1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/Regex.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/TableGen/Error.h"
26 #include <algorithm>
27 #include <iterator>
28 #include <utility>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "subtarget-emitter"
33 
34 #ifndef NDEBUG
dumpIdxVec(ArrayRef<unsigned> V)35 static void dumpIdxVec(ArrayRef<unsigned> V) {
36   for (unsigned Idx : V)
37     dbgs() << Idx << ", ";
38 }
39 #endif
40 
41 namespace {
42 
43 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
44 struct InstrsOp : public SetTheory::Operator {
apply__anon6691fca50111::InstrsOp45   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
46              ArrayRef<SMLoc> Loc) override {
47     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
48   }
49 };
50 
51 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
52 struct InstRegexOp : public SetTheory::Operator {
53   const CodeGenTarget &Target;
InstRegexOp__anon6691fca50111::InstRegexOp54   InstRegexOp(const CodeGenTarget &t): Target(t) {}
55 
56   /// Remove any text inside of parentheses from S.
removeParens__anon6691fca50111::InstRegexOp57   static std::string removeParens(llvm::StringRef S) {
58     std::string Result;
59     unsigned Paren = 0;
60     // NB: We don't care about escaped parens here.
61     for (char C : S) {
62       switch (C) {
63       case '(':
64         ++Paren;
65         break;
66       case ')':
67         --Paren;
68         break;
69       default:
70         if (Paren == 0)
71           Result += C;
72       }
73     }
74     return Result;
75   }
76 
apply__anon6691fca50111::InstRegexOp77   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
78              ArrayRef<SMLoc> Loc) override {
79     ArrayRef<const CodeGenInstruction *> Instructions =
80         Target.getInstructionsByEnumValue();
81 
82     unsigned NumGeneric = Target.getNumFixedInstructions();
83     unsigned NumPseudos = Target.getNumPseudoInstructions();
84     auto Generics = Instructions.slice(0, NumGeneric);
85     auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
86     auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
87 
88     for (Init *Arg : Expr->getArgs()) {
89       StringInit *SI = dyn_cast<StringInit>(Arg);
90       if (!SI)
91         PrintFatalError(Loc, "instregex requires pattern string: " +
92                                  Expr->getAsString());
93       StringRef Original = SI->getValue();
94       // Drop an explicit ^ anchor to not interfere with prefix search.
95       bool HadAnchor = Original.consume_front("^");
96 
97       // Extract a prefix that we can binary search on.
98       static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
99       auto FirstMeta = Original.find_first_of(RegexMetachars);
100       if (FirstMeta != StringRef::npos && FirstMeta > 0) {
101         // If we have a regex like ABC* we can only use AB as the prefix, as
102         // the * acts on C.
103         switch (Original[FirstMeta]) {
104         case '+':
105         case '*':
106         case '?':
107           --FirstMeta;
108           break;
109         default:
110           break;
111         }
112       }
113 
114       // Look for top-level | or ?. We cannot optimize them to binary search.
115       if (removeParens(Original).find_first_of("|?") != std::string::npos)
116         FirstMeta = 0;
117 
118       std::optional<Regex> Regexpr;
119       StringRef Prefix = Original.substr(0, FirstMeta);
120       StringRef PatStr = Original.substr(FirstMeta);
121       if (!PatStr.empty()) {
122         // For the rest use a python-style prefix match.
123         std::string pat = std::string(PatStr);
124         // Add ^ anchor. If we had one originally, don't need the group.
125         if (HadAnchor) {
126           pat.insert(0, "^");
127         } else {
128           pat.insert(0, "^(");
129           pat.insert(pat.end(), ')');
130         }
131         Regexpr = Regex(pat);
132       }
133 
134       int NumMatches = 0;
135 
136       // The generic opcodes are unsorted, handle them manually.
137       for (auto *Inst : Generics) {
138         StringRef InstName = Inst->TheDef->getName();
139         if (InstName.starts_with(Prefix) &&
140             (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
141           Elts.insert(Inst->TheDef);
142           NumMatches++;
143         }
144       }
145 
146       // Target instructions are split into two ranges: pseudo instructions
147       // first, than non-pseudos. Each range is in lexicographical order
148       // sorted by name. Find the sub-ranges that start with our prefix.
149       struct Comp {
150         bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
151           return LHS->TheDef->getName() < RHS;
152         }
153         bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
154           return LHS < RHS->TheDef->getName() &&
155                  !RHS->TheDef->getName().starts_with(LHS);
156         }
157       };
158       auto Range1 =
159           std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
160       auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
161                                      Prefix, Comp());
162 
163       // For these ranges we know that instruction names start with the prefix.
164       // Check if there's a regex that needs to be checked.
165       const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
166         StringRef InstName = Inst->TheDef->getName();
167         if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
168           Elts.insert(Inst->TheDef);
169           NumMatches++;
170         }
171       };
172       std::for_each(Range1.first, Range1.second, HandleNonGeneric);
173       std::for_each(Range2.first, Range2.second, HandleNonGeneric);
174 
175       if (0 == NumMatches)
176         PrintFatalError(Loc, "instregex has no matches: " + Original);
177     }
178   }
179 };
180 
181 } // end anonymous namespace
182 
183 /// CodeGenModels ctor interprets machine model records and populates maps.
CodeGenSchedModels(RecordKeeper & RK,const CodeGenTarget & TGT)184 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
185                                        const CodeGenTarget &TGT):
186   Records(RK), Target(TGT) {
187 
188   Sets.addFieldExpander("InstRW", "Instrs");
189 
190   // Allow Set evaluation to recognize the dags used in InstRW records:
191   // (instrs Op1, Op1...)
192   Sets.addOperator("instrs", std::make_unique<InstrsOp>());
193   Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
194 
195   // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
196   // that are explicitly referenced in tablegen records. Resources associated
197   // with each processor will be derived later. Populate ProcModelMap with the
198   // CodeGenProcModel instances.
199   collectProcModels();
200 
201   // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
202   // defined, and populate SchedReads and SchedWrites vectors. Implicit
203   // SchedReadWrites that represent sequences derived from expanded variant will
204   // be inferred later.
205   collectSchedRW();
206 
207   // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
208   // required by an instruction definition, and populate SchedClassIdxMap. Set
209   // NumItineraryClasses to the number of explicit itinerary classes referenced
210   // by instructions. Set NumInstrSchedClasses to the number of itinerary
211   // classes plus any classes implied by instructions that derive from class
212   // Sched and provide SchedRW list. This does not infer any new classes from
213   // SchedVariant.
214   collectSchedClasses();
215 
216   // Find instruction itineraries for each processor. Sort and populate
217   // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
218   // all itinerary classes to be discovered.
219   collectProcItins();
220 
221   // Find ItinRW records for each processor and itinerary class.
222   // (For per-operand resources mapped to itinerary classes).
223   collectProcItinRW();
224 
225   // Find UnsupportedFeatures records for each processor.
226   // (For per-operand resources mapped to itinerary classes).
227   collectProcUnsupportedFeatures();
228 
229   // Infer new SchedClasses from SchedVariant.
230   inferSchedClasses();
231 
232   // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
233   // ProcResourceDefs.
234   LLVM_DEBUG(
235       dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
236   collectProcResources();
237 
238   // Collect optional processor description.
239   collectOptionalProcessorInfo();
240 
241   // Check MCInstPredicate definitions.
242   checkMCInstPredicates();
243 
244   // Check STIPredicate definitions.
245   checkSTIPredicates();
246 
247   // Find STIPredicate definitions for each processor model, and construct
248   // STIPredicateFunction objects.
249   collectSTIPredicates();
250 
251   checkCompleteness();
252 }
253 
checkSTIPredicates() const254 void CodeGenSchedModels::checkSTIPredicates() const {
255   DenseMap<StringRef, const Record *> Declarations;
256 
257   // There cannot be multiple declarations with the same name.
258   const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
259   for (const Record *R : Decls) {
260     StringRef Name = R->getValueAsString("Name");
261     const auto It = Declarations.find(Name);
262     if (It == Declarations.end()) {
263       Declarations[Name] = R;
264       continue;
265     }
266 
267     PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
268     PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
269   }
270 
271   // Disallow InstructionEquivalenceClasses with an empty instruction list.
272   const RecVec Defs =
273       Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
274   for (const Record *R : Defs) {
275     RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
276     if (Opcodes.empty()) {
277       PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
278                                    "defined with an empty opcode list.");
279     }
280   }
281 }
282 
283 // Used by function `processSTIPredicate` to construct a mask of machine
284 // instruction operands.
constructOperandMask(ArrayRef<int64_t> Indices)285 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
286   APInt OperandMask;
287   if (Indices.empty())
288     return OperandMask;
289 
290   int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
291   assert(MaxIndex >= 0 && "Invalid negative indices in input!");
292   OperandMask = OperandMask.zext(MaxIndex + 1);
293   for (const int64_t Index : Indices) {
294     assert(Index >= 0 && "Invalid negative indices!");
295     OperandMask.setBit(Index);
296   }
297 
298   return OperandMask;
299 }
300 
301 static void
processSTIPredicate(STIPredicateFunction & Fn,const ProcModelMapTy & ProcModelMap)302 processSTIPredicate(STIPredicateFunction &Fn,
303                     const ProcModelMapTy &ProcModelMap) {
304   DenseMap<const Record *, unsigned> Opcode2Index;
305   using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
306   std::vector<OpcodeMapPair> OpcodeMappings;
307   std::vector<std::pair<APInt, APInt>> OpcodeMasks;
308 
309   DenseMap<const Record *, unsigned> Predicate2Index;
310   unsigned NumUniquePredicates = 0;
311 
312   // Number unique predicates and opcodes used by InstructionEquivalenceClass
313   // definitions. Each unique opcode will be associated with an OpcodeInfo
314   // object.
315   for (const Record *Def : Fn.getDefinitions()) {
316     RecVec Classes = Def->getValueAsListOfDefs("Classes");
317     for (const Record *EC : Classes) {
318       const Record *Pred = EC->getValueAsDef("Predicate");
319       if (!Predicate2Index.contains(Pred))
320         Predicate2Index[Pred] = NumUniquePredicates++;
321 
322       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
323       for (const Record *Opcode : Opcodes) {
324         if (!Opcode2Index.contains(Opcode)) {
325           Opcode2Index[Opcode] = OpcodeMappings.size();
326           OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
327         }
328       }
329     }
330   }
331 
332   // Initialize vector `OpcodeMasks` with default values.  We want to keep track
333   // of which processors "use" which opcodes.  We also want to be able to
334   // identify predicates that are used by different processors for a same
335   // opcode.
