xref: /openbsd/gnu/usr.bin/binutils/gdb/f-valprint.c (revision b725ae77)
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2    Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003
3    Free Software Foundation, Inc.
4    Contributed by Motorola.  Adapted from the C definitions by Farooq Butt
5    (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23 
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37 
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41 
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (char *);
45 static void f77_print_array (struct type *, char *, CORE_ADDR,
46 			     struct ui_file *, int, int, int,
47 			     enum val_prettyprint);
48 static void f77_print_array_1 (int, int, struct type *, char *,
49 			       CORE_ADDR, struct ui_file *, int, int, int,
50 			       enum val_prettyprint,
51 			       int *elts);
52 static void f77_create_arrayprint_offset_tbl (struct type *,
53 					      struct ui_file *);
54 static void f77_get_dynamic_length_of_aggregate (struct type *);
55 
56 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
57 
58 /* Array which holds offsets to be applied to get a row's elements
59    for a given array. Array also holds the size of each subarray.  */
60 
61 /* The following macro gives us the size of the nth dimension, Where
62    n is 1 based. */
63 
64 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
65 
66 /* The following gives us the offset for row n where n is 1-based. */
67 
68 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
69 
70 int
f77_get_dynamic_lowerbound(struct type * type,int * lower_bound)71 f77_get_dynamic_lowerbound (struct type *type, int *lower_bound)
72 {
73   CORE_ADDR current_frame_addr;
74   CORE_ADDR ptr_to_lower_bound;
75 
76   switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
77     {
78     case BOUND_BY_VALUE_ON_STACK:
79       current_frame_addr = get_frame_base (deprecated_selected_frame);
80       if (current_frame_addr > 0)
81 	{
82 	  *lower_bound =
83 	    read_memory_integer (current_frame_addr +
84 				 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
85 				 4);
86 	}
87       else
88 	{
89 	  *lower_bound = DEFAULT_LOWER_BOUND;
90 	  return BOUND_FETCH_ERROR;
91 	}
92       break;
93 
94     case BOUND_SIMPLE:
95       *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
96       break;
97 
98     case BOUND_CANNOT_BE_DETERMINED:
99       error ("Lower bound may not be '*' in F77");
100       break;
101 
102     case BOUND_BY_REF_ON_STACK:
103       current_frame_addr = get_frame_base (deprecated_selected_frame);
104       if (current_frame_addr > 0)
105 	{
106 	  ptr_to_lower_bound =
107 	    read_memory_typed_address (current_frame_addr +
108 				       TYPE_ARRAY_LOWER_BOUND_VALUE (type),
109 				       builtin_type_void_data_ptr);
110 	  *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
111 	}
112       else
113 	{
114 	  *lower_bound = DEFAULT_LOWER_BOUND;
115 	  return BOUND_FETCH_ERROR;
116 	}
117       break;
118 
119     case BOUND_BY_REF_IN_REG:
120     case BOUND_BY_VALUE_IN_REG:
121     default:
122       error ("??? unhandled dynamic array bound type ???");
123       break;
124     }
125   return BOUND_FETCH_OK;
126 }
127 
128 int
f77_get_dynamic_upperbound(struct type * type,int * upper_bound)129 f77_get_dynamic_upperbound (struct type *type, int *upper_bound)
130 {
131   CORE_ADDR current_frame_addr = 0;
132   CORE_ADDR ptr_to_upper_bound;
133 
134   switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
135     {
136     case BOUND_BY_VALUE_ON_STACK:
137       current_frame_addr = get_frame_base (deprecated_selected_frame);
138       if (current_frame_addr > 0)
139 	{
140 	  *upper_bound =
141 	    read_memory_integer (current_frame_addr +
142 				 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
143 				 4);
144 	}
145       else
146 	{
147 	  *upper_bound = DEFAULT_UPPER_BOUND;
148 	  return BOUND_FETCH_ERROR;
149 	}
150       break;
151 
152     case BOUND_SIMPLE:
