1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 };
61 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
62 
63 /*
64 ** Delete all the content of a Select structure.  Deallocate the structure
65 ** itself only if bFree is true.
66 */
clearSelect(sqlite3 * db,Select * p,int bFree)67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68   while( p ){
69     Select *pPrior = p->pPrior;
70     sqlite3ExprListDelete(db, p->pEList);
71     sqlite3SrcListDelete(db, p->pSrc);
72     sqlite3ExprDelete(db, p->pWhere);
73     sqlite3ExprListDelete(db, p->pGroupBy);
74     sqlite3ExprDelete(db, p->pHaving);
75     sqlite3ExprListDelete(db, p->pOrderBy);
76     sqlite3ExprDelete(db, p->pLimit);
77     sqlite3ExprDelete(db, p->pOffset);
78     if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79     if( bFree ) sqlite3DbFreeNN(db, p);
80     p = pPrior;
81     bFree = 1;
82   }
83 }
84 
85 /*
86 ** Initialize a SelectDest structure.
87 */
sqlite3SelectDestInit(SelectDest * pDest,int eDest,int iParm)88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89   pDest->eDest = (u8)eDest;
90   pDest->iSDParm = iParm;
91   pDest->zAffSdst = 0;
92   pDest->iSdst = 0;
93   pDest->nSdst = 0;
94 }
95 
96 
97 /*
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
100 */
sqlite3SelectNew(Parse * pParse,ExprList * pEList,SrcList * pSrc,Expr * pWhere,ExprList * pGroupBy,Expr * pHaving,ExprList * pOrderBy,u32 selFlags,Expr * pLimit,Expr * pOffset)101 Select *sqlite3SelectNew(
102   Parse *pParse,        /* Parsing context */
103   ExprList *pEList,     /* which columns to include in the result */
104   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
105   Expr *pWhere,         /* the WHERE clause */
106   ExprList *pGroupBy,   /* the GROUP BY clause */
107   Expr *pHaving,        /* the HAVING clause */
108   ExprList *pOrderBy,   /* the ORDER BY clause */
109   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
110   Expr *pLimit,         /* LIMIT value.  NULL means not used */
111   Expr *pOffset         /* OFFSET value.  NULL means no offset */
112 ){
113   Select *pNew;
114   Select standin;
115   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
116   if( pNew==0 ){
117     assert( pParse->db->mallocFailed );
118     pNew = &standin;
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0));
122   }
123   pNew->pEList = pEList;
124   pNew->op = TK_SELECT;
125   pNew->selFlags = selFlags;
126   pNew->iLimit = 0;
127   pNew->iOffset = 0;
128 #if SELECTTRACE_ENABLED
129   pNew->zSelName[0] = 0;
130 #endif
131   pNew->addrOpenEphm[0] = -1;
132   pNew->addrOpenEphm[1] = -1;
133   pNew->nSelectRow = 0;
134   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
135   pNew->pSrc = pSrc;
136   pNew->pWhere = pWhere;
137   pNew->pGroupBy = pGroupBy;
138   pNew->pHaving = pHaving;
139   pNew->pOrderBy = pOrderBy;
140   pNew->pPrior = 0;
141   pNew->pNext = 0;
142   pNew->pLimit = pLimit;
143   pNew->pOffset = pOffset;
144   pNew->pWith = 0;
145   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 );
146   if( pParse->db->mallocFailed ) {
147     clearSelect(pParse->db, pNew, pNew!=&standin);
148     pNew = 0;
149   }else{
150     assert( pNew->pSrc!=0 || pParse->nErr>0 );
151   }
152   assert( pNew!=&standin );
153   return pNew;
154 }
155 
156 #if SELECTTRACE_ENABLED
157 /*
158 ** Set the name of a Select object
159 */
sqlite3SelectSetName(Select * p,const char * zName)160 void sqlite3SelectSetName(Select *p, const char *zName){
161   if( p && zName ){
162     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
163   }
164 }
165 #endif
166 
167 
168 /*
169 ** Delete the given Select structure and all of its substructures.
170 */
sqlite3SelectDelete(sqlite3 * db,Select * p)171 void sqlite3SelectDelete(sqlite3 *db, Select *p){
172   if( p ) clearSelect(db, p, 1);
173 }
174 
175 /*
176 ** Return a pointer to the right-most SELECT statement in a compound.
177 */
findRightmost(Select * p)178 static Select *findRightmost(Select *p){
179   while( p->pNext ) p = p->pNext;
180   return p;
181 }
182 
183 /*
184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
185 ** type of join.  Return an integer constant that expresses that type
186 ** in terms of the following bit values:
187 **
188 **     JT_INNER
189 **     JT_CROSS
190 **     JT_OUTER
191 **     JT_NATURAL
192 **     JT_LEFT
193 **     JT_RIGHT
194 **
195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
196 **
197 ** If an illegal or unsupported join type is seen, then still return
198 ** a join type, but put an error in the pParse structure.
199 */
sqlite3JoinType(Parse * pParse,Token * pA,Token * pB,Token * pC)200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
201   int jointype = 0;
202   Token *apAll[3];
203   Token *p;
204                              /*   0123456789 123456789 123456789 123 */
205   static const char zKeyText[] = "naturaleftouterightfullinnercross";
206   static const struct {
207     u8 i;        /* Beginning of keyword text in zKeyText[] */
208     u8 nChar;    /* Length of the keyword in characters */
209     u8 code;     /* Join type mask */
210   } aKeyword[] = {
211     /* natural */ { 0,  7, JT_NATURAL                },
212     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
213     /* outer   */ { 10, 5, JT_OUTER                  },
214     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
215     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
216     /* inner   */ { 23, 5, JT_INNER                  },
217     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
218   };
219   int i, j;
220   apAll[0] = pA;
221   apAll[1] = pB;
222   apAll[2] = pC;
223   for(i=0; i<3 && apAll[i]; i++){
224     p = apAll[i];
225     for(j=0; j<ArraySize(aKeyword); j++){
226       if( p->n==aKeyword[j].nChar
227           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
228         jointype |= aKeyword[j].code;
229         break;
230       }
231     }
232     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
233     if( j>=ArraySize(aKeyword) ){
234       jointype |= JT_ERROR;
235       break;
236     }
237   }
238   if(
239      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
240      (jointype & JT_ERROR)!=0
241   ){
242     const char *zSp = " ";
243     assert( pB!=0 );
244     if( pC==0 ){ zSp++; }
245     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
246        "%T %T%s%T", pA, pB, zSp, pC);
247     jointype = JT_INNER;
248   }else if( (jointype & JT_OUTER)!=0
249          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
250     sqlite3ErrorMsg(pParse,
251       "RIGHT and FULL OUTER JOINs are not currently supported");
252     jointype = JT_INNER;
253   }
254   return jointype;
255 }
256 
257 /*
258 ** Return the index of a column in a table.  Return -1 if the column
259 ** is not contained in the table.
260 */
columnIndex(Table * pTab,const char * zCol)261 static int columnIndex(Table *pTab, const char *zCol){
262   int i;
263   for(i=0; i<pTab->nCol; i++){
264     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
265   }
266   return -1;
267 }
268 
269 /*
270 ** Search the first N tables in pSrc, from left to right, looking for a
271 ** table that has a column named zCol.
272 **
273 ** When found, set *piTab and *piCol to the table index and column index
274 ** of the matching column and return TRUE.
275 **
276 ** If not found, return FALSE.
277 */
tableAndColumnIndex(SrcList * pSrc,int N,const char * zCol,int * piTab,int * piCol)278 static int tableAndColumnIndex(
279   SrcList *pSrc,       /* Array of tables to search */
280   int N,               /* Number of tables in pSrc->a[] to search */
281   const char *zCol,    /* Name of the column we are looking for */
282   int *piTab,          /* Write index of pSrc->a[] here */
283   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
284 ){
285   int i;               /* For looping over tables in pSrc */
286   int iCol;            /* Index of column matching zCol */
287 
288   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
289   for(i=0; i<N; i++){
290     iCol = columnIndex(pSrc->a[i].pTab, zCol);
291     if( iCol>=0 ){
292       if( piTab ){
293         *piTab = i;
294         *piCol = iCol;
295       }
296       return 1;
297     }
298   }
299   return 0;
300 }
301 
302 /*
303 ** This function is used to add terms implied by JOIN syntax to the
304 ** WHERE clause expression of a SELECT statement. The new term, which
305 ** is ANDed with the existing WHERE clause, is of the form:
306 **
307 **    (tab1.col1 = tab2.col2)
308 **
309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
311 ** column iColRight of tab2.
312 */
addWhereTerm(Parse * pParse,SrcList * pSrc,int iLeft,int iColLeft,int iRight,int iColRight,int isOuterJoin,Expr ** ppWhere)313 static void addWhereTerm(
314   Parse *pParse,                  /* Parsing context */
315   SrcList *pSrc,                  /* List of tables in FROM clause */
316   int iLeft,                      /* Index of first table to join in pSrc */
317   int iColLeft,                   /* Index of column in first table */
318   int iRight,                     /* Index of second table in pSrc */
319   int iColRight,                  /* Index of column in second table */
320   int isOuterJoin,                /* True if this is an OUTER join */
321   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
322 ){
323   sqlite3 *db = pParse->db;
324   Expr *pE1;
325   Expr *pE2;
326   Expr *pEq;
327 
328   assert( iLeft<iRight );
329   assert( pSrc->nSrc>iRight );
330   assert( pSrc->a[iLeft].pTab );
331   assert( pSrc->a[iRight].pTab );
332 
333   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
334   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
335 
336   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
337   if( pEq && isOuterJoin ){
338     ExprSetProperty(pEq, EP_FromJoin);
339     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(pEq, EP_NoReduce);
341     pEq->iRightJoinTable = (i16)pE2->iTable;
342   }
343   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
344 }
345 
346 /*
347 ** Set the EP_FromJoin property on all terms of the given expression.
348 ** And set the Expr.iRightJoinTable to iTable for every term in the
349 ** expression.
350 **
351 ** The EP_FromJoin property is used on terms of an expression to tell
352 ** the LEFT OUTER JOIN processing logic that this term is part of the
353 ** join restriction specified in the ON or USING clause and not a part
354 ** of the more general WHERE clause.  These terms are moved over to the
355 ** WHERE clause during join processing but we need to remember that they
356 ** originated in the ON or USING clause.
357 **
358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
359 ** expression depends on table iRightJoinTable even if that table is not
360 ** explicitly mentioned in the expression.  That information is needed
361 ** for cases like this:
362 **
363 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
364 **
365 ** The where clause needs to defer the handling of the t1.x=5
366 ** term until after the t2 loop of the join.  In that way, a
367 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
368 ** defer the handling of t1.x=5, it will be processed immediately
369 ** after the t1 loop and rows with t1.x!=5 will never appear in
370 ** the output, which is incorrect.
371 */
setJoinExpr(Expr * p,int iTable)372 static void setJoinExpr(Expr *p, int iTable){
373   while( p ){
374     ExprSetProperty(p, EP_FromJoin);
375     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
376     ExprSetVVAProperty(p, EP_NoReduce);
377     p->iRightJoinTable = (i16)iTable;
378     if( p->op==TK_FUNCTION && p->x.pList ){
379       int i;
380       for(i=0; i<p->x.pList->nExpr; i++){
381         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
382       }
383     }
384     setJoinExpr(p->pLeft, iTable);
385     p = p->pRight;
386   }
387 }
388 
389 /*
390 ** This routine processes the join information for a SELECT statement.
391 ** ON and USING clauses are converted into extra terms of the WHERE clause.
392 ** NATURAL joins also create extra WHERE clause terms.
393 **
394 ** The terms of a FROM clause are contained in the Select.pSrc structure.
395 ** The left most table is the first entry in Select.pSrc.  The right-most
396 ** table is the last entry.  The join operator is held in the entry to
397 ** the left.  Thus entry 0 contains the join operator for the join between
398 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
399 ** also attached to the left entry.
400 **
401 ** This routine returns the number of errors encountered.
402 */
sqliteProcessJoin(Parse * pParse,Select * p)403 static int sqliteProcessJoin(Parse *pParse, Select *p){
404   SrcList *pSrc;                  /* All tables in the FROM clause */
405   int i, j;                       /* Loop counters */
406   struct SrcList_item *pLeft;     /* Left table being joined */
407   struct SrcList_item *pRight;    /* Right table being joined */
408 
409   pSrc = p->pSrc;
410   pLeft = &pSrc->a[0];
411   pRight = &pLeft[1];
412   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
413     Table *pLeftTab = pLeft->pTab;
414     Table *pRightTab = pRight->pTab;
415     int isOuter;
416 
417     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
418     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
419 
420     /* When the NATURAL keyword is present, add WHERE clause terms for
421     ** every column that the two tables have in common.
422     */
423     if( pRight->fg.jointype & JT_NATURAL ){
424       if( pRight->pOn || pRight->pUsing ){
425         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
426            "an ON or USING clause", 0);
427         return 1;
428       }
429       for(j=0; j<pRightTab->nCol; j++){
430         char *zName;   /* Name of column in the right table */
431         int iLeft;     /* Matching left table */
432         int iLeftCol;  /* Matching column in the left table */
433 
434         zName = pRightTab->aCol[j].zName;
435         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
436           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
437                        isOuter, &p->pWhere);
438         }
439       }
440     }
441 
442     /* Disallow both ON and USING clauses in the same join
443     */
444     if( pRight->pOn && pRight->pUsing ){
445       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
446         "clauses in the same join");
447       return 1;
448     }
449 
450     /* Add the ON clause to the end of the WHERE clause, connected by
451     ** an AND operator.
452     */
453     if( pRight->pOn ){
454       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
455       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
456       pRight->pOn = 0;
457     }
458 
459     /* Create extra terms on the WHERE clause for each column named
460     ** in the USING clause.  Example: If the two tables to be joined are
461     ** A and B and the USING clause names X, Y, and Z, then add this
462     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
463     ** Report an error if any column mentioned in the USING clause is
464     ** not contained in both tables to be joined.
465     */
466     if( pRight->pUsing ){
467       IdList *pList = pRight->pUsing;
468       for(j=0; j<pList->nId; j++){
469         char *zName;     /* Name of the term in the USING clause */
470         int iLeft;       /* Table on the left with matching column name */
471         int iLeftCol;    /* Column number of matching column on the left */
472         int iRightCol;   /* Column number of matching column on the right */
473 
474         zName = pList->a[j].zName;
475         iRightCol = columnIndex(pRightTab, zName);
476         if( iRightCol<0
477          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
478         ){
479           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
480             "not present in both tables", zName);
481           return 1;
482         }
483         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
484                      isOuter, &p->pWhere);
485       }
486     }
487   }
488   return 0;
489 }
490 
491 /* Forward reference */
492 static KeyInfo *keyInfoFromExprList(
493   Parse *pParse,       /* Parsing context */
494   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
495   int iStart,          /* Begin with this column of pList */
496   int nExtra           /* Add this many extra columns to the end */
497 );
498 
499 /*
500 ** Generate code that will push the record in registers regData
501 ** through regData+nData-1 onto the sorter.
502 */
pushOntoSorter(Parse * pParse,SortCtx * pSort,Select * pSelect,int regData,int regOrigData,int nData,int nPrefixReg)503 static void pushOntoSorter(
504   Parse *pParse,         /* Parser context */
505   SortCtx *pSort,        /* Information about the ORDER BY clause */
506   Select *pSelect,       /* The whole SELECT statement */
507   int regData,           /* First register holding data to be sorted */
508   int regOrigData,       /* First register holding data before packing */
509   int nData,             /* Number of elements in the data array */
510   int nPrefixReg         /* No. of reg prior to regData available for use */
511 ){
512   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
513   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
514   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
515   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
516   int regBase;                                     /* Regs for sorter record */
517   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
518   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
519   int op;                            /* Opcode to add sorter record to sorter */
520   int iLimit;                        /* LIMIT counter */
521 
522   assert( bSeq==0 || bSeq==1 );
523   assert( nData==1 || regData==regOrigData || regOrigData==0 );
524   if( nPrefixReg ){
525     assert( nPrefixReg==nExpr+bSeq );
526     regBase = regData - nExpr - bSeq;
527   }else{
528     regBase = pParse->nMem + 1;
529     pParse->nMem += nBase;
530   }
531   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
532   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
533   pSort->labelDone = sqlite3VdbeMakeLabel(v);
534   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
535                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
536   if( bSeq ){
537     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
538   }
539   if( nPrefixReg==0 && nData>0 ){
540     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
541   }
542   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
543   if( nOBSat>0 ){
544     int regPrevKey;   /* The first nOBSat columns of the previous row */
545     int addrFirst;    /* Address of the OP_IfNot opcode */
546     int addrJmp;      /* Address of the OP_Jump opcode */
547     VdbeOp *pOp;      /* Opcode that opens the sorter */
548     int nKey;         /* Number of sorting key columns, including OP_Sequence */
549     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
550 
551     regPrevKey = pParse->nMem+1;
552     pParse->nMem += pSort->nOBSat;
553     nKey = nExpr - pSort->nOBSat + bSeq;
554     if( bSeq ){
555       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
556     }else{
557       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
558     }
559     VdbeCoverage(v);
560     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
561     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
562     if( pParse->db->mallocFailed ) return;
563     pOp->p2 = nKey + nData;
564     pKI = pOp->p4.pKeyInfo;
565     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
566     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
567     testcase( pKI->nXField>2 );
568     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
569                                            pKI->nXField-1);
570     addrJmp = sqlite3VdbeCurrentAddr(v);
571     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
572     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
573     pSort->regReturn = ++pParse->nMem;
574     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
575     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
576     if( iLimit ){
577       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
578       VdbeCoverage(v);
579     }
580     sqlite3VdbeJumpHere(v, addrFirst);
581     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
582     sqlite3VdbeJumpHere(v, addrJmp);
583   }
584   if( pSort->sortFlags & SORTFLAG_UseSorter ){
585     op = OP_SorterInsert;
586   }else{
587     op = OP_IdxInsert;
588   }
589   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
590                        regBase+nOBSat, nBase-nOBSat);
591   if( iLimit ){
592     int addr;
593     int r1 = 0;
594     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
595     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
596     ** fills up, delete the least entry in the sorter after each insert.
597     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598     addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
599     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
600     if( pSort->bOrderedInnerLoop ){
601       r1 = ++pParse->nMem;
602       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
603       VdbeComment((v, "seq"));
604     }
605     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
606     if( pSort->bOrderedInnerLoop ){
607       /* If the inner loop is driven by an index such that values from
608       ** the same iteration of the inner loop are in sorted order, then
609       ** immediately jump to the next iteration of an inner loop if the
610       ** entry from the current iteration does not fit into the top
611       ** LIMIT+OFFSET entries of the sorter. */
612       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
613       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
614       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
615       VdbeCoverage(v);
616     }
617     sqlite3VdbeJumpHere(v, addr);
618   }
619 }
620 
621 /*
622 ** Add code to implement the OFFSET
623 */
codeOffset(Vdbe * v,int iOffset,int iContinue)624 static void codeOffset(
625   Vdbe *v,          /* Generate code into this VM */
626   int iOffset,      /* Register holding the offset counter */
627   int iContinue     /* Jump here to skip the current record */
628 ){
629   if( iOffset>0 ){
630     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
631     VdbeComment((v, "OFFSET"));
632   }
633 }
634 
635 /*
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry.  iTab is a sorting index that holds previously
638 ** seen combinations of the N values.  A new entry is made in iTab
639 ** if the current N values are new.
640 **
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
643 */
codeDistinct(Parse * pParse,int iTab,int addrRepeat,int N,int iMem)644 static void codeDistinct(
645   Parse *pParse,     /* Parsing and code generating context */
646   int iTab,          /* A sorting index used to test for distinctness */
647   int addrRepeat,    /* Jump to here if not distinct */
648   int N,             /* Number of elements */
649   int iMem           /* First element */
650 ){
651   Vdbe *v;
652   int r1;
653 
654   v = pParse->pVdbe;
655   r1 = sqlite3GetTempReg(pParse);
656   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
657   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
658   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
659   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
660   sqlite3ReleaseTempReg(pParse, r1);
661 }
662 
663 /*
664 ** This routine generates the code for the inside of the inner loop
665 ** of a SELECT.
666 **
667 ** If srcTab is negative, then the pEList expressions
668 ** are evaluated in order to get the data for this row.  If srcTab is
669 ** zero or more, then data is pulled from srcTab and pEList is used only
670 ** to get the number of columns and the collation sequence for each column.
671 */
selectInnerLoop(Parse * pParse,Select * p,ExprList * pEList,int srcTab,SortCtx * pSort,DistinctCtx * pDistinct,SelectDest * pDest,int iContinue,int iBreak)672 static void selectInnerLoop(
673   Parse *pParse,          /* The parser context */
674   Select *p,              /* The complete select statement being coded */
675   ExprList *pEList,       /* List of values being extracted */
676   int srcTab,             /* Pull data from this table */
677   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
678   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
679   SelectDest *pDest,      /* How to dispose of the results */
680   int iContinue,          /* Jump here to continue with next row */
681   int iBreak              /* Jump here to break out of the inner loop */
682 ){
683   Vdbe *v = pParse->pVdbe;
684   int i;
685   int hasDistinct;            /* True if the DISTINCT keyword is present */
686   int eDest = pDest->eDest;   /* How to dispose of results */
687   int iParm = pDest->iSDParm; /* First argument to disposal method */
688   int nResultCol;             /* Number of result columns */
689   int nPrefixReg = 0;         /* Number of extra registers before regResult */
690 
691   /* Usually, regResult is the first cell in an array of memory cells
692   ** containing the current result row. In this case regOrig is set to the
693   ** same value. However, if the results are being sent to the sorter, the
694   ** values for any expressions that are also part of the sort-key are omitted
695   ** from this array. In this case regOrig is set to zero.  */
696   int regResult;              /* Start of memory holding current results */
697   int regOrig;                /* Start of memory holding full result (or 0) */
698 
699   assert( v );
700   assert( pEList!=0 );
701   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
702   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
703   if( pSort==0 && !hasDistinct ){
704     assert( iContinue!=0 );
705     codeOffset(v, p->iOffset, iContinue);
706   }
707 
708   /* Pull the requested columns.
709   */
710   nResultCol = pEList->nExpr;
711 
712   if( pDest->iSdst==0 ){
713     if( pSort ){
714       nPrefixReg = pSort->pOrderBy->nExpr;
715       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
716       pParse->nMem += nPrefixReg;
717     }
718     pDest->iSdst = pParse->nMem+1;
719     pParse->nMem += nResultCol;
720   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
721     /* This is an error condition that can result, for example, when a SELECT
722     ** on the right-hand side of an INSERT contains more result columns than
723     ** there are columns in the table on the left.  The error will be caught
724     ** and reported later.  But we need to make sure enough memory is allocated
725     ** to avoid other spurious errors in the meantime. */
726     pParse->nMem += nResultCol;
727   }
728   pDest->nSdst = nResultCol;
729   regOrig = regResult = pDest->iSdst;
730   if( srcTab>=0 ){
731     for(i=0; i<nResultCol; i++){
732       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
733       VdbeComment((v, "%s", pEList->a[i].zName));
734     }
735   }else if( eDest!=SRT_Exists ){
736     /* If the destination is an EXISTS(...) expression, the actual
737     ** values returned by the SELECT are not required.
738     */
739     u8 ecelFlags;
740     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
741       ecelFlags = SQLITE_ECEL_DUP;
742     }else{
743       ecelFlags = 0;
744     }
745     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
746       /* For each expression in pEList that is a copy of an expression in
747       ** the ORDER BY clause (pSort->pOrderBy), set the associated
748       ** iOrderByCol value to one more than the index of the ORDER BY
749       ** expression within the sort-key that pushOntoSorter() will generate.
750       ** This allows the pEList field to be omitted from the sorted record,
751       ** saving space and CPU cycles.  */
752       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
753       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
754         int j;
755         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
756           pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
757         }
758       }
759       regOrig = 0;
760       assert( eDest==SRT_Set || eDest==SRT_Mem
761            || eDest==SRT_Coroutine || eDest==SRT_Output );
762     }
763     nResultCol = sqlite3ExprCodeExprList(pParse,pEList,regResult,0,ecelFlags);
764   }
765 
766   /* If the DISTINCT keyword was present on the SELECT statement
767   ** and this row has been seen before, then do not make this row
768   ** part of the result.
769   */
770   if( hasDistinct ){
771     switch( pDistinct->eTnctType ){
772       case WHERE_DISTINCT_ORDERED: {
773         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
774         int iJump;              /* Jump destination */
775         int regPrev;            /* Previous row content */
776 
777         /* Allocate space for the previous row */
778         regPrev = pParse->nMem+1;
779         pParse->nMem += nResultCol;
780 
781         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
782         ** sets the MEM_Cleared bit on the first register of the
783         ** previous value.  This will cause the OP_Ne below to always
784         ** fail on the first iteration of the loop even if the first
785         ** row is all NULLs.
