1 /*	$NetBSD: radeon_fence.c,v 1.22 2021/12/19 11:52:38 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2009 Jerome Glisse.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * The above copyright notice and this permission notice (including the
24  * next paragraph) shall be included in all copies or substantial portions
25  * of the Software.
26  *
27  */
28 /*
29  * Authors:
30  *    Jerome Glisse <glisse@freedesktop.org>
31  *    Dave Airlie
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.22 2021/12/19 11:52:38 riastradh Exp $");
36 
37 #include <linux/atomic.h>
38 #include <linux/firmware.h>
39 #include <linux/kref.h>
40 #include <linux/sched/signal.h>
41 #include <linux/seq_file.h>
42 #include <linux/slab.h>
43 #include <linux/wait.h>
44 
45 #include <drm/drm_debugfs.h>
46 #include <drm/drm_device.h>
47 #include <drm/drm_file.h>
48 
49 #include "radeon.h"
50 #include "radeon_reg.h"
51 #include "radeon_trace.h"
52 
53 #include <linux/nbsd-namespace.h>
54 
55 /*
56  * Fences
57  * Fences mark an event in the GPUs pipeline and are used
58  * for GPU/CPU synchronization.  When the fence is written,
59  * it is expected that all buffers associated with that fence
60  * are no longer in use by the associated ring on the GPU and
61  * that the the relevant GPU caches have been flushed.  Whether
62  * we use a scratch register or memory location depends on the asic
63  * and whether writeback is enabled.
64  */
65 
66 /**
67  * radeon_fence_write - write a fence value
68  *
69  * @rdev: radeon_device pointer
70  * @seq: sequence number to write
71  * @ring: ring index the fence is associated with
72  *
73  * Writes a fence value to memory or a scratch register (all asics).
74  */
radeon_fence_write(struct radeon_device * rdev,u32 seq,int ring)75 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
76 {
77 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
78 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
79 		if (drv->cpu_addr) {
80 			*drv->cpu_addr = cpu_to_le32(seq);
81 		}
82 	} else {
83 		WREG32(drv->scratch_reg, seq);
84 	}
85 }
86 
87 /**
88  * radeon_fence_read - read a fence value
89  *
90  * @rdev: radeon_device pointer
91  * @ring: ring index the fence is associated with
92  *
93  * Reads a fence value from memory or a scratch register (all asics).
94  * Returns the value of the fence read from memory or register.
95  */
radeon_fence_read(struct radeon_device * rdev,int ring)96 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
97 {
98 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
99 	u32 seq = 0;
100 
101 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
102 		if (drv->cpu_addr) {
103 			seq = le32_to_cpu(*drv->cpu_addr);
104 		} else {
105 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
106 		}
107 	} else {
108 		seq = RREG32(drv->scratch_reg);
109 	}
110 	return seq;
111 }
112 
113 /**
114  * radeon_fence_schedule_check - schedule lockup check
115  *
116  * @rdev: radeon_device pointer
117  * @ring: ring index we should work with
118  *
119  * Queues a delayed work item to check for lockups.
120  */
radeon_fence_schedule_check(struct radeon_device * rdev,int ring)121 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
122 {
123 	/*
124 	 * Do not reset the timer here with mod_delayed_work,
125 	 * this can livelock in an interaction with TTM delayed destroy.
126 	 */
127 	queue_delayed_work(system_power_efficient_wq,
128 			   &rdev->fence_drv[ring].lockup_work,
129 			   RADEON_FENCE_JIFFIES_TIMEOUT);
130 }
131 
132 /**
133  * radeon_fence_emit - emit a fence on the requested ring
134  *
135  * @rdev: radeon_device pointer
136  * @fence: radeon fence object
137  * @ring: ring index the fence is associated with
138  *
139  * Emits a fence command on the requested ring (all asics).
140  * Returns 0 on success, -ENOMEM on failure.
141  */
radeon_fence_emit(struct radeon_device * rdev,struct radeon_fence ** fence,int ring)142 int radeon_fence_emit(struct radeon_device *rdev,
143 		      struct radeon_fence **fence,
144 		      int ring)
145 {
146 	u64 seq;
147 
148 	/* we are protected by the ring emission mutex */
149 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
150 	if ((*fence) == NULL) {
151 		return -ENOMEM;
152 	}
153 	(*fence)->rdev = rdev;
154 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
155 	(*fence)->ring = ring;
156 	(*fence)->is_vm_update = false;
157 	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
158 		       &rdev->fence_lock,
159 		       rdev->fence_context + ring,
160 		       seq);
161 	radeon_fence_ring_emit(rdev, ring, *fence);
162 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
163 	radeon_fence_schedule_check(rdev, ring);
164 	return 0;
165 }
166 
167 /**
168  * radeon_fence_check_signaled - callback from fence_queue
169  *
170  * this function is called with fence_queue lock held, which is also used
171  * for the fence locking itself, so unlocked variants are used for
172  * fence_signal, and remove_wait_queue.
