2706       resume (currently_stepping (ecs), stop_signal);
2707     }
2708   else
2709     {
2710       /* Either the trap was not expected, but we are continuing
2711          anyway (the user asked that this signal be passed to the
2712          child)
2713          -- or --
2714          The signal was SIGTRAP, e.g. it was our signal, but we
2715          decided we should resume from it.
2716 
2717          We're going to run this baby now!  */
2718 
2719       if (!breakpoints_inserted && !ecs->another_trap)
2720 	{
2721 	  breakpoints_failed = insert_breakpoints ();
2722 	  if (breakpoints_failed)
2723 	    {
2724 	      stop_stepping (ecs);
2725 	      return;
2726 	    }
2727 	  breakpoints_inserted = 1;
2728 	}
2729 
2730       trap_expected = ecs->another_trap;
2731 
2732       /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2733          specifies that such a signal should be delivered to the
2734          target program).
2735 
2736          Typically, this would occure when a user is debugging a
2737          target monitor on a simulator: the target monitor sets a
2738          breakpoint; the simulator encounters this break-point and
2739          halts the simulation handing control to GDB; GDB, noteing
2740          that the break-point isn't valid, returns control back to the
2741          simulator; the simulator then delivers the hardware
2742          equivalent of a SIGNAL_TRAP to the program being debugged. */
2743 
2744       if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2745 	stop_signal = TARGET_SIGNAL_0;
2746 
2747 
2748       resume (currently_stepping (ecs), stop_signal);
2749     }
2750 
2751   prepare_to_wait (ecs);
2752 }
2753 
2754 /* This function normally comes after a resume, before
2755    handle_inferior_event exits.  It takes care of any last bits of
2756    housekeeping, and sets the all-important wait_some_more flag.  */
2757 
2758 static void
prepare_to_wait(struct execution_control_state * ecs)2759 prepare_to_wait (struct execution_control_state *ecs)
2760 {
2761   if (ecs->infwait_state == infwait_normal_state)
2762     {
2763       overlay_cache_invalid = 1;
2764 
2765       /* We have to invalidate the registers BEFORE calling
2766          target_wait because they can be loaded from the target while
2767          in target_wait.  This makes remote debugging a bit more
2768          efficient for those targets that provide critical registers
2769          as part of their normal status mechanism. */
2770 
2771       registers_changed ();
2772       ecs->waiton_ptid = pid_to_ptid (-1);
2773       ecs->wp = &(ecs->ws);
2774     }
2775   /* This is the old end of the while loop.  Let everybody know we
2776      want to wait for the inferior some more and get called again
2777      soon.  */
2778   ecs->wait_some_more = 1;
2779 }
2780 
2781 /* Print why the inferior has stopped. We always print something when
2782    the inferior exits, or receives a signal. The rest of the cases are
2783    dealt with later on in normal_stop() and print_it_typical().  Ideally
2784    there should be a call to this function from handle_inferior_event()
2785    each time stop_stepping() is called.*/
2786 static void
print_stop_reason(enum inferior_stop_reason stop_reason,int stop_info)2787 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2788 {
2789   switch (stop_reason)
2790     {
2791     case STOP_UNKNOWN:
2792       /* We don't deal with these cases from handle_inferior_event()
2793          yet. */
2794       break;
2795     case END_STEPPING_RANGE:
2796       /* We are done with a step/next/si/ni command. */
2797       /* For now print nothing. */
2798       /* Print a message only if not in the middle of doing a "step n"
2799          operation for n > 1 */
2800       if (!step_multi || !stop_step)
2801 	if (ui_out_is_mi_like_p (uiout))
2802 	  ui_out_field_string (uiout, "reason", "end-stepping-range");
2803       break;
2804     case BREAKPOINT_HIT:
2805       /* We found a breakpoint. */
2806       /* For now print nothing. */
2807       break;
2808     case SIGNAL_EXITED:
2809       /* The inferior was terminated by a signal. */
2810       annotate_signalled ();
2811       if (ui_out_is_mi_like_p (uiout))
2812 	ui_out_field_string (uiout, "reason", "exited-signalled");
2813       ui_out_text (uiout, "\nProgram terminated with signal ");
2814       annotate_signal_name ();
2815       ui_out_field_string (uiout, "signal-name",
2816 			   target_signal_to_name (stop_info));
2817       annotate_signal_name_end ();
2818       ui_out_text (uiout, ", ");
2819       annotate_signal_string ();
2820       ui_out_field_string (uiout, "signal-meaning",
2821 			   target_signal_to_string (stop_info));
2822       annotate_signal_string_end ();
2823       ui_out_text (uiout, ".\n");
2824       ui_out_text (uiout, "The program no longer exists.\n");
2825       break;
2826     case EXITED:
2827       /* The inferior program is finished. */
2828       annotate_exited (stop_info);
2829       if (stop_info)
2830 	{
2831 	  if (ui_out_is_mi_like_p (uiout))
2832 	    ui_out_field_string (uiout, "reason", "exited");
2833 	  ui_out_text (uiout, "\nProgram exited with code ");
2834 	  ui_out_field_fmt (uiout, "exit-code", "0%o",
2835 			    (unsigned int) stop_info);
2836 	  ui_out_text (uiout, ".\n");
2837 	}
2838       else
2839 	{
2840 	  if (ui_out_is_mi_like_p (uiout))
2841 	    ui_out_field_string (uiout, "reason", "exited-normally");
2842 	  ui_out_text (uiout, "\nProgram exited normally.\n");
2843 	}
2844       break;
2845     case SIGNAL_RECEIVED:
2846       /* Signal received. The signal table tells us to print about
2847          it. */
2848       annotate_signal ();
2849       ui_out_text (uiout, "\nProgram received signal ");
2850       annotate_signal_name ();
2851       if (ui_out_is_mi_like_p (uiout))
2852 	ui_out_field_string (uiout, "reason", "signal-received");
2853       ui_out_field_string (uiout, "signal-name",
2854 			   target_signal_to_name (stop_info));
2855       annotate_signal_name_end ();
2856       ui_out_text (uiout, ", ");
2857       annotate_signal_string ();
2858       ui_out_field_string (uiout, "signal-meaning",
2859 			   target_signal_to_string (stop_info));
2860       annotate_signal_string_end ();
2861       ui_out_text (uiout, ".\n");
2862       break;
2863     default:
2864       internal_error (__FILE__, __LINE__,
2865 		      "print_stop_reason: unrecognized enum value");
2866       break;
2867     }
2868 }
2869 
2870 
2871 /* Here to return control to GDB when the inferior stops for real.
