1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "AArch64InstrInfo.h"
14 #include "AArch64MachineFunctionInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "MCTargetDesc/AArch64AddressingModes.h"
17 #include "Utils/AArch64BaseInfo.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCombinerPattern.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/GlobalValue.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCInstBuilder.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/LEB128.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <utility>
54
55 using namespace llvm;
56
57 #define GET_INSTRINFO_CTOR_DTOR
58 #include "AArch64GenInstrInfo.inc"
59
60 static cl::opt<unsigned> TBZDisplacementBits(
61 "aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
62 cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
63
64 static cl::opt<unsigned> CBZDisplacementBits(
65 "aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
66 cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
67
68 static cl::opt<unsigned>
69 BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
70 cl::desc("Restrict range of Bcc instructions (DEBUG)"));
71
AArch64InstrInfo(const AArch64Subtarget & STI)72 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
73 : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP,
74 AArch64::CATCHRET),
75 RI(STI.getTargetTriple()), Subtarget(STI) {}
76
77 /// GetInstSize - Return the number of bytes of code the specified
78 /// instruction may be. This returns the maximum number of bytes.
getInstSizeInBytes(const MachineInstr & MI) const79 unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
80 const MachineBasicBlock &MBB = *MI.getParent();
81 const MachineFunction *MF = MBB.getParent();
82 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
83
84 {
85 auto Op = MI.getOpcode();
86 if (Op == AArch64::INLINEASM || Op == AArch64::INLINEASM_BR)
87 return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
88 }
89
90 // Meta-instructions emit no code.
91 if (MI.isMetaInstruction())
92 return 0;
93
94 // FIXME: We currently only handle pseudoinstructions that don't get expanded
95 // before the assembly printer.
96 unsigned NumBytes = 0;
97 const MCInstrDesc &Desc = MI.getDesc();
98
99 // Size should be preferably set in
100 // llvm/lib/Target/AArch64/AArch64InstrInfo.td (default case).
101 // Specific cases handle instructions of variable sizes
102 switch (Desc.getOpcode()) {
103 default:
104 if (Desc.getSize())
105 return Desc.getSize();
106
107 // Anything not explicitly designated otherwise (i.e. pseudo-instructions
108 // with fixed constant size but not specified in .td file) is a normal
109 // 4-byte insn.
110 NumBytes = 4;
111
112 if (Desc.getSize() > 0)
113 NumBytes = Desc.getSize();
114 break;
115 case TargetOpcode::STACKMAP:
116 // The upper bound for a stackmap intrinsic is the full length of its shadow
117 NumBytes = StackMapOpers(&MI).getNumPatchBytes();
118 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
119 break;
120 case TargetOpcode::PATCHPOINT:
121 // The size of the patchpoint intrinsic is the number of bytes requested
122 NumBytes = PatchPointOpers(&MI).getNumPatchBytes();
123 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
124 break;
125 case TargetOpcode::STATEPOINT:
126 NumBytes = StatepointOpers(&MI).getNumPatchBytes();
127 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
128 // No patch bytes means a normal call inst is emitted
129 if (NumBytes == 0)
130 NumBytes = 4;
131 break;
132 case AArch64::SPACE:
133 NumBytes = MI.getOperand(1).getImm();
134 break;
135 case TargetOpcode::BUNDLE:
136 NumBytes = getInstBundleLength(MI);
137 break;
138 }
139
140 return NumBytes;
141 }
142
getInstBundleLength(const MachineInstr & MI) const143 unsigned AArch64InstrInfo::getInstBundleLength(const MachineInstr &MI) const {
144 unsigned Size = 0;
145 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
146 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
147 while (++I != E && I->isInsideBundle()) {
148 assert(!I->isBundle() && "No nested bundle!");
149 Size += getInstSizeInBytes(*I);
150 }
151 return Size;
152 }
153
parseCondBranch(MachineInstr * LastInst,MachineBasicBlock * & Target,SmallVectorImpl<MachineOperand> & Cond)154 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
155 SmallVectorImpl<MachineOperand> &Cond) {
156 // Block ends with fall-through condbranch.
157 switch (LastInst->getOpcode()) {
158 default:
159 llvm_unreachable("Unknown branch instruction?");
160 case AArch64::Bcc:
161 Target = LastInst->getOperand(1).getMBB();
162 Cond.push_back(LastInst->getOperand(0));
163 break;
164 case AArch64::CBZW:
165 case AArch64::CBZX:
166 case AArch64::CBNZW:
167 case AArch64::CBNZX:
168 Target = LastInst->getOperand(1).getMBB();
169 Cond.push_back(MachineOperand::CreateImm(-1));
170 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
171 Cond.push_back(LastInst->getOperand(0));
172 break;
173 case AArch64::TBZW:
174 case AArch64::TBZX:
175 case AArch64::TBNZW:
176 case AArch64::TBNZX:
177 Target = LastInst->getOperand(2).getMBB();
178 Cond.push_back(MachineOperand::CreateImm(-1));
179 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
180 Cond.push_back(LastInst->getOperand(0));
181 Cond.push_back(LastInst->getOperand(1));
182 }
183 }
184
getBranchDisplacementBits(unsigned Opc)185 static unsigned getBranchDisplacementBits(unsigned Opc) {
186 switch (Opc) {
187 default:
188 llvm_unreachable("unexpected opcode!");
189 case AArch64::B:
190 return 64;
191 case AArch64::TBNZW:
192 case AArch64::TBZW:
193 case AArch64::TBNZX:
194 case AArch64::TBZX:
195 return TBZDisplacementBits;
196 case AArch64::CBNZW:
197 case AArch64::CBZW:
198 case AArch64::CBNZX:
199 case AArch64::CBZX:
200 return CBZDisplacementBits;
201 case AArch64::Bcc:
202 return BCCDisplacementBits;
203 }
204 }
205
isBranchOffsetInRange(unsigned BranchOp,int64_t BrOffset) const206 bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp,
207 int64_t BrOffset) const {
208 unsigned Bits = getBranchDisplacementBits(BranchOp);
209 assert(Bits >= 3 && "max branch displacement must be enough to jump"
210 "over conditional branch expansion");
211 return isIntN(Bits, BrOffset / 4);
212 }
213
214 MachineBasicBlock *
getBranchDestBlock(const MachineInstr & MI) const215 AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
216 switch (MI.getOpcode()) {
217 default:
218 llvm_unreachable("unexpected opcode!");
219 case AArch64::B:
220 return MI.getOperand(0).getMBB();
221 case AArch64::TBZW:
222 case AArch64::TBNZW:
223 case AArch64::TBZX:
224 case AArch64::TBNZX:
225 return MI.getOperand(2).getMBB();
226 case AArch64::CBZW:
227 case AArch64::CBNZW:
228 case AArch64::CBZX:
229 case AArch64::CBNZX:
230 case AArch64::Bcc:
231 return MI.getOperand(1).getMBB();
232 }
233 }
234
235 // Branch analysis.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const236 bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
237 MachineBasicBlock *&TBB,
238 MachineBasicBlock *&FBB,
239 SmallVectorImpl<MachineOperand> &Cond,
240 bool AllowModify) const {
241 // If the block has no terminators, it just falls into the block after it.
242 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
243 if (I == MBB.end())
244 return false;
245
246 // Skip over SpeculationBarrierEndBB terminators
247 if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB ||
248 I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) {
249 --I;
250 }
251
252 if (!isUnpredicatedTerminator(*I))
253 return false;
254
255 // Get the last instruction in the block.
256 MachineInstr *LastInst = &*I;
257
258 // If there is only one terminator instruction, process it.
259 unsigned LastOpc = LastInst->getOpcode();
260 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
261 if (isUncondBranchOpcode(LastOpc)) {
262 TBB = LastInst->getOperand(0).getMBB();
263 return false;
264 }
265 if (isCondBranchOpcode(LastOpc)) {
266 // Block ends with fall-through condbranch.
267 parseCondBranch(LastInst, TBB, Cond);
268 return false;
269 }
270 return true; // Can't handle indirect branch.
271 }
272
273 // Get the instruction before it if it is a terminator.
274 MachineInstr *SecondLastInst = &*I;
275 unsigned SecondLastOpc = SecondLastInst->getOpcode();
276
277 // If AllowModify is true and the block ends with two or more unconditional
278 // branches, delete all but the first unconditional branch.
279 if (AllowModify && isUncondBranchOpcode(LastOpc)) {
280 while (isUncondBranchOpcode(SecondLastOpc)) {
281 LastInst->eraseFromParent();
282 LastInst = SecondLastInst;
283 LastOpc = LastInst->getOpcode();
284 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
285 // Return now the only terminator is an unconditional branch.
286 TBB = LastInst->getOperand(0).getMBB();
287 return false;
288 } else {
289 SecondLastInst = &*I;
290 SecondLastOpc = SecondLastInst->getOpcode();
291 }
292 }
293 }
294
295 // If we're allowed to modify and the block ends in a unconditional branch
296 // which could simply fallthrough, remove the branch. (Note: This case only
297 // matters when we can't understand the whole sequence, otherwise it's also
298 // handled by BranchFolding.cpp.)
299 if (AllowModify && isUncondBranchOpcode(LastOpc) &&
300 MBB.isLayoutSuccessor(getBranchDestBlock(*LastInst))) {
301 LastInst->eraseFromParent();
302 LastInst = SecondLastInst;
303 LastOpc = LastInst->getOpcode();
304 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
305 assert(!isUncondBranchOpcode(LastOpc) &&
306 "unreachable unconditional branches removed above");
307
308 if (isCondBranchOpcode(LastOpc)) {
309 // Block ends with fall-through condbranch.
310 parseCondBranch(LastInst, TBB, Cond);
311 return false;
312 }
313 return true; // Can't handle indirect branch.
314 } else {
315 SecondLastInst = &*I;
316 SecondLastOpc = SecondLastInst->getOpcode();
317 }
318 }
319
320 // If there are three terminators, we don't know what sort of block this is.
321 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
322 return true;
323
324 // If the block ends with a B and a Bcc, handle it.
325 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
326 parseCondBranch(SecondLastInst, TBB, Cond);
327 FBB = LastInst->getOperand(0).getMBB();
328 return false;
329 }
330
331 // If the block ends with two unconditional branches, handle it. The second
332 // one is not executed, so remove it.
333 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
334 TBB = SecondLastInst->getOperand(0).getMBB();
335 I = LastInst;
336 if (AllowModify)
337 I->eraseFromParent();
338 return false;
339 }
340
341 // ...likewise if it ends with an indirect branch followed by an unconditional
342 // branch.
343 if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
344 I = LastInst;
345 if (AllowModify)
346 I->eraseFromParent();
347 return true;
348 }
349
350 // Otherwise, can't handle this.
351 return true;
352 }
353
analyzeBranchPredicate(MachineBasicBlock & MBB,MachineBranchPredicate & MBP,bool AllowModify) const354 bool AArch64InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
355 MachineBranchPredicate &MBP,
356 bool AllowModify) const {
357 // For the moment, handle only a block which ends with a cb(n)zx followed by
358 // a fallthrough. Why this? Because it is a common form.
359 // TODO: Should we handle b.cc?
360
361 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
362 if (I == MBB.end())
363 return true;
364
365 // Skip over SpeculationBarrierEndBB terminators
366 if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB ||
367 I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) {
368 --I;
369 }
370
371 if (!isUnpredicatedTerminator(*I))
372 return true;
373
374 // Get the last instruction in the block.
375 MachineInstr *LastInst = &*I;
376 unsigned LastOpc = LastInst->getOpcode();
377 if (!isCondBranchOpcode(LastOpc))
378 return true;
379
380 switch (LastOpc) {
381 default:
382 return true;
383 case AArch64::CBZW:
384 case AArch64::CBZX:
385 case AArch64::CBNZW:
386 case AArch64::CBNZX:
387 break;
388 };
389
390 MBP.TrueDest = LastInst->getOperand(1).getMBB();
391 assert(MBP.TrueDest && "expected!");
392 MBP.FalseDest = MBB.getNextNode();
393
394 MBP.ConditionDef = nullptr;
395 MBP.SingleUseCondition = false;
396
397 MBP.LHS = LastInst->getOperand(0);
398 MBP.RHS = MachineOperand::CreateImm(0);
399 MBP.Predicate = LastOpc == AArch64::CBNZX ? MachineBranchPredicate::PRED_NE
400 : MachineBranchPredicate::PRED_EQ;
401 return false;
402 }
403
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const404 bool AArch64InstrInfo::reverseBranchCondition(
405 SmallVectorImpl<MachineOperand> &Cond) const {
406 if (Cond[0].getImm() != -1) {
407 // Regular Bcc
408 AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
409 Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
410 } else {
411 // Folded compare-and-branch
412 switch (Cond[1].getImm()) {
413 default:
414 llvm_unreachable("Unknown conditional branch!");
415 case AArch64::CBZW:
416 Cond[1].setImm(AArch64::CBNZW);
417 break;
418 case AArch64::CBNZW:
419 Cond[1].setImm(AArch64::CBZW);
420 break;
421 case AArch64::CBZX:
422 Cond[1].setImm(AArch64::CBNZX);
423 break;
424 case AArch64::CBNZX:
425 Cond[1].setImm(AArch64::CBZX);
426 break;
427 case AArch64::TBZW:
428 Cond[1].setImm(AArch64::TBNZW);
429 break;
430 case AArch64::TBNZW:
431 Cond[1].setImm(AArch64::TBZW);
432 break;
433 case AArch64::TBZX:
434 Cond[1].setImm(AArch64::TBNZX);
435 break;
436 case AArch64::TBNZX:
437 Cond[1].setImm(AArch64::TBZX);
438 break;
439 }
440 }
441
442 return false;
443 }
444
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const445 unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock &MBB,
446 int *BytesRemoved) const {
447 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
448 if (I == MBB.end())
449 return 0;
450
451 if (!isUncondBranchOpcode(I->getOpcode()) &&
452 !isCondBranchOpcode(I->getOpcode()))
453 return 0;
454
455 // Remove the branch.
456 I->eraseFromParent();
457
458 I = MBB.end();
459
460 if (I == MBB.begin()) {
461 if (BytesRemoved)
462 *BytesRemoved = 4;
463 return 1;
464 }
465 --I;
466 if (!isCondBranchOpcode(I->getOpcode())) {
467 if (BytesRemoved)
468 *BytesRemoved = 4;
469 return 1;
470 }
471
472 // Remove the branch.
473 I->eraseFromParent();
474 if (BytesRemoved)
475 *BytesRemoved = 8;
476
477 return 2;
478 }
479
instantiateCondBranch(MachineBasicBlock & MBB,const DebugLoc & DL,MachineBasicBlock * TBB,ArrayRef<MachineOperand> Cond) const480 void AArch64InstrInfo::instantiateCondBranch(
481 MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB,
482 ArrayRef<MachineOperand> Cond) const {
483 if (Cond[0].getImm() != -1) {
484 // Regular Bcc
485 BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
486 } else {
487 // Folded compare-and-branch
488 // Note that we use addOperand instead of addReg to keep the flags.
489 const MachineInstrBuilder MIB =
490 BuildMI(&MBB, DL, get(Cond[1].getImm())).add(Cond[2]);
491 if (Cond.size() > 3)
492 MIB.addImm(Cond[3].getImm());
493 MIB.addMBB(TBB);
494 }
495 }
496
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const497 unsigned AArch64InstrInfo::insertBranch(
498 MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
499 ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
500 // Shouldn't be a fall through.
501 assert(TBB && "insertBranch must not be told to insert a fallthrough");
502
503 if (!FBB) {
504 if (Cond.empty()) // Unconditional branch?
505 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
506 else
507 instantiateCondBranch(MBB, DL, TBB, Cond);
508
509 if (BytesAdded)
510 *BytesAdded = 4;
511
512 return 1;
513 }
514
515 // Two-way conditional branch.
516 instantiateCondBranch(MBB, DL, TBB, Cond);
517 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
518
519 if (BytesAdded)
520 *BytesAdded = 8;
521
522 return 2;
523 }
524
525 // Find the original register that VReg is copied from.
removeCopies(const MachineRegisterInfo & MRI,unsigned VReg)526 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
527 while (Register::isVirtualRegister(VReg)) {
528 const MachineInstr *DefMI = MRI.getVRegDef(VReg);
529 if (!DefMI->isFullCopy())
530 return VReg;
531 VReg = DefMI->getOperand(1).getReg();
532 }
533 return VReg;
534 }
535
536 // Determine if VReg is defined by an instruction that can be folded into a
537 // csel instruction. If so, return the folded opcode, and the replacement
538 // register.
canFoldIntoCSel(const MachineRegisterInfo & MRI,unsigned VReg,unsigned * NewVReg=nullptr)539 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
540 unsigned *NewVReg = nullptr) {
541 VReg = removeCopies(MRI, VReg);
542 if (!Register::isVirtualRegister(VReg))
543 return 0;
544
545 bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
546 const MachineInstr *DefMI = MRI.getVRegDef(VReg);
547 unsigned Opc = 0;
548 unsigned SrcOpNum = 0;
549 switch (DefMI->getOpcode()) {
550 case AArch64::ADDSXri:
551 case AArch64::ADDSWri:
552 // if NZCV is used, do not fold.
553 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
554 return 0;
555 // fall-through to ADDXri and ADDWri.
556 [[fallthrough]];
557 case AArch64::ADDXri:
558 case AArch64::ADDWri:
559 // add x, 1 -> csinc.
560 if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
561 DefMI->getOperand(3).getImm() != 0)
562 return 0;
563 SrcOpNum = 1;
564 Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
565 break;
566
567 case AArch64::ORNXrr:
568 case AArch64::ORNWrr: {
569 // not x -> csinv, represented as orn dst, xzr, src.
570 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
571 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
572 return 0;
573 SrcOpNum = 2;
574 Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
575 break;
576 }
577
578 case AArch64::SUBSXrr:
579 case AArch64::SUBSWrr:
580 // if NZCV is used, do not fold.
581 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
582 return 0;
583 // fall-through to SUBXrr and SUBWrr.
584 [[fallthrough]];
585 case AArch64::SUBXrr:
586 case AArch64::SUBWrr: {
587 // neg x -> csneg, represented as sub dst, xzr, src.
588 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
589 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
590 return 0;
591 SrcOpNum = 2;
592 Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
593 break;
594 }
595 default:
596 return 0;
597 }
598 assert(Opc && SrcOpNum && "Missing parameters");
599
600 if (NewVReg)
601 *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
602 return Opc;
603 }
604
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const605 bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
606 ArrayRef<MachineOperand> Cond,
607 Register DstReg, Register TrueReg,
608 Register FalseReg, int &CondCycles,
609 int &TrueCycles,
610 int &FalseCycles) const {
611 // Check register classes.
612 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
613 const TargetRegisterClass *RC =
614 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
615 if (!RC)
616 return false;
617
618 // Also need to check the dest regclass, in case we're trying to optimize
619 // something like:
620 // %1(gpr) = PHI %2(fpr), bb1, %(fpr), bb2
621 if (!RI.getCommonSubClass(RC, MRI.getRegClass(DstReg)))
622 return false;
623
624 // Expanding cbz/tbz requires an extra cycle of latency on the condition.
625 unsigned ExtraCondLat = Cond.size() != 1;
626
627 // GPRs are handled by csel.
628 // FIXME: Fold in x+1, -x, and ~x when applicable.
629 if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
630 AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
631 // Single-cycle csel, csinc, csinv, and csneg.
632 CondCycles = 1 + ExtraCondLat;
633 TrueCycles = FalseCycles = 1;
634 if (canFoldIntoCSel(MRI, TrueReg))
635 TrueCycles = 0;
636 else if (canFoldIntoCSel(MRI, FalseReg))
637 FalseCycles = 0;
638 return true;
639 }
640
641 // Scalar floating point is handled by fcsel.
642 // FIXME: Form fabs, fmin, and fmax when applicable.
643 if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
644 AArch64::FPR32RegClass.hasSubClassEq(RC)) {
645 CondCycles = 5 + ExtraCondLat;
646 TrueCycles = FalseCycles = 2;
647 return true;
648 }
649
650 // Can't do vectors.
651 return false;
652 }
653
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg) const654 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
655 MachineBasicBlock::iterator I,
656 const DebugLoc &DL, Register DstReg,
657 ArrayRef<MachineOperand> Cond,
658 Register TrueReg, Register FalseReg) const {
659 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
660
661 // Parse the condition code, see parseCondBranch() above.
662 AArch64CC::CondCode CC;
663 switch (Cond.size()) {
664 default:
665 llvm_unreachable("Unknown condition opcode in Cond");
666 case 1: // b.cc
667 CC = AArch64CC::CondCode(Cond[0].getImm());
668 break;
669 case 3: { // cbz/cbnz
670 // We must insert a compare against 0.
671 bool Is64Bit;
672 switch (Cond[1].getImm()) {
673 default:
674 llvm_unreachable("Unknown branch opcode in Cond");
675 case AArch64::CBZW:
676 Is64Bit = false;
677 CC = AArch64CC::EQ;
678 break;
679 case AArch64::CBZX:
680 Is64Bit = true;
681 CC = AArch64CC::EQ;
682 break;
683 case AArch64::CBNZW:
684 Is64Bit = false;
685 CC = AArch64CC::NE;
686 break;
687 case AArch64::CBNZX:
688 Is64Bit = true;
689 CC = AArch64CC::NE;
690 break;
691 }
692 Register SrcReg = Cond[2].getReg();
693 if (Is64Bit) {
694 // cmp reg, #0 is actually subs xzr, reg, #0.
695 MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
696 BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
697 .addReg(SrcReg)
698 .addImm(0)
699 .addImm(0);
700 } else {
701 MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
702 BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
703 .addReg(SrcReg)
704 .addImm(0)
705 .addImm(0);
706 }
707 break;
708 }
709 case 4: { // tbz/tbnz
710 // We must insert a tst instruction.
711 switch (Cond[1].getImm()) {
712 default:
713 llvm_unreachable("Unknown branch opcode in Cond");
714 case AArch64::TBZW:
715 case AArch64::TBZX:
716 CC = AArch64CC::EQ;
717 break;
718 case AArch64::TBNZW:
719 case AArch64::TBNZX:
720 CC = AArch64CC::NE;
721 break;
722 }
723 // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
724 if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
725 BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
726 .addReg(Cond[2].getReg())
727 .addImm(
728 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
729 else
730 BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
731 .addReg(Cond[2].getReg())
732 .addImm(
733 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
734 break;
735 }
736 }
737
738 unsigned Opc = 0;
739 const TargetRegisterClass *RC = nullptr;
740 bool TryFold = false;
741 if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
742 RC = &AArch64::GPR64RegClass;
743 Opc = AArch64::CSELXr;
744 TryFold = true;
745 } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
746 RC = &AArch64::GPR32RegClass;
747 Opc = AArch64::CSELWr;
748 TryFold = true;
749 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
750 RC = &AArch64::FPR64RegClass;
751 Opc = AArch64::FCSELDrrr;
752 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
753 RC = &AArch64::FPR32RegClass;
754 Opc = AArch64::FCSELSrrr;
755 }
756 assert(RC && "Unsupported regclass");
757
758 // Try folding simple instructions into the csel.
759 if (TryFold) {
760 unsigned NewVReg = 0;
761 unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
762 if (FoldedOpc) {
763 // The folded opcodes csinc, csinc and csneg apply the operation to
764 // FalseReg, so we need to invert the condition.
765 CC = AArch64CC::getInvertedCondCode(CC);
766 TrueReg = FalseReg;
767 } else
768 FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
769
770 // Fold the operation. Leave any dead instructions for DCE to clean up.
771 if (FoldedOpc) {
772 FalseReg = NewVReg;
773 Opc = FoldedOpc;
774 // The extends the live range of NewVReg.
775 MRI.clearKillFlags(NewVReg);
776 }
777 }
778
779 // Pull all virtual register into the appropriate class.
780 MRI.constrainRegClass(TrueReg, RC);
781 MRI.constrainRegClass(FalseReg, RC);
782
783 // Insert the csel.
784 BuildMI(MBB, I, DL, get(Opc), DstReg)
785 .addReg(TrueReg)
786 .addReg(FalseReg)
787 .addImm(CC);
788 }
789
790 /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx.
canBeExpandedToORR(const MachineInstr & MI,unsigned BitSize)791 static bool canBeExpandedToORR(const MachineInstr &MI, unsigned BitSize) {
792 uint64_t Imm = MI.getOperand(1).getImm();
793 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
794 uint64_t Encoding;
795 return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding);
796 }
797
798 // FIXME: this implementation should be micro-architecture dependent, so a
799 // micro-architecture target hook should be introduced here in future.
isAsCheapAsAMove(const MachineInstr & MI) const800 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
801 if (!Subtarget.hasCustomCheapAsMoveHandling())
802 return MI.isAsCheapAsAMove();
803
804 const unsigned Opcode = MI.getOpcode();
805
806 // Firstly, check cases gated by features.
807
808 if (Subtarget.hasZeroCycleZeroingFP()) {
809 if (Opcode == AArch64::FMOVH0 ||
810 Opcode == AArch64::FMOVS0 ||
811 Opcode == AArch64::FMOVD0)
812 return true;
813 }
814
815 if (Subtarget.hasZeroCycleZeroingGP()) {
816 if (Opcode == TargetOpcode::COPY &&
817 (MI.getOperand(1).getReg() == AArch64::WZR ||
818 MI.getOperand(1).getReg() == AArch64::XZR))
819 return true;
820 }
821
822 // Secondly, check cases specific to sub-targets.
823
824 if (Subtarget.hasExynosCheapAsMoveHandling()) {
825 if (isExynosCheapAsMove(MI))
826 return true;
827
828 return MI.isAsCheapAsAMove();
829 }
830
831 // Finally, check generic cases.