336   // This information is used later on by this algorithm to sort OpcodeMapping
337   // elements based on their processor and predicate sets.
338   OpcodeMasks.resize(OpcodeMappings.size());
339   APInt DefaultProcMask(ProcModelMap.size(), 0);
340   APInt DefaultPredMask(NumUniquePredicates, 0);
341   for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
342     MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
343 
344   // Construct a OpcodeInfo object for every unique opcode declared by an
345   // InstructionEquivalenceClass definition.
346   for (const Record *Def : Fn.getDefinitions()) {
347     RecVec Classes = Def->getValueAsListOfDefs("Classes");
348     const Record *SchedModel = Def->getValueAsDef("SchedModel");
349     unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
350     APInt ProcMask(ProcModelMap.size(), 0);
351     ProcMask.setBit(ProcIndex);
352 
353     for (const Record *EC : Classes) {
354       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
355 
356       std::vector<int64_t> OpIndices =
357           EC->getValueAsListOfInts("OperandIndices");
358       APInt OperandMask = constructOperandMask(OpIndices);
359 
360       const Record *Pred = EC->getValueAsDef("Predicate");
361       APInt PredMask(NumUniquePredicates, 0);
362       PredMask.setBit(Predicate2Index[Pred]);
363 
364       for (const Record *Opcode : Opcodes) {
365         unsigned OpcodeIdx = Opcode2Index[Opcode];
366         if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
367           std::string Message =
368               "Opcode " + Opcode->getName().str() +
369               " used by multiple InstructionEquivalenceClass definitions.";
370           PrintFatalError(EC->getLoc(), Message);
371         }
372         OpcodeMasks[OpcodeIdx].first |= ProcMask;
373         OpcodeMasks[OpcodeIdx].second |= PredMask;
374         OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
375 
376         OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
377       }
378     }
379   }
380 
381   // Sort OpcodeMappings elements based on their CPU and predicate masks.
382   // As a last resort, order elements by opcode identifier.
383   llvm::sort(OpcodeMappings,
384              [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
385                unsigned LhsIdx = Opcode2Index[Lhs.first];
386                unsigned RhsIdx = Opcode2Index[Rhs.first];
387                const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
388                const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
389 
390                auto PopulationCountAndLeftBit =
391                    [](const APInt &Other) -> std::pair<int, int> {
392                  return std::pair<int, int>(Other.popcount(),
393                                             -Other.countl_zero());
394                };
395                auto lhsmask_first = PopulationCountAndLeftBit(LhsMasks.first);
396                auto rhsmask_first = PopulationCountAndLeftBit(RhsMasks.first);
397                if (lhsmask_first != rhsmask_first)
398                  return lhsmask_first < rhsmask_first;
399 
400                auto lhsmask_second = PopulationCountAndLeftBit(LhsMasks.second);
401                auto rhsmask_second = PopulationCountAndLeftBit(RhsMasks.second);
402                if (lhsmask_second != rhsmask_second)
403                  return lhsmask_second < rhsmask_second;
404 
405                return LhsIdx < RhsIdx;
406              });
407 
408   // Now construct opcode groups. Groups are used by the SubtargetEmitter when
409   // expanding the body of a STIPredicate function. In particular, each opcode
410   // group is expanded into a sequence of labels in a switch statement.
411   // It identifies opcodes for which different processors define same predicates
412   // and same opcode masks.
413   for (OpcodeMapPair &Info : OpcodeMappings)
414     Fn.addOpcode(Info.first, std::move(Info.second));
415 }
416 
collectSTIPredicates()417 void CodeGenSchedModels::collectSTIPredicates() {
418   // Map STIPredicateDecl records to elements of vector
419   // CodeGenSchedModels::STIPredicates.
420   DenseMap<const Record *, unsigned> Decl2Index;
421 
422   RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
423   for (const Record *R : RV) {
424     const Record *Decl = R->getValueAsDef("Declaration");
425 
426     const auto It = Decl2Index.find(Decl);
427     if (It == Decl2Index.end()) {
428       Decl2Index[Decl] = STIPredicates.size();
429       STIPredicateFunction Predicate(Decl);
430       Predicate.addDefinition(R);
431       STIPredicates.emplace_back(std::move(Predicate));
432       continue;
433     }
434 
435     STIPredicateFunction &PreviousDef = STIPredicates[It->second];
436     PreviousDef.addDefinition(R);
437   }
438 
439   for (STIPredicateFunction &Fn : STIPredicates)
440     processSTIPredicate(Fn, ProcModelMap);
441 }
442 
addPredicateForProcModel(const llvm::APInt & CpuMask,const llvm::APInt & OperandMask,const Record * Predicate)443 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
444                                           const llvm::APInt &OperandMask,
445                                           const Record *Predicate) {
446   auto It = llvm::find_if(
447       Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
448         return P.Predicate == Predicate && P.OperandMask == OperandMask;
449       });
450   if (It == Predicates.end()) {
451     Predicates.emplace_back(CpuMask, OperandMask, Predicate);
452     return;
453   }
454   It->ProcModelMask |= CpuMask;
455 }
456 
checkMCInstPredicates() const457 void CodeGenSchedModels::checkMCInstPredicates() const {
458   RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
459   if (MCPredicates.empty())
460     return;
461 
462   // A target cannot have multiple TIIPredicate definitions with a same name.
463   llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
464   for (const Record *TIIPred : MCPredicates) {
465     StringRef Name = TIIPred->getValueAsString("FunctionName");
466     StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
467     if (It == TIIPredicates.end()) {
468       TIIPredicates[Name] = TIIPred;
469       continue;
470     }
471 
472     PrintError(TIIPred->getLoc(),
473                "TIIPredicate " + Name + " is multiply defined.");
474     PrintFatalNote(It->second->getLoc(),
475                    " Previous definition of " + Name + " was here.");
476   }
477 }
478 
collectRetireControlUnits()479 void CodeGenSchedModels::collectRetireControlUnits() {
480   RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
481 
482   for (Record *RCU : Units) {
483     CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
484     if (PM.RetireControlUnit) {
485       PrintError(RCU->getLoc(),
486                  "Expected a single RetireControlUnit definition");
487       PrintNote(PM.RetireControlUnit->getLoc(),
488                 "Previous definition of RetireControlUnit was here");
489     }
490     PM.RetireControlUnit = RCU;
491   }
492 }
493 
collectLoadStoreQueueInfo()494 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
495   RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
496 
497   for (Record *Queue : Queues) {
498     CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
499     if (Queue->isSubClassOf("LoadQueue")) {
500       if (PM.LoadQueue) {
501         PrintError(Queue->getLoc(),
502                    "Expected a single LoadQueue definition");
503         PrintNote(PM.LoadQueue->getLoc(),
504                   "Previous definition of LoadQueue was here");
505       }
506 
507       PM.LoadQueue = Queue;
508     }
509 
510     if (Queue->isSubClassOf("StoreQueue")) {
511       if (PM.StoreQueue) {
512         PrintError(Queue->getLoc(),
513                    "Expected a single StoreQueue definition");
514         PrintNote(PM.StoreQueue->getLoc(),
515                   "Previous definition of StoreQueue was here");
516       }
517 
518       PM.StoreQueue = Queue;
519     }
520   }
521 }
522 
523 /// Collect optional processor information.
collectOptionalProcessorInfo()524 void CodeGenSchedModels::collectOptionalProcessorInfo() {
525   // Find register file definitions for each processor.
526   collectRegisterFiles();
527 
528   // Collect processor RetireControlUnit descriptors if available.
529   collectRetireControlUnits();
530 
531   // Collect information about load/store queues.
532   collectLoadStoreQueueInfo();
533 
534   checkCompleteness();
535 }
536 
537 /// Gather all processor models.
collectProcModels()538 void CodeGenSchedModels::collectProcModels() {
539   RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
540   llvm::sort(ProcRecords, LessRecordFieldName());
541 
542   // Check for duplicated names.
543   auto I = std::adjacent_find(ProcRecords.begin(), ProcRecords.end(),
544                               [](const Record *Rec1, const Record *Rec2) {
545     return Rec1->getValueAsString("Name") == Rec2->getValueAsString("Name");
546   });
547   if (I != ProcRecords.end())
548     PrintFatalError((*I)->getLoc(), "Duplicate processor name " +
549                     (*I)->getValueAsString("Name"));
550 
551   // Reserve space because we can. Reallocation would be ok.
552   ProcModels.reserve(ProcRecords.size()+1);
553 
554   // Use idx=0 for NoModel/NoItineraries.
555   Record *NoModelDef = Records.getDef("NoSchedModel");
556   Record *NoItinsDef = Records.getDef("NoItineraries");
557   ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
558   ProcModelMap[NoModelDef] = 0;
559 
560   // For each processor, find a unique machine model.
561   LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
562   for (Record *ProcRecord : ProcRecords)
563     addProcModel(ProcRecord);
564 }
565 
566 /// Get a unique processor model based on the defined MachineModel and
567 /// ProcessorItineraries.
addProcModel(Record * ProcDef)568 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
569   Record *ModelKey = getModelOrItinDef(ProcDef);
570   if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
571     return;
572 
573   std::string Name = std::string(ModelKey->getName());
574   if (ModelKey->isSubClassOf("SchedMachineModel")) {
575     Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
576     ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
577   }
578   else {
579     // An itinerary is defined without a machine model. Infer a new model.
580     if (!ModelKey->getValueAsListOfDefs("IID").empty())
581       Name = Name + "Model";
582     ProcModels.emplace_back(ProcModels.size(), Name,
583                             ProcDef->getValueAsDef("SchedModel"), ModelKey);
584   }
585   LLVM_DEBUG(ProcModels.back().dump());
586 }
587 
588 // Recursively find all reachable SchedReadWrite records.
scanSchedRW(Record * RWDef,RecVec & RWDefs,SmallPtrSet<Record *,16> & RWSet)589 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
590                         SmallPtrSet<Record*, 16> &RWSet) {
591   if (!RWSet.insert(RWDef).second)
592     return;
593   RWDefs.push_back(RWDef);
594   // Reads don't currently have sequence records, but it can be added later.