2872    Print appropriate messages, remove breakpoints, give terminal our modes.
2873 
2874    STOP_PRINT_FRAME nonzero means print the executing frame
2875    (pc, function, args, file, line number and line text).
2876    BREAKPOINTS_FAILED nonzero means stop was due to error
2877    attempting to insert breakpoints.  */
2878 
2879 void
normal_stop(void)2880 normal_stop (void)
2881 {
2882   struct target_waitstatus last;
2883   ptid_t last_ptid;
2884 
2885   get_last_target_status (&last_ptid, &last);
2886 
2887   /* As with the notification of thread events, we want to delay
2888      notifying the user that we've switched thread context until
2889      the inferior actually stops.
2890 
2891      There's no point in saying anything if the inferior has exited.
2892      Note that SIGNALLED here means "exited with a signal", not
2893      "received a signal".  */
2894   if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2895       && target_has_execution
2896       && last.kind != TARGET_WAITKIND_SIGNALLED
2897       && last.kind != TARGET_WAITKIND_EXITED)
2898     {
2899       target_terminal_ours_for_output ();
2900       printf_filtered ("[Switching to %s]\n",
2901 		       target_pid_or_tid_to_str (inferior_ptid));
2902       previous_inferior_ptid = inferior_ptid;
2903     }
2904 
2905   /* NOTE drow/2004-01-17: Is this still necessary?  */
2906   /* Make sure that the current_frame's pc is correct.  This
2907      is a correction for setting up the frame info before doing
2908      DECR_PC_AFTER_BREAK */
2909   if (target_has_execution)
2910     /* FIXME: cagney/2002-12-06: Has the PC changed?  Thanks to
2911        DECR_PC_AFTER_BREAK, the program counter can change.  Ask the
2912        frame code to check for this and sort out any resultant mess.
2913        DECR_PC_AFTER_BREAK needs to just go away.  */
2914     deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2915 
2916   if (target_has_execution && breakpoints_inserted)
2917     {
2918       if (remove_breakpoints ())
2919 	{
2920 	  target_terminal_ours_for_output ();
2921 	  printf_filtered ("Cannot remove breakpoints because ");
2922 	  printf_filtered ("program is no longer writable.\n");
2923 	  printf_filtered ("It might be running in another process.\n");
2924 	  printf_filtered ("Further execution is probably impossible.\n");
2925 	}
2926     }
2927   breakpoints_inserted = 0;
2928 
2929   /* Delete the breakpoint we stopped at, if it wants to be deleted.
2930      Delete any breakpoint that is to be deleted at the next stop.  */
2931 
2932   breakpoint_auto_delete (stop_bpstat);
2933 
2934   /* If an auto-display called a function and that got a signal,
2935      delete that auto-display to avoid an infinite recursion.  */
2936 
2937   if (stopped_by_random_signal)
2938     disable_current_display ();
2939 
2940   /* Don't print a message if in the middle of doing a "step n"
2941      operation for n > 1 */
2942   if (step_multi && stop_step)
2943     goto done;
2944 
2945   target_terminal_ours ();
2946 
2947   /* Look up the hook_stop and run it (CLI internally handles problem
2948      of stop_command's pre-hook not existing).  */
2949   if (stop_command)
2950     catch_errors (hook_stop_stub, stop_command,
2951 		  "Error while running hook_stop:\n", RETURN_MASK_ALL);
2952 
2953   if (!target_has_stack)
2954     {
2955 
2956       goto done;
2957     }
2958 
2959   /* Select innermost stack frame - i.e., current frame is frame 0,
2960      and current location is based on that.
2961      Don't do this on return from a stack dummy routine,
2962      or if the program has exited. */
2963 
2964   if (!stop_stack_dummy)
2965     {
2966       select_frame (get_current_frame ());
2967 
2968       /* Print current location without a level number, if
2969          we have changed functions or hit a breakpoint.