832
833 switch (Opcode) {
834 default:
835 return false;
836
837 // add/sub on register without shift
838 case AArch64::ADDWri:
839 case AArch64::ADDXri:
840 case AArch64::SUBWri:
841 case AArch64::SUBXri:
842 return (MI.getOperand(3).getImm() == 0);
843
844 // logical ops on immediate
845 case AArch64::ANDWri:
846 case AArch64::ANDXri:
847 case AArch64::EORWri:
848 case AArch64::EORXri:
849 case AArch64::ORRWri:
850 case AArch64::ORRXri:
851 return true;
852
853 // logical ops on register without shift
854 case AArch64::ANDWrr:
855 case AArch64::ANDXrr:
856 case AArch64::BICWrr:
857 case AArch64::BICXrr:
858 case AArch64::EONWrr:
859 case AArch64::EONXrr:
860 case AArch64::EORWrr:
861 case AArch64::EORXrr:
862 case AArch64::ORNWrr:
863 case AArch64::ORNXrr:
864 case AArch64::ORRWrr:
865 case AArch64::ORRXrr:
866 return true;
867
868 // If MOVi32imm or MOVi64imm can be expanded into ORRWri or
869 // ORRXri, it is as cheap as MOV
870 case AArch64::MOVi32imm:
871 return canBeExpandedToORR(MI, 32);
872 case AArch64::MOVi64imm:
873 return canBeExpandedToORR(MI, 64);
874 }
875
876 llvm_unreachable("Unknown opcode to check as cheap as a move!");
877 }
878
isFalkorShiftExtFast(const MachineInstr & MI)879 bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr &MI) {
880 switch (MI.getOpcode()) {
881 default:
882 return false;
883
884 case AArch64::ADDWrs:
885 case AArch64::ADDXrs:
886 case AArch64::ADDSWrs:
887 case AArch64::ADDSXrs: {
888 unsigned Imm = MI.getOperand(3).getImm();
889 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
890 if (ShiftVal == 0)
891 return true;
892 return AArch64_AM::getShiftType(Imm) == AArch64_AM::LSL && ShiftVal <= 5;
893 }
894
895 case AArch64::ADDWrx:
896 case AArch64::ADDXrx:
897 case AArch64::ADDXrx64:
898 case AArch64::ADDSWrx:
899 case AArch64::ADDSXrx:
900 case AArch64::ADDSXrx64: {
901 unsigned Imm = MI.getOperand(3).getImm();
902 switch (AArch64_AM::getArithExtendType(Imm)) {
903 default:
904 return false;
905 case AArch64_AM::UXTB:
906 case AArch64_AM::UXTH:
907 case AArch64_AM::UXTW:
908 case AArch64_AM::UXTX:
909 return AArch64_AM::getArithShiftValue(Imm) <= 4;
910 }
911 }
912
913 case AArch64::SUBWrs:
914 case AArch64::SUBSWrs: {
915 unsigned Imm = MI.getOperand(3).getImm();
916 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
917 return ShiftVal == 0 ||
918 (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 31);
919 }
920
921 case AArch64::SUBXrs:
922 case AArch64::SUBSXrs: {
923 unsigned Imm = MI.getOperand(3).getImm();
924 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
925 return ShiftVal == 0 ||
926 (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 63);
927 }
928
929 case AArch64::SUBWrx:
930 case AArch64::SUBXrx:
931 case AArch64::SUBXrx64:
932 case AArch64::SUBSWrx:
933 case AArch64::SUBSXrx:
934 case AArch64::SUBSXrx64: {
935 unsigned Imm = MI.getOperand(3).getImm();
936 switch (AArch64_AM::getArithExtendType(Imm)) {
937 default:
938 return false;
939 case AArch64_AM::UXTB:
940 case AArch64_AM::UXTH:
941 case AArch64_AM::UXTW:
942 case AArch64_AM::UXTX:
943 return AArch64_AM::getArithShiftValue(Imm) == 0;
944 }
945 }
946
947 case AArch64::LDRBBroW:
948 case AArch64::LDRBBroX:
949 case AArch64::LDRBroW:
950 case AArch64::LDRBroX:
951 case AArch64::LDRDroW:
952 case AArch64::LDRDroX:
953 case AArch64::LDRHHroW:
954 case AArch64::LDRHHroX:
955 case AArch64::LDRHroW:
956 case AArch64::LDRHroX:
957 case AArch64::LDRQroW:
958 case AArch64::LDRQroX:
959 case AArch64::LDRSBWroW:
960 case AArch64::LDRSBWroX:
961 case AArch64::LDRSBXroW:
962 case AArch64::LDRSBXroX:
963 case AArch64::LDRSHWroW:
964 case AArch64::LDRSHWroX:
965 case AArch64::LDRSHXroW:
966 case AArch64::LDRSHXroX:
967 case AArch64::LDRSWroW:
968 case AArch64::LDRSWroX:
969 case AArch64::LDRSroW:
970 case AArch64::LDRSroX:
971 case AArch64::LDRWroW:
972 case AArch64::LDRWroX:
973 case AArch64::LDRXroW:
974 case AArch64::LDRXroX:
975 case AArch64::PRFMroW:
976 case AArch64::PRFMroX:
977 case AArch64::STRBBroW:
978 case AArch64::STRBBroX:
979 case AArch64::STRBroW:
980 case AArch64::STRBroX:
981 case AArch64::STRDroW:
982 case AArch64::STRDroX:
983 case AArch64::STRHHroW:
984 case AArch64::STRHHroX:
985 case AArch64::STRHroW:
986 case AArch64::STRHroX:
987 case AArch64::STRQroW:
988 case AArch64::STRQroX:
989 case AArch64::STRSroW:
990 case AArch64::STRSroX:
991 case AArch64::STRWroW:
992 case AArch64::STRWroX:
993 case AArch64::STRXroW:
994 case AArch64::STRXroX: {
995 unsigned IsSigned = MI.getOperand(3).getImm();
996 return !IsSigned;
997 }
998 }
999 }
1000
isSEHInstruction(const MachineInstr & MI)1001 bool AArch64InstrInfo::isSEHInstruction(const MachineInstr &MI) {
1002 unsigned Opc = MI.getOpcode();
1003 switch (Opc) {
1004 default:
1005 return false;
1006 case AArch64::SEH_StackAlloc:
1007 case AArch64::SEH_SaveFPLR:
1008 case AArch64::SEH_SaveFPLR_X:
1009 case AArch64::SEH_SaveReg:
1010 case AArch64::SEH_SaveReg_X:
1011 case AArch64::SEH_SaveRegP:
1012 case AArch64::SEH_SaveRegP_X:
1013 case AArch64::SEH_SaveFReg:
1014 case AArch64::SEH_SaveFReg_X:
1015 case AArch64::SEH_SaveFRegP:
1016 case AArch64::SEH_SaveFRegP_X:
1017 case AArch64::SEH_SetFP:
1018 case AArch64::SEH_AddFP:
1019 case AArch64::SEH_Nop:
1020 case AArch64::SEH_PrologEnd:
1021 case AArch64::SEH_EpilogStart:
1022 case AArch64::SEH_EpilogEnd:
1023 case AArch64::SEH_PACSignLR:
1024 return true;
1025 }
1026 }
1027
isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx) const1028 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1029 Register &SrcReg, Register &DstReg,
1030 unsigned &SubIdx) const {
1031 switch (MI.getOpcode()) {
1032 default:
1033 return false;
1034 case AArch64::SBFMXri: // aka sxtw
1035 case AArch64::UBFMXri: // aka uxtw
1036 // Check for the 32 -> 64 bit extension case, these instructions can do
1037 // much more.
1038 if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
1039 return false;
1040 // This is a signed or unsigned 32 -> 64 bit extension.
1041 SrcReg = MI.getOperand(1).getReg();
1042 DstReg = MI.getOperand(0).getReg();
1043 SubIdx = AArch64::sub_32;
1044 return true;
1045 }
1046 }
1047
areMemAccessesTriviallyDisjoint(const MachineInstr & MIa,const MachineInstr & MIb) const1048 bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint(
1049 const MachineInstr &MIa, const MachineInstr &MIb) const {
1050 const TargetRegisterInfo *TRI = &getRegisterInfo();
1051 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
1052 int64_t OffsetA = 0, OffsetB = 0;
1053 unsigned WidthA = 0, WidthB = 0;
1054 bool OffsetAIsScalable = false, OffsetBIsScalable = false;
1055
1056 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
1057 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
1058
1059 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1060 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1061 return false;
1062
1063 // Retrieve the base, offset from the base and width. Width
1064 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
1065 // base are identical, and the offset of a lower memory access +
1066 // the width doesn't overlap the offset of a higher memory access,
1067 // then the memory accesses are different.
1068 // If OffsetAIsScalable and OffsetBIsScalable are both true, they
1069 // are assumed to have the same scale (vscale).
1070 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, OffsetAIsScalable,
1071 WidthA, TRI) &&
1072 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, OffsetBIsScalable,
1073 WidthB, TRI)) {
1074 if (BaseOpA->isIdenticalTo(*BaseOpB) &&
1075 OffsetAIsScalable == OffsetBIsScalable) {
1076 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1077 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1078 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1079 if (LowOffset + LowWidth <= HighOffset)
1080 return true;
1081 }
1082 }
1083 return false;
1084 }
1085
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1086 bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1087 const MachineBasicBlock *MBB,
1088 const MachineFunction &MF) const {
1089 if (TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF))
1090 return true;
1091 switch (MI.getOpcode()) {
1092 case AArch64::HINT:
1093 // CSDB hints are scheduling barriers.
1094 if (MI.getOperand(0).getImm() == 0x14)
1095 return true;
1096 break;
1097 case AArch64::DSB:
1098 case AArch64::ISB:
1099 // DSB and ISB also are scheduling barriers.
1100 return true;
1101 case AArch64::MSRpstatesvcrImm1:
1102 // SMSTART and SMSTOP are also scheduling barriers.
1103 return true;
1104 default:;
1105 }
1106 if (isSEHInstruction(MI))
1107 return true;
1108 auto Next = std::next(MI.getIterator());
1109 return Next != MBB->end() && Next->isCFIInstruction();
1110 }
1111
1112 /// analyzeCompare - For a comparison instruction, return the source registers
1113 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
1114 /// Return true if the comparison instruction can be analyzed.
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & CmpMask,int64_t & CmpValue) const1115 bool AArch64InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1116 Register &SrcReg2, int64_t &CmpMask,
1117 int64_t &CmpValue) const {
1118 // The first operand can be a frame index where we'd normally expect a
1119 // register.
1120 assert(MI.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands");
1121 if (!MI.getOperand(1).isReg())
1122 return false;
1123
1124 switch (MI.getOpcode()) {
1125 default:
1126 break;
1127 case AArch64::PTEST_PP:
1128 case AArch64::PTEST_PP_ANY:
1129 SrcReg = MI.getOperand(0).getReg();
1130 SrcReg2 = MI.getOperand(1).getReg();
1131 // Not sure about the mask and value for now...
1132 CmpMask = ~0;
1133 CmpValue = 0;
1134 return true;
1135 case AArch64::SUBSWrr:
1136 case AArch64::SUBSWrs:
1137 case AArch64::SUBSWrx:
1138 case AArch64::SUBSXrr:
1139 case AArch64::SUBSXrs:
1140 case AArch64::SUBSXrx:
1141 case AArch64::ADDSWrr:
1142 case AArch64::ADDSWrs:
1143 case AArch64::ADDSWrx:
1144 case AArch64::ADDSXrr:
1145 case AArch64::ADDSXrs:
1146 case AArch64::ADDSXrx:
1147 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1148 SrcReg = MI.getOperand(1).getReg();
1149 SrcReg2 = MI.getOperand(2).getReg();
1150 CmpMask = ~0;
1151 CmpValue = 0;
1152 return true;
1153 case AArch64::SUBSWri:
1154 case AArch64::ADDSWri:
1155 case AArch64::SUBSXri:
1156 case AArch64::ADDSXri:
1157 SrcReg = MI.getOperand(1).getReg();
1158 SrcReg2 = 0;
1159 CmpMask = ~0;
1160 CmpValue = MI.getOperand(2).getImm();
1161 return true;
1162 case AArch64::ANDSWri:
1163 case AArch64::ANDSXri:
1164 // ANDS does not use the same encoding scheme as the others xxxS
1165 // instructions.
1166 SrcReg = MI.getOperand(1).getReg();
1167 SrcReg2 = 0;
1168 CmpMask = ~0;
1169 CmpValue = AArch64_AM::decodeLogicalImmediate(
1170 MI.getOperand(2).getImm(),
1171 MI.getOpcode() == AArch64::ANDSWri ? 32 : 64);
1172 return true;
1173 }
1174
1175 return false;
1176 }
1177
UpdateOperandRegClass(MachineInstr & Instr)1178 static bool UpdateOperandRegClass(MachineInstr &Instr) {
1179 MachineBasicBlock *MBB = Instr.getParent();
1180 assert(MBB && "Can't get MachineBasicBlock here");
1181 MachineFunction *MF = MBB->getParent();
1182 assert(MF && "Can't get MachineFunction here");
1183 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1184 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1185 MachineRegisterInfo *MRI = &MF->getRegInfo();
1186
1187 for (unsigned OpIdx = 0, EndIdx = Instr.getNumOperands(); OpIdx < EndIdx;
1188 ++OpIdx) {
1189 MachineOperand &MO = Instr.getOperand(OpIdx);
1190 const TargetRegisterClass *OpRegCstraints =
1191 Instr.getRegClassConstraint(OpIdx, TII, TRI);
1192
1193 // If there's no constraint, there's nothing to do.
1194 if (!OpRegCstraints)
1195 continue;
1196 // If the operand is a frame index, there's nothing to do here.
1197 // A frame index operand will resolve correctly during PEI.
1198 if (MO.isFI())
1199 continue;
1200
1201 assert(MO.isReg() &&
1202 "Operand has register constraints without being a register!");
1203
1204 Register Reg = MO.getReg();
1205 if (Reg.isPhysical()) {
1206 if (!OpRegCstraints->contains(Reg))
1207 return false;
1208 } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
1209 !MRI->constrainRegClass(Reg, OpRegCstraints))
1210 return false;
1211 }
1212
1213 return true;
1214 }
1215
1216 /// Return the opcode that does not set flags when possible - otherwise
1217 /// return the original opcode. The caller is responsible to do the actual
1218 /// substitution and legality checking.
convertToNonFlagSettingOpc(const MachineInstr & MI)1219 static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) {
1220 // Don't convert all compare instructions, because for some the zero register
1221 // encoding becomes the sp register.
1222 bool MIDefinesZeroReg = false;
1223 if (MI.definesRegister(AArch64::WZR) || MI.definesRegister(AArch64::XZR))
1224 MIDefinesZeroReg = true;
1225
1226 switch (MI.getOpcode()) {
1227 default:
1228 return MI.getOpcode();
1229 case AArch64::ADDSWrr:
1230 return AArch64::ADDWrr;
1231 case AArch64::ADDSWri:
1232 return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
1233 case AArch64::ADDSWrs:
1234 return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
1235 case AArch64::ADDSWrx:
1236 return AArch64::ADDWrx;
1237 case AArch64::ADDSXrr:
1238 return AArch64::ADDXrr;
1239 case AArch64::ADDSXri:
1240 return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
1241 case AArch64::ADDSXrs:
1242 return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
1243 case AArch64::ADDSXrx:
1244 return AArch64::ADDXrx;
1245 case AArch64::SUBSWrr:
1246 return AArch64::SUBWrr;
1247 case AArch64::SUBSWri:
1248 return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
1249 case AArch64::SUBSWrs:
1250 return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
1251 case AArch64::SUBSWrx:
1252 return AArch64::SUBWrx;
1253 case AArch64::SUBSXrr:
1254 return AArch64::SUBXrr;
1255 case AArch64::SUBSXri:
1256 return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
1257 case AArch64::SUBSXrs:
1258 return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
1259 case AArch64::SUBSXrx:
1260 return AArch64::SUBXrx;
1261 }
1262 }
1263
1264 enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 };
1265
1266 /// True when condition flags are accessed (either by writing or reading)
1267 /// on the instruction trace starting at From and ending at To.
1268 ///
1269 /// Note: If From and To are from different blocks it's assumed CC are accessed
1270 /// on the path.
areCFlagsAccessedBetweenInstrs(MachineBasicBlock::iterator From,MachineBasicBlock::iterator To,const TargetRegisterInfo * TRI,const AccessKind AccessToCheck=AK_All)1271 static bool areCFlagsAccessedBetweenInstrs(
1272 MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
1273 const TargetRegisterInfo *TRI, const AccessKind AccessToCheck = AK_All) {
1274 // Early exit if To is at the beginning of the BB.
1275 if (To == To->getParent()->begin())
1276 return true;
1277
1278 // Check whether the instructions are in the same basic block
1279 // If not, assume the condition flags might get modified somewhere.
1280 if (To->getParent() != From->getParent())
1281 return true;
1282
1283 // From must be above To.
1284 assert(std::any_of(
1285 ++To.getReverse(), To->getParent()->rend(),
1286 [From](MachineInstr &MI) { return MI.getIterator() == From; }));
1287
1288 // We iterate backward starting at \p To until we hit \p From.
1289 for (const MachineInstr &Instr :
1290 instructionsWithoutDebug(++To.getReverse(), From.getReverse())) {
1291 if (((AccessToCheck & AK_Write) &&
1292 Instr.modifiesRegister(AArch64::NZCV, TRI)) ||
1293 ((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI)))
1294 return true;
1295 }
1296 return false;
1297 }
1298
1299 /// optimizePTestInstr - Attempt to remove a ptest of a predicate-generating
1300 /// operation which could set the flags in an identical manner
optimizePTestInstr(MachineInstr * PTest,unsigned MaskReg,unsigned PredReg,const MachineRegisterInfo * MRI) const1301 bool AArch64InstrInfo::optimizePTestInstr(
1302 MachineInstr *PTest, unsigned MaskReg, unsigned PredReg,
1303 const MachineRegisterInfo *MRI) const {
1304 auto *Mask = MRI->getUniqueVRegDef(MaskReg);
1305 auto *Pred = MRI->getUniqueVRegDef(PredReg);
1306 auto NewOp = Pred->getOpcode();
1307 bool OpChanged = false;
1308
1309 unsigned MaskOpcode = Mask->getOpcode();
1310 unsigned PredOpcode = Pred->getOpcode();
1311 bool PredIsPTestLike = isPTestLikeOpcode(PredOpcode);
1312 bool PredIsWhileLike = isWhileOpcode(PredOpcode);
1313
1314 if (isPTrueOpcode(MaskOpcode) && (PredIsPTestLike || PredIsWhileLike) &&
1315 getElementSizeForOpcode(MaskOpcode) ==
1316 getElementSizeForOpcode(PredOpcode) &&
1317 Mask->getOperand(1).getImm() == 31) {
1318 // For PTEST(PTRUE_ALL, WHILE), if the element size matches, the PTEST is
1319 // redundant since WHILE performs an implicit PTEST with an all active
1320 // mask. Must be an all active predicate of matching element size.
1321
1322 // For PTEST(PTRUE_ALL, PTEST_LIKE), the PTEST is redundant if the
1323 // PTEST_LIKE instruction uses the same all active mask and the element
1324 // size matches. If the PTEST has a condition of any then it is always
1325 // redundant.
1326 if (PredIsPTestLike) {
1327 auto PTestLikeMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1328 if (Mask != PTestLikeMask && PTest->getOpcode() != AArch64::PTEST_PP_ANY)
1329 return false;
1330 }
1331
1332 // Fallthough to simply remove the PTEST.
1333 } else if ((Mask == Pred) && (PredIsPTestLike || PredIsWhileLike) &&
1334 PTest->getOpcode() == AArch64::PTEST_PP_ANY) {
1335 // For PTEST(PG, PG), PTEST is redundant when PG is the result of an
1336 // instruction that sets the flags as PTEST would. This is only valid when
1337 // the condition is any.
1338
1339 // Fallthough to simply remove the PTEST.
1340 } else if (PredIsPTestLike) {
1341 // For PTEST(PG, PTEST_LIKE(PG, ...)), the PTEST is redundant since the
1342 // flags are set based on the same mask 'PG', but PTEST_LIKE must operate
1343 // on 8-bit predicates like the PTEST. Otherwise, for instructions like
1344 // compare that also support 16/32/64-bit predicates, the implicit PTEST
1345 // performed by the compare could consider fewer lanes for these element
1346 // sizes.
1347 //
1348 // For example, consider
1349 //
1350 // ptrue p0.b ; P0=1111-1111-1111-1111
1351 // index z0.s, #0, #1 ; Z0=<0,1,2,3>
1352 // index z1.s, #1, #1 ; Z1=<1,2,3,4>
1353 // cmphi p1.s, p0/z, z1.s, z0.s ; P1=0001-0001-0001-0001
1354 // ; ^ last active
1355 // ptest p0, p1.b ; P1=0001-0001-0001-0001
1356 // ; ^ last active
1357 //
1358 // where the compare generates a canonical all active 32-bit predicate
1359 // (equivalent to 'ptrue p1.s, all'). The implicit PTEST sets the last
1360 // active flag, whereas the PTEST instruction with the same mask doesn't.
1361 // For PTEST_ANY this doesn't apply as the flags in this case would be
1362 // identical regardless of element size.
1363 auto PTestLikeMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1364 uint64_t PredElementSize = getElementSizeForOpcode(PredOpcode);
1365 if ((Mask != PTestLikeMask) ||
1366 (PredElementSize != AArch64::ElementSizeB &&
1367 PTest->getOpcode() != AArch64::PTEST_PP_ANY))
1368 return false;
1369
1370 // Fallthough to simply remove the PTEST.
1371 } else {
1372 // If OP in PTEST(PG, OP(PG, ...)) has a flag-setting variant change the
1373 // opcode so the PTEST becomes redundant.
1374 switch (PredOpcode) {
1375 case AArch64::AND_PPzPP:
1376 case AArch64::BIC_PPzPP:
1377 case AArch64::EOR_PPzPP:
1378 case AArch64::NAND_PPzPP:
1379 case AArch64::NOR_PPzPP:
1380 case AArch64::ORN_PPzPP:
1381 case AArch64::ORR_PPzPP:
1382 case AArch64::BRKA_PPzP:
1383 case AArch64::BRKPA_PPzPP:
1384 case AArch64::BRKB_PPzP:
1385 case AArch64::BRKPB_PPzPP:
1386 case AArch64::RDFFR_PPz: {
1387 // Check to see if our mask is the same. If not the resulting flag bits
1388 // may be different and we can't remove the ptest.
1389 auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1390 if (Mask != PredMask)
1391 return false;
1392 break;
1393 }
1394 case AArch64::BRKN_PPzP: {
1395 // BRKN uses an all active implicit mask to set flags unlike the other
1396 // flag-setting instructions.
1397 // PTEST(PTRUE_B(31), BRKN(PG, A, B)) -> BRKNS(PG, A, B).
1398 if ((MaskOpcode != AArch64::PTRUE_B) ||
1399 (Mask->getOperand(1).getImm() != 31))
1400 return false;
1401 break;
1402 }
1403 case AArch64::PTRUE_B:
1404 // PTEST(OP=PTRUE_B(A), OP) -> PTRUES_B(A)
1405 break;
1406 default:
1407 // Bail out if we don't recognize the input
1408 return false;
1409 }
1410
1411 NewOp = convertToFlagSettingOpc(PredOpcode);
1412 OpChanged = true;
1413 }
1414
1415 const TargetRegisterInfo *TRI = &getRegisterInfo();
1416
1417 // If another instruction between Pred and PTest accesses flags, don't remove
1418 // the ptest or update the earlier instruction to modify them.
1419 if (areCFlagsAccessedBetweenInstrs(Pred, PTest, TRI))
1420 return false;
1421
1422 // If we pass all the checks, it's safe to remove the PTEST and use the flags
1423 // as they are prior to PTEST. Sometimes this requires the tested PTEST
1424 // operand to be replaced with an equivalent instruction that also sets the
1425 // flags.
1426 Pred->setDesc(get(NewOp));
1427 PTest->eraseFromParent();
1428 if (OpChanged) {
1429 bool succeeded = UpdateOperandRegClass(*Pred);
1430 (void)succeeded;
1431 assert(succeeded && "Operands have incompatible register classes!");
1432 Pred->addRegisterDefined(AArch64::NZCV, TRI);
1433 }
1434
1435 // Ensure that the flags def is live.
1436 if (Pred->registerDefIsDead(AArch64::NZCV, TRI)) {
1437 unsigned i = 0, e = Pred->getNumOperands();
1438 for (; i != e; ++i) {
1439 MachineOperand &MO = Pred->getOperand(i);
1440 if (MO.isReg() && MO.isDef() && MO.getReg() == AArch64::NZCV) {
1441 MO.setIsDead(false);
1442 break;
1443 }
1444 }
1445 }
1446 return true;
1447 }
1448
1449 /// Try to optimize a compare instruction. A compare instruction is an
1450 /// instruction which produces AArch64::NZCV. It can be truly compare
1451 /// instruction
1452 /// when there are no uses of its destination register.
1453 ///
1454 /// The following steps are tried in order:
1455 /// 1. Convert CmpInstr into an unconditional version.
1456 /// 2. Remove CmpInstr if above there is an instruction producing a needed
1457 /// condition code or an instruction which can be converted into such an
1458 /// instruction.
1459 /// Only comparison with zero is supported.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int64_t CmpMask,int64_t CmpValue,const MachineRegisterInfo * MRI) const1460 bool AArch64InstrInfo::optimizeCompareInstr(
1461 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
1462 int64_t CmpValue, const MachineRegisterInfo *MRI) const {
1463 assert(CmpInstr.getParent());
1464 assert(MRI);
1465
1466 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1467 int DeadNZCVIdx = CmpInstr.findRegisterDefOperandIdx(AArch64::NZCV, true);
1468 if (DeadNZCVIdx != -1) {
1469 if (CmpInstr.definesRegister(AArch64::WZR) ||
1470 CmpInstr.definesRegister(AArch64::XZR)) {
1471 CmpInstr.eraseFromParent();
1472 return true;
1473 }
1474 unsigned Opc = CmpInstr.getOpcode();
1475 unsigned NewOpc = convertToNonFlagSettingOpc(CmpInstr);
1476 if (NewOpc == Opc)
1477 return false;
1478 const MCInstrDesc &MCID = get(NewOpc);
1479 CmpInstr.setDesc(MCID);
1480 CmpInstr.removeOperand(DeadNZCVIdx);
1481 bool succeeded = UpdateOperandRegClass(CmpInstr);
1482 (void)succeeded;
1483 assert(succeeded && "Some operands reg class are incompatible!");
1484 return true;
1485 }
1486
1487 if (CmpInstr.getOpcode() == AArch64::PTEST_PP ||
1488 CmpInstr.getOpcode() == AArch64::PTEST_PP_ANY)
1489 return optimizePTestInstr(&CmpInstr, SrcReg, SrcReg2, MRI);
1490
1491 if (SrcReg2 != 0)
1492 return false;
1493
1494 // CmpInstr is a Compare instruction if destination register is not used.
1495 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
1496 return false;
1497
1498 if (CmpValue == 0 && substituteCmpToZero(CmpInstr, SrcReg, *MRI))
1499 return true;
1500 return (CmpValue == 0 || CmpValue == 1) &&
1501 removeCmpToZeroOrOne(CmpInstr, SrcReg, CmpValue, *MRI);
1502 }
1503
1504 /// Get opcode of S version of Instr.
1505 /// If Instr is S version its opcode is returned.