153       *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
154       break;
155 
156     case BOUND_CANNOT_BE_DETERMINED:
157       /* we have an assumed size array on our hands. Assume that
158          upper_bound == lower_bound so that we show at least
159          1 element.If the user wants to see more elements, let
160          him manually ask for 'em and we'll subscript the
161          array and show him */
162       f77_get_dynamic_lowerbound (type, upper_bound);
163       break;
164 
165     case BOUND_BY_REF_ON_STACK:
166       current_frame_addr = get_frame_base (deprecated_selected_frame);
167       if (current_frame_addr > 0)
168 	{
169 	  ptr_to_upper_bound =
170 	    read_memory_typed_address (current_frame_addr +
171 				       TYPE_ARRAY_UPPER_BOUND_VALUE (type),
172 				       builtin_type_void_data_ptr);
173 	  *upper_bound = read_memory_integer (ptr_to_upper_bound, 4);
174 	}
175       else
176 	{
177 	  *upper_bound = DEFAULT_UPPER_BOUND;
178 	  return BOUND_FETCH_ERROR;
179 	}
180       break;
181 
182     case BOUND_BY_REF_IN_REG:
183     case BOUND_BY_VALUE_IN_REG:
184     default:
185       error ("??? unhandled dynamic array bound type ???");
186       break;
187     }
188   return BOUND_FETCH_OK;
189 }
190 
191 /* Obtain F77 adjustable array dimensions */
192 
193 static void
f77_get_dynamic_length_of_aggregate(struct type * type)194 f77_get_dynamic_length_of_aggregate (struct type *type)
195 {
196   int upper_bound = -1;
197   int lower_bound = 1;
198   int retcode;
199 
200   /* Recursively go all the way down into a possibly multi-dimensional
201      F77 array and get the bounds.  For simple arrays, this is pretty
202      easy but when the bounds are dynamic, we must be very careful
203      to add up all the lengths correctly.  Not doing this right
204      will lead to horrendous-looking arrays in parameter lists.
205 
206      This function also works for strings which behave very
207      similarly to arrays.  */
208 
209   if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
210       || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
211     f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
212 
213   /* Recursion ends here, start setting up lengths.  */
214   retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
215   if (retcode == BOUND_FETCH_ERROR)
216     error ("Cannot obtain valid array lower bound");
217 
218   retcode = f77_get_dynamic_upperbound (type, &upper_bound);
219   if (retcode == BOUND_FETCH_ERROR)
220     error ("Cannot obtain valid array upper bound");
221 
222   /* Patch in a valid length value. */
223 
224   TYPE_LENGTH (type) =
225     (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
226 }
227 
228 /* Function that sets up the array offset,size table for the array
229    type "type".  */
230 
231 static void
f77_create_arrayprint_offset_tbl(struct type * type,struct ui_file * stream)232 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
233 {
234   struct type *tmp_type;
235   int eltlen;
236   int ndimen = 1;
237   int upper, lower, retcode;
238 
239   tmp_type = type;
240 
241   while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
242     {
243       if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
244 	fprintf_filtered (stream, "<assumed size array> ");
245 
246       retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
247       if (retcode == BOUND_FETCH_ERROR)
248 	error ("Cannot obtain dynamic upper bound");
249 
250       retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
251       if (retcode == BOUND_FETCH_ERROR)
252 	error ("Cannot obtain dynamic lower bound");
253 
254       F77_DIM_SIZE (ndimen) = upper - lower + 1;
255 
256       tmp_type = TYPE_TARGET_TYPE (tmp_type);
257       ndimen++;
258     }
259 
260   /* Now we multiply eltlen by all the offsets, so that later we
261      can print out array elements correctly.  Up till now we
262      know an offset to apply to get the item but we also