2970          Print source line if we have one.
2971          bpstat_print() contains the logic deciding in detail
2972          what to print, based on the event(s) that just occurred. */
2973 
2974       if (stop_print_frame && deprecated_selected_frame)
2975 	{
2976 	  int bpstat_ret;
2977 	  int source_flag;
2978 	  int do_frame_printing = 1;
2979 
2980 	  bpstat_ret = bpstat_print (stop_bpstat);
2981 	  switch (bpstat_ret)
2982 	    {
2983 	    case PRINT_UNKNOWN:
2984 	      /* FIXME: cagney/2002-12-01: Given that a frame ID does
2985 	         (or should) carry around the function and does (or
2986 	         should) use that when doing a frame comparison.  */
2987 	      if (stop_step
2988 		  && frame_id_eq (step_frame_id,
2989 				  get_frame_id (get_current_frame ()))
2990 		  && step_start_function == find_pc_function (stop_pc))
2991 		source_flag = SRC_LINE;	/* finished step, just print source line */
2992 	      else
2993 		source_flag = SRC_AND_LOC;	/* print location and source line */
2994 	      break;
2995 	    case PRINT_SRC_AND_LOC:
2996 	      source_flag = SRC_AND_LOC;	/* print location and source line */
2997 	      break;
2998 	    case PRINT_SRC_ONLY:
2999 	      source_flag = SRC_LINE;
3000 	      break;
3001 	    case PRINT_NOTHING:
3002 	      source_flag = SRC_LINE;	/* something bogus */
3003 	      do_frame_printing = 0;
3004 	      break;
3005 	    default:
3006 	      internal_error (__FILE__, __LINE__, "Unknown value.");
3007 	    }
3008 	  /* For mi, have the same behavior every time we stop:
3009 	     print everything but the source line. */
3010 	  if (ui_out_is_mi_like_p (uiout))
3011 	    source_flag = LOC_AND_ADDRESS;
3012 
3013 	  if (ui_out_is_mi_like_p (uiout))
3014 	    ui_out_field_int (uiout, "thread-id",
3015 			      pid_to_thread_id (inferior_ptid));
3016 	  /* The behavior of this routine with respect to the source
3017 	     flag is:
3018 	     SRC_LINE: Print only source line
3019 	     LOCATION: Print only location
3020 	     SRC_AND_LOC: Print location and source line */
3021 	  if (do_frame_printing)
3022 	    print_stack_frame (get_selected_frame (), 0, source_flag);
3023 
3024 	  /* Display the auto-display expressions.  */
3025 	  do_displays ();
3026 	}
3027     }
3028 
3029   /* Save the function value return registers, if we care.
3030      We might be about to restore their previous contents.  */
3031   if (proceed_to_finish)
3032     /* NB: The copy goes through to the target picking up the value of
3033        all the registers.  */
3034     regcache_cpy (stop_registers, current_regcache);
3035 
3036   if (stop_stack_dummy)
3037     {
3038       /* Pop the empty frame that contains the stack dummy.  POP_FRAME
3039          ends with a setting of the current frame, so we can use that
3040          next. */
3041       frame_pop (get_current_frame ());
3042       /* Set stop_pc to what it was before we called the function.
3043          Can't rely on restore_inferior_status because that only gets
3044          called if we don't stop in the called function.  */
3045       stop_pc = read_pc ();
3046       select_frame (get_current_frame ());
3047     }
3048 
3049 done:
3050   annotate_stopped ();
3051   observer_notify_normal_stop (stop_bpstat);
3052 }
3053 
3054 static int
hook_stop_stub(void * cmd)3055 hook_stop_stub (void *cmd)
3056 {
3057   execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3058   return (0);
3059 }
3060 
3061 int
signal_stop_state(int signo)3062 signal_stop_state (int signo)
3063 {
3064   return signal_stop[signo];
3065 }
3066 
3067 int
signal_print_state(int signo)3068 signal_print_state (int signo)
3069 {
3070   return signal_print[signo];
3071 }
3072 
3073 int
signal_pass_state(int signo)3074 signal_pass_state (int signo)
3075 {
3076   return signal_program[signo];
3077 }
3078 
3079 int
signal_stop_update(int signo,int state)3080 signal_stop_update (int signo, int state)
3081 {
3082   int ret = signal_stop[signo];
3083   signal_stop[signo] = state;
3084   return ret;
3085 }
3086 
3087 int
signal_print_update(int signo,int state)3088 signal_print_update (int signo, int state)
3089 {
3090   int ret = signal_print[signo];
3091   signal_print[signo] = state;
3092   return ret;
3093 }
3094 
3095 int
signal_pass_update(int signo,int state)3096 signal_pass_update (int signo, int state)
3097 {
3098   int ret = signal_program[signo];
3099   signal_program[signo] = state;
3100   return ret;
3101 }
3102 
3103 static void
sig_print_header(void)3104 sig_print_header (void)
3105 {
3106   printf_filtered ("\
3107 Signal        Stop\tPrint\tPass to program\tDescription\n");
3108 }
3109 
3110 static void
sig_print_info(enum target_signal oursig)3111 sig_print_info (enum target_signal oursig)
3112 {
3113   char *name = target_signal_to_name (oursig);
3114   int name_padding = 13 - strlen (name);
3115 
3116   if (name_padding <= 0)
3117     name_padding = 0;
3118 
3119   printf_filtered ("%s", name);
3120   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
3121   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3122   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3123   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3124   printf_filtered ("%s\n", target_signal_to_string (oursig));
3125 }
3126 
3127 /* Specify how various signals in the inferior should be handled.  */
3128 
3129 static void
handle_command(char * args,int from_tty)3130 handle_command (char *args, int from_tty)
3131 {
3132   char **argv;
3133   int digits, wordlen;
