xref: /qemu/target/arm/tcg/op_helper.c (revision a96edb68)
1 /*
2  *  ARM helper routines
3  *
4  *  Copyright (c) 2005-2007 CodeSourcery, LLC
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "cpregs.h"
28 
29 #define SIGNBIT (uint32_t)0x80000000
30 #define SIGNBIT64 ((uint64_t)1 << 63)
31 
exception_target_el(CPUARMState * env)32 int exception_target_el(CPUARMState *env)
33 {
34     int target_el = MAX(1, arm_current_el(env));
35 
36     /*
37      * No such thing as secure EL1 if EL3 is aarch32,
38      * so update the target EL to EL3 in this case.
39      */
40     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
41         target_el = 3;
42     }
43 
44     return target_el;
45 }
46 
raise_exception(CPUARMState * env,uint32_t excp,uint32_t syndrome,uint32_t target_el)47 void raise_exception(CPUARMState *env, uint32_t excp,
48                      uint32_t syndrome, uint32_t target_el)
49 {
50     CPUState *cs = env_cpu(env);
51 
52     if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
53         /*
54          * Redirect NS EL1 exceptions to NS EL2. These are reported with
55          * their original syndrome register value, with the exception of
56          * SIMD/FP access traps, which are reported as uncategorized
57          * (see DDI0478C.a D1.10.4)
58          */
59         target_el = 2;
60         if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
61             syndrome = syn_uncategorized();
62         }
63     }
64 
65     assert(!excp_is_internal(excp));
66     cs->exception_index = excp;
67     env->exception.syndrome = syndrome;
68     env->exception.target_el = target_el;
69     cpu_loop_exit(cs);
70 }
71 
raise_exception_ra(CPUARMState * env,uint32_t excp,uint32_t syndrome,uint32_t target_el,uintptr_t ra)72 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
73                         uint32_t target_el, uintptr_t ra)
74 {
75     CPUState *cs = env_cpu(env);
76 
77     /*
78      * restore_state_to_opc() will set env->exception.syndrome, so
79      * we must restore CPU state here before setting the syndrome
80      * the caller passed us, and cannot use cpu_loop_exit_restore().
81      */
82     cpu_restore_state(cs, ra);
83     raise_exception(env, excp, syndrome, target_el);
84 }
85 
HELPER(neon_tbl)86 uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
87                           uint64_t ireg, uint64_t def)
88 {
89     uint64_t tmp, val = 0;
90     uint32_t maxindex = ((desc & 3) + 1) * 8;
91     uint32_t base_reg = desc >> 2;
92     uint32_t shift, index, reg;
93 
94     for (shift = 0; shift < 64; shift += 8) {
95         index = (ireg >> shift) & 0xff;
96         if (index < maxindex) {
97             reg = base_reg + (index >> 3);
98             tmp = *aa32_vfp_dreg(env, reg);
99             tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
100         } else {
101             tmp = def & (0xffull << shift);
102         }
103         val |= tmp;
104     }
105     return val;
106 }
107 
HELPER(v8m_stackcheck)108 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
109 {
110     /*
111      * Perform the v8M stack limit check for SP updates from translated code,
112      * raising an exception if the limit is breached.
113      */
114     if (newvalue < v7m_sp_limit(env)) {
115         /*
116          * Stack limit exceptions are a rare case, so rather than syncing
117          * PC/condbits before the call, we use raise_exception_ra() so
118          * that cpu_restore_state() will sort them out.