786         */
787         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
788         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
789         pOp->opcode = OP_Null;
790         pOp->p1 = 1;
791         pOp->p2 = regPrev;
792 
793         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
794         for(i=0; i<nResultCol; i++){
795           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
796           if( i<nResultCol-1 ){
797             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
798             VdbeCoverage(v);
799           }else{
800             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
801             VdbeCoverage(v);
802            }
803           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
804           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
805         }
806         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
807         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
808         break;
809       }
810 
811       case WHERE_DISTINCT_UNIQUE: {
812         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
813         break;
814       }
815 
816       default: {
817         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
818         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
819                      regResult);
820         break;
821       }
822     }
823     if( pSort==0 ){
824       codeOffset(v, p->iOffset, iContinue);
825     }
826   }
827 
828   switch( eDest ){
829     /* In this mode, write each query result to the key of the temporary
830     ** table iParm.
831     */
832 #ifndef SQLITE_OMIT_COMPOUND_SELECT
833     case SRT_Union: {
834       int r1;
835       r1 = sqlite3GetTempReg(pParse);
836       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
837       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
838       sqlite3ReleaseTempReg(pParse, r1);
839       break;
840     }
841 
842     /* Construct a record from the query result, but instead of
843     ** saving that record, use it as a key to delete elements from
844     ** the temporary table iParm.
845     */
846     case SRT_Except: {
847       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
848       break;
849     }
850 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
851 
852     /* Store the result as data using a unique key.
853     */
854     case SRT_Fifo:
855     case SRT_DistFifo:
856     case SRT_Table:
857     case SRT_EphemTab: {
858       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
859       testcase( eDest==SRT_Table );
860       testcase( eDest==SRT_EphemTab );
861       testcase( eDest==SRT_Fifo );
862       testcase( eDest==SRT_DistFifo );
863       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
864 #ifndef SQLITE_OMIT_CTE
865       if( eDest==SRT_DistFifo ){
866         /* If the destination is DistFifo, then cursor (iParm+1) is open
867         ** on an ephemeral index. If the current row is already present
868         ** in the index, do not write it to the output. If not, add the
869         ** current row to the index and proceed with writing it to the
870         ** output table as well.  */
871         int addr = sqlite3VdbeCurrentAddr(v) + 4;
872         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
873         VdbeCoverage(v);
874         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
875         assert( pSort==0 );
876       }
877 #endif
878       if( pSort ){
879         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
880       }else{
881         int r2 = sqlite3GetTempReg(pParse);
882         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
883         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
884         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
885         sqlite3ReleaseTempReg(pParse, r2);
886       }
887       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
888       break;
889     }
890 
891 #ifndef SQLITE_OMIT_SUBQUERY
892     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
893     ** then there should be a single item on the stack.  Write this
894     ** item into the set table with bogus data.
895     */
896     case SRT_Set: {
897       if( pSort ){
898         /* At first glance you would think we could optimize out the
899         ** ORDER BY in this case since the order of entries in the set
900         ** does not matter.  But there might be a LIMIT clause, in which
901         ** case the order does matter */
902         pushOntoSorter(
903             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
904       }else{
905         int r1 = sqlite3GetTempReg(pParse);
906         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
907         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
908             r1, pDest->zAffSdst, nResultCol);
909         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
910         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
911         sqlite3ReleaseTempReg(pParse, r1);
912       }
913       break;
914     }
915 
916     /* If any row exist in the result set, record that fact and abort.
917     */
918     case SRT_Exists: {
919       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
920       /* The LIMIT clause will terminate the loop for us */
921       break;
922     }
923 
924     /* If this is a scalar select that is part of an expression, then
925     ** store the results in the appropriate memory cell or array of
926     ** memory cells and break out of the scan loop.
927     */
928     case SRT_Mem: {
929       if( pSort ){
930         assert( nResultCol<=pDest->nSdst );
931         pushOntoSorter(
932             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
933       }else{
934         assert( nResultCol==pDest->nSdst );
935         assert( regResult==iParm );
936         /* The LIMIT clause will jump out of the loop for us */
937       }
938       break;
939     }
940 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
941 
942     case SRT_Coroutine:       /* Send data to a co-routine */
943     case SRT_Output: {        /* Return the results */
944       testcase( eDest==SRT_Coroutine );
945       testcase( eDest==SRT_Output );
946       if( pSort ){
947         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
948                        nPrefixReg);
949       }else if( eDest==SRT_Coroutine ){
950         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
951       }else{
952         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
953         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
954       }
955       break;
956     }
957 
958 #ifndef SQLITE_OMIT_CTE
959     /* Write the results into a priority queue that is order according to
960     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
961     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
962     ** pSO->nExpr columns, then make sure all keys are unique by adding a
963     ** final OP_Sequence column.  The last column is the record as a blob.
964     */
965     case SRT_DistQueue:
966     case SRT_Queue: {
967       int nKey;
968       int r1, r2, r3;
969       int addrTest = 0;
970       ExprList *pSO;
971       pSO = pDest->pOrderBy;
972       assert( pSO );
973       nKey = pSO->nExpr;
974       r1 = sqlite3GetTempReg(pParse);
975       r2 = sqlite3GetTempRange(pParse, nKey+2);
976       r3 = r2+nKey+1;
977       if( eDest==SRT_DistQueue ){
978         /* If the destination is DistQueue, then cursor (iParm+1) is open
979         ** on a second ephemeral index that holds all values every previously
980         ** added to the queue. */
981         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
982                                         regResult, nResultCol);
983         VdbeCoverage(v);
984       }
985       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
986       if( eDest==SRT_DistQueue ){
987         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
988         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
989       }
990       for(i=0; i<nKey; i++){
991         sqlite3VdbeAddOp2(v, OP_SCopy,
992                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
993                           r2+i);
994       }
995       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
996       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
997       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
998       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
999       sqlite3ReleaseTempReg(pParse, r1);
1000       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1001       break;
1002     }
1003 #endif /* SQLITE_OMIT_CTE */
1004 
1005 
1006 
1007 #if !defined(SQLITE_OMIT_TRIGGER)
1008     /* Discard the results.  This is used for SELECT statements inside
1009     ** the body of a TRIGGER.  The purpose of such selects is to call
1010     ** user-defined functions that have side effects.  We do not care
1011     ** about the actual results of the select.
1012     */
1013     default: {
1014       assert( eDest==SRT_Discard );
1015       break;
1016     }
1017 #endif
1018   }
1019 
1020   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1021   ** there is a sorter, in which case the sorter has already limited
1022   ** the output for us.
1023   */
1024   if( pSort==0 && p->iLimit ){
1025     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1026   }
1027 }
1028 
1029 /*
1030 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1031 ** X extra columns.
1032 */
sqlite3KeyInfoAlloc(sqlite3 * db,int N,int X)1033 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1034   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1035   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1036   if( p ){
1037     p->aSortOrder = (u8*)&p->aColl[N+X];
1038     p->nField = (u16)N;
1039     p->nXField = (u16)X;
1040     p->enc = ENC(db);
1041     p->db = db;
1042     p->nRef = 1;
1043     memset(&p[1], 0, nExtra);
1044   }else{
1045     sqlite3OomFault(db);
1046   }
1047   return p;
1048 }
1049 
1050 /*
1051 ** Deallocate a KeyInfo object
1052 */
sqlite3KeyInfoUnref(KeyInfo * p)1053 void sqlite3KeyInfoUnref(KeyInfo *p){
1054   if( p ){
1055     assert( p->nRef>0 );
1056     p->nRef--;
1057     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1058   }
1059 }
1060 
1061 /*
1062 ** Make a new pointer to a KeyInfo object
1063 */
sqlite3KeyInfoRef(KeyInfo * p)1064 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1065   if( p ){
1066     assert( p->nRef>0 );
1067     p->nRef++;
1068   }
1069   return p;
1070 }
1071 
1072 #ifdef SQLITE_DEBUG
1073 /*
1074 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1075 ** can only be changed if this is just a single reference to the object.
1076 **
1077 ** This routine is used only inside of assert() statements.
1078 */
sqlite3KeyInfoIsWriteable(KeyInfo * p)1079 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1080 #endif /* SQLITE_DEBUG */
1081 
1082 /*
1083 ** Given an expression list, generate a KeyInfo structure that records
1084 ** the collating sequence for each expression in that expression list.
1085 **
1086 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1087 ** KeyInfo structure is appropriate for initializing a virtual index to
1088 ** implement that clause.  If the ExprList is the result set of a SELECT
1089 ** then the KeyInfo structure is appropriate for initializing a virtual
1090 ** index to implement a DISTINCT test.
1091 **
1092 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1093 ** function is responsible for seeing that this structure is eventually
1094 ** freed.
1095 */
keyInfoFromExprList(Parse * pParse,ExprList * pList,int iStart,int nExtra)1096 static KeyInfo *keyInfoFromExprList(
1097   Parse *pParse,       /* Parsing context */
1098   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1099   int iStart,          /* Begin with this column of pList */
1100   int nExtra           /* Add this many extra columns to the end */
1101 ){
1102   int nExpr;
1103   KeyInfo *pInfo;
1104   struct ExprList_item *pItem;
1105   sqlite3 *db = pParse->db;
1106   int i;
1107 
1108   nExpr = pList->nExpr;
1109   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1110   if( pInfo ){
1111     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1112     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1113       CollSeq *pColl;
1114       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1115       if( !pColl ) pColl = db->pDfltColl;
1116       pInfo->aColl[i-iStart] = pColl;
1117       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1118     }
1119   }
1120   return pInfo;
1121 }
1122 
1123 /*
1124 ** Name of the connection operator, used for error messages.
1125 */
selectOpName(int id)1126 static const char *selectOpName(int id){
1127   char *z;
1128   switch( id ){
1129     case TK_ALL:       z = "UNION ALL";   break;
1130     case TK_INTERSECT: z = "INTERSECT";   break;
1131     case TK_EXCEPT:    z = "EXCEPT";      break;
1132     default:           z = "UNION";       break;
1133   }
1134   return z;
1135 }
1136 
1137 #ifndef SQLITE_OMIT_EXPLAIN
1138 /*
1139 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1140 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1141 ** where the caption is of the form:
1142 **
1143 **   "USE TEMP B-TREE FOR xxx"
1144 **
1145 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1146 ** is determined by the zUsage argument.
1147 */
explainTempTable(Parse * pParse,const char * zUsage)1148 static void explainTempTable(Parse *pParse, const char *zUsage){
1149   if( pParse->explain==2 ){
1150     Vdbe *v = pParse->pVdbe;
1151     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1152     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1153   }
1154 }
1155 
1156 /*
1157 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1158 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1159 ** in sqlite3Select() to assign values to structure member variables that
1160 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1161 ** code with #ifndef directives.
1162 */
1163 # define explainSetInteger(a, b) a = b
1164 
1165 #else
1166 /* No-op versions of the explainXXX() functions and macros. */
1167 # define explainTempTable(y,z)
1168 # define explainSetInteger(y,z)
1169 #endif
1170 
1171 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1172 /*
1173 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1174 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1175 ** where the caption is of one of the two forms:
1176 **
1177 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1178 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1179 **
1180 ** where iSub1 and iSub2 are the integers passed as the corresponding
1181 ** function parameters, and op is the text representation of the parameter
1182 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1183 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1184 ** false, or the second form if it is true.
1185 */
explainComposite(Parse * pParse,int op,int iSub1,int iSub2,int bUseTmp)1186 static void explainComposite(
1187   Parse *pParse,                  /* Parse context */
1188   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1189   int iSub1,                      /* Subquery id 1 */
1190   int iSub2,                      /* Subquery id 2 */
1191   int bUseTmp                     /* True if a temp table was used */
1192 ){
1193   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1194   if( pParse->explain==2 ){
1195     Vdbe *v = pParse->pVdbe;
1196     char *zMsg = sqlite3MPrintf(
1197         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1198         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1199     );
1200     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1201   }
1202 }
1203 #else
1204 /* No-op versions of the explainXXX() functions and macros. */
1205 # define explainComposite(v,w,x,y,z)
1206 #endif
1207 
1208 /*
1209 ** If the inner loop was generated using a non-null pOrderBy argument,
1210 ** then the results were placed in a sorter.  After the loop is terminated
1211 ** we need to run the sorter and output the results.  The following
1212 ** routine generates the code needed to do that.
1213 */
generateSortTail(Parse * pParse,Select * p,SortCtx * pSort,int nColumn,SelectDest * pDest)1214 static void generateSortTail(
1215   Parse *pParse,    /* Parsing context */
1216   Select *p,        /* The SELECT statement */
1217   SortCtx *pSort,   /* Information on the ORDER BY clause */
1218   int nColumn,      /* Number of columns of data */
1219   SelectDest *pDest /* Write the sorted results here */
1220 ){
1221   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1222   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1223   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1224   int addr;
1225   int addrOnce = 0;
1226   int iTab;
1227   ExprList *pOrderBy = pSort->pOrderBy;
1228   int eDest = pDest->eDest;
1229   int iParm = pDest->iSDParm;
1230   int regRow;
1231   int regRowid;
1232   int iCol;
1233   int nKey;
1234   int iSortTab;                   /* Sorter cursor to read from */
1235   int nSortData;                  /* Trailing values to read from sorter */
1236   int i;
1237   int bSeq;                       /* True if sorter record includes seq. no. */
1238   struct ExprList_item *aOutEx = p->pEList->a;
1239 
1240   assert( addrBreak<0 );
1241   if( pSort->labelBkOut ){
1242     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1243     sqlite3VdbeGoto(v, addrBreak);
1244     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1245   }
1246   iTab = pSort->iECursor;
1247   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1248     regRowid = 0;
1249     regRow = pDest->iSdst;
1250     nSortData = nColumn;
1251   }else{
1252     regRowid = sqlite3GetTempReg(pParse);
1253     regRow = sqlite3GetTempRange(pParse, nColumn);
1254     nSortData = nColumn;
1255   }
1256   nKey = pOrderBy->nExpr - pSort->nOBSat;
1257   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1258     int regSortOut = ++pParse->nMem;
1259     iSortTab = pParse->nTab++;
1260     if( pSort->labelBkOut ){
1261       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1262     }
1263     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1264     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1265     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1266     VdbeCoverage(v);
1267     codeOffset(v, p->iOffset, addrContinue);
1268     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1269     bSeq = 0;
1270   }else{
1271     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1272     codeOffset(v, p->iOffset, addrContinue);
1273     iSortTab = iTab;
1274     bSeq = 1;
1275   }
1276   for(i=0, iCol=nKey+bSeq; i<nSortData; i++){
1277     int iRead;
1278     if( aOutEx[i].u.x.iOrderByCol ){
1279       iRead = aOutEx[i].u.x.iOrderByCol-1;
1280     }else{
1281       iRead = iCol++;
1282     }
1283     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1284     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1285   }
1286   switch( eDest ){
1287     case SRT_Table:
1288     case SRT_EphemTab: {
1289       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1290       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1291       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1292       break;
1293     }
1294 #ifndef SQLITE_OMIT_SUBQUERY
1295     case SRT_Set: {
1296       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1297       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1298                         pDest->zAffSdst, nColumn);
1299       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1300       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1301       break;
1302     }
1303     case SRT_Mem: {
1304       /* The LIMIT clause will terminate the loop for us */
1305       break;
1306     }
1307 #endif
1308     default: {
1309       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1310       testcase( eDest==SRT_Output );
1311       testcase( eDest==SRT_Coroutine );
1312       if( eDest==SRT_Output ){
1313         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1314         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1315       }else{
1316         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1317       }
1318       break;
1319     }
1320   }
1321   if( regRowid ){
1322     if( eDest==SRT_Set ){
1323       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1324     }else{
1325       sqlite3ReleaseTempReg(pParse, regRow);
1326     }
1327     sqlite3ReleaseTempReg(pParse, regRowid);
1328   }
1329   /* The bottom of the loop
1330   */
1331   sqlite3VdbeResolveLabel(v, addrContinue);
1332   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1333     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1334   }else{
1335     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1336   }
1337   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1338   sqlite3VdbeResolveLabel(v, addrBreak);
1339 }
1340 
1341 /*
1342 ** Return a pointer to a string containing the 'declaration type' of the
1343 ** expression pExpr. The string may be treated as static by the caller.
1344 **
1345 ** Also try to estimate the size of the returned value and return that
1346 ** result in *pEstWidth.
1347 **
1348 ** The declaration type is the exact datatype definition extracted from the
1349 ** original CREATE TABLE statement if the expression is a column. The
1350 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1351 ** is considered a column can be complex in the presence of subqueries. The
1352 ** result-set expression in all of the following SELECT statements is
1353 ** considered a column by this function.
1354 **
1355 **   SELECT col FROM tbl;
1356 **   SELECT (SELECT col FROM tbl;
1357 **   SELECT (SELECT col FROM tbl);
1358 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1359 **
1360 ** The declaration type for any expression other than a column is NULL.
1361 **
1362 ** This routine has either 3 or 6 parameters depending on whether or not
1363 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1364 */
1365 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1366 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1367 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1368 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1369 #endif
columnTypeImpl(NameContext * pNC,Expr * pExpr,const char ** pzOrigDb,const char ** pzOrigTab,const char ** pzOrigCol,u8 * pEstWidth)1370 static const char *columnTypeImpl(
1371   NameContext *pNC,
1372   Expr *pExpr,
1373 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1374   const char **pzOrigDb,
1375   const char **pzOrigTab,
1376   const char **pzOrigCol,
1377 #endif
1378   u8 *pEstWidth
1379 ){
1380   char const *zType = 0;
1381   int j;
1382   u8 estWidth = 1;
1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1384   char const *zOrigDb = 0;
1385   char const *zOrigTab = 0;
1386   char const *zOrigCol = 0;
1387 #endif
1388 
1389   assert( pExpr!=0 );
1390   assert( pNC->pSrcList!=0 );
1391   switch( pExpr->op ){
1392     case TK_AGG_COLUMN:
1393     case TK_COLUMN: {
1394       /* The expression is a column. Locate the table the column is being
1395       ** extracted from in NameContext.pSrcList. This table may be real
1396       ** database table or a subquery.
1397       */
1398       Table *pTab = 0;            /* Table structure column is extracted from */
1399       Select *pS = 0;             /* Select the column is extracted from */
1400       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1401       testcase( pExpr->op==TK_AGG_COLUMN );
1402       testcase( pExpr->op==TK_COLUMN );
1403       while( pNC && !pTab ){
1404         SrcList *pTabList = pNC->pSrcList;
1405         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1406         if( j<pTabList->nSrc ){
1407           pTab = pTabList->a[j].pTab;
1408           pS = pTabList->a[j].pSelect;
1409         }else{
1410           pNC = pNC->pNext;
1411         }
1412       }
1413 
1414       if( pTab==0 ){
1415         /* At one time, code such as "SELECT new.x" within a trigger would
1416         ** cause this condition to run.  Since then, we have restructured how
1417         ** trigger code is generated and so this condition is no longer
1418         ** possible. However, it can still be true for statements like
1419         ** the following:
1420         **
1421         **   CREATE TABLE t1(col INTEGER);
1422         **   SELECT (SELECT t1.col) FROM FROM t1;
1423         **
1424         ** when columnType() is called on the expression "t1.col" in the
1425         ** sub-select. In this case, set the column type to NULL, even
1426         ** though it should really be "INTEGER".
1427         **
1428         ** This is not a problem, as the column type of "t1.col" is never
1429         ** used. When columnType() is called on the expression
1430         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1431         ** branch below.  */
1432         break;
1433       }
1434 
1435       assert( pTab && pExpr->pTab==pTab );
1436       if( pS ){
1437         /* The "table" is actually a sub-select or a view in the FROM clause
1438         ** of the SELECT statement. Return the declaration type and origin
1439         ** data for the result-set column of the sub-select.
1440         */
1441         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1442           /* If iCol is less than zero, then the expression requests the
1443           ** rowid of the sub-select or view. This expression is legal (see
1444           ** test case misc2.2.2) - it always evaluates to NULL.
1445           */
1446           NameContext sNC;
1447           Expr *p = pS->pEList->a[iCol].pExpr;
1448           sNC.pSrcList = pS->pSrc;
1449           sNC.pNext = pNC;
1450           sNC.pParse = pNC->pParse;
1451           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1452         }
1453       }else if( pTab->pSchema ){
1454         /* A real table */
1455         assert( !pS );
1456         if( iCol<0 ) iCol = pTab->iPKey;
1457         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1458 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1459         if( iCol<0 ){
1460           zType = "INTEGER";
1461           zOrigCol = "rowid";
1462         }else{
1463           zOrigCol = pTab->aCol[iCol].zName;
1464           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1465           estWidth = pTab->aCol[iCol].szEst;
1466         }
1467         zOrigTab = pTab->zName;
1468         if( pNC->pParse ){
1469           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1470           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1471         }
1472 #else
1473         if( iCol<0 ){
1474           zType = "INTEGER";
1475         }else{
1476           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1477           estWidth = pTab->aCol[iCol].szEst;
1478         }
1479 #endif
1480       }
1481       break;
1482     }
1483 #ifndef SQLITE_OMIT_SUBQUERY
1484     case TK_SELECT: {
1485       /* The expression is a sub-select. Return the declaration type and
1486       ** origin info for the single column in the result set of the SELECT
1487       ** statement.
1488       */
1489       NameContext sNC;
1490       Select *pS = pExpr->x.pSelect;
1491       Expr *p = pS->pEList->a[0].pExpr;
1492       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1493       sNC.pSrcList = pS->pSrc;
1494       sNC.pNext = pNC;
1495       sNC.pParse = pNC->pParse;
1496       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1497       break;
1498     }
1499 #endif
1500   }
1501 
1502 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1503   if( pzOrigDb ){
1504     assert( pzOrigTab && pzOrigCol );
1505     *pzOrigDb = zOrigDb;
1506     *pzOrigTab = zOrigTab;
1507     *pzOrigCol = zOrigCol;
1508   }
1509 #endif
1510   if( pEstWidth ) *pEstWidth = estWidth;
1511   return zType;
1512 }
1513 
1514 /*
1515 ** Generate code that will tell the VDBE the declaration types of columns
1516 ** in the result set.
1517 */
generateColumnTypes(Parse * pParse,SrcList * pTabList,ExprList * pEList)1518 static void generateColumnTypes(
1519   Parse *pParse,      /* Parser context */
1520   SrcList *pTabList,  /* List of tables */
1521   ExprList *pEList    /* Expressions defining the result set */
1522 ){
1523 #ifndef SQLITE_OMIT_DECLTYPE
1524   Vdbe *v = pParse->pVdbe;
1525   int i;
1526   NameContext sNC;
1527   sNC.pSrcList = pTabList;
1528   sNC.pParse = pParse;
1529   sNC.pNext = 0;
1530   for(i=0; i<pEList->nExpr; i++){
1531     Expr *p = pEList->a[i].pExpr;
1532     const char *zType;
1533 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1534     const char *zOrigDb = 0;
1535     const char *zOrigTab = 0;
1536     const char *zOrigCol = 0;
1537     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1538 
1539     /* The vdbe must make its own copy of the column-type and other
1540     ** column specific strings, in case the schema is reset before this
1541     ** virtual machine is deleted.
1542     */
1543     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1544     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1545     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1546 #else
1547     zType = columnType(&sNC, p, 0, 0, 0, 0);
1548 #endif
1549     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1550   }
1551 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1552 }
1553 
1554 
1555 /*
1556 ** Compute the column names for a SELECT statement.
1557 **
1558 ** The only guarantee that SQLite makes about column names is that if the
1559 ** column has an AS clause assigning it a name, that will be the name used.
1560 ** That is the only documented guarantee.  However, countless applications
1561 ** developed over the years have made baseless assumptions about column names
1562 ** and will break if those assumptions changes.  Hence, use extreme caution
1563 ** when modifying this routine to avoid breaking legacy.
1564 **
1565 ** See Also: sqlite3ColumnsFromExprList()
1566 **
1567 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1568 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1569 ** applications should operate this way.  Nevertheless, we need to support the
1570 ** other modes for legacy:
1571 **
1572 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1573 **                              originally appears in the SELECT statement.  In
1574 **                              other words, the zSpan of the result expression.
1575 **
1576 **    short=ON, full=OFF:       (This is the default setting).  If the result
1577 **                              refers directly to a table column, then the result
1578 **                              column name is just the table column name: COLUMN.
1579 **                              Otherwise use zSpan.