1506 /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version
1507 /// or we are not interested in it.
sForm(MachineInstr & Instr)1508 static unsigned sForm(MachineInstr &Instr) {
1509 switch (Instr.getOpcode()) {
1510 default:
1511 return AArch64::INSTRUCTION_LIST_END;
1512
1513 case AArch64::ADDSWrr:
1514 case AArch64::ADDSWri:
1515 case AArch64::ADDSXrr:
1516 case AArch64::ADDSXri:
1517 case AArch64::SUBSWrr:
1518 case AArch64::SUBSWri:
1519 case AArch64::SUBSXrr:
1520 case AArch64::SUBSXri:
1521 return Instr.getOpcode();
1522
1523 case AArch64::ADDWrr:
1524 return AArch64::ADDSWrr;
1525 case AArch64::ADDWri:
1526 return AArch64::ADDSWri;
1527 case AArch64::ADDXrr:
1528 return AArch64::ADDSXrr;
1529 case AArch64::ADDXri:
1530 return AArch64::ADDSXri;
1531 case AArch64::ADCWr:
1532 return AArch64::ADCSWr;
1533 case AArch64::ADCXr:
1534 return AArch64::ADCSXr;
1535 case AArch64::SUBWrr:
1536 return AArch64::SUBSWrr;
1537 case AArch64::SUBWri:
1538 return AArch64::SUBSWri;
1539 case AArch64::SUBXrr:
1540 return AArch64::SUBSXrr;
1541 case AArch64::SUBXri:
1542 return AArch64::SUBSXri;
1543 case AArch64::SBCWr:
1544 return AArch64::SBCSWr;
1545 case AArch64::SBCXr:
1546 return AArch64::SBCSXr;
1547 case AArch64::ANDWri:
1548 return AArch64::ANDSWri;
1549 case AArch64::ANDXri:
1550 return AArch64::ANDSXri;
1551 }
1552 }
1553
1554 /// Check if AArch64::NZCV should be alive in successors of MBB.
areCFlagsAliveInSuccessors(const MachineBasicBlock * MBB)1555 static bool areCFlagsAliveInSuccessors(const MachineBasicBlock *MBB) {
1556 for (auto *BB : MBB->successors())
1557 if (BB->isLiveIn(AArch64::NZCV))
1558 return true;
1559 return false;
1560 }
1561
1562 /// \returns The condition code operand index for \p Instr if it is a branch
1563 /// or select and -1 otherwise.
1564 static int
findCondCodeUseOperandIdxForBranchOrSelect(const MachineInstr & Instr)1565 findCondCodeUseOperandIdxForBranchOrSelect(const MachineInstr &Instr) {
1566 switch (Instr.getOpcode()) {
1567 default:
1568 return -1;
1569
1570 case AArch64::Bcc: {
1571 int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1572 assert(Idx >= 2);
1573 return Idx - 2;
1574 }
1575
1576 case AArch64::CSINVWr:
1577 case AArch64::CSINVXr:
1578 case AArch64::CSINCWr:
1579 case AArch64::CSINCXr:
1580 case AArch64::CSELWr:
1581 case AArch64::CSELXr:
1582 case AArch64::CSNEGWr:
1583 case AArch64::CSNEGXr:
1584 case AArch64::FCSELSrrr:
1585 case AArch64::FCSELDrrr: {
1586 int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1587 assert(Idx >= 1);
1588 return Idx - 1;
1589 }
1590 }
1591 }
1592
1593 /// Find a condition code used by the instruction.
1594 /// Returns AArch64CC::Invalid if either the instruction does not use condition
1595 /// codes or we don't optimize CmpInstr in the presence of such instructions.
findCondCodeUsedByInstr(const MachineInstr & Instr)1596 static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) {
1597 int CCIdx = findCondCodeUseOperandIdxForBranchOrSelect(Instr);
1598 return CCIdx >= 0 ? static_cast<AArch64CC::CondCode>(
1599 Instr.getOperand(CCIdx).getImm())
1600 : AArch64CC::Invalid;
1601 }
1602
getUsedNZCV(AArch64CC::CondCode CC)1603 static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) {
1604 assert(CC != AArch64CC::Invalid);
1605 UsedNZCV UsedFlags;
1606 switch (CC) {
1607 default:
1608 break;
1609
1610 case AArch64CC::EQ: // Z set
1611 case AArch64CC::NE: // Z clear
1612 UsedFlags.Z = true;
1613 break;
1614
1615 case AArch64CC::HI: // Z clear and C set
1616 case AArch64CC::LS: // Z set or C clear
1617 UsedFlags.Z = true;
1618 [[fallthrough]];
1619 case AArch64CC::HS: // C set
1620 case AArch64CC::LO: // C clear
1621 UsedFlags.C = true;
1622 break;
1623
1624 case AArch64CC::MI: // N set
1625 case AArch64CC::PL: // N clear
1626 UsedFlags.N = true;
1627 break;
1628
1629 case AArch64CC::VS: // V set
1630 case AArch64CC::VC: // V clear
1631 UsedFlags.V = true;
1632 break;
1633
1634 case AArch64CC::GT: // Z clear, N and V the same
1635 case AArch64CC::LE: // Z set, N and V differ
1636 UsedFlags.Z = true;
1637 [[fallthrough]];
1638 case AArch64CC::GE: // N and V the same
1639 case AArch64CC::LT: // N and V differ
1640 UsedFlags.N = true;
1641 UsedFlags.V = true;
1642 break;
1643 }
1644 return UsedFlags;
1645 }
1646
1647 /// \returns Conditions flags used after \p CmpInstr in its MachineBB if NZCV
1648 /// flags are not alive in successors of the same \p CmpInstr and \p MI parent.
1649 /// \returns std::nullopt otherwise.
1650 ///
1651 /// Collect instructions using that flags in \p CCUseInstrs if provided.
1652 std::optional<UsedNZCV>
examineCFlagsUse(MachineInstr & MI,MachineInstr & CmpInstr,const TargetRegisterInfo & TRI,SmallVectorImpl<MachineInstr * > * CCUseInstrs)1653 llvm::examineCFlagsUse(MachineInstr &MI, MachineInstr &CmpInstr,
1654 const TargetRegisterInfo &TRI,
1655 SmallVectorImpl<MachineInstr *> *CCUseInstrs) {
1656 MachineBasicBlock *CmpParent = CmpInstr.getParent();
1657 if (MI.getParent() != CmpParent)
1658 return std::nullopt;
1659
1660 if (areCFlagsAliveInSuccessors(CmpParent))
1661 return std::nullopt;
1662
1663 UsedNZCV NZCVUsedAfterCmp;
1664 for (MachineInstr &Instr : instructionsWithoutDebug(
1665 std::next(CmpInstr.getIterator()), CmpParent->instr_end())) {
1666 if (Instr.readsRegister(AArch64::NZCV, &TRI)) {
1667 AArch64CC::CondCode CC = findCondCodeUsedByInstr(Instr);
1668 if (CC == AArch64CC::Invalid) // Unsupported conditional instruction
1669 return std::nullopt;
1670 NZCVUsedAfterCmp |= getUsedNZCV(CC);
1671 if (CCUseInstrs)
1672 CCUseInstrs->push_back(&Instr);
1673 }
1674 if (Instr.modifiesRegister(AArch64::NZCV, &TRI))
1675 break;
1676 }
1677 return NZCVUsedAfterCmp;
1678 }
1679
isADDSRegImm(unsigned Opcode)1680 static bool isADDSRegImm(unsigned Opcode) {
1681 return Opcode == AArch64::ADDSWri || Opcode == AArch64::ADDSXri;
1682 }
1683
isSUBSRegImm(unsigned Opcode)1684 static bool isSUBSRegImm(unsigned Opcode) {
1685 return Opcode == AArch64::SUBSWri || Opcode == AArch64::SUBSXri;
1686 }
1687
1688 /// Check if CmpInstr can be substituted by MI.
1689 ///
1690 /// CmpInstr can be substituted:
1691 /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1692 /// - and, MI and CmpInstr are from the same MachineBB
1693 /// - and, condition flags are not alive in successors of the CmpInstr parent
1694 /// - and, if MI opcode is the S form there must be no defs of flags between
1695 /// MI and CmpInstr
1696 /// or if MI opcode is not the S form there must be neither defs of flags
1697 /// nor uses of flags between MI and CmpInstr.
1698 /// - and C/V flags are not used after CmpInstr
canInstrSubstituteCmpInstr(MachineInstr & MI,MachineInstr & CmpInstr,const TargetRegisterInfo & TRI)1699 static bool canInstrSubstituteCmpInstr(MachineInstr &MI, MachineInstr &CmpInstr,
1700 const TargetRegisterInfo &TRI) {
1701 assert(sForm(MI) != AArch64::INSTRUCTION_LIST_END);
1702
1703 const unsigned CmpOpcode = CmpInstr.getOpcode();
1704 if (!isADDSRegImm(CmpOpcode) && !isSUBSRegImm(CmpOpcode))
1705 return false;
1706
1707 std::optional<UsedNZCV> NZVCUsed = examineCFlagsUse(MI, CmpInstr, TRI);
1708 if (!NZVCUsed || NZVCUsed->C || NZVCUsed->V)
1709 return false;
1710
1711 AccessKind AccessToCheck = AK_Write;
1712 if (sForm(MI) != MI.getOpcode())
1713 AccessToCheck = AK_All;
1714 return !areCFlagsAccessedBetweenInstrs(&MI, &CmpInstr, &TRI, AccessToCheck);
1715 }
1716
1717 /// Substitute an instruction comparing to zero with another instruction
1718 /// which produces needed condition flags.
1719 ///
1720 /// Return true on success.
substituteCmpToZero(MachineInstr & CmpInstr,unsigned SrcReg,const MachineRegisterInfo & MRI) const1721 bool AArch64InstrInfo::substituteCmpToZero(
1722 MachineInstr &CmpInstr, unsigned SrcReg,
1723 const MachineRegisterInfo &MRI) const {
1724 // Get the unique definition of SrcReg.
1725 MachineInstr *MI = MRI.getUniqueVRegDef(SrcReg);
1726 if (!MI)
1727 return false;
1728
1729 const TargetRegisterInfo &TRI = getRegisterInfo();
1730
1731 unsigned NewOpc = sForm(*MI);
1732 if (NewOpc == AArch64::INSTRUCTION_LIST_END)
1733 return false;
1734
1735 if (!canInstrSubstituteCmpInstr(*MI, CmpInstr, TRI))
1736 return false;
1737
1738 // Update the instruction to set NZCV.
1739 MI->setDesc(get(NewOpc));
1740 CmpInstr.eraseFromParent();
1741 bool succeeded = UpdateOperandRegClass(*MI);
1742 (void)succeeded;
1743 assert(succeeded && "Some operands reg class are incompatible!");
1744 MI->addRegisterDefined(AArch64::NZCV, &TRI);
1745 return true;
1746 }
1747
1748 /// \returns True if \p CmpInstr can be removed.
1749 ///
1750 /// \p IsInvertCC is true if, after removing \p CmpInstr, condition
1751 /// codes used in \p CCUseInstrs must be inverted.
canCmpInstrBeRemoved(MachineInstr & MI,MachineInstr & CmpInstr,int CmpValue,const TargetRegisterInfo & TRI,SmallVectorImpl<MachineInstr * > & CCUseInstrs,bool & IsInvertCC)1752 static bool canCmpInstrBeRemoved(MachineInstr &MI, MachineInstr &CmpInstr,
1753 int CmpValue, const TargetRegisterInfo &TRI,
1754 SmallVectorImpl<MachineInstr *> &CCUseInstrs,
1755 bool &IsInvertCC) {
1756 assert((CmpValue == 0 || CmpValue == 1) &&
1757 "Only comparisons to 0 or 1 considered for removal!");
1758
1759 // MI is 'CSINCWr %vreg, wzr, wzr, <cc>' or 'CSINCXr %vreg, xzr, xzr, <cc>'
1760 unsigned MIOpc = MI.getOpcode();
1761 if (MIOpc == AArch64::CSINCWr) {
1762 if (MI.getOperand(1).getReg() != AArch64::WZR ||
1763 MI.getOperand(2).getReg() != AArch64::WZR)
1764 return false;
1765 } else if (MIOpc == AArch64::CSINCXr) {
1766 if (MI.getOperand(1).getReg() != AArch64::XZR ||
1767 MI.getOperand(2).getReg() != AArch64::XZR)
1768 return false;
1769 } else {
1770 return false;
1771 }
1772 AArch64CC::CondCode MICC = findCondCodeUsedByInstr(MI);
1773 if (MICC == AArch64CC::Invalid)
1774 return false;
1775
1776 // NZCV needs to be defined
1777 if (MI.findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
1778 return false;
1779
1780 // CmpInstr is 'ADDS %vreg, 0' or 'SUBS %vreg, 0' or 'SUBS %vreg, 1'
1781 const unsigned CmpOpcode = CmpInstr.getOpcode();
1782 bool IsSubsRegImm = isSUBSRegImm(CmpOpcode);
1783 if (CmpValue && !IsSubsRegImm)
1784 return false;
1785 if (!CmpValue && !IsSubsRegImm && !isADDSRegImm(CmpOpcode))
1786 return false;
1787
1788 // MI conditions allowed: eq, ne, mi, pl
1789 UsedNZCV MIUsedNZCV = getUsedNZCV(MICC);
1790 if (MIUsedNZCV.C || MIUsedNZCV.V)
1791 return false;
1792
1793 std::optional<UsedNZCV> NZCVUsedAfterCmp =
1794 examineCFlagsUse(MI, CmpInstr, TRI, &CCUseInstrs);
1795 // Condition flags are not used in CmpInstr basic block successors and only
1796 // Z or N flags allowed to be used after CmpInstr within its basic block
1797 if (!NZCVUsedAfterCmp || NZCVUsedAfterCmp->C || NZCVUsedAfterCmp->V)
1798 return false;
1799 // Z or N flag used after CmpInstr must correspond to the flag used in MI
1800 if ((MIUsedNZCV.Z && NZCVUsedAfterCmp->N) ||
1801 (MIUsedNZCV.N && NZCVUsedAfterCmp->Z))
1802 return false;
1803 // If CmpInstr is comparison to zero MI conditions are limited to eq, ne
1804 if (MIUsedNZCV.N && !CmpValue)
1805 return false;
1806
1807 // There must be no defs of flags between MI and CmpInstr
1808 if (areCFlagsAccessedBetweenInstrs(&MI, &CmpInstr, &TRI, AK_Write))
1809 return false;
1810
1811 // Condition code is inverted in the following cases:
1812 // 1. MI condition is ne; CmpInstr is 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1813 // 2. MI condition is eq, pl; CmpInstr is 'SUBS %vreg, 1'
1814 IsInvertCC = (CmpValue && (MICC == AArch64CC::EQ || MICC == AArch64CC::PL)) ||
1815 (!CmpValue && MICC == AArch64CC::NE);
1816 return true;
1817 }
1818
1819 /// Remove comparison in csinc-cmp sequence
1820 ///
1821 /// Examples:
1822 /// 1. \code
1823 /// csinc w9, wzr, wzr, ne
1824 /// cmp w9, #0
1825 /// b.eq
1826 /// \endcode
1827 /// to
1828 /// \code
1829 /// csinc w9, wzr, wzr, ne
1830 /// b.ne
1831 /// \endcode
1832 ///
1833 /// 2. \code
1834 /// csinc x2, xzr, xzr, mi
1835 /// cmp x2, #1
1836 /// b.pl
1837 /// \endcode
1838 /// to
1839 /// \code
1840 /// csinc x2, xzr, xzr, mi
1841 /// b.pl
1842 /// \endcode
1843 ///
1844 /// \param CmpInstr comparison instruction
1845 /// \return True when comparison removed
removeCmpToZeroOrOne(MachineInstr & CmpInstr,unsigned SrcReg,int CmpValue,const MachineRegisterInfo & MRI) const1846 bool AArch64InstrInfo::removeCmpToZeroOrOne(
1847 MachineInstr &CmpInstr, unsigned SrcReg, int CmpValue,
1848 const MachineRegisterInfo &MRI) const {
1849 MachineInstr *MI = MRI.getUniqueVRegDef(SrcReg);
1850 if (!MI)
1851 return false;
1852 const TargetRegisterInfo &TRI = getRegisterInfo();
1853 SmallVector<MachineInstr *, 4> CCUseInstrs;
1854 bool IsInvertCC = false;
1855 if (!canCmpInstrBeRemoved(*MI, CmpInstr, CmpValue, TRI, CCUseInstrs,
1856 IsInvertCC))
1857 return false;
1858 // Make transformation
1859 CmpInstr.eraseFromParent();
1860 if (IsInvertCC) {
1861 // Invert condition codes in CmpInstr CC users
1862 for (MachineInstr *CCUseInstr : CCUseInstrs) {
1863 int Idx = findCondCodeUseOperandIdxForBranchOrSelect(*CCUseInstr);
1864 assert(Idx >= 0 && "Unexpected instruction using CC.");
1865 MachineOperand &CCOperand = CCUseInstr->getOperand(Idx);
1866 AArch64CC::CondCode CCUse = AArch64CC::getInvertedCondCode(
1867 static_cast<AArch64CC::CondCode>(CCOperand.getImm()));
1868 CCOperand.setImm(CCUse);
1869 }
1870 }
1871 return true;
1872 }
1873
expandPostRAPseudo(MachineInstr & MI) const1874 bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1875 if (MI.getOpcode() != TargetOpcode::LOAD_STACK_GUARD &&
1876 MI.getOpcode() != AArch64::CATCHRET)
1877 return false;
1878
1879 MachineBasicBlock &MBB = *MI.getParent();
1880 auto &Subtarget = MBB.getParent()->getSubtarget<AArch64Subtarget>();
1881 auto TRI = Subtarget.getRegisterInfo();
1882 DebugLoc DL = MI.getDebugLoc();
1883
1884 if (MI.getOpcode() == AArch64::CATCHRET) {
1885 // Skip to the first instruction before the epilog.
1886 const TargetInstrInfo *TII =
1887 MBB.getParent()->getSubtarget().getInstrInfo();
1888 MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
1889 auto MBBI = MachineBasicBlock::iterator(MI);
1890 MachineBasicBlock::iterator FirstEpilogSEH = std::prev(MBBI);
1891 while (FirstEpilogSEH->getFlag(MachineInstr::FrameDestroy) &&
1892 FirstEpilogSEH != MBB.begin())
1893 FirstEpilogSEH = std::prev(FirstEpilogSEH);
1894 if (FirstEpilogSEH != MBB.begin())
1895 FirstEpilogSEH = std::next(FirstEpilogSEH);
1896 BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADRP))
1897 .addReg(AArch64::X0, RegState::Define)
1898 .addMBB(TargetMBB);
1899 BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADDXri))
1900 .addReg(AArch64::X0, RegState::Define)
1901 .addReg(AArch64::X0)
1902 .addMBB(TargetMBB)
1903 .addImm(0);
1904 return true;
1905 }
1906
1907 Register Reg = MI.getOperand(0).getReg();
1908 Module &M = *MBB.getParent()->getFunction().getParent();
1909 if (M.getStackProtectorGuard() == "sysreg") {
1910 const AArch64SysReg::SysReg *SrcReg =
1911 AArch64SysReg::lookupSysRegByName(M.getStackProtectorGuardReg());
1912 if (!SrcReg)
1913 report_fatal_error("Unknown SysReg for Stack Protector Guard Register");
1914
1915 // mrs xN, sysreg
1916 BuildMI(MBB, MI, DL, get(AArch64::MRS))
1917 .addDef(Reg, RegState::Renamable)
1918 .addImm(SrcReg->Encoding);
1919 int Offset = M.getStackProtectorGuardOffset();
1920 if (Offset >= 0 && Offset <= 32760 && Offset % 8 == 0) {
1921 // ldr xN, [xN, #offset]
1922 BuildMI(MBB, MI, DL, get(AArch64::LDRXui))
1923 .addDef(Reg)
1924 .addUse(Reg, RegState::Kill)
1925 .addImm(Offset / 8);
1926 } else if (Offset >= -256 && Offset <= 255) {
1927 // ldur xN, [xN, #offset]
1928 BuildMI(MBB, MI, DL, get(AArch64::LDURXi))
1929 .addDef(Reg)
1930 .addUse(Reg, RegState::Kill)
1931 .addImm(Offset);
1932 } else if (Offset >= -4095 && Offset <= 4095) {
1933 if (Offset > 0) {
1934 // add xN, xN, #offset
1935 BuildMI(MBB, MI, DL, get(AArch64::ADDXri))
1936 .addDef(Reg)
1937 .addUse(Reg, RegState::Kill)
1938 .addImm(Offset)
1939 .addImm(0);
1940 } else {
1941 // sub xN, xN, #offset
1942 BuildMI(MBB, MI, DL, get(AArch64::SUBXri))
1943 .addDef(Reg)
1944 .addUse(Reg, RegState::Kill)
1945 .addImm(-Offset)
1946 .addImm(0);
1947 }
1948 // ldr xN, [xN]
1949 BuildMI(MBB, MI, DL, get(AArch64::LDRXui))
1950 .addDef(Reg)
1951 .addUse(Reg, RegState::Kill)
1952 .addImm(0);
1953 } else {
1954 // Cases that are larger than +/- 4095 and not a multiple of 8, or larger
1955 // than 23760.
1956 // It might be nice to use AArch64::MOVi32imm here, which would get
1957 // expanded in PreSched2 after PostRA, but our lone scratch Reg already
1958 // contains the MRS result. findScratchNonCalleeSaveRegister() in
1959 // AArch64FrameLowering might help us find such a scratch register
1960 // though. If we failed to find a scratch register, we could emit a
1961 // stream of add instructions to build up the immediate. Or, we could try
1962 // to insert a AArch64::MOVi32imm before register allocation so that we
1963 // didn't need to scavenge for a scratch register.
1964 report_fatal_error("Unable to encode Stack Protector Guard Offset");
1965 }
1966 MBB.erase(MI);
1967 return true;
1968 }
1969
1970 const GlobalValue *GV =
1971 cast<GlobalValue>((*MI.memoperands_begin())->getValue());
1972 const TargetMachine &TM = MBB.getParent()->getTarget();
1973 unsigned OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
1974 const unsigned char MO_NC = AArch64II::MO_NC;
1975
1976 if ((OpFlags & AArch64II::MO_GOT) != 0) {
1977 BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
1978 .addGlobalAddress(GV, 0, OpFlags);
1979 if (Subtarget.isTargetILP32()) {
1980 unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
1981 BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
1982 .addDef(Reg32, RegState::Dead)
1983 .addUse(Reg, RegState::Kill)
1984 .addImm(0)
1985 .addMemOperand(*MI.memoperands_begin())
1986 .addDef(Reg, RegState::Implicit);
1987 } else {
1988 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
1989 .addReg(Reg, RegState::Kill)
1990 .addImm(0)
1991 .addMemOperand(*MI.memoperands_begin());
1992 }
1993 } else if (TM.getCodeModel() == CodeModel::Large) {
1994 assert(!Subtarget.isTargetILP32() && "how can large exist in ILP32?");
1995 BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
1996 .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC)
1997 .addImm(0);
1998 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1999 .addReg(Reg, RegState::Kill)
2000 .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC)
2001 .addImm(16);
2002 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
2003 .addReg(Reg, RegState::Kill)
2004 .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC)
2005 .addImm(32);
2006 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
2007 .addReg(Reg, RegState::Kill)
2008 .addGlobalAddress(GV, 0, AArch64II::MO_G3)
2009 .addImm(48);
2010 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
2011 .addReg(Reg, RegState::Kill)
2012 .addImm(0)
2013 .addMemOperand(*MI.memoperands_begin());
2014 } else if (TM.getCodeModel() == CodeModel::Tiny) {
2015 BuildMI(MBB, MI, DL, get(AArch64::ADR), Reg)
2016 .addGlobalAddress(GV, 0, OpFlags);
2017 } else {
2018 BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
2019 .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
2020 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
2021 if (Subtarget.isTargetILP32()) {
2022 unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
2023 BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
2024 .addDef(Reg32, RegState::Dead)
2025 .addUse(Reg, RegState::Kill)
2026 .addGlobalAddress(GV, 0, LoFlags)
2027 .addMemOperand(*MI.memoperands_begin())
2028 .addDef(Reg, RegState::Implicit);
2029 } else {
2030 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
2031 .addReg(Reg, RegState::Kill)
2032 .addGlobalAddress(GV, 0, LoFlags)
2033 .addMemOperand(*MI.memoperands_begin());
2034 }
2035 }
2036
2037 MBB.erase(MI);
2038
2039 return true;
2040 }
2041
2042 // Return true if this instruction simply sets its single destination register
2043 // to zero. This is equivalent to a register rename of the zero-register.
isGPRZero(const MachineInstr & MI)2044 bool AArch64InstrInfo::isGPRZero(const MachineInstr &MI) {
2045 switch (MI.getOpcode()) {
2046 default:
2047 break;
2048 case AArch64::MOVZWi:
2049 case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
2050 if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) {
2051 assert(MI.getDesc().getNumOperands() == 3 &&
2052 MI.getOperand(2).getImm() == 0 && "invalid MOVZi operands");
2053 return true;
2054 }
2055 break;
2056 case AArch64::ANDWri: // and Rd, Rzr, #imm
2057 return MI.getOperand(1).getReg() == AArch64::WZR;
2058 case AArch64::ANDXri:
2059 return MI.getOperand(1).getReg() == AArch64::XZR;
2060 case TargetOpcode::COPY:
2061 return MI.getOperand(1).getReg() == AArch64::WZR;
2062 }
2063 return false;
2064 }
2065
2066 // Return true if this instruction simply renames a general register without
2067 // modifying bits.
isGPRCopy(const MachineInstr & MI)2068 bool AArch64InstrInfo::isGPRCopy(const MachineInstr &MI) {
2069 switch (MI.getOpcode()) {
2070 default:
2071 break;
2072 case TargetOpcode::COPY: {
2073 // GPR32 copies will by lowered to ORRXrs
2074 Register DstReg = MI.getOperand(0).getReg();
2075 return (AArch64::GPR32RegClass.contains(DstReg) ||
2076 AArch64::GPR64RegClass.contains(DstReg));
2077 }
2078 case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
2079 if (MI.getOperand(1).getReg() == AArch64::XZR) {
2080 assert(MI.getDesc().getNumOperands() == 4 &&
2081 MI.getOperand(3).getImm() == 0 && "invalid ORRrs operands");
2082 return true;
2083 }
2084 break;
2085 case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
2086 if (MI.getOperand(2).getImm() == 0) {
2087 assert(MI.getDesc().getNumOperands() == 4 &&
2088 MI.getOperand(3).getImm() == 0 && "invalid ADDXri operands");
2089 return true;
2090 }
2091 break;
2092 }
2093 return false;
2094 }
2095
2096 // Return true if this instruction simply renames a general register without
2097 // modifying bits.