173  */
radeon_fence_check_signaled(struct radeon_fence * fence)174 static int radeon_fence_check_signaled(struct radeon_fence *fence)
175 {
176 	u64 seq;
177 
178 	BUG_ON(!spin_is_locked(&fence->rdev->fence_lock));
179 
180 	/*
181 	 * We cannot use radeon_fence_process here because we're already
182 	 * in the waitqueue, in a call from wake_up_all.
183 	 */
184 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
185 	if (seq >= fence->seq) {
186 		int ret = dma_fence_signal_locked(&fence->base);
187 
188 		if (!ret)
189 			DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
190 		else
191 			DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
192 
193 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
194 		TAILQ_REMOVE(&fence->rdev->fence_check, fence, fence_check);
195 		dma_fence_put(&fence->base);
196 	} else
197 		DMA_FENCE_TRACE(&fence->base, "pending\n");
198 	return 0;
199 }
200 
201 void
radeon_fence_wakeup_locked(struct radeon_device * rdev)202 radeon_fence_wakeup_locked(struct radeon_device *rdev)
203 {
204 	struct radeon_fence *fence, *next;
205 
206 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
207 	DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
208 	TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) {
209 		radeon_fence_check_signaled(fence);
210 	}
211 }
212 
213 /**
214  * radeon_fence_activity - check for fence activity
215  *
216  * @rdev: radeon_device pointer
217  * @ring: ring index the fence is associated with
218  *
219  * Checks the current fence value and calculates the last
220  * signalled fence value. Returns true if activity occured
221  * on the ring, and the fence_queue should be waken up.
222  */
radeon_fence_activity(struct radeon_device * rdev,int ring)223 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
224 {
225 	uint64_t seq, last_seq, last_emitted;
226 	unsigned count_loop = 0;
227 	bool wake = false;
228 
229 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
230 
231 	/* Note there is a scenario here for an infinite loop but it's
232 	 * very unlikely to happen. For it to happen, the current polling
233 	 * process need to be interrupted by another process and another
234 	 * process needs to update the last_seq btw the atomic read and
235 	 * xchg of the current process.
236 	 *
237 	 * More over for this to go in infinite loop there need to be
238 	 * continuously new fence signaled ie radeon_fence_read needs
239 	 * to return a different value each time for both the currently
240 	 * polling process and the other process that xchg the last_seq
241 	 * btw atomic read and xchg of the current process. And the
242 	 * value the other process set as last seq must be higher than
243 	 * the seq value we just read. Which means that current process
244 	 * need to be interrupted after radeon_fence_read and before
245 	 * atomic xchg.
246 	 *
247 	 * To be even more safe we count the number of time we loop and
248 	 * we bail after 10 loop just accepting the fact that we might
249 	 * have temporarly set the last_seq not to the true real last
250 	 * seq but to an older one.
251 	 */
252 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
253 	do {
254 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
255 		seq = radeon_fence_read(rdev, ring);
256 		seq |= last_seq & 0xffffffff00000000LL;
257 		if (seq < last_seq) {
258 			seq &= 0xffffffff;
259 			seq |= last_emitted & 0xffffffff00000000LL;
260 		}
261 
262 		if (seq <= last_seq || seq > last_emitted) {
263 			break;
264 		}
265 		/* If we loop over we don't want to return without
266 		 * checking if a fence is signaled as it means that the
267 		 * seq we just read is different from the previous on.
268 		 */
269 		wake = true;
270 		last_seq = seq;
271 		if ((count_loop++) > 10) {
272 			/* We looped over too many time leave with the
273 			 * fact that we might have set an older fence
274 			 * seq then the current real last seq as signaled
275 			 * by the hw.
276 			 */
277 			break;
278 		}
279 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
280 
281 	if (seq < last_emitted)
282 		radeon_fence_schedule_check(rdev, ring);
283 
284 	return wake;
285 }
286 
287 /**
288  * radeon_fence_check_lockup - check for hardware lockup
289  *
290  * @work: delayed work item
291  *
292  * Checks for fence activity and if there is none probe
293  * the hardware if a lockup occured.