1580 **
1581 **    full=ON, short=ANY:       If the result refers directly to a table column,
1582 **                              then the result column name with the table name
1583 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1584 */
generateColumnNames(Parse * pParse,Select * pSelect)1585 static void generateColumnNames(
1586   Parse *pParse,      /* Parser context */
1587   Select *pSelect     /* Generate column names for this SELECT statement */
1588 ){
1589   Vdbe *v = pParse->pVdbe;
1590   int i;
1591   Table *pTab;
1592   SrcList *pTabList;
1593   ExprList *pEList;
1594   sqlite3 *db = pParse->db;
1595   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1596   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1597 
1598 #ifndef SQLITE_OMIT_EXPLAIN
1599   /* If this is an EXPLAIN, skip this step */
1600   if( pParse->explain ){
1601     return;
1602   }
1603 #endif
1604 
1605   if( pParse->colNamesSet || db->mallocFailed ) return;
1606   /* Column names are determined by the left-most term of a compound select */
1607   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1608   pTabList = pSelect->pSrc;
1609   pEList = pSelect->pEList;
1610   assert( v!=0 );
1611   assert( pTabList!=0 );
1612   pParse->colNamesSet = 1;
1613   fullName = (db->flags & SQLITE_FullColNames)!=0;
1614   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1615   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1616   for(i=0; i<pEList->nExpr; i++){
1617     Expr *p = pEList->a[i].pExpr;
1618 
1619     assert( p!=0 );
1620     if( pEList->a[i].zName ){
1621       /* An AS clause always takes first priority */
1622       char *zName = pEList->a[i].zName;
1623       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1624     }else if( srcName && p->op==TK_COLUMN ){
1625       char *zCol;
1626       int iCol = p->iColumn;
1627       pTab = p->pTab;
1628       assert( pTab!=0 );
1629       if( iCol<0 ) iCol = pTab->iPKey;
1630       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1631       if( iCol<0 ){
1632         zCol = "rowid";
1633       }else{
1634         zCol = pTab->aCol[iCol].zName;
1635       }
1636       if( fullName ){
1637         char *zName = 0;
1638         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1639         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1640       }else{
1641         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1642       }
1643     }else{
1644       const char *z = pEList->a[i].zSpan;
1645       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1646       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1647     }
1648   }
1649   generateColumnTypes(pParse, pTabList, pEList);
1650 }
1651 
1652 /*
1653 ** Given an expression list (which is really the list of expressions
1654 ** that form the result set of a SELECT statement) compute appropriate
1655 ** column names for a table that would hold the expression list.
1656 **
1657 ** All column names will be unique.
1658 **
1659 ** Only the column names are computed.  Column.zType, Column.zColl,
1660 ** and other fields of Column are zeroed.
1661 **
1662 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1663 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1664 **
1665 ** The only guarantee that SQLite makes about column names is that if the
1666 ** column has an AS clause assigning it a name, that will be the name used.
1667 ** That is the only documented guarantee.  However, countless applications
1668 ** developed over the years have made baseless assumptions about column names
1669 ** and will break if those assumptions changes.  Hence, use extreme caution
1670 ** when modifying this routine to avoid breaking legacy.
1671 **
1672 ** See Also: generateColumnNames()
1673 */
sqlite3ColumnsFromExprList(Parse * pParse,ExprList * pEList,i16 * pnCol,Column ** paCol)1674 int sqlite3ColumnsFromExprList(
1675   Parse *pParse,          /* Parsing context */
1676   ExprList *pEList,       /* Expr list from which to derive column names */
1677   i16 *pnCol,             /* Write the number of columns here */
1678   Column **paCol          /* Write the new column list here */
1679 ){
1680   sqlite3 *db = pParse->db;   /* Database connection */
1681   int i, j;                   /* Loop counters */
1682   u32 cnt;                    /* Index added to make the name unique */
1683   Column *aCol, *pCol;        /* For looping over result columns */
1684   int nCol;                   /* Number of columns in the result set */
1685   char *zName;                /* Column name */
1686   int nName;                  /* Size of name in zName[] */
1687   Hash ht;                    /* Hash table of column names */
1688 
1689   sqlite3HashInit(&ht);
1690   if( pEList ){
1691     nCol = pEList->nExpr;
1692     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1693     testcase( aCol==0 );
1694   }else{
1695     nCol = 0;
1696     aCol = 0;
1697   }
1698   assert( nCol==(i16)nCol );
1699   *pnCol = nCol;
1700   *paCol = aCol;
1701 
1702   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1703     /* Get an appropriate name for the column
1704     */
1705     if( (zName = pEList->a[i].zName)!=0 ){
1706       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1707     }else{
1708       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1709       while( pColExpr->op==TK_DOT ){
1710         pColExpr = pColExpr->pRight;
1711         assert( pColExpr!=0 );
1712       }
1713       if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){
1714         /* For columns use the column name name */
1715         int iCol = pColExpr->iColumn;
1716         Table *pTab = pColExpr->pTab;
1717         if( iCol<0 ) iCol = pTab->iPKey;
1718         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1719       }else if( pColExpr->op==TK_ID ){
1720         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1721         zName = pColExpr->u.zToken;
1722       }else{
1723         /* Use the original text of the column expression as its name */
1724         zName = pEList->a[i].zSpan;
1725       }
1726     }
1727     if( zName ){
1728       zName = sqlite3DbStrDup(db, zName);
1729     }else{
1730       zName = sqlite3MPrintf(db,"column%d",i+1);
1731     }
1732 
1733     /* Make sure the column name is unique.  If the name is not unique,
1734     ** append an integer to the name so that it becomes unique.
1735     */
1736     cnt = 0;
1737     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1738       nName = sqlite3Strlen30(zName);
1739       if( nName>0 ){
1740         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1741         if( zName[j]==':' ) nName = j;
1742       }
1743       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1744       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1745     }
1746     pCol->zName = zName;
1747     sqlite3ColumnPropertiesFromName(0, pCol);
1748     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1749       sqlite3OomFault(db);
1750     }
1751   }
1752   sqlite3HashClear(&ht);
1753   if( db->mallocFailed ){
1754     for(j=0; j<i; j++){
1755       sqlite3DbFree(db, aCol[j].zName);
1756     }
1757     sqlite3DbFree(db, aCol);
1758     *paCol = 0;
1759     *pnCol = 0;
1760     return SQLITE_NOMEM_BKPT;
1761   }
1762   return SQLITE_OK;
1763 }
1764 
1765 /*
1766 ** Add type and collation information to a column list based on
1767 ** a SELECT statement.
1768 **
1769 ** The column list presumably came from selectColumnNamesFromExprList().
1770 ** The column list has only names, not types or collations.  This
1771 ** routine goes through and adds the types and collations.
1772 **
1773 ** This routine requires that all identifiers in the SELECT
1774 ** statement be resolved.
1775 */
sqlite3SelectAddColumnTypeAndCollation(Parse * pParse,Table * pTab,Select * pSelect)1776 void sqlite3SelectAddColumnTypeAndCollation(
1777   Parse *pParse,        /* Parsing contexts */
1778   Table *pTab,          /* Add column type information to this table */
1779   Select *pSelect       /* SELECT used to determine types and collations */
1780 ){
1781   sqlite3 *db = pParse->db;
1782   NameContext sNC;
1783   Column *pCol;
1784   CollSeq *pColl;
1785   int i;
1786   Expr *p;
1787   struct ExprList_item *a;
1788   u64 szAll = 0;
1789 
1790   assert( pSelect!=0 );
1791   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1792   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1793   if( db->mallocFailed ) return;
1794   memset(&sNC, 0, sizeof(sNC));
1795   sNC.pSrcList = pSelect->pSrc;
1796   a = pSelect->pEList->a;
1797   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1798     const char *zType;
1799     int n, m;
1800     p = a[i].pExpr;
1801     zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1802     szAll += pCol->szEst;
1803     pCol->affinity = sqlite3ExprAffinity(p);
1804     if( zType && (m = sqlite3Strlen30(zType))>0 ){
1805       n = sqlite3Strlen30(pCol->zName);
1806       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1807       if( pCol->zName ){
1808         memcpy(&pCol->zName[n+1], zType, m+1);
1809         pCol->colFlags |= COLFLAG_HASTYPE;
1810       }
1811     }
1812     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1813     pColl = sqlite3ExprCollSeq(pParse, p);
1814     if( pColl && pCol->zColl==0 ){
1815       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1816     }
1817   }
1818   pTab->szTabRow = sqlite3LogEst(szAll*4);
1819 }
1820 
1821 /*
1822 ** Given a SELECT statement, generate a Table structure that describes
1823 ** the result set of that SELECT.
1824 */
sqlite3ResultSetOfSelect(Parse * pParse,Select * pSelect)1825 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1826   Table *pTab;
1827   sqlite3 *db = pParse->db;
1828   int savedFlags;
1829 
1830   savedFlags = db->flags;
1831   db->flags &= ~SQLITE_FullColNames;
1832   db->flags |= SQLITE_ShortColNames;
1833   sqlite3SelectPrep(pParse, pSelect, 0);
1834   if( pParse->nErr ) return 0;
1835   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1836   db->flags = savedFlags;
1837   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1838   if( pTab==0 ){
1839     return 0;
1840   }
1841   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1842   ** is disabled */
1843   assert( db->lookaside.bDisable );
1844   pTab->nTabRef = 1;
1845   pTab->zName = 0;
1846   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1847   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1848   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1849   pTab->iPKey = -1;
1850   if( db->mallocFailed ){
1851     sqlite3DeleteTable(db, pTab);
1852     return 0;
1853   }
1854   return pTab;
1855 }
1856 
1857 /*
1858 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1859 ** If an error occurs, return NULL and leave a message in pParse.
1860 */
allocVdbe(Parse * pParse)1861 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
1862   Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1863   if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1);
1864   if( pParse->pToplevel==0
1865    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1866   ){
1867     pParse->okConstFactor = 1;
1868   }
1869   return v;
1870 }
sqlite3GetVdbe(Parse * pParse)1871 Vdbe *sqlite3GetVdbe(Parse *pParse){
1872   Vdbe *v = pParse->pVdbe;
1873   return v ? v : allocVdbe(pParse);
1874 }
1875 
1876 
1877 /*
1878 ** Compute the iLimit and iOffset fields of the SELECT based on the
1879 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1880 ** that appear in the original SQL statement after the LIMIT and OFFSET
1881 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1882 ** are the integer memory register numbers for counters used to compute
1883 ** the limit and offset.  If there is no limit and/or offset, then
1884 ** iLimit and iOffset are negative.
1885 **
1886 ** This routine changes the values of iLimit and iOffset only if
1887 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1888 ** iOffset should have been preset to appropriate default values (zero)
1889 ** prior to calling this routine.
1890 **
1891 ** The iOffset register (if it exists) is initialized to the value
1892 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1893 ** iOffset+1 is initialized to LIMIT+OFFSET.
1894 **
1895 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1896 ** redefined.  The UNION ALL operator uses this property to force
1897 ** the reuse of the same limit and offset registers across multiple
1898 ** SELECT statements.
1899 */
computeLimitRegisters(Parse * pParse,Select * p,int iBreak)1900 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1901   Vdbe *v = 0;
1902   int iLimit = 0;
1903   int iOffset;
1904   int n;
1905   if( p->iLimit ) return;
1906 
1907   /*
1908   ** "LIMIT -1" always shows all rows.  There is some
1909   ** controversy about what the correct behavior should be.
1910   ** The current implementation interprets "LIMIT 0" to mean
1911   ** no rows.
1912   */
1913   sqlite3ExprCacheClear(pParse);
1914   assert( p->pOffset==0 || p->pLimit!=0 );
1915   if( p->pLimit ){
1916     p->iLimit = iLimit = ++pParse->nMem;
1917     v = sqlite3GetVdbe(pParse);
1918     assert( v!=0 );
1919     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1920       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1921       VdbeComment((v, "LIMIT counter"));
1922       if( n==0 ){
1923         sqlite3VdbeGoto(v, iBreak);
1924       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1925         p->nSelectRow = sqlite3LogEst((u64)n);
1926         p->selFlags |= SF_FixedLimit;
1927       }
1928     }else{
1929       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1930       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1931       VdbeComment((v, "LIMIT counter"));
1932       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1933     }
1934     if( p->pOffset ){
1935       p->iOffset = iOffset = ++pParse->nMem;
1936       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1937       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1938       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1939       VdbeComment((v, "OFFSET counter"));
1940       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1941       VdbeComment((v, "LIMIT+OFFSET"));
1942     }
1943   }
1944 }
1945 
1946 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1947 /*
1948 ** Return the appropriate collating sequence for the iCol-th column of
1949 ** the result set for the compound-select statement "p".  Return NULL if
1950 ** the column has no default collating sequence.
1951 **
1952 ** The collating sequence for the compound select is taken from the
1953 ** left-most term of the select that has a collating sequence.
1954 */
multiSelectCollSeq(Parse * pParse,Select * p,int iCol)1955 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1956   CollSeq *pRet;
1957   if( p->pPrior ){
1958     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1959   }else{
1960     pRet = 0;
1961   }
1962   assert( iCol>=0 );
1963   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1964   ** have been thrown during name resolution and we would not have gotten
1965   ** this far */
1966   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1967     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1968   }
1969   return pRet;
1970 }
1971 
1972 /*
1973 ** The select statement passed as the second parameter is a compound SELECT
1974 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1975 ** structure suitable for implementing the ORDER BY.
1976 **
1977 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1978 ** function is responsible for ensuring that this structure is eventually
1979 ** freed.
1980 */
multiSelectOrderByKeyInfo(Parse * pParse,Select * p,int nExtra)1981 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1982   ExprList *pOrderBy = p->pOrderBy;
1983   int nOrderBy = p->pOrderBy->nExpr;
1984   sqlite3 *db = pParse->db;
1985   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1986   if( pRet ){
1987     int i;
1988     for(i=0; i<nOrderBy; i++){
1989       struct ExprList_item *pItem = &pOrderBy->a[i];
1990       Expr *pTerm = pItem->pExpr;
1991       CollSeq *pColl;
1992 
1993       if( pTerm->flags & EP_Collate ){
1994         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1995       }else{
1996         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1997         if( pColl==0 ) pColl = db->pDfltColl;
1998         pOrderBy->a[i].pExpr =
1999           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2000       }
2001       assert( sqlite3KeyInfoIsWriteable(pRet) );
2002       pRet->aColl[i] = pColl;
2003       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2004     }
2005   }
2006 
2007   return pRet;
2008 }
2009 
2010 #ifndef SQLITE_OMIT_CTE
2011 /*
2012 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2013 ** query of the form:
2014 **
2015 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2016 **                         \___________/             \_______________/
2017 **                           p->pPrior                      p
2018 **
2019 **
2020 ** There is exactly one reference to the recursive-table in the FROM clause
2021 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2022 **
2023 ** The setup-query runs once to generate an initial set of rows that go
2024 ** into a Queue table.  Rows are extracted from the Queue table one by
2025 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2026 ** extracted row (now in the iCurrent table) becomes the content of the
2027 ** recursive-table for a recursive-query run.  The output of the recursive-query
2028 ** is added back into the Queue table.  Then another row is extracted from Queue
2029 ** and the iteration continues until the Queue table is empty.
2030 **
2031 ** If the compound query operator is UNION then no duplicate rows are ever
2032 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2033 ** that have ever been inserted into Queue and causes duplicates to be
2034 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2035 **
2036 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2037 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2038 ** an ORDER BY, the Queue table is just a FIFO.
2039 **
2040 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2041 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2042 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2043 ** with a positive value, then the first OFFSET outputs are discarded rather
2044 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2045 ** rows have been skipped.
2046 */
generateWithRecursiveQuery(Parse * pParse,Select * p,SelectDest * pDest)2047 static void generateWithRecursiveQuery(
2048   Parse *pParse,        /* Parsing context */
2049   Select *p,            /* The recursive SELECT to be coded */
2050   SelectDest *pDest     /* What to do with query results */
2051 ){
2052   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2053   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2054   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2055   Select *pSetup = p->pPrior;   /* The setup query */
2056   int addrTop;                  /* Top of the loop */
2057   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2058   int iCurrent = 0;             /* The Current table */
2059   int regCurrent;               /* Register holding Current table */
2060   int iQueue;                   /* The Queue table */
2061   int iDistinct = 0;            /* To ensure unique results if UNION */
2062   int eDest = SRT_Fifo;         /* How to write to Queue */
2063   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2064   int i;                        /* Loop counter */
2065   int rc;                       /* Result code */
2066   ExprList *pOrderBy;           /* The ORDER BY clause */
2067   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
2068   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2069 
2070   /* Obtain authorization to do a recursive query */
2071   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2072 
2073   /* Process the LIMIT and OFFSET clauses, if they exist */
2074   addrBreak = sqlite3VdbeMakeLabel(v);
2075   p->nSelectRow = 320;  /* 4 billion rows */
2076   computeLimitRegisters(pParse, p, addrBreak);
2077   pLimit = p->pLimit;
2078   pOffset = p->pOffset;
2079   regLimit = p->iLimit;
2080   regOffset = p->iOffset;
2081   p->pLimit = p->pOffset = 0;
2082   p->iLimit = p->iOffset = 0;
2083   pOrderBy = p->pOrderBy;
2084 
2085   /* Locate the cursor number of the Current table */
2086   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2087     if( pSrc->a[i].fg.isRecursive ){
2088       iCurrent = pSrc->a[i].iCursor;
2089       break;
2090     }
2091   }
2092 
2093   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2094   ** the Distinct table must be exactly one greater than Queue in order
2095   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2096   iQueue = pParse->nTab++;
2097   if( p->op==TK_UNION ){
2098     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2099     iDistinct = pParse->nTab++;
2100   }else{
2101     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2102   }
2103   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2104 
2105   /* Allocate cursors for Current, Queue, and Distinct. */
2106   regCurrent = ++pParse->nMem;
2107   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2108   if( pOrderBy ){
2109     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2110     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2111                       (char*)pKeyInfo, P4_KEYINFO);
2112     destQueue.pOrderBy = pOrderBy;
2113   }else{
2114     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2115   }
2116   VdbeComment((v, "Queue table"));
2117   if( iDistinct ){
2118     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2119     p->selFlags |= SF_UsesEphemeral;
2120   }
2121 
2122   /* Detach the ORDER BY clause from the compound SELECT */
2123   p->pOrderBy = 0;
2124 
2125   /* Store the results of the setup-query in Queue. */
2126   pSetup->pNext = 0;
2127   rc = sqlite3Select(pParse, pSetup, &destQueue);
2128   pSetup->pNext = p;
2129   if( rc ) goto end_of_recursive_query;
2130 
2131   /* Find the next row in the Queue and output that row */
2132   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2133 
2134   /* Transfer the next row in Queue over to Current */
2135   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2136   if( pOrderBy ){
2137     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2138   }else{
2139     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2140   }
2141   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2142 
2143   /* Output the single row in Current */
2144   addrCont = sqlite3VdbeMakeLabel(v);
2145   codeOffset(v, regOffset, addrCont);
2146   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2147       0, 0, pDest, addrCont, addrBreak);
2148   if( regLimit ){
2149     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2150     VdbeCoverage(v);
2151   }
2152   sqlite3VdbeResolveLabel(v, addrCont);
2153 
2154   /* Execute the recursive SELECT taking the single row in Current as
2155   ** the value for the recursive-table. Store the results in the Queue.
2156   */
2157   if( p->selFlags & SF_Aggregate ){
2158     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2159   }else{
2160     p->pPrior = 0;
2161     sqlite3Select(pParse, p, &destQueue);
2162     assert( p->pPrior==0 );
2163     p->pPrior = pSetup;
2164   }
2165 
2166   /* Keep running the loop until the Queue is empty */
2167   sqlite3VdbeGoto(v, addrTop);
2168   sqlite3VdbeResolveLabel(v, addrBreak);
2169 
2170 end_of_recursive_query:
2171   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2172   p->pOrderBy = pOrderBy;
2173   p->pLimit = pLimit;
2174   p->pOffset = pOffset;
2175   return;
2176 }
2177 #endif /* SQLITE_OMIT_CTE */
2178 
2179 /* Forward references */
2180 static int multiSelectOrderBy(
2181   Parse *pParse,        /* Parsing context */
2182   Select *p,            /* The right-most of SELECTs to be coded */
2183   SelectDest *pDest     /* What to do with query results */
2184 );
2185 
2186 /*
2187 ** Handle the special case of a compound-select that originates from a
2188 ** VALUES clause.  By handling this as a special case, we avoid deep
2189 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2190 ** on a VALUES clause.
2191 **
2192 ** Because the Select object originates from a VALUES clause:
2193 **   (1) It has no LIMIT or OFFSET
2194 **   (2) All terms are UNION ALL
2195 **   (3) There is no ORDER BY clause
2196 */
multiSelectValues(Parse * pParse,Select * p,SelectDest * pDest)2197 static int multiSelectValues(
2198   Parse *pParse,        /* Parsing context */
2199   Select *p,            /* The right-most of SELECTs to be coded */
2200   SelectDest *pDest     /* What to do with query results */
2201 ){
2202   Select *pPrior;
2203   int nRow = 1;
2204   int rc = 0;
2205   assert( p->selFlags & SF_MultiValue );
2206   do{
2207     assert( p->selFlags & SF_Values );
2208     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2209     assert( p->pLimit==0 );
2210     assert( p->pOffset==0 );
2211     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2212     if( p->pPrior==0 ) break;
2213     assert( p->pPrior->pNext==p );
2214     p = p->pPrior;
2215     nRow++;
2216   }while(1);
2217   while( p ){
2218     pPrior = p->pPrior;
2219     p->pPrior = 0;
2220     rc = sqlite3Select(pParse, p, pDest);
2221     p->pPrior = pPrior;
2222     if( rc ) break;
2223     p->nSelectRow = nRow;
2224     p = p->pNext;
2225   }
2226   return rc;
2227 }
2228 
2229 /*
2230 ** This routine is called to process a compound query form from
2231 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2232 ** INTERSECT
2233 **
2234 ** "p" points to the right-most of the two queries.  the query on the
2235 ** left is p->pPrior.  The left query could also be a compound query
2236 ** in which case this routine will be called recursively.
2237 **
2238 ** The results of the total query are to be written into a destination
2239 ** of type eDest with parameter iParm.
2240 **
2241 ** Example 1:  Consider a three-way compound SQL statement.
2242 **
2243 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2244 **
2245 ** This statement is parsed up as follows:
2246 **
2247 **     SELECT c FROM t3
2248 **      |
2249 **      `----->  SELECT b FROM t2
2250 **                |
2251 **                `------>  SELECT a FROM t1
2252 **
2253 ** The arrows in the diagram above represent the Select.pPrior pointer.
2254 ** So if this routine is called with p equal to the t3 query, then
2255 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2256 **
2257 ** Notice that because of the way SQLite parses compound SELECTs, the
2258 ** individual selects always group from left to right.
2259 */
multiSelect(Parse * pParse,Select * p,SelectDest * pDest)2260 static int multiSelect(
2261   Parse *pParse,        /* Parsing context */
2262   Select *p,            /* The right-most of SELECTs to be coded */
2263   SelectDest *pDest     /* What to do with query results */
2264 ){
2265   int rc = SQLITE_OK;   /* Success code from a subroutine */
2266   Select *pPrior;       /* Another SELECT immediately to our left */
2267   Vdbe *v;              /* Generate code to this VDBE */
2268   SelectDest dest;      /* Alternative data destination */
2269   Select *pDelete = 0;  /* Chain of simple selects to delete */
2270   sqlite3 *db;          /* Database connection */
2271 #ifndef SQLITE_OMIT_EXPLAIN
2272   int iSub1 = 0;        /* EQP id of left-hand query */
2273   int iSub2 = 0;        /* EQP id of right-hand query */
2274 #endif
2275 
2276   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2277   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2278   */
2279   assert( p && p->pPrior );  /* Calling function guarantees this much */
2280   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2281   db = pParse->db;
2282   pPrior = p->pPrior;
2283   dest = *pDest;
2284   if( pPrior->pOrderBy ){
2285     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2286       selectOpName(p->op));
2287     rc = 1;
2288     goto multi_select_end;
2289   }
2290   if( pPrior->pLimit ){
2291     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2292       selectOpName(p->op));
2293     rc = 1;
2294     goto multi_select_end;
2295   }
2296 
2297   v = sqlite3GetVdbe(pParse);
2298   assert( v!=0 );  /* The VDBE already created by calling function */
2299 
2300   /* Create the destination temporary table if necessary
2301   */
2302   if( dest.eDest==SRT_EphemTab ){
2303     assert( p->pEList );
2304     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2305     dest.eDest = SRT_Table;
2306   }
2307 
2308   /* Special handling for a compound-select that originates as a VALUES clause.
2309   */
2310   if( p->selFlags & SF_MultiValue ){
2311     rc = multiSelectValues(pParse, p, &dest);
2312     goto multi_select_end;
2313   }
2314 
2315   /* Make sure all SELECTs in the statement have the same number of elements
2316   ** in their result sets.