3134   int sigfirst, signum, siglast;
3135   enum target_signal oursig;
3136   int allsigs;
3137   int nsigs;
3138   unsigned char *sigs;
3139   struct cleanup *old_chain;
3140 
3141   if (args == NULL)
3142     {
3143       error_no_arg ("signal to handle");
3144     }
3145 
3146   /* Allocate and zero an array of flags for which signals to handle. */
3147 
3148   nsigs = (int) TARGET_SIGNAL_LAST;
3149   sigs = (unsigned char *) alloca (nsigs);
3150   memset (sigs, 0, nsigs);
3151 
3152   /* Break the command line up into args. */
3153 
3154   argv = buildargv (args);
3155   if (argv == NULL)
3156     {
3157       nomem (0);
3158     }
3159   old_chain = make_cleanup_freeargv (argv);
3160 
3161   /* Walk through the args, looking for signal oursigs, signal names, and
3162      actions.  Signal numbers and signal names may be interspersed with
3163      actions, with the actions being performed for all signals cumulatively
3164      specified.  Signal ranges can be specified as <LOW>-<HIGH>. */
3165 
3166   while (*argv != NULL)
3167     {
3168       wordlen = strlen (*argv);
3169       for (digits = 0; isdigit ((*argv)[digits]); digits++)
3170 	{;
3171 	}
3172       allsigs = 0;
3173       sigfirst = siglast = -1;
3174 
3175       if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3176 	{
3177 	  /* Apply action to all signals except those used by the
3178 	     debugger.  Silently skip those. */
3179 	  allsigs = 1;
3180 	  sigfirst = 0;
3181 	  siglast = nsigs - 1;
3182 	}
3183       else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3184 	{
3185 	  SET_SIGS (nsigs, sigs, signal_stop);
3186 	  SET_SIGS (nsigs, sigs, signal_print);
3187 	}
3188       else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3189 	{
3190 	  UNSET_SIGS (nsigs, sigs, signal_program);
3191 	}
3192       else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3193 	{
3194 	  SET_SIGS (nsigs, sigs, signal_print);
3195 	}
3196       else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3197 	{
3198 	  SET_SIGS (nsigs, sigs, signal_program);
3199 	}
3200       else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3201 	{
3202 	  UNSET_SIGS (nsigs, sigs, signal_stop);
3203 	}
3204       else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3205 	{
3206 	  SET_SIGS (nsigs, sigs, signal_program);
3207 	}
3208       else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3209 	{
3210 	  UNSET_SIGS (nsigs, sigs, signal_print);
3211 	  UNSET_SIGS (nsigs, sigs, signal_stop);
3212 	}
3213       else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3214 	{
3215 	  UNSET_SIGS (nsigs, sigs, signal_program);
3216 	}
3217       else if (digits > 0)
3218 	{
3219 	  /* It is numeric.  The numeric signal refers to our own
3220 	     internal signal numbering from target.h, not to host/target
3221 	     signal  number.  This is a feature; users really should be
3222 	     using symbolic names anyway, and the common ones like
3223 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
3224 
3225 	  sigfirst = siglast = (int)
3226 	    target_signal_from_command (atoi (*argv));
3227 	  if ((*argv)[digits] == '-')
3228 	    {
3229 	      siglast = (int)
3230 		target_signal_from_command (atoi ((*argv) + digits + 1));
3231 	    }
3232 	  if (sigfirst > siglast)
3233 	    {
3234 	      /* Bet he didn't figure we'd think of this case... */
3235 	      signum = sigfirst;
3236 	      sigfirst = siglast;
3237 	      siglast = signum;
3238 	    }
3239 	}
3240       else
3241 	{
3242 	  oursig = target_signal_from_name (*argv);
3243 	  if (oursig != TARGET_SIGNAL_UNKNOWN)
3244 	    {
3245 	      sigfirst = siglast = (int) oursig;
3246 	    }
3247 	  else
3248 	    {
3249 	      /* Not a number and not a recognized flag word => complain.  */
3250 	      error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3251 	    }
3252 	}
3253 
3254       /* If any signal numbers or symbol names were found, set flags for
3255          which signals to apply actions to. */
3256 
3257       for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3258 	{
3259 	  switch ((enum target_signal) signum)
3260 	    {
3261 	    case TARGET_SIGNAL_TRAP:
3262 	    case TARGET_SIGNAL_INT:
3263 	      if (!allsigs && !sigs[signum])
3264 		{
3265 		  if (query ("%s is used by the debugger.\n\
3266 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3267 		    {
3268 		      sigs[signum] = 1;
3269 		    }
3270 		  else
3271 		    {
3272 		      printf_unfiltered ("Not confirmed, unchanged.\n");
3273 		      gdb_flush (gdb_stdout);
3274 		    }
3275 		}
3276 	      break;
3277 	    case TARGET_SIGNAL_0:
3278 	    case TARGET_SIGNAL_DEFAULT:
3279 	    case TARGET_SIGNAL_UNKNOWN:
3280 	      /* Make sure that "all" doesn't print these.  */
3281 	      break;
3282 	    default:
3283 	      sigs[signum] = 1;
3284 	      break;
3285 	    }
3286 	}
3287 
3288       argv++;
3289     }
3290 
3291   target_notice_signals (inferior_ptid);
3292 
3293   if (from_tty)
3294     {
3295       /* Show the results.  */
3296       sig_print_header ();
3297       for (signum = 0; signum < nsigs; signum++)
3298 	{
3299 	  if (sigs[signum])
3300 	    {
3301 	      sig_print_info (signum);
3302 	    }
3303 	}
3304     }
3305 
3306   do_cleanups (old_chain);
3307 }
3308 
3309 static void
xdb_handle_command(char * args,int from_tty)3310 xdb_handle_command (char *args, int from_tty)
3311 {
3312   char **argv;
3313   struct cleanup *old_chain;
3314 
3315   /* Break the command line up into args. */