119          */
120         raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
121     }
122 }
123 
124 /* Sign/zero extend */
HELPER(sxtb16)125 uint32_t HELPER(sxtb16)(uint32_t x)
126 {
127     uint32_t res;
128     res = (uint16_t)(int8_t)x;
129     res |= (uint32_t)(int8_t)(x >> 16) << 16;
130     return res;
131 }
132 
handle_possible_div0_trap(CPUARMState * env,uintptr_t ra)133 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
134 {
135     /*
136      * Take a division-by-zero exception if necessary; otherwise return
137      * to get the usual non-trapping division behaviour (result of 0)
138      */
139     if (arm_feature(env, ARM_FEATURE_M)
140         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
141         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
142     }
143 }
144 
HELPER(uxtb16)145 uint32_t HELPER(uxtb16)(uint32_t x)
146 {
147     uint32_t res;
148     res = (uint16_t)(uint8_t)x;
149     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
150     return res;
151 }
152 
HELPER(sdiv)153 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
154 {
155     if (den == 0) {
156         handle_possible_div0_trap(env, GETPC());
157         return 0;
158     }
159     if (num == INT_MIN && den == -1) {
160         return INT_MIN;
161     }
162     return num / den;
163 }
164 
HELPER(udiv)165 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
166 {
167     if (den == 0) {
168         handle_possible_div0_trap(env, GETPC());
169         return 0;
170     }
171     return num / den;
172 }
173 
HELPER(rbit)174 uint32_t HELPER(rbit)(uint32_t x)
175 {
176     return revbit32(x);
177 }
178 
HELPER(add_setq)179 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
180 {
181     uint32_t res = a + b;
182     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
183         env->QF = 1;
184     return res;
185 }
186 
HELPER(add_saturate)187 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
188 {
189     uint32_t res = a + b;
190     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
191         env->QF = 1;
192         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
193     }
194     return res;
195 }
196 
HELPER(sub_saturate)197 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
198 {
199     uint32_t res = a - b;
200     if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
201         env->QF = 1;
202         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
203     }
204     return res;
205 }
206 
HELPER(add_usaturate)207 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
208 {
209     uint32_t res = a + b;
210     if (res < a) {
211         env->QF = 1;
212         res = ~0;
213     }
214     return res;
215 }
216 
HELPER(sub_usaturate)217 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
218 {
219     uint32_t res = a - b;
220     if (res > a) {
221         env->QF = 1;
222         res = 0;
223     }
224     return res;
225 }
226 
227 /* Signed saturation.  */
do_ssat(CPUARMState * env,int32_t val,int shift)228 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
229 {
230     int32_t top;
231     uint32_t mask;
232 
233     top = val >> shift;
234     mask = (1u << shift) - 1;
235     if (top > 0) {
236         env->QF = 1;
237         return mask;
238     } else if (top < -1) {
239         env->QF = 1;
240         return ~mask;
241     }
242     return val;
243 }
244 
245 /* Unsigned saturation.  */
do_usat(CPUARMState * env,int32_t val,int shift)246 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
247 {
248     uint32_t max;
249 
250     max = (1u << shift) - 1;
251     if (val < 0) {
252         env->QF = 1;
253         return 0;
254     } else if (val > max) {
255         env->QF = 1;
256         return max;
257     }
258     return val;
259 }
260 
261 /* Signed saturate.  */
HELPER(ssat)262 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
263 {
264     return do_ssat(env, x, shift);
265 }
266 
267 /* Dual halfword signed saturate.  */
HELPER(ssat16)268 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
269 {
270     uint32_t res;
271 
272     res = (uint16_t)do_ssat(env, (int16_t)x, shift);
273     res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
274     return res;
275 }
276 
277 /* Unsigned saturate.  */
HELPER(usat)278 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
279 {
280     return do_usat(env, x, shift);
281 }
282 
283 /* Dual halfword unsigned saturate.  */
HELPER(usat16)284 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
285 {
286     uint32_t res;
287 
288     res = (uint16_t)do_usat(env, (int16_t)x, shift);
289     res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
290     return res;
291 }
292 
HELPER(setend)293 void HELPER(setend)(CPUARMState *env)
294 {
295     env->uncached_cpsr ^= CPSR_E;
296     arm_rebuild_hflags(env);
297 }
298 
HELPER(check_bxj_trap)299 void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm)
300 {
301     /*
302      * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
303      * check if HSTR.TJDBX means we need to trap to EL2.
304      */
305     if (env->cp15.hstr_el2 & HSTR_TJDBX) {
306         /*
307          * We know the condition code check passed, so take the IMPDEF
308          * choice to always report CV=1 COND 0xe
309          */
310         uint32_t syn = syn_bxjtrap(1, 0xe, rm);
311         raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC());
312     }
313 }
314 
315 #ifndef CONFIG_USER_ONLY
316 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
317  * The function returns the target EL (1-3) if the instruction is to be trapped;
318  * otherwise it returns 0 indicating it is not trapped.
319  */
check_wfx_trap(CPUARMState * env,bool is_wfe)320 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
321 {
322     int cur_el = arm_current_el(env);
323     uint64_t mask;
324 
325     if (arm_feature(env, ARM_FEATURE_M)) {
326         /* M profile cores can never trap WFI/WFE. */
327         return 0;
328     }
329 
330     /* If we are currently in EL0 then we need to check if SCTLR is set up for
331      * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
332      */
333     if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
334         int target_el;
335 
336         mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
337         if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
338             /* Secure EL0 and Secure PL1 is at EL3 */
339             target_el = 3;
340         } else {
341             target_el = 1;
342         }
343 
344         if (!(env->cp15.sctlr_el[target_el] & mask)) {
345             return target_el;
346         }
347     }
348 
349     /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
350      * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
351      * bits will be zero indicating no trap.
352      */
353     if (cur_el < 2) {
354         mask = is_wfe ? HCR_TWE : HCR_TWI;
355         if (arm_hcr_el2_eff(env) & mask) {
356             return 2;
357         }
358     }
359 
360     /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
361     if (cur_el < 3) {
362         mask = (is_wfe) ? SCR_TWE : SCR_TWI;
363         if (env->cp15.scr_el3 & mask) {
364             return 3;
365         }
366     }
367 
368     return 0;
369 }
370 #endif
371 
HELPER(wfi)372 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
373 {
374 #ifdef CONFIG_USER_ONLY
375     /*
376      * WFI in the user-mode emulator is technically permitted but not
377      * something any real-world code would do. AArch64 Linux kernels
378      * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
379      * AArch32 kernels don't trap it so it will delay a bit.