294  */
radeon_fence_check_lockup(struct work_struct * work)295 static void radeon_fence_check_lockup(struct work_struct *work)
296 {
297 	struct radeon_fence_driver *fence_drv;
298 	struct radeon_device *rdev;
299 	int ring;
300 
301 	fence_drv = container_of(work, struct radeon_fence_driver,
302 				 lockup_work.work);
303 	rdev = fence_drv->rdev;
304 	ring = fence_drv - &rdev->fence_drv[0];
305 
306 	spin_lock(&rdev->fence_lock);
307 
308 	if (!down_read_trylock(&rdev->exclusive_lock)) {
309 		/* just reschedule the check if a reset is going on */
310 		radeon_fence_schedule_check(rdev, ring);
311 		spin_unlock(&rdev->fence_lock);
312 		return;
313 	}
314 
315 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
316 		unsigned long irqflags;
317 
318 		fence_drv->delayed_irq = false;
319 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
320 		radeon_irq_set(rdev);
321 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
322 	}
323 
324 	if (radeon_fence_activity(rdev, ring))
325 		radeon_fence_wakeup_locked(rdev);
326 
327 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
328 
329 		/* good news we believe it's a lockup */
330 		dev_warn(rdev->dev, "GPU lockup (current fence id "
331 			 "0x%016"PRIx64" last fence id 0x%016"PRIx64" on ring %d)\n",
332 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
333 			 fence_drv->sync_seq[ring], ring);
334 
335 		/* remember that we need an reset */
336 		rdev->needs_reset = true;
337 		radeon_fence_wakeup_locked(rdev);
338 	}
339 	up_read(&rdev->exclusive_lock);
340 	spin_unlock(&rdev->fence_lock);
341 }
342 
343 /**
344  * radeon_fence_process - process a fence
345  *
346  * @rdev: radeon_device pointer
347  * @ring: ring index the fence is associated with
348  *
349  * Checks the current fence value and wakes the fence queue
350  * if the sequence number has increased (all asics).
351  */
radeon_fence_process_locked(struct radeon_device * rdev,int ring)352 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring)
353 {
354 	if (radeon_fence_activity(rdev, ring))
355 		radeon_fence_wakeup_locked(rdev);
356 }
357 
radeon_fence_process(struct radeon_device * rdev,int ring)358 void radeon_fence_process(struct radeon_device *rdev, int ring)
359 {
360 
361 	spin_lock(&rdev->fence_lock);
362 	radeon_fence_process_locked(rdev, ring);
363 	spin_unlock(&rdev->fence_lock);
364 }
365 
366 /**
367  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
368  *
369  * @rdev: radeon device pointer
370  * @seq: sequence number
371  * @ring: ring index the fence is associated with
372  *
373  * Check if the last signaled fence sequnce number is >= the requested
374  * sequence number (all asics).
375  * Returns true if the fence has signaled (current fence value
376  * is >= requested value) or false if it has not (current fence
377  * value is < the requested value.  Helper function for
378  * radeon_fence_signaled().
379  */
radeon_fence_seq_signaled(struct radeon_device * rdev,u64 seq,unsigned ring)380 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
381 				      u64 seq, unsigned ring)
382 {
383 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
384 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
385 		return true;
386 	}
387 	/* poll new last sequence at least once */
388 	radeon_fence_process_locked(rdev, ring);
389 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
390 		return true;
391 	}
392 	return false;
393 }
394 
radeon_fence_is_signaled(struct dma_fence * f)395 static bool radeon_fence_is_signaled(struct dma_fence *f)
396 {
397 	struct radeon_fence *fence = to_radeon_fence(f);
398 	struct radeon_device *rdev = fence->rdev;
399 	unsigned ring = fence->ring;
400 	u64 seq = fence->seq;
401 
402 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
403 
404 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
405 		return true;
406 	}
407 
408 	if (down_read_trylock(&rdev->exclusive_lock)) {
409 		radeon_fence_process_locked(rdev, ring);
410 		up_read(&rdev->exclusive_lock);
411 
412 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
413 			return true;
414 		}
415 	}
416 	return false;
417 }
418 
419 /**
420  * radeon_fence_enable_signaling - enable signalling on fence
421  * @fence: fence
422  *
423  * This function is called with fence_queue lock held, and adds a callback
424  * to fence_queue that checks if this fence is signaled, and if so it
425  * signals the fence and removes itself.