595   if (RWDef->isSubClassOf("WriteSequence")) {
596     RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
597     for (Record *WSRec : Seq)
598       scanSchedRW(WSRec, RWDefs, RWSet);
599   }
600   else if (RWDef->isSubClassOf("SchedVariant")) {
601     // Visit each variant (guarded by a different predicate).
602     RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
603     for (Record *Variant : Vars) {
604       // Visit each RW in the sequence selected by the current variant.
605       RecVec Selected = Variant->getValueAsListOfDefs("Selected");
606       for (Record *SelDef : Selected)
607         scanSchedRW(SelDef, RWDefs, RWSet);
608     }
609   }
610 }
611 
612 // Collect and sort all SchedReadWrites reachable via tablegen records.
613 // More may be inferred later when inferring new SchedClasses from variants.
collectSchedRW()614 void CodeGenSchedModels::collectSchedRW() {
615   // Reserve idx=0 for invalid writes/reads.
616   SchedWrites.resize(1);
617   SchedReads.resize(1);
618 
619   SmallPtrSet<Record*, 16> RWSet;
620 
621   // Find all SchedReadWrites referenced by instruction defs.
622   RecVec SWDefs, SRDefs;
623   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
624     Record *SchedDef = Inst->TheDef;
625     if (SchedDef->isValueUnset("SchedRW"))
626       continue;
627     RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
628     for (Record *RW : RWs) {
629       if (RW->isSubClassOf("SchedWrite"))
630         scanSchedRW(RW, SWDefs, RWSet);
631       else {
632         assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
633         scanSchedRW(RW, SRDefs, RWSet);
634       }
635     }
636   }
637   // Find all ReadWrites referenced by InstRW.
638   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
639   for (Record *InstRWDef : InstRWDefs) {
640     // For all OperandReadWrites.
641     RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
642     for (Record *RWDef : RWDefs) {
643       if (RWDef->isSubClassOf("SchedWrite"))
644         scanSchedRW(RWDef, SWDefs, RWSet);
645       else {
646         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
647         scanSchedRW(RWDef, SRDefs, RWSet);
648       }
649     }
650   }
651   // Find all ReadWrites referenced by ItinRW.
652   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
653   for (Record *ItinRWDef : ItinRWDefs) {
654     // For all OperandReadWrites.
655     RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
656     for (Record *RWDef : RWDefs) {
657       if (RWDef->isSubClassOf("SchedWrite"))
658         scanSchedRW(RWDef, SWDefs, RWSet);
659       else {
660         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
661         scanSchedRW(RWDef, SRDefs, RWSet);
662       }
663     }
664   }
665   // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
666   // for the loop below that initializes Alias vectors.
667   RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
668   llvm::sort(AliasDefs, LessRecord());
669   for (Record *ADef : AliasDefs) {
670     Record *MatchDef = ADef->getValueAsDef("MatchRW");
671     Record *AliasDef = ADef->getValueAsDef("AliasRW");
672     if (MatchDef->isSubClassOf("SchedWrite")) {
673       if (!AliasDef->isSubClassOf("SchedWrite"))
674         PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
675       scanSchedRW(AliasDef, SWDefs, RWSet);
676     }
677     else {
678       assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
679       if (!AliasDef->isSubClassOf("SchedRead"))
680         PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
681       scanSchedRW(AliasDef, SRDefs, RWSet);
682     }
683   }
684   // Sort and add the SchedReadWrites directly referenced by instructions or
685   // itinerary resources. Index reads and writes in separate domains.
686   llvm::sort(SWDefs, LessRecord());
687   for (Record *SWDef : SWDefs) {
688     assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
689     SchedWrites.emplace_back(SchedWrites.size(), SWDef);
690   }
691   llvm::sort(SRDefs, LessRecord());
692   for (Record *SRDef : SRDefs) {
693     assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
694     SchedReads.emplace_back(SchedReads.size(), SRDef);
695   }
696   // Initialize WriteSequence vectors.
697   for (CodeGenSchedRW &CGRW : SchedWrites) {
698     if (!CGRW.IsSequence)
699       continue;
700     findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
701             /*IsRead=*/false);
702   }
703   // Initialize Aliases vectors.
704   for (Record *ADef : AliasDefs) {
705     Record *AliasDef = ADef->getValueAsDef("AliasRW");
706     getSchedRW(AliasDef).IsAlias = true;
707     Record *MatchDef = ADef->getValueAsDef("MatchRW");
708     CodeGenSchedRW &RW = getSchedRW(MatchDef);
709     if (RW.IsAlias)
710       PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
711     RW.Aliases.push_back(ADef);
712   }
713   LLVM_DEBUG(
714       dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
715       for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
716         dbgs() << WIdx << ": ";
717         SchedWrites[WIdx].dump();
718         dbgs() << '\n';
719       } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
720              ++RIdx) {
721         dbgs() << RIdx << ": ";
722         SchedReads[RIdx].dump();
723         dbgs() << '\n';
724       } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
725       for (Record *RWDef
726            : RWDefs) {
727         if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
728           StringRef Name = RWDef->getName();
729           if (Name != "NoWrite" && Name != "ReadDefault")
730             dbgs() << "Unused SchedReadWrite " << Name << '\n';
731         }
732       });
733 }
734 
735 /// Compute a SchedWrite name from a sequence of writes.
genRWName(ArrayRef<unsigned> Seq,bool IsRead)736 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
737   std::string Name("(");
738   ListSeparator LS("_");
739   for (unsigned I : Seq) {
740     Name += LS;
741     Name += getSchedRW(I, IsRead).Name;
742   }
743   Name += ')';
744   return Name;
745 }
746 
getSchedRWIdx(const Record * Def,bool IsRead) const747 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
748                                            bool IsRead) const {
749   const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
750   const auto I = find_if(
751       RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
752   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
753 }
754 
hasReadOfWrite(Record * WriteDef) const755 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
756   for (auto& ProcModel : ProcModels) {
757     const RecVec &RADefs = ProcModel.ReadAdvanceDefs;
758     for (auto& RADef : RADefs) {
759       RecVec ValidWrites = RADef->getValueAsListOfDefs("ValidWrites");
760       if (is_contained(ValidWrites, WriteDef))
761         return true;
762     }
763   }
764   return false;
765 }
766 
splitSchedReadWrites(const RecVec & RWDefs,RecVec & WriteDefs,RecVec & ReadDefs)767 static void splitSchedReadWrites(const RecVec &RWDefs,
768                                  RecVec &WriteDefs, RecVec &ReadDefs) {
769   for (Record *RWDef : RWDefs) {
770     if (RWDef->isSubClassOf("SchedWrite"))
771       WriteDefs.push_back(RWDef);
772     else {
773       assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
774       ReadDefs.push_back(RWDef);
775     }
776   }
777 }
778 
779 // Split the SchedReadWrites defs and call findRWs for each list.
findRWs(const RecVec & RWDefs,IdxVec & Writes,IdxVec & Reads) const780 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
781                                  IdxVec &Writes, IdxVec &Reads) const {
782   RecVec WriteDefs;
783   RecVec ReadDefs;
784   splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
785   findRWs(WriteDefs, Writes, false);
786   findRWs(ReadDefs, Reads, true);
787 }
788 
789 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
findRWs(const RecVec & RWDefs,IdxVec & RWs,bool IsRead) const790 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
791                                  bool IsRead) const {
792   for (Record *RWDef : RWDefs) {
793     unsigned Idx = getSchedRWIdx(RWDef, IsRead);
794     assert(Idx && "failed to collect SchedReadWrite");
795     RWs.push_back(Idx);
796   }
797 }
798 
expandRWSequence(unsigned RWIdx,IdxVec & RWSeq,bool IsRead) const799 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
800                                           bool IsRead) const {
801   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
802   if (!SchedRW.IsSequence) {
803     RWSeq.push_back(RWIdx);
804     return;
805   }
806   int Repeat =
807     SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
808   for (int i = 0; i < Repeat; ++i) {
809     for (unsigned I : SchedRW.Sequence) {
810       expandRWSequence(I, RWSeq, IsRead);
811     }
812   }
813 }
814 
815 // Expand a SchedWrite as a sequence following any aliases that coincide with
816 // the given processor model.
expandRWSeqForProc(unsigned RWIdx,IdxVec & RWSeq,bool IsRead,const CodeGenProcModel & ProcModel) const817 void CodeGenSchedModels::expandRWSeqForProc(
818   unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
819   const CodeGenProcModel &ProcModel) const {
820 
821   const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
822   Record *AliasDef = nullptr;
823   for (const Record *Rec : SchedWrite.Aliases) {
824     const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
825     if (Rec->getValueInit("SchedModel")->isComplete()) {
826       Record *ModelDef = Rec->getValueAsDef("SchedModel");
827       if (&getProcModel(ModelDef) != &ProcModel)
828         continue;
829     }
830     if (AliasDef)
831       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
832                       "defined for processor " + ProcModel.ModelName +
833                       " Ensure only one SchedAlias exists per RW.");
834     AliasDef = AliasRW.TheDef;
835   }
836   if (AliasDef) {
837     expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
838                        RWSeq, IsRead,ProcModel);
839     return;
840   }
841   if (!SchedWrite.IsSequence) {
842     RWSeq.push_back(RWIdx);
843     return;
844   }
845   int Repeat =
846     SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
847   for (int I = 0, E = Repeat; I < E; ++I) {
848     for (unsigned Idx : SchedWrite.Sequence) {
849       expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
850     }
851   }
852 }
853 
854 // Find the existing SchedWrite that models this sequence of writes.
findRWForSequence(ArrayRef<unsigned> Seq,bool IsRead)855 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
856                                                bool IsRead) {
857   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
858 
859   auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
860     return ArrayRef(RW.Sequence) == Seq;
861   });
862   // Index zero reserved for invalid RW.