380      * For QEMU, make it NOP here, because trying to raise EXCP_HLT
381      * would trigger an abort.
382      */
383     return;
384 #else
385     CPUState *cs = env_cpu(env);
386     int target_el = check_wfx_trap(env, false);
387 
388     if (cpu_has_work(cs)) {
389         /* Don't bother to go into our "low power state" if
390          * we would just wake up immediately.
391          */
392         return;
393     }
394 
395     if (target_el) {
396         if (env->aarch64) {
397             env->pc -= insn_len;
398         } else {
399             env->regs[15] -= insn_len;
400         }
401 
402         raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
403                         target_el);
404     }
405 
406     cs->exception_index = EXCP_HLT;
407     cs->halted = 1;
408     cpu_loop_exit(cs);
409 #endif
410 }
411 
HELPER(wfit)412 void HELPER(wfit)(CPUARMState *env, uint64_t timeout)
413 {
414 #ifdef CONFIG_USER_ONLY
415     /*
416      * WFI in the user-mode emulator is technically permitted but not
417      * something any real-world code would do. AArch64 Linux kernels
418      * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
419      * AArch32 kernels don't trap it so it will delay a bit.
420      * For QEMU, make it NOP here, because trying to raise EXCP_HLT
421      * would trigger an abort.
422      */
423     return;
424 #else
425     ARMCPU *cpu = env_archcpu(env);
426     CPUState *cs = env_cpu(env);
427     int target_el = check_wfx_trap(env, false);
428     /* The WFIT should time out when CNTVCT_EL0 >= the specified value. */
429     uint64_t cntval = gt_get_countervalue(env);
430     uint64_t offset = gt_virt_cnt_offset(env);
431     uint64_t cntvct = cntval - offset;
432     uint64_t nexttick;
433 
434     if (cpu_has_work(cs) || cntvct >= timeout) {
435         /*
436          * Don't bother to go into our "low power state" if
437          * we would just wake up immediately.
438          */
439         return;
440     }
441 
442     if (target_el) {
443         env->pc -= 4;
444         raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, false),
445                         target_el);
446     }
447 
448     if (uadd64_overflow(timeout, offset, &nexttick)) {
449         nexttick = UINT64_MAX;
450     }
451     if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
452         /*
453          * If the timeout is too long for the signed 64-bit range
454          * of a QEMUTimer, let it expire early.
455          */
456         timer_mod_ns(cpu->wfxt_timer, INT64_MAX);
457     } else {
458         timer_mod(cpu->wfxt_timer, nexttick);
459     }
460     cs->exception_index = EXCP_HLT;
461     cs->halted = 1;
462     cpu_loop_exit(cs);
463 #endif
464 }
465 
HELPER(wfe)466 void HELPER(wfe)(CPUARMState *env)
467 {
468     /* This is a hint instruction that is semantically different
469      * from YIELD even though we currently implement it identically.
470      * Don't actually halt the CPU, just yield back to top
471      * level loop. This is not going into a "low power state"
472      * (ie halting until some event occurs), so we never take
473      * a configurable trap to a different exception level.
474      */
475     HELPER(yield)(env);
476 }
477 
HELPER(yield)478 void HELPER(yield)(CPUARMState *env)
479 {
480     CPUState *cs = env_cpu(env);
481 
482     /* This is a non-trappable hint instruction that generally indicates
483      * that the guest is currently busy-looping. Yield control back to the
484      * top level loop so that a more deserving VCPU has a chance to run.
485      */
486     cs->exception_index = EXCP_YIELD;
487     cpu_loop_exit(cs);
488 }
489 
490 /* Raise an internal-to-QEMU exception. This is limited to only
491  * those EXCP values which are special cases for QEMU to interrupt
492  * execution and not to be used for exceptions which are passed to
493  * the guest (those must all have syndrome information and thus should
494  * use exception_with_syndrome*).
495  */
HELPER(exception_internal)496 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
497 {
498     CPUState *cs = env_cpu(env);
499 
500     assert(excp_is_internal(excp));
501     cs->exception_index = excp;
502     cpu_loop_exit(cs);
503 }
504 
505 /* Raise an exception with the specified syndrome register value */
HELPER(exception_with_syndrome_el)506 void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp,
507                                         uint32_t syndrome, uint32_t target_el)
508 {
509     raise_exception(env, excp, syndrome, target_el);
510 }
511 
512 /*
513  * Raise an exception with the specified syndrome register value
514  * to the default target el.