isFPRCopy(const MachineInstr & MI)2098 bool AArch64InstrInfo::isFPRCopy(const MachineInstr &MI) {
2099 switch (MI.getOpcode()) {
2100 default:
2101 break;
2102 case TargetOpcode::COPY: {
2103 Register DstReg = MI.getOperand(0).getReg();
2104 return AArch64::FPR128RegClass.contains(DstReg);
2105 }
2106 case AArch64::ORRv16i8:
2107 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
2108 assert(MI.getDesc().getNumOperands() == 3 && MI.getOperand(0).isReg() &&
2109 "invalid ORRv16i8 operands");
2110 return true;
2111 }
2112 break;
2113 }
2114 return false;
2115 }
2116
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const2117 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
2118 int &FrameIndex) const {
2119 switch (MI.getOpcode()) {
2120 default:
2121 break;
2122 case AArch64::LDRWui:
2123 case AArch64::LDRXui:
2124 case AArch64::LDRBui:
2125 case AArch64::LDRHui:
2126 case AArch64::LDRSui:
2127 case AArch64::LDRDui:
2128 case AArch64::LDRQui:
2129 if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
2130 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
2131 FrameIndex = MI.getOperand(1).getIndex();
2132 return MI.getOperand(0).getReg();
2133 }
2134 break;
2135 }
2136
2137 return 0;
2138 }
2139
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const2140 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
2141 int &FrameIndex) const {
2142 switch (MI.getOpcode()) {
2143 default:
2144 break;
2145 case AArch64::STRWui:
2146 case AArch64::STRXui:
2147 case AArch64::STRBui:
2148 case AArch64::STRHui:
2149 case AArch64::STRSui:
2150 case AArch64::STRDui:
2151 case AArch64::STRQui:
2152 case AArch64::LDR_PXI:
2153 case AArch64::STR_PXI:
2154 if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
2155 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
2156 FrameIndex = MI.getOperand(1).getIndex();
2157 return MI.getOperand(0).getReg();
2158 }
2159 break;
2160 }
2161 return 0;
2162 }
2163
2164 /// Check all MachineMemOperands for a hint to suppress pairing.
isLdStPairSuppressed(const MachineInstr & MI)2165 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr &MI) {
2166 return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
2167 return MMO->getFlags() & MOSuppressPair;
2168 });
2169 }
2170
2171 /// Set a flag on the first MachineMemOperand to suppress pairing.
suppressLdStPair(MachineInstr & MI)2172 void AArch64InstrInfo::suppressLdStPair(MachineInstr &MI) {
2173 if (MI.memoperands_empty())
2174 return;
2175 (*MI.memoperands_begin())->setFlags(MOSuppressPair);
2176 }
2177
2178 /// Check all MachineMemOperands for a hint that the load/store is strided.
isStridedAccess(const MachineInstr & MI)2179 bool AArch64InstrInfo::isStridedAccess(const MachineInstr &MI) {
2180 return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
2181 return MMO->getFlags() & MOStridedAccess;
2182 });
2183 }
2184
hasUnscaledLdStOffset(unsigned Opc)2185 bool AArch64InstrInfo::hasUnscaledLdStOffset(unsigned Opc) {
2186 switch (Opc) {
2187 default:
2188 return false;
2189 case AArch64::STURSi:
2190 case AArch64::STRSpre:
2191 case AArch64::STURDi:
2192 case AArch64::STRDpre:
2193 case AArch64::STURQi:
2194 case AArch64::STRQpre:
2195 case AArch64::STURBBi:
2196 case AArch64::STURHHi:
2197 case AArch64::STURWi:
2198 case AArch64::STRWpre:
2199 case AArch64::STURXi:
2200 case AArch64::STRXpre:
2201 case AArch64::LDURSi:
2202 case AArch64::LDRSpre:
2203 case AArch64::LDURDi:
2204 case AArch64::LDRDpre:
2205 case AArch64::LDURQi:
2206 case AArch64::LDRQpre:
2207 case AArch64::LDURWi:
2208 case AArch64::LDRWpre:
2209 case AArch64::LDURXi:
2210 case AArch64::LDRXpre:
2211 case AArch64::LDURSWi:
2212 case AArch64::LDURHHi:
2213 case AArch64::LDURBBi:
2214 case AArch64::LDURSBWi:
2215 case AArch64::LDURSHWi:
2216 return true;
2217 }
2218 }
2219
getUnscaledLdSt(unsigned Opc)2220 std::optional<unsigned> AArch64InstrInfo::getUnscaledLdSt(unsigned Opc) {
2221 switch (Opc) {
2222 default: return {};
2223 case AArch64::PRFMui: return AArch64::PRFUMi;
2224 case AArch64::LDRXui: return AArch64::LDURXi;
2225 case AArch64::LDRWui: return AArch64::LDURWi;
2226 case AArch64::LDRBui: return AArch64::LDURBi;
2227 case AArch64::LDRHui: return AArch64::LDURHi;
2228 case AArch64::LDRSui: return AArch64::LDURSi;
2229 case AArch64::LDRDui: return AArch64::LDURDi;
2230 case AArch64::LDRQui: return AArch64::LDURQi;
2231 case AArch64::LDRBBui: return AArch64::LDURBBi;
2232 case AArch64::LDRHHui: return AArch64::LDURHHi;
2233 case AArch64::LDRSBXui: return AArch64::LDURSBXi;
2234 case AArch64::LDRSBWui: return AArch64::LDURSBWi;
2235 case AArch64::LDRSHXui: return AArch64::LDURSHXi;
2236 case AArch64::LDRSHWui: return AArch64::LDURSHWi;
2237 case AArch64::LDRSWui: return AArch64::LDURSWi;
2238 case AArch64::STRXui: return AArch64::STURXi;
2239 case AArch64::STRWui: return AArch64::STURWi;
2240 case AArch64::STRBui: return AArch64::STURBi;
2241 case AArch64::STRHui: return AArch64::STURHi;
2242 case AArch64::STRSui: return AArch64::STURSi;
2243 case AArch64::STRDui: return AArch64::STURDi;
2244 case AArch64::STRQui: return AArch64::STURQi;
2245 case AArch64::STRBBui: return AArch64::STURBBi;
2246 case AArch64::STRHHui: return AArch64::STURHHi;
2247 }
2248 }
2249
getLoadStoreImmIdx(unsigned Opc)2250 unsigned AArch64InstrInfo::getLoadStoreImmIdx(unsigned Opc) {
2251 switch (Opc) {
2252 default:
2253 return 2;
2254 case AArch64::LDPXi:
2255 case AArch64::LDPDi:
2256 case AArch64::STPXi:
2257 case AArch64::STPDi:
2258 case AArch64::LDNPXi:
2259 case AArch64::LDNPDi:
2260 case AArch64::STNPXi:
2261 case AArch64::STNPDi:
2262 case AArch64::LDPQi:
2263 case AArch64::STPQi:
2264 case AArch64::LDNPQi:
2265 case AArch64::STNPQi:
2266 case AArch64::LDPWi:
2267 case AArch64::LDPSi:
2268 case AArch64::STPWi:
2269 case AArch64::STPSi:
2270 case AArch64::LDNPWi:
2271 case AArch64::LDNPSi:
2272 case AArch64::STNPWi:
2273 case AArch64::STNPSi:
2274 case AArch64::LDG:
2275 case AArch64::STGPi:
2276
2277 case AArch64::LD1B_IMM:
2278 case AArch64::LD1B_H_IMM:
2279 case AArch64::LD1B_S_IMM:
2280 case AArch64::LD1B_D_IMM:
2281 case AArch64::LD1SB_H_IMM:
2282 case AArch64::LD1SB_S_IMM:
2283 case AArch64::LD1SB_D_IMM:
2284 case AArch64::LD1H_IMM:
2285 case AArch64::LD1H_S_IMM:
2286 case AArch64::LD1H_D_IMM:
2287 case AArch64::LD1SH_S_IMM:
2288 case AArch64::LD1SH_D_IMM:
2289 case AArch64::LD1W_IMM:
2290 case AArch64::LD1W_D_IMM:
2291 case AArch64::LD1SW_D_IMM:
2292 case AArch64::LD1D_IMM:
2293
2294 case AArch64::LD2B_IMM:
2295 case AArch64::LD2H_IMM:
2296 case AArch64::LD2W_IMM:
2297 case AArch64::LD2D_IMM:
2298 case AArch64::LD3B_IMM:
2299 case AArch64::LD3H_IMM:
2300 case AArch64::LD3W_IMM:
2301 case AArch64::LD3D_IMM:
2302 case AArch64::LD4B_IMM:
2303 case AArch64::LD4H_IMM:
2304 case AArch64::LD4W_IMM:
2305 case AArch64::LD4D_IMM:
2306
2307 case AArch64::ST1B_IMM:
2308 case AArch64::ST1B_H_IMM:
2309 case AArch64::ST1B_S_IMM:
2310 case AArch64::ST1B_D_IMM:
2311 case AArch64::ST1H_IMM:
2312 case AArch64::ST1H_S_IMM:
2313 case AArch64::ST1H_D_IMM:
2314 case AArch64::ST1W_IMM:
2315 case AArch64::ST1W_D_IMM:
2316 case AArch64::ST1D_IMM:
2317
2318 case AArch64::ST2B_IMM:
2319 case AArch64::ST2H_IMM:
2320 case AArch64::ST2W_IMM:
2321 case AArch64::ST2D_IMM:
2322 case AArch64::ST3B_IMM:
2323 case AArch64::ST3H_IMM:
2324 case AArch64::ST3W_IMM:
2325 case AArch64::ST3D_IMM:
2326 case AArch64::ST4B_IMM:
2327 case AArch64::ST4H_IMM:
2328 case AArch64::ST4W_IMM:
2329 case AArch64::ST4D_IMM:
2330
2331 case AArch64::LD1RB_IMM:
2332 case AArch64::LD1RB_H_IMM:
2333 case AArch64::LD1RB_S_IMM:
2334 case AArch64::LD1RB_D_IMM:
2335 case AArch64::LD1RSB_H_IMM:
2336 case AArch64::LD1RSB_S_IMM:
2337 case AArch64::LD1RSB_D_IMM:
2338 case AArch64::LD1RH_IMM:
2339 case AArch64::LD1RH_S_IMM:
2340 case AArch64::LD1RH_D_IMM:
2341 case AArch64::LD1RSH_S_IMM:
2342 case AArch64::LD1RSH_D_IMM:
2343 case AArch64::LD1RW_IMM:
2344 case AArch64::LD1RW_D_IMM:
2345 case AArch64::LD1RSW_IMM:
2346 case AArch64::LD1RD_IMM:
2347
2348 case AArch64::LDNT1B_ZRI:
2349 case AArch64::LDNT1H_ZRI:
2350 case AArch64::LDNT1W_ZRI:
2351 case AArch64::LDNT1D_ZRI:
2352 case AArch64::STNT1B_ZRI:
2353 case AArch64::STNT1H_ZRI:
2354 case AArch64::STNT1W_ZRI:
2355 case AArch64::STNT1D_ZRI:
2356
2357 case AArch64::LDNF1B_IMM:
2358 case AArch64::LDNF1B_H_IMM:
2359 case AArch64::LDNF1B_S_IMM:
2360 case AArch64::LDNF1B_D_IMM:
2361 case AArch64::LDNF1SB_H_IMM:
2362 case AArch64::LDNF1SB_S_IMM:
2363 case AArch64::LDNF1SB_D_IMM:
2364 case AArch64::LDNF1H_IMM:
2365 case AArch64::LDNF1H_S_IMM:
2366 case AArch64::LDNF1H_D_IMM:
2367 case AArch64::LDNF1SH_S_IMM:
2368 case AArch64::LDNF1SH_D_IMM:
2369 case AArch64::LDNF1W_IMM:
2370 case AArch64::LDNF1W_D_IMM:
2371 case AArch64::LDNF1SW_D_IMM:
2372 case AArch64::LDNF1D_IMM:
2373 return 3;
2374 case AArch64::ADDG:
2375 case AArch64::STGOffset:
2376 case AArch64::LDR_PXI:
2377 case AArch64::STR_PXI:
2378 return 2;
2379 }
2380 }
2381
isPairableLdStInst(const MachineInstr & MI)2382 bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr &MI) {
2383 switch (MI.getOpcode()) {
2384 default:
2385 return false;
2386 // Scaled instructions.
2387 case AArch64::STRSui:
2388 case AArch64::STRDui:
2389 case AArch64::STRQui:
2390 case AArch64::STRXui:
2391 case AArch64::STRWui:
2392 case AArch64::LDRSui:
2393 case AArch64::LDRDui:
2394 case AArch64::LDRQui:
2395 case AArch64::LDRXui:
2396 case AArch64::LDRWui:
2397 case AArch64::LDRSWui:
2398 // Unscaled instructions.
2399 case AArch64::STURSi:
2400 case AArch64::STRSpre:
2401 case AArch64::STURDi:
2402 case AArch64::STRDpre:
2403 case AArch64::STURQi:
2404 case AArch64::STRQpre:
2405 case AArch64::STURWi:
2406 case AArch64::STRWpre:
2407 case AArch64::STURXi:
2408 case AArch64::STRXpre:
2409 case AArch64::LDURSi:
2410 case AArch64::LDRSpre:
2411 case AArch64::LDURDi:
2412 case AArch64::LDRDpre:
2413 case AArch64::LDURQi:
2414 case AArch64::LDRQpre:
2415 case AArch64::LDURWi:
2416 case AArch64::LDRWpre:
2417 case AArch64::LDURXi:
2418 case AArch64::LDRXpre:
2419 case AArch64::LDURSWi:
2420 return true;
2421 }
2422 }
2423
convertToFlagSettingOpc(unsigned Opc)2424 unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc) {
2425 switch (Opc) {
2426 default:
2427 llvm_unreachable("Opcode has no flag setting equivalent!");
2428 // 32-bit cases:
2429 case AArch64::ADDWri:
2430 return AArch64::ADDSWri;
2431 case AArch64::ADDWrr:
2432 return AArch64::ADDSWrr;
2433 case AArch64::ADDWrs:
2434 return AArch64::ADDSWrs;
2435 case AArch64::ADDWrx:
2436 return AArch64::ADDSWrx;
2437 case AArch64::ANDWri:
2438 return AArch64::ANDSWri;
2439 case AArch64::ANDWrr:
2440 return AArch64::ANDSWrr;
2441 case AArch64::ANDWrs:
2442 return AArch64::ANDSWrs;
2443 case AArch64::BICWrr:
2444 return AArch64::BICSWrr;
2445 case AArch64::BICWrs:
2446 return AArch64::BICSWrs;
2447 case AArch64::SUBWri:
2448 return AArch64::SUBSWri;
2449 case AArch64::SUBWrr:
2450 return AArch64::SUBSWrr;
2451 case AArch64::SUBWrs:
2452 return AArch64::SUBSWrs;
2453 case AArch64::SUBWrx:
2454 return AArch64::SUBSWrx;
2455 // 64-bit cases:
2456 case AArch64::ADDXri:
2457 return AArch64::ADDSXri;
2458 case AArch64::ADDXrr:
2459 return AArch64::ADDSXrr;
2460 case AArch64::ADDXrs:
2461 return AArch64::ADDSXrs;
2462 case AArch64::ADDXrx:
2463 return AArch64::ADDSXrx;
2464 case AArch64::ANDXri:
2465 return AArch64::ANDSXri;
2466 case AArch64::ANDXrr:
2467 return AArch64::ANDSXrr;
2468 case AArch64::ANDXrs:
2469 return AArch64::ANDSXrs;
2470 case AArch64::BICXrr:
2471 return AArch64::BICSXrr;
2472 case AArch64::BICXrs:
2473 return AArch64::BICSXrs;
2474 case AArch64::SUBXri:
2475 return AArch64::SUBSXri;
2476 case AArch64::SUBXrr:
2477 return AArch64::SUBSXrr;
2478 case AArch64::SUBXrs:
2479 return AArch64::SUBSXrs;
2480 case AArch64::SUBXrx:
2481 return AArch64::SUBSXrx;
2482 // SVE instructions:
2483 case AArch64::AND_PPzPP:
2484 return AArch64::ANDS_PPzPP;
2485 case AArch64::BIC_PPzPP:
2486 return AArch64::BICS_PPzPP;
2487 case AArch64::EOR_PPzPP:
2488 return AArch64::EORS_PPzPP;
2489 case AArch64::NAND_PPzPP:
2490 return AArch64::NANDS_PPzPP;
2491 case AArch64::NOR_PPzPP:
2492 return AArch64::NORS_PPzPP;
2493 case AArch64::ORN_PPzPP:
2494 return AArch64::ORNS_PPzPP;
2495 case AArch64::ORR_PPzPP:
2496 return AArch64::ORRS_PPzPP;
2497 case AArch64::BRKA_PPzP:
2498 return AArch64::BRKAS_PPzP;
2499 case AArch64::BRKPA_PPzPP:
2500 return AArch64::BRKPAS_PPzPP;
2501 case AArch64::BRKB_PPzP:
2502 return AArch64::BRKBS_PPzP;
2503 case AArch64::BRKPB_PPzPP:
2504 return AArch64::BRKPBS_PPzPP;
2505 case AArch64::BRKN_PPzP:
2506 return AArch64::BRKNS_PPzP;
2507 case AArch64::RDFFR_PPz:
2508 return AArch64::RDFFRS_PPz;
2509 case AArch64::PTRUE_B:
2510 return AArch64::PTRUES_B;
2511 }
2512 }
2513
2514 // Is this a candidate for ld/st merging or pairing? For example, we don't
2515 // touch volatiles or load/stores that have a hint to avoid pair formation.
isCandidateToMergeOrPair(const MachineInstr & MI) const2516 bool AArch64InstrInfo::isCandidateToMergeOrPair(const MachineInstr &MI) const {
2517
2518 bool IsPreLdSt = isPreLdSt(MI);
2519
2520 // If this is a volatile load/store, don't mess with it.
2521 if (MI.hasOrderedMemoryRef())
2522 return false;
2523
2524 // Make sure this is a reg/fi+imm (as opposed to an address reloc).
2525 // For Pre-inc LD/ST, the operand is shifted by one.
2526 assert((MI.getOperand(IsPreLdSt ? 2 : 1).isReg() ||
2527 MI.getOperand(IsPreLdSt ? 2 : 1).isFI()) &&
2528 "Expected a reg or frame index operand.");
2529
2530 // For Pre-indexed addressing quadword instructions, the third operand is the
2531 // immediate value.
2532 bool IsImmPreLdSt = IsPreLdSt && MI.getOperand(3).isImm();
2533
2534 if (!MI.getOperand(2).isImm() && !IsImmPreLdSt)
2535 return false;
2536
2537 // Can't merge/pair if the instruction modifies the base register.
2538 // e.g., ldr x0, [x0]
2539 // This case will never occur with an FI base.
2540 // However, if the instruction is an LDR/STR<S,D,Q,W,X>pre, it can be merged.
2541 // For example:
2542 // ldr q0, [x11, #32]!
2543 // ldr q1, [x11, #16]
2544 // to
2545 // ldp q0, q1, [x11, #32]!
2546 if (MI.getOperand(1).isReg() && !IsPreLdSt) {
2547 Register BaseReg = MI.getOperand(1).getReg();
2548 const TargetRegisterInfo *TRI = &getRegisterInfo();
2549 if (MI.modifiesRegister(BaseReg, TRI))
2550 return false;
2551 }
2552
2553 // Check if this load/store has a hint to avoid pair formation.
2554 // MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
2555 if (isLdStPairSuppressed(MI))
2556 return false;
2557
2558 // Do not pair any callee-save store/reload instructions in the
2559 // prologue/epilogue if the CFI information encoded the operations as separate
2560 // instructions, as that will cause the size of the actual prologue to mismatch
2561 // with the prologue size recorded in the Windows CFI.
2562 const MCAsmInfo *MAI = MI.getMF()->getTarget().getMCAsmInfo();
2563 bool NeedsWinCFI = MAI->usesWindowsCFI() &&
2564 MI.getMF()->getFunction().needsUnwindTableEntry();
2565 if (NeedsWinCFI && (MI.getFlag(MachineInstr::FrameSetup) ||
2566 MI.getFlag(MachineInstr::FrameDestroy)))
2567 return false;
2568
2569 // On some CPUs quad load/store pairs are slower than two single load/stores.
2570 if (Subtarget.isPaired128Slow()) {
2571 switch (MI.getOpcode()) {
2572 default:
2573 break;
2574 case AArch64::LDURQi:
2575 case AArch64::STURQi:
2576 case AArch64::LDRQui:
2577 case AArch64::STRQui:
2578 return false;
2579 }
2580 }
2581
2582 return true;
2583 }
2584
getMemOperandsWithOffsetWidth(const MachineInstr & LdSt,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,unsigned & Width,const TargetRegisterInfo * TRI) const2585 bool AArch64InstrInfo::getMemOperandsWithOffsetWidth(
2586 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2587 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2588 const TargetRegisterInfo *TRI) const {
2589 if (!LdSt.mayLoadOrStore())
2590 return false;
2591
2592 const MachineOperand *BaseOp;
2593 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, OffsetIsScalable,
2594 Width, TRI))
2595 return false;
2596 BaseOps.push_back(BaseOp);
2597 return true;
2598 }
2599
2600 std::optional<ExtAddrMode>
getAddrModeFromMemoryOp(const MachineInstr & MemI,const TargetRegisterInfo * TRI) const2601 AArch64InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
2602 const TargetRegisterInfo *TRI) const {
2603 const MachineOperand *Base; // Filled with the base operand of MI.
2604 int64_t Offset; // Filled with the offset of MI.
2605 bool OffsetIsScalable;
2606 if (!getMemOperandWithOffset(MemI, Base, Offset, OffsetIsScalable, TRI))
2607 return std::nullopt;
2608
2609 if (!Base->isReg())
2610 return std::nullopt;
2611 ExtAddrMode AM;
2612 AM.BaseReg = Base->getReg();
2613 AM.Displacement = Offset;
2614 AM.ScaledReg = 0;
2615 AM.Scale = 0;
2616 return AM;
2617 }
2618
getMemOperandWithOffsetWidth(const MachineInstr & LdSt,const MachineOperand * & BaseOp,int64_t & Offset,bool & OffsetIsScalable,unsigned & Width,const TargetRegisterInfo * TRI) const2619 bool AArch64InstrInfo::getMemOperandWithOffsetWidth(
2620 const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
2621 bool &OffsetIsScalable, unsigned &Width,
2622 const TargetRegisterInfo *TRI) const {
2623 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2624 // Handle only loads/stores with base register followed by immediate offset.
2625 if (LdSt.getNumExplicitOperands() == 3) {
2626 // Non-paired instruction (e.g., ldr x1, [x0, #8]).
2627 if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
2628 !LdSt.getOperand(2).isImm())
2629 return false;
2630 } else if (LdSt.getNumExplicitOperands() == 4) {
2631 // Paired instruction (e.g., ldp x1, x2, [x0, #8]).
2632 if (!LdSt.getOperand(1).isReg() ||
2633 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()) ||
2634 !LdSt.getOperand(3).isImm())
2635 return false;
2636 } else
2637 return false;
2638
2639 // Get the scaling factor for the instruction and set the width for the
2640 // instruction.
2641 TypeSize Scale(0U, false);
2642 int64_t Dummy1, Dummy2;
2643
2644 // If this returns false, then it's an instruction we don't want to handle.
2645 if (!getMemOpInfo(LdSt.getOpcode(), Scale, Width, Dummy1, Dummy2))
2646 return false;
2647
2648 // Compute the offset. Offset is calculated as the immediate operand
2649 // multiplied by the scaling factor. Unscaled instructions have scaling factor
2650 // set to 1.
2651 if (LdSt.getNumExplicitOperands() == 3) {
2652 BaseOp = &LdSt.getOperand(1);
2653 Offset = LdSt.getOperand(2).getImm() * Scale.getKnownMinValue();
2654 } else {
2655 assert(LdSt.getNumExplicitOperands() == 4 && "invalid number of operands");
2656 BaseOp = &LdSt.getOperand(2);
2657 Offset = LdSt.getOperand(3).getImm() * Scale.getKnownMinValue();
2658 }
2659 OffsetIsScalable = Scale.isScalable();
2660
2661 if (!BaseOp->isReg() && !BaseOp->isFI())
2662 return false;
2663
2664 return true;
2665 }
2666
2667 MachineOperand &
getMemOpBaseRegImmOfsOffsetOperand(MachineInstr & LdSt) const2668 AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const {
2669 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2670 MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1);
2671 assert(OfsOp.isImm() && "Offset operand wasn't immediate.");
2672 return OfsOp;
2673 }
2674
getMemOpInfo(unsigned Opcode,TypeSize & Scale,unsigned & Width,int64_t & MinOffset,int64_t & MaxOffset)2675 bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, TypeSize &Scale,
2676 unsigned &Width, int64_t &MinOffset,
2677 int64_t &MaxOffset) {
2678 const unsigned SVEMaxBytesPerVector = AArch64::SVEMaxBitsPerVector / 8;
2679 switch (Opcode) {
2680 // Not a memory operation or something we want to handle.
2681 default:
2682 Scale = TypeSize::Fixed(0);
2683 Width = 0;
2684 MinOffset = MaxOffset = 0;
2685 return false;
2686 case AArch64::STRWpost:
2687 case AArch64::LDRWpost:
2688 Width = 32;
2689 Scale = TypeSize::Fixed(4);
2690 MinOffset = -256;
2691 MaxOffset = 255;
2692 break;
2693 case AArch64::LDURQi:
2694 case AArch64::STURQi:
2695 Width = 16;
2696 Scale = TypeSize::Fixed(1);
2697 MinOffset = -256;
2698 MaxOffset = 255;
2699 break;
2700 case AArch64::PRFUMi:
2701 case AArch64::LDURXi:
2702 case AArch64::LDURDi:
2703 case AArch64::STURXi:
2704 case AArch64::STURDi:
2705 Width = 8;
2706 Scale = TypeSize::Fixed(1);
2707 MinOffset = -256;
2708 MaxOffset = 255;
2709 break;
2710 case AArch64::LDURWi:
2711 case AArch64::LDURSi:
2712 case AArch64::LDURSWi:
2713 case AArch64::STURWi:
2714 case AArch64::STURSi:
2715 Width = 4;
2716 Scale = TypeSize::Fixed(1);
2717 MinOffset = -256;
2718 MaxOffset = 255;
2719 break;
2720 case AArch64::LDURHi:
2721 case AArch64::LDURHHi:
2722 case AArch64::LDURSHXi:
2723 case AArch64::LDURSHWi:
2724 case AArch64::STURHi:
2725 case AArch64::STURHHi:
2726 Width = 2;
2727 Scale = TypeSize::Fixed(1);
2728 MinOffset = -256;
2729 MaxOffset = 255;
2730 break;
2731 case AArch64::LDURBi:
2732 case AArch64::LDURBBi:
2733 case AArch64::LDURSBXi:
2734 case AArch64::LDURSBWi:
2735 case AArch64::STURBi:
2736 case AArch64::STURBBi:
2737 Width = 1;
2738 Scale = TypeSize::Fixed(1);
2739 MinOffset = -256;
2740 MaxOffset = 255;
2741 break;
2742 case AArch64::LDPQi:
2743 case AArch64::LDNPQi:
2744 case AArch64::STPQi:
2745 case AArch64::STNPQi:
2746 Scale = TypeSize::Fixed(16);
2747 Width = 32;
2748 MinOffset = -64;
2749 MaxOffset = 63;
2750 break;
2751 case AArch64::LDRQui:
2752 case AArch64::STRQui:
2753 Scale = TypeSize::Fixed(16);
2754 Width = 16;
2755 MinOffset = 0;
2756 MaxOffset = 4095;
2757 break;
2758 case AArch64::LDPXi:
2759 case AArch64::LDPDi:
2760 case AArch64::LDNPXi:
2761 case AArch64::LDNPDi:
2762 case AArch64::STPXi:
2763 case AArch64::STPDi:
2764 case AArch64::STNPXi:
2765 case AArch64::STNPDi:
2766 Scale = TypeSize::Fixed(8);
2767 Width = 16;
2768 MinOffset = -64;
2769 MaxOffset = 63;
2770 break;
2771 case AArch64::PRFMui:
2772 case AArch64::LDRXui:
2773 case AArch64::LDRDui:
2774 case AArch64::STRXui:
2775 case AArch64::STRDui:
2776 Scale = TypeSize::Fixed(8);
2777 Width = 8;
2778 MinOffset = 0;
2779 MaxOffset = 4095;
2780 break;
2781 case AArch64::StoreSwiftAsyncContext:
2782 // Store is an STRXui, but there might be an ADDXri in the expansion too.