863   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
864 }
865 
866 /// Add this ReadWrite if it doesn't already exist.
findOrInsertRW(ArrayRef<unsigned> Seq,bool IsRead)867 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
868                                             bool IsRead) {
869   assert(!Seq.empty() && "cannot insert empty sequence");
870   if (Seq.size() == 1)
871     return Seq.back();
872 
873   unsigned Idx = findRWForSequence(Seq, IsRead);
874   if (Idx)
875     return Idx;
876 
877   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
878   unsigned RWIdx = RWVec.size();
879   CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
880   RWVec.push_back(SchedRW);
881   return RWIdx;
882 }
883 
884 /// Visit all the instruction definitions for this target to gather and
885 /// enumerate the itinerary classes. These are the explicitly specified
886 /// SchedClasses. More SchedClasses may be inferred.
collectSchedClasses()887 void CodeGenSchedModels::collectSchedClasses() {
888 
889   // NoItinerary is always the first class at Idx=0
890   assert(SchedClasses.empty() && "Expected empty sched class");
891   SchedClasses.emplace_back(0, "NoInstrModel",
892                             Records.getDef("NoItinerary"));
893   SchedClasses.back().ProcIndices.push_back(0);
894 
895   // Create a SchedClass for each unique combination of itinerary class and
896   // SchedRW list.
897   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
898     Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
899     IdxVec Writes, Reads;
900     if (!Inst->TheDef->isValueUnset("SchedRW"))
901       findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
902 
903     // ProcIdx == 0 indicates the class applies to all processors.
904     unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
905     InstrClassMap[Inst->TheDef] = SCIdx;
906   }
907   // Create classes for InstRW defs.
908   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
909   llvm::sort(InstRWDefs, LessRecord());
910   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
911   for (Record *RWDef : InstRWDefs)
912     createInstRWClass(RWDef);
913 
914   NumInstrSchedClasses = SchedClasses.size();
915 
916   bool EnableDump = false;
917   LLVM_DEBUG(EnableDump = true);
918   if (!EnableDump)
919     return;
920 
921   LLVM_DEBUG(
922       dbgs()
923       << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
924   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
925     StringRef InstName = Inst->TheDef->getName();
926     unsigned SCIdx = getSchedClassIdx(*Inst);
927     if (!SCIdx) {
928       LLVM_DEBUG({
929         if (!Inst->hasNoSchedulingInfo)
930           dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
931       });
932       continue;
933     }
934     CodeGenSchedClass &SC = getSchedClass(SCIdx);
935     if (SC.ProcIndices[0] != 0)
936       PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
937                       "must not be subtarget specific.");
938 
939     IdxVec ProcIndices;
940     if (SC.ItinClassDef->getName() != "NoItinerary") {
941       ProcIndices.push_back(0);
942       dbgs() << "Itinerary for " << InstName << ": "
943              << SC.ItinClassDef->getName() << '\n';
944     }
945     if (!SC.Writes.empty()) {
946       ProcIndices.push_back(0);
947       LLVM_DEBUG({
948         dbgs() << "SchedRW machine model for " << InstName;
949         for (unsigned int Write : SC.Writes)
950           dbgs() << " " << SchedWrites[Write].Name;
951         for (unsigned int Read : SC.Reads)
952           dbgs() << " " << SchedReads[Read].Name;
953         dbgs() << '\n';
954       });
955     }
956     const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
957     for (Record *RWDef : RWDefs) {
958       const CodeGenProcModel &ProcModel =
959           getProcModel(RWDef->getValueAsDef("SchedModel"));
960       ProcIndices.push_back(ProcModel.Index);
961       LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
962                         << InstName);
963       IdxVec Writes;
964       IdxVec Reads;
965       findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
966               Writes, Reads);
967       LLVM_DEBUG({
968         for (unsigned WIdx : Writes)
969           dbgs() << " " << SchedWrites[WIdx].Name;
970         for (unsigned RIdx : Reads)
971           dbgs() << " " << SchedReads[RIdx].Name;
972         dbgs() << '\n';
973       });
974     }
975     // If ProcIndices contains zero, the class applies to all processors.
976     LLVM_DEBUG({
977       if (!llvm::is_contained(ProcIndices, 0)) {
978         for (const CodeGenProcModel &PM : ProcModels) {
979           if (!llvm::is_contained(ProcIndices, PM.Index))
980             dbgs() << "No machine model for " << Inst->TheDef->getName()
981                    << " on processor " << PM.ModelName << '\n';
982         }
983       }
984     });
985   }
986 }
987 
988 // Get the SchedClass index for an instruction.
989 unsigned
getSchedClassIdx(const CodeGenInstruction & Inst) const990 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
991   return InstrClassMap.lookup(Inst.TheDef);
992 }
993 
994 std::string
createSchedClassName(Record * ItinClassDef,ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads)995 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
996                                          ArrayRef<unsigned> OperWrites,
997                                          ArrayRef<unsigned> OperReads) {
998 
999   std::string Name;
1000   if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
1001     Name = std::string(ItinClassDef->getName());
1002   for (unsigned Idx : OperWrites) {
1003     if (!Name.empty())
1004       Name += '_';
1005     Name += SchedWrites[Idx].Name;
1006   }
1007   for (unsigned Idx : OperReads) {
1008     Name += '_';
1009     Name += SchedReads[Idx].Name;
1010   }
1011   return Name;
1012 }
1013 
createSchedClassName(const RecVec & InstDefs)1014 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
1015 
1016   std::string Name;
1017   ListSeparator LS("_");
1018   for (const Record *InstDef : InstDefs) {
1019     Name += LS;
1020     Name += InstDef->getName();
1021   }
1022   return Name;
1023 }
1024 
1025 /// Add an inferred sched class from an itinerary class and per-operand list of
1026 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1027 /// processors that may utilize this class.
addSchedClass(Record * ItinClassDef,ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads,ArrayRef<unsigned> ProcIndices)1028 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1029                                            ArrayRef<unsigned> OperWrites,
1030                                            ArrayRef<unsigned> OperReads,
1031                                            ArrayRef<unsigned> ProcIndices) {
1032   assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1033 
1034   auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1035                      return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1036                    };
1037 
1038   auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1039   unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1040   if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1041     IdxVec PI;
1042     std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1043                    SchedClasses[Idx].ProcIndices.end(),
1044                    ProcIndices.begin(), ProcIndices.end(),
1045                    std::back_inserter(PI));
1046     SchedClasses[Idx].ProcIndices = std::move(PI);
1047     return Idx;
1048   }
1049   Idx = SchedClasses.size();
1050   SchedClasses.emplace_back(Idx,
1051                             createSchedClassName(ItinClassDef, OperWrites,
1052                                                  OperReads),
1053                             ItinClassDef);
1054   CodeGenSchedClass &SC = SchedClasses.back();
1055   SC.Writes = OperWrites;
1056   SC.Reads = OperReads;
1057   SC.ProcIndices = ProcIndices;
1058 
1059   return Idx;
1060 }
1061 
1062 // Create classes for each set of opcodes that are in the same InstReadWrite
1063 // definition across all processors.
createInstRWClass(Record * InstRWDef)1064 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1065   // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1066   // intersects with an existing class via a previous InstRWDef. Instrs that do
1067   // not intersect with an existing class refer back to their former class as
1068   // determined from ItinDef or SchedRW.
1069   SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1070   // Sort Instrs into sets.
1071   const RecVec *InstDefs = Sets.expand(InstRWDef);
1072   if (InstDefs->empty())
1073     PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1074 
1075   for (Record *InstDef : *InstDefs) {
1076     InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1077     if (Pos == InstrClassMap.end())
1078       PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1079     unsigned SCIdx = Pos->second;
1080     ClassInstrs[SCIdx].push_back(InstDef);
1081   }
1082   // For each set of Instrs, create a new class if necessary, and map or remap
1083   // the Instrs to it.
1084   for (auto &Entry : ClassInstrs) {
1085     unsigned OldSCIdx = Entry.first;
1086     ArrayRef<Record*> InstDefs = Entry.second;
1087     // If the all instrs in the current class are accounted for, then leave
1088     // them mapped to their old class.
1089     if (OldSCIdx) {
1090       const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1091       if (!RWDefs.empty()) {
1092         const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1093         unsigned OrigNumInstrs =
1094           count_if(*OrigInstDefs, [&](Record *OIDef) {
1095                      return InstrClassMap[OIDef] == OldSCIdx;
1096                    });
1097         if (OrigNumInstrs == InstDefs.size()) {
1098           assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1099                  "expected a generic SchedClass");
1100           Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1101           // Make sure we didn't already have a InstRW containing this
1102           // instruction on this model.
1103           for (Record *RWD : RWDefs) {
1104             if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1105                 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1106               assert(!InstDefs.empty()); // Checked at function start.
1107               PrintError(
1108                   InstRWDef->getLoc(),
1109                   "Overlapping InstRW definition for \"" +
1110                       InstDefs.front()->getName() +
1111                       "\" also matches previous \"" +
1112                       RWD->getValue("Instrs")->getValue()->getAsString() +
1113                       "\".");
1114               PrintFatalNote(RWD->getLoc(), "Previous match was here.");
1115             }
1116           }
1117           LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1118                             << SchedClasses[OldSCIdx].Name << " on "
1119                             << RWModelDef->getName() << "\n");
1120           SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1121           continue;
1122         }
1123       }
1124     }
1125     unsigned SCIdx = SchedClasses.size();
1126     SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1127     CodeGenSchedClass &SC = SchedClasses.back();
1128     LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1129                       << InstRWDef->getValueAsDef("SchedModel")->getName()
1130                       << "\n");
1131 
1132     // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1133     SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1134     SC.Writes = SchedClasses[OldSCIdx].Writes;
1135     SC.Reads = SchedClasses[OldSCIdx].Reads;
1136     SC.ProcIndices.push_back(0);
1137     // If we had an old class, copy it's InstRWs to this new class.
1138     if (OldSCIdx) {
1139       Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1140       for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1141         if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1142           assert(!InstDefs.empty()); // Checked at function start.
1143           PrintError(
1144               InstRWDef->getLoc(),
1145               "Overlapping InstRW definition for \"" +
1146                   InstDefs.front()->getName() + "\" also matches previous \"" +
1147                   OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1148                   "\".");
1149           PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
1150         }
1151         assert(OldRWDef != InstRWDef &&
1152                "SchedClass has duplicate InstRW def");
1153         SC.InstRWs.push_back(OldRWDef);
1154       }
1155     }
1156     // Map each Instr to this new class.