2317   */
2318   assert( p->pEList && pPrior->pEList );
2319   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2320 
2321 #ifndef SQLITE_OMIT_CTE
2322   if( p->selFlags & SF_Recursive ){
2323     generateWithRecursiveQuery(pParse, p, &dest);
2324   }else
2325 #endif
2326 
2327   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2328   */
2329   if( p->pOrderBy ){
2330     return multiSelectOrderBy(pParse, p, pDest);
2331   }else
2332 
2333   /* Generate code for the left and right SELECT statements.
2334   */
2335   switch( p->op ){
2336     case TK_ALL: {
2337       int addr = 0;
2338       int nLimit;
2339       assert( !pPrior->pLimit );
2340       pPrior->iLimit = p->iLimit;
2341       pPrior->iOffset = p->iOffset;
2342       pPrior->pLimit = p->pLimit;
2343       pPrior->pOffset = p->pOffset;
2344       explainSetInteger(iSub1, pParse->iNextSelectId);
2345       rc = sqlite3Select(pParse, pPrior, &dest);
2346       p->pLimit = 0;
2347       p->pOffset = 0;
2348       if( rc ){
2349         goto multi_select_end;
2350       }
2351       p->pPrior = 0;
2352       p->iLimit = pPrior->iLimit;
2353       p->iOffset = pPrior->iOffset;
2354       if( p->iLimit ){
2355         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2356         VdbeComment((v, "Jump ahead if LIMIT reached"));
2357         if( p->iOffset ){
2358           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2359                             p->iLimit, p->iOffset+1, p->iOffset);
2360         }
2361       }
2362       explainSetInteger(iSub2, pParse->iNextSelectId);
2363       rc = sqlite3Select(pParse, p, &dest);
2364       testcase( rc!=SQLITE_OK );
2365       pDelete = p->pPrior;
2366       p->pPrior = pPrior;
2367       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2368       if( pPrior->pLimit
2369        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2370        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2371       ){
2372         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2373       }
2374       if( addr ){
2375         sqlite3VdbeJumpHere(v, addr);
2376       }
2377       break;
2378     }
2379     case TK_EXCEPT:
2380     case TK_UNION: {
2381       int unionTab;    /* Cursor number of the temporary table holding result */
2382       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2383       int priorOp;     /* The SRT_ operation to apply to prior selects */
2384       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2385       int addr;
2386       SelectDest uniondest;
2387 
2388       testcase( p->op==TK_EXCEPT );
2389       testcase( p->op==TK_UNION );
2390       priorOp = SRT_Union;
2391       if( dest.eDest==priorOp ){
2392         /* We can reuse a temporary table generated by a SELECT to our
2393         ** right.
2394         */
2395         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2396         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2397         unionTab = dest.iSDParm;
2398       }else{
2399         /* We will need to create our own temporary table to hold the
2400         ** intermediate results.
2401         */
2402         unionTab = pParse->nTab++;
2403         assert( p->pOrderBy==0 );
2404         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2405         assert( p->addrOpenEphm[0] == -1 );
2406         p->addrOpenEphm[0] = addr;
2407         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2408         assert( p->pEList );
2409       }
2410 
2411       /* Code the SELECT statements to our left
2412       */
2413       assert( !pPrior->pOrderBy );
2414       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2415       explainSetInteger(iSub1, pParse->iNextSelectId);
2416       rc = sqlite3Select(pParse, pPrior, &uniondest);
2417       if( rc ){
2418         goto multi_select_end;
2419       }
2420 
2421       /* Code the current SELECT statement
2422       */
2423       if( p->op==TK_EXCEPT ){
2424         op = SRT_Except;
2425       }else{
2426         assert( p->op==TK_UNION );
2427         op = SRT_Union;
2428       }
2429       p->pPrior = 0;
2430       pLimit = p->pLimit;
2431       p->pLimit = 0;
2432       pOffset = p->pOffset;
2433       p->pOffset = 0;
2434       uniondest.eDest = op;
2435       explainSetInteger(iSub2, pParse->iNextSelectId);
2436       rc = sqlite3Select(pParse, p, &uniondest);
2437       testcase( rc!=SQLITE_OK );
2438       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2439       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2440       sqlite3ExprListDelete(db, p->pOrderBy);
2441       pDelete = p->pPrior;
2442       p->pPrior = pPrior;
2443       p->pOrderBy = 0;
2444       if( p->op==TK_UNION ){
2445         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2446       }
2447       sqlite3ExprDelete(db, p->pLimit);
2448       p->pLimit = pLimit;
2449       p->pOffset = pOffset;
2450       p->iLimit = 0;
2451       p->iOffset = 0;
2452 
2453       /* Convert the data in the temporary table into whatever form
2454       ** it is that we currently need.
2455       */
2456       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2457       if( dest.eDest!=priorOp ){
2458         int iCont, iBreak, iStart;
2459         assert( p->pEList );
2460         iBreak = sqlite3VdbeMakeLabel(v);
2461         iCont = sqlite3VdbeMakeLabel(v);
2462         computeLimitRegisters(pParse, p, iBreak);
2463         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2464         iStart = sqlite3VdbeCurrentAddr(v);
2465         selectInnerLoop(pParse, p, p->pEList, unionTab,
2466                         0, 0, &dest, iCont, iBreak);
2467         sqlite3VdbeResolveLabel(v, iCont);
2468         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2469         sqlite3VdbeResolveLabel(v, iBreak);
2470         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2471       }
2472       break;
2473     }
2474     default: assert( p->op==TK_INTERSECT ); {
2475       int tab1, tab2;
2476       int iCont, iBreak, iStart;
2477       Expr *pLimit, *pOffset;
2478       int addr;
2479       SelectDest intersectdest;
2480       int r1;
2481 
2482       /* INTERSECT is different from the others since it requires
2483       ** two temporary tables.  Hence it has its own case.  Begin
2484       ** by allocating the tables we will need.
2485       */
2486       tab1 = pParse->nTab++;
2487       tab2 = pParse->nTab++;
2488       assert( p->pOrderBy==0 );
2489 
2490       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2491       assert( p->addrOpenEphm[0] == -1 );
2492       p->addrOpenEphm[0] = addr;
2493       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2494       assert( p->pEList );
2495 
2496       /* Code the SELECTs to our left into temporary table "tab1".
2497       */
2498       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2499       explainSetInteger(iSub1, pParse->iNextSelectId);
2500       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2501       if( rc ){
2502         goto multi_select_end;
2503       }
2504 
2505       /* Code the current SELECT into temporary table "tab2"
2506       */
2507       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2508       assert( p->addrOpenEphm[1] == -1 );
2509       p->addrOpenEphm[1] = addr;
2510       p->pPrior = 0;
2511       pLimit = p->pLimit;
2512       p->pLimit = 0;
2513       pOffset = p->pOffset;
2514       p->pOffset = 0;
2515       intersectdest.iSDParm = tab2;
2516       explainSetInteger(iSub2, pParse->iNextSelectId);
2517       rc = sqlite3Select(pParse, p, &intersectdest);
2518       testcase( rc!=SQLITE_OK );
2519       pDelete = p->pPrior;
2520       p->pPrior = pPrior;
2521       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2522       sqlite3ExprDelete(db, p->pLimit);
2523       p->pLimit = pLimit;
2524       p->pOffset = pOffset;
2525 
2526       /* Generate code to take the intersection of the two temporary
2527       ** tables.
2528       */
2529       assert( p->pEList );
2530       iBreak = sqlite3VdbeMakeLabel(v);
2531       iCont = sqlite3VdbeMakeLabel(v);
2532       computeLimitRegisters(pParse, p, iBreak);
2533       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2534       r1 = sqlite3GetTempReg(pParse);
2535       iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2536       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2537       sqlite3ReleaseTempReg(pParse, r1);
2538       selectInnerLoop(pParse, p, p->pEList, tab1,
2539                       0, 0, &dest, iCont, iBreak);
2540       sqlite3VdbeResolveLabel(v, iCont);
2541       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2542       sqlite3VdbeResolveLabel(v, iBreak);
2543       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2544       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2545       break;
2546     }
2547   }
2548 
2549   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2550 
2551   /* Compute collating sequences used by
2552   ** temporary tables needed to implement the compound select.
2553   ** Attach the KeyInfo structure to all temporary tables.
2554   **
2555   ** This section is run by the right-most SELECT statement only.
2556   ** SELECT statements to the left always skip this part.  The right-most
2557   ** SELECT might also skip this part if it has no ORDER BY clause and
2558   ** no temp tables are required.
2559   */
2560   if( p->selFlags & SF_UsesEphemeral ){
2561     int i;                        /* Loop counter */
2562     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2563     Select *pLoop;                /* For looping through SELECT statements */
2564     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2565     int nCol;                     /* Number of columns in result set */
2566 
2567     assert( p->pNext==0 );
2568     nCol = p->pEList->nExpr;
2569     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2570     if( !pKeyInfo ){
2571       rc = SQLITE_NOMEM_BKPT;
2572       goto multi_select_end;
2573     }
2574     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2575       *apColl = multiSelectCollSeq(pParse, p, i);
2576       if( 0==*apColl ){
2577         *apColl = db->pDfltColl;
2578       }
2579     }
2580 
2581     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2582       for(i=0; i<2; i++){
2583         int addr = pLoop->addrOpenEphm[i];
2584         if( addr<0 ){
2585           /* If [0] is unused then [1] is also unused.  So we can
2586           ** always safely abort as soon as the first unused slot is found */
2587           assert( pLoop->addrOpenEphm[1]<0 );
2588           break;
2589         }
2590         sqlite3VdbeChangeP2(v, addr, nCol);
2591         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2592                             P4_KEYINFO);
2593         pLoop->addrOpenEphm[i] = -1;
2594       }
2595     }
2596     sqlite3KeyInfoUnref(pKeyInfo);
2597   }
2598 
2599 multi_select_end:
2600   pDest->iSdst = dest.iSdst;
2601   pDest->nSdst = dest.nSdst;
2602   sqlite3SelectDelete(db, pDelete);
2603   return rc;
2604 }
2605 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2606 
2607 /*
2608 ** Error message for when two or more terms of a compound select have different
2609 ** size result sets.
2610 */
sqlite3SelectWrongNumTermsError(Parse * pParse,Select * p)2611 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2612   if( p->selFlags & SF_Values ){
2613     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2614   }else{
2615     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2616       " do not have the same number of result columns", selectOpName(p->op));
2617   }
2618 }
2619 
2620 /*
2621 ** Code an output subroutine for a coroutine implementation of a
2622 ** SELECT statment.
2623 **
2624 ** The data to be output is contained in pIn->iSdst.  There are
2625 ** pIn->nSdst columns to be output.  pDest is where the output should
2626 ** be sent.
2627 **
2628 ** regReturn is the number of the register holding the subroutine
2629 ** return address.
2630 **
2631 ** If regPrev>0 then it is the first register in a vector that
2632 ** records the previous output.  mem[regPrev] is a flag that is false
2633 ** if there has been no previous output.  If regPrev>0 then code is
2634 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2635 ** keys.
2636 **
2637 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2638 ** iBreak.
2639 */
generateOutputSubroutine(Parse * pParse,Select * p,SelectDest * pIn,SelectDest * pDest,int regReturn,int regPrev,KeyInfo * pKeyInfo,int iBreak)2640 static int generateOutputSubroutine(
2641   Parse *pParse,          /* Parsing context */
2642   Select *p,              /* The SELECT statement */
2643   SelectDest *pIn,        /* Coroutine supplying data */
2644   SelectDest *pDest,      /* Where to send the data */
2645   int regReturn,          /* The return address register */
2646   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2647   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2648   int iBreak              /* Jump here if we hit the LIMIT */
2649 ){
2650   Vdbe *v = pParse->pVdbe;
2651   int iContinue;
2652   int addr;
2653 
2654   addr = sqlite3VdbeCurrentAddr(v);
2655   iContinue = sqlite3VdbeMakeLabel(v);
2656 
2657   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2658   */
2659   if( regPrev ){
2660     int addr1, addr2;
2661     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2662     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2663                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2664     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2665     sqlite3VdbeJumpHere(v, addr1);
2666     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2667     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2668   }
2669   if( pParse->db->mallocFailed ) return 0;
2670 
2671   /* Suppress the first OFFSET entries if there is an OFFSET clause
2672   */
2673   codeOffset(v, p->iOffset, iContinue);
2674 
2675   assert( pDest->eDest!=SRT_Exists );
2676   assert( pDest->eDest!=SRT_Table );
2677   switch( pDest->eDest ){
2678     /* Store the result as data using a unique key.
2679     */
2680     case SRT_EphemTab: {
2681       int r1 = sqlite3GetTempReg(pParse);
2682       int r2 = sqlite3GetTempReg(pParse);
2683       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2684       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2685       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2686       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2687       sqlite3ReleaseTempReg(pParse, r2);
2688       sqlite3ReleaseTempReg(pParse, r1);
2689       break;
2690     }
2691 
2692 #ifndef SQLITE_OMIT_SUBQUERY
2693     /* If we are creating a set for an "expr IN (SELECT ...)".
2694     */
2695     case SRT_Set: {
2696       int r1;
2697       testcase( pIn->nSdst>1 );
2698       r1 = sqlite3GetTempReg(pParse);
2699       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2700           r1, pDest->zAffSdst, pIn->nSdst);
2701       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2702       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2703                            pIn->iSdst, pIn->nSdst);
2704       sqlite3ReleaseTempReg(pParse, r1);
2705       break;
2706     }
2707 
2708     /* If this is a scalar select that is part of an expression, then
2709     ** store the results in the appropriate memory cell and break out
2710     ** of the scan loop.
2711     */
2712     case SRT_Mem: {
2713       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2714       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2715       /* The LIMIT clause will jump out of the loop for us */
2716       break;
2717     }
2718 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2719 
2720     /* The results are stored in a sequence of registers
2721     ** starting at pDest->iSdst.  Then the co-routine yields.
2722     */
2723     case SRT_Coroutine: {
2724       if( pDest->iSdst==0 ){
2725         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2726         pDest->nSdst = pIn->nSdst;
2727       }
2728       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2729       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2730       break;
2731     }
2732 
2733     /* If none of the above, then the result destination must be
2734     ** SRT_Output.  This routine is never called with any other
2735     ** destination other than the ones handled above or SRT_Output.
2736     **
2737     ** For SRT_Output, results are stored in a sequence of registers.
2738     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2739     ** return the next row of result.
2740     */
2741     default: {
2742       assert( pDest->eDest==SRT_Output );
2743       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2744       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2745       break;
2746     }
2747   }
2748 
2749   /* Jump to the end of the loop if the LIMIT is reached.
2750   */
2751   if( p->iLimit ){
2752     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2753   }
2754 
2755   /* Generate the subroutine return
2756   */
2757   sqlite3VdbeResolveLabel(v, iContinue);
2758   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2759 
2760   return addr;
2761 }
2762 
2763 /*
2764 ** Alternative compound select code generator for cases when there
2765 ** is an ORDER BY clause.
2766 **
2767 ** We assume a query of the following form:
2768 **
2769 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2770 **
2771 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2772 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2773 ** co-routines.  Then run the co-routines in parallel and merge the results
2774 ** into the output.  In addition to the two coroutines (called selectA and
2775 ** selectB) there are 7 subroutines:
2776 **
2777 **    outA:    Move the output of the selectA coroutine into the output
2778 **             of the compound query.
2779 **
2780 **    outB:    Move the output of the selectB coroutine into the output
2781 **             of the compound query.  (Only generated for UNION and
2782 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2783 **             appears only in B.)
2784 **
2785 **    AltB:    Called when there is data from both coroutines and A<B.
2786 **
2787 **    AeqB:    Called when there is data from both coroutines and A==B.
2788 **
2789 **    AgtB:    Called when there is data from both coroutines and A>B.
2790 **
2791 **    EofA:    Called when data is exhausted from selectA.
2792 **
2793 **    EofB:    Called when data is exhausted from selectB.
2794 **
2795 ** The implementation of the latter five subroutines depend on which
2796 ** <operator> is used:
2797 **
2798 **
2799 **             UNION ALL         UNION            EXCEPT          INTERSECT
2800 **          -------------  -----------------  --------------  -----------------
2801 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2802 **
2803 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2804 **
2805 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2806 **
2807 **   EofA:   outB, nextB      outB, nextB          halt             halt
2808 **
2809 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2810 **
2811 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2812 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2813 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2814 ** following nextX causes a jump to the end of the select processing.
2815 **
2816 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2817 ** within the output subroutine.  The regPrev register set holds the previously
2818 ** output value.  A comparison is made against this value and the output
2819 ** is skipped if the next results would be the same as the previous.
2820 **
2821 ** The implementation plan is to implement the two coroutines and seven
2822 ** subroutines first, then put the control logic at the bottom.  Like this:
2823 **
2824 **          goto Init
2825 **     coA: coroutine for left query (A)
2826 **     coB: coroutine for right query (B)
2827 **    outA: output one row of A
2828 **    outB: output one row of B (UNION and UNION ALL only)
2829 **    EofA: ...
2830 **    EofB: ...
2831 **    AltB: ...
2832 **    AeqB: ...
2833 **    AgtB: ...
2834 **    Init: initialize coroutine registers
2835 **          yield coA
2836 **          if eof(A) goto EofA
2837 **          yield coB
2838 **          if eof(B) goto EofB
2839 **    Cmpr: Compare A, B
2840 **          Jump AltB, AeqB, AgtB
2841 **     End: ...
2842 **
2843 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2844 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2845 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2846 ** and AgtB jump to either L2 or to one of EofA or EofB.
2847 */
2848 #ifndef SQLITE_OMIT_COMPOUND_SELECT
multiSelectOrderBy(Parse * pParse,Select * p,SelectDest * pDest)2849 static int multiSelectOrderBy(
2850   Parse *pParse,        /* Parsing context */
2851   Select *p,            /* The right-most of SELECTs to be coded */
2852   SelectDest *pDest     /* What to do with query results */
2853 ){
2854   int i, j;             /* Loop counters */
2855   Select *pPrior;       /* Another SELECT immediately to our left */
2856   Vdbe *v;              /* Generate code to this VDBE */
2857   SelectDest destA;     /* Destination for coroutine A */
2858   SelectDest destB;     /* Destination for coroutine B */
2859   int regAddrA;         /* Address register for select-A coroutine */
2860   int regAddrB;         /* Address register for select-B coroutine */
2861   int addrSelectA;      /* Address of the select-A coroutine */
2862   int addrSelectB;      /* Address of the select-B coroutine */
2863   int regOutA;          /* Address register for the output-A subroutine */
2864   int regOutB;          /* Address register for the output-B subroutine */
2865   int addrOutA;         /* Address of the output-A subroutine */
2866   int addrOutB = 0;     /* Address of the output-B subroutine */
2867   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2868   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2869   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2870   int addrAltB;         /* Address of the A<B subroutine */
2871   int addrAeqB;         /* Address of the A==B subroutine */
2872   int addrAgtB;         /* Address of the A>B subroutine */
2873   int regLimitA;        /* Limit register for select-A */
2874   int regLimitB;        /* Limit register for select-A */
2875   int regPrev;          /* A range of registers to hold previous output */
2876   int savedLimit;       /* Saved value of p->iLimit */
2877   int savedOffset;      /* Saved value of p->iOffset */
2878   int labelCmpr;        /* Label for the start of the merge algorithm */
2879   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2880   int addr1;            /* Jump instructions that get retargetted */
2881   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2882   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2883   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2884   sqlite3 *db;          /* Database connection */
2885   ExprList *pOrderBy;   /* The ORDER BY clause */
2886   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2887   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2888 #ifndef SQLITE_OMIT_EXPLAIN
2889   int iSub1;            /* EQP id of left-hand query */
2890   int iSub2;            /* EQP id of right-hand query */
2891 #endif
2892 
2893   assert( p->pOrderBy!=0 );
2894   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2895   db = pParse->db;
2896   v = pParse->pVdbe;
2897   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2898   labelEnd = sqlite3VdbeMakeLabel(v);
2899   labelCmpr = sqlite3VdbeMakeLabel(v);
2900 
2901 
2902   /* Patch up the ORDER BY clause
2903   */
2904   op = p->op;
2905   pPrior = p->pPrior;
2906   assert( pPrior->pOrderBy==0 );
2907   pOrderBy = p->pOrderBy;
2908   assert( pOrderBy );
2909   nOrderBy = pOrderBy->nExpr;
2910 
2911   /* For operators other than UNION ALL we have to make sure that
2912   ** the ORDER BY clause covers every term of the result set.  Add
2913   ** terms to the ORDER BY clause as necessary.
2914   */
2915   if( op!=TK_ALL ){
2916     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2917       struct ExprList_item *pItem;
2918       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2919         assert( pItem->u.x.iOrderByCol>0 );
2920         if( pItem->u.x.iOrderByCol==i ) break;
2921       }
2922       if( j==nOrderBy ){
2923         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2924         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2925         pNew->flags |= EP_IntValue;
2926         pNew->u.iValue = i;
2927         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2928         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2929       }
2930     }
2931   }
2932 
2933   /* Compute the comparison permutation and keyinfo that is used with
2934   ** the permutation used to determine if the next
2935   ** row of results comes from selectA or selectB.  Also add explicit
2936   ** collations to the ORDER BY clause terms so that when the subqueries
2937   ** to the right and the left are evaluated, they use the correct
2938   ** collation.
2939   */
2940   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2941   if( aPermute ){
2942     struct ExprList_item *pItem;
2943     aPermute[0] = nOrderBy;
2944     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2945       assert( pItem->u.x.iOrderByCol>0 );
2946       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2947       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2948     }
2949     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2950   }else{
2951     pKeyMerge = 0;
2952   }
2953 
2954   /* Reattach the ORDER BY clause to the query.
2955   */
2956   p->pOrderBy = pOrderBy;
2957   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2958 
2959   /* Allocate a range of temporary registers and the KeyInfo needed
2960   ** for the logic that removes duplicate result rows when the
2961   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2962   */
2963   if( op==TK_ALL ){
2964     regPrev = 0;
2965   }else{
2966     int nExpr = p->pEList->nExpr;
2967     assert( nOrderBy>=nExpr || db->mallocFailed );
2968     regPrev = pParse->nMem+1;
2969     pParse->nMem += nExpr+1;
2970     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2971     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2972     if( pKeyDup ){
2973       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2974       for(i=0; i<nExpr; i++){
2975         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2976         pKeyDup->aSortOrder[i] = 0;
2977       }
2978     }
2979   }
2980 
2981   /* Separate the left and the right query from one another
2982   */
2983   p->pPrior = 0;
2984   pPrior->pNext = 0;
2985   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2986   if( pPrior->pPrior==0 ){
2987     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2988   }
2989 
2990   /* Compute the limit registers */
2991   computeLimitRegisters(pParse, p, labelEnd);
2992   if( p->iLimit && op==TK_ALL ){
2993     regLimitA = ++pParse->nMem;
2994     regLimitB = ++pParse->nMem;
2995     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2996                                   regLimitA);
2997     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2998   }else{
2999     regLimitA = regLimitB = 0;
3000   }
3001   sqlite3ExprDelete(db, p->pLimit);
3002   p->pLimit = 0;
3003   sqlite3ExprDelete(db, p->pOffset);
3004   p->pOffset = 0;
3005 
3006   regAddrA = ++pParse->nMem;
3007   regAddrB = ++pParse->nMem;
3008   regOutA = ++pParse->nMem;
3009   regOutB = ++pParse->nMem;
3010   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3011   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3012 
3013   /* Generate a coroutine to evaluate the SELECT statement to the
3014   ** left of the compound operator - the "A" select.
3015   */
3016   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3017   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3018   VdbeComment((v, "left SELECT"));
3019   pPrior->iLimit = regLimitA;
3020   explainSetInteger(iSub1, pParse->iNextSelectId);
3021   sqlite3Select(pParse, pPrior, &destA);
3022   sqlite3VdbeEndCoroutine(v, regAddrA);
3023   sqlite3VdbeJumpHere(v, addr1);
3024 
3025   /* Generate a coroutine to evaluate the SELECT statement on
3026   ** the right - the "B" select
3027   */
3028   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3029   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3030   VdbeComment((v, "right SELECT"));
3031   savedLimit = p->iLimit;
3032   savedOffset = p->iOffset;
3033   p->iLimit = regLimitB;
3034   p->iOffset = 0;
3035   explainSetInteger(iSub2, pParse->iNextSelectId);
3036   sqlite3Select(pParse, p, &destB);
3037   p->iLimit = savedLimit;
3038   p->iOffset = savedOffset;
3039   sqlite3VdbeEndCoroutine(v, regAddrB);
3040 
3041   /* Generate a subroutine that outputs the current row of the A
3042   ** select as the next output row of the compound select.
3043   */
3044   VdbeNoopComment((v, "Output routine for A"));
3045   addrOutA = generateOutputSubroutine(pParse,
3046                  p, &destA, pDest, regOutA,
3047                  regPrev, pKeyDup, labelEnd);
3048 
3049   /* Generate a subroutine that outputs the current row of the B
3050   ** select as the next output row of the compound select.