2783 Scale = TypeSize::Fixed(1);
2784 Width = 8;
2785 MinOffset = 0;
2786 MaxOffset = 4095;
2787 break;
2788 case AArch64::LDPWi:
2789 case AArch64::LDPSi:
2790 case AArch64::LDNPWi:
2791 case AArch64::LDNPSi:
2792 case AArch64::STPWi:
2793 case AArch64::STPSi:
2794 case AArch64::STNPWi:
2795 case AArch64::STNPSi:
2796 Scale = TypeSize::Fixed(4);
2797 Width = 8;
2798 MinOffset = -64;
2799 MaxOffset = 63;
2800 break;
2801 case AArch64::LDRWui:
2802 case AArch64::LDRSui:
2803 case AArch64::LDRSWui:
2804 case AArch64::STRWui:
2805 case AArch64::STRSui:
2806 Scale = TypeSize::Fixed(4);
2807 Width = 4;
2808 MinOffset = 0;
2809 MaxOffset = 4095;
2810 break;
2811 case AArch64::LDRHui:
2812 case AArch64::LDRHHui:
2813 case AArch64::LDRSHWui:
2814 case AArch64::LDRSHXui:
2815 case AArch64::STRHui:
2816 case AArch64::STRHHui:
2817 Scale = TypeSize::Fixed(2);
2818 Width = 2;
2819 MinOffset = 0;
2820 MaxOffset = 4095;
2821 break;
2822 case AArch64::LDRBui:
2823 case AArch64::LDRBBui:
2824 case AArch64::LDRSBWui:
2825 case AArch64::LDRSBXui:
2826 case AArch64::STRBui:
2827 case AArch64::STRBBui:
2828 Scale = TypeSize::Fixed(1);
2829 Width = 1;
2830 MinOffset = 0;
2831 MaxOffset = 4095;
2832 break;
2833 case AArch64::STPXpre:
2834 case AArch64::LDPXpost:
2835 case AArch64::STPDpre:
2836 case AArch64::LDPDpost:
2837 Scale = TypeSize::Fixed(8);
2838 Width = 8;
2839 MinOffset = -512;
2840 MaxOffset = 504;
2841 break;
2842 case AArch64::STPQpre:
2843 case AArch64::LDPQpost:
2844 Scale = TypeSize::Fixed(16);
2845 Width = 16;
2846 MinOffset = -1024;
2847 MaxOffset = 1008;
2848 break;
2849 case AArch64::STRXpre:
2850 case AArch64::STRDpre:
2851 case AArch64::LDRXpost:
2852 case AArch64::LDRDpost:
2853 Scale = TypeSize::Fixed(1);
2854 Width = 8;
2855 MinOffset = -256;
2856 MaxOffset = 255;
2857 break;
2858 case AArch64::STRQpre:
2859 case AArch64::LDRQpost:
2860 Scale = TypeSize::Fixed(1);
2861 Width = 16;
2862 MinOffset = -256;
2863 MaxOffset = 255;
2864 break;
2865 case AArch64::ADDG:
2866 Scale = TypeSize::Fixed(16);
2867 Width = 0;
2868 MinOffset = 0;
2869 MaxOffset = 63;
2870 break;
2871 case AArch64::TAGPstack:
2872 Scale = TypeSize::Fixed(16);
2873 Width = 0;
2874 // TAGP with a negative offset turns into SUBP, which has a maximum offset
2875 // of 63 (not 64!).
2876 MinOffset = -63;
2877 MaxOffset = 63;
2878 break;
2879 case AArch64::LDG:
2880 case AArch64::STGOffset:
2881 case AArch64::STZGOffset:
2882 Scale = TypeSize::Fixed(16);
2883 Width = 16;
2884 MinOffset = -256;
2885 MaxOffset = 255;
2886 break;
2887 case AArch64::STR_ZZZZXI:
2888 case AArch64::LDR_ZZZZXI:
2889 Scale = TypeSize::Scalable(16);
2890 Width = SVEMaxBytesPerVector * 4;
2891 MinOffset = -256;
2892 MaxOffset = 252;
2893 break;
2894 case AArch64::STR_ZZZXI:
2895 case AArch64::LDR_ZZZXI:
2896 Scale = TypeSize::Scalable(16);
2897 Width = SVEMaxBytesPerVector * 3;
2898 MinOffset = -256;
2899 MaxOffset = 253;
2900 break;
2901 case AArch64::STR_ZZXI:
2902 case AArch64::LDR_ZZXI:
2903 Scale = TypeSize::Scalable(16);
2904 Width = SVEMaxBytesPerVector * 2;
2905 MinOffset = -256;
2906 MaxOffset = 254;
2907 break;
2908 case AArch64::LDR_PXI:
2909 case AArch64::STR_PXI:
2910 Scale = TypeSize::Scalable(2);
2911 Width = SVEMaxBytesPerVector / 8;
2912 MinOffset = -256;
2913 MaxOffset = 255;
2914 break;
2915 case AArch64::LDR_ZXI:
2916 case AArch64::STR_ZXI:
2917 Scale = TypeSize::Scalable(16);
2918 Width = SVEMaxBytesPerVector;
2919 MinOffset = -256;
2920 MaxOffset = 255;
2921 break;
2922 case AArch64::LD1B_IMM:
2923 case AArch64::LD1H_IMM:
2924 case AArch64::LD1W_IMM:
2925 case AArch64::LD1D_IMM:
2926 case AArch64::LDNT1B_ZRI:
2927 case AArch64::LDNT1H_ZRI:
2928 case AArch64::LDNT1W_ZRI:
2929 case AArch64::LDNT1D_ZRI:
2930 case AArch64::ST1B_IMM:
2931 case AArch64::ST1H_IMM:
2932 case AArch64::ST1W_IMM:
2933 case AArch64::ST1D_IMM:
2934 case AArch64::STNT1B_ZRI:
2935 case AArch64::STNT1H_ZRI:
2936 case AArch64::STNT1W_ZRI:
2937 case AArch64::STNT1D_ZRI:
2938 case AArch64::LDNF1B_IMM:
2939 case AArch64::LDNF1H_IMM:
2940 case AArch64::LDNF1W_IMM:
2941 case AArch64::LDNF1D_IMM:
2942 // A full vectors worth of data
2943 // Width = mbytes * elements
2944 Scale = TypeSize::Scalable(16);
2945 Width = SVEMaxBytesPerVector;
2946 MinOffset = -8;
2947 MaxOffset = 7;
2948 break;
2949 case AArch64::LD2B_IMM:
2950 case AArch64::LD2H_IMM:
2951 case AArch64::LD2W_IMM:
2952 case AArch64::LD2D_IMM:
2953 case AArch64::ST2B_IMM:
2954 case AArch64::ST2H_IMM:
2955 case AArch64::ST2W_IMM:
2956 case AArch64::ST2D_IMM:
2957 Scale = TypeSize::Scalable(32);
2958 Width = SVEMaxBytesPerVector * 2;
2959 MinOffset = -8;
2960 MaxOffset = 7;
2961 break;
2962 case AArch64::LD3B_IMM:
2963 case AArch64::LD3H_IMM:
2964 case AArch64::LD3W_IMM:
2965 case AArch64::LD3D_IMM:
2966 case AArch64::ST3B_IMM:
2967 case AArch64::ST3H_IMM:
2968 case AArch64::ST3W_IMM:
2969 case AArch64::ST3D_IMM:
2970 Scale = TypeSize::Scalable(48);
2971 Width = SVEMaxBytesPerVector * 3;
2972 MinOffset = -8;
2973 MaxOffset = 7;
2974 break;
2975 case AArch64::LD4B_IMM:
2976 case AArch64::LD4H_IMM:
2977 case AArch64::LD4W_IMM:
2978 case AArch64::LD4D_IMM:
2979 case AArch64::ST4B_IMM:
2980 case AArch64::ST4H_IMM:
2981 case AArch64::ST4W_IMM:
2982 case AArch64::ST4D_IMM:
2983 Scale = TypeSize::Scalable(64);
2984 Width = SVEMaxBytesPerVector * 4;
2985 MinOffset = -8;
2986 MaxOffset = 7;
2987 break;
2988 case AArch64::LD1B_H_IMM:
2989 case AArch64::LD1SB_H_IMM:
2990 case AArch64::LD1H_S_IMM:
2991 case AArch64::LD1SH_S_IMM:
2992 case AArch64::LD1W_D_IMM:
2993 case AArch64::LD1SW_D_IMM:
2994 case AArch64::ST1B_H_IMM:
2995 case AArch64::ST1H_S_IMM:
2996 case AArch64::ST1W_D_IMM:
2997 case AArch64::LDNF1B_H_IMM:
2998 case AArch64::LDNF1SB_H_IMM:
2999 case AArch64::LDNF1H_S_IMM:
3000 case AArch64::LDNF1SH_S_IMM:
3001 case AArch64::LDNF1W_D_IMM:
3002 case AArch64::LDNF1SW_D_IMM:
3003 // A half vector worth of data
3004 // Width = mbytes * elements
3005 Scale = TypeSize::Scalable(8);
3006 Width = SVEMaxBytesPerVector / 2;
3007 MinOffset = -8;
3008 MaxOffset = 7;
3009 break;
3010 case AArch64::LD1B_S_IMM:
3011 case AArch64::LD1SB_S_IMM:
3012 case AArch64::LD1H_D_IMM:
3013 case AArch64::LD1SH_D_IMM:
3014 case AArch64::ST1B_S_IMM:
3015 case AArch64::ST1H_D_IMM:
3016 case AArch64::LDNF1B_S_IMM:
3017 case AArch64::LDNF1SB_S_IMM:
3018 case AArch64::LDNF1H_D_IMM:
3019 case AArch64::LDNF1SH_D_IMM:
3020 // A quarter vector worth of data
3021 // Width = mbytes * elements
3022 Scale = TypeSize::Scalable(4);
3023 Width = SVEMaxBytesPerVector / 4;
3024 MinOffset = -8;
3025 MaxOffset = 7;
3026 break;
3027 case AArch64::LD1B_D_IMM:
3028 case AArch64::LD1SB_D_IMM:
3029 case AArch64::ST1B_D_IMM:
3030 case AArch64::LDNF1B_D_IMM:
3031 case AArch64::LDNF1SB_D_IMM:
3032 // A eighth vector worth of data
3033 // Width = mbytes * elements
3034 Scale = TypeSize::Scalable(2);
3035 Width = SVEMaxBytesPerVector / 8;
3036 MinOffset = -8;
3037 MaxOffset = 7;
3038 break;
3039 case AArch64::ST2GOffset:
3040 case AArch64::STZ2GOffset:
3041 Scale = TypeSize::Fixed(16);
3042 Width = 32;
3043 MinOffset = -256;
3044 MaxOffset = 255;
3045 break;
3046 case AArch64::STGPi:
3047 Scale = TypeSize::Fixed(16);
3048 Width = 16;
3049 MinOffset = -64;
3050 MaxOffset = 63;
3051 break;
3052 case AArch64::LD1RB_IMM:
3053 case AArch64::LD1RB_H_IMM:
3054 case AArch64::LD1RB_S_IMM:
3055 case AArch64::LD1RB_D_IMM:
3056 case AArch64::LD1RSB_H_IMM:
3057 case AArch64::LD1RSB_S_IMM:
3058 case AArch64::LD1RSB_D_IMM:
3059 Scale = TypeSize::Fixed(1);
3060 Width = 1;
3061 MinOffset = 0;
3062 MaxOffset = 63;
3063 break;
3064 case AArch64::LD1RH_IMM:
3065 case AArch64::LD1RH_S_IMM:
3066 case AArch64::LD1RH_D_IMM:
3067 case AArch64::LD1RSH_S_IMM:
3068 case AArch64::LD1RSH_D_IMM:
3069 Scale = TypeSize::Fixed(2);
3070 Width = 2;
3071 MinOffset = 0;
3072 MaxOffset = 63;
3073 break;
3074 case AArch64::LD1RW_IMM:
3075 case AArch64::LD1RW_D_IMM:
3076 case AArch64::LD1RSW_IMM:
3077 Scale = TypeSize::Fixed(4);
3078 Width = 4;
3079 MinOffset = 0;
3080 MaxOffset = 63;
3081 break;
3082 case AArch64::LD1RD_IMM:
3083 Scale = TypeSize::Fixed(8);
3084 Width = 8;
3085 MinOffset = 0;
3086 MaxOffset = 63;
3087 break;
3088 }
3089
3090 return true;
3091 }
3092
3093 // Scaling factor for unscaled load or store.
getMemScale(unsigned Opc)3094 int AArch64InstrInfo::getMemScale(unsigned Opc) {
3095 switch (Opc) {
3096 default:
3097 llvm_unreachable("Opcode has unknown scale!");
3098 case AArch64::LDRBBui:
3099 case AArch64::LDURBBi:
3100 case AArch64::LDRSBWui:
3101 case AArch64::LDURSBWi:
3102 case AArch64::STRBBui:
3103 case AArch64::STURBBi:
3104 return 1;
3105 case AArch64::LDRHHui:
3106 case AArch64::LDURHHi:
3107 case AArch64::LDRSHWui:
3108 case AArch64::LDURSHWi:
3109 case AArch64::STRHHui:
3110 case AArch64::STURHHi:
3111 return 2;
3112 case AArch64::LDRSui:
3113 case AArch64::LDURSi:
3114 case AArch64::LDRSpre:
3115 case AArch64::LDRSWui:
3116 case AArch64::LDURSWi:
3117 case AArch64::LDRWpre:
3118 case AArch64::LDRWui:
3119 case AArch64::LDURWi:
3120 case AArch64::STRSui:
3121 case AArch64::STURSi:
3122 case AArch64::STRSpre:
3123 case AArch64::STRWui:
3124 case AArch64::STURWi:
3125 case AArch64::STRWpre:
3126 case AArch64::LDPSi:
3127 case AArch64::LDPSWi:
3128 case AArch64::LDPWi:
3129 case AArch64::STPSi:
3130 case AArch64::STPWi:
3131 return 4;
3132 case AArch64::LDRDui:
3133 case AArch64::LDURDi:
3134 case AArch64::LDRDpre:
3135 case AArch64::LDRXui:
3136 case AArch64::LDURXi:
3137 case AArch64::LDRXpre:
3138 case AArch64::STRDui:
3139 case AArch64::STURDi:
3140 case AArch64::STRDpre:
3141 case AArch64::STRXui:
3142 case AArch64::STURXi:
3143 case AArch64::STRXpre:
3144 case AArch64::LDPDi:
3145 case AArch64::LDPXi:
3146 case AArch64::STPDi:
3147 case AArch64::STPXi:
3148 return 8;
3149 case AArch64::LDRQui:
3150 case AArch64::LDURQi:
3151 case AArch64::STRQui:
3152 case AArch64::STURQi:
3153 case AArch64::STRQpre:
3154 case AArch64::LDPQi:
3155 case AArch64::LDRQpre:
3156 case AArch64::STPQi:
3157 case AArch64::STGOffset:
3158 case AArch64::STZGOffset:
3159 case AArch64::ST2GOffset:
3160 case AArch64::STZ2GOffset:
3161 case AArch64::STGPi:
3162 return 16;
3163 }
3164 }
3165
isPreLd(const MachineInstr & MI)3166 bool AArch64InstrInfo::isPreLd(const MachineInstr &MI) {
3167 switch (MI.getOpcode()) {
3168 default:
3169 return false;
3170 case AArch64::LDRWpre:
3171 case AArch64::LDRXpre:
3172 case AArch64::LDRSpre:
3173 case AArch64::LDRDpre:
3174 case AArch64::LDRQpre:
3175 return true;
3176 }
3177 }
3178
isPreSt(const MachineInstr & MI)3179 bool AArch64InstrInfo::isPreSt(const MachineInstr &MI) {
3180 switch (MI.getOpcode()) {
3181 default:
3182 return false;
3183 case AArch64::STRWpre:
3184 case AArch64::STRXpre:
3185 case AArch64::STRSpre:
3186 case AArch64::STRDpre:
3187 case AArch64::STRQpre:
3188 return true;
3189 }
3190 }
3191
isPreLdSt(const MachineInstr & MI)3192 bool AArch64InstrInfo::isPreLdSt(const MachineInstr &MI) {
3193 return isPreLd(MI) || isPreSt(MI);
3194 }
3195
isPairedLdSt(const MachineInstr & MI)3196 bool AArch64InstrInfo::isPairedLdSt(const MachineInstr &MI) {
3197 switch (MI.getOpcode()) {
3198 default:
3199 return false;
3200 case AArch64::LDPSi:
3201 case AArch64::LDPSWi:
3202 case AArch64::LDPDi:
3203 case AArch64::LDPQi:
3204 case AArch64::LDPWi:
3205 case AArch64::LDPXi:
3206 case AArch64::STPSi:
3207 case AArch64::STPDi:
3208 case AArch64::STPQi:
3209 case AArch64::STPWi:
3210 case AArch64::STPXi:
3211 case AArch64::STGPi:
3212 return true;
3213 }
3214 }
3215
getLdStBaseOp(const MachineInstr & MI)3216 const MachineOperand &AArch64InstrInfo::getLdStBaseOp(const MachineInstr &MI) {
3217 unsigned Idx =
3218 AArch64InstrInfo::isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 2
3219 : 1;
3220 return MI.getOperand(Idx);
3221 }
3222
3223 const MachineOperand &
getLdStOffsetOp(const MachineInstr & MI)3224 AArch64InstrInfo::getLdStOffsetOp(const MachineInstr &MI) {
3225 unsigned Idx =
3226 AArch64InstrInfo::isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 3
3227 : 2;
3228 return MI.getOperand(Idx);
3229 }
3230
getRegClass(const MachineInstr & MI,Register Reg)3231 static const TargetRegisterClass *getRegClass(const MachineInstr &MI,
3232 Register Reg) {
3233 if (MI.getParent() == nullptr)
3234 return nullptr;
3235 const MachineFunction *MF = MI.getParent()->getParent();
3236 return MF ? MF->getRegInfo().getRegClassOrNull(Reg) : nullptr;
3237 }
3238
isQForm(const MachineInstr & MI)3239 bool AArch64InstrInfo::isQForm(const MachineInstr &MI) {
3240 auto IsQFPR = [&](const MachineOperand &Op) {
3241 if (!Op.isReg())
3242 return false;
3243 auto Reg = Op.getReg();
3244 if (Reg.isPhysical())
3245 return AArch64::FPR128RegClass.contains(Reg);
3246 const TargetRegisterClass *TRC = ::getRegClass(MI, Reg);
3247 return TRC == &AArch64::FPR128RegClass ||
3248 TRC == &AArch64::FPR128_loRegClass;
3249 };
3250 return llvm::any_of(MI.operands(), IsQFPR);
3251 }
3252
isFpOrNEON(const MachineInstr & MI)3253 bool AArch64InstrInfo::isFpOrNEON(const MachineInstr &MI) {
3254 auto IsFPR = [&](const MachineOperand &Op) {
3255 if (!Op.isReg())
3256 return false;
3257 auto Reg = Op.getReg();
3258 if (Reg.isPhysical())
3259 return AArch64::FPR128RegClass.contains(Reg) ||
3260 AArch64::FPR64RegClass.contains(Reg) ||
3261 AArch64::FPR32RegClass.contains(Reg) ||
3262 AArch64::FPR16RegClass.contains(Reg) ||
3263 AArch64::FPR8RegClass.contains(Reg);
3264
3265 const TargetRegisterClass *TRC = ::getRegClass(MI, Reg);
3266 return TRC == &AArch64::FPR128RegClass ||
3267 TRC == &AArch64::FPR128_loRegClass ||
3268 TRC == &AArch64::FPR64RegClass ||
3269 TRC == &AArch64::FPR64_loRegClass ||
3270 TRC == &AArch64::FPR32RegClass || TRC == &AArch64::FPR16RegClass ||
3271 TRC == &AArch64::FPR8RegClass;
3272 };
3273 return llvm::any_of(MI.operands(), IsFPR);
3274 }
3275
3276 // Scale the unscaled offsets. Returns false if the unscaled offset can't be
3277 // scaled.
scaleOffset(unsigned Opc,int64_t & Offset)3278 static bool scaleOffset(unsigned Opc, int64_t &Offset) {
3279 int Scale = AArch64InstrInfo::getMemScale(Opc);
3280
3281 // If the byte-offset isn't a multiple of the stride, we can't scale this
3282 // offset.
3283 if (Offset % Scale != 0)
3284 return false;
3285
3286 // Convert the byte-offset used by unscaled into an "element" offset used
3287 // by the scaled pair load/store instructions.
3288 Offset /= Scale;
3289 return true;
3290 }
3291
canPairLdStOpc(unsigned FirstOpc,unsigned SecondOpc)3292 static bool canPairLdStOpc(unsigned FirstOpc, unsigned SecondOpc) {
3293 if (FirstOpc == SecondOpc)
3294 return true;
3295 // We can also pair sign-ext and zero-ext instructions.
3296 switch (FirstOpc) {
3297 default:
3298 return false;
3299 case AArch64::LDRWui:
3300 case AArch64::LDURWi:
3301 return SecondOpc == AArch64::LDRSWui || SecondOpc == AArch64::LDURSWi;
3302 case AArch64::LDRSWui:
3303 case AArch64::LDURSWi:
3304 return SecondOpc == AArch64::LDRWui || SecondOpc == AArch64::LDURWi;
3305 }
3306 // These instructions can't be paired based on their opcodes.
3307 return false;
3308 }
3309
shouldClusterFI(const MachineFrameInfo & MFI,int FI1,int64_t Offset1,unsigned Opcode1,int FI2,int64_t Offset2,unsigned Opcode2)3310 static bool shouldClusterFI(const MachineFrameInfo &MFI, int FI1,
3311 int64_t Offset1, unsigned Opcode1, int FI2,
3312 int64_t Offset2, unsigned Opcode2) {
3313 // Accesses through fixed stack object frame indices may access a different
3314 // fixed stack slot. Check that the object offsets + offsets match.
3315 if (MFI.isFixedObjectIndex(FI1) && MFI.isFixedObjectIndex(FI2)) {
3316 int64_t ObjectOffset1 = MFI.getObjectOffset(FI1);
3317 int64_t ObjectOffset2 = MFI.getObjectOffset(FI2);
3318 assert(ObjectOffset1 <= ObjectOffset2 && "Object offsets are not ordered.");
3319 // Convert to scaled object offsets.
3320 int Scale1 = AArch64InstrInfo::getMemScale(Opcode1);
3321 if (ObjectOffset1 % Scale1 != 0)
3322 return false;
3323 ObjectOffset1 /= Scale1;
3324 int Scale2 = AArch64InstrInfo::getMemScale(Opcode2);
3325 if (ObjectOffset2 % Scale2 != 0)
3326 return false;
3327 ObjectOffset2 /= Scale2;
3328 ObjectOffset1 += Offset1;
3329 ObjectOffset2 += Offset2;
3330 return ObjectOffset1 + 1 == ObjectOffset2;
3331 }
3332
3333 return FI1 == FI2;
3334 }
3335
3336 /// Detect opportunities for ldp/stp formation.
3337 ///
3338 /// Only called for LdSt for which getMemOperandWithOffset returns true.
shouldClusterMemOps(ArrayRef<const MachineOperand * > BaseOps1,ArrayRef<const MachineOperand * > BaseOps2,unsigned NumLoads,unsigned NumBytes) const3339 bool AArch64InstrInfo::shouldClusterMemOps(
3340 ArrayRef<const MachineOperand *> BaseOps1,
3341 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
3342 unsigned NumBytes) const {
3343 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
3344 const MachineOperand &BaseOp1 = *BaseOps1.front();
3345 const MachineOperand &BaseOp2 = *BaseOps2.front();
3346 const MachineInstr &FirstLdSt = *BaseOp1.getParent();
3347 const MachineInstr &SecondLdSt = *BaseOp2.getParent();
3348 if (BaseOp1.getType() != BaseOp2.getType())
3349 return false;
3350
3351 assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
3352 "Only base registers and frame indices are supported.");
3353
3354 // Check for both base regs and base FI.
3355 if (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg())
3356 return false;
3357
3358 // Only cluster up to a single pair.
3359 if (NumLoads > 2)
3360 return false;
3361
3362 if (!isPairableLdStInst(FirstLdSt) || !isPairableLdStInst(SecondLdSt))
3363 return false;
3364
3365 // Can we pair these instructions based on their opcodes?
3366 unsigned FirstOpc = FirstLdSt.getOpcode();
3367 unsigned SecondOpc = SecondLdSt.getOpcode();
3368 if (!canPairLdStOpc(FirstOpc, SecondOpc))
3369 return false;
3370
3371 // Can't merge volatiles or load/stores that have a hint to avoid pair
3372 // formation, for example.
3373 if (!isCandidateToMergeOrPair(FirstLdSt) ||
3374 !isCandidateToMergeOrPair(SecondLdSt))
3375 return false;
3376
3377 // isCandidateToMergeOrPair guarantees that operand 2 is an immediate.
3378 int64_t Offset1 = FirstLdSt.getOperand(2).getImm();
3379 if (hasUnscaledLdStOffset(FirstOpc) && !scaleOffset(FirstOpc, Offset1))
3380 return false;
3381
3382 int64_t Offset2 = SecondLdSt.getOperand(2).getImm();
3383 if (hasUnscaledLdStOffset(SecondOpc) && !scaleOffset(SecondOpc, Offset2))
3384 return false;
3385
3386 // Pairwise instructions have a 7-bit signed offset field.
3387 if (Offset1 > 63 || Offset1 < -64)
3388 return false;
3389
3390 // The caller should already have ordered First/SecondLdSt by offset.