1157     for (Record *InstDef : InstDefs)
1158       InstrClassMap[InstDef] = SCIdx;
1159     SC.InstRWs.push_back(InstRWDef);
1160   }
1161 }
1162 
1163 // True if collectProcItins found anything.
hasItineraries() const1164 bool CodeGenSchedModels::hasItineraries() const {
1165   for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1166     if (PM.hasItineraries())
1167       return true;
1168   return false;
1169 }
1170 
1171 // Gather the processor itineraries.
collectProcItins()1172 void CodeGenSchedModels::collectProcItins() {
1173   LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1174   for (CodeGenProcModel &ProcModel : ProcModels) {
1175     if (!ProcModel.hasItineraries())
1176       continue;
1177 
1178     RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1179     assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1180 
1181     // Populate ItinDefList with Itinerary records.
1182     ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1183 
1184     // Insert each itinerary data record in the correct position within
1185     // the processor model's ItinDefList.
1186     for (Record *ItinData : ItinRecords) {
1187       const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1188       bool FoundClass = false;
1189 
1190       for (const CodeGenSchedClass &SC :
1191            make_range(schedClassBegin(), schedClassEnd())) {
1192         // Multiple SchedClasses may share an itinerary. Update all of them.
1193         if (SC.ItinClassDef == ItinDef) {
1194           ProcModel.ItinDefList[SC.Index] = ItinData;
1195           FoundClass = true;
1196         }
1197       }
1198       if (!FoundClass) {
1199         LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1200                           << " missing class for itinerary "
1201                           << ItinDef->getName() << '\n');
1202       }
1203     }
1204     // Check for missing itinerary entries.
1205     assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1206     LLVM_DEBUG(
1207         for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1208           if (!ProcModel.ItinDefList[i])
1209             dbgs() << ProcModel.ItinsDef->getName()
1210                    << " missing itinerary for class " << SchedClasses[i].Name
1211                    << '\n';
1212         });
1213   }
1214 }
1215 
1216 // Gather the read/write types for each itinerary class.
collectProcItinRW()1217 void CodeGenSchedModels::collectProcItinRW() {
1218   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1219   llvm::sort(ItinRWDefs, LessRecord());
1220   for (Record *RWDef  : ItinRWDefs) {
1221     if (!RWDef->getValueInit("SchedModel")->isComplete())
1222       PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1223     Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1224     ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1225     if (I == ProcModelMap.end()) {
1226       PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1227                     + ModelDef->getName());
1228     }
1229     ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1230   }
1231 }
1232 
1233 // Gather the unsupported features for processor models.
collectProcUnsupportedFeatures()1234 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1235   for (CodeGenProcModel &ProcModel : ProcModels)
1236     append_range(
1237         ProcModel.UnsupportedFeaturesDefs,
1238         ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
1239 }
1240 
1241 /// Infer new classes from existing classes. In the process, this may create new
1242 /// SchedWrites from sequences of existing SchedWrites.
inferSchedClasses()1243 void CodeGenSchedModels::inferSchedClasses() {
1244   LLVM_DEBUG(
1245       dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1246   LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1247 
1248   // Visit all existing classes and newly created classes.
1249   for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1250     assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1251 
1252     if (SchedClasses[Idx].ItinClassDef)
1253       inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1254     if (!SchedClasses[Idx].InstRWs.empty())
1255       inferFromInstRWs(Idx);
1256     if (!SchedClasses[Idx].Writes.empty()) {
1257       inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1258                   Idx, SchedClasses[Idx].ProcIndices);
1259     }
1260     assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1261            "too many SchedVariants");
1262   }
1263 }
1264 
1265 /// Infer classes from per-processor itinerary resources.
inferFromItinClass(Record * ItinClassDef,unsigned FromClassIdx)1266 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1267                                             unsigned FromClassIdx) {
1268   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1269     const CodeGenProcModel &PM = ProcModels[PIdx];
1270     // For all ItinRW entries.
1271     bool HasMatch = false;
1272     for (const Record *Rec : PM.ItinRWDefs) {
1273       RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1274       if (!llvm::is_contained(Matched, ItinClassDef))
1275         continue;
1276       if (HasMatch)
1277         PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1278                       + ItinClassDef->getName()
1279                       + " in ItinResources for " + PM.ModelName);
1280       HasMatch = true;
1281       IdxVec Writes, Reads;
1282       findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1283       inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1284     }
1285   }
1286 }
1287 
1288 /// Infer classes from per-processor InstReadWrite definitions.
inferFromInstRWs(unsigned SCIdx)1289 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1290   for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1291     assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1292     Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1293     const RecVec *InstDefs = Sets.expand(Rec);
1294     RecIter II = InstDefs->begin(), IE = InstDefs->end();
1295     for (; II != IE; ++II) {
1296       if (InstrClassMap[*II] == SCIdx)
1297         break;
1298     }
1299     // If this class no longer has any instructions mapped to it, it has become
1300     // irrelevant.
1301     if (II == IE)
1302       continue;
1303     IdxVec Writes, Reads;
1304     findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1305     unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1306     inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1307     SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
1308   }
1309 }
1310 
1311 namespace {
1312 
1313 // Helper for substituteVariantOperand.
1314 struct TransVariant {
1315   Record *VarOrSeqDef;  // Variant or sequence.
1316   unsigned RWIdx;       // Index of this variant or sequence's matched type.
1317   unsigned ProcIdx;     // Processor model index or zero for any.
1318   unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1319 
TransVariant__anon6691fca50b11::TransVariant1320   TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1321     VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1322 };
1323 
1324 // Associate a predicate with the SchedReadWrite that it guards.
1325 // RWIdx is the index of the read/write variant.
1326 struct PredCheck {
1327   bool IsRead;
1328   unsigned RWIdx;
1329   Record *Predicate;
1330 
PredCheck__anon6691fca50b11::PredCheck1331   PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1332 };
1333 
1334 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1335 struct PredTransition {
1336   // A predicate term is a conjunction of PredChecks.
1337   SmallVector<PredCheck, 4> PredTerm;
1338   SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1339   SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1340   unsigned ProcIndex = 0;
1341 
1342   PredTransition() = default;
PredTransition__anon6691fca50b11::PredTransition1343   PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
1344     PredTerm.assign(PT.begin(), PT.end());
1345     ProcIndex = ProcId;
1346   }
1347 };
1348 
1349 // Encapsulate a set of partially constructed transitions.
1350 // The results are built by repeated calls to substituteVariants.
1351 class PredTransitions {
1352   CodeGenSchedModels &SchedModels;
1353 
1354 public:
1355   std::vector<PredTransition> TransVec;
1356 
PredTransitions(CodeGenSchedModels & sm)1357   PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1358 
1359   bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1360                                 bool IsRead, unsigned StartIdx);
1361 
1362   bool substituteVariants(const PredTransition &Trans);
1363 
1364 #ifndef NDEBUG
1365   void dump() const;
1366 #endif
1367 
1368 private:
1369   bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
1370                          ArrayRef<PredCheck> Term);
1371   void getIntersectingVariants(
1372     const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1373     std::vector<TransVariant> &IntersectingVariants);
1374   void pushVariant(const TransVariant &VInfo, bool IsRead);
1375 };
1376 
1377 } // end anonymous namespace
1378 
1379 // Return true if this predicate is mutually exclusive with a PredTerm. This
1380 // degenerates into checking if the predicate is mutually exclusive with any
1381 // predicate in the Term's conjunction.
1382 //
1383 // All predicates associated with a given SchedRW are considered mutually
1384 // exclusive. This should work even if the conditions expressed by the
1385 // predicates are not exclusive because the predicates for a given SchedWrite
1386 // are always checked in the order they are defined in the .td file. Later
1387 // conditions implicitly negate any prior condition.
mutuallyExclusive(Record * PredDef,ArrayRef<Record * > Preds,ArrayRef<PredCheck> Term)1388 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1389                                         ArrayRef<Record *> Preds,
1390                                         ArrayRef<PredCheck> Term) {
1391   for (const PredCheck &PC: Term) {
1392     if (PC.Predicate == PredDef)
1393       return false;
1394 
1395     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1396     assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1397     RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1398     if (any_of(Variants, [PredDef](const Record *R) {
1399           return R->getValueAsDef("Predicate") == PredDef;
1400         })) {
1401       // To check if PredDef is mutually exclusive with PC we also need to
1402       // check that PC.Predicate is exclusive with all predicates from variant
1403       // we're expanding. Consider following RW sequence with two variants
1404       // (1 & 2), where A, B and C are predicates from corresponding SchedVars:
1405       //
1406       // 1:A/B - 2:C/B
1407       //
1408       // Here C is not mutually exclusive with variant (1), because A doesn't
1409       // exist in variant (2). This means we have possible transitions from A
1410       // to C and from A to B, and fully expanded sequence would look like:
1411       //
1412       // if (A & C) return ...;
1413       // if (A & B) return ...;
1414       // if (B) return ...;
1415       //
1416       // Now let's consider another sequence:
1417       //
1418       // 1:A/B - 2:A/B
1419       //
1420       // Here A in variant (2) is mutually exclusive with variant (1), because
1421       // A also exists in (2). This means A->B transition is impossible and
1422       // expanded sequence would look like:
1423       //
1424       // if (A) return ...;
1425       // if (B) return ...;
1426       if (!llvm::is_contained(Preds, PC.Predicate))
1427         continue;
1428       return true;
1429     }
1430   }
1431   return false;
1432 }
1433 
getAllPredicates(ArrayRef<TransVariant> Variants,unsigned ProcId)1434 static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
1435                                               unsigned ProcId) {
1436   std::vector<Record *> Preds;
1437   for (auto &Variant : Variants) {
1438     if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
1439       continue;
1440     Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
1441   }
1442   return Preds;
1443 }
1444 
1445 // Populate IntersectingVariants with any variants or aliased sequences of the
1446 // given SchedRW whose processor indices and predicates are not mutually
1447 // exclusive with the given transition.
getIntersectingVariants(const CodeGenSchedRW & SchedRW,unsigned TransIdx,std::vector<TransVariant> & IntersectingVariants)1448 void PredTransitions::getIntersectingVariants(
1449   const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1450   std::vector<TransVariant> &IntersectingVariants) {
1451 
1452   bool GenericRW = false;
1453 
1454   std::vector<TransVariant> Variants;
1455   if (SchedRW.HasVariants) {
1456     unsigned VarProcIdx = 0;
1457     if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1458       Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1459       VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1460     }
1461     if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
1462       // Push each variant. Assign TransVecIdx later.