515  */
HELPER(exception_with_syndrome)516 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
517                                      uint32_t syndrome)
518 {
519     raise_exception(env, excp, syndrome, exception_target_el(env));
520 }
521 
HELPER(cpsr_read)522 uint32_t HELPER(cpsr_read)(CPUARMState *env)
523 {
524     return cpsr_read(env) & ~CPSR_EXEC;
525 }
526 
HELPER(cpsr_write)527 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
528 {
529     cpsr_write(env, val, mask, CPSRWriteByInstr);
530     /* TODO: Not all cpsr bits are relevant to hflags.  */
531     arm_rebuild_hflags(env);
532 }
533 
534 /* Write the CPSR for a 32-bit exception return */
HELPER(cpsr_write_eret)535 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
536 {
537     uint32_t mask;
538 
539     bql_lock();
540     arm_call_pre_el_change_hook(env_archcpu(env));
541     bql_unlock();
542 
543     mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
544     cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
545 
546     /* Generated code has already stored the new PC value, but
547      * without masking out its low bits, because which bits need
548      * masking depends on whether we're returning to Thumb or ARM
549      * state. Do the masking now.
550      */
551     env->regs[15] &= (env->thumb ? ~1 : ~3);
552     arm_rebuild_hflags(env);
553 
554     bql_lock();
555     arm_call_el_change_hook(env_archcpu(env));
556     bql_unlock();
557 }
558 
559 /* Access to user mode registers from privileged modes.  */
HELPER(get_user_reg)560 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
561 {
562     uint32_t val;
563 
564     if (regno == 13) {
565         val = env->banked_r13[BANK_USRSYS];
566     } else if (regno == 14) {
567         val = env->banked_r14[BANK_USRSYS];
568     } else if (regno >= 8
569                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
570         val = env->usr_regs[regno - 8];
571     } else {
572         val = env->regs[regno];
573     }
574     return val;
575 }
576 
HELPER(set_user_reg)577 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
578 {
579     if (regno == 13) {
580         env->banked_r13[BANK_USRSYS] = val;
581     } else if (regno == 14) {
582         env->banked_r14[BANK_USRSYS] = val;
583     } else if (regno >= 8
584                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
585         env->usr_regs[regno - 8] = val;
586     } else {
587         env->regs[regno] = val;
588     }
589 }
590 
HELPER(set_r13_banked)591 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
592 {
593     if ((env->uncached_cpsr & CPSR_M) == mode) {
594         env->regs[13] = val;
595     } else {
596         env->banked_r13[bank_number(mode)] = val;
597     }
598 }
599 
HELPER(get_r13_banked)600 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
601 {
602     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
603         /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
604          * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
605          */
606         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
607                         exception_target_el(env));
608     }
609 
610     if ((env->uncached_cpsr & CPSR_M) == mode) {
611         return env->regs[13];
612     } else {
613         return env->banked_r13[bank_number(mode)];
614     }
615 }
616 
msr_mrs_banked_exc_checks(CPUARMState * env,uint32_t tgtmode,uint32_t regno)617 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
618                                       uint32_t regno)
619 {
620     /* Raise an exception if the requested access is one of the UNPREDICTABLE
621      * cases; otherwise return. This broadly corresponds to the pseudocode
622      * BankedRegisterAccessValid() and SPSRAccessValid(),
623      * except that we have already handled some cases at translate time.
624      */
625     int curmode = env->uncached_cpsr & CPSR_M;
626 
627     if (tgtmode == ARM_CPU_MODE_HYP) {
628         /*
629          * Handle Hyp target regs first because some are special cases
630          * which don't want the usual "not accessible from tgtmode" check.