3316 
3317   argv = buildargv (args);
3318   if (argv == NULL)
3319     {
3320       nomem (0);
3321     }
3322   old_chain = make_cleanup_freeargv (argv);
3323   if (argv[1] != (char *) NULL)
3324     {
3325       char *argBuf;
3326       int bufLen;
3327 
3328       bufLen = strlen (argv[0]) + 20;
3329       argBuf = (char *) xmalloc (bufLen);
3330       if (argBuf)
3331 	{
3332 	  int validFlag = 1;
3333 	  enum target_signal oursig;
3334 
3335 	  oursig = target_signal_from_name (argv[0]);
3336 	  memset (argBuf, 0, bufLen);
3337 	  if (strcmp (argv[1], "Q") == 0)
3338 	    sprintf (argBuf, "%s %s", argv[0], "noprint");
3339 	  else
3340 	    {
3341 	      if (strcmp (argv[1], "s") == 0)
3342 		{
3343 		  if (!signal_stop[oursig])
3344 		    sprintf (argBuf, "%s %s", argv[0], "stop");
3345 		  else
3346 		    sprintf (argBuf, "%s %s", argv[0], "nostop");
3347 		}
3348 	      else if (strcmp (argv[1], "i") == 0)
3349 		{
3350 		  if (!signal_program[oursig])
3351 		    sprintf (argBuf, "%s %s", argv[0], "pass");
3352 		  else
3353 		    sprintf (argBuf, "%s %s", argv[0], "nopass");
3354 		}
3355 	      else if (strcmp (argv[1], "r") == 0)
3356 		{
3357 		  if (!signal_print[oursig])
3358 		    sprintf (argBuf, "%s %s", argv[0], "print");
3359 		  else
3360 		    sprintf (argBuf, "%s %s", argv[0], "noprint");
3361 		}
3362 	      else
3363 		validFlag = 0;
3364 	    }
3365 	  if (validFlag)
3366 	    handle_command (argBuf, from_tty);
3367 	  else
3368 	    printf_filtered ("Invalid signal handling flag.\n");
3369 	  if (argBuf)
3370 	    xfree (argBuf);
3371 	}
3372     }
3373   do_cleanups (old_chain);
3374 }
3375 
3376 /* Print current contents of the tables set by the handle command.
3377    It is possible we should just be printing signals actually used
3378    by the current target (but for things to work right when switching
3379    targets, all signals should be in the signal tables).  */
3380 
3381 static void
signals_info(char * signum_exp,int from_tty)3382 signals_info (char *signum_exp, int from_tty)
3383 {
3384   enum target_signal oursig;
3385   sig_print_header ();
3386 
3387   if (signum_exp)
3388     {
3389       /* First see if this is a symbol name.  */
3390       oursig = target_signal_from_name (signum_exp);
3391       if (oursig == TARGET_SIGNAL_UNKNOWN)
3392 	{
3393 	  /* No, try numeric.  */
3394 	  oursig =
3395 	    target_signal_from_command (parse_and_eval_long (signum_exp));
3396 	}
3397       sig_print_info (oursig);
3398       return;
3399     }
3400 
3401   printf_filtered ("\n");
3402   /* These ugly casts brought to you by the native VAX compiler.  */
3403   for (oursig = TARGET_SIGNAL_FIRST;
3404        (int) oursig < (int) TARGET_SIGNAL_LAST;
3405        oursig = (enum target_signal) ((int) oursig + 1))
3406     {
3407       QUIT;
3408 
3409       if (oursig != TARGET_SIGNAL_UNKNOWN
3410 	  && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3411 	sig_print_info (oursig);
3412     }
3413 
3414   printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3415 }
3416 
3417 struct inferior_status
3418 {
3419   enum target_signal stop_signal;
3420   CORE_ADDR stop_pc;
3421   bpstat stop_bpstat;
3422   int stop_step;
3423   int stop_stack_dummy;
3424   int stopped_by_random_signal;
3425   int trap_expected;
3426   CORE_ADDR step_range_start;
3427   CORE_ADDR step_range_end;
3428   struct frame_id step_frame_id;
3429   enum step_over_calls_kind step_over_calls;
3430   CORE_ADDR step_resume_break_address;
3431   int stop_after_trap;
3432   int stop_soon;
3433   struct regcache *stop_registers;
3434 
3435   /* These are here because if call_function_by_hand has written some
3436      registers and then decides to call error(), we better not have changed
3437      any registers.  */
3438   struct regcache *registers;
3439 
3440   /* A frame unique identifier.  */
3441   struct frame_id selected_frame_id;
3442 
3443   int breakpoint_proceeded;
3444   int restore_stack_info;
3445   int proceed_to_finish;
3446 };
3447 
3448 void
write_inferior_status_register(struct inferior_status * inf_status,int regno,LONGEST val)3449 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3450 				LONGEST val)
3451 {
3452   int size = register_size (current_gdbarch, regno);
3453   void *buf = alloca (size);
3454   store_signed_integer (buf, size, val);
3455   regcache_raw_write (inf_status->registers, regno, buf);
3456 }
3457 
3458 /* Save all of the information associated with the inferior<==>gdb
3459    connection.  INF_STATUS is a pointer to a "struct inferior_status"
3460    (defined in inferior.h).  */
3461 
3462 struct inferior_status *
save_inferior_status(int restore_stack_info)3463 save_inferior_status (int restore_stack_info)
3464 {
3465   struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3466 
3467   inf_status->stop_signal = stop_signal;
3468   inf_status->stop_pc = stop_pc;
3469   inf_status->stop_step = stop_step;
3470   inf_status->stop_stack_dummy = stop_stack_dummy;
3471   inf_status->stopped_by_random_signal = stopped_by_random_signal;
3472   inf_status->trap_expected = trap_expected;
3473   inf_status->step_range_start = step_range_start;
3474   inf_status->step_range_end = step_range_end;
3475   inf_status->step_frame_id = step_frame_id;
3476   inf_status->step_over_calls = step_over_calls;
3477   inf_status->stop_after_trap = stop_after_trap;
3478   inf_status->stop_soon = stop_soon;
3479   /* Save original bpstat chain here; replace it with copy of chain.