1463       const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1464       for (Record *VarDef : VarDefs)
1465         Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1466       if (VarProcIdx == 0)
1467         GenericRW = true;
1468     }
1469   }
1470   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1471        AI != AE; ++AI) {
1472     // If either the SchedAlias itself or the SchedReadWrite that it aliases
1473     // to is defined within a processor model, constrain all variants to
1474     // that processor.
1475     unsigned AliasProcIdx = 0;
1476     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1477       Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1478       AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1479     }
1480     if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
1481       continue;
1482     if (!Variants.empty()) {
1483       const CodeGenProcModel &PM =
1484           *(SchedModels.procModelBegin() + AliasProcIdx);
1485       PrintFatalError((*AI)->getLoc(),
1486                       "Multiple variants defined for processor " +
1487                           PM.ModelName +
1488                           " Ensure only one SchedAlias exists per RW.");
1489     }
1490 
1491     const CodeGenSchedRW &AliasRW =
1492       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1493 
1494     if (AliasRW.HasVariants) {
1495       const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1496       for (Record *VD : VarDefs)
1497         Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1498     }
1499     if (AliasRW.IsSequence)
1500       Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1501     if (AliasProcIdx == 0)
1502       GenericRW = true;
1503   }
1504   std::vector<Record *> AllPreds =
1505       getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
1506   for (TransVariant &Variant : Variants) {
1507     // Don't expand variants if the processor models don't intersect.
1508     // A zero processor index means any processor.
1509     if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1510       Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1511       if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
1512         continue;
1513     }
1514 
1515     if (IntersectingVariants.empty()) {
1516       // The first variant builds on the existing transition.
1517       Variant.TransVecIdx = TransIdx;
1518       IntersectingVariants.push_back(Variant);
1519     }
1520     else {
1521       // Push another copy of the current transition for more variants.
1522       Variant.TransVecIdx = TransVec.size();
1523       IntersectingVariants.push_back(Variant);
1524       TransVec.push_back(TransVec[TransIdx]);
1525     }
1526   }
1527   if (GenericRW && IntersectingVariants.empty()) {
1528     PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1529                     "a matching predicate on any processor");
1530   }
1531 }
1532 
1533 // Push the Reads/Writes selected by this variant onto the PredTransition
1534 // specified by VInfo.
1535 void PredTransitions::
pushVariant(const TransVariant & VInfo,bool IsRead)1536 pushVariant(const TransVariant &VInfo, bool IsRead) {
1537   PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1538 
1539   // If this operand transition is reached through a processor-specific alias,
1540   // then the whole transition is specific to this processor.
1541   IdxVec SelectedRWs;
1542   if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1543     Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1544     Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1545     RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1546     SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1547   }
1548   else {
1549     assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1550            "variant must be a SchedVariant or aliased WriteSequence");
1551     SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1552   }
1553 
1554   const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1555 
1556   SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1557     ? Trans.ReadSequences : Trans.WriteSequences;
1558   if (SchedRW.IsVariadic) {
1559     unsigned OperIdx = RWSequences.size()-1;
1560     // Make N-1 copies of this transition's last sequence.
1561     RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
1562     RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1563                        RWSequences[OperIdx]);
1564     // Push each of the N elements of the SelectedRWs onto a copy of the last
1565     // sequence (split the current operand into N operands).
1566     // Note that write sequences should be expanded within this loop--the entire
1567     // sequence belongs to a single operand.
1568     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1569          RWI != RWE; ++RWI, ++OperIdx) {
1570       IdxVec ExpandedRWs;
1571       if (IsRead)
1572         ExpandedRWs.push_back(*RWI);
1573       else
1574         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1575       llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
1576     }
1577     assert(OperIdx == RWSequences.size() && "missed a sequence");
1578   }
1579   else {
1580     // Push this transition's expanded sequence onto this transition's last
1581     // sequence (add to the current operand's sequence).
1582     SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1583     IdxVec ExpandedRWs;
1584     for (unsigned int SelectedRW : SelectedRWs) {
1585       if (IsRead)
1586         ExpandedRWs.push_back(SelectedRW);
1587       else
1588         SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
1589     }
1590     llvm::append_range(Seq, ExpandedRWs);
1591   }
1592 }
1593 
1594 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1595 // operand. StartIdx is an index into TransVec where partial results
1596 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1597 // of TransVec.
substituteVariantOperand(const SmallVectorImpl<unsigned> & RWSeq,bool IsRead,unsigned StartIdx)1598 bool PredTransitions::substituteVariantOperand(
1599     const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1600   bool Subst = false;
1601   // Visit each original RW within the current sequence.
1602   for (unsigned int RWI : RWSeq) {
1603     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
1604     // Push this RW on all partial PredTransitions or distribute variants.
1605     // New PredTransitions may be pushed within this loop which should not be
1606     // revisited (TransEnd must be loop invariant).
1607     for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1608          TransIdx != TransEnd; ++TransIdx) {
1609       // Distribute this partial PredTransition across intersecting variants.
1610       // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1611       std::vector<TransVariant> IntersectingVariants;
1612       getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1613       // Now expand each variant on top of its copy of the transition.
1614       for (const TransVariant &IV : IntersectingVariants)
1615         pushVariant(IV, IsRead);
1616       if (IntersectingVariants.empty()) {
1617         if (IsRead)
1618           TransVec[TransIdx].ReadSequences.back().push_back(RWI);
1619         else
1620           TransVec[TransIdx].WriteSequences.back().push_back(RWI);
1621         continue;
1622       } else {
1623         Subst = true;
1624       }
1625     }
1626   }
1627   return Subst;
1628 }
1629 
1630 // For each variant of a Read/Write in Trans, substitute the sequence of
1631 // Read/Writes guarded by the variant. This is exponential in the number of
1632 // variant Read/Writes, but in practice detection of mutually exclusive
1633 // predicates should result in linear growth in the total number variants.
1634 //
1635 // This is one step in a breadth-first search of nested variants.
substituteVariants(const PredTransition & Trans)1636 bool PredTransitions::substituteVariants(const PredTransition &Trans) {
1637   // Build up a set of partial results starting at the back of
1638   // PredTransitions. Remember the first new transition.
1639   unsigned StartIdx = TransVec.size();
1640   bool Subst = false;
1641   assert(Trans.ProcIndex != 0);
1642   TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
1643 
1644   // Visit each original write sequence.
1645   for (const auto &WriteSequence : Trans.WriteSequences) {
1646     // Push a new (empty) write sequence onto all partial Transitions.
1647     for (std::vector<PredTransition>::iterator I =
1648            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1649       I->WriteSequences.emplace_back();
1650     }
1651     Subst |=
1652         substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
1653   }
1654   // Visit each original read sequence.
1655   for (const auto &ReadSequence : Trans.ReadSequences) {
1656     // Push a new (empty) read sequence onto all partial Transitions.
1657     for (std::vector<PredTransition>::iterator I =
1658            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1659       I->ReadSequences.emplace_back();
1660     }
1661     Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
1662   }
1663   return Subst;
1664 }
1665 
addSequences(CodeGenSchedModels & SchedModels,const SmallVectorImpl<SmallVector<unsigned,4>> & Seqs,IdxVec & Result,bool IsRead)1666 static void addSequences(CodeGenSchedModels &SchedModels,
1667                          const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
1668                          IdxVec &Result, bool IsRead) {
1669   for (const auto &S : Seqs)
1670     if (!S.empty())
1671       Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
1672 }
1673 
1674 #ifndef NDEBUG
dumpRecVec(const RecVec & RV)1675 static void dumpRecVec(const RecVec &RV) {
1676   for (const Record *R : RV)
1677     dbgs() << R->getName() << ", ";
1678 }
1679 #endif
1680 
dumpTransition(const CodeGenSchedModels & SchedModels,const CodeGenSchedClass & FromSC,const CodeGenSchedTransition & SCTrans,const RecVec & Preds)1681 static void dumpTransition(const CodeGenSchedModels &SchedModels,
1682                            const CodeGenSchedClass &FromSC,
1683                            const CodeGenSchedTransition &SCTrans,
1684                            const RecVec &Preds) {
1685   LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
1686                     << FromSC.Index << ") to "
1687                     << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
1688                     << SCTrans.ToClassIdx << ") on pred term: (";
1689              dumpRecVec(Preds);
1690              dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
1691 }
1692 // Create a new SchedClass for each variant found by inferFromRW. Pass
inferFromTransitions(ArrayRef<PredTransition> LastTransitions,unsigned FromClassIdx,CodeGenSchedModels & SchedModels)1693 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1694                                  unsigned FromClassIdx,
1695                                  CodeGenSchedModels &SchedModels) {
1696   // For each PredTransition, create a new CodeGenSchedTransition, which usually
1697   // requires creating a new SchedClass.
1698   for (const auto &LastTransition : LastTransitions) {
1699     // Variant expansion (substituteVariants) may create unconditional
1700     // transitions. We don't need to build sched classes for them.
1701     if (LastTransition.PredTerm.empty())
1702       continue;
1703     IdxVec OperWritesVariant, OperReadsVariant;
1704     addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
1705                  false);
1706     addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
1707                  true);
1708     CodeGenSchedTransition SCTrans;
1709 
1710     // Transition should not contain processor indices already assigned to
1711     // InstRWs in this scheduling class.
1712     const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
1713     if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
1714       continue;
1715     SCTrans.ProcIndex = LastTransition.ProcIndex;
1716     SCTrans.ToClassIdx =
1717         SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1718                                   OperReadsVariant, LastTransition.ProcIndex);
1719 
1720     // The final PredTerm is unique set of predicates guarding the transition.
1721     RecVec Preds;
1722     transform(LastTransition.PredTerm, std::back_inserter(Preds),
1723               [](const PredCheck &P) { return P.Predicate; });
1724     Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1725     dumpTransition(SchedModels, FromSC, SCTrans, Preds);
1726     SCTrans.PredTerm = std::move(Preds);
1727     SchedModels.getSchedClass(FromClassIdx)
1728         .Transitions.push_back(std::move(SCTrans));
1729   }
1730 }
1731 
getAllProcIndices() const1732 std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
1733   std::vector<unsigned> ProcIdVec;
1734   for (const auto &PM : ProcModelMap)
1735     if (PM.second != 0)
1736       ProcIdVec.push_back(PM.second);
1737   // The order of the keys (Record pointers) of ProcModelMap are not stable.