631          */
632         switch (regno) {
633         case 16 ... 17: /* ELR_Hyp, SPSR_Hyp */
634             if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
635                 goto undef;
636             }
637             break;
638         case 13:
639             if (curmode != ARM_CPU_MODE_MON) {
640                 goto undef;
641             }
642             break;
643         default:
644             g_assert_not_reached();
645         }
646         return;
647     }
648 
649     if (curmode == tgtmode) {
650         goto undef;
651     }
652 
653     if (tgtmode == ARM_CPU_MODE_USR) {
654         switch (regno) {
655         case 8 ... 12:
656             if (curmode != ARM_CPU_MODE_FIQ) {
657                 goto undef;
658             }
659             break;
660         case 13:
661             if (curmode == ARM_CPU_MODE_SYS) {
662                 goto undef;
663             }
664             break;
665         case 14:
666             if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
667                 goto undef;
668             }
669             break;
670         default:
671             break;
672         }
673     }
674 
675     return;
676 
677 undef:
678     raise_exception(env, EXCP_UDEF, syn_uncategorized(),
679                     exception_target_el(env));
680 }
681 
HELPER(msr_banked)682 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
683                         uint32_t regno)
684 {
685     msr_mrs_banked_exc_checks(env, tgtmode, regno);
686 
687     switch (regno) {
688     case 16: /* SPSRs */
689         if (tgtmode == (env->uncached_cpsr & CPSR_M)) {
690             /* Only happens for SPSR_Hyp access in Hyp mode */
691             env->spsr = value;
692         } else {
693             env->banked_spsr[bank_number(tgtmode)] = value;
694         }
695         break;
696     case 17: /* ELR_Hyp */
697         env->elr_el[2] = value;
698         break;
699     case 13:
700         env->banked_r13[bank_number(tgtmode)] = value;
701         break;
702     case 14:
703         env->banked_r14[r14_bank_number(tgtmode)] = value;
704         break;
705     case 8 ... 12:
706         switch (tgtmode) {
707         case ARM_CPU_MODE_USR:
708             env->usr_regs[regno - 8] = value;
709             break;
710         case ARM_CPU_MODE_FIQ:
711             env->fiq_regs[regno - 8] = value;
712             break;
713         default:
714             g_assert_not_reached();
715         }
716         break;
717     default:
718         g_assert_not_reached();
719     }
720 }
721 
HELPER(mrs_banked)722 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
723 {
724     msr_mrs_banked_exc_checks(env, tgtmode, regno);
725 
726     switch (regno) {
727     case 16: /* SPSRs */
728         if (tgtmode == (env->uncached_cpsr & CPSR_M)) {
729             /* Only happens for SPSR_Hyp access in Hyp mode */
730             return env->spsr;
731         } else {
732             return env->banked_spsr[bank_number(tgtmode)];
733         }
734     case 17: /* ELR_Hyp */
735         return env->elr_el[2];
736     case 13:
737         return env->banked_r13[bank_number(tgtmode)];
738     case 14:
739         return env->banked_r14[r14_bank_number(tgtmode)];
740     case 8 ... 12:
741         switch (tgtmode) {
742         case ARM_CPU_MODE_USR:
743             return env->usr_regs[regno - 8];
744         case ARM_CPU_MODE_FIQ:
745             return env->fiq_regs[regno - 8];
746         default:
747             g_assert_not_reached();
748         }
749     default:
750         g_assert_not_reached();
751     }
752 }
753 
HELPER(access_check_cp_reg)754 const void *HELPER(access_check_cp_reg)(CPUARMState *env, uint32_t key,
755                                         uint32_t syndrome, uint32_t isread)
756 {
757     ARMCPU *cpu = env_archcpu(env);
758     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
759     CPAccessResult res = CP_ACCESS_OK;
760     int target_el;
761 
762     assert(ri != NULL);
763 
764     if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
765         && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
766         res = CP_ACCESS_TRAP;
767         goto fail;
768     }
769 
770     if (ri->accessfn) {
771         res = ri->accessfn(env, ri, isread);
772     }
773 
774     /*
775      * If the access function indicates a trap from EL0 to EL1 then
776      * that always takes priority over the HSTR_EL2 trap. (If it indicates
777      * a trap to EL3, then the HSTR_EL2 trap takes priority; if it indicates
778      * a trap to EL2, then the syndrome is the same either way so we don't
779      * care whether technically the architecture says that HSTR_EL2 trap or
780      * the other trap takes priority. So we take the "check HSTR_EL2" path
781      * for all of those cases.)
782      */
783     if (res != CP_ACCESS_OK && ((res & CP_ACCESS_EL_MASK) == 0) &&
784         arm_current_el(env) == 0) {
785         goto fail;
786     }
787 
788     /*
789      * HSTR_EL2 traps from EL1 are checked earlier, in generated code;
790      * we only need to check here for traps from EL0.
791      */
792     if (!is_a64(env) && arm_current_el(env) == 0 && ri->cp == 15 &&
793         arm_is_el2_enabled(env) &&
794         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
795         uint32_t mask = 1 << ri->crn;
796 
797         if (ri->type & ARM_CP_64BIT) {
798             mask = 1 << ri->crm;
799         }
800 
801         /* T4 and T14 are RES0 */
802         mask &= ~((1 << 4) | (1 << 14));
803 
804         if (env->cp15.hstr_el2 & mask) {
805             res = CP_ACCESS_TRAP_EL2;
806             goto fail;
807         }
808     }
809 
810     /*
811      * Fine-grained traps also are lower priority than undef-to-EL1,
812      * higher priority than trap-to-EL3, and we don't care about priority
813      * order with other EL2 traps because the syndrome value is the same.