3391 // Note: except for non-equal frame index bases
3392 if (BaseOp1.isFI()) {
3393 assert((!BaseOp1.isIdenticalTo(BaseOp2) || Offset1 <= Offset2) &&
3394 "Caller should have ordered offsets.");
3395
3396 const MachineFrameInfo &MFI =
3397 FirstLdSt.getParent()->getParent()->getFrameInfo();
3398 return shouldClusterFI(MFI, BaseOp1.getIndex(), Offset1, FirstOpc,
3399 BaseOp2.getIndex(), Offset2, SecondOpc);
3400 }
3401
3402 assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
3403
3404 return Offset1 + 1 == Offset2;
3405 }
3406
AddSubReg(const MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI)3407 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
3408 unsigned Reg, unsigned SubIdx,
3409 unsigned State,
3410 const TargetRegisterInfo *TRI) {
3411 if (!SubIdx)
3412 return MIB.addReg(Reg, State);
3413
3414 if (Register::isPhysicalRegister(Reg))
3415 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
3416 return MIB.addReg(Reg, State, SubIdx);
3417 }
3418
forwardCopyWillClobberTuple(unsigned DestReg,unsigned SrcReg,unsigned NumRegs)3419 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
3420 unsigned NumRegs) {
3421 // We really want the positive remainder mod 32 here, that happens to be
3422 // easily obtainable with a mask.
3423 return ((DestReg - SrcReg) & 0x1f) < NumRegs;
3424 }
3425
copyPhysRegTuple(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc,unsigned Opcode,ArrayRef<unsigned> Indices) const3426 void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB,
3427 MachineBasicBlock::iterator I,
3428 const DebugLoc &DL, MCRegister DestReg,
3429 MCRegister SrcReg, bool KillSrc,
3430 unsigned Opcode,
3431 ArrayRef<unsigned> Indices) const {
3432 assert(Subtarget.hasNEON() && "Unexpected register copy without NEON");
3433 const TargetRegisterInfo *TRI = &getRegisterInfo();
3434 uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
3435 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
3436 unsigned NumRegs = Indices.size();
3437
3438 int SubReg = 0, End = NumRegs, Incr = 1;
3439 if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
3440 SubReg = NumRegs - 1;
3441 End = -1;
3442 Incr = -1;
3443 }
3444
3445 for (; SubReg != End; SubReg += Incr) {
3446 const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
3447 AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
3448 AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
3449 AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
3450 }
3451 }
3452
copyGPRRegTuple(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc,unsigned Opcode,unsigned ZeroReg,llvm::ArrayRef<unsigned> Indices) const3453 void AArch64InstrInfo::copyGPRRegTuple(MachineBasicBlock &MBB,
3454 MachineBasicBlock::iterator I,
3455 DebugLoc DL, unsigned DestReg,
3456 unsigned SrcReg, bool KillSrc,
3457 unsigned Opcode, unsigned ZeroReg,
3458 llvm::ArrayRef<unsigned> Indices) const {
3459 const TargetRegisterInfo *TRI = &getRegisterInfo();
3460 unsigned NumRegs = Indices.size();
3461
3462 #ifndef NDEBUG
3463 uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
3464 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
3465 assert(DestEncoding % NumRegs == 0 && SrcEncoding % NumRegs == 0 &&
3466 "GPR reg sequences should not be able to overlap");
3467 #endif
3468
3469 for (unsigned SubReg = 0; SubReg != NumRegs; ++SubReg) {
3470 const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
3471 AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
3472 MIB.addReg(ZeroReg);
3473 AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
3474 MIB.addImm(0);
3475 }
3476 }
3477
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const3478 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3479 MachineBasicBlock::iterator I,
3480 const DebugLoc &DL, MCRegister DestReg,
3481 MCRegister SrcReg, bool KillSrc) const {
3482 if (AArch64::GPR32spRegClass.contains(DestReg) &&
3483 (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
3484 const TargetRegisterInfo *TRI = &getRegisterInfo();
3485
3486 if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
3487 // If either operand is WSP, expand to ADD #0.
3488 if (Subtarget.hasZeroCycleRegMove()) {
3489 // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
3490 MCRegister DestRegX = TRI->getMatchingSuperReg(
3491 DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3492 MCRegister SrcRegX = TRI->getMatchingSuperReg(
3493 SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3494 // This instruction is reading and writing X registers. This may upset
3495 // the register scavenger and machine verifier, so we need to indicate
3496 // that we are reading an undefined value from SrcRegX, but a proper
3497 // value from SrcReg.
3498 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
3499 .addReg(SrcRegX, RegState::Undef)
3500 .addImm(0)
3501 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
3502 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
3503 } else {
3504 BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
3505 .addReg(SrcReg, getKillRegState(KillSrc))
3506 .addImm(0)
3507 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3508 }
3509 } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroingGP()) {
3510 BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg)
3511 .addImm(0)
3512 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3513 } else {
3514 if (Subtarget.hasZeroCycleRegMove()) {
3515 // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
3516 MCRegister DestRegX = TRI->getMatchingSuperReg(
3517 DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3518 MCRegister SrcRegX = TRI->getMatchingSuperReg(
3519 SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3520 // This instruction is reading and writing X registers. This may upset
3521 // the register scavenger and machine verifier, so we need to indicate
3522 // that we are reading an undefined value from SrcRegX, but a proper
3523 // value from SrcReg.
3524 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
3525 .addReg(AArch64::XZR)
3526 .addReg(SrcRegX, RegState::Undef)
3527 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
3528 } else {
3529 // Otherwise, expand to ORR WZR.
3530 BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
3531 .addReg(AArch64::WZR)
3532 .addReg(SrcReg, getKillRegState(KillSrc));
3533 }
3534 }
3535 return;
3536 }
3537
3538 // Copy a Predicate register by ORRing with itself.
3539 if (AArch64::PPRRegClass.contains(DestReg) &&
3540 AArch64::PPRRegClass.contains(SrcReg)) {
3541 assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3542 BuildMI(MBB, I, DL, get(AArch64::ORR_PPzPP), DestReg)
3543 .addReg(SrcReg) // Pg
3544 .addReg(SrcReg)
3545 .addReg(SrcReg, getKillRegState(KillSrc));
3546 return;
3547 }
3548
3549 // Copy a Z register by ORRing with itself.
3550 if (AArch64::ZPRRegClass.contains(DestReg) &&
3551 AArch64::ZPRRegClass.contains(SrcReg)) {
3552 assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3553 BuildMI(MBB, I, DL, get(AArch64::ORR_ZZZ), DestReg)
3554 .addReg(SrcReg)
3555 .addReg(SrcReg, getKillRegState(KillSrc));
3556 return;
3557 }
3558
3559 // Copy a Z register pair by copying the individual sub-registers.
3560 if (AArch64::ZPR2RegClass.contains(DestReg) &&
3561 AArch64::ZPR2RegClass.contains(SrcReg)) {
3562 assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3563 static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1};
3564 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3565 Indices);
3566 return;
3567 }
3568
3569 // Copy a Z register triple by copying the individual sub-registers.
3570 if (AArch64::ZPR3RegClass.contains(DestReg) &&
3571 AArch64::ZPR3RegClass.contains(SrcReg)) {
3572 assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3573 static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1,
3574 AArch64::zsub2};
3575 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3576 Indices);
3577 return;
3578 }
3579
3580 // Copy a Z register quad by copying the individual sub-registers.
3581 if (AArch64::ZPR4RegClass.contains(DestReg) &&
3582 AArch64::ZPR4RegClass.contains(SrcReg)) {
3583 assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3584 static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1,
3585 AArch64::zsub2, AArch64::zsub3};
3586 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3587 Indices);
3588 return;
3589 }
3590
3591 if (AArch64::GPR64spRegClass.contains(DestReg) &&
3592 (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
3593 if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
3594 // If either operand is SP, expand to ADD #0.
3595 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
3596 .addReg(SrcReg, getKillRegState(KillSrc))
3597 .addImm(0)
3598 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3599 } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroingGP()) {
3600 BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg)
3601 .addImm(0)
3602 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3603 } else {
3604 // Otherwise, expand to ORR XZR.
3605 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
3606 .addReg(AArch64::XZR)
3607 .addReg(SrcReg, getKillRegState(KillSrc));
3608 }
3609 return;
3610 }
3611
3612 // Copy a DDDD register quad by copying the individual sub-registers.
3613 if (AArch64::DDDDRegClass.contains(DestReg) &&
3614 AArch64::DDDDRegClass.contains(SrcReg)) {
3615 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
3616 AArch64::dsub2, AArch64::dsub3};
3617 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3618 Indices);
3619 return;
3620 }
3621
3622 // Copy a DDD register triple by copying the individual sub-registers.
3623 if (AArch64::DDDRegClass.contains(DestReg) &&
3624 AArch64::DDDRegClass.contains(SrcReg)) {
3625 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
3626 AArch64::dsub2};
3627 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3628 Indices);
3629 return;
3630 }
3631
3632 // Copy a DD register pair by copying the individual sub-registers.
3633 if (AArch64::DDRegClass.contains(DestReg) &&
3634 AArch64::DDRegClass.contains(SrcReg)) {
3635 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1};
3636 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3637 Indices);
3638 return;
3639 }
3640
3641 // Copy a QQQQ register quad by copying the individual sub-registers.
3642 if (AArch64::QQQQRegClass.contains(DestReg) &&
3643 AArch64::QQQQRegClass.contains(SrcReg)) {
3644 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
3645 AArch64::qsub2, AArch64::qsub3};
3646 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3647 Indices);
3648 return;
3649 }
3650
3651 // Copy a QQQ register triple by copying the individual sub-registers.
3652 if (AArch64::QQQRegClass.contains(DestReg) &&
3653 AArch64::QQQRegClass.contains(SrcReg)) {
3654 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
3655 AArch64::qsub2};
3656 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3657 Indices);
3658 return;
3659 }
3660
3661 // Copy a QQ register pair by copying the individual sub-registers.
3662 if (AArch64::QQRegClass.contains(DestReg) &&
3663 AArch64::QQRegClass.contains(SrcReg)) {
3664 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1};
3665 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3666 Indices);
3667 return;
3668 }
3669
3670 if (AArch64::XSeqPairsClassRegClass.contains(DestReg) &&
3671 AArch64::XSeqPairsClassRegClass.contains(SrcReg)) {
3672 static const unsigned Indices[] = {AArch64::sube64, AArch64::subo64};
3673 copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRXrs,
3674 AArch64::XZR, Indices);
3675 return;
3676 }
3677
3678 if (AArch64::WSeqPairsClassRegClass.contains(DestReg) &&
3679 AArch64::WSeqPairsClassRegClass.contains(SrcReg)) {
3680 static const unsigned Indices[] = {AArch64::sube32, AArch64::subo32};
3681 copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRWrs,
3682 AArch64::WZR, Indices);
3683 return;
3684 }
3685
3686 if (AArch64::FPR128RegClass.contains(DestReg) &&
3687 AArch64::FPR128RegClass.contains(SrcReg)) {
3688 if (Subtarget.forceStreamingCompatibleSVE()) {
3689 BuildMI(MBB, I, DL, get(AArch64::ORR_ZZZ))
3690 .addReg(AArch64::Z0 + (DestReg - AArch64::Q0), RegState::Define)
3691 .addReg(AArch64::Z0 + (SrcReg - AArch64::Q0))
3692 .addReg(AArch64::Z0 + (SrcReg - AArch64::Q0));
3693 } else if (Subtarget.hasNEON()) {
3694 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
3695 .addReg(SrcReg)
3696 .addReg(SrcReg, getKillRegState(KillSrc));
3697 } else {
3698 BuildMI(MBB, I, DL, get(AArch64::STRQpre))
3699 .addReg(AArch64::SP, RegState::Define)
3700 .addReg(SrcReg, getKillRegState(KillSrc))
3701 .addReg(AArch64::SP)
3702 .addImm(-16);
3703 BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
3704 .addReg(AArch64::SP, RegState::Define)
3705 .addReg(DestReg, RegState::Define)
3706 .addReg(AArch64::SP)
3707 .addImm(16);
3708 }
3709 return;
3710 }
3711
3712 if (AArch64::FPR64RegClass.contains(DestReg) &&
3713 AArch64::FPR64RegClass.contains(SrcReg)) {
3714 BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
3715 .addReg(SrcReg, getKillRegState(KillSrc));
3716 return;
3717 }
3718
3719 if (AArch64::FPR32RegClass.contains(DestReg) &&
3720 AArch64::FPR32RegClass.contains(SrcReg)) {
3721 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3722 .addReg(SrcReg, getKillRegState(KillSrc));
3723 return;
3724 }
3725
3726 if (AArch64::FPR16RegClass.contains(DestReg) &&
3727 AArch64::FPR16RegClass.contains(SrcReg)) {
3728 DestReg =
3729 RI.getMatchingSuperReg(DestReg, AArch64::hsub, &AArch64::FPR32RegClass);
3730 SrcReg =
3731 RI.getMatchingSuperReg(SrcReg, AArch64::hsub, &AArch64::FPR32RegClass);
3732 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3733 .addReg(SrcReg, getKillRegState(KillSrc));
3734 return;
3735 }
3736
3737 if (AArch64::FPR8RegClass.contains(DestReg) &&
3738 AArch64::FPR8RegClass.contains(SrcReg)) {
3739 DestReg =
3740 RI.getMatchingSuperReg(DestReg, AArch64::bsub, &AArch64::FPR32RegClass);
3741 SrcReg =
3742 RI.getMatchingSuperReg(SrcReg, AArch64::bsub, &AArch64::FPR32RegClass);
3743 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3744 .addReg(SrcReg, getKillRegState(KillSrc));
3745 return;
3746 }
3747
3748 // Copies between GPR64 and FPR64.
3749 if (AArch64::FPR64RegClass.contains(DestReg) &&
3750 AArch64::GPR64RegClass.contains(SrcReg)) {
3751 BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
3752 .addReg(SrcReg, getKillRegState(KillSrc));
3753 return;
3754 }
3755 if (AArch64::GPR64RegClass.contains(DestReg) &&
3756 AArch64::FPR64RegClass.contains(SrcReg)) {
3757 BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
3758 .addReg(SrcReg, getKillRegState(KillSrc));
3759 return;
3760 }
3761 // Copies between GPR32 and FPR32.
3762 if (AArch64::FPR32RegClass.contains(DestReg) &&
3763 AArch64::GPR32RegClass.contains(SrcReg)) {
3764 BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
3765 .addReg(SrcReg, getKillRegState(KillSrc));
3766 return;
3767 }
3768 if (AArch64::GPR32RegClass.contains(DestReg) &&
3769 AArch64::FPR32RegClass.contains(SrcReg)) {
3770 BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
3771 .addReg(SrcReg, getKillRegState(KillSrc));
3772 return;
3773 }
3774
3775 if (DestReg == AArch64::NZCV) {
3776 assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
3777 BuildMI(MBB, I, DL, get(AArch64::MSR))
3778 .addImm(AArch64SysReg::NZCV)
3779 .addReg(SrcReg, getKillRegState(KillSrc))
3780 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
3781 return;
3782 }
3783
3784 if (SrcReg == AArch64::NZCV) {
3785 assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
3786 BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg)
3787 .addImm(AArch64SysReg::NZCV)
3788 .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
3789 return;
3790 }
3791
3792 #ifndef NDEBUG
3793 const TargetRegisterInfo &TRI = getRegisterInfo();
3794 errs() << TRI.getRegAsmName(DestReg) << " = COPY "
3795 << TRI.getRegAsmName(SrcReg) << "\n";
3796 #endif
3797 llvm_unreachable("unimplemented reg-to-reg copy");
3798 }
3799
storeRegPairToStackSlot(const TargetRegisterInfo & TRI,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MCInstrDesc & MCID,Register SrcReg,bool IsKill,unsigned SubIdx0,unsigned SubIdx1,int FI,MachineMemOperand * MMO)3800 static void storeRegPairToStackSlot(const TargetRegisterInfo &TRI,
3801 MachineBasicBlock &MBB,
3802 MachineBasicBlock::iterator InsertBefore,
3803 const MCInstrDesc &MCID,
3804 Register SrcReg, bool IsKill,
3805 unsigned SubIdx0, unsigned SubIdx1, int FI,
3806 MachineMemOperand *MMO) {
3807 Register SrcReg0 = SrcReg;
3808 Register SrcReg1 = SrcReg;
3809 if (SrcReg.isPhysical()) {
3810 SrcReg0 = TRI.getSubReg(SrcReg, SubIdx0);
3811 SubIdx0 = 0;
3812 SrcReg1 = TRI.getSubReg(SrcReg, SubIdx1);
3813 SubIdx1 = 0;
3814 }
3815 BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
3816 .addReg(SrcReg0, getKillRegState(IsKill), SubIdx0)
3817 .addReg(SrcReg1, getKillRegState(IsKill), SubIdx1)
3818 .addFrameIndex(FI)
3819 .addImm(0)
3820 .addMemOperand(MMO);
3821 }
3822
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,Register SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const3823 void AArch64InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3824 MachineBasicBlock::iterator MBBI,
3825 Register SrcReg, bool isKill, int FI,
3826 const TargetRegisterClass *RC,
3827 const TargetRegisterInfo *TRI,
3828 Register VReg) const {
3829 MachineFunction &MF = *MBB.getParent();
3830 MachineFrameInfo &MFI = MF.getFrameInfo();
3831
3832 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
3833 MachineMemOperand *MMO =
3834 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
3835 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
3836 unsigned Opc = 0;
3837 bool Offset = true;
3838 unsigned StackID = TargetStackID::Default;
3839 switch (TRI->getSpillSize(*RC)) {
3840 case 1:
3841 if (AArch64::FPR8RegClass.hasSubClassEq(RC))
3842 Opc = AArch64::STRBui;
3843 break;
3844 case 2:
3845 if (AArch64::FPR16RegClass.hasSubClassEq(RC))
3846 Opc = AArch64::STRHui;
3847 else if (AArch64::PPRRegClass.hasSubClassEq(RC)) {
3848 assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3849 Opc = AArch64::STR_PXI;
3850 StackID = TargetStackID::ScalableVector;
3851 }
3852 break;
3853 case 4:
3854 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
3855 Opc = AArch64::STRWui;
3856 if (SrcReg.isVirtual())
3857 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
3858 else
3859 assert(SrcReg != AArch64::WSP);
3860 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
3861 Opc = AArch64::STRSui;
3862 break;
3863 case 8:
3864 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
3865 Opc = AArch64::STRXui;
3866 if (SrcReg.isVirtual())
3867 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
3868 else
3869 assert(SrcReg != AArch64::SP);
3870 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
3871 Opc = AArch64::STRDui;
3872 } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
3873 storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
3874 get(AArch64::STPWi), SrcReg, isKill,
3875 AArch64::sube32, AArch64::subo32, FI, MMO);
3876 return;
3877 }
3878 break;
3879 case 16:
3880 if (AArch64::FPR128RegClass.hasSubClassEq(RC))
3881 Opc = AArch64::STRQui;
3882 else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
3883 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3884 Opc = AArch64::ST1Twov1d;
3885 Offset = false;
3886 } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
3887 storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
3888 get(AArch64::STPXi), SrcReg, isKill,
3889 AArch64::sube64, AArch64::subo64, FI, MMO);
3890 return;
3891 } else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) {
3892 assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3893 Opc = AArch64::STR_ZXI;
3894 StackID = TargetStackID::ScalableVector;
3895 }
3896 break;
3897 case 24:
3898 if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
3899 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3900 Opc = AArch64::ST1Threev1d;
3901 Offset = false;
3902 }
3903 break;
3904 case 32:
3905 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
3906 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3907 Opc = AArch64::ST1Fourv1d;
3908 Offset = false;
3909 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
3910 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3911 Opc = AArch64::ST1Twov2d;
3912 Offset = false;
3913 } else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) {
3914 assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3915 Opc = AArch64::STR_ZZXI;
3916 StackID = TargetStackID::ScalableVector;
3917 }
3918 break;
3919 case 48:
3920 if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
3921 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3922 Opc = AArch64::ST1Threev2d;
3923 Offset = false;
3924 } else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) {
3925 assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3926 Opc = AArch64::STR_ZZZXI;
3927 StackID = TargetStackID::ScalableVector;
3928 }
3929 break;
3930 case 64:
3931 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
3932 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3933 Opc = AArch64::ST1Fourv2d;
3934 Offset = false;
3935 } else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) {
3936 assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3937 Opc = AArch64::STR_ZZZZXI;
3938 StackID = TargetStackID::ScalableVector;
3939 }
3940 break;
3941 }
3942 assert(Opc && "Unknown register class");
3943 MFI.setStackID(FI, StackID);
3944
3945 const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
3946 .addReg(SrcReg, getKillRegState(isKill))
3947 .addFrameIndex(FI);
3948
3949 if (Offset)
3950 MI.addImm(0);
3951 MI.addMemOperand(MMO);
3952 }
3953
loadRegPairFromStackSlot(const TargetRegisterInfo & TRI,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MCInstrDesc & MCID,Register DestReg,unsigned SubIdx0,unsigned SubIdx1,int FI,MachineMemOperand * MMO)3954 static void loadRegPairFromStackSlot(const TargetRegisterInfo &TRI,
3955 MachineBasicBlock &MBB,
3956 MachineBasicBlock::iterator InsertBefore,
3957 const MCInstrDesc &MCID,
3958 Register DestReg, unsigned SubIdx0,
3959 unsigned SubIdx1, int FI,
3960 MachineMemOperand *MMO) {
3961 Register DestReg0 = DestReg;
3962 Register DestReg1 = DestReg;
3963 bool IsUndef = true;
3964 if (DestReg.isPhysical()) {
3965 DestReg0 = TRI.getSubReg(DestReg, SubIdx0);
3966 SubIdx0 = 0;
3967 DestReg1 = TRI.getSubReg(DestReg, SubIdx1);
3968 SubIdx1 = 0;
3969 IsUndef = false;
3970 }
3971 BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
3972 .addReg(DestReg0, RegState::Define | getUndefRegState(IsUndef), SubIdx0)
3973 .addReg(DestReg1, RegState::Define | getUndefRegState(IsUndef), SubIdx1)
3974 .addFrameIndex(FI)
3975 .addImm(0)
3976 .addMemOperand(MMO);
3977 }
3978
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,Register DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const3979 void AArch64InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3980 MachineBasicBlock::iterator MBBI,
3981 Register DestReg, int FI,
3982 const TargetRegisterClass *RC,
3983 const TargetRegisterInfo *TRI,
3984 Register VReg) const {
3985 MachineFunction &MF = *MBB.getParent();
3986 MachineFrameInfo &MFI = MF.getFrameInfo();
3987 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
3988 MachineMemOperand *MMO =
3989 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
3990 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
3991
3992 unsigned Opc = 0;
3993 bool Offset = true;
3994 unsigned StackID = TargetStackID::Default;
3995 switch (TRI->getSpillSize(*RC)) {
3996 case 1:
3997 if (AArch64::FPR8RegClass.hasSubClassEq(RC))
3998 Opc = AArch64::LDRBui;
3999 break;
4000 case 2:
4001 if (AArch64::FPR16RegClass.hasSubClassEq(RC))
4002 Opc = AArch64::LDRHui;
4003 else if (AArch64::PPRRegClass.hasSubClassEq(RC)) {
4004 assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4005 Opc = AArch64::LDR_PXI;
4006 StackID = TargetStackID::ScalableVector;
4007 }
4008 break;
4009 case 4:
4010 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
4011 Opc = AArch64::LDRWui;
4012 if (DestReg.isVirtual())
4013 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
4014 else
4015 assert(DestReg != AArch64::WSP);
4016 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
4017 Opc = AArch64::LDRSui;
4018 break;
4019 case 8:
4020 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
4021 Opc = AArch64::LDRXui;
4022 if (DestReg.isVirtual())
4023 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
4024 else
4025 assert(DestReg != AArch64::SP);
4026 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
4027 Opc = AArch64::LDRDui;
4028 } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
4029 loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
4030 get(AArch64::LDPWi), DestReg, AArch64::sube32,
4031 AArch64::subo32, FI, MMO);
4032 return;
4033 }
4034 break;
4035 case 16:
4036 if (AArch64::FPR128RegClass.hasSubClassEq(RC))
4037 Opc = AArch64::LDRQui;
4038 else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
4039 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4040 Opc = AArch64::LD1Twov1d;
4041 Offset = false;
4042 } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
4043 loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
4044 get(AArch64::LDPXi), DestReg, AArch64::sube64,
4045 AArch64::subo64, FI, MMO);
4046 return;
4047 } else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) {
4048 assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4049 Opc = AArch64::LDR_ZXI;
4050 StackID = TargetStackID::ScalableVector;
4051 }
4052 break;
4053 case 24:
4054 if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
4055 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4056 Opc = AArch64::LD1Threev1d;
4057 Offset = false;
4058 }
4059 break;
4060 case 32:
4061 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
4062 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4063 Opc = AArch64::LD1Fourv1d;
4064 Offset = false;
4065 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
4066 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4067 Opc = AArch64::LD1Twov2d;
4068 Offset = false;
4069 } else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) {
4070 assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4071 Opc = AArch64::LDR_ZZXI;
4072 StackID = TargetStackID::ScalableVector;
4073 }
4074 break;
4075 case 48:
4076 if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
4077 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4078 Opc = AArch64::LD1Threev2d;
4079 Offset = false;
4080 } else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) {
4081 assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4082 Opc = AArch64::LDR_ZZZXI;
4083 StackID = TargetStackID::ScalableVector;
4084 }
4085 break;
4086 case 64:
4087 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
4088 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4089 Opc = AArch64::LD1Fourv2d;
4090 Offset = false;
4091 } else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) {
4092 assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4093 Opc = AArch64::LDR_ZZZZXI;
4094 StackID = TargetStackID::ScalableVector;
4095 }
4096 break;
4097 }
4098
4099 assert(Opc && "Unknown register class");
4100 MFI.setStackID(FI, StackID);
4101
4102 const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
4103 .addReg(DestReg, getDefRegState(true))
4104 .addFrameIndex(FI);
4105 if (Offset)
4106 MI.addImm(0);
4107 MI.addMemOperand(MMO);
4108 }
4109
isNZCVTouchedInInstructionRange(const MachineInstr & DefMI,const MachineInstr & UseMI,const TargetRegisterInfo * TRI)4110 bool llvm::isNZCVTouchedInInstructionRange(const MachineInstr &DefMI,
4111 const MachineInstr &UseMI,
4112 const TargetRegisterInfo *TRI) {
4113 return any_of(instructionsWithoutDebug(std::next(DefMI.getIterator()),
4114 UseMI.getIterator()),
4115 [TRI](const MachineInstr &I) {
4116 return I.modifiesRegister(AArch64::NZCV, TRI) ||
4117 I.readsRegister(AArch64::NZCV, TRI);
4118 });
4119 }
4120
decomposeStackOffsetForDwarfOffsets(const StackOffset & Offset,int64_t & ByteSized,int64_t & VGSized)4121 void AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
4122 const StackOffset &Offset, int64_t &ByteSized, int64_t &VGSized) {
4123 // The smallest scalable element supported by scaled SVE addressing
4124 // modes are predicates, which are 2 scalable bytes in size. So the scalable
4125 // byte offset must always be a multiple of 2.