1738   // Sort to stabalize the values.
1739   llvm::sort(ProcIdVec);
1740   return ProcIdVec;
1741 }
1742 
1743 static std::vector<PredTransition>
makePerProcessorTransitions(const PredTransition & Trans,ArrayRef<unsigned> ProcIndices)1744 makePerProcessorTransitions(const PredTransition &Trans,
1745                             ArrayRef<unsigned> ProcIndices) {
1746   std::vector<PredTransition> PerCpuTransVec;
1747   for (unsigned ProcId : ProcIndices) {
1748     assert(ProcId != 0);
1749     PerCpuTransVec.push_back(Trans);
1750     PerCpuTransVec.back().ProcIndex = ProcId;
1751   }
1752   return PerCpuTransVec;
1753 }
1754 
1755 // Create new SchedClasses for the given ReadWrite list. If any of the
1756 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1757 // of the ReadWrite list, following Aliases if necessary.
inferFromRW(ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads,unsigned FromClassIdx,ArrayRef<unsigned> ProcIndices)1758 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1759                                      ArrayRef<unsigned> OperReads,
1760                                      unsigned FromClassIdx,
1761                                      ArrayRef<unsigned> ProcIndices) {
1762   LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1763              dbgs() << ") ");
1764   // Create a seed transition with an empty PredTerm and the expanded sequences
1765   // of SchedWrites for the current SchedClass.
1766   std::vector<PredTransition> LastTransitions;
1767   LastTransitions.emplace_back();
1768 
1769   for (unsigned WriteIdx : OperWrites) {
1770     IdxVec WriteSeq;
1771     expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1772     LastTransitions[0].WriteSequences.emplace_back();
1773     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1774     Seq.append(WriteSeq.begin(), WriteSeq.end());
1775     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1776   }
1777   LLVM_DEBUG(dbgs() << " Reads: ");
1778   for (unsigned ReadIdx : OperReads) {
1779     IdxVec ReadSeq;
1780     expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1781     LastTransitions[0].ReadSequences.emplace_back();
1782     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1783     Seq.append(ReadSeq.begin(), ReadSeq.end());
1784     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1785   }
1786   LLVM_DEBUG(dbgs() << '\n');
1787 
1788   LastTransitions = makePerProcessorTransitions(
1789       LastTransitions[0], llvm::is_contained(ProcIndices, 0)
1790                               ? ArrayRef<unsigned>(getAllProcIndices())
1791                               : ProcIndices);
1792   // Collect all PredTransitions for individual operands.
1793   // Iterate until no variant writes remain.
1794   bool SubstitutedAny;
1795   do {
1796     SubstitutedAny = false;
1797     PredTransitions Transitions(*this);
1798     for (const PredTransition &Trans : LastTransitions)
1799       SubstitutedAny |= Transitions.substituteVariants(Trans);
1800     LLVM_DEBUG(Transitions.dump());
1801     LastTransitions.swap(Transitions.TransVec);
1802   } while (SubstitutedAny);
1803 
1804   // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1805   // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1806   inferFromTransitions(LastTransitions, FromClassIdx, *this);
1807 }
1808 
1809 // Check if any processor resource group contains all resource records in
1810 // SubUnits.
hasSuperGroup(RecVec & SubUnits,CodeGenProcModel & PM)1811 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1812   for (Record *ProcResourceDef : PM.ProcResourceDefs) {
1813     if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
1814       continue;
1815     RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
1816     RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1817     for ( ; RI != RE; ++RI) {
1818       if (!is_contained(SuperUnits, *RI)) {
1819         break;
1820       }
1821     }
1822     if (RI == RE)
1823       return true;
1824   }
1825   return false;
1826 }
1827 
1828 // Verify that overlapping groups have a common supergroup.
verifyProcResourceGroups(CodeGenProcModel & PM)1829 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1830   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1831     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1832       continue;
1833     RecVec CheckUnits =
1834       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1835     for (unsigned j = i+1; j < e; ++j) {
1836       if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1837         continue;
1838       RecVec OtherUnits =
1839         PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1840       if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1841                              OtherUnits.begin(), OtherUnits.end())
1842           != CheckUnits.end()) {
1843         // CheckUnits and OtherUnits overlap
1844         llvm::append_range(OtherUnits, CheckUnits);
1845         if (!hasSuperGroup(OtherUnits, PM)) {
1846           PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1847                           "proc resource group overlaps with "
1848                           + PM.ProcResourceDefs[j]->getName()
1849                           + " but no supergroup contains both.");
1850         }
1851       }
1852     }
1853   }
1854 }
1855 
1856 // Collect all the RegisterFile definitions available in this target.
collectRegisterFiles()1857 void CodeGenSchedModels::collectRegisterFiles() {
1858   RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1859 
1860   // RegisterFiles is the vector of CodeGenRegisterFile.
1861   for (Record *RF : RegisterFileDefs) {
1862     // For each register file definition, construct a CodeGenRegisterFile object
1863     // and add it to the appropriate scheduling model.
1864     CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1865     PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1866     CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1867     CGRF.MaxMovesEliminatedPerCycle =
1868         RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1869     CGRF.AllowZeroMoveEliminationOnly =
1870         RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1871 
1872     // Now set the number of physical registers as well as the cost of registers
1873     // in each register class.
1874     CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1875     if (!CGRF.NumPhysRegs) {
1876       PrintFatalError(RF->getLoc(),
1877                       "Invalid RegisterFile with zero physical registers");
1878     }
1879 
1880     RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1881     std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1882     ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1883     for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1884       int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1885 
1886       bool AllowMoveElim = false;
1887       if (MoveElimInfo->size() > I) {
1888         BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1889         AllowMoveElim = Val->getValue();
1890       }
1891 
1892       CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1893     }
1894   }
1895 }
1896 
1897 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
collectProcResources()1898 void CodeGenSchedModels::collectProcResources() {
1899   ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1900   ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1901 
1902   // Add any subtarget-specific SchedReadWrites that are directly associated
1903   // with processor resources. Refer to the parent SchedClass's ProcIndices to
1904   // determine which processors they apply to.
1905   for (const CodeGenSchedClass &SC :
1906        make_range(schedClassBegin(), schedClassEnd())) {
1907     if (SC.ItinClassDef) {
1908       collectItinProcResources(SC.ItinClassDef);
1909       continue;
1910     }
1911 
1912     // This class may have a default ReadWrite list which can be overriden by
1913     // InstRW definitions.
1914     for (Record *RW : SC.InstRWs) {
1915       Record *RWModelDef = RW->getValueAsDef("SchedModel");
1916       unsigned PIdx = getProcModel(RWModelDef).Index;
1917       IdxVec Writes, Reads;
1918       findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1919       collectRWResources(Writes, Reads, PIdx);
1920     }
1921 
1922     collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1923   }
1924   // Add resources separately defined by each subtarget.
1925   RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1926   for (Record *WR : WRDefs) {
1927     Record *ModelDef = WR->getValueAsDef("SchedModel");
1928     addWriteRes(WR, getProcModel(ModelDef).Index);
1929   }
1930   RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1931   for (Record *SWR : SWRDefs) {
1932     Record *ModelDef = SWR->getValueAsDef("SchedModel");
1933     addWriteRes(SWR, getProcModel(ModelDef).Index);
1934   }
1935   RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1936   for (Record *RA : RADefs) {
1937     Record *ModelDef = RA->getValueAsDef("SchedModel");
1938     addReadAdvance(RA, getProcModel(ModelDef).Index);
1939   }
1940   RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1941   for (Record *SRA : SRADefs) {
1942     if (SRA->getValueInit("SchedModel")->isComplete()) {
1943       Record *ModelDef = SRA->getValueAsDef("SchedModel");
1944       addReadAdvance(SRA, getProcModel(ModelDef).Index);
1945     }
1946   }
1947   // Add ProcResGroups that are defined within this processor model, which may
1948   // not be directly referenced but may directly specify a buffer size.
1949   RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1950   for (Record *PRG : ProcResGroups) {
1951     if (!PRG->getValueInit("SchedModel")->isComplete())
1952       continue;
1953     CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1954     if (!is_contained(PM.ProcResourceDefs, PRG))
1955       PM.ProcResourceDefs.push_back(PRG);
1956   }
1957   // Add ProcResourceUnits unconditionally.
1958   for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1959     if (!PRU->getValueInit("SchedModel")->isComplete())
1960       continue;
1961     CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1962     if (!is_contained(PM.ProcResourceDefs, PRU))
1963       PM.ProcResourceDefs.push_back(PRU);
1964   }
1965   // Finalize each ProcModel by sorting the record arrays.