426  */
radeon_fence_enable_signaling(struct dma_fence * f)427 static bool radeon_fence_enable_signaling(struct dma_fence *f)
428 {
429 	struct radeon_fence *fence = to_radeon_fence(f);
430 	struct radeon_device *rdev = fence->rdev;
431 
432 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
433 
434 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
435 		return false;
436 
437 	if (down_read_trylock(&rdev->exclusive_lock)) {
438 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
439 
440 		if (radeon_fence_activity(rdev, fence->ring))
441 			radeon_fence_wakeup_locked(rdev);
442 
443 		/* did fence get signaled after we enabled the sw irq? */
444 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
445 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
446 			up_read(&rdev->exclusive_lock);
447 			return false;
448 		}
449 
450 		up_read(&rdev->exclusive_lock);
451 	} else {
452 		/* we're probably in a lockup, lets not fiddle too much */
453 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
454 			rdev->fence_drv[fence->ring].delayed_irq = true;
455 		radeon_fence_schedule_check(rdev, fence->ring);
456 	}
457 
458 	TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check);
459 	dma_fence_get(f);
460 
461 	DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
462 	return true;
463 }
464 
465 /**
466  * radeon_fence_signaled - check if a fence has signaled
467  *
468  * @fence: radeon fence object
469  *
470  * Check if the requested fence has signaled (all asics).
471  * Returns true if the fence has signaled or false if it has not.
472  */
radeon_fence_signaled(struct radeon_fence * fence)473 bool radeon_fence_signaled(struct radeon_fence *fence)
474 {
475 	if (!fence)
476 		return true;
477 
478 	spin_lock(&fence->rdev->fence_lock);
479 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
480 		int ret;
481 
482 		ret = dma_fence_signal_locked(&fence->base);
483 		if (!ret)
484 			DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
485 		spin_unlock(&fence->rdev->fence_lock);
486 		return true;
487 	}
488 	spin_unlock(&fence->rdev->fence_lock);
489 	return false;
490 }
491 
492 /**
493  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
494  *
495  * @rdev: radeon device pointer
496  * @seq: sequence numbers
497  *
498  * Check if the last signaled fence sequnce number is >= the requested
499  * sequence number (all asics).
500  * Returns true if any has signaled (current value is >= requested value)
501  * or false if it has not. Helper function for radeon_fence_wait_seq.
502  */
radeon_fence_any_seq_signaled(struct radeon_device * rdev,u64 * seq)503 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
504 {
505 	unsigned i;
506 
507 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
508 
509 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
510 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
511 			return true;
512 	}
513 	return false;
514 }
515 
516 /**
517  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
518  *
519  * @rdev: radeon device pointer
520  * @target_seq: sequence number(s) we want to wait for
521  * @intr: use interruptable sleep
522  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
523  *
524  * Wait for the requested sequence number(s) to be written by any ring
525  * (all asics).  Sequnce number array is indexed by ring id.
526  * @intr selects whether to use interruptable (true) or non-interruptable
527  * (false) sleep when waiting for the sequence number.  Helper function
528  * for radeon_fence_wait_*().
529  * Returns remaining time if the sequence number has passed, 0 when
530  * the wait timeout, or an error for all other cases.
531  * -EDEADLK is returned when a GPU lockup has been detected.
532  */
radeon_fence_wait_seq_timeout_locked(struct radeon_device * rdev,u64 * target_seq,bool intr,long timeout)533 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev,
534 					  u64 *target_seq, bool intr,
535 					  long timeout)
536 {
537 	long r;
538 	int i;
539 
540 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
541 		return timeout;
542 
543 	/* enable IRQs and tracing */
544 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
545 		if (!target_seq[i])
546 			continue;
547 
548 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
549 		radeon_irq_kms_sw_irq_get(rdev, i);
550 	}
551 
552 	if (intr)
553 		DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
554 		    &rdev->fence_lock, timeout,
555 		    (radeon_fence_any_seq_signaled(rdev, target_seq)
556 			|| rdev->needs_reset));
557 	else
558 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
559 		    &rdev->fence_lock, timeout,
560 		    (radeon_fence_any_seq_signaled(rdev, target_seq)
561 			|| rdev->needs_reset));
562 
563 	if (rdev->needs_reset)
564 		r = -EDEADLK;
565 
566 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
567 		if (!target_seq[i])
568 			continue;
569 
570 		radeon_irq_kms_sw_irq_put(rdev, i);
571 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
572 	}
573 
574 	return r;
575 }
576 
radeon_fence_wait_seq_timeout(struct radeon_device * rdev,u64 * target_seq,bool intr,long timo)577 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
578     u64 *target_seq, bool intr, long timo)
579 {
580 	long r;
581 
582 	spin_lock(&rdev->fence_lock);
583 	r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo);
584 	spin_unlock(&rdev->fence_lock);
585 
586 	return r;
587 }
588 
589 /**
590  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
591  *
592  * @fence: radeon fence object
593  * @intr: use interruptible sleep
594  *
595  * Wait for the requested fence to signal (all asics).