3051   */
3052   if( op==TK_ALL || op==TK_UNION ){
3053     VdbeNoopComment((v, "Output routine for B"));
3054     addrOutB = generateOutputSubroutine(pParse,
3055                  p, &destB, pDest, regOutB,
3056                  regPrev, pKeyDup, labelEnd);
3057   }
3058   sqlite3KeyInfoUnref(pKeyDup);
3059 
3060   /* Generate a subroutine to run when the results from select A
3061   ** are exhausted and only data in select B remains.
3062   */
3063   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3064     addrEofA_noB = addrEofA = labelEnd;
3065   }else{
3066     VdbeNoopComment((v, "eof-A subroutine"));
3067     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3068     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3069                                      VdbeCoverage(v);
3070     sqlite3VdbeGoto(v, addrEofA);
3071     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3072   }
3073 
3074   /* Generate a subroutine to run when the results from select B
3075   ** are exhausted and only data in select A remains.
3076   */
3077   if( op==TK_INTERSECT ){
3078     addrEofB = addrEofA;
3079     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3080   }else{
3081     VdbeNoopComment((v, "eof-B subroutine"));
3082     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3083     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3084     sqlite3VdbeGoto(v, addrEofB);
3085   }
3086 
3087   /* Generate code to handle the case of A<B
3088   */
3089   VdbeNoopComment((v, "A-lt-B subroutine"));
3090   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3091   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3092   sqlite3VdbeGoto(v, labelCmpr);
3093 
3094   /* Generate code to handle the case of A==B
3095   */
3096   if( op==TK_ALL ){
3097     addrAeqB = addrAltB;
3098   }else if( op==TK_INTERSECT ){
3099     addrAeqB = addrAltB;
3100     addrAltB++;
3101   }else{
3102     VdbeNoopComment((v, "A-eq-B subroutine"));
3103     addrAeqB =
3104     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3105     sqlite3VdbeGoto(v, labelCmpr);
3106   }
3107 
3108   /* Generate code to handle the case of A>B
3109   */
3110   VdbeNoopComment((v, "A-gt-B subroutine"));
3111   addrAgtB = sqlite3VdbeCurrentAddr(v);
3112   if( op==TK_ALL || op==TK_UNION ){
3113     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3114   }
3115   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3116   sqlite3VdbeGoto(v, labelCmpr);
3117 
3118   /* This code runs once to initialize everything.
3119   */
3120   sqlite3VdbeJumpHere(v, addr1);
3121   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3122   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3123 
3124   /* Implement the main merge loop
3125   */
3126   sqlite3VdbeResolveLabel(v, labelCmpr);
3127   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3128   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3129                          (char*)pKeyMerge, P4_KEYINFO);
3130   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3131   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3132 
3133   /* Jump to the this point in order to terminate the query.
3134   */
3135   sqlite3VdbeResolveLabel(v, labelEnd);
3136 
3137   /* Reassembly the compound query so that it will be freed correctly
3138   ** by the calling function */
3139   if( p->pPrior ){
3140     sqlite3SelectDelete(db, p->pPrior);
3141   }
3142   p->pPrior = pPrior;
3143   pPrior->pNext = p;
3144 
3145   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3146   **** subqueries ****/
3147   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3148   return pParse->nErr!=0;
3149 }
3150 #endif
3151 
3152 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3153 
3154 /* An instance of the SubstContext object describes an substitution edit
3155 ** to be performed on a parse tree.
3156 **
3157 ** All references to columns in table iTable are to be replaced by corresponding
3158 ** expressions in pEList.
3159 */
3160 typedef struct SubstContext {
3161   Parse *pParse;            /* The parsing context */
3162   int iTable;               /* Replace references to this table */
3163   int iNewTable;            /* New table number */
3164   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3165   ExprList *pEList;         /* Replacement expressions */
3166 } SubstContext;
3167 
3168 /* Forward Declarations */
3169 static void substExprList(SubstContext*, ExprList*);
3170 static void substSelect(SubstContext*, Select*, int);
3171 
3172 /*
3173 ** Scan through the expression pExpr.  Replace every reference to
3174 ** a column in table number iTable with a copy of the iColumn-th
3175 ** entry in pEList.  (But leave references to the ROWID column
3176 ** unchanged.)
3177 **
3178 ** This routine is part of the flattening procedure.  A subquery
3179 ** whose result set is defined by pEList appears as entry in the
3180 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3181 ** FORM clause entry is iTable.  This routine makes the necessary
3182 ** changes to pExpr so that it refers directly to the source table
3183 ** of the subquery rather the result set of the subquery.
3184 */
substExpr(SubstContext * pSubst,Expr * pExpr)3185 static Expr *substExpr(
3186   SubstContext *pSubst,  /* Description of the substitution */
3187   Expr *pExpr            /* Expr in which substitution occurs */
3188 ){
3189   if( pExpr==0 ) return 0;
3190   if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){
3191     pExpr->iRightJoinTable = pSubst->iNewTable;
3192   }
3193   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3194     if( pExpr->iColumn<0 ){
3195       pExpr->op = TK_NULL;
3196     }else{
3197       Expr *pNew;
3198       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3199       Expr ifNullRow;
3200       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3201       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3202       if( sqlite3ExprIsVector(pCopy) ){
3203         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3204       }else{
3205         sqlite3 *db = pSubst->pParse->db;
3206         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3207           memset(&ifNullRow, 0, sizeof(ifNullRow));
3208           ifNullRow.op = TK_IF_NULL_ROW;
3209           ifNullRow.pLeft = pCopy;
3210           ifNullRow.iTable = pSubst->iNewTable;
3211           pCopy = &ifNullRow;
3212         }
3213         pNew = sqlite3ExprDup(db, pCopy, 0);
3214         if( pNew && pSubst->isLeftJoin ){
3215           ExprSetProperty(pNew, EP_CanBeNull);
3216         }
3217         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3218           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3219           ExprSetProperty(pNew, EP_FromJoin);
3220         }
3221         sqlite3ExprDelete(db, pExpr);
3222         pExpr = pNew;
3223       }
3224     }
3225   }else{
3226     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3227       pExpr->iTable = pSubst->iNewTable;
3228     }
3229     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3230     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3231     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3232       substSelect(pSubst, pExpr->x.pSelect, 1);
3233     }else{
3234       substExprList(pSubst, pExpr->x.pList);
3235     }
3236   }
3237   return pExpr;
3238 }
substExprList(SubstContext * pSubst,ExprList * pList)3239 static void substExprList(
3240   SubstContext *pSubst, /* Description of the substitution */
3241   ExprList *pList       /* List to scan and in which to make substitutes */
3242 ){
3243   int i;
3244   if( pList==0 ) return;
3245   for(i=0; i<pList->nExpr; i++){
3246     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3247   }
3248 }
substSelect(SubstContext * pSubst,Select * p,int doPrior)3249 static void substSelect(
3250   SubstContext *pSubst, /* Description of the substitution */
3251   Select *p,            /* SELECT statement in which to make substitutions */
3252   int doPrior           /* Do substitutes on p->pPrior too */
3253 ){
3254   SrcList *pSrc;
3255   struct SrcList_item *pItem;
3256   int i;
3257   if( !p ) return;
3258   do{
3259     substExprList(pSubst, p->pEList);
3260     substExprList(pSubst, p->pGroupBy);
3261     substExprList(pSubst, p->pOrderBy);
3262     p->pHaving = substExpr(pSubst, p->pHaving);
3263     p->pWhere = substExpr(pSubst, p->pWhere);
3264     pSrc = p->pSrc;
3265     assert( pSrc!=0 );
3266     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3267       substSelect(pSubst, pItem->pSelect, 1);
3268       if( pItem->fg.isTabFunc ){
3269         substExprList(pSubst, pItem->u1.pFuncArg);
3270       }
3271     }
3272   }while( doPrior && (p = p->pPrior)!=0 );
3273 }
3274 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3275 
3276 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3277 /*
3278 ** This routine attempts to flatten subqueries as a performance optimization.
3279 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3280 **
3281 ** To understand the concept of flattening, consider the following
3282 ** query:
3283 **
3284 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3285 **
3286 ** The default way of implementing this query is to execute the
3287 ** subquery first and store the results in a temporary table, then
3288 ** run the outer query on that temporary table.  This requires two
3289 ** passes over the data.  Furthermore, because the temporary table
3290 ** has no indices, the WHERE clause on the outer query cannot be
3291 ** optimized.
3292 **
3293 ** This routine attempts to rewrite queries such as the above into
3294 ** a single flat select, like this:
3295 **
3296 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3297 **
3298 ** The code generated for this simplification gives the same result
3299 ** but only has to scan the data once.  And because indices might
3300 ** exist on the table t1, a complete scan of the data might be
3301 ** avoided.
3302 **
3303 ** Flattening is only attempted if all of the following are true:
3304 **
3305 **   (1)  The subquery and the outer query do not both use aggregates.
3306 **
3307 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3308 **        and (2b) the outer query does not use subqueries other than the one
3309 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3310 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3311 **
3312 **   (3)  The subquery is not the right operand of a LEFT JOIN
3313 **        or (a) the subquery is not itself a join and (b) the FROM clause
3314 **        of the subquery does not contain a virtual table and (c) the
3315 **        outer query is not an aggregate.
3316 **
3317 **   (4)  The subquery is not DISTINCT.
3318 **
3319 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3320 **        sub-queries that were excluded from this optimization. Restriction
3321 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3322 **
3323 **   (6)  The subquery does not use aggregates or the outer query is not
3324 **        DISTINCT.
3325 **
3326 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3327 **        A FROM clause, consider adding a FROM clause with the special
3328 **        table sqlite_once that consists of a single row containing a
3329 **        single NULL.
3330 **
3331 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3332 **
3333 **   (9)  The subquery does not use LIMIT or the outer query does not use
3334 **        aggregates.
3335 **
3336 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3337 **        accidently carried the comment forward until 2014-09-15.  Original
3338 **        text: "The subquery does not use aggregates or the outer query
3339 **        does not use LIMIT."
3340 **
3341 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3342 **
3343 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3344 **        a separate restriction deriving from ticket #350.
3345 **
3346 **  (13)  The subquery and outer query do not both use LIMIT.
3347 **
3348 **  (14)  The subquery does not use OFFSET.
3349 **
3350 **  (15)  The outer query is not part of a compound select or the
3351 **        subquery does not have a LIMIT clause.
3352 **        (See ticket #2339 and ticket [02a8e81d44]).
3353 **
3354 **  (16)  The outer query is not an aggregate or the subquery does
3355 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3356 **        until we introduced the group_concat() function.
3357 **
3358 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3359 **        compound clause made up entirely of non-aggregate queries, and
3360 **        the parent query:
3361 **
3362 **          * is not itself part of a compound select,
3363 **          * is not an aggregate or DISTINCT query, and
3364 **          * is not a join
3365 **
3366 **        The parent and sub-query may contain WHERE clauses. Subject to
3367 **        rules (11), (13) and (14), they may also contain ORDER BY,
3368 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3369 **        operator other than UNION ALL because all the other compound
3370 **        operators have an implied DISTINCT which is disallowed by
3371 **        restriction (4).
3372 **
3373 **        Also, each component of the sub-query must return the same number
3374 **        of result columns. This is actually a requirement for any compound
3375 **        SELECT statement, but all the code here does is make sure that no
3376 **        such (illegal) sub-query is flattened. The caller will detect the
3377 **        syntax error and return a detailed message.
3378 **
3379 **  (18)  If the sub-query is a compound select, then all terms of the
3380 **        ORDER by clause of the parent must be simple references to
3381 **        columns of the sub-query.
3382 **
3383 **  (19)  The subquery does not use LIMIT or the outer query does not
3384 **        have a WHERE clause.
3385 **
3386 **  (20)  If the sub-query is a compound select, then it must not use
3387 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3388 **        somewhat by saying that the terms of the ORDER BY clause must
3389 **        appear as unmodified result columns in the outer query.  But we
3390 **        have other optimizations in mind to deal with that case.
3391 **
3392 **  (21)  The subquery does not use LIMIT or the outer query is not
3393 **        DISTINCT.  (See ticket [752e1646fc]).
3394 **
3395 **  (22)  The subquery is not a recursive CTE.
3396 **
3397 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3398 **        compound query. This restriction is because transforming the
3399 **        parent to a compound query confuses the code that handles
3400 **        recursive queries in multiSelect().
3401 **
3402 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3403 **        or max() functions.  (Without this restriction, a query like:
3404 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3405 **        return the value X for which Y was maximal.)
3406 **
3407 **
3408 ** In this routine, the "p" parameter is a pointer to the outer query.
3409 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3410 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3411 **
3412 ** If flattening is not attempted, this routine is a no-op and returns 0.
3413 ** If flattening is attempted this routine returns 1.
3414 **
3415 ** All of the expression analysis must occur on both the outer query and
3416 ** the subquery before this routine runs.
3417 */
flattenSubquery(Parse * pParse,Select * p,int iFrom,int isAgg,int subqueryIsAgg)3418 static int flattenSubquery(
3419   Parse *pParse,       /* Parsing context */
3420   Select *p,           /* The parent or outer SELECT statement */
3421   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3422   int isAgg,           /* True if outer SELECT uses aggregate functions */
3423   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3424 ){
3425   const char *zSavedAuthContext = pParse->zAuthContext;
3426   Select *pParent;    /* Current UNION ALL term of the other query */
3427   Select *pSub;       /* The inner query or "subquery" */
3428   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3429   SrcList *pSrc;      /* The FROM clause of the outer query */
3430   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3431   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3432   int iNewParent = -1;/* Replacement table for iParent */
3433   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3434   int i;              /* Loop counter */
3435   Expr *pWhere;                    /* The WHERE clause */
3436   struct SrcList_item *pSubitem;   /* The subquery */
3437   sqlite3 *db = pParse->db;
3438 
3439   /* Check to see if flattening is permitted.  Return 0 if not.
3440   */
3441   assert( p!=0 );
3442   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3443   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3444   pSrc = p->pSrc;
3445   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3446   pSubitem = &pSrc->a[iFrom];
3447   iParent = pSubitem->iCursor;
3448   pSub = pSubitem->pSelect;
3449   assert( pSub!=0 );
3450   if( subqueryIsAgg ){
3451     if( isAgg ) return 0;                                /* Restriction (1)   */
3452     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3453     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3454      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3455      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3456     ){
3457       return 0;                                          /* Restriction (2b)  */
3458     }
3459   }
3460 
3461   pSubSrc = pSub->pSrc;
3462   assert( pSubSrc );
3463   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3464   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3465   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3466   ** became arbitrary expressions, we were forced to add restrictions (13)
3467   ** and (14). */
3468   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3469   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3470   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3471     return 0;                                            /* Restriction (15) */
3472   }
3473   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3474   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3475   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3476      return 0;         /* Restrictions (8)(9) */
3477   }
3478   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3479      return 0;         /* Restriction (6)  */
3480   }
3481   if( p->pOrderBy && pSub->pOrderBy ){
3482      return 0;                                           /* Restriction (11) */
3483   }
3484   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3485   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3486   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3487      return 0;         /* Restriction (21) */
3488   }
3489   testcase( pSub->selFlags & SF_Recursive );
3490   testcase( pSub->selFlags & SF_MinMaxAgg );
3491   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3492     return 0; /* Restrictions (22) and (24) */
3493   }
3494   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3495     return 0; /* Restriction (23) */
3496   }
3497 
3498   /*
3499   ** If the subquery is the right operand of a LEFT JOIN, then the
3500   ** subquery may not be a join itself.  Example of why this is not allowed:
3501   **
3502   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3503   **
3504   ** If we flatten the above, we would get
3505   **
3506   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3507   **
3508   ** which is not at all the same thing.
3509   **
3510   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3511   ** query cannot be an aggregate.  This is an artifact of the way aggregates
3512   ** are processed - there is no mechanism to determine if the LEFT JOIN
3513   ** table should be all-NULL.
3514   **
3515   ** See also tickets #306, #350, and #3300.
3516   */
3517   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3518     isLeftJoin = 1;
3519     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3520       return 0; /* Restriction (3) */
3521     }
3522   }
3523 #ifdef SQLITE_EXTRA_IFNULLROW
3524   else if( iFrom>0 && !isAgg ){
3525     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3526     ** every reference to any result column from subquery in a join, even though
3527     ** they are not necessary.  This will stress-test the OP_IfNullRow opcode. */
3528     isLeftJoin = -1;
3529   }
3530 #endif
3531 
3532   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3533   ** use only the UNION ALL operator. And none of the simple select queries
3534   ** that make up the compound SELECT are allowed to be aggregate or distinct
3535   ** queries.
3536   */
3537   if( pSub->pPrior ){
3538     if( pSub->pOrderBy ){
3539       return 0;  /* Restriction 20 */
3540     }
3541     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3542       return 0;
3543     }
3544     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3545       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3546       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3547       assert( pSub->pSrc!=0 );
3548       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3549       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3550        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3551        || pSub1->pSrc->nSrc<1
3552       ){
3553         return 0;
3554       }
3555       testcase( pSub1->pSrc->nSrc>1 );
3556     }
3557 
3558     /* Restriction 18. */
3559     if( p->pOrderBy ){
3560       int ii;
3561       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3562         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3563       }
3564     }
3565   }
3566 
3567   /***** If we reach this point, flattening is permitted. *****/
3568   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3569                    pSub->zSelName, pSub, iFrom));
3570 
3571   /* Authorize the subquery */
3572   pParse->zAuthContext = pSubitem->zName;
3573   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3574   testcase( i==SQLITE_DENY );
3575   pParse->zAuthContext = zSavedAuthContext;
3576 
3577   /* If the sub-query is a compound SELECT statement, then (by restrictions
3578   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3579   ** be of the form:
3580   **
3581   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3582   **
3583   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3584   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3585   ** OFFSET clauses and joins them to the left-hand-side of the original
3586   ** using UNION ALL operators. In this case N is the number of simple
3587   ** select statements in the compound sub-query.
3588   **
3589   ** Example:
3590   **
3591   **     SELECT a+1 FROM (
3592   **        SELECT x FROM tab
3593   **        UNION ALL
3594   **        SELECT y FROM tab
3595   **        UNION ALL
3596   **        SELECT abs(z*2) FROM tab2
3597   **     ) WHERE a!=5 ORDER BY 1
3598   **
3599   ** Transformed into:
3600   **
3601   **     SELECT x+1 FROM tab WHERE x+1!=5
3602   **     UNION ALL
3603   **     SELECT y+1 FROM tab WHERE y+1!=5
3604   **     UNION ALL
3605   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3606   **     ORDER BY 1
3607   **
3608   ** We call this the "compound-subquery flattening".
3609   */
3610   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3611     Select *pNew;
3612     ExprList *pOrderBy = p->pOrderBy;
3613     Expr *pLimit = p->pLimit;
3614     Expr *pOffset = p->pOffset;
3615     Select *pPrior = p->pPrior;
3616     p->pOrderBy = 0;
3617     p->pSrc = 0;
3618     p->pPrior = 0;
3619     p->pLimit = 0;
3620     p->pOffset = 0;
3621     pNew = sqlite3SelectDup(db, p, 0);
3622     sqlite3SelectSetName(pNew, pSub->zSelName);
3623     p->pOffset = pOffset;
3624     p->pLimit = pLimit;
3625     p->pOrderBy = pOrderBy;
3626     p->pSrc = pSrc;
3627     p->op = TK_ALL;
3628     if( pNew==0 ){
3629       p->pPrior = pPrior;
3630     }else{
3631       pNew->pPrior = pPrior;
3632       if( pPrior ) pPrior->pNext = pNew;
3633       pNew->pNext = p;
3634       p->pPrior = pNew;
3635       SELECTTRACE(2,pParse,p,
3636          ("compound-subquery flattener creates %s.%p as peer\n",
3637          pNew->zSelName, pNew));
3638     }
3639     if( db->mallocFailed ) return 1;
3640   }
3641 
3642   /* Begin flattening the iFrom-th entry of the FROM clause
3643   ** in the outer query.
3644   */
3645   pSub = pSub1 = pSubitem->pSelect;
3646 
3647   /* Delete the transient table structure associated with the
3648   ** subquery
3649   */
3650   sqlite3DbFree(db, pSubitem->zDatabase);
3651   sqlite3DbFree(db, pSubitem->zName);
3652   sqlite3DbFree(db, pSubitem->zAlias);
3653   pSubitem->zDatabase = 0;
3654   pSubitem->zName = 0;
3655   pSubitem->zAlias = 0;
3656   pSubitem->pSelect = 0;
3657 
3658   /* Defer deleting the Table object associated with the
3659   ** subquery until code generation is
3660   ** complete, since there may still exist Expr.pTab entries that
3661   ** refer to the subquery even after flattening.  Ticket #3346.
3662   **
3663   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3664   */
3665   if( ALWAYS(pSubitem->pTab!=0) ){
3666     Table *pTabToDel = pSubitem->pTab;
3667     if( pTabToDel->nTabRef==1 ){
3668       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3669       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3670       pToplevel->pZombieTab = pTabToDel;
3671     }else{
3672       pTabToDel->nTabRef--;
3673     }
3674     pSubitem->pTab = 0;
3675   }
3676 
3677   /* The following loop runs once for each term in a compound-subquery
3678   ** flattening (as described above).  If we are doing a different kind
3679   ** of flattening - a flattening other than a compound-subquery flattening -
3680   ** then this loop only runs once.
3681   **
3682   ** This loop moves all of the FROM elements of the subquery into the
3683   ** the FROM clause of the outer query.  Before doing this, remember
3684   ** the cursor number for the original outer query FROM element in
3685   ** iParent.  The iParent cursor will never be used.  Subsequent code
3686   ** will scan expressions looking for iParent references and replace
3687   ** those references with expressions that resolve to the subquery FROM
3688   ** elements we are now copying in.
3689   */
3690   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3691     int nSubSrc;
3692     u8 jointype = 0;
3693     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3694     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3695     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3696 
3697     if( pSrc ){
3698       assert( pParent==p );  /* First time through the loop */
3699       jointype = pSubitem->fg.jointype;
3700     }else{
3701       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3702       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3703       if( pSrc==0 ){
3704         assert( db->mallocFailed );
3705         break;
3706       }
3707     }
3708 
3709     /* The subquery uses a single slot of the FROM clause of the outer
3710     ** query.  If the subquery has more than one element in its FROM clause,
3711     ** then expand the outer query to make space for it to hold all elements
3712     ** of the subquery.
3713     **
3714     ** Example:
3715     **
3716     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3717     **
3718     ** The outer query has 3 slots in its FROM clause.  One slot of the
3719     ** outer query (the middle slot) is used by the subquery.  The next
3720     ** block of code will expand the outer query FROM clause to 4 slots.
3721     ** The middle slot is expanded to two slots in order to make space
3722     ** for the two elements in the FROM clause of the subquery.
3723     */
3724     if( nSubSrc>1 ){
3725       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3726       if( db->mallocFailed ){
3727         break;
3728       }
3729     }
3730 
3731     /* Transfer the FROM clause terms from the subquery into the
3732     ** outer query.
3733     */
3734     for(i=0; i<nSubSrc; i++){
3735       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3736       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3737       pSrc->a[i+iFrom] = pSubSrc->a[i];
3738       iNewParent = pSubSrc->a[i].iCursor;
3739       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3740     }
3741     pSrc->a[iFrom].fg.jointype = jointype;
3742 
3743     /* Now begin substituting subquery result set expressions for
3744     ** references to the iParent in the outer query.
3745     **
3746     ** Example:
3747     **
3748     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3749     **   \                     \_____________ subquery __________/          /
3750     **    \_____________________ outer query ______________________________/
3751     **
3752     ** We look at every expression in the outer query and every place we see
3753     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3754     */
3755     if( pSub->pOrderBy ){
3756       /* At this point, any non-zero iOrderByCol values indicate that the
3757       ** ORDER BY column expression is identical to the iOrderByCol'th
3758       ** expression returned by SELECT statement pSub. Since these values
3759       ** do not necessarily correspond to columns in SELECT statement pParent,
3760       ** zero them before transfering the ORDER BY clause.