3480      If caller's caller is walking the chain, they'll be happier if we
3481      hand them back the original chain when restore_inferior_status is
3482      called.  */
3483   inf_status->stop_bpstat = stop_bpstat;
3484   stop_bpstat = bpstat_copy (stop_bpstat);
3485   inf_status->breakpoint_proceeded = breakpoint_proceeded;
3486   inf_status->restore_stack_info = restore_stack_info;
3487   inf_status->proceed_to_finish = proceed_to_finish;
3488 
3489   inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3490 
3491   inf_status->registers = regcache_dup (current_regcache);
3492 
3493   inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3494   return inf_status;
3495 }
3496 
3497 static int
restore_selected_frame(void * args)3498 restore_selected_frame (void *args)
3499 {
3500   struct frame_id *fid = (struct frame_id *) args;
3501   struct frame_info *frame;
3502 
3503   frame = frame_find_by_id (*fid);
3504 
3505   /* If inf_status->selected_frame_id is NULL, there was no previously
3506      selected frame.  */
3507   if (frame == NULL)
3508     {
3509       warning ("Unable to restore previously selected frame.\n");
3510       return 0;
3511     }
3512 
3513   select_frame (frame);
3514 
3515   return (1);
3516 }
3517 
3518 void
restore_inferior_status(struct inferior_status * inf_status)3519 restore_inferior_status (struct inferior_status *inf_status)
3520 {
3521   stop_signal = inf_status->stop_signal;
3522   stop_pc = inf_status->stop_pc;
3523   stop_step = inf_status->stop_step;
3524   stop_stack_dummy = inf_status->stop_stack_dummy;
3525   stopped_by_random_signal = inf_status->stopped_by_random_signal;
3526   trap_expected = inf_status->trap_expected;
3527   step_range_start = inf_status->step_range_start;
3528   step_range_end = inf_status->step_range_end;
3529   step_frame_id = inf_status->step_frame_id;
3530   step_over_calls = inf_status->step_over_calls;
3531   stop_after_trap = inf_status->stop_after_trap;
3532   stop_soon = inf_status->stop_soon;
3533   bpstat_clear (&stop_bpstat);
3534   stop_bpstat = inf_status->stop_bpstat;
3535   breakpoint_proceeded = inf_status->breakpoint_proceeded;
3536   proceed_to_finish = inf_status->proceed_to_finish;
3537 
3538   /* FIXME: Is the restore of stop_registers always needed. */
3539   regcache_xfree (stop_registers);
3540   stop_registers = inf_status->stop_registers;
3541 
3542   /* The inferior can be gone if the user types "print exit(0)"
3543      (and perhaps other times).  */
3544   if (target_has_execution)
3545     /* NB: The register write goes through to the target.  */
3546     regcache_cpy (current_regcache, inf_status->registers);
3547   regcache_xfree (inf_status->registers);
3548 
3549   /* FIXME: If we are being called after stopping in a function which
3550      is called from gdb, we should not be trying to restore the
3551      selected frame; it just prints a spurious error message (The
3552      message is useful, however, in detecting bugs in gdb (like if gdb
3553      clobbers the stack)).  In fact, should we be restoring the
3554      inferior status at all in that case?  .  */
3555 
3556   if (target_has_stack && inf_status->restore_stack_info)
3557     {
3558       /* The point of catch_errors is that if the stack is clobbered,
3559          walking the stack might encounter a garbage pointer and
3560          error() trying to dereference it.  */
3561       if (catch_errors
3562 	  (restore_selected_frame, &inf_status->selected_frame_id,
3563 	   "Unable to restore previously selected frame:\n",
3564 	   RETURN_MASK_ERROR) == 0)
3565 	/* Error in restoring the selected frame.  Select the innermost
3566 	   frame.  */
3567 	select_frame (get_current_frame ());
3568 
3569     }
3570 
3571   xfree (inf_status);
3572 }
3573 
3574 static void
do_restore_inferior_status_cleanup(void * sts)3575 do_restore_inferior_status_cleanup (void *sts)
3576 {
3577   restore_inferior_status (sts);
3578 }
3579 
3580 struct cleanup *
make_cleanup_restore_inferior_status(struct inferior_status * inf_status)3581 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3582 {
3583   return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3584 }
3585 
3586 void
discard_inferior_status(struct inferior_status * inf_status)3587 discard_inferior_status (struct inferior_status *inf_status)
3588 {
3589   /* See save_inferior_status for info on stop_bpstat. */
3590   bpstat_clear (&inf_status->stop_bpstat);
3591   regcache_xfree (inf_status->registers);
3592   regcache_xfree (inf_status->stop_registers);
3593   xfree (inf_status);
3594 }
3595 
3596 int
inferior_has_forked(int pid,int * child_pid)3597 inferior_has_forked (int pid, int *child_pid)
3598 {
3599   struct target_waitstatus last;
3600   ptid_t last_ptid;
3601 
3602   get_last_target_status (&last_ptid, &last);
3603 
3604   if (last.kind != TARGET_WAITKIND_FORKED)
3605     return 0;
3606 
3607   if (ptid_get_pid (last_ptid) != pid)
3608     return 0;
3609 
3610   *child_pid = last.value.related_pid;
3611   return 1;
3612 }
3613 
3614 int
inferior_has_vforked(int pid,int * child_pid)3615 inferior_has_vforked (int pid, int *child_pid)
3616 {
3617   struct target_waitstatus last;