596  * @intr selects whether to use interruptable (true) or non-interruptable
597  * (false) sleep when waiting for the fence.
598  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
599  * Returns remaining time if the sequence number has passed, 0 when
600  * the wait timeout, or an error for all other cases.
601  */
radeon_fence_wait_timeout(struct radeon_fence * fence,bool intr,long timeout)602 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
603 {
604 	uint64_t seq[RADEON_NUM_RINGS] = {};
605 	long r;
606 	int r_sig;
607 
608 	/*
609 	 * This function should not be called on !radeon fences.
610 	 * If this is the case, it would mean this function can
611 	 * also be called on radeon fences belonging to another card.
612 	 * exclusive_lock is not held in that case.
613 	 */
614 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
615 		return dma_fence_wait(&fence->base, intr);
616 
617 	seq[fence->ring] = fence->seq;
618 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
619 	if (r <= 0) {
620 		return r;
621 	}
622 
623 	r_sig = dma_fence_signal(&fence->base);
624 	if (!r_sig)
625 		DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
626 	return r;
627 }
628 
629 /**
630  * radeon_fence_wait - wait for a fence to signal
631  *
632  * @fence: radeon fence object
633  * @intr: use interruptible sleep
634  *
635  * Wait for the requested fence to signal (all asics).
636  * @intr selects whether to use interruptable (true) or non-interruptable
637  * (false) sleep when waiting for the fence.
638  * Returns 0 if the fence has passed, error for all other cases.
639  */
radeon_fence_wait(struct radeon_fence * fence,bool intr)640 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
641 {
642 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
643 	if (r > 0) {
644 		return 0;
645 	} else {
646 		return r;
647 	}
648 }
649 
650 /**
651  * radeon_fence_wait_any - wait for a fence to signal on any ring
652  *
653  * @rdev: radeon device pointer
654  * @fences: radeon fence object(s)
655  * @intr: use interruptable sleep
656  *
657  * Wait for any requested fence to signal (all asics).  Fence
658  * array is indexed by ring id.  @intr selects whether to use
659  * interruptable (true) or non-interruptable (false) sleep when
660  * waiting for the fences. Used by the suballocator.
661  * Returns 0 if any fence has passed, error for all other cases.
662  */
radeon_fence_wait_any(struct radeon_device * rdev,struct radeon_fence ** fences,bool intr)663 int radeon_fence_wait_any(struct radeon_device *rdev,
664 			  struct radeon_fence **fences,
665 			  bool intr)
666 {
667 	uint64_t seq[RADEON_NUM_RINGS];
668 	unsigned i, num_rings = 0;
669 	long r;
670 
671 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
672 		seq[i] = 0;
673 
674 		if (!fences[i]) {
675 			continue;
676 		}
677 
678 		seq[i] = fences[i]->seq;
679 		++num_rings;
680 	}
681 
682 	/* nothing to wait for ? */
683 	if (num_rings == 0)
684 		return -ENOENT;
685 
686 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
687 	if (r < 0) {
688 		return r;
689 	}
690 	return 0;
691 }
692 
693 /**
694  * radeon_fence_wait_next - wait for the next fence to signal
695  *
696  * @rdev: radeon device pointer
697  * @ring: ring index the fence is associated with
698  *
699  * Wait for the next fence on the requested ring to signal (all asics).
700  * Returns 0 if the next fence has passed, error for all other cases.
701  * Caller must hold ring lock.
702  */
radeon_fence_wait_next(struct radeon_device * rdev,int ring)703 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
704 {
705 	uint64_t seq[RADEON_NUM_RINGS] = {};
706 	long r;
707 
708 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
709 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
710 		/* nothing to wait for, last_seq is
711 		   already the last emited fence */
712 		return -ENOENT;
713 	}
714 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
715 	if (r < 0)
716 		return r;
717 	return 0;
718 }
719 
720 /**
721  * radeon_fence_wait_empty - wait for all fences to signal
722  *
723  * @rdev: radeon device pointer
724  * @ring: ring index the fence is associated with
725  *
726  * Wait for all fences on the requested ring to signal (all asics).
727  * Returns 0 if the fences have passed, error for all other cases.
728  * Caller must hold ring lock.