3761       **
3762       ** Not doing this may cause an error if a subsequent call to this
3763       ** function attempts to flatten a compound sub-query into pParent
3764       ** (the only way this can happen is if the compound sub-query is
3765       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3766       ExprList *pOrderBy = pSub->pOrderBy;
3767       for(i=0; i<pOrderBy->nExpr; i++){
3768         pOrderBy->a[i].u.x.iOrderByCol = 0;
3769       }
3770       assert( pParent->pOrderBy==0 );
3771       assert( pSub->pPrior==0 );
3772       pParent->pOrderBy = pOrderBy;
3773       pSub->pOrderBy = 0;
3774     }
3775     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3776     if( isLeftJoin>0 ){
3777       setJoinExpr(pWhere, iNewParent);
3778     }
3779     if( subqueryIsAgg ){
3780       assert( pParent->pHaving==0 );
3781       pParent->pHaving = pParent->pWhere;
3782       pParent->pWhere = pWhere;
3783       pParent->pHaving = sqlite3ExprAnd(db,
3784           sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
3785       );
3786       assert( pParent->pGroupBy==0 );
3787       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3788     }else{
3789       pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3790     }
3791     if( db->mallocFailed==0 ){
3792       SubstContext x;
3793       x.pParse = pParse;
3794       x.iTable = iParent;
3795       x.iNewTable = iNewParent;
3796       x.isLeftJoin = isLeftJoin;
3797       x.pEList = pSub->pEList;
3798       substSelect(&x, pParent, 0);
3799     }
3800 
3801     /* The flattened query is distinct if either the inner or the
3802     ** outer query is distinct.
3803     */
3804     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3805 
3806     /*
3807     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3808     **
3809     ** One is tempted to try to add a and b to combine the limits.  But this
3810     ** does not work if either limit is negative.
3811     */
3812     if( pSub->pLimit ){
3813       pParent->pLimit = pSub->pLimit;
3814       pSub->pLimit = 0;
3815     }
3816   }
3817 
3818   /* Finially, delete what is left of the subquery and return
3819   ** success.
3820   */
3821   sqlite3SelectDelete(db, pSub1);
3822 
3823 #if SELECTTRACE_ENABLED
3824   if( sqlite3SelectTrace & 0x100 ){
3825     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3826     sqlite3TreeViewSelect(0, p, 0);
3827   }
3828 #endif
3829 
3830   return 1;
3831 }
3832 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3833 
3834 
3835 
3836 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3837 /*
3838 ** Make copies of relevant WHERE clause terms of the outer query into
3839 ** the WHERE clause of subquery.  Example:
3840 **
3841 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3842 **
3843 ** Transformed into:
3844 **
3845 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3846 **     WHERE x=5 AND y=10;
3847 **
3848 ** The hope is that the terms added to the inner query will make it more
3849 ** efficient.
3850 **
3851 ** Do not attempt this optimization if:
3852 **
3853 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3854 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3855 **       inner query.  But they probably won't help there so do not bother.)
3856 **
3857 **   (2) The inner query is the recursive part of a common table expression.
3858 **
3859 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3860 **       close would change the meaning of the LIMIT).
3861 **
3862 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3863 **       enforces this restriction since this routine does not have enough
3864 **       information to know.)
3865 **
3866 **   (5) The WHERE clause expression originates in the ON or USING clause
3867 **       of a LEFT JOIN.
3868 **
3869 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3870 ** terms are duplicated into the subquery.
3871 */
pushDownWhereTerms(Parse * pParse,Select * pSubq,Expr * pWhere,int iCursor)3872 static int pushDownWhereTerms(
3873   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
3874   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3875   Expr *pWhere,         /* The WHERE clause of the outer query */
3876   int iCursor           /* Cursor number of the subquery */
3877 ){
3878   Expr *pNew;
3879   int nChng = 0;
3880   Select *pX;           /* For looping over compound SELECTs in pSubq */
3881   if( pWhere==0 ) return 0;
3882   for(pX=pSubq; pX; pX=pX->pPrior){
3883     if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3884       testcase( pX->selFlags & SF_Aggregate );
3885       testcase( pX->selFlags & SF_Recursive );
3886       testcase( pX!=pSubq );
3887       return 0; /* restrictions (1) and (2) */
3888     }
3889   }
3890   if( pSubq->pLimit!=0 ){
3891     return 0; /* restriction (3) */
3892   }
3893   while( pWhere->op==TK_AND ){
3894     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3895     pWhere = pWhere->pLeft;
3896   }
3897   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3898   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3899     nChng++;
3900     while( pSubq ){
3901       SubstContext x;
3902       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3903       x.pParse = pParse;
3904       x.iTable = iCursor;
3905       x.iNewTable = iCursor;
3906       x.isLeftJoin = 0;
3907       x.pEList = pSubq->pEList;
3908       pNew = substExpr(&x, pNew);
3909       pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3910       pSubq = pSubq->pPrior;
3911     }
3912   }
3913   return nChng;
3914 }
3915 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3916 
3917 /*
3918 ** Based on the contents of the AggInfo structure indicated by the first
3919 ** argument, this function checks if the following are true:
3920 **
3921 **    * the query contains just a single aggregate function,
3922 **    * the aggregate function is either min() or max(), and
3923 **    * the argument to the aggregate function is a column value.
3924 **
3925 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3926 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3927 ** list of arguments passed to the aggregate before returning.
3928 **
3929 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3930 ** WHERE_ORDERBY_NORMAL is returned.
3931 */
minMaxQuery(AggInfo * pAggInfo,ExprList ** ppMinMax)3932 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3933   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3934 
3935   *ppMinMax = 0;
3936   if( pAggInfo->nFunc==1 ){
3937     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3938     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3939 
3940     assert( pExpr->op==TK_AGG_FUNCTION );
3941     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3942       const char *zFunc = pExpr->u.zToken;
3943       if( sqlite3StrICmp(zFunc, "min")==0 ){
3944         eRet = WHERE_ORDERBY_MIN;
3945         *ppMinMax = pEList;
3946       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3947         eRet = WHERE_ORDERBY_MAX;
3948         *ppMinMax = pEList;
3949       }
3950     }
3951   }
3952 
3953   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3954   return eRet;
3955 }
3956 
3957 /*
3958 ** The select statement passed as the first argument is an aggregate query.
3959 ** The second argument is the associated aggregate-info object. This
3960 ** function tests if the SELECT is of the form:
3961 **
3962 **   SELECT count(*) FROM <tbl>
3963 **
3964 ** where table is a database table, not a sub-select or view. If the query
3965 ** does match this pattern, then a pointer to the Table object representing
3966 ** <tbl> is returned. Otherwise, 0 is returned.
3967 */
isSimpleCount(Select * p,AggInfo * pAggInfo)3968 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3969   Table *pTab;
3970   Expr *pExpr;
3971 
3972   assert( !p->pGroupBy );
3973 
3974   if( p->pWhere || p->pEList->nExpr!=1
3975    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3976   ){
3977     return 0;
3978   }
3979   pTab = p->pSrc->a[0].pTab;
3980   pExpr = p->pEList->a[0].pExpr;
3981   assert( pTab && !pTab->pSelect && pExpr );
3982 
3983   if( IsVirtual(pTab) ) return 0;
3984   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3985   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3986   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3987   if( pExpr->flags&EP_Distinct ) return 0;
3988 
3989   return pTab;
3990 }
3991 
3992 /*
3993 ** If the source-list item passed as an argument was augmented with an
3994 ** INDEXED BY clause, then try to locate the specified index. If there
3995 ** was such a clause and the named index cannot be found, return
3996 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3997 ** pFrom->pIndex and return SQLITE_OK.
3998 */
sqlite3IndexedByLookup(Parse * pParse,struct SrcList_item * pFrom)3999 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4000   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4001     Table *pTab = pFrom->pTab;
4002     char *zIndexedBy = pFrom->u1.zIndexedBy;
4003     Index *pIdx;
4004     for(pIdx=pTab->pIndex;
4005         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4006         pIdx=pIdx->pNext
4007     );
4008     if( !pIdx ){
4009       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4010       pParse->checkSchema = 1;
4011       return SQLITE_ERROR;
4012     }
4013     pFrom->pIBIndex = pIdx;
4014   }
4015   return SQLITE_OK;
4016 }
4017 /*
4018 ** Detect compound SELECT statements that use an ORDER BY clause with
4019 ** an alternative collating sequence.
4020 **
4021 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4022 **
4023 ** These are rewritten as a subquery:
4024 **
4025 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4026 **     ORDER BY ... COLLATE ...
4027 **
4028 ** This transformation is necessary because the multiSelectOrderBy() routine
4029 ** above that generates the code for a compound SELECT with an ORDER BY clause
4030 ** uses a merge algorithm that requires the same collating sequence on the
4031 ** result columns as on the ORDER BY clause.  See ticket
4032 ** http://www.sqlite.org/src/info/6709574d2a
4033 **
4034 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4035 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4036 ** there are COLLATE terms in the ORDER BY.
4037 */
convertCompoundSelectToSubquery(Walker * pWalker,Select * p)4038 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4039   int i;
4040   Select *pNew;
4041   Select *pX;
4042   sqlite3 *db;
4043   struct ExprList_item *a;
4044   SrcList *pNewSrc;
4045   Parse *pParse;
4046   Token dummy;
4047 
4048   if( p->pPrior==0 ) return WRC_Continue;
4049   if( p->pOrderBy==0 ) return WRC_Continue;
4050   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4051   if( pX==0 ) return WRC_Continue;
4052   a = p->pOrderBy->a;
4053   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4054     if( a[i].pExpr->flags & EP_Collate ) break;
4055   }
4056   if( i<0 ) return WRC_Continue;
4057 
4058   /* If we reach this point, that means the transformation is required. */
4059 
4060   pParse = pWalker->pParse;
4061   db = pParse->db;
4062   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4063   if( pNew==0 ) return WRC_Abort;
4064   memset(&dummy, 0, sizeof(dummy));
4065   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4066   if( pNewSrc==0 ) return WRC_Abort;
4067   *pNew = *p;
4068   p->pSrc = pNewSrc;
4069   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4070   p->op = TK_SELECT;
4071   p->pWhere = 0;
4072   pNew->pGroupBy = 0;
4073   pNew->pHaving = 0;
4074   pNew->pOrderBy = 0;
4075   p->pPrior = 0;
4076   p->pNext = 0;
4077   p->pWith = 0;
4078   p->selFlags &= ~SF_Compound;
4079   assert( (p->selFlags & SF_Converted)==0 );
4080   p->selFlags |= SF_Converted;
4081   assert( pNew->pPrior!=0 );
4082   pNew->pPrior->pNext = pNew;
4083   pNew->pLimit = 0;
4084   pNew->pOffset = 0;
4085   return WRC_Continue;
4086 }
4087 
4088 /*
4089 ** Check to see if the FROM clause term pFrom has table-valued function
4090 ** arguments.  If it does, leave an error message in pParse and return
4091 ** non-zero, since pFrom is not allowed to be a table-valued function.
4092 */
cannotBeFunction(Parse * pParse,struct SrcList_item * pFrom)4093 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4094   if( pFrom->fg.isTabFunc ){
4095     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4096     return 1;
4097   }
4098   return 0;
4099 }
4100 
4101 #ifndef SQLITE_OMIT_CTE
4102 /*
4103 ** Argument pWith (which may be NULL) points to a linked list of nested
4104 ** WITH contexts, from inner to outermost. If the table identified by
4105 ** FROM clause element pItem is really a common-table-expression (CTE)
4106 ** then return a pointer to the CTE definition for that table. Otherwise
4107 ** return NULL.
4108 **
4109 ** If a non-NULL value is returned, set *ppContext to point to the With
4110 ** object that the returned CTE belongs to.
4111 */
searchWith(With * pWith,struct SrcList_item * pItem,With ** ppContext)4112 static struct Cte *searchWith(
4113   With *pWith,                    /* Current innermost WITH clause */
4114   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4115   With **ppContext                /* OUT: WITH clause return value belongs to */
4116 ){
4117   const char *zName;
4118   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4119     With *p;
4120     for(p=pWith; p; p=p->pOuter){
4121       int i;
4122       for(i=0; i<p->nCte; i++){
4123         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4124           *ppContext = p;
4125           return &p->a[i];
4126         }
4127       }
4128     }
4129   }
4130   return 0;
4131 }
4132 
4133 /* The code generator maintains a stack of active WITH clauses
4134 ** with the inner-most WITH clause being at the top of the stack.
4135 **
4136 ** This routine pushes the WITH clause passed as the second argument
4137 ** onto the top of the stack. If argument bFree is true, then this
4138 ** WITH clause will never be popped from the stack. In this case it
4139 ** should be freed along with the Parse object. In other cases, when
4140 ** bFree==0, the With object will be freed along with the SELECT
4141 ** statement with which it is associated.
4142 */
sqlite3WithPush(Parse * pParse,With * pWith,u8 bFree)4143 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4144   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4145   if( pWith ){
4146     assert( pParse->pWith!=pWith );
4147     pWith->pOuter = pParse->pWith;
4148     pParse->pWith = pWith;
4149     if( bFree ) pParse->pWithToFree = pWith;
4150   }
4151 }
4152 
4153 /*
4154 ** This function checks if argument pFrom refers to a CTE declared by
4155 ** a WITH clause on the stack currently maintained by the parser. And,
4156 ** if currently processing a CTE expression, if it is a recursive
4157 ** reference to the current CTE.
4158 **
4159 ** If pFrom falls into either of the two categories above, pFrom->pTab
4160 ** and other fields are populated accordingly. The caller should check
4161 ** (pFrom->pTab!=0) to determine whether or not a successful match
4162 ** was found.
4163 **
4164 ** Whether or not a match is found, SQLITE_OK is returned if no error
4165 ** occurs. If an error does occur, an error message is stored in the
4166 ** parser and some error code other than SQLITE_OK returned.
4167 */
withExpand(Walker * pWalker,struct SrcList_item * pFrom)4168 static int withExpand(
4169   Walker *pWalker,
4170   struct SrcList_item *pFrom
4171 ){
4172   Parse *pParse = pWalker->pParse;
4173   sqlite3 *db = pParse->db;
4174   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4175   With *pWith;                    /* WITH clause that pCte belongs to */
4176 
4177   assert( pFrom->pTab==0 );
4178 
4179   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4180   if( pCte ){
4181     Table *pTab;
4182     ExprList *pEList;
4183     Select *pSel;
4184     Select *pLeft;                /* Left-most SELECT statement */
4185     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4186     With *pSavedWith;             /* Initial value of pParse->pWith */
4187 
4188     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4189     ** recursive reference to CTE pCte. Leave an error in pParse and return
4190     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4191     ** In this case, proceed.  */
4192     if( pCte->zCteErr ){
4193       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4194       return SQLITE_ERROR;
4195     }
4196     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4197 
4198     assert( pFrom->pTab==0 );
4199     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4200     if( pTab==0 ) return WRC_Abort;
4201     pTab->nTabRef = 1;
4202     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4203     pTab->iPKey = -1;
4204     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4205     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4206     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4207     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4208     assert( pFrom->pSelect );
4209 
4210     /* Check if this is a recursive CTE. */
4211     pSel = pFrom->pSelect;
4212     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4213     if( bMayRecursive ){
4214       int i;
4215       SrcList *pSrc = pFrom->pSelect->pSrc;
4216       for(i=0; i<pSrc->nSrc; i++){
4217         struct SrcList_item *pItem = &pSrc->a[i];
4218         if( pItem->zDatabase==0
4219          && pItem->zName!=0
4220          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4221           ){
4222           pItem->pTab = pTab;
4223           pItem->fg.isRecursive = 1;
4224           pTab->nTabRef++;
4225           pSel->selFlags |= SF_Recursive;
4226         }
4227       }
4228     }
4229 
4230     /* Only one recursive reference is permitted. */
4231     if( pTab->nTabRef>2 ){
4232       sqlite3ErrorMsg(
4233           pParse, "multiple references to recursive table: %s", pCte->zName
4234       );
4235       return SQLITE_ERROR;
4236     }
4237     assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4238 
4239     pCte->zCteErr = "circular reference: %s";
4240     pSavedWith = pParse->pWith;
4241     pParse->pWith = pWith;
4242     if( bMayRecursive ){
4243       Select *pPrior = pSel->pPrior;
4244       assert( pPrior->pWith==0 );
4245       pPrior->pWith = pSel->pWith;
4246       sqlite3WalkSelect(pWalker, pPrior);
4247       pPrior->pWith = 0;
4248     }else{
4249       sqlite3WalkSelect(pWalker, pSel);
4250     }
4251     pParse->pWith = pWith;
4252 
4253     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4254     pEList = pLeft->pEList;
4255     if( pCte->pCols ){
4256       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4257         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4258             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4259         );
4260         pParse->pWith = pSavedWith;
4261         return SQLITE_ERROR;
4262       }
4263       pEList = pCte->pCols;
4264     }
4265 
4266     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4267     if( bMayRecursive ){
4268       if( pSel->selFlags & SF_Recursive ){
4269         pCte->zCteErr = "multiple recursive references: %s";
4270       }else{
4271         pCte->zCteErr = "recursive reference in a subquery: %s";
4272       }
4273       sqlite3WalkSelect(pWalker, pSel);
4274     }
4275     pCte->zCteErr = 0;
4276     pParse->pWith = pSavedWith;
4277   }
4278 
4279   return SQLITE_OK;
4280 }
4281 #endif
4282 
4283 #ifndef SQLITE_OMIT_CTE
4284 /*
4285 ** If the SELECT passed as the second argument has an associated WITH
4286 ** clause, pop it from the stack stored as part of the Parse object.
4287 **
4288 ** This function is used as the xSelectCallback2() callback by
4289 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4290 ** names and other FROM clause elements.
4291 */
selectPopWith(Walker * pWalker,Select * p)4292 static void selectPopWith(Walker *pWalker, Select *p){
4293   Parse *pParse = pWalker->pParse;
4294   if( pParse->pWith && p->pPrior==0 ){
4295     With *pWith = findRightmost(p)->pWith;
4296     if( pWith!=0 ){
4297       assert( pParse->pWith==pWith );
4298       pParse->pWith = pWith->pOuter;
4299     }
4300   }
4301 }
4302 #else
4303 #define selectPopWith 0
4304 #endif
4305 
4306 /*
4307 ** This routine is a Walker callback for "expanding" a SELECT statement.
4308 ** "Expanding" means to do the following:
4309 **
4310 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4311 **         element of the FROM clause.
4312 **
4313 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4314 **         defines FROM clause.  When views appear in the FROM clause,
4315 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4316 **         that implements the view.  A copy is made of the view's SELECT
4317 **         statement so that we can freely modify or delete that statement
4318 **         without worrying about messing up the persistent representation
4319 **         of the view.
4320 **
4321 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4322 **         on joins and the ON and USING clause of joins.
4323 **
4324 **    (4)  Scan the list of columns in the result set (pEList) looking
4325 **         for instances of the "*" operator or the TABLE.* operator.
4326 **         If found, expand each "*" to be every column in every table
4327 **         and TABLE.* to be every column in TABLE.
4328 **
4329 */
selectExpander(Walker * pWalker,Select * p)4330 static int selectExpander(Walker *pWalker, Select *p){
4331   Parse *pParse = pWalker->pParse;
4332   int i, j, k;
4333   SrcList *pTabList;
4334   ExprList *pEList;
4335   struct SrcList_item *pFrom;
4336   sqlite3 *db = pParse->db;
4337   Expr *pE, *pRight, *pExpr;
4338   u16 selFlags = p->selFlags;
4339 
4340   p->selFlags |= SF_Expanded;
4341   if( db->mallocFailed  ){
4342     return WRC_Abort;
4343   }
4344   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4345     return WRC_Prune;
4346   }
4347   pTabList = p->pSrc;
4348   pEList = p->pEList;
4349   if( p->pWith ){
4350     sqlite3WithPush(pParse, p->pWith, 0);
4351   }
4352 
4353   /* Make sure cursor numbers have been assigned to all entries in
4354   ** the FROM clause of the SELECT statement.
4355   */
4356   sqlite3SrcListAssignCursors(pParse, pTabList);
4357 
4358   /* Look up every table named in the FROM clause of the select.  If
4359   ** an entry of the FROM clause is a subquery instead of a table or view,
4360   ** then create a transient table structure to describe the subquery.
4361   */
4362   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4363     Table *pTab;
4364     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4365     if( pFrom->fg.isRecursive ) continue;
4366     assert( pFrom->pTab==0 );
4367 #ifndef SQLITE_OMIT_CTE
4368     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4369     if( pFrom->pTab ) {} else
4370 #endif
4371     if( pFrom->zName==0 ){
4372 #ifndef SQLITE_OMIT_SUBQUERY
4373       Select *pSel = pFrom->pSelect;
4374       /* A sub-query in the FROM clause of a SELECT */
4375       assert( pSel!=0 );
4376       assert( pFrom->pTab==0 );
4377       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4378       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4379       if( pTab==0 ) return WRC_Abort;
4380       pTab->nTabRef = 1;
4381       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4382       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4383       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4384       pTab->iPKey = -1;
4385       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4386       pTab->tabFlags |= TF_Ephemeral;
4387 #endif
4388     }else{
4389       /* An ordinary table or view name in the FROM clause */
4390       assert( pFrom->pTab==0 );
4391       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4392       if( pTab==0 ) return WRC_Abort;
4393       if( pTab->nTabRef>=0xffff ){
4394         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4395            pTab->zName);
4396         pFrom->pTab = 0;
4397         return WRC_Abort;
4398       }
4399       pTab->nTabRef++;
4400       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4401         return WRC_Abort;
4402       }
4403 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4404       if( IsVirtual(pTab) || pTab->pSelect ){
4405         i16 nCol;
4406         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4407         assert( pFrom->pSelect==0 );
4408         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4409         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4410         nCol = pTab->nCol;
4411         pTab->nCol = -1;
4412         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4413         pTab->nCol = nCol;
4414       }
4415 #endif
4416     }
4417 
4418     /* Locate the index named by the INDEXED BY clause, if any. */
4419     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4420       return WRC_Abort;
4421     }
4422   }
4423 
4424   /* Process NATURAL keywords, and ON and USING clauses of joins.
4425   */
4426   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4427     return WRC_Abort;
4428   }
4429 
4430   /* For every "*" that occurs in the column list, insert the names of
4431   ** all columns in all tables.  And for every TABLE.* insert the names
4432   ** of all columns in TABLE.  The parser inserted a special expression
4433   ** with the TK_ASTERISK operator for each "*" that it found in the column
4434   ** list.  The following code just has to locate the TK_ASTERISK
4435   ** expressions and expand each one to the list of all columns in
4436   ** all tables.
4437   **
4438   ** The first loop just checks to see if there are any "*" operators
4439   ** that need expanding.
4440   */
4441   for(k=0; k<pEList->nExpr; k++){
4442     pE = pEList->a[k].pExpr;
4443     if( pE->op==TK_ASTERISK ) break;
4444     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4445     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4446     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4447   }
4448   if( k<pEList->nExpr ){
4449     /*
4450     ** If we get here it means the result set contains one or more "*"
4451     ** operators that need to be expanded.  Loop through each expression
4452     ** in the result set and expand them one by one.
4453     */
4454     struct ExprList_item *a = pEList->a;
4455     ExprList *pNew = 0;
4456     int flags = pParse->db->flags;
4457     int longNames = (flags & SQLITE_FullColNames)!=0
4458                       && (flags & SQLITE_ShortColNames)==0;
4459 
4460     for(k=0; k<pEList->nExpr; k++){
4461       pE = a[k].pExpr;
4462       pRight = pE->pRight;
4463       assert( pE->op!=TK_DOT || pRight!=0 );
4464       if( pE->op!=TK_ASTERISK
4465        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4466       ){
4467         /* This particular expression does not need to be expanded.
4468         */
4469         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4470         if( pNew ){
4471           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4472           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4473           a[k].zName = 0;
4474           a[k].zSpan = 0;
4475         }
4476         a[k].pExpr = 0;
4477       }else{
4478         /* This expression is a "*" or a "TABLE.*" and needs to be
4479         ** expanded. */
4480         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4481         char *zTName = 0;       /* text of name of TABLE */
4482         if( pE->op==TK_DOT ){
4483           assert( pE->pLeft!=0 );
4484           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4485           zTName = pE->pLeft->u.zToken;
4486         }
4487         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4488           Table *pTab = pFrom->pTab;
4489           Select *pSub = pFrom->pSelect;
4490           char *zTabName = pFrom->zAlias;
4491           const char *zSchemaName = 0;
4492           int iDb;
4493           if( zTabName==0 ){
4494             zTabName = pTab->zName;
4495           }
4496           if( db->mallocFailed ) break;
4497           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4498             pSub = 0;
4499             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4500               continue;
4501             }
4502             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4503             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4504           }
4505           for(j=0; j<pTab->nCol; j++){
4506             char *zName = pTab->aCol[j].zName;
4507             char *zColname;  /* The computed column name */
4508             char *zToFree;   /* Malloced string that needs to be freed */
4509             Token sColname;  /* Computed column name as a token */
4510 
4511             assert( zName );
4512             if( zTName && pSub
4513              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4514             ){
4515               continue;
4516             }
4517 
4518             /* If a column is marked as 'hidden', omit it from the expanded
4519             ** result-set list unless the SELECT has the SF_IncludeHidden
4520             ** bit set.