4126 assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
4127
4128 // VGSized offsets are divided by '2', because the VG register is the
4129 // the number of 64bit granules as opposed to 128bit vector chunks,
4130 // which is how the 'n' in e.g. MVT::nxv1i8 is modelled.
4131 // So, for a stack offset of 16 MVT::nxv1i8's, the size is n x 16 bytes.
4132 // VG = n * 2 and the dwarf offset must be VG * 8 bytes.
4133 ByteSized = Offset.getFixed();
4134 VGSized = Offset.getScalable() / 2;
4135 }
4136
4137 /// Returns the offset in parts to which this frame offset can be
4138 /// decomposed for the purpose of describing a frame offset.
4139 /// For non-scalable offsets this is simply its byte size.
decomposeStackOffsetForFrameOffsets(const StackOffset & Offset,int64_t & NumBytes,int64_t & NumPredicateVectors,int64_t & NumDataVectors)4140 void AArch64InstrInfo::decomposeStackOffsetForFrameOffsets(
4141 const StackOffset &Offset, int64_t &NumBytes, int64_t &NumPredicateVectors,
4142 int64_t &NumDataVectors) {
4143 // The smallest scalable element supported by scaled SVE addressing
4144 // modes are predicates, which are 2 scalable bytes in size. So the scalable
4145 // byte offset must always be a multiple of 2.
4146 assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
4147
4148 NumBytes = Offset.getFixed();
4149 NumDataVectors = 0;
4150 NumPredicateVectors = Offset.getScalable() / 2;
4151 // This method is used to get the offsets to adjust the frame offset.
4152 // If the function requires ADDPL to be used and needs more than two ADDPL
4153 // instructions, part of the offset is folded into NumDataVectors so that it
4154 // uses ADDVL for part of it, reducing the number of ADDPL instructions.
4155 if (NumPredicateVectors % 8 == 0 || NumPredicateVectors < -64 ||
4156 NumPredicateVectors > 62) {
4157 NumDataVectors = NumPredicateVectors / 8;
4158 NumPredicateVectors -= NumDataVectors * 8;
4159 }
4160 }
4161
4162 // Convenience function to create a DWARF expression for
4163 // Expr + NumBytes + NumVGScaledBytes * AArch64::VG
appendVGScaledOffsetExpr(SmallVectorImpl<char> & Expr,int NumBytes,int NumVGScaledBytes,unsigned VG,llvm::raw_string_ostream & Comment)4164 static void appendVGScaledOffsetExpr(SmallVectorImpl<char> &Expr, int NumBytes,
4165 int NumVGScaledBytes, unsigned VG,
4166 llvm::raw_string_ostream &Comment) {
4167 uint8_t buffer[16];
4168
4169 if (NumBytes) {
4170 Expr.push_back(dwarf::DW_OP_consts);
4171 Expr.append(buffer, buffer + encodeSLEB128(NumBytes, buffer));
4172 Expr.push_back((uint8_t)dwarf::DW_OP_plus);
4173 Comment << (NumBytes < 0 ? " - " : " + ") << std::abs(NumBytes);
4174 }
4175
4176 if (NumVGScaledBytes) {
4177 Expr.push_back((uint8_t)dwarf::DW_OP_consts);
4178 Expr.append(buffer, buffer + encodeSLEB128(NumVGScaledBytes, buffer));
4179
4180 Expr.push_back((uint8_t)dwarf::DW_OP_bregx);
4181 Expr.append(buffer, buffer + encodeULEB128(VG, buffer));
4182 Expr.push_back(0);
4183
4184 Expr.push_back((uint8_t)dwarf::DW_OP_mul);
4185 Expr.push_back((uint8_t)dwarf::DW_OP_plus);
4186
4187 Comment << (NumVGScaledBytes < 0 ? " - " : " + ")
4188 << std::abs(NumVGScaledBytes) << " * VG";
4189 }
4190 }
4191
4192 // Creates an MCCFIInstruction:
4193 // { DW_CFA_def_cfa_expression, ULEB128 (sizeof expr), expr }
createDefCFAExpression(const TargetRegisterInfo & TRI,unsigned Reg,const StackOffset & Offset)4194 static MCCFIInstruction createDefCFAExpression(const TargetRegisterInfo &TRI,
4195 unsigned Reg,
4196 const StackOffset &Offset) {
4197 int64_t NumBytes, NumVGScaledBytes;
4198 AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(Offset, NumBytes,
4199 NumVGScaledBytes);
4200 std::string CommentBuffer;
4201 llvm::raw_string_ostream Comment(CommentBuffer);
4202
4203 if (Reg == AArch64::SP)
4204 Comment << "sp";
4205 else if (Reg == AArch64::FP)
4206 Comment << "fp";
4207 else
4208 Comment << printReg(Reg, &TRI);
4209
4210 // Build up the expression (Reg + NumBytes + NumVGScaledBytes * AArch64::VG)
4211 SmallString<64> Expr;
4212 unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
4213 Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
4214 Expr.push_back(0);
4215 appendVGScaledOffsetExpr(Expr, NumBytes, NumVGScaledBytes,
4216 TRI.getDwarfRegNum(AArch64::VG, true), Comment);
4217
4218 // Wrap this into DW_CFA_def_cfa.
4219 SmallString<64> DefCfaExpr;
4220 DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
4221 uint8_t buffer[16];
4222 DefCfaExpr.append(buffer, buffer + encodeULEB128(Expr.size(), buffer));
4223 DefCfaExpr.append(Expr.str());
4224 return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(),
4225 Comment.str());
4226 }
4227
createDefCFA(const TargetRegisterInfo & TRI,unsigned FrameReg,unsigned Reg,const StackOffset & Offset,bool LastAdjustmentWasScalable)4228 MCCFIInstruction llvm::createDefCFA(const TargetRegisterInfo &TRI,
4229 unsigned FrameReg, unsigned Reg,
4230 const StackOffset &Offset,
4231 bool LastAdjustmentWasScalable) {
4232 if (Offset.getScalable())
4233 return createDefCFAExpression(TRI, Reg, Offset);
4234
4235 if (FrameReg == Reg && !LastAdjustmentWasScalable)
4236 return MCCFIInstruction::cfiDefCfaOffset(nullptr, int(Offset.getFixed()));
4237
4238 unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
4239 return MCCFIInstruction::cfiDefCfa(nullptr, DwarfReg, (int)Offset.getFixed());
4240 }
4241
createCFAOffset(const TargetRegisterInfo & TRI,unsigned Reg,const StackOffset & OffsetFromDefCFA)4242 MCCFIInstruction llvm::createCFAOffset(const TargetRegisterInfo &TRI,
4243 unsigned Reg,
4244 const StackOffset &OffsetFromDefCFA) {
4245 int64_t NumBytes, NumVGScaledBytes;
4246 AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
4247 OffsetFromDefCFA, NumBytes, NumVGScaledBytes);
4248
4249 unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
4250
4251 // Non-scalable offsets can use DW_CFA_offset directly.
4252 if (!NumVGScaledBytes)
4253 return MCCFIInstruction::createOffset(nullptr, DwarfReg, NumBytes);
4254
4255 std::string CommentBuffer;
4256 llvm::raw_string_ostream Comment(CommentBuffer);
4257 Comment << printReg(Reg, &TRI) << " @ cfa";
4258
4259 // Build up expression (NumBytes + NumVGScaledBytes * AArch64::VG)
4260 SmallString<64> OffsetExpr;
4261 appendVGScaledOffsetExpr(OffsetExpr, NumBytes, NumVGScaledBytes,
4262 TRI.getDwarfRegNum(AArch64::VG, true), Comment);
4263
4264 // Wrap this into DW_CFA_expression
4265 SmallString<64> CfaExpr;
4266 CfaExpr.push_back(dwarf::DW_CFA_expression);
4267 uint8_t buffer[16];
4268 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer));
4269 CfaExpr.append(buffer, buffer + encodeULEB128(OffsetExpr.size(), buffer));
4270 CfaExpr.append(OffsetExpr.str());
4271
4272 return MCCFIInstruction::createEscape(nullptr, CfaExpr.str(), Comment.str());
4273 }
4274
4275 // Helper function to emit a frame offset adjustment from a given
4276 // pointer (SrcReg), stored into DestReg. This function is explicit
4277 // in that it requires the opcode.
emitFrameOffsetAdj(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,int64_t Offset,unsigned Opc,const TargetInstrInfo * TII,MachineInstr::MIFlag Flag,bool NeedsWinCFI,bool * HasWinCFI,bool EmitCFAOffset,StackOffset CFAOffset,unsigned FrameReg)4278 static void emitFrameOffsetAdj(MachineBasicBlock &MBB,
4279 MachineBasicBlock::iterator MBBI,
4280 const DebugLoc &DL, unsigned DestReg,
4281 unsigned SrcReg, int64_t Offset, unsigned Opc,
4282 const TargetInstrInfo *TII,
4283 MachineInstr::MIFlag Flag, bool NeedsWinCFI,
4284 bool *HasWinCFI, bool EmitCFAOffset,
4285 StackOffset CFAOffset, unsigned FrameReg) {
4286 int Sign = 1;
4287 unsigned MaxEncoding, ShiftSize;
4288 switch (Opc) {
4289 case AArch64::ADDXri:
4290 case AArch64::ADDSXri:
4291 case AArch64::SUBXri:
4292 case AArch64::SUBSXri:
4293 MaxEncoding = 0xfff;
4294 ShiftSize = 12;
4295 break;
4296 case AArch64::ADDVL_XXI:
4297 case AArch64::ADDPL_XXI:
4298 case AArch64::ADDSVL_XXI:
4299 case AArch64::ADDSPL_XXI:
4300 MaxEncoding = 31;
4301 ShiftSize = 0;
4302 if (Offset < 0) {
4303 MaxEncoding = 32;
4304 Sign = -1;
4305 Offset = -Offset;
4306 }
4307 break;
4308 default:
4309 llvm_unreachable("Unsupported opcode");
4310 }
4311
4312 // `Offset` can be in bytes or in "scalable bytes".
4313 int VScale = 1;
4314 if (Opc == AArch64::ADDVL_XXI || Opc == AArch64::ADDSVL_XXI)
4315 VScale = 16;
4316 else if (Opc == AArch64::ADDPL_XXI || Opc == AArch64::ADDSPL_XXI)
4317 VScale = 2;
4318
4319 // FIXME: If the offset won't fit in 24-bits, compute the offset into a
4320 // scratch register. If DestReg is a virtual register, use it as the
4321 // scratch register; otherwise, create a new virtual register (to be
4322 // replaced by the scavenger at the end of PEI). That case can be optimized
4323 // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
4324 // register can be loaded with offset%8 and the add/sub can use an extending
4325 // instruction with LSL#3.
4326 // Currently the function handles any offsets but generates a poor sequence
4327 // of code.
4328 // assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
4329
4330 const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
4331 Register TmpReg = DestReg;
4332 if (TmpReg == AArch64::XZR)
4333 TmpReg = MBB.getParent()->getRegInfo().createVirtualRegister(
4334 &AArch64::GPR64RegClass);
4335 do {
4336 uint64_t ThisVal = std::min<uint64_t>(Offset, MaxEncodableValue);
4337 unsigned LocalShiftSize = 0;
4338 if (ThisVal > MaxEncoding) {
4339 ThisVal = ThisVal >> ShiftSize;
4340 LocalShiftSize = ShiftSize;
4341 }
4342 assert((ThisVal >> ShiftSize) <= MaxEncoding &&
4343 "Encoding cannot handle value that big");
4344
4345 Offset -= ThisVal << LocalShiftSize;
4346 if (Offset == 0)
4347 TmpReg = DestReg;
4348 auto MBI = BuildMI(MBB, MBBI, DL, TII->get(Opc), TmpReg)
4349 .addReg(SrcReg)
4350 .addImm(Sign * (int)ThisVal);
4351 if (ShiftSize)
4352 MBI = MBI.addImm(
4353 AArch64_AM::getShifterImm(AArch64_AM::LSL, LocalShiftSize));
4354 MBI = MBI.setMIFlag(Flag);
4355
4356 auto Change =
4357 VScale == 1
4358 ? StackOffset::getFixed(ThisVal << LocalShiftSize)
4359 : StackOffset::getScalable(VScale * (ThisVal << LocalShiftSize));
4360 if (Sign == -1 || Opc == AArch64::SUBXri || Opc == AArch64::SUBSXri)
4361 CFAOffset += Change;
4362 else
4363 CFAOffset -= Change;
4364 if (EmitCFAOffset && DestReg == TmpReg) {
4365 MachineFunction &MF = *MBB.getParent();
4366 const TargetSubtargetInfo &STI = MF.getSubtarget();
4367 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
4368
4369 unsigned CFIIndex = MF.addFrameInst(
4370 createDefCFA(TRI, FrameReg, DestReg, CFAOffset, VScale != 1));
4371 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
4372 .addCFIIndex(CFIIndex)
4373 .setMIFlags(Flag);
4374 }
4375
4376 if (NeedsWinCFI) {
4377 assert(Sign == 1 && "SEH directives should always have a positive sign");
4378 int Imm = (int)(ThisVal << LocalShiftSize);
4379 if ((DestReg == AArch64::FP && SrcReg == AArch64::SP) ||
4380 (SrcReg == AArch64::FP && DestReg == AArch64::SP)) {
4381 if (HasWinCFI)
4382 *HasWinCFI = true;
4383 if (Imm == 0)
4384 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_SetFP)).setMIFlag(Flag);
4385 else
4386 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_AddFP))
4387 .addImm(Imm)
4388 .setMIFlag(Flag);
4389 assert(Offset == 0 && "Expected remaining offset to be zero to "
4390 "emit a single SEH directive");
4391 } else if (DestReg == AArch64::SP) {
4392 if (HasWinCFI)
4393 *HasWinCFI = true;
4394 assert(SrcReg == AArch64::SP && "Unexpected SrcReg for SEH_StackAlloc");
4395 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
4396 .addImm(Imm)
4397 .setMIFlag(Flag);
4398 }
4399 }
4400
4401 SrcReg = TmpReg;
4402 } while (Offset);
4403 }
4404
emitFrameOffset(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,StackOffset Offset,const TargetInstrInfo * TII,MachineInstr::MIFlag Flag,bool SetNZCV,bool NeedsWinCFI,bool * HasWinCFI,bool EmitCFAOffset,StackOffset CFAOffset,unsigned FrameReg)4405 void llvm::emitFrameOffset(MachineBasicBlock &MBB,
4406 MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
4407 unsigned DestReg, unsigned SrcReg,
4408 StackOffset Offset, const TargetInstrInfo *TII,
4409 MachineInstr::MIFlag Flag, bool SetNZCV,
4410 bool NeedsWinCFI, bool *HasWinCFI,
4411 bool EmitCFAOffset, StackOffset CFAOffset,
4412 unsigned FrameReg) {
4413 // If a function is marked as arm_locally_streaming, then the runtime value of
4414 // vscale in the prologue/epilogue is different the runtime value of vscale
4415 // in the function's body. To avoid having to consider multiple vscales,
4416 // we can use `addsvl` to allocate any scalable stack-slots, which under
4417 // most circumstances will be only locals, not callee-save slots.
4418 const Function &F = MBB.getParent()->getFunction();
4419 bool UseSVL = F.hasFnAttribute("aarch64_pstate_sm_body");
4420
4421 int64_t Bytes, NumPredicateVectors, NumDataVectors;
4422 AArch64InstrInfo::decomposeStackOffsetForFrameOffsets(
4423 Offset, Bytes, NumPredicateVectors, NumDataVectors);
4424
4425 // First emit non-scalable frame offsets, or a simple 'mov'.
4426 if (Bytes || (!Offset && SrcReg != DestReg)) {
4427 assert((DestReg != AArch64::SP || Bytes % 8 == 0) &&
4428 "SP increment/decrement not 8-byte aligned");
4429 unsigned Opc = SetNZCV ? AArch64::ADDSXri : AArch64::ADDXri;
4430 if (Bytes < 0) {
4431 Bytes = -Bytes;
4432 Opc = SetNZCV ? AArch64::SUBSXri : AArch64::SUBXri;
4433 }
4434 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, Bytes, Opc, TII, Flag,
4435 NeedsWinCFI, HasWinCFI, EmitCFAOffset, CFAOffset,
4436 FrameReg);
4437 CFAOffset += (Opc == AArch64::ADDXri || Opc == AArch64::ADDSXri)
4438 ? StackOffset::getFixed(-Bytes)
4439 : StackOffset::getFixed(Bytes);
4440 SrcReg = DestReg;
4441 FrameReg = DestReg;
4442 }
4443
4444 assert(!(SetNZCV && (NumPredicateVectors || NumDataVectors)) &&
4445 "SetNZCV not supported with SVE vectors");
4446 assert(!(NeedsWinCFI && (NumPredicateVectors || NumDataVectors)) &&
4447 "WinCFI not supported with SVE vectors");
4448
4449 if (NumDataVectors) {
4450 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumDataVectors,
4451 UseSVL ? AArch64::ADDSVL_XXI : AArch64::ADDVL_XXI,
4452 TII, Flag, NeedsWinCFI, nullptr, EmitCFAOffset,
4453 CFAOffset, FrameReg);
4454 CFAOffset += StackOffset::getScalable(-NumDataVectors * 16);
4455 SrcReg = DestReg;
4456 }
4457
4458 if (NumPredicateVectors) {
4459 assert(DestReg != AArch64::SP && "Unaligned access to SP");
4460 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumPredicateVectors,
4461 UseSVL ? AArch64::ADDSPL_XXI : AArch64::ADDPL_XXI,
4462 TII, Flag, NeedsWinCFI, nullptr, EmitCFAOffset,
4463 CFAOffset, FrameReg);
4464 }
4465 }
4466
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS,VirtRegMap * VRM) const4467 MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
4468 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
4469 MachineBasicBlock::iterator InsertPt, int FrameIndex,
4470 LiveIntervals *LIS, VirtRegMap *VRM) const {
4471 // This is a bit of a hack. Consider this instruction:
4472 //
4473 // %0 = COPY %sp; GPR64all:%0
4474 //
4475 // We explicitly chose GPR64all for the virtual register so such a copy might
4476 // be eliminated by RegisterCoalescer. However, that may not be possible, and
4477 // %0 may even spill. We can't spill %sp, and since it is in the GPR64all
4478 // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
4479 //
4480 // To prevent that, we are going to constrain the %0 register class here.
4481 //
4482 // <rdar://problem/11522048>
4483 //
4484 if (MI.isFullCopy()) {
4485 Register DstReg = MI.getOperand(0).getReg();
4486 Register SrcReg = MI.getOperand(1).getReg();
4487 if (SrcReg == AArch64::SP && DstReg.isVirtual()) {
4488 MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
4489 return nullptr;
4490 }
4491 if (DstReg == AArch64::SP && SrcReg.isVirtual()) {
4492 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
4493 return nullptr;
4494 }
4495 // Nothing can folded with copy from/to NZCV.
4496 if (SrcReg == AArch64::NZCV || DstReg == AArch64::NZCV)
4497 return nullptr;
4498 }
4499
4500 // Handle the case where a copy is being spilled or filled but the source
4501 // and destination register class don't match. For example:
4502 //
4503 // %0 = COPY %xzr; GPR64common:%0
4504 //
4505 // In this case we can still safely fold away the COPY and generate the
4506 // following spill code:
4507 //
4508 // STRXui %xzr, %stack.0
4509 //
4510 // This also eliminates spilled cross register class COPYs (e.g. between x and
4511 // d regs) of the same size. For example:
4512 //
4513 // %0 = COPY %1; GPR64:%0, FPR64:%1
4514 //
4515 // will be filled as
4516 //
4517 // LDRDui %0, fi<#0>
4518 //
4519 // instead of
4520 //
4521 // LDRXui %Temp, fi<#0>
4522 // %0 = FMOV %Temp
4523 //
4524 if (MI.isCopy() && Ops.size() == 1 &&
4525 // Make sure we're only folding the explicit COPY defs/uses.
4526 (Ops[0] == 0 || Ops[0] == 1)) {
4527 bool IsSpill = Ops[0] == 0;
4528 bool IsFill = !IsSpill;
4529 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4530 const MachineRegisterInfo &MRI = MF.getRegInfo();
4531 MachineBasicBlock &MBB = *MI.getParent();
4532 const MachineOperand &DstMO = MI.getOperand(0);
4533 const MachineOperand &SrcMO = MI.getOperand(1);
4534 Register DstReg = DstMO.getReg();
4535 Register SrcReg = SrcMO.getReg();
4536 // This is slightly expensive to compute for physical regs since
4537 // getMinimalPhysRegClass is slow.
4538 auto getRegClass = [&](unsigned Reg) {
4539 return Register::isVirtualRegister(Reg) ? MRI.getRegClass(Reg)
4540 : TRI.getMinimalPhysRegClass(Reg);
4541 };
4542
4543 if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) {
4544 assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) ==
4545 TRI.getRegSizeInBits(*getRegClass(SrcReg)) &&
4546 "Mismatched register size in non subreg COPY");
4547 if (IsSpill)
4548 storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex,
4549 getRegClass(SrcReg), &TRI, Register());
4550 else
4551 loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex,
4552 getRegClass(DstReg), &TRI, Register());
4553 return &*--InsertPt;
4554 }
4555
4556 // Handle cases like spilling def of:
4557 //
4558 // %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0
4559 //
4560 // where the physical register source can be widened and stored to the full
4561 // virtual reg destination stack slot, in this case producing:
4562 //
4563 // STRXui %xzr, %stack.0
4564 //
4565 if (IsSpill && DstMO.isUndef() && SrcReg.isPhysical()) {
4566 assert(SrcMO.getSubReg() == 0 &&
4567 "Unexpected subreg on physical register");
4568 const TargetRegisterClass *SpillRC;
4569 unsigned SpillSubreg;
4570 switch (DstMO.getSubReg()) {
4571 default:
4572 SpillRC = nullptr;
4573 break;
4574 case AArch64::sub_32:
4575 case AArch64::ssub:
4576 if (AArch64::GPR32RegClass.contains(SrcReg)) {
4577 SpillRC = &AArch64::GPR64RegClass;
4578 SpillSubreg = AArch64::sub_32;
4579 } else if (AArch64::FPR32RegClass.contains(SrcReg)) {
4580 SpillRC = &AArch64::FPR64RegClass;
4581 SpillSubreg = AArch64::ssub;
4582 } else
4583 SpillRC = nullptr;
4584 break;
4585 case AArch64::dsub:
4586 if (AArch64::FPR64RegClass.contains(SrcReg)) {
4587 SpillRC = &AArch64::FPR128RegClass;
4588 SpillSubreg = AArch64::dsub;
4589 } else
4590 SpillRC = nullptr;
4591 break;
4592 }
4593
4594 if (SpillRC)
4595 if (unsigned WidenedSrcReg =
4596 TRI.getMatchingSuperReg(SrcReg, SpillSubreg, SpillRC)) {
4597 storeRegToStackSlot(MBB, InsertPt, WidenedSrcReg, SrcMO.isKill(),
4598 FrameIndex, SpillRC, &TRI, Register());
4599 return &*--InsertPt;
4600 }
4601 }
4602
4603 // Handle cases like filling use of:
4604 //
4605 // %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1
4606 //
4607 // where we can load the full virtual reg source stack slot, into the subreg
4608 // destination, in this case producing:
4609 //
4610 // LDRWui %0:sub_32<def,read-undef>, %stack.0
4611 //
4612 if (IsFill && SrcMO.getSubReg() == 0 && DstMO.isUndef()) {
4613 const TargetRegisterClass *FillRC;
4614 switch (DstMO.getSubReg()) {
4615 default:
4616 FillRC = nullptr;
4617 break;
4618 case AArch64::sub_32:
4619 FillRC = &AArch64::GPR32RegClass;
4620 break;
4621 case AArch64::ssub:
4622 FillRC = &AArch64::FPR32RegClass;
4623 break;
4624 case AArch64::dsub:
4625 FillRC = &AArch64::FPR64RegClass;
4626 break;
4627 }
4628
4629 if (FillRC) {
4630 assert(TRI.getRegSizeInBits(*getRegClass(SrcReg)) ==
4631 TRI.getRegSizeInBits(*FillRC) &&
4632 "Mismatched regclass size on folded subreg COPY");
4633 loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, FillRC, &TRI,
4634 Register());
4635 MachineInstr &LoadMI = *--InsertPt;
4636 MachineOperand &LoadDst = LoadMI.getOperand(0);
4637 assert(LoadDst.getSubReg() == 0 && "unexpected subreg on fill load");
4638 LoadDst.setSubReg(DstMO.getSubReg());
4639 LoadDst.setIsUndef();
4640 return &LoadMI;
4641 }
4642 }
4643 }
4644
4645 // Cannot fold.
4646 return nullptr;
4647 }
4648
isAArch64FrameOffsetLegal(const MachineInstr & MI,StackOffset & SOffset,bool * OutUseUnscaledOp,unsigned * OutUnscaledOp,int64_t * EmittableOffset)4649 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI,
4650 StackOffset &SOffset,
4651 bool *OutUseUnscaledOp,
4652 unsigned *OutUnscaledOp,
4653 int64_t *EmittableOffset) {
4654 // Set output values in case of early exit.
4655 if (EmittableOffset)
4656 *EmittableOffset = 0;
4657 if (OutUseUnscaledOp)
4658 *OutUseUnscaledOp = false;
4659 if (OutUnscaledOp)
4660 *OutUnscaledOp = 0;
4661
4662 // Exit early for structured vector spills/fills as they can't take an
4663 // immediate offset.
4664 switch (MI.getOpcode()) {
4665 default:
4666 break;
4667 case AArch64::LD1Twov2d:
4668 case AArch64::LD1Threev2d:
4669 case AArch64::LD1Fourv2d:
4670 case AArch64::LD1Twov1d:
4671 case AArch64::LD1Threev1d:
4672 case AArch64::LD1Fourv1d:
4673 case AArch64::ST1Twov2d:
4674 case AArch64::ST1Threev2d:
4675 case AArch64::ST1Fourv2d:
4676 case AArch64::ST1Twov1d:
4677 case AArch64::ST1Threev1d:
4678 case AArch64::ST1Fourv1d:
4679 case AArch64::ST1i8:
4680 case AArch64::ST1i16:
4681 case AArch64::ST1i32:
4682 case AArch64::ST1i64:
4683 case AArch64::IRG:
4684 case AArch64::IRGstack:
4685 case AArch64::STGloop:
4686 case AArch64::STZGloop:
4687 return AArch64FrameOffsetCannotUpdate;
4688 }
4689
4690 // Get the min/max offset and the scale.
4691 TypeSize ScaleValue(0U, false);
4692 unsigned Width;
4693 int64_t MinOff, MaxOff;
4694 if (!AArch64InstrInfo::getMemOpInfo(MI.getOpcode(), ScaleValue, Width, MinOff,
4695 MaxOff))
4696 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
4697
4698 // Construct the complete offset.