263      have to know how much to add to get to the next item */
264 
265   ndimen--;
266   eltlen = TYPE_LENGTH (tmp_type);
267   F77_DIM_OFFSET (ndimen) = eltlen;
268   while (--ndimen > 0)
269     {
270       eltlen *= F77_DIM_SIZE (ndimen + 1);
271       F77_DIM_OFFSET (ndimen) = eltlen;
272     }
273 }
274 
275 
276 
277 /* Actual function which prints out F77 arrays, Valaddr == address in
278    the superior.  Address == the address in the inferior.  */
279 
280 static void
f77_print_array_1(int nss,int ndimensions,struct type * type,char * valaddr,CORE_ADDR address,struct ui_file * stream,int format,int deref_ref,int recurse,enum val_prettyprint pretty,int * elts)281 f77_print_array_1 (int nss, int ndimensions, struct type *type, char *valaddr,
282 		   CORE_ADDR address, struct ui_file *stream, int format,
283 		   int deref_ref, int recurse, enum val_prettyprint pretty,
284 		   int *elts)
285 {
286   int i;
287 
288   if (nss != ndimensions)
289     {
290       for (i = 0; (i < F77_DIM_SIZE (nss) && (*elts) < print_max); i++)
291 	{
292 	  fprintf_filtered (stream, "( ");
293 	  f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
294 			     valaddr + i * F77_DIM_OFFSET (nss),
295 			     address + i * F77_DIM_OFFSET (nss),
296 			     stream, format, deref_ref, recurse, pretty, elts);
297 	  fprintf_filtered (stream, ") ");
298 	}
299       if (*elts >= print_max && i < F77_DIM_SIZE (nss))
300 	fprintf_filtered (stream, "...");
301     }
302   else
303     {
304       for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < print_max;
305 	   i++, (*elts)++)
306 	{
307 	  val_print (TYPE_TARGET_TYPE (type),
308 		     valaddr + i * F77_DIM_OFFSET (ndimensions),
309 		     0,
310 		     address + i * F77_DIM_OFFSET (ndimensions),
311 		     stream, format, deref_ref, recurse, pretty);
312 
313 	  if (i != (F77_DIM_SIZE (nss) - 1))
314 	    fprintf_filtered (stream, ", ");
315 
316 	  if ((*elts == print_max - 1) && (i != (F77_DIM_SIZE (nss) - 1)))
317 	    fprintf_filtered (stream, "...");
318 	}
319     }
320 }
321 
322 /* This function gets called to print an F77 array, we set up some
323    stuff and then immediately call f77_print_array_1() */
324 
325 static void
f77_print_array(struct type * type,char * valaddr,CORE_ADDR address,struct ui_file * stream,int format,int deref_ref,int recurse,enum val_prettyprint pretty)326 f77_print_array (struct type *type, char *valaddr, CORE_ADDR address,
327 		 struct ui_file *stream, int format, int deref_ref, int recurse,
328 		 enum val_prettyprint pretty)
329 {
330   int ndimensions;
331   int elts = 0;
332 
333   ndimensions = calc_f77_array_dims (type);
334 
335   if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
336     error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
337 	   ndimensions, MAX_FORTRAN_DIMS);
338 
339   /* Since F77 arrays are stored column-major, we set up an
340      offset table to get at the various row's elements. The
341      offset table contains entries for both offset and subarray size. */
342 
343   f77_create_arrayprint_offset_tbl (type, stream);
344 
345   f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
346 		     deref_ref, recurse, pretty, &elts);
347 }
348 
349 
350 /* Print data of type TYPE located at VALADDR (within GDB), which came from
351    the inferior at address ADDRESS, onto stdio stream STREAM according to
352    FORMAT (a letter or 0 for natural format).  The data at VALADDR is in
353    target byte order.
354 
355    If the data are a string pointer, returns the number of string characters
356    printed.
357 
358    If DEREF_REF is nonzero, then dereference references, otherwise just print
359    them like pointers.
360 
361    The PRETTY parameter controls prettyprinting.  */
362 
363 int
f_val_print(struct type * type,char * valaddr,int embedded_offset,CORE_ADDR address,struct ui_file * stream,int format,int deref_ref,int recurse,enum val_prettyprint pretty)364 f_val_print (struct type *type, char *valaddr, int embedded_offset,