1966   for (CodeGenProcModel &PM : ProcModels) {
1967     llvm::sort(PM.WriteResDefs, LessRecord());
1968     llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1969     llvm::sort(PM.ProcResourceDefs, LessRecord());
1970     LLVM_DEBUG(
1971         PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
1972                                                     : PM.WriteResDefs) {
1973           if (WriteResDef->isSubClassOf("WriteRes"))
1974             dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
1975           else
1976             dbgs() << WriteResDef->getName() << " ";
1977         } dbgs() << "\nReadAdvanceDefs: ";
1978         for (Record *ReadAdvanceDef
1979              : PM.ReadAdvanceDefs) {
1980           if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
1981             dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
1982                    << " ";
1983           else
1984             dbgs() << ReadAdvanceDef->getName() << " ";
1985         } dbgs()
1986         << "\nProcResourceDefs: ";
1987         for (Record *ProcResourceDef
1988              : PM.ProcResourceDefs) {
1989           dbgs() << ProcResourceDef->getName() << " ";
1990         } dbgs()
1991         << '\n');
1992     verifyProcResourceGroups(PM);
1993   }
1994 
1995   ProcResourceDefs.clear();
1996   ProcResGroups.clear();
1997 }
1998 
checkCompleteness()1999 void CodeGenSchedModels::checkCompleteness() {
2000   bool Complete = true;
2001   for (const CodeGenProcModel &ProcModel : procModels()) {
2002     const bool HasItineraries = ProcModel.hasItineraries();
2003     if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
2004       continue;
2005     for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
2006       if (Inst->hasNoSchedulingInfo)
2007         continue;
2008       if (ProcModel.isUnsupported(*Inst))
2009         continue;
2010       unsigned SCIdx = getSchedClassIdx(*Inst);
2011       if (!SCIdx) {
2012         if (Inst->TheDef->isValueUnset("SchedRW")) {
2013           PrintError(Inst->TheDef->getLoc(),
2014                      "No schedule information for instruction '" +
2015                          Inst->TheDef->getName() + "' in SchedMachineModel '" +
2016                      ProcModel.ModelDef->getName() + "'");
2017           Complete = false;
2018         }
2019         continue;
2020       }
2021 
2022       const CodeGenSchedClass &SC = getSchedClass(SCIdx);
2023       if (!SC.Writes.empty())
2024         continue;
2025       if (HasItineraries && SC.ItinClassDef != nullptr &&
2026           SC.ItinClassDef->getName() != "NoItinerary")
2027         continue;
2028 
2029       const RecVec &InstRWs = SC.InstRWs;
2030       auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
2031         return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
2032       });
2033       if (I == InstRWs.end()) {
2034         PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
2035                                                "' lacks information for '" +
2036                                                Inst->TheDef->getName() + "'");
2037         Complete = false;
2038       }
2039     }
2040   }
2041   if (!Complete) {
2042     errs() << "\n\nIncomplete schedule models found.\n"
2043       << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
2044       << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
2045       << "- Instructions should usually have Sched<[...]> as a superclass, "
2046          "you may temporarily use an empty list.\n"
2047       << "- Instructions related to unsupported features can be excluded with "
2048          "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
2049          "processor model.\n\n";
2050     PrintFatalError("Incomplete schedule model");
2051   }
2052 }
2053 
2054 // Collect itinerary class resources for each processor.
collectItinProcResources(Record * ItinClassDef)2055 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
2056   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
2057     const CodeGenProcModel &PM = ProcModels[PIdx];
2058     // For all ItinRW entries.
2059     bool HasMatch = false;
2060     for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
2061          II != IE; ++II) {
2062       RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
2063       if (!llvm::is_contained(Matched, ItinClassDef))
2064         continue;
2065       if (HasMatch)
2066         PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
2067                         + ItinClassDef->getName()
2068                         + " in ItinResources for " + PM.ModelName);
2069       HasMatch = true;
2070       IdxVec Writes, Reads;
2071       findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2072       collectRWResources(Writes, Reads, PIdx);
2073     }
2074   }
2075 }
2076 
collectRWResources(unsigned RWIdx,bool IsRead,ArrayRef<unsigned> ProcIndices)2077 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2078                                             ArrayRef<unsigned> ProcIndices) {
2079   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2080   if (SchedRW.TheDef) {
2081     if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2082       for (unsigned Idx : ProcIndices)
2083         addWriteRes(SchedRW.TheDef, Idx);
2084     }
2085     else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2086       for (unsigned Idx : ProcIndices)
2087         addReadAdvance(SchedRW.TheDef, Idx);
2088     }
2089   }
2090   for (auto *Alias : SchedRW.Aliases) {
2091     IdxVec AliasProcIndices;
2092     if (Alias->getValueInit("SchedModel")->isComplete()) {
2093       AliasProcIndices.push_back(
2094           getProcModel(Alias->getValueAsDef("SchedModel")).Index);
2095     } else
2096       AliasProcIndices = ProcIndices;
2097     const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
2098     assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2099 
2100     IdxVec ExpandedRWs;
2101     expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2102     for (unsigned int ExpandedRW : ExpandedRWs) {
2103       collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
2104     }
2105   }
2106 }
2107 
2108 // Collect resources for a set of read/write types and processor indices.
collectRWResources(ArrayRef<unsigned> Writes,ArrayRef<unsigned> Reads,ArrayRef<unsigned> ProcIndices)2109 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2110                                             ArrayRef<unsigned> Reads,
2111                                             ArrayRef<unsigned> ProcIndices) {
2112   for (unsigned Idx : Writes)
2113     collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2114 
2115   for (unsigned Idx : Reads)
2116     collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2117 }
2118 
2119 // Find the processor's resource units for this kind of resource.
findProcResUnits(Record * ProcResKind,const CodeGenProcModel & PM,ArrayRef<SMLoc> Loc) const2120 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2121                                              const CodeGenProcModel &PM,
2122                                              ArrayRef<SMLoc> Loc) const {
2123   if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2124     return ProcResKind;
2125 
2126   Record *ProcUnitDef = nullptr;
2127   assert(!ProcResourceDefs.empty());
2128   assert(!ProcResGroups.empty());
2129 
2130   for (Record *ProcResDef : ProcResourceDefs) {
2131     if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2132         && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2133       if (ProcUnitDef) {
2134         PrintFatalError(Loc,
2135                         "Multiple ProcessorResourceUnits associated with "
2136                         + ProcResKind->getName());
2137       }
2138       ProcUnitDef = ProcResDef;
2139     }
2140   }
2141   for (Record *ProcResGroup : ProcResGroups) {
2142     if (ProcResGroup == ProcResKind
2143         && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2144       if (ProcUnitDef) {
2145         PrintFatalError(Loc,
2146                         "Multiple ProcessorResourceUnits associated with "
2147                         + ProcResKind->getName());
2148       }
2149       ProcUnitDef = ProcResGroup;
2150     }
2151   }
2152   if (!ProcUnitDef) {
2153     PrintFatalError(Loc,
2154                     "No ProcessorResources associated with "
2155                     + ProcResKind->getName());
2156   }
2157   return ProcUnitDef;
2158 }
2159 
2160 // Iteratively add a resource and its super resources.
addProcResource(Record * ProcResKind,CodeGenProcModel & PM,ArrayRef<SMLoc> Loc)2161 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2162                                          CodeGenProcModel &PM,
2163                                          ArrayRef<SMLoc> Loc) {
2164   while (true) {
2165     Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2166 
2167     // See if this ProcResource is already associated with this processor.
2168     if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2169       return;
2170 
2171     PM.ProcResourceDefs.push_back(ProcResUnits);
2172     if (ProcResUnits->isSubClassOf("ProcResGroup"))
2173       return;
2174 
2175     if (!ProcResUnits->getValueInit("Super")->isComplete())
2176       return;
2177 
2178     ProcResKind = ProcResUnits->getValueAsDef("Super");
2179   }
2180 }
2181 
2182 // Add resources for a SchedWrite to this processor if they don't exist.
addWriteRes(Record * ProcWriteResDef,unsigned PIdx)2183 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2184   assert(PIdx && "don't add resources to an invalid Processor model");
2185 
2186   RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2187   if (is_contained(WRDefs, ProcWriteResDef))
2188     return;
2189   WRDefs.push_back(ProcWriteResDef);
2190 
2191   // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2192   RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2193   for (auto *ProcResDef : ProcResDefs) {
2194     addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc());
2195   }
2196 }
2197 
2198 // Add resources for a ReadAdvance to this processor if they don't exist.
addReadAdvance(Record * ProcReadAdvanceDef,unsigned PIdx)2199 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2200                                         unsigned PIdx) {
2201   RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2202   if (is_contained(RADefs, ProcReadAdvanceDef))
2203     return;
2204   RADefs.push_back(ProcReadAdvanceDef);
2205 }
2206 
getProcResourceIdx(Record * PRDef) const2207 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2208   RecIter PRPos = find(ProcResourceDefs, PRDef);
2209   if (PRPos == ProcResourceDefs.end())
2210     PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2211                     "the ProcResources list for " + ModelName);
2212   // Idx=0 is reserved for invalid.
2213   return 1 + (PRPos - ProcResourceDefs.begin());
2214 }
2215 
isUnsupported(const CodeGenInstruction & Inst) const2216 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2217   for (const Record *TheDef : UnsupportedFeaturesDefs) {
2218     for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2219       if (TheDef->getName() == PredDef->getName())
2220         return true;
2221     }
2222   }
2223   return false;
2224 }
2225 
2226 #ifndef NDEBUG
dump() const2227 void CodeGenProcModel::dump() const {
2228   dbgs() << Index << ": " << ModelName << " "
2229          << (ModelDef ? ModelDef->getName() : "inferred") << " "
2230          << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2231 }
2232 
dump() const2233 void CodeGenSchedRW::dump() const {
2234   dbgs() << Name << (IsVariadic ? " (V) " : " ");
2235   if (IsSequence) {
2236     dbgs() << "(";
2237     dumpIdxVec(Sequence);
2238     dbgs() << ")";
2239   }
2240 }
2241 
dump(const CodeGenSchedModels * SchedModels) const2242 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2243   dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2244          << "  Writes: ";
2245   for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2246     SchedModels->getSchedWrite(Writes[i]).dump();
2247     if (i < N-1) {
2248       dbgs() << '\n';
2249       dbgs().indent(10);
2250     }
2251   }
2252   dbgs() << "\n  Reads: ";
2253   for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2254     SchedModels->getSchedRead(Reads[i]).dump();
2255     if (i < N-1) {
2256       dbgs() << '\n';
2257       dbgs().indent(10);
2258     }
2259   }
2260   dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices);
2261   if (!Transitions.empty()) {
2262     dbgs() << "\n Transitions for Proc ";
2263     for (const CodeGenSchedTransition &Transition : Transitions) {
2264       dbgs() << Transition.ProcIndex << ", ";
2265     }
2266   }
2267   dbgs() << '\n';
2268 }
2269 
dump() const2270 void PredTransitions::dump() const {
2271   dbgs() << "Expanded Variants:\n";
2272   for (const auto &TI : TransVec) {
2273     dbgs() << "{";
2274     ListSeparator LS;
2275     for (const PredCheck &PC : TI.PredTerm)
2276       dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
2277              << PC.Predicate->getName();
2278     dbgs() << "},\n  => {";
2279     for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
2280              WSI = TI.WriteSequences.begin(),
2281              WSE = TI.WriteSequences.end();
2282          WSI != WSE; ++WSI) {
2283       dbgs() << "(";
2284       ListSeparator LS;
2285       for (unsigned N : *WSI)
2286         dbgs() << LS << SchedModels.getSchedWrite(N).Name;
2287       dbgs() << "),";
2288     }
2289     dbgs() << "}\n";
2290   }
2291 }
2292 #endif // NDEBUG
2293