814      */
815     if (arm_fgt_active(env, arm_current_el(env))) {
816         uint64_t trapword = 0;
817         unsigned int idx = FIELD_EX32(ri->fgt, FGT, IDX);
818         unsigned int bitpos = FIELD_EX32(ri->fgt, FGT, BITPOS);
819         bool rev = FIELD_EX32(ri->fgt, FGT, REV);
820         bool trapbit;
821 
822         if (ri->fgt & FGT_EXEC) {
823             assert(idx < ARRAY_SIZE(env->cp15.fgt_exec));
824             trapword = env->cp15.fgt_exec[idx];
825         } else if (isread && (ri->fgt & FGT_R)) {
826             assert(idx < ARRAY_SIZE(env->cp15.fgt_read));
827             trapword = env->cp15.fgt_read[idx];
828         } else if (!isread && (ri->fgt & FGT_W)) {
829             assert(idx < ARRAY_SIZE(env->cp15.fgt_write));
830             trapword = env->cp15.fgt_write[idx];
831         }
832 
833         trapbit = extract64(trapword, bitpos, 1);
834         if (trapbit != rev) {
835             res = CP_ACCESS_TRAP_EL2;
836             goto fail;
837         }
838     }
839 
840     if (likely(res == CP_ACCESS_OK)) {
841         return ri;
842     }
843 
844  fail:
845     switch (res & ~CP_ACCESS_EL_MASK) {
846     case CP_ACCESS_TRAP:
847         break;
848     case CP_ACCESS_TRAP_UNCATEGORIZED:
849         /* Only CP_ACCESS_TRAP traps are direct to a specified EL */
850         assert((res & CP_ACCESS_EL_MASK) == 0);
851         if (cpu_isar_feature(aa64_ids, cpu) && isread &&
852             arm_cpreg_in_idspace(ri)) {
853             /*
854              * FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP,
855              * not EC_UNCATEGORIZED
856              */
857             break;
858         }
859         syndrome = syn_uncategorized();
860         break;
861     default:
862         g_assert_not_reached();
863     }
864 
865     target_el = res & CP_ACCESS_EL_MASK;
866     switch (target_el) {
867     case 0:
868         target_el = exception_target_el(env);
869         break;
870     case 2:
871         assert(arm_current_el(env) != 3);
872         assert(arm_is_el2_enabled(env));
873         break;
874     case 3:
875         assert(arm_feature(env, ARM_FEATURE_EL3));
876         break;
877     default:
878         /* No "direct" traps to EL1 */
879         g_assert_not_reached();
880     }
881 
882     raise_exception(env, EXCP_UDEF, syndrome, target_el);
883 }
884 
HELPER(lookup_cp_reg)885 const void *HELPER(lookup_cp_reg)(CPUARMState *env, uint32_t key)
886 {
887     ARMCPU *cpu = env_archcpu(env);
888     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
889 
890     assert(ri != NULL);
891     return ri;
892 }
893 
894 /*
895  * Test for HCR_EL2.TIDCP at EL1.
896  * Since implementation defined registers are rare, and within QEMU
897  * most of them are no-op, do not waste HFLAGS space for this and
898  * always use a helper.
899  */
HELPER(tidcp_el1)900 void HELPER(tidcp_el1)(CPUARMState *env, uint32_t syndrome)
901 {
902     if (arm_hcr_el2_eff(env) & HCR_TIDCP) {
903         raise_exception_ra(env, EXCP_UDEF, syndrome, 2, GETPC());
904     }
905 }
906 
907 /*
908  * Similarly, for FEAT_TIDCP1 at EL0.
909  * We have already checked for the presence of the feature.
910  */
HELPER(tidcp_el0)911 void HELPER(tidcp_el0)(CPUARMState *env, uint32_t syndrome)
912 {
913     /* See arm_sctlr(), but we also need the sctlr el. */
914     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
915     int target_el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
916 
917     /*
918      * The bit is not valid unless the target el is aa64, but since the
919      * bit test is simpler perform that first and check validity after.
920      */
921     if ((env->cp15.sctlr_el[target_el] & SCTLR_TIDCP)
922         && arm_el_is_aa64(env, target_el)) {
923         raise_exception_ra(env, EXCP_UDEF, syndrome, target_el, GETPC());
924     }
925 }
926 
HELPER(set_cp_reg)927 void HELPER(set_cp_reg)(CPUARMState *env, const void *rip, uint32_t value)
928 {
929     const ARMCPRegInfo *ri = rip;
930 
931     if (ri->type & ARM_CP_IO) {
932         bql_lock();
933         ri->writefn(env, ri, value);
934         bql_unlock();
935     } else {
936         ri->writefn(env, ri, value);
937     }
938 }
939 
HELPER(get_cp_reg)940 uint32_t HELPER(get_cp_reg)(CPUARMState *env, const void *rip)
941 {
942     const ARMCPRegInfo *ri = rip;
943     uint32_t res;
944 
945     if (ri->type & ARM_CP_IO) {
946         bql_lock();
947         res = ri->readfn(env, ri);
948         bql_unlock();
949     } else {
950         res = ri->readfn(env, ri);
951     }
952 
953     return res;
954 }
955 
HELPER(set_cp_reg64)956 void HELPER(set_cp_reg64)(CPUARMState *env, const void *rip, uint64_t value)
957 {
958     const ARMCPRegInfo *ri = rip;
959 
960     if (ri->type & ARM_CP_IO) {
961         bql_lock();
962         ri->writefn(env, ri, value);
963         bql_unlock();
964     } else {
965         ri->writefn(env, ri, value);
966     }
967 }
968 
HELPER(get_cp_reg64)969 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, const void *rip)
970 {
971     const ARMCPRegInfo *ri = rip;
972     uint64_t res;
973 
974     if (ri->type & ARM_CP_IO) {
975         bql_lock();
976         res = ri->readfn(env, ri);
977         bql_unlock();
978     } else {
979         res = ri->readfn(env, ri);
980     }
981 
982     return res;
983 }
984 
HELPER(pre_hvc)985 void HELPER(pre_hvc)(CPUARMState *env)
986 {
987     ARMCPU *cpu = env_archcpu(env);
988     int cur_el = arm_current_el(env);
989     /* FIXME: Use actual secure state.  */
990     bool secure = false;
991     bool undef;
992 
993     if (arm_is_psci_call(cpu, EXCP_HVC)) {
994         /* If PSCI is enabled and this looks like a valid PSCI call then
995          * that overrides the architecturally mandated HVC behaviour.