3618   ptid_t last_ptid;
3619 
3620   get_last_target_status (&last_ptid, &last);
3621 
3622   if (last.kind != TARGET_WAITKIND_VFORKED)
3623     return 0;
3624 
3625   if (ptid_get_pid (last_ptid) != pid)
3626     return 0;
3627 
3628   *child_pid = last.value.related_pid;
3629   return 1;
3630 }
3631 
3632 int
inferior_has_execd(int pid,char ** execd_pathname)3633 inferior_has_execd (int pid, char **execd_pathname)
3634 {
3635   struct target_waitstatus last;
3636   ptid_t last_ptid;
3637 
3638   get_last_target_status (&last_ptid, &last);
3639 
3640   if (last.kind != TARGET_WAITKIND_EXECD)
3641     return 0;
3642 
3643   if (ptid_get_pid (last_ptid) != pid)
3644     return 0;
3645 
3646   *execd_pathname = xstrdup (last.value.execd_pathname);
3647   return 1;
3648 }
3649 
3650 /* Oft used ptids */
3651 ptid_t null_ptid;
3652 ptid_t minus_one_ptid;
3653 
3654 /* Create a ptid given the necessary PID, LWP, and TID components.  */
3655 
3656 ptid_t
ptid_build(int pid,long lwp,long tid)3657 ptid_build (int pid, long lwp, long tid)
3658 {
3659   ptid_t ptid;
3660 
3661   ptid.pid = pid;
3662   ptid.lwp = lwp;
3663   ptid.tid = tid;
3664   return ptid;
3665 }
3666 
3667 /* Create a ptid from just a pid.  */
3668 
3669 ptid_t
pid_to_ptid(int pid)3670 pid_to_ptid (int pid)
3671 {
3672   return ptid_build (pid, 0, 0);
3673 }
3674 
3675 /* Fetch the pid (process id) component from a ptid.  */
3676 
3677 int
ptid_get_pid(ptid_t ptid)3678 ptid_get_pid (ptid_t ptid)
3679 {
3680   return ptid.pid;
3681 }
3682 
3683 /* Fetch the lwp (lightweight process) component from a ptid.  */
3684 
3685 long
ptid_get_lwp(ptid_t ptid)3686 ptid_get_lwp (ptid_t ptid)
3687 {
3688   return ptid.lwp;
3689 }
3690 
3691 /* Fetch the tid (thread id) component from a ptid.  */
3692 
3693 long
ptid_get_tid(ptid_t ptid)3694 ptid_get_tid (ptid_t ptid)
3695 {
3696   return ptid.tid;
3697 }
3698 
3699 /* ptid_equal() is used to test equality of two ptids.  */
3700 
3701 int
ptid_equal(ptid_t ptid1,ptid_t ptid2)3702 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3703 {
3704   return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3705 	  && ptid1.tid == ptid2.tid);
3706 }
3707 
3708 /* restore_inferior_ptid() will be used by the cleanup machinery
3709    to restore the inferior_ptid value saved in a call to
3710    save_inferior_ptid().  */
3711 
3712 static void
restore_inferior_ptid(void * arg)3713 restore_inferior_ptid (void *arg)
3714 {
3715   ptid_t *saved_ptid_ptr = arg;
3716   inferior_ptid = *saved_ptid_ptr;
3717   xfree (arg);
3718 }
3719 
3720 /* Save the value of inferior_ptid so that it may be restored by a
3721    later call to do_cleanups().  Returns the struct cleanup pointer
3722    needed for later doing the cleanup.  */
3723 
3724 struct cleanup *
save_inferior_ptid(void)3725 save_inferior_ptid (void)
3726 {
3727   ptid_t *saved_ptid_ptr;
3728 
3729   saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3730   *saved_ptid_ptr = inferior_ptid;
3731   return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3732 }
3733 
3734 
3735 static void
build_infrun(void)3736 build_infrun (void)
3737 {
3738   stop_registers = regcache_xmalloc (current_gdbarch);
3739 }
3740 
3741 void
_initialize_infrun(void)3742 _initialize_infrun (void)
3743 {
3744   int i;
3745   int numsigs;
3746   struct cmd_list_element *c;
3747 
3748   DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3749   deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3750 
3751   add_info ("signals", signals_info,
3752 	    "What debugger does when program gets various signals.\n\
3753 Specify a signal as argument to print info on that signal only.");
3754   add_info_alias ("handle", "signals", 0);
3755 
3756   add_com ("handle", class_run, handle_command,
3757 	   concat ("Specify how to handle a signal.\n\
3758 Args are signals and actions to apply to those signals.\n\
3759 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3760 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3761 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3762 The special arg \"all\" is recognized to mean all signals except those\n\
3763 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3764 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3765 Stop means reenter debugger if this signal happens (implies print).\n\
3766 Print means print a message if this signal happens.\n\
3767 Pass means let program see this signal; otherwise program doesn't know.\n\
3768 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3769 Pass and Stop may be combined.", NULL));
3770   if (xdb_commands)
3771     {
3772       add_com ("lz", class_info, signals_info,
3773 	       "What debugger does when program gets various signals.\n\
3774 Specify a signal as argument to print info on that signal only.");
3775       add_com ("z", class_run, xdb_handle_command,
3776 	       concat ("Specify how to handle a signal.\n\
3777 Args are signals and actions to apply to those signals.\n\
3778 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3779 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3780 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3781 The special arg \"all\" is recognized to mean all signals except those\n\