365 	     CORE_ADDR address, struct ui_file *stream, int format,
366 	     int deref_ref, int recurse, enum val_prettyprint pretty)
367 {
368   unsigned int i = 0;	/* Number of characters printed */
369   struct type *elttype;
370   LONGEST val;
371   CORE_ADDR addr;
372 
373   CHECK_TYPEDEF (type);
374   switch (TYPE_CODE (type))
375     {
376     case TYPE_CODE_STRING:
377       f77_get_dynamic_length_of_aggregate (type);
378       LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0);
379       break;
380 
381     case TYPE_CODE_ARRAY:
382       fprintf_filtered (stream, "(");
383       f77_print_array (type, valaddr, address, stream, format,
384 		       deref_ref, recurse, pretty);
385       fprintf_filtered (stream, ")");
386       break;
387 
388     case TYPE_CODE_PTR:
389       if (format && format != 's')
390 	{
391 	  print_scalar_formatted (valaddr, type, format, 0, stream);
392 	  break;
393 	}
394       else
395 	{
396 	  addr = unpack_pointer (type, valaddr);
397 	  elttype = check_typedef (TYPE_TARGET_TYPE (type));
398 
399 	  if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
400 	    {
401 	      /* Try to print what function it points to.  */
402 	      print_address_demangle (addr, stream, demangle);
403 	      /* Return value is irrelevant except for string pointers.  */
404 	      return 0;
405 	    }
406 
407 	  if (addressprint && format != 's')
408 	    print_address_numeric (addr, 1, stream);
409 
410 	  /* For a pointer to char or unsigned char, also print the string
411 	     pointed to, unless pointer is null.  */
412 	  if (TYPE_LENGTH (elttype) == 1
413 	      && TYPE_CODE (elttype) == TYPE_CODE_INT
414 	      && (format == 0 || format == 's')
415 	      && addr != 0)
416 	    i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream);
417 
418 	  /* Return number of characters printed, including the terminating
419 	     '\0' if we reached the end.  val_print_string takes care including
420 	     the terminating '\0' if necessary.  */
421 	  return i;
422 	}
423       break;
424 
425     case TYPE_CODE_REF:
426       elttype = check_typedef (TYPE_TARGET_TYPE (type));
427       if (addressprint)
428 	{
429 	  CORE_ADDR addr
430 	    = extract_typed_address (valaddr + embedded_offset, type);
431 	  fprintf_filtered (stream, "@");
432 	  print_address_numeric (addr, 1, stream);
433 	  if (deref_ref)
434 	    fputs_filtered (": ", stream);
435 	}
436       /* De-reference the reference.  */
437       if (deref_ref)
438 	{
439 	  if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
440 	    {
441 	      struct value *deref_val =
442 	      value_at
443 	      (TYPE_TARGET_TYPE (type),
444 	       unpack_pointer (lookup_pointer_type (builtin_type_void),
445 			       valaddr + embedded_offset),
446 	       NULL);
447 	      val_print (VALUE_TYPE (deref_val),
448 			 VALUE_CONTENTS (deref_val),
449 			 0,
450 			 VALUE_ADDRESS (deref_val),
451 			 stream,
452 			 format,
453 			 deref_ref,
454 			 recurse,
455 			 pretty);
456 	    }
457 	  else
458 	    fputs_filtered ("???", stream);
459 	}
460       break;
461 
462     case TYPE_CODE_FUNC:
463       if (format)
464 	{
465 	  print_scalar_formatted (valaddr, type, format, 0, stream);
466 	  break;
467 	}
468       /* FIXME, we should consider, at least for ANSI C language, eliminating
469          the distinction made between FUNCs and POINTERs to FUNCs.  */
470       fprintf_filtered (stream, "{");
471       type_print (type, "", stream, -1);
472       fprintf_filtered (stream, "} ");
473       /* Try to print what function it points to, and its address.  */
474       print_address_demangle (address, stream, demangle);
475       break;
476 
477     case TYPE_CODE_INT:
478       format = format ? format : output_format;
479       if (format)
480 	print_scalar_formatted (valaddr, type, format, 0, stream);
481       else
482 	{
483 	  val_print_type_code_int (type, valaddr, stream);
484 	  /* C and C++ has no single byte int type, char is used instead.