729  */
radeon_fence_wait_empty(struct radeon_device * rdev,int ring)730 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
731 {
732 	uint64_t seq[RADEON_NUM_RINGS] = {};
733 	long r;
734 
735 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
736 	if (!seq[ring])
737 		return 0;
738 
739 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
740 	if (r < 0) {
741 		if (r == -EDEADLK)
742 			return -EDEADLK;
743 
744 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
745 			ring, r);
746 	}
747 	return 0;
748 }
749 
750 /**
751  * radeon_fence_ref - take a ref on a fence
752  *
753  * @fence: radeon fence object
754  *
755  * Take a reference on a fence (all asics).
756  * Returns the fence.
757  */
radeon_fence_ref(struct radeon_fence * fence)758 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
759 {
760 	dma_fence_get(&fence->base);
761 	return fence;
762 }
763 
764 /**
765  * radeon_fence_unref - remove a ref on a fence
766  *
767  * @fence: radeon fence object
768  *
769  * Remove a reference on a fence (all asics).
770  */
radeon_fence_unref(struct radeon_fence ** fence)771 void radeon_fence_unref(struct radeon_fence **fence)
772 {
773 	struct radeon_fence *tmp = *fence;
774 
775 	*fence = NULL;
776 	if (tmp) {
777 		dma_fence_put(&tmp->base);
778 	}
779 }
780 
781 /**
782  * radeon_fence_count_emitted - get the count of emitted fences
783  *
784  * @rdev: radeon device pointer
785  * @ring: ring index the fence is associated with
786  *
787  * Get the number of fences emitted on the requested ring (all asics).
788  * Returns the number of emitted fences on the ring.  Used by the
789  * dynpm code to ring track activity.
790  */
radeon_fence_count_emitted(struct radeon_device * rdev,int ring)791 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
792 {
793 	uint64_t emitted;
794 
795 	/* We are not protected by ring lock when reading the last sequence
796 	 * but it's ok to report slightly wrong fence count here.
797 	 */
798 	radeon_fence_process(rdev, ring);
799 	emitted = rdev->fence_drv[ring].sync_seq[ring]
800 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
801 	/* to avoid 32bits warp around */
802 	if (emitted > 0x10000000) {
803 		emitted = 0x10000000;
804 	}
805 	return (unsigned)emitted;
806 }
807 
808 /**
809  * radeon_fence_need_sync - do we need a semaphore
810  *
811  * @fence: radeon fence object
812  * @dst_ring: which ring to check against
813  *
814  * Check if the fence needs to be synced against another ring
815  * (all asics).  If so, we need to emit a semaphore.
816  * Returns true if we need to sync with another ring, false if
817  * not.
818  */
radeon_fence_need_sync(struct radeon_fence * fence,int dst_ring)819 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
820 {
821 	struct radeon_fence_driver *fdrv;
822 
823 	if (!fence) {
824 		return false;
825 	}
826 
827 	if (fence->ring == dst_ring) {
828 		return false;
829 	}
830 
831 	/* we are protected by the ring mutex */
832 	fdrv = &fence->rdev->fence_drv[dst_ring];
833 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
834 		return false;
835 	}
836 
837 	return true;
838 }
839 
840 /**
841  * radeon_fence_note_sync - record the sync point
842  *
843  * @fence: radeon fence object
844  * @dst_ring: which ring to check against
845  *
846  * Note the sequence number at which point the fence will
847  * be synced with the requested ring (all asics).
848  */
radeon_fence_note_sync(struct radeon_fence * fence,int dst_ring)849 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
850 {
851 	struct radeon_fence_driver *dst, *src;
852 	unsigned i;
853 
854 	if (!fence) {
855 		return;
856 	}
857 
858 	if (fence->ring == dst_ring) {
859 		return;
860 	}
861 
862 	/* we are protected by the ring mutex */
863 	src = &fence->rdev->fence_drv[fence->ring];
864 	dst = &fence->rdev->fence_drv[dst_ring];
865 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
866 		if (i == dst_ring) {
867 			continue;
868 		}
869 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
870 	}
871 }
872 
873 /**
874  * radeon_fence_driver_start_ring - make the fence driver
875  * ready for use on the requested ring.
876  *
877  * @rdev: radeon device pointer
878  * @ring: ring index to start the fence driver on
879  *
880  * Make the fence driver ready for processing (all asics).
881  * Not all asics have all rings, so each asic will only
882  * start the fence driver on the rings it has.
883  * Returns 0 for success, errors for failure.