996          */
997         return;
998     }
999 
1000     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1001         /* If EL2 doesn't exist, HVC always UNDEFs */
1002         undef = true;
1003     } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1004         /* EL3.HCE has priority over EL2.HCD. */
1005         undef = !(env->cp15.scr_el3 & SCR_HCE);
1006     } else {
1007         undef = env->cp15.hcr_el2 & HCR_HCD;
1008     }
1009 
1010     /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
1011      * For ARMv8/AArch64, HVC is allowed in EL3.
1012      * Note that we've already trapped HVC from EL0 at translation
1013      * time.
1014      */
1015     if (secure && (!is_a64(env) || cur_el == 1)) {
1016         undef = true;
1017     }
1018 
1019     if (undef) {
1020         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1021                         exception_target_el(env));
1022     }
1023 }
1024 
HELPER(pre_smc)1025 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
1026 {
1027     ARMCPU *cpu = env_archcpu(env);
1028     int cur_el = arm_current_el(env);
1029     bool secure = arm_is_secure(env);
1030     bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
1031 
1032     /*
1033      * SMC behaviour is summarized in the following table.
1034      * This helper handles the "Trap to EL2" and "Undef insn" cases.
1035      * The "Trap to EL3" and "PSCI call" cases are handled in the exception
1036      * helper.
1037      *
1038      *  -> ARM_FEATURE_EL3 and !SMD
1039      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
1040      *
1041      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
1042      *  Conduit SMC, inval call  Trap to EL2         Trap to EL3
1043      *  Conduit not SMC          Trap to EL2         Trap to EL3
1044      *
1045      *
1046      *  -> ARM_FEATURE_EL3 and SMD
1047      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
1048      *
1049      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
1050      *  Conduit SMC, inval call  Trap to EL2         Undef insn
1051      *  Conduit not SMC          Trap to EL2         Undef insn
1052      *
1053      *
1054      *  -> !ARM_FEATURE_EL3
1055      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
1056      *
1057      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
1058      *  Conduit SMC, inval call  Trap to EL2         Undef insn
1059      *  Conduit not SMC          Undef or trap[1]    Undef insn
1060      *
1061      * [1] In this case:
1062      *  - if HCR_EL2.NV == 1 we must trap to EL2
1063      *  - if HCR_EL2.NV == 0 then newer architecture revisions permit
1064      *    AArch64 (but not AArch32) to trap to EL2 as an IMPDEF choice
1065      *  - otherwise we must UNDEF
1066      * We take the IMPDEF choice to always UNDEF if HCR_EL2.NV == 0.
1067      */
1068 
1069     /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
1070      * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
1071      *  extensions, SMD only applies to NS state.
1072      * On ARMv7 without the Virtualization extensions, the SMD bit
1073      * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
1074      * so we need not special case this here.
1075      */
1076     bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
1077                                                      : smd_flag && !secure;
1078 
1079     if (!arm_feature(env, ARM_FEATURE_EL3) &&
1080         !(arm_hcr_el2_eff(env) & HCR_NV) &&
1081         cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
1082         /*
1083          * If we have no EL3 then traditionally SMC always UNDEFs and can't be
1084          * trapped to EL2. For nested virtualization, SMC can be trapped to
1085          * the outer hypervisor. PSCI-via-SMC is a sort of ersatz EL3
1086          * firmware within QEMU, and we want an EL2 guest to be able
1087          * to forbid its EL1 from making PSCI calls into QEMU's
1088          * "firmware" via HCR.TSC, so for these purposes treat
1089          * PSCI-via-SMC as implying an EL3.
1090          * This handles the very last line of the previous table.
1091          */
1092         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1093                         exception_target_el(env));
1094     }
1095 
1096     if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
1097         /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
1098          * We also want an EL2 guest to be able to forbid its EL1 from
1099          * making PSCI calls into QEMU's "firmware" via HCR.TSC.