485 	     Since we don't know whether the value is really intended to
486 	     be used as an integer or a character, print the character
487 	     equivalent as well. */
488 	  if (TYPE_LENGTH (type) == 1)
489 	    {
490 	      fputs_filtered (" ", stream);
491 	      LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
492 			     stream);
493 	    }
494 	}
495       break;
496 
497     case TYPE_CODE_FLT:
498       if (format)
499 	print_scalar_formatted (valaddr, type, format, 0, stream);
500       else
501 	print_floating (valaddr, type, stream);
502       break;
503 
504     case TYPE_CODE_VOID:
505       fprintf_filtered (stream, "VOID");
506       break;
507 
508     case TYPE_CODE_ERROR:
509       fprintf_filtered (stream, "<error type>");
510       break;
511 
512     case TYPE_CODE_RANGE:
513       /* FIXME, we should not ever have to print one of these yet.  */
514       fprintf_filtered (stream, "<range type>");
515       break;
516 
517     case TYPE_CODE_BOOL:
518       format = format ? format : output_format;
519       if (format)
520 	print_scalar_formatted (valaddr, type, format, 0, stream);
521       else
522 	{
523 	  val = 0;
524 	  switch (TYPE_LENGTH (type))
525 	    {
526 	    case 1:
527 	      val = unpack_long (builtin_type_f_logical_s1, valaddr);
528 	      break;
529 
530 	    case 2:
531 	      val = unpack_long (builtin_type_f_logical_s2, valaddr);
532 	      break;
533 
534 	    case 4:
535 	      val = unpack_long (builtin_type_f_logical, valaddr);
536 	      break;
537 
538 	    default:
539 	      error ("Logicals of length %d bytes not supported",
540 		     TYPE_LENGTH (type));
541 
542 	    }
543 
544 	  if (val == 0)
545 	    fprintf_filtered (stream, ".FALSE.");
546 	  else if (val == 1)
547 	    fprintf_filtered (stream, ".TRUE.");
548 	  else
549 	    /* Not a legitimate logical type, print as an integer.  */
550 	    {
551 	      /* Bash the type code temporarily.  */
552 	      TYPE_CODE (type) = TYPE_CODE_INT;
553 	      f_val_print (type, valaddr, 0, address, stream, format,
554 			   deref_ref, recurse, pretty);
555 	      /* Restore the type code so later uses work as intended. */
556 	      TYPE_CODE (type) = TYPE_CODE_BOOL;
557 	    }
558 	}
559       break;
560 
561     case TYPE_CODE_COMPLEX:
562       switch (TYPE_LENGTH (type))
563 	{
564 	case 8:
565 	  type = builtin_type_f_real;
566 	  break;
567 	case 16:
568 	  type = builtin_type_f_real_s8;
569 	  break;
570 	case 32:
571 	  type = builtin_type_f_real_s16;
572 	  break;
573 	default:
574 	  error ("Cannot print out complex*%d variables", TYPE_LENGTH (type));
575 	}
576       fputs_filtered ("(", stream);
577       print_floating (valaddr, type, stream);
578       fputs_filtered (",", stream);
579       print_floating (valaddr + TYPE_LENGTH (type), type, stream);
580       fputs_filtered (")", stream);
581       break;
582 
583     case TYPE_CODE_UNDEF:
584       /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
585          dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
586          and no complete type for struct foo in that file.  */
587       fprintf_filtered (stream, "<incomplete type>");
588       break;
589 
590     default:
591       error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
592     }
593   gdb_flush (stream);
594   return 0;
595 }
596 
597 static void
list_all_visible_commons(char * funname)598 list_all_visible_commons (char *funname)
599 {
600   SAVED_F77_COMMON_PTR tmp;
601 
602   tmp = head_common_list;
603 
604   printf_filtered ("All COMMON blocks visible at this level:\n\n");
605 
606   while (tmp != NULL)
607     {
608       if (strcmp (tmp->owning_function, funname) == 0)
609 	printf_filtered ("%s\n", tmp->name);
610 
611       tmp = tmp->next;
612     }
613 }
614 
615 /* This function is used to print out the values in a given COMMON
616    block. It will always use the most local common block of the
617    given name */
618 
619 static void
info_common_command(char * comname,int from_tty)620 info_common_command (char *comname, int from_tty)
621 {
622   SAVED_F77_COMMON_PTR the_common;
623   COMMON_ENTRY_PTR entry;
624   struct frame_info *fi;
625   char *funname = 0;
626   struct symbol *func;
627 
628   /* We have been told to display the contents of F77 COMMON
629      block supposedly visible in this function.  Let us
630      first make sure that it is visible and if so, let
631      us display its contents */
632 
633   fi = deprecated_selected_frame;
634 
635   if (fi == NULL)
636     error ("No frame selected");
637 
638   /* The following is generally ripped off from stack.c's routine
639      print_frame_info() */
640 
641   func = find_pc_function (get_frame_pc (fi));
642   if (func)
643     {
644       /* In certain pathological cases, the symtabs give the wrong
645          function (when we are in the first function in a file which
646          is compiled without debugging symbols, the previous function
647          is compiled with debugging symbols, and the "foo.o" symbol
648          that is supposed to tell us where the file with debugging symbols
649          ends has been truncated by ar because it is longer than 15
650          characters).
651 
652          So look in the minimal symbol tables as well, and if it comes
653          up with a larger address for the function use that instead.