4521             */
4522             if( (p->selFlags & SF_IncludeHidden)==0
4523              && IsHiddenColumn(&pTab->aCol[j])
4524             ){
4525               continue;
4526             }
4527             tableSeen = 1;
4528 
4529             if( i>0 && zTName==0 ){
4530               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4531                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4532               ){
4533                 /* In a NATURAL join, omit the join columns from the
4534                 ** table to the right of the join */
4535                 continue;
4536               }
4537               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4538                 /* In a join with a USING clause, omit columns in the
4539                 ** using clause from the table on the right. */
4540                 continue;
4541               }
4542             }
4543             pRight = sqlite3Expr(db, TK_ID, zName);
4544             zColname = zName;
4545             zToFree = 0;
4546             if( longNames || pTabList->nSrc>1 ){
4547               Expr *pLeft;
4548               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4549               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4550               if( zSchemaName ){
4551                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4552                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4553               }
4554               if( longNames ){
4555                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4556                 zToFree = zColname;
4557               }
4558             }else{
4559               pExpr = pRight;
4560             }
4561             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4562             sqlite3TokenInit(&sColname, zColname);
4563             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4564             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4565               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4566               if( pSub ){
4567                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4568                 testcase( pX->zSpan==0 );
4569               }else{
4570                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4571                                            zSchemaName, zTabName, zColname);
4572                 testcase( pX->zSpan==0 );
4573               }
4574               pX->bSpanIsTab = 1;
4575             }
4576             sqlite3DbFree(db, zToFree);
4577           }
4578         }
4579         if( !tableSeen ){
4580           if( zTName ){
4581             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4582           }else{
4583             sqlite3ErrorMsg(pParse, "no tables specified");
4584           }
4585         }
4586       }
4587     }
4588     sqlite3ExprListDelete(db, pEList);
4589     p->pEList = pNew;
4590   }
4591 #if SQLITE_MAX_COLUMN
4592   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4593     sqlite3ErrorMsg(pParse, "too many columns in result set");
4594     return WRC_Abort;
4595   }
4596 #endif
4597   return WRC_Continue;
4598 }
4599 
4600 /*
4601 ** No-op routine for the parse-tree walker.
4602 **
4603 ** When this routine is the Walker.xExprCallback then expression trees
4604 ** are walked without any actions being taken at each node.  Presumably,
4605 ** when this routine is used for Walker.xExprCallback then
4606 ** Walker.xSelectCallback is set to do something useful for every
4607 ** subquery in the parser tree.
4608 */
sqlite3ExprWalkNoop(Walker * NotUsed,Expr * NotUsed2)4609 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4610   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4611   return WRC_Continue;
4612 }
4613 
4614 /*
4615 ** No-op routine for the parse-tree walker for SELECT statements.
4616 ** subquery in the parser tree.
4617 */
sqlite3SelectWalkNoop(Walker * NotUsed,Select * NotUsed2)4618 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4619   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4620   return WRC_Continue;
4621 }
4622 
4623 #if SQLITE_DEBUG
4624 /*
4625 ** Always assert.  This xSelectCallback2 implementation proves that the
4626 ** xSelectCallback2 is never invoked.
4627 */
sqlite3SelectWalkAssert2(Walker * NotUsed,Select * NotUsed2)4628 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4629   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4630   assert( 0 );
4631 }
4632 #endif
4633 /*
4634 ** This routine "expands" a SELECT statement and all of its subqueries.
4635 ** For additional information on what it means to "expand" a SELECT
4636 ** statement, see the comment on the selectExpand worker callback above.
4637 **
4638 ** Expanding a SELECT statement is the first step in processing a
4639 ** SELECT statement.  The SELECT statement must be expanded before
4640 ** name resolution is performed.
4641 **
4642 ** If anything goes wrong, an error message is written into pParse.
4643 ** The calling function can detect the problem by looking at pParse->nErr
4644 ** and/or pParse->db->mallocFailed.
4645 */
sqlite3SelectExpand(Parse * pParse,Select * pSelect)4646 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4647   Walker w;
4648   w.xExprCallback = sqlite3ExprWalkNoop;
4649   w.pParse = pParse;
4650   if( pParse->hasCompound ){
4651     w.xSelectCallback = convertCompoundSelectToSubquery;
4652     w.xSelectCallback2 = 0;
4653     sqlite3WalkSelect(&w, pSelect);
4654   }
4655   w.xSelectCallback = selectExpander;
4656   w.xSelectCallback2 = selectPopWith;
4657   sqlite3WalkSelect(&w, pSelect);
4658 }
4659 
4660 
4661 #ifndef SQLITE_OMIT_SUBQUERY
4662 /*
4663 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4664 ** interface.
4665 **
4666 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4667 ** information to the Table structure that represents the result set
4668 ** of that subquery.
4669 **
4670 ** The Table structure that represents the result set was constructed
4671 ** by selectExpander() but the type and collation information was omitted
4672 ** at that point because identifiers had not yet been resolved.  This
4673 ** routine is called after identifier resolution.
4674 */
selectAddSubqueryTypeInfo(Walker * pWalker,Select * p)4675 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4676   Parse *pParse;
4677   int i;
4678   SrcList *pTabList;
4679   struct SrcList_item *pFrom;
4680 
4681   assert( p->selFlags & SF_Resolved );
4682   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4683   p->selFlags |= SF_HasTypeInfo;
4684   pParse = pWalker->pParse;
4685   pTabList = p->pSrc;
4686   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4687     Table *pTab = pFrom->pTab;
4688     assert( pTab!=0 );
4689     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4690       /* A sub-query in the FROM clause of a SELECT */
4691       Select *pSel = pFrom->pSelect;
4692       if( pSel ){
4693         while( pSel->pPrior ) pSel = pSel->pPrior;
4694         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4695       }
4696     }
4697   }
4698 }
4699 #endif
4700 
4701 
4702 /*
4703 ** This routine adds datatype and collating sequence information to
4704 ** the Table structures of all FROM-clause subqueries in a
4705 ** SELECT statement.
4706 **
4707 ** Use this routine after name resolution.
4708 */
sqlite3SelectAddTypeInfo(Parse * pParse,Select * pSelect)4709 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4710 #ifndef SQLITE_OMIT_SUBQUERY
4711   Walker w;
4712   w.xSelectCallback = sqlite3SelectWalkNoop;
4713   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4714   w.xExprCallback = sqlite3ExprWalkNoop;
4715   w.pParse = pParse;
4716   sqlite3WalkSelect(&w, pSelect);
4717 #endif
4718 }
4719 
4720 
4721 /*
4722 ** This routine sets up a SELECT statement for processing.  The
4723 ** following is accomplished:
4724 **
4725 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4726 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4727 **     *  ON and USING clauses are shifted into WHERE statements
4728 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4729 **     *  Identifiers in expression are matched to tables.
4730 **
4731 ** This routine acts recursively on all subqueries within the SELECT.
4732 */
sqlite3SelectPrep(Parse * pParse,Select * p,NameContext * pOuterNC)4733 void sqlite3SelectPrep(
4734   Parse *pParse,         /* The parser context */
4735   Select *p,             /* The SELECT statement being coded. */
4736   NameContext *pOuterNC  /* Name context for container */
4737 ){
4738   sqlite3 *db;
4739   if( NEVER(p==0) ) return;
4740   db = pParse->db;
4741   if( db->mallocFailed ) return;
4742   if( p->selFlags & SF_HasTypeInfo ) return;
4743   sqlite3SelectExpand(pParse, p);
4744   if( pParse->nErr || db->mallocFailed ) return;
4745   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4746   if( pParse->nErr || db->mallocFailed ) return;
4747   sqlite3SelectAddTypeInfo(pParse, p);
4748 }
4749 
4750 /*
4751 ** Reset the aggregate accumulator.
4752 **
4753 ** The aggregate accumulator is a set of memory cells that hold
4754 ** intermediate results while calculating an aggregate.  This
4755 ** routine generates code that stores NULLs in all of those memory
4756 ** cells.
4757 */
resetAccumulator(Parse * pParse,AggInfo * pAggInfo)4758 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4759   Vdbe *v = pParse->pVdbe;
4760   int i;
4761   struct AggInfo_func *pFunc;
4762   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4763   if( nReg==0 ) return;
4764 #ifdef SQLITE_DEBUG
4765   /* Verify that all AggInfo registers are within the range specified by
4766   ** AggInfo.mnReg..AggInfo.mxReg */
4767   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4768   for(i=0; i<pAggInfo->nColumn; i++){
4769     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4770          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4771   }
4772   for(i=0; i<pAggInfo->nFunc; i++){
4773     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4774          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4775   }
4776 #endif
4777   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4778   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4779     if( pFunc->iDistinct>=0 ){
4780       Expr *pE = pFunc->pExpr;
4781       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4782       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4783         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4784            "argument");
4785         pFunc->iDistinct = -1;
4786       }else{
4787         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4788         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4789                           (char*)pKeyInfo, P4_KEYINFO);
4790       }
4791     }
4792   }
4793 }
4794 
4795 /*
4796 ** Invoke the OP_AggFinalize opcode for every aggregate function
4797 ** in the AggInfo structure.
4798 */
finalizeAggFunctions(Parse * pParse,AggInfo * pAggInfo)4799 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4800   Vdbe *v = pParse->pVdbe;
4801   int i;
4802   struct AggInfo_func *pF;
4803   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4804     ExprList *pList = pF->pExpr->x.pList;
4805     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4806     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4807     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4808   }
4809 }
4810 
4811 /*
4812 ** Update the accumulator memory cells for an aggregate based on
4813 ** the current cursor position.
4814 */
updateAccumulator(Parse * pParse,AggInfo * pAggInfo)4815 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4816   Vdbe *v = pParse->pVdbe;
4817   int i;
4818   int regHit = 0;
4819   int addrHitTest = 0;
4820   struct AggInfo_func *pF;
4821   struct AggInfo_col *pC;
4822 
4823   pAggInfo->directMode = 1;
4824   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4825     int nArg;
4826     int addrNext = 0;
4827     int regAgg;
4828     ExprList *pList = pF->pExpr->x.pList;
4829     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4830     if( pList ){
4831       nArg = pList->nExpr;
4832       regAgg = sqlite3GetTempRange(pParse, nArg);
4833       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4834     }else{
4835       nArg = 0;
4836       regAgg = 0;
4837     }
4838     if( pF->iDistinct>=0 ){
4839       addrNext = sqlite3VdbeMakeLabel(v);
4840       testcase( nArg==0 );  /* Error condition */
4841       testcase( nArg>1 );   /* Also an error */
4842       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4843     }
4844     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4845       CollSeq *pColl = 0;
4846       struct ExprList_item *pItem;
4847       int j;
4848       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4849       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4850         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4851       }
4852       if( !pColl ){
4853         pColl = pParse->db->pDfltColl;
4854       }
4855       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4856       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4857     }
4858     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4859     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4860     sqlite3VdbeChangeP5(v, (u8)nArg);
4861     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4862     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4863     if( addrNext ){
4864       sqlite3VdbeResolveLabel(v, addrNext);
4865       sqlite3ExprCacheClear(pParse);
4866     }
4867   }
4868 
4869   /* Before populating the accumulator registers, clear the column cache.
4870   ** Otherwise, if any of the required column values are already present
4871   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4872   ** to pC->iMem. But by the time the value is used, the original register
4873   ** may have been used, invalidating the underlying buffer holding the
4874   ** text or blob value. See ticket [883034dcb5].
4875   **
4876   ** Another solution would be to change the OP_SCopy used to copy cached
4877   ** values to an OP_Copy.
4878   */
4879   if( regHit ){
4880     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4881   }
4882   sqlite3ExprCacheClear(pParse);
4883   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4884     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4885   }
4886   pAggInfo->directMode = 0;
4887   sqlite3ExprCacheClear(pParse);
4888   if( addrHitTest ){
4889     sqlite3VdbeJumpHere(v, addrHitTest);
4890   }
4891 }
4892 
4893 /*
4894 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4895 ** count(*) query ("SELECT count(*) FROM pTab").
4896 */
4897 #ifndef SQLITE_OMIT_EXPLAIN
explainSimpleCount(Parse * pParse,Table * pTab,Index * pIdx)4898 static void explainSimpleCount(
4899   Parse *pParse,                  /* Parse context */
4900   Table *pTab,                    /* Table being queried */
4901   Index *pIdx                     /* Index used to optimize scan, or NULL */
4902 ){
4903   if( pParse->explain==2 ){
4904     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4905     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4906         pTab->zName,
4907         bCover ? " USING COVERING INDEX " : "",
4908         bCover ? pIdx->zName : ""
4909     );
4910     sqlite3VdbeAddOp4(
4911         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4912     );
4913   }
4914 }
4915 #else
4916 # define explainSimpleCount(a,b,c)
4917 #endif
4918 
4919 /*
4920 ** Context object for havingToWhereExprCb().
4921 */
4922 struct HavingToWhereCtx {
4923   Expr **ppWhere;
4924   ExprList *pGroupBy;
4925 };
4926 
4927 /*
4928 ** sqlite3WalkExpr() callback used by havingToWhere().
4929 **
4930 ** If the node passed to the callback is a TK_AND node, return
4931 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4932 **
4933 ** Otherwise, return WRC_Prune. In this case, also check if the
4934 ** sub-expression matches the criteria for being moved to the WHERE
4935 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4936 ** within the HAVING expression with a constant "1".
4937 */
havingToWhereExprCb(Walker * pWalker,Expr * pExpr)4938 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4939   if( pExpr->op!=TK_AND ){
4940     struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4941     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4942       sqlite3 *db = pWalker->pParse->db;
4943       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4944       if( pNew ){
4945         Expr *pWhere = *(p->ppWhere);
4946         SWAP(Expr, *pNew, *pExpr);
4947         pNew = sqlite3ExprAnd(db, pWhere, pNew);
4948         *(p->ppWhere) = pNew;
4949       }
4950     }
4951     return WRC_Prune;
4952   }
4953   return WRC_Continue;
4954 }
4955 
4956 /*
4957 ** Transfer eligible terms from the HAVING clause of a query, which is
4958 ** processed after grouping, to the WHERE clause, which is processed before
4959 ** grouping. For example, the query:
4960 **
4961 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4962 **
4963 ** can be rewritten as:
4964 **
4965 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4966 **
4967 ** A term of the HAVING expression is eligible for transfer if it consists
4968 ** entirely of constants and expressions that are also GROUP BY terms that
4969 ** use the "BINARY" collation sequence.
4970 */
havingToWhere(Parse * pParse,ExprList * pGroupBy,Expr * pHaving,Expr ** ppWhere)4971 static void havingToWhere(
4972   Parse *pParse,
4973   ExprList *pGroupBy,
4974   Expr *pHaving,
4975   Expr **ppWhere
4976 ){
4977   struct HavingToWhereCtx sCtx;
4978   Walker sWalker;
4979 
4980   sCtx.ppWhere = ppWhere;
4981   sCtx.pGroupBy = pGroupBy;
4982 
4983   memset(&sWalker, 0, sizeof(sWalker));
4984   sWalker.pParse = pParse;
4985   sWalker.xExprCallback = havingToWhereExprCb;
4986   sWalker.u.pHavingCtx = &sCtx;
4987   sqlite3WalkExpr(&sWalker, pHaving);
4988 }
4989 
4990 /*
4991 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4992 ** If it is, then return the SrcList_item for the prior view.  If it is not,
4993 ** then return 0.
4994 */
isSelfJoinView(SrcList * pTabList,struct SrcList_item * pThis)4995 static struct SrcList_item *isSelfJoinView(
4996   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
4997   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
4998 ){
4999   struct SrcList_item *pItem;
5000   for(pItem = pTabList->a; pItem<pThis; pItem++){
5001     if( pItem->pSelect==0 ) continue;
5002     if( pItem->fg.viaCoroutine ) continue;
5003     if( pItem->zName==0 ) continue;
5004     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5005     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5006     if( sqlite3ExprCompare(0,
5007           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5008     ){
5009       /* The view was modified by some other optimization such as
5010       ** pushDownWhereTerms() */
5011       continue;
5012     }
5013     return pItem;
5014   }
5015   return 0;
5016 }
5017 
5018 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5019 /*
5020 ** Attempt to transform a query of the form
5021 **
5022 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5023 **
5024 ** Into this:
5025 **
5026 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5027 **
5028 ** The transformation only works if all of the following are true:
5029 **
5030 **   *  The subquery is a UNION ALL of two or more terms
5031 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5032 **   *  The outer query is a simple count(*)
5033 **
5034 ** Return TRUE if the optimization is undertaken.
5035 */
countOfViewOptimization(Parse * pParse,Select * p)5036 static int countOfViewOptimization(Parse *pParse, Select *p){
5037   Select *pSub, *pPrior;
5038   Expr *pExpr;
5039   Expr *pCount;
5040   sqlite3 *db;
5041   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate query */
5042   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5043   pExpr = p->pEList->a[0].pExpr;
5044   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5045   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Must be count() */
5046   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5047   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in the FROM clause */
5048   pSub = p->pSrc->a[0].pSelect;
5049   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5050   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound subquery */
5051   do{
5052     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5053     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5054     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5055     pSub = pSub->pPrior;                              /* Repeat over compound terms */
5056   }while( pSub );
5057 
5058   /* If we reach this point, that means it is OK to perform the transformation */
5059 
5060   db = pParse->db;
5061   pCount = pExpr;
5062   pExpr = 0;
5063   pSub = p->pSrc->a[0].pSelect;
5064   p->pSrc->a[0].pSelect = 0;
5065   sqlite3SrcListDelete(db, p->pSrc);
5066   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5067   while( pSub ){
5068     Expr *pTerm;
5069     pPrior = pSub->pPrior;
5070     pSub->pPrior = 0;
5071     pSub->pNext = 0;
5072     pSub->selFlags |= SF_Aggregate;
5073     pSub->selFlags &= ~SF_Compound;
5074     pSub->nSelectRow = 0;
5075     sqlite3ExprListDelete(db, pSub->pEList);
5076     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5077     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5078     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5079     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5080     if( pExpr==0 ){
5081       pExpr = pTerm;
5082     }else{
5083       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5084     }
5085     pSub = pPrior;
5086   }
5087   p->pEList->a[0].pExpr = pExpr;
5088   p->selFlags &= ~SF_Aggregate;
5089 
5090 #if SELECTTRACE_ENABLED
5091   if( sqlite3SelectTrace & 0x400 ){
5092     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5093     sqlite3TreeViewSelect(0, p, 0);
5094   }
5095 #endif
5096   return 1;
5097 }
5098 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5099 
5100 /*
5101 ** Generate code for the SELECT statement given in the p argument.
5102 **
5103 ** The results are returned according to the SelectDest structure.
5104 ** See comments in sqliteInt.h for further information.
5105 **
5106 ** This routine returns the number of errors.  If any errors are
5107 ** encountered, then an appropriate error message is left in
5108 ** pParse->zErrMsg.
5109 **
5110 ** This routine does NOT free the Select structure passed in.  The
5111 ** calling function needs to do that.
5112 */
sqlite3Select(Parse * pParse,Select * p,SelectDest * pDest)5113 int sqlite3Select(
5114   Parse *pParse,         /* The parser context */
5115   Select *p,             /* The SELECT statement being coded. */
5116   SelectDest *pDest      /* What to do with the query results */
5117 ){
5118   int i, j;              /* Loop counters */
5119   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5120   Vdbe *v;               /* The virtual machine under construction */
5121   int isAgg;             /* True for select lists like "count(*)" */
5122   ExprList *pEList = 0;  /* List of columns to extract. */
5123   SrcList *pTabList;     /* List of tables to select from */
5124   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5125   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5126   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5127   int rc = 1;            /* Value to return from this function */
5128   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5129   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5130   AggInfo sAggInfo;      /* Information used by aggregate queries */
5131   int iEnd;              /* Address of the end of the query */
5132   sqlite3 *db;           /* The database connection */
5133 
5134 #ifndef SQLITE_OMIT_EXPLAIN
5135   int iRestoreSelectId = pParse->iSelectId;
5136   pParse->iSelectId = pParse->iNextSelectId++;
5137 #endif
5138 
5139   db = pParse->db;
5140   if( p==0 || db->mallocFailed || pParse->nErr ){
5141     return 1;
5142   }
5143   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5144   memset(&sAggInfo, 0, sizeof(sAggInfo));
5145 #if SELECTTRACE_ENABLED
5146   pParse->nSelectIndent++;
5147   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5148   if( sqlite3SelectTrace & 0x100 ){
5149     sqlite3TreeViewSelect(0, p, 0);
5150   }
5151 #endif
5152 
5153   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5154   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5155   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5156   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5157   if( IgnorableOrderby(pDest) ){
5158     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5159            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5160            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5161            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5162     /* If ORDER BY makes no difference in the output then neither does
5163     ** DISTINCT so it can be removed too. */
5164     sqlite3ExprListDelete(db, p->pOrderBy);
5165     p->pOrderBy = 0;
5166     p->selFlags &= ~SF_Distinct;
5167   }
5168   sqlite3SelectPrep(pParse, p, 0);
5169   memset(&sSort, 0, sizeof(sSort));
5170   sSort.pOrderBy = p->pOrderBy;
5171   pTabList = p->pSrc;
5172   if( pParse->nErr || db->mallocFailed ){
5173     goto select_end;
5174   }
5175   assert( p->pEList!=0 );
5176   isAgg = (p->selFlags & SF_Aggregate)!=0;
5177 #if SELECTTRACE_ENABLED
5178   if( sqlite3SelectTrace & 0x100 ){
5179     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5180     sqlite3TreeViewSelect(0, p, 0);
5181   }
5182 #endif
5183 
5184   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5185   ** does not already exist */
5186   v = sqlite3GetVdbe(pParse);
5187   if( v==0 ) goto select_end;
5188   if( pDest->eDest==SRT_Output ){
5189     generateColumnNames(pParse, p);
5190   }
5191 
5192   /* Try to flatten subqueries in the FROM clause up into the main query
5193   */
5194 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5195   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5196     struct SrcList_item *pItem = &pTabList->a[i];
5197     Select *pSub = pItem->pSelect;
5198     int isAggSub;
5199     Table *pTab = pItem->pTab;
5200     if( pSub==0 ) continue;
5201 
5202     /* Catch mismatch in the declared columns of a view and the number of
5203     ** columns in the SELECT on the RHS */
5204     if( pTab->nCol!=pSub->pEList->nExpr ){
5205       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5206                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5207       goto select_end;
5208     }
5209 
5210     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
5211     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
5212       /* This subquery can be absorbed into its parent. */
5213       if( isAggSub ){
5214         isAgg = 1;
5215         p->selFlags |= SF_Aggregate;
5216       }
5217       i = -1;
5218     }
5219     pTabList = p->pSrc;
5220     if( db->mallocFailed ) goto select_end;
5221     if( !IgnorableOrderby(pDest) ){
5222       sSort.pOrderBy = p->pOrderBy;
5223     }
5224   }
5225 #endif
5226 
5227 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5228   /* Handle compound SELECT statements using the separate multiSelect()
5229   ** procedure.
5230   */
5231   if( p->pPrior ){
5232     rc = multiSelect(pParse, p, pDest);
5233     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5234 #if SELECTTRACE_ENABLED
5235     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5236     pParse->nSelectIndent--;
5237 #endif
5238     return rc;
5239   }
5240 #endif
5241 
5242   /* For each term in the FROM clause, do two things:
5243   ** (1) Authorized unreferenced tables
5244   ** (2) Generate code for all sub-queries
5245   */
5246   for(i=0; i<pTabList->nSrc; i++){
5247     struct SrcList_item *pItem = &pTabList->a[i];
5248     SelectDest dest;
5249     Select *pSub;
5250 
5251     /* Issue SQLITE_READ authorizations with a fake column name for any tables that
5252     ** are referenced but from which no values are extracted. Examples of where these
5253     ** kinds of null SQLITE_READ authorizations would occur:
5254     **
5255     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5256     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5257     **
5258     ** The fake column name is an empty string.  It is possible for a table to
5259     ** have a column named by the empty string, in which case there is no way to
5260     ** distinguish between an unreferenced table and an actual reference to the
5261     ** "" column.  The original design was for the fake column name to be a NULL,
5262     ** which would be unambiguous.  But legacy authorization callbacks might
5263     ** assume the column name is non-NULL and segfault.  The use of an empty string
5264     ** for the fake column name seems safer.
5265     */
5266     if( pItem->colUsed==0 ){
5267       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5268     }
5269 
5270 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5271     /* Generate code for all sub-queries in the FROM clause
5272     */
5273     pSub = pItem->pSelect;
5274     if( pSub==0 ) continue;
5275 
5276     /* Sometimes the code for a subquery will be generated more than
5277     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5278     ** for example.  In that case, do not regenerate the code to manifest
5279     ** a view or the co-routine to implement a view.  The first instance
5280     ** is sufficient, though the subroutine to manifest the view does need
5281     ** to be invoked again. */
5282     if( pItem->addrFillSub ){
5283       if( pItem->fg.viaCoroutine==0 ){
5284         /* The subroutine that manifests the view might be a one-time routine,
5285         ** or it might need to be rerun on each iteration because it
5286         ** encodes a correlated subquery. */
5287         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5288         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5289       }
5290       continue;
5291     }
5292 
5293     /* Increment Parse.nHeight by the height of the largest expression
5294     ** tree referred to by this, the parent select. The child select
5295     ** may contain expression trees of at most
5296     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5297     ** more conservative than necessary, but much easier than enforcing
5298     ** an exact limit.