884  */
radeon_fence_driver_start_ring(struct radeon_device * rdev,int ring)885 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
886 {
887 	uint64_t index;
888 	int r;
889 
890 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
891 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
892 		rdev->fence_drv[ring].scratch_reg = 0;
893 		if (ring != R600_RING_TYPE_UVD_INDEX) {
894 			index = R600_WB_EVENT_OFFSET + ring * 4;
895 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
896 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
897 							 index;
898 
899 		} else {
900 			/* put fence directly behind firmware */
901 			index = ALIGN(rdev->uvd_fw->size, 8);
902 			rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index);
903 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
904 		}
905 
906 	} else {
907 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
908 		if (r) {
909 			dev_err(rdev->dev, "fence failed to get scratch register\n");
910 			return r;
911 		}
912 		index = RADEON_WB_SCRATCH_OFFSET +
913 			rdev->fence_drv[ring].scratch_reg -
914 			rdev->scratch.reg_base;
915 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
916 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
917 	}
918 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
919 	rdev->fence_drv[ring].initialized = true;
920 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n",
921 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
922 	return 0;
923 }
924 
925 /**
926  * radeon_fence_driver_init_ring - init the fence driver
927  * for the requested ring.
928  *
929  * @rdev: radeon device pointer
930  * @ring: ring index to start the fence driver on
931  *
932  * Init the fence driver for the requested ring (all asics).
933  * Helper function for radeon_fence_driver_init().
934  */
radeon_fence_driver_init_ring(struct radeon_device * rdev,int ring)935 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
936 {
937 	int i;
938 
939 	rdev->fence_drv[ring].scratch_reg = -1;
940 	rdev->fence_drv[ring].cpu_addr = NULL;
941 	rdev->fence_drv[ring].gpu_addr = 0;
942 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
943 		rdev->fence_drv[ring].sync_seq[i] = 0;
944 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
945 	rdev->fence_drv[ring].initialized = false;
946 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
947 			  radeon_fence_check_lockup);
948 	rdev->fence_drv[ring].rdev = rdev;
949 }
950 
951 /**
952  * radeon_fence_driver_init - init the fence driver
953  * for all possible rings.
954  *
955  * @rdev: radeon device pointer
956  *
957  * Init the fence driver for all possible rings (all asics).
958  * Not all asics have all rings, so each asic will only
959  * start the fence driver on the rings it has using
960  * radeon_fence_driver_start_ring().
961  * Returns 0 for success.
962  */
radeon_fence_driver_init(struct radeon_device * rdev)963 int radeon_fence_driver_init(struct radeon_device *rdev)
964 {
965 	int ring;
966 
967 	spin_lock_init(&rdev->fence_lock);
968 	DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence");
969 	TAILQ_INIT(&rdev->fence_check);
970 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
971 		radeon_fence_driver_init_ring(rdev, ring);
972 	}
973 	if (radeon_debugfs_fence_init(rdev)) {
974 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
975 	}
976 	return 0;
977 }
978 
979 /**
980  * radeon_fence_driver_fini - tear down the fence driver
981  * for all possible rings.
982  *
983  * @rdev: radeon device pointer
984  *
985  * Tear down the fence driver for all possible rings (all asics).
986  */
radeon_fence_driver_fini(struct radeon_device * rdev)987 void radeon_fence_driver_fini(struct radeon_device *rdev)
988 {
989 	int ring, r;
990 
991 	mutex_lock(&rdev->ring_lock);
992 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
993 		if (!rdev->fence_drv[ring].initialized)
994 			continue;
995 		r = radeon_fence_wait_empty(rdev, ring);
996 		if (r) {
997 			/* no need to trigger GPU reset as we are unloading */
998 			radeon_fence_driver_force_completion(rdev, ring);
999 		}
1000 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1001 		spin_lock(&rdev->fence_lock);
1002 		radeon_fence_wakeup_locked(rdev);
1003 		spin_unlock(&rdev->fence_lock);
1004 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
1005 		rdev->fence_drv[ring].initialized = false;
1006 	}
1007 	mutex_unlock(&rdev->ring_lock);
1008 
1009 	BUG_ON(!TAILQ_EMPTY(&rdev->fence_check));
1010 	DRM_DESTROY_WAITQUEUE(&rdev->fence_queue);
1011 	spin_lock_destroy(&rdev->fence_lock);
1012 }
1013 
1014 /**
1015  * radeon_fence_driver_force_completion - force all fence waiter to complete
1016  *
1017  * @rdev: radeon device pointer
1018  * @ring: the ring to complete
1019  *
1020  * In case of GPU reset failure make sure no process keep waiting on fence
1021  * that will never complete.