1100          * This handles all the "Trap to EL2" cases of the previous table.
1101          */
1102         raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1103     }
1104 
1105     /* Catch the two remaining "Undef insn" cases of the previous table:
1106      *    - PSCI conduit is SMC but we don't have a valid PCSI call,
1107      *    - We don't have EL3 or SMD is set.
1108      */
1109     if (!arm_is_psci_call(cpu, EXCP_SMC) &&
1110         (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
1111         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1112                         exception_target_el(env));
1113     }
1114 }
1115 
1116 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1117    The only way to do that in TCG is a conditional branch, which clobbers
1118    all our temporaries.  For now implement these as helper functions.  */
1119 
1120 /* Similarly for variable shift instructions.  */
1121 
HELPER(shl_cc)1122 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1123 {
1124     int shift = i & 0xff;
1125     if (shift >= 32) {
1126         if (shift == 32)
1127             env->CF = x & 1;
1128         else
1129             env->CF = 0;
1130         return 0;
1131     } else if (shift != 0) {
1132         env->CF = (x >> (32 - shift)) & 1;
1133         return x << shift;
1134     }
1135     return x;
1136 }
1137 
HELPER(shr_cc)1138 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1139 {
1140     int shift = i & 0xff;
1141     if (shift >= 32) {
1142         if (shift == 32)
1143             env->CF = (x >> 31) & 1;
1144         else
1145             env->CF = 0;
1146         return 0;
1147     } else if (shift != 0) {
1148         env->CF = (x >> (shift - 1)) & 1;
1149         return x >> shift;
1150     }
1151     return x;
1152 }
1153 
HELPER(sar_cc)1154 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1155 {
1156     int shift = i & 0xff;
1157     if (shift >= 32) {
1158         env->CF = (x >> 31) & 1;
1159         return (int32_t)x >> 31;
1160     } else if (shift != 0) {
1161         env->CF = (x >> (shift - 1)) & 1;
1162         return (int32_t)x >> shift;
1163     }
1164     return x;
1165 }
1166 
HELPER(ror_cc)1167 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1168 {
1169     int shift1, shift;
1170     shift1 = i & 0xff;
1171     shift = shift1 & 0x1f;
1172     if (shift == 0) {
1173         if (shift1 != 0)
1174             env->CF = (x >> 31) & 1;
1175         return x;
1176     } else {
1177         env->CF = (x >> (shift - 1)) & 1;
1178         return ((uint32_t)x >> shift) | (x << (32 - shift));
1179     }
1180 }
1181 
HELPER(probe_access)1182 void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
1183                           uint32_t access_type, uint32_t mmu_idx,
1184                           uint32_t size)
1185 {
1186     uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
1187     uintptr_t ra = GETPC();
1188 
1189     if (likely(size <= in_page)) {
1190         probe_access(env, ptr, size, access_type, mmu_idx, ra);
1191     } else {
1192         probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
1193         probe_access(env, ptr + in_page, size - in_page,
1194                      access_type, mmu_idx, ra);
1195     }
1196 }
1197 
1198 /*
1199  * This function corresponds to AArch64.vESBOperation().
1200  * Note that the AArch32 version is not functionally different.
1201  */
HELPER(vesb)1202 void HELPER(vesb)(CPUARMState *env)
1203 {
1204     /*
1205      * The EL2Enabled() check is done inside arm_hcr_el2_eff,
1206      * and will return HCR_EL2.VSE == 0, so nothing happens.
1207      */
1208     uint64_t hcr = arm_hcr_el2_eff(env);
1209     bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO);
1210     bool pending = enabled && (hcr & HCR_VSE);
1211     bool masked  = (env->daif & PSTATE_A);
1212 
1213     /* If VSE pending and masked, defer the exception.  */
1214     if (pending && masked) {
1215         uint32_t syndrome;
1216 
1217         if (arm_el_is_aa64(env, 1)) {
1218             /* Copy across IDS and ISS from VSESR. */
1219             syndrome = env->cp15.vsesr_el2 & 0x1ffffff;
1220         } else {
1221             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal };
1222 
1223             if (extended_addresses_enabled(env)) {
1224                 syndrome = arm_fi_to_lfsc(&fi);
1225             } else {
1226                 syndrome = arm_fi_to_sfsc(&fi);
1227             }
1228             /* Copy across AET and ExT from VSESR. */
1229             syndrome |= env->cp15.vsesr_el2 & 0xd000;
1230         }
1231 
1232         /* Set VDISR_EL2.A along with the syndrome. */
1233         env->cp15.vdisr_el2 = syndrome | (1u << 31);
1234 
1235         /* Clear pending virtual SError */
1236         env->cp15.hcr_el2 &= ~HCR_VSE;
1237         cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR);
1238     }
1239 }
1240