654          I don't think this can ever cause any problems; there shouldn't
655          be any minimal symbols in the middle of a function.
656          FIXME:  (Not necessarily true.  What about text labels) */
657 
658       struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (get_frame_pc (fi));
659 
660       if (msymbol != NULL
661 	  && (SYMBOL_VALUE_ADDRESS (msymbol)
662 	      > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
663 	funname = DEPRECATED_SYMBOL_NAME (msymbol);
664       else
665 	funname = DEPRECATED_SYMBOL_NAME (func);
666     }
667   else
668     {
669       struct minimal_symbol *msymbol =
670       lookup_minimal_symbol_by_pc (get_frame_pc (fi));
671 
672       if (msymbol != NULL)
673 	funname = DEPRECATED_SYMBOL_NAME (msymbol);
674     }
675 
676   /* If comname is NULL, we assume the user wishes to see the
677      which COMMON blocks are visible here and then return */
678 
679   if (comname == 0)
680     {
681       list_all_visible_commons (funname);
682       return;
683     }
684 
685   the_common = find_common_for_function (comname, funname);
686 
687   if (the_common)
688     {
689       if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
690 	printf_filtered ("Contents of blank COMMON block:\n");
691       else
692 	printf_filtered ("Contents of F77 COMMON block '%s':\n", comname);
693 
694       printf_filtered ("\n");
695       entry = the_common->entries;
696 
697       while (entry != NULL)
698 	{
699 	  printf_filtered ("%s = ", DEPRECATED_SYMBOL_NAME (entry->symbol));
700 	  print_variable_value (entry->symbol, fi, gdb_stdout);
701 	  printf_filtered ("\n");
702 	  entry = entry->next;
703 	}
704     }
705   else
706     printf_filtered ("Cannot locate the common block %s in function '%s'\n",
707 		     comname, funname);
708 }
709 
710 /* This function is used to determine whether there is a
711    F77 common block visible at the current scope called 'comname'. */
712 
713 #if 0
714 static int
715 there_is_a_visible_common_named (char *comname)
716 {
717   SAVED_F77_COMMON_PTR the_common;
718   struct frame_info *fi;
719   char *funname = 0;
720   struct symbol *func;
721 
722   if (comname == NULL)
723     error ("Cannot deal with NULL common name!");
724 
725   fi = deprecated_selected_frame;
726 
727   if (fi == NULL)
728     error ("No frame selected");
729 
730   /* The following is generally ripped off from stack.c's routine
731      print_frame_info() */
732 
733   func = find_pc_function (fi->pc);
734   if (func)
735     {
736       /* In certain pathological cases, the symtabs give the wrong
737          function (when we are in the first function in a file which
738          is compiled without debugging symbols, the previous function
739          is compiled with debugging symbols, and the "foo.o" symbol
740          that is supposed to tell us where the file with debugging symbols
741          ends has been truncated by ar because it is longer than 15
742          characters).
743 
744          So look in the minimal symbol tables as well, and if it comes
745          up with a larger address for the function use that instead.
746          I don't think this can ever cause any problems; there shouldn't
747          be any minimal symbols in the middle of a function.
748          FIXME:  (Not necessarily true.  What about text labels) */
749 
750       struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
751 
752       if (msymbol != NULL
753 	  && (SYMBOL_VALUE_ADDRESS (msymbol)
754 	      > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
755 	funname = DEPRECATED_SYMBOL_NAME (msymbol);
756       else
757 	funname = DEPRECATED_SYMBOL_NAME (func);
758     }
759   else
760     {
761       struct minimal_symbol *msymbol =
762       lookup_minimal_symbol_by_pc (fi->pc);
763 
764       if (msymbol != NULL)
765 	funname = DEPRECATED_SYMBOL_NAME (msymbol);
766     }
767 
768   the_common = find_common_for_function (comname, funname);
769 
770   return (the_common ? 1 : 0);
771 }
772 #endif
773 
774 void
_initialize_f_valprint(void)775 _initialize_f_valprint (void)
776 {
777   add_info ("common", info_common_command,
778 	    "Print out the values contained in a Fortran COMMON block.");
779   if (xdb_commands)
780     add_com ("lc", class_info, info_common_command,
781 	     "Print out the values contained in a Fortran COMMON block.");
782 }
783