3782 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3783 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3784 nopass), \"Q\" (noprint)\n\
3785 Stop means reenter debugger if this signal happens (implies print).\n\
3786 Print means print a message if this signal happens.\n\
3787 Pass means let program see this signal; otherwise program doesn't know.\n\
3788 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3789 Pass and Stop may be combined.", NULL));
3790     }
3791 
3792   if (!dbx_commands)
3793     stop_command =
3794       add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3795 This allows you to set a list of commands to be run each time execution\n\
3796 of the program stops.", &cmdlist);
3797 
3798   numsigs = (int) TARGET_SIGNAL_LAST;
3799   signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3800   signal_print = (unsigned char *)
3801     xmalloc (sizeof (signal_print[0]) * numsigs);
3802   signal_program = (unsigned char *)
3803     xmalloc (sizeof (signal_program[0]) * numsigs);
3804   for (i = 0; i < numsigs; i++)
3805     {
3806       signal_stop[i] = 1;
3807       signal_print[i] = 1;
3808       signal_program[i] = 1;
3809     }
3810 
3811   /* Signals caused by debugger's own actions
3812      should not be given to the program afterwards.  */
3813   signal_program[TARGET_SIGNAL_TRAP] = 0;
3814   signal_program[TARGET_SIGNAL_INT] = 0;
3815 
3816   /* Signals that are not errors should not normally enter the debugger.  */
3817   signal_stop[TARGET_SIGNAL_ALRM] = 0;
3818   signal_print[TARGET_SIGNAL_ALRM] = 0;
3819   signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3820   signal_print[TARGET_SIGNAL_VTALRM] = 0;
3821   signal_stop[TARGET_SIGNAL_PROF] = 0;
3822   signal_print[TARGET_SIGNAL_PROF] = 0;
3823   signal_stop[TARGET_SIGNAL_CHLD] = 0;
3824   signal_print[TARGET_SIGNAL_CHLD] = 0;
3825   signal_stop[TARGET_SIGNAL_IO] = 0;
3826   signal_print[TARGET_SIGNAL_IO] = 0;
3827   signal_stop[TARGET_SIGNAL_POLL] = 0;
3828   signal_print[TARGET_SIGNAL_POLL] = 0;
3829   signal_stop[TARGET_SIGNAL_URG] = 0;
3830   signal_print[TARGET_SIGNAL_URG] = 0;
3831   signal_stop[TARGET_SIGNAL_WINCH] = 0;
3832   signal_print[TARGET_SIGNAL_WINCH] = 0;
3833 
3834   /* These signals are used internally by user-level thread
3835      implementations.  (See signal(5) on Solaris.)  Like the above
3836      signals, a healthy program receives and handles them as part of
3837      its normal operation.  */
3838   signal_stop[TARGET_SIGNAL_LWP] = 0;
3839   signal_print[TARGET_SIGNAL_LWP] = 0;
3840   signal_stop[TARGET_SIGNAL_WAITING] = 0;
3841   signal_print[TARGET_SIGNAL_WAITING] = 0;
3842   signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3843   signal_print[TARGET_SIGNAL_CANCEL] = 0;
3844 
3845 #ifdef SOLIB_ADD
3846   deprecated_add_show_from_set
3847     (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3848 		  (char *) &stop_on_solib_events,
3849 		  "Set stopping for shared library events.\n\
3850 If nonzero, gdb will give control to the user when the dynamic linker\n\
3851 notifies gdb of shared library events.  The most common event of interest\n\
3852 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3853 #endif
3854 
3855   c = add_set_enum_cmd ("follow-fork-mode",
3856 			class_run,
3857 			follow_fork_mode_kind_names, &follow_fork_mode_string,
3858 			"Set debugger response to a program call of fork \
3859 or vfork.\n\
3860 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
3861   parent  - the original process is debugged after a fork\n\
3862   child   - the new process is debugged after a fork\n\
3863 The unfollowed process will continue to run.\n\
3864 By default, the debugger will follow the parent process.", &setlist);
3865   deprecated_add_show_from_set (c, &showlist);
3866 
3867   c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums,	/* array of string names */
3868 			&scheduler_mode,	/* current mode  */
3869 			"Set mode for locking scheduler during execution.\n\
3870 off  == no locking (threads may preempt at any time)\n\
3871 on   == full locking (no thread except the current thread may run)\n\
3872 step == scheduler locked during every single-step operation.\n\
3873 	In this mode, no other thread may run during a step command.\n\
3874 	Other threads may run while stepping over a function call ('next').", &setlist);
3875 
3876   set_cmd_sfunc (c, set_schedlock_func);	/* traps on target vector */
3877   deprecated_add_show_from_set (c, &showlist);
3878 
3879   c = add_set_cmd ("step-mode", class_run,
3880 		   var_boolean, (char *) &step_stop_if_no_debug,
3881 		   "Set mode of the step operation. When set, doing a step over a\n\
3882 function without debug line information will stop at the first\n\
3883 instruction of that function. Otherwise, the function is skipped and\n\
3884 the step command stops at a different source line.", &setlist);
3885   deprecated_add_show_from_set (c, &showlist);
3886 
3887   /* ptid initializations */
3888   null_ptid = ptid_build (0, 0, 0);
3889   minus_one_ptid = ptid_build (-1, 0, 0);
3890   inferior_ptid = null_ptid;
3891   target_last_wait_ptid = minus_one_ptid;
3892 }
3893