5299     */
5300     pParse->nHeight += sqlite3SelectExprHeight(p);
5301 
5302     /* Make copies of constant WHERE-clause terms in the outer query down
5303     ** inside the subquery.  This can help the subquery to run more efficiently.
5304     */
5305     if( (pItem->fg.jointype & JT_OUTER)==0
5306      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5307     ){
5308 #if SELECTTRACE_ENABLED
5309       if( sqlite3SelectTrace & 0x100 ){
5310         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5311         sqlite3TreeViewSelect(0, p, 0);
5312       }
5313 #endif
5314     }
5315 
5316     /* Generate code to implement the subquery
5317     **
5318     ** The subquery is implemented as a co-routine if all of these are true:
5319     **   (1)  The subquery is guaranteed to be the outer loop (so that it
5320     **        does not need to be computed more than once)
5321     **   (2)  The ALL keyword after SELECT is omitted.  (Applications are
5322     **        allowed to say "SELECT ALL" instead of just "SELECT" to disable
5323     **        the use of co-routines.)
5324     **   (3)  Co-routines are not disabled using sqlite3_test_control()
5325     **        with SQLITE_TESTCTRL_OPTIMIZATIONS.
5326     **
5327     ** TODO: Are there other reasons beside (1) to use a co-routine
5328     ** implementation?
5329     */
5330     if( i==0
5331      && (pTabList->nSrc==1
5332             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5333      && (p->selFlags & SF_All)==0                                   /* (2) */
5334      && OptimizationEnabled(db, SQLITE_SubqCoroutine)               /* (3) */
5335     ){
5336       /* Implement a co-routine that will return a single row of the result
5337       ** set on each invocation.
5338       */
5339       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5340       pItem->regReturn = ++pParse->nMem;
5341       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5342       VdbeComment((v, "%s", pItem->pTab->zName));
5343       pItem->addrFillSub = addrTop;
5344       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5345       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5346       sqlite3Select(pParse, pSub, &dest);
5347       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5348       pItem->fg.viaCoroutine = 1;
5349       pItem->regResult = dest.iSdst;
5350       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5351       sqlite3VdbeJumpHere(v, addrTop-1);
5352       sqlite3ClearTempRegCache(pParse);
5353     }else{
5354       /* Generate a subroutine that will fill an ephemeral table with
5355       ** the content of this subquery.  pItem->addrFillSub will point
5356       ** to the address of the generated subroutine.  pItem->regReturn
5357       ** is a register allocated to hold the subroutine return address
5358       */
5359       int topAddr;
5360       int onceAddr = 0;
5361       int retAddr;
5362       struct SrcList_item *pPrior;
5363 
5364       assert( pItem->addrFillSub==0 );
5365       pItem->regReturn = ++pParse->nMem;
5366       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5367       pItem->addrFillSub = topAddr+1;
5368       if( pItem->fg.isCorrelated==0 ){
5369         /* If the subquery is not correlated and if we are not inside of
5370         ** a trigger, then we only need to compute the value of the subquery
5371         ** once. */
5372         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5373         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5374       }else{
5375         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5376       }
5377       pPrior = isSelfJoinView(pTabList, pItem);
5378       if( pPrior ){
5379         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5380         explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5381         assert( pPrior->pSelect!=0 );
5382         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5383       }else{
5384         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5385         explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5386         sqlite3Select(pParse, pSub, &dest);
5387       }
5388       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5389       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5390       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5391       VdbeComment((v, "end %s", pItem->pTab->zName));
5392       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5393       sqlite3ClearTempRegCache(pParse);
5394     }
5395     if( db->mallocFailed ) goto select_end;
5396     pParse->nHeight -= sqlite3SelectExprHeight(p);
5397 #endif
5398   }
5399 
5400   /* Various elements of the SELECT copied into local variables for
5401   ** convenience */
5402   pEList = p->pEList;
5403   pWhere = p->pWhere;
5404   pGroupBy = p->pGroupBy;
5405   pHaving = p->pHaving;
5406   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5407 
5408 #if SELECTTRACE_ENABLED
5409   if( sqlite3SelectTrace & 0x400 ){
5410     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5411     sqlite3TreeViewSelect(0, p, 0);
5412   }
5413 #endif
5414 
5415 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5416   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5417    && countOfViewOptimization(pParse, p)
5418   ){
5419     if( db->mallocFailed ) goto select_end;
5420     pEList = p->pEList;
5421     pTabList = p->pSrc;
5422   }
5423 #endif
5424 
5425   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5426   ** if the select-list is the same as the ORDER BY list, then this query
5427   ** can be rewritten as a GROUP BY. In other words, this:
5428   **
5429   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5430   **
5431   ** is transformed to:
5432   **
5433   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5434   **
5435   ** The second form is preferred as a single index (or temp-table) may be
5436   ** used for both the ORDER BY and DISTINCT processing. As originally
5437   ** written the query must use a temp-table for at least one of the ORDER
5438   ** BY and DISTINCT, and an index or separate temp-table for the other.
5439   */
5440   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5441    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5442   ){
5443     p->selFlags &= ~SF_Distinct;
5444     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5445     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5446     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5447     ** original setting of the SF_Distinct flag, not the current setting */
5448     assert( sDistinct.isTnct );
5449 
5450 #if SELECTTRACE_ENABLED
5451     if( sqlite3SelectTrace & 0x400 ){
5452       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5453       sqlite3TreeViewSelect(0, p, 0);
5454     }
5455 #endif
5456   }
5457 
5458   /* If there is an ORDER BY clause, then create an ephemeral index to
5459   ** do the sorting.  But this sorting ephemeral index might end up
5460   ** being unused if the data can be extracted in pre-sorted order.
5461   ** If that is the case, then the OP_OpenEphemeral instruction will be
5462   ** changed to an OP_Noop once we figure out that the sorting index is
5463   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5464   ** that change.
5465   */
5466   if( sSort.pOrderBy ){
5467     KeyInfo *pKeyInfo;
5468     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5469     sSort.iECursor = pParse->nTab++;
5470     sSort.addrSortIndex =
5471       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5472           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5473           (char*)pKeyInfo, P4_KEYINFO
5474       );
5475   }else{
5476     sSort.addrSortIndex = -1;
5477   }
5478 
5479   /* If the output is destined for a temporary table, open that table.
5480   */
5481   if( pDest->eDest==SRT_EphemTab ){
5482     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5483   }
5484 
5485   /* Set the limiter.
5486   */
5487   iEnd = sqlite3VdbeMakeLabel(v);
5488   if( (p->selFlags & SF_FixedLimit)==0 ){
5489     p->nSelectRow = 320;  /* 4 billion rows */
5490   }
5491   computeLimitRegisters(pParse, p, iEnd);
5492   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5493     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5494     sSort.sortFlags |= SORTFLAG_UseSorter;
5495   }
5496 
5497   /* Open an ephemeral index to use for the distinct set.
5498   */
5499   if( p->selFlags & SF_Distinct ){
5500     sDistinct.tabTnct = pParse->nTab++;
5501     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5502                              sDistinct.tabTnct, 0, 0,
5503                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5504                              P4_KEYINFO);
5505     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5506     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5507   }else{
5508     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5509   }
5510 
5511   if( !isAgg && pGroupBy==0 ){
5512     /* No aggregate functions and no GROUP BY clause */
5513     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5514     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5515     wctrlFlags |= p->selFlags & SF_FixedLimit;
5516 
5517     /* Begin the database scan. */
5518     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5519                                p->pEList, wctrlFlags, p->nSelectRow);
5520     if( pWInfo==0 ) goto select_end;
5521     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5522       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5523     }
5524     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5525       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5526     }
5527     if( sSort.pOrderBy ){
5528       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5529       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5530       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5531         sSort.pOrderBy = 0;
5532       }
5533     }
5534 
5535     /* If sorting index that was created by a prior OP_OpenEphemeral
5536     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5537     ** into an OP_Noop.
5538     */
5539     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5540       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5541     }
5542 
5543     /* Use the standard inner loop. */
5544     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5545                     sqlite3WhereContinueLabel(pWInfo),
5546                     sqlite3WhereBreakLabel(pWInfo));
5547 
5548     /* End the database scan loop.
5549     */
5550     sqlite3WhereEnd(pWInfo);
5551   }else{
5552     /* This case when there exist aggregate functions or a GROUP BY clause
5553     ** or both */
5554     NameContext sNC;    /* Name context for processing aggregate information */
5555     int iAMem;          /* First Mem address for storing current GROUP BY */
5556     int iBMem;          /* First Mem address for previous GROUP BY */
5557     int iUseFlag;       /* Mem address holding flag indicating that at least
5558                         ** one row of the input to the aggregator has been
5559                         ** processed */
5560     int iAbortFlag;     /* Mem address which causes query abort if positive */
5561     int groupBySort;    /* Rows come from source in GROUP BY order */
5562     int addrEnd;        /* End of processing for this SELECT */
5563     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5564     int sortOut = 0;    /* Output register from the sorter */
5565     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5566 
5567     /* Remove any and all aliases between the result set and the
5568     ** GROUP BY clause.
5569     */
5570     if( pGroupBy ){
5571       int k;                        /* Loop counter */
5572       struct ExprList_item *pItem;  /* For looping over expression in a list */
5573 
5574       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5575         pItem->u.x.iAlias = 0;
5576       }
5577       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5578         pItem->u.x.iAlias = 0;
5579       }
5580       assert( 66==sqlite3LogEst(100) );
5581       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5582     }else{
5583       assert( 0==sqlite3LogEst(1) );
5584       p->nSelectRow = 0;
5585     }
5586 
5587     /* If there is both a GROUP BY and an ORDER BY clause and they are
5588     ** identical, then it may be possible to disable the ORDER BY clause
5589     ** on the grounds that the GROUP BY will cause elements to come out
5590     ** in the correct order. It also may not - the GROUP BY might use a
5591     ** database index that causes rows to be grouped together as required
5592     ** but not actually sorted. Either way, record the fact that the
5593     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5594     ** variable.  */
5595     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5596       orderByGrp = 1;
5597     }
5598 
5599     /* Create a label to jump to when we want to abort the query */
5600     addrEnd = sqlite3VdbeMakeLabel(v);
5601 
5602     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5603     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5604     ** SELECT statement.
5605     */
5606     memset(&sNC, 0, sizeof(sNC));
5607     sNC.pParse = pParse;
5608     sNC.pSrcList = pTabList;
5609     sNC.pAggInfo = &sAggInfo;
5610     sAggInfo.mnReg = pParse->nMem+1;
5611     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5612     sAggInfo.pGroupBy = pGroupBy;
5613     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5614     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5615     if( pHaving ){
5616       if( pGroupBy ){
5617         assert( pWhere==p->pWhere );
5618         havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5619         pWhere = p->pWhere;
5620       }
5621       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5622     }
5623     sAggInfo.nAccumulator = sAggInfo.nColumn;
5624     for(i=0; i<sAggInfo.nFunc; i++){
5625       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5626       sNC.ncFlags |= NC_InAggFunc;
5627       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5628       sNC.ncFlags &= ~NC_InAggFunc;
5629     }
5630     sAggInfo.mxReg = pParse->nMem;
5631     if( db->mallocFailed ) goto select_end;
5632 
5633     /* Processing for aggregates with GROUP BY is very different and
5634     ** much more complex than aggregates without a GROUP BY.
5635     */
5636     if( pGroupBy ){
5637       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5638       int addr1;          /* A-vs-B comparision jump */
5639       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5640       int regOutputRow;   /* Return address register for output subroutine */
5641       int addrSetAbort;   /* Set the abort flag and return */
5642       int addrTopOfLoop;  /* Top of the input loop */
5643       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5644       int addrReset;      /* Subroutine for resetting the accumulator */
5645       int regReset;       /* Return address register for reset subroutine */
5646 
5647       /* If there is a GROUP BY clause we might need a sorting index to
5648       ** implement it.  Allocate that sorting index now.  If it turns out
5649       ** that we do not need it after all, the OP_SorterOpen instruction
5650       ** will be converted into a Noop.
5651       */
5652       sAggInfo.sortingIdx = pParse->nTab++;
5653       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5654       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5655           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5656           0, (char*)pKeyInfo, P4_KEYINFO);
5657 
5658       /* Initialize memory locations used by GROUP BY aggregate processing
5659       */
5660       iUseFlag = ++pParse->nMem;
5661       iAbortFlag = ++pParse->nMem;
5662       regOutputRow = ++pParse->nMem;
5663       addrOutputRow = sqlite3VdbeMakeLabel(v);
5664       regReset = ++pParse->nMem;
5665       addrReset = sqlite3VdbeMakeLabel(v);
5666       iAMem = pParse->nMem + 1;
5667       pParse->nMem += pGroupBy->nExpr;
5668       iBMem = pParse->nMem + 1;
5669       pParse->nMem += pGroupBy->nExpr;
5670       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5671       VdbeComment((v, "clear abort flag"));
5672       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5673       VdbeComment((v, "indicate accumulator empty"));
5674       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5675 
5676       /* Begin a loop that will extract all source rows in GROUP BY order.
5677       ** This might involve two separate loops with an OP_Sort in between, or
5678       ** it might be a single loop that uses an index to extract information
5679       ** in the right order to begin with.
5680       */
5681       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5682       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5683           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5684       );
5685       if( pWInfo==0 ) goto select_end;
5686       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5687         /* The optimizer is able to deliver rows in group by order so
5688         ** we do not have to sort.  The OP_OpenEphemeral table will be
5689         ** cancelled later because we still need to use the pKeyInfo
5690         */
5691         groupBySort = 0;
5692       }else{
5693         /* Rows are coming out in undetermined order.  We have to push
5694         ** each row into a sorting index, terminate the first loop,
5695         ** then loop over the sorting index in order to get the output
5696         ** in sorted order
5697         */
5698         int regBase;
5699         int regRecord;
5700         int nCol;
5701         int nGroupBy;
5702 
5703         explainTempTable(pParse,
5704             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5705                     "DISTINCT" : "GROUP BY");
5706 
5707         groupBySort = 1;
5708         nGroupBy = pGroupBy->nExpr;
5709         nCol = nGroupBy;
5710         j = nGroupBy;
5711         for(i=0; i<sAggInfo.nColumn; i++){
5712           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5713             nCol++;
5714             j++;
5715           }
5716         }
5717         regBase = sqlite3GetTempRange(pParse, nCol);
5718         sqlite3ExprCacheClear(pParse);
5719         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5720         j = nGroupBy;
5721         for(i=0; i<sAggInfo.nColumn; i++){
5722           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5723           if( pCol->iSorterColumn>=j ){
5724             int r1 = j + regBase;
5725             sqlite3ExprCodeGetColumnToReg(pParse,
5726                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5727             j++;
5728           }
5729         }
5730         regRecord = sqlite3GetTempReg(pParse);
5731         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5732         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5733         sqlite3ReleaseTempReg(pParse, regRecord);
5734         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5735         sqlite3WhereEnd(pWInfo);
5736         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5737         sortOut = sqlite3GetTempReg(pParse);
5738         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5739         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5740         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5741         sAggInfo.useSortingIdx = 1;
5742         sqlite3ExprCacheClear(pParse);
5743 
5744       }
5745 
5746       /* If the index or temporary table used by the GROUP BY sort
5747       ** will naturally deliver rows in the order required by the ORDER BY
5748       ** clause, cancel the ephemeral table open coded earlier.
5749       **
5750       ** This is an optimization - the correct answer should result regardless.
5751       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5752       ** disable this optimization for testing purposes.  */
5753       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5754        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5755       ){
5756         sSort.pOrderBy = 0;
5757         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5758       }
5759 
5760       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5761       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5762       ** Then compare the current GROUP BY terms against the GROUP BY terms
5763       ** from the previous row currently stored in a0, a1, a2...
5764       */
5765       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5766       sqlite3ExprCacheClear(pParse);
5767       if( groupBySort ){
5768         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5769                           sortOut, sortPTab);
5770       }
5771       for(j=0; j<pGroupBy->nExpr; j++){
5772         if( groupBySort ){
5773           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5774         }else{
5775           sAggInfo.directMode = 1;
5776           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5777         }
5778       }
5779       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5780                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5781       addr1 = sqlite3VdbeCurrentAddr(v);
5782       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5783 
5784       /* Generate code that runs whenever the GROUP BY changes.
5785       ** Changes in the GROUP BY are detected by the previous code
5786       ** block.  If there were no changes, this block is skipped.
5787       **
5788       ** This code copies current group by terms in b0,b1,b2,...
5789       ** over to a0,a1,a2.  It then calls the output subroutine
5790       ** and resets the aggregate accumulator registers in preparation
5791       ** for the next GROUP BY batch.
5792       */
5793       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5794       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5795       VdbeComment((v, "output one row"));
5796       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5797       VdbeComment((v, "check abort flag"));
5798       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5799       VdbeComment((v, "reset accumulator"));
5800 
5801       /* Update the aggregate accumulators based on the content of
5802       ** the current row
5803       */
5804       sqlite3VdbeJumpHere(v, addr1);
5805       updateAccumulator(pParse, &sAggInfo);
5806       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5807       VdbeComment((v, "indicate data in accumulator"));
5808 
5809       /* End of the loop
5810       */
5811       if( groupBySort ){
5812         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5813         VdbeCoverage(v);
5814       }else{
5815         sqlite3WhereEnd(pWInfo);
5816         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5817       }
5818 
5819       /* Output the final row of result
5820       */
5821       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5822       VdbeComment((v, "output final row"));
5823 
5824       /* Jump over the subroutines
5825       */
5826       sqlite3VdbeGoto(v, addrEnd);
5827 
5828       /* Generate a subroutine that outputs a single row of the result
5829       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5830       ** is less than or equal to zero, the subroutine is a no-op.  If
5831       ** the processing calls for the query to abort, this subroutine
5832       ** increments the iAbortFlag memory location before returning in
5833       ** order to signal the caller to abort.
5834       */
5835       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5836       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5837       VdbeComment((v, "set abort flag"));
5838       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5839       sqlite3VdbeResolveLabel(v, addrOutputRow);
5840       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5841       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5842       VdbeCoverage(v);
5843       VdbeComment((v, "Groupby result generator entry point"));
5844       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5845       finalizeAggFunctions(pParse, &sAggInfo);
5846       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5847       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5848                       &sDistinct, pDest,
5849                       addrOutputRow+1, addrSetAbort);
5850       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5851       VdbeComment((v, "end groupby result generator"));
5852 
5853       /* Generate a subroutine that will reset the group-by accumulator
5854       */
5855       sqlite3VdbeResolveLabel(v, addrReset);
5856       resetAccumulator(pParse, &sAggInfo);
5857       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5858 
5859     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5860     else {
5861       ExprList *pDel = 0;
5862 #ifndef SQLITE_OMIT_BTREECOUNT
5863       Table *pTab;
5864       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5865         /* If isSimpleCount() returns a pointer to a Table structure, then
5866         ** the SQL statement is of the form:
5867         **
5868         **   SELECT count(*) FROM <tbl>
5869         **
5870         ** where the Table structure returned represents table <tbl>.
5871         **
5872         ** This statement is so common that it is optimized specially. The
5873         ** OP_Count instruction is executed either on the intkey table that
5874         ** contains the data for table <tbl> or on one of its indexes. It
5875         ** is better to execute the op on an index, as indexes are almost
5876         ** always spread across less pages than their corresponding tables.
5877         */
5878         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5879         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5880         Index *pIdx;                         /* Iterator variable */
5881         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5882         Index *pBest = 0;                    /* Best index found so far */
5883         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5884 
5885         sqlite3CodeVerifySchema(pParse, iDb);
5886         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5887 
5888         /* Search for the index that has the lowest scan cost.
5889         **
5890         ** (2011-04-15) Do not do a full scan of an unordered index.
5891         **
5892         ** (2013-10-03) Do not count the entries in a partial index.
5893         **
5894         ** In practice the KeyInfo structure will not be used. It is only
5895         ** passed to keep OP_OpenRead happy.
5896         */
5897         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5898         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5899           if( pIdx->bUnordered==0
5900            && pIdx->szIdxRow<pTab->szTabRow
5901            && pIdx->pPartIdxWhere==0
5902            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5903           ){
5904             pBest = pIdx;
5905           }
5906         }
5907         if( pBest ){
5908           iRoot = pBest->tnum;
5909           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5910         }
5911 
5912         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5913         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5914         if( pKeyInfo ){
5915           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5916         }
5917         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5918         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5919         explainSimpleCount(pParse, pTab, pBest);
5920       }else
5921 #endif /* SQLITE_OMIT_BTREECOUNT */
5922       {
5923         /* Check if the query is of one of the following forms:
5924         **
5925         **   SELECT min(x) FROM ...
5926         **   SELECT max(x) FROM ...
5927         **
5928         ** If it is, then ask the code in where.c to attempt to sort results
5929         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5930         ** If where.c is able to produce results sorted in this order, then
5931         ** add vdbe code to break out of the processing loop after the
5932         ** first iteration (since the first iteration of the loop is
5933         ** guaranteed to operate on the row with the minimum or maximum
5934         ** value of x, the only row required).
5935         **
5936         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5937         ** modify behavior as follows:
5938         **
5939         **   + If the query is a "SELECT min(x)", then the loop coded by
5940         **     where.c should not iterate over any values with a NULL value
5941         **     for x.
5942         **
5943         **   + The optimizer code in where.c (the thing that decides which
5944         **     index or indices to use) should place a different priority on
5945         **     satisfying the 'ORDER BY' clause than it does in other cases.
5946         **     Refer to code and comments in where.c for details.
5947         */
5948         ExprList *pMinMax = 0;
5949         u8 flag = WHERE_ORDERBY_NORMAL;
5950 
5951         assert( p->pGroupBy==0 );
5952         assert( flag==0 );
5953         if( p->pHaving==0 ){
5954           flag = minMaxQuery(&sAggInfo, &pMinMax);
5955         }
5956         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5957 
5958         if( flag ){
5959           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5960           pDel = pMinMax;
5961           assert( db->mallocFailed || pMinMax!=0 );
5962           if( !db->mallocFailed ){
5963             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5964             pMinMax->a[0].pExpr->op = TK_COLUMN;
5965           }
5966         }
5967 
5968         /* This case runs if the aggregate has no GROUP BY clause.  The
5969         ** processing is much simpler since there is only a single row
5970         ** of output.
5971         */
5972         resetAccumulator(pParse, &sAggInfo);
5973         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0);
5974         if( pWInfo==0 ){
5975           sqlite3ExprListDelete(db, pDel);
5976           goto select_end;
5977         }
5978         updateAccumulator(pParse, &sAggInfo);
5979         assert( pMinMax==0 || pMinMax->nExpr==1 );
5980         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5981           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5982           VdbeComment((v, "%s() by index",
5983                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5984         }
5985         sqlite3WhereEnd(pWInfo);
5986         finalizeAggFunctions(pParse, &sAggInfo);
5987       }
5988 
5989       sSort.pOrderBy = 0;
5990       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5991       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5992                       pDest, addrEnd, addrEnd);
5993       sqlite3ExprListDelete(db, pDel);
5994     }
5995     sqlite3VdbeResolveLabel(v, addrEnd);
5996 
5997   } /* endif aggregate query */
5998 
5999   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6000     explainTempTable(pParse, "DISTINCT");
6001   }
6002 
6003   /* If there is an ORDER BY clause, then we need to sort the results
6004   ** and send them to the callback one by one.
6005   */
6006   if( sSort.pOrderBy ){
6007     explainTempTable(pParse,
6008                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6009     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6010   }
6011 
6012   /* Jump here to skip this query
6013   */
6014   sqlite3VdbeResolveLabel(v, iEnd);
6015 
6016   /* The SELECT has been coded. If there is an error in the Parse structure,
6017   ** set the return code to 1. Otherwise 0. */
6018   rc = (pParse->nErr>0);
6019 
6020   /* Control jumps to here if an error is encountered above, or upon
6021   ** successful coding of the SELECT.
6022   */
6023 select_end:
6024   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6025 
6026   sqlite3DbFree(db, sAggInfo.aCol);
6027   sqlite3DbFree(db, sAggInfo.aFunc);
6028 #if SELECTTRACE_ENABLED
6029   SELECTTRACE(1,pParse,p,("end processing\n"));
6030   pParse->nSelectIndent--;
6031 #endif
6032   return rc;
6033 }
6034