1022  */
radeon_fence_driver_force_completion(struct radeon_device * rdev,int ring)1023 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
1024 {
1025 	if (rdev->fence_drv[ring].initialized) {
1026 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
1027 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1028 	}
1029 }
1030 
1031 
1032 /*
1033  * Fence debugfs
1034  */
1035 #if defined(CONFIG_DEBUG_FS)
radeon_debugfs_fence_info(struct seq_file * m,void * data)1036 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
1037 {
1038 	struct drm_info_node *node = (struct drm_info_node *)m->private;
1039 	struct drm_device *dev = node->minor->dev;
1040 	struct radeon_device *rdev = dev->dev_private;
1041 	int i, j;
1042 
1043 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1044 		if (!rdev->fence_drv[i].initialized)
1045 			continue;
1046 
1047 		radeon_fence_process(rdev, i);
1048 
1049 		seq_printf(m, "--- ring %d ---\n", i);
1050 		seq_printf(m, "Last signaled fence 0x%016llx\n",
1051 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
1052 		seq_printf(m, "Last emitted        0x%016"PRIx64"\n",
1053 			   rdev->fence_drv[i].sync_seq[i]);
1054 
1055 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
1056 			if (i != j && rdev->fence_drv[j].initialized)
1057 				seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n",
1058 					   j, rdev->fence_drv[i].sync_seq[j]);
1059 		}
1060 	}
1061 	return 0;
1062 }
1063 
1064 /**
1065  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1066  *
1067  * Manually trigger a gpu reset at the next fence wait.
1068  */
radeon_debugfs_gpu_reset(struct seq_file * m,void * data)1069 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1070 {
1071 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1072 	struct drm_device *dev = node->minor->dev;
1073 	struct radeon_device *rdev = dev->dev_private;
1074 
1075 	down_read(&rdev->exclusive_lock);
1076 	seq_printf(m, "%d\n", rdev->needs_reset);
1077 	rdev->needs_reset = true;
1078 	wake_up_all(&rdev->fence_queue);
1079 	up_read(&rdev->exclusive_lock);
1080 
1081 	return 0;
1082 }
1083 
1084 static struct drm_info_list radeon_debugfs_fence_list[] = {
1085 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1086 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1087 };
1088 #endif
1089 
radeon_debugfs_fence_init(struct radeon_device * rdev)1090 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1091 {
1092 #if defined(CONFIG_DEBUG_FS)
1093 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1094 #else
1095 	return 0;
1096 #endif
1097 }
1098 
radeon_fence_get_driver_name(struct dma_fence * fence)1099 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1100 {
1101 	return "radeon";
1102 }
1103 
radeon_fence_get_timeline_name(struct dma_fence * f)1104 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1105 {
1106 	struct radeon_fence *fence = to_radeon_fence(f);
1107 	switch (fence->ring) {
1108 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1109 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1110 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1111 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1112 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1113 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1114 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1115 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1116 	default: WARN_ON_ONCE(1); return "radeon.unk";
1117 	}
1118 }
1119 
radeon_test_signaled(struct radeon_fence * fence)1120 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1121 {
1122 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1123 }
1124 
1125 struct radeon_wait_cb {
1126 	struct dma_fence_cb base;
1127 };
1128 
1129 static void
radeon_fence_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)1130 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1131 {
1132 	struct radeon_fence *rfence = to_radeon_fence(fence);
1133 	struct radeon_device *rdev = rfence->rdev;
1134 
1135 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
1136 	DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
1137 }
1138 
radeon_fence_default_wait(struct dma_fence * f,bool intr,signed long t)1139 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1140 					     signed long t)
1141 {
1142 	struct radeon_fence *fence = to_radeon_fence(f);
1143 	struct radeon_device *rdev = fence->rdev;
1144 	struct radeon_wait_cb cb;
1145 	int r;
1146 
1147 	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1148 		return t;
1149 
1150 	spin_lock(&rdev->fence_lock);
1151 	if (intr) {
1152 		DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
1153 		    &rdev->fence_lock, t,
1154 		    radeon_test_signaled(fence));
1155 	} else {
1156 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
1157 		    &rdev->fence_lock, t,
1158 		    radeon_test_signaled(fence));
1159 	}
1160 	spin_unlock(&rdev->fence_lock);
1161 
1162 	dma_fence_remove_callback(f, &cb.base);
1163 
1164 	return r;
1165 }
1166 
1167 const struct dma_fence_ops radeon_fence_ops = {
1168 	.get_driver_name = radeon_fence_get_driver_name,
1169 	.get_timeline_name = radeon_fence_get_timeline_name,
1170 	.enable_signaling = radeon_fence_enable_signaling,
1171 	.signaled = radeon_fence_is_signaled,
1172 	.wait = radeon_fence_default_wait,
1173 	.release = NULL,
1174 };
1175