4699 bool IsMulVL = ScaleValue.isScalable();
4700 unsigned Scale = ScaleValue.getKnownMinValue();
4701 int64_t Offset = IsMulVL ? SOffset.getScalable() : SOffset.getFixed();
4702
4703 const MachineOperand &ImmOpnd =
4704 MI.getOperand(AArch64InstrInfo::getLoadStoreImmIdx(MI.getOpcode()));
4705 Offset += ImmOpnd.getImm() * Scale;
4706
4707 // If the offset doesn't match the scale, we rewrite the instruction to
4708 // use the unscaled instruction instead. Likewise, if we have a negative
4709 // offset and there is an unscaled op to use.
4710 std::optional<unsigned> UnscaledOp =
4711 AArch64InstrInfo::getUnscaledLdSt(MI.getOpcode());
4712 bool useUnscaledOp = UnscaledOp && (Offset % Scale || Offset < 0);
4713 if (useUnscaledOp &&
4714 !AArch64InstrInfo::getMemOpInfo(*UnscaledOp, ScaleValue, Width, MinOff,
4715 MaxOff))
4716 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
4717
4718 Scale = ScaleValue.getKnownMinValue();
4719 assert(IsMulVL == ScaleValue.isScalable() &&
4720 "Unscaled opcode has different value for scalable");
4721
4722 int64_t Remainder = Offset % Scale;
4723 assert(!(Remainder && useUnscaledOp) &&
4724 "Cannot have remainder when using unscaled op");
4725
4726 assert(MinOff < MaxOff && "Unexpected Min/Max offsets");
4727 int64_t NewOffset = Offset / Scale;
4728 if (MinOff <= NewOffset && NewOffset <= MaxOff)
4729 Offset = Remainder;
4730 else {
4731 NewOffset = NewOffset < 0 ? MinOff : MaxOff;
4732 Offset = Offset - NewOffset * Scale + Remainder;
4733 }
4734
4735 if (EmittableOffset)
4736 *EmittableOffset = NewOffset;
4737 if (OutUseUnscaledOp)
4738 *OutUseUnscaledOp = useUnscaledOp;
4739 if (OutUnscaledOp && UnscaledOp)
4740 *OutUnscaledOp = *UnscaledOp;
4741
4742 if (IsMulVL)
4743 SOffset = StackOffset::get(SOffset.getFixed(), Offset);
4744 else
4745 SOffset = StackOffset::get(Offset, SOffset.getScalable());
4746 return AArch64FrameOffsetCanUpdate |
4747 (SOffset ? 0 : AArch64FrameOffsetIsLegal);
4748 }
4749
rewriteAArch64FrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,StackOffset & Offset,const AArch64InstrInfo * TII)4750 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
4751 unsigned FrameReg, StackOffset &Offset,
4752 const AArch64InstrInfo *TII) {
4753 unsigned Opcode = MI.getOpcode();
4754 unsigned ImmIdx = FrameRegIdx + 1;
4755
4756 if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
4757 Offset += StackOffset::getFixed(MI.getOperand(ImmIdx).getImm());
4758 emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
4759 MI.getOperand(0).getReg(), FrameReg, Offset, TII,
4760 MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
4761 MI.eraseFromParent();
4762 Offset = StackOffset();
4763 return true;
4764 }
4765
4766 int64_t NewOffset;
4767 unsigned UnscaledOp;
4768 bool UseUnscaledOp;
4769 int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
4770 &UnscaledOp, &NewOffset);
4771 if (Status & AArch64FrameOffsetCanUpdate) {
4772 if (Status & AArch64FrameOffsetIsLegal)
4773 // Replace the FrameIndex with FrameReg.
4774 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
4775 if (UseUnscaledOp)
4776 MI.setDesc(TII->get(UnscaledOp));
4777
4778 MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
4779 return !Offset;
4780 }
4781
4782 return false;
4783 }
4784
getNop() const4785 MCInst AArch64InstrInfo::getNop() const {
4786 return MCInstBuilder(AArch64::HINT).addImm(0);
4787 }
4788
4789 // AArch64 supports MachineCombiner.
useMachineCombiner() const4790 bool AArch64InstrInfo::useMachineCombiner() const { return true; }
4791
4792 // True when Opc sets flag
isCombineInstrSettingFlag(unsigned Opc)4793 static bool isCombineInstrSettingFlag(unsigned Opc) {
4794 switch (Opc) {
4795 case AArch64::ADDSWrr:
4796 case AArch64::ADDSWri:
4797 case AArch64::ADDSXrr:
4798 case AArch64::ADDSXri:
4799 case AArch64::SUBSWrr:
4800 case AArch64::SUBSXrr:
4801 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4802 case AArch64::SUBSWri:
4803 case AArch64::SUBSXri:
4804 return true;
4805 default:
4806 break;
4807 }
4808 return false;
4809 }
4810
4811 // 32b Opcodes that can be combined with a MUL
isCombineInstrCandidate32(unsigned Opc)4812 static bool isCombineInstrCandidate32(unsigned Opc) {
4813 switch (Opc) {
4814 case AArch64::ADDWrr:
4815 case AArch64::ADDWri:
4816 case AArch64::SUBWrr:
4817 case AArch64::ADDSWrr:
4818 case AArch64::ADDSWri:
4819 case AArch64::SUBSWrr:
4820 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4821 case AArch64::SUBWri:
4822 case AArch64::SUBSWri:
4823 return true;
4824 default:
4825 break;
4826 }
4827 return false;
4828 }
4829
4830 // 64b Opcodes that can be combined with a MUL
isCombineInstrCandidate64(unsigned Opc)4831 static bool isCombineInstrCandidate64(unsigned Opc) {
4832 switch (Opc) {
4833 case AArch64::ADDXrr:
4834 case AArch64::ADDXri:
4835 case AArch64::SUBXrr:
4836 case AArch64::ADDSXrr:
4837 case AArch64::ADDSXri:
4838 case AArch64::SUBSXrr:
4839 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4840 case AArch64::SUBXri:
4841 case AArch64::SUBSXri:
4842 case AArch64::ADDv8i8:
4843 case AArch64::ADDv16i8:
4844 case AArch64::ADDv4i16:
4845 case AArch64::ADDv8i16:
4846 case AArch64::ADDv2i32:
4847 case AArch64::ADDv4i32:
4848 case AArch64::SUBv8i8:
4849 case AArch64::SUBv16i8:
4850 case AArch64::SUBv4i16:
4851 case AArch64::SUBv8i16:
4852 case AArch64::SUBv2i32:
4853 case AArch64::SUBv4i32:
4854 return true;
4855 default:
4856 break;
4857 }
4858 return false;
4859 }
4860
4861 // FP Opcodes that can be combined with a FMUL.
isCombineInstrCandidateFP(const MachineInstr & Inst)4862 static bool isCombineInstrCandidateFP(const MachineInstr &Inst) {
4863 switch (Inst.getOpcode()) {
4864 default:
4865 break;
4866 case AArch64::FADDHrr:
4867 case AArch64::FADDSrr:
4868 case AArch64::FADDDrr:
4869 case AArch64::FADDv4f16:
4870 case AArch64::FADDv8f16:
4871 case AArch64::FADDv2f32:
4872 case AArch64::FADDv2f64:
4873 case AArch64::FADDv4f32:
4874 case AArch64::FSUBHrr:
4875 case AArch64::FSUBSrr:
4876 case AArch64::FSUBDrr:
4877 case AArch64::FSUBv4f16:
4878 case AArch64::FSUBv8f16:
4879 case AArch64::FSUBv2f32:
4880 case AArch64::FSUBv2f64:
4881 case AArch64::FSUBv4f32:
4882 TargetOptions Options = Inst.getParent()->getParent()->getTarget().Options;
4883 // We can fuse FADD/FSUB with FMUL, if fusion is either allowed globally by
4884 // the target options or if FADD/FSUB has the contract fast-math flag.
4885 return Options.UnsafeFPMath ||
4886 Options.AllowFPOpFusion == FPOpFusion::Fast ||
4887 Inst.getFlag(MachineInstr::FmContract);
4888 return true;
4889 }
4890 return false;
4891 }
4892
4893 // Opcodes that can be combined with a MUL
isCombineInstrCandidate(unsigned Opc)4894 static bool isCombineInstrCandidate(unsigned Opc) {
4895 return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
4896 }
4897
4898 //
4899 // Utility routine that checks if \param MO is defined by an
4900 // \param CombineOpc instruction in the basic block \param MBB
canCombine(MachineBasicBlock & MBB,MachineOperand & MO,unsigned CombineOpc,unsigned ZeroReg=0,bool CheckZeroReg=false)4901 static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO,
4902 unsigned CombineOpc, unsigned ZeroReg = 0,
4903 bool CheckZeroReg = false) {
4904 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4905 MachineInstr *MI = nullptr;
4906
4907 if (MO.isReg() && MO.getReg().isVirtual())
4908 MI = MRI.getUniqueVRegDef(MO.getReg());
4909 // And it needs to be in the trace (otherwise, it won't have a depth).
4910 if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != CombineOpc)
4911 return false;
4912 // Must only used by the user we combine with.
4913 if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
4914 return false;
4915
4916 if (CheckZeroReg) {
4917 assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
4918 MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
4919 MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
4920 // The third input reg must be zero.
4921 if (MI->getOperand(3).getReg() != ZeroReg)
4922 return false;
4923 }
4924
4925 if (isCombineInstrSettingFlag(CombineOpc) &&
4926 MI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
4927 return false;
4928
4929 return true;
4930 }
4931
4932 //
4933 // Is \param MO defined by an integer multiply and can be combined?
canCombineWithMUL(MachineBasicBlock & MBB,MachineOperand & MO,unsigned MulOpc,unsigned ZeroReg)4934 static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
4935 unsigned MulOpc, unsigned ZeroReg) {
4936 return canCombine(MBB, MO, MulOpc, ZeroReg, true);
4937 }
4938
4939 //
4940 // Is \param MO defined by a floating-point multiply and can be combined?
canCombineWithFMUL(MachineBasicBlock & MBB,MachineOperand & MO,unsigned MulOpc)4941 static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO,
4942 unsigned MulOpc) {
4943 return canCombine(MBB, MO, MulOpc);
4944 }
4945
4946 // TODO: There are many more machine instruction opcodes to match:
4947 // 1. Other data types (integer, vectors)
4948 // 2. Other math / logic operations (xor, or)
4949 // 3. Other forms of the same operation (intrinsics and other variants)
isAssociativeAndCommutative(const MachineInstr & Inst,bool Invert) const4950 bool AArch64InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
4951 bool Invert) const {
4952 if (Invert)
4953 return false;
4954 switch (Inst.getOpcode()) {
4955 // == Floating-point types ==
4956 // -- Floating-point instructions --
4957 case AArch64::FADDHrr:
4958 case AArch64::FADDSrr:
4959 case AArch64::FADDDrr:
4960 case AArch64::FMULHrr:
4961 case AArch64::FMULSrr:
4962 case AArch64::FMULDrr:
4963 case AArch64::FMULX16:
4964 case AArch64::FMULX32:
4965 case AArch64::FMULX64:
4966 // -- Advanced SIMD instructions --
4967 case AArch64::FADDv4f16:
4968 case AArch64::FADDv8f16:
4969 case AArch64::FADDv2f32:
4970 case AArch64::FADDv4f32:
4971 case AArch64::FADDv2f64:
4972 case AArch64::FMULv4f16:
4973 case AArch64::FMULv8f16:
4974 case AArch64::FMULv2f32:
4975 case AArch64::FMULv4f32:
4976 case AArch64::FMULv2f64:
4977 case AArch64::FMULXv4f16:
4978 case AArch64::FMULXv8f16:
4979 case AArch64::FMULXv2f32:
4980 case AArch64::FMULXv4f32:
4981 case AArch64::FMULXv2f64:
4982 // -- SVE instructions --
4983 // Opcodes FMULX_ZZZ_? don't exist because there is no unpredicated FMULX
4984 // in the SVE instruction set (though there are predicated ones).
4985 case AArch64::FADD_ZZZ_H:
4986 case AArch64::FADD_ZZZ_S:
4987 case AArch64::FADD_ZZZ_D:
4988 case AArch64::FMUL_ZZZ_H:
4989 case AArch64::FMUL_ZZZ_S:
4990 case AArch64::FMUL_ZZZ_D:
4991 return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath ||
4992 (Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
4993 Inst.getFlag(MachineInstr::MIFlag::FmNsz));
4994
4995 // == Integer types ==
4996 // -- Base instructions --
4997 // Opcodes MULWrr and MULXrr don't exist because
4998 // `MUL <Wd>, <Wn>, <Wm>` and `MUL <Xd>, <Xn>, <Xm>` are aliases of
4999 // `MADD <Wd>, <Wn>, <Wm>, WZR` and `MADD <Xd>, <Xn>, <Xm>, XZR` respectively.
5000 // The machine-combiner does not support three-source-operands machine
5001 // instruction. So we cannot reassociate MULs.
5002 case AArch64::ADDWrr:
5003 case AArch64::ADDXrr:
5004 case AArch64::ANDWrr:
5005 case AArch64::ANDXrr:
5006 case AArch64::ORRWrr:
5007 case AArch64::ORRXrr:
5008 case AArch64::EORWrr:
5009 case AArch64::EORXrr:
5010 case AArch64::EONWrr:
5011 case AArch64::EONXrr:
5012 // -- Advanced SIMD instructions --
5013 // Opcodes MULv1i64 and MULv2i64 don't exist because there is no 64-bit MUL
5014 // in the Advanced SIMD instruction set.
5015 case AArch64::ADDv8i8:
5016 case AArch64::ADDv16i8:
5017 case AArch64::ADDv4i16:
5018 case AArch64::ADDv8i16:
5019 case AArch64::ADDv2i32:
5020 case AArch64::ADDv4i32:
5021 case AArch64::ADDv1i64:
5022 case AArch64::ADDv2i64:
5023 case AArch64::MULv8i8:
5024 case AArch64::MULv16i8:
5025 case AArch64::MULv4i16:
5026 case AArch64::MULv8i16:
5027 case AArch64::MULv2i32:
5028 case AArch64::MULv4i32:
5029 case AArch64::ANDv8i8:
5030 case AArch64::ANDv16i8:
5031 case AArch64::ORRv8i8:
5032 case AArch64::ORRv16i8:
5033 case AArch64::EORv8i8:
5034 case AArch64::EORv16i8:
5035 // -- SVE instructions --
5036 case AArch64::ADD_ZZZ_B:
5037 case AArch64::ADD_ZZZ_H:
5038 case AArch64::ADD_ZZZ_S:
5039 case AArch64::ADD_ZZZ_D:
5040 case AArch64::MUL_ZZZ_B:
5041 case AArch64::MUL_ZZZ_H:
5042 case AArch64::MUL_ZZZ_S:
5043 case AArch64::MUL_ZZZ_D:
5044 case AArch64::AND_ZZZ:
5045 case AArch64::ORR_ZZZ:
5046 case AArch64::EOR_ZZZ:
5047 return true;
5048
5049 default:
5050 return false;
5051 }
5052 }
5053
5054 /// Find instructions that can be turned into madd.
getMaddPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns)5055 static bool getMaddPatterns(MachineInstr &Root,
5056 SmallVectorImpl<MachineCombinerPattern> &Patterns) {
5057 unsigned Opc = Root.getOpcode();
5058 MachineBasicBlock &MBB = *Root.getParent();
5059 bool Found = false;
5060
5061 if (!isCombineInstrCandidate(Opc))
5062 return false;
5063 if (isCombineInstrSettingFlag(Opc)) {
5064 int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
5065 // When NZCV is live bail out.
5066 if (Cmp_NZCV == -1)
5067 return false;
5068 unsigned NewOpc = convertToNonFlagSettingOpc(Root);
5069 // When opcode can't change bail out.
5070 // CHECKME: do we miss any cases for opcode conversion?
5071 if (NewOpc == Opc)
5072 return false;
5073 Opc = NewOpc;
5074 }
5075
5076 auto setFound = [&](int Opcode, int Operand, unsigned ZeroReg,
5077 MachineCombinerPattern Pattern) {
5078 if (canCombineWithMUL(MBB, Root.getOperand(Operand), Opcode, ZeroReg)) {
5079 Patterns.push_back(Pattern);
5080 Found = true;
5081 }
5082 };
5083
5084 auto setVFound = [&](int Opcode, int Operand, MachineCombinerPattern Pattern) {
5085 if (canCombine(MBB, Root.getOperand(Operand), Opcode)) {
5086 Patterns.push_back(Pattern);
5087 Found = true;
5088 }
5089 };
5090
5091 typedef MachineCombinerPattern MCP;
5092
5093 switch (Opc) {
5094 default:
5095 break;
5096 case AArch64::ADDWrr:
5097 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
5098 "ADDWrr does not have register operands");
5099 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDW_OP1);
5100 setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULADDW_OP2);
5101 break;
5102 case AArch64::ADDXrr:
5103 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDX_OP1);
5104 setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULADDX_OP2);
5105 break;
5106 case AArch64::SUBWrr:
5107 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBW_OP1);
5108 setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULSUBW_OP2);
5109 break;
5110 case AArch64::SUBXrr:
5111 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBX_OP1);
5112 setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULSUBX_OP2);
5113 break;
5114 case AArch64::ADDWri:
5115 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDWI_OP1);
5116 break;
5117 case AArch64::ADDXri:
5118 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDXI_OP1);
5119 break;
5120 case AArch64::SUBWri:
5121 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBWI_OP1);
5122 break;
5123 case AArch64::SUBXri:
5124 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBXI_OP1);
5125 break;
5126 case AArch64::ADDv8i8:
5127 setVFound(AArch64::MULv8i8, 1, MCP::MULADDv8i8_OP1);
5128 setVFound(AArch64::MULv8i8, 2, MCP::MULADDv8i8_OP2);
5129 break;
5130 case AArch64::ADDv16i8:
5131 setVFound(AArch64::MULv16i8, 1, MCP::MULADDv16i8_OP1);
5132 setVFound(AArch64::MULv16i8, 2, MCP::MULADDv16i8_OP2);
5133 break;
5134 case AArch64::ADDv4i16:
5135 setVFound(AArch64::MULv4i16, 1, MCP::MULADDv4i16_OP1);
5136 setVFound(AArch64::MULv4i16, 2, MCP::MULADDv4i16_OP2);
5137 setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULADDv4i16_indexed_OP1);
5138 setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULADDv4i16_indexed_OP2);
5139 break;
5140 case AArch64::ADDv8i16:
5141 setVFound(AArch64::MULv8i16, 1, MCP::MULADDv8i16_OP1);
5142 setVFound(AArch64::MULv8i16, 2, MCP::MULADDv8i16_OP2);
5143 setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULADDv8i16_indexed_OP1);
5144 setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULADDv8i16_indexed_OP2);
5145 break;
5146 case AArch64::ADDv2i32:
5147 setVFound(AArch64::MULv2i32, 1, MCP::MULADDv2i32_OP1);
5148 setVFound(AArch64::MULv2i32, 2, MCP::MULADDv2i32_OP2);
5149 setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULADDv2i32_indexed_OP1);
5150 setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULADDv2i32_indexed_OP2);
5151 break;
5152 case AArch64::ADDv4i32:
5153 setVFound(AArch64::MULv4i32, 1, MCP::MULADDv4i32_OP1);
5154 setVFound(AArch64::MULv4i32, 2, MCP::MULADDv4i32_OP2);
5155 setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULADDv4i32_indexed_OP1);
5156 setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULADDv4i32_indexed_OP2);
5157 break;
5158 case AArch64::SUBv8i8:
5159 setVFound(AArch64::MULv8i8, 1, MCP::MULSUBv8i8_OP1);
5160 setVFound(AArch64::MULv8i8, 2, MCP::MULSUBv8i8_OP2);
5161 break;
5162 case AArch64::SUBv16i8:
5163 setVFound(AArch64::MULv16i8, 1, MCP::MULSUBv16i8_OP1);
5164 setVFound(AArch64::MULv16i8, 2, MCP::MULSUBv16i8_OP2);
5165 break;
5166 case AArch64::SUBv4i16:
5167 setVFound(AArch64::MULv4i16, 1, MCP::MULSUBv4i16_OP1);
5168 setVFound(AArch64::MULv4i16, 2, MCP::MULSUBv4i16_OP2);
5169 setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULSUBv4i16_indexed_OP1);
5170 setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULSUBv4i16_indexed_OP2);
5171 break;
5172 case AArch64::SUBv8i16:
5173 setVFound(AArch64::MULv8i16, 1, MCP::MULSUBv8i16_OP1);
5174 setVFound(AArch64::MULv8i16, 2, MCP::MULSUBv8i16_OP2);
5175 setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULSUBv8i16_indexed_OP1);
5176 setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULSUBv8i16_indexed_OP2);
5177 break;
5178 case AArch64::SUBv2i32:
5179 setVFound(AArch64::MULv2i32, 1, MCP::MULSUBv2i32_OP1);
5180 setVFound(AArch64::MULv2i32, 2, MCP::MULSUBv2i32_OP2);
5181 setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULSUBv2i32_indexed_OP1);
5182 setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULSUBv2i32_indexed_OP2);
5183 break;
5184 case AArch64::SUBv4i32:
5185 setVFound(AArch64::MULv4i32, 1, MCP::MULSUBv4i32_OP1);
5186 setVFound(AArch64::MULv4i32, 2, MCP::MULSUBv4i32_OP2);
5187 setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULSUBv4i32_indexed_OP1);
5188 setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULSUBv4i32_indexed_OP2);
5189 break;
5190 }
5191 return Found;
5192 }
5193 /// Floating-Point Support
5194
5195 /// Find instructions that can be turned into madd.
getFMAPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns)5196 static bool getFMAPatterns(MachineInstr &Root,
5197 SmallVectorImpl<MachineCombinerPattern> &Patterns) {
5198
5199 if (!isCombineInstrCandidateFP(Root))
5200 return false;
5201
5202 MachineBasicBlock &MBB = *Root.getParent();
5203 bool Found = false;
5204
5205 auto Match = [&](int Opcode, int Operand,
5206 MachineCombinerPattern Pattern) -> bool {
5207 if (canCombineWithFMUL(MBB, Root.getOperand(Operand), Opcode)) {
5208 Patterns.push_back(Pattern);
5209 return true;
5210 }
5211 return false;
5212 };
5213
5214 typedef MachineCombinerPattern MCP;
5215
5216 switch (Root.getOpcode()) {
5217 default:
5218 assert(false && "Unsupported FP instruction in combiner\n");
5219 break;
5220 case AArch64::FADDHrr:
5221 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
5222 "FADDHrr does not have register operands");
5223
5224 Found = Match(AArch64::FMULHrr, 1, MCP::FMULADDH_OP1);
5225 Found |= Match(AArch64::FMULHrr, 2, MCP::FMULADDH_OP2);
5226 break;
5227 case AArch64::FADDSrr:
5228 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
5229 "FADDSrr does not have register operands");
5230
5231 Found |= Match(AArch64::FMULSrr, 1, MCP::FMULADDS_OP1) ||
5232 Match(AArch64::FMULv1i32_indexed, 1, MCP::FMLAv1i32_indexed_OP1);
5233
5234 Found |= Match(AArch64::FMULSrr, 2, MCP::FMULADDS_OP2) ||
5235 Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLAv1i32_indexed_OP2);
5236 break;
5237 case AArch64::FADDDrr:
5238 Found |= Match(AArch64::FMULDrr, 1, MCP::FMULADDD_OP1) ||
5239 Match(AArch64::FMULv1i64_indexed, 1, MCP::FMLAv1i64_indexed_OP1);
5240
5241 Found |= Match(AArch64::FMULDrr, 2, MCP::FMULADDD_OP2) ||
5242 Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLAv1i64_indexed_OP2);
5243 break;
5244 case AArch64::FADDv4f16:
5245 Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLAv4i16_indexed_OP1) ||
5246 Match(AArch64::FMULv4f16, 1, MCP::FMLAv4f16_OP1);
5247
5248 Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLAv4i16_indexed_OP2) ||
5249 Match(AArch64::FMULv4f16, 2, MCP::FMLAv4f16_OP2);
5250 break;
5251 case AArch64::FADDv8f16:
5252 Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLAv8i16_indexed_OP1) ||
5253 Match(AArch64::FMULv8f16, 1, MCP::FMLAv8f16_OP1);
5254
5255 Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLAv8i16_indexed_OP2) ||
5256 Match(AArch64::FMULv8f16, 2, MCP::FMLAv8f16_OP2);
5257 break;
5258 case AArch64::FADDv2f32:
5259 Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLAv2i32_indexed_OP1) ||
5260 Match(AArch64::FMULv2f32, 1, MCP::FMLAv2f32_OP1);
5261
5262 Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLAv2i32_indexed_OP2) ||
5263 Match(AArch64::FMULv2f32, 2, MCP::FMLAv2f32_OP2);
5264 break;
5265 case AArch64::FADDv2f64:
5266 Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLAv2i64_indexed_OP1) ||
5267 Match(AArch64::FMULv2f64, 1, MCP::FMLAv2f64_OP1);
5268
5269 Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLAv2i64_indexed_OP2) ||
5270 Match(AArch64::FMULv2f64, 2, MCP::FMLAv2f64_OP2);
5271 break;
5272 case AArch64::FADDv4f32:
5273 Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLAv4i32_indexed_OP1) ||
5274 Match(AArch64::FMULv4f32, 1, MCP::FMLAv4f32_OP1);
5275
5276 Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLAv4i32_indexed_OP2) ||
5277 Match(AArch64::FMULv4f32, 2, MCP::FMLAv4f32_OP2);
5278 break;
5279 case AArch64::FSUBHrr:
5280 Found = Match(AArch64::FMULHrr, 1, MCP::FMULSUBH_OP1);
5281 Found |= Match(AArch64::FMULHrr, 2, MCP::FMULSUBH_OP2);
5282 Found |= Match(AArch64::FNMULHrr, 1, MCP::FNMULSUBH_OP1);
5283 break;
5284 case AArch64::FSUBSrr:
5285 Found = Match(AArch64::FMULSrr, 1, MCP::FMULSUBS_OP1);
5286
5287 Found |= Match(AArch64::FMULSrr, 2, MCP::FMULSUBS_OP2) ||
5288 Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLSv1i32_indexed_OP2);
5289
5290 Found |= Match(AArch64::FNMULSrr, 1, MCP::FNMULSUBS_OP1);
5291 break;
5292 case AArch64::FSUBDrr:
5293 Found = Match(AArch64::FMULDrr, 1, MCP::FMULSUBD_OP1);
5294
5295 Found |= Match(AArch64::FMULDrr, 2, MCP::FMULSUBD_OP2) ||
5296 Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLSv1i64_indexed_OP2);
5297
5298 Found |= Match(AArch64::FNMULDrr, 1, MCP::FNMULSUBD_OP1);
5299 break;
5300 case AArch64::FSUBv4f16:
5301 Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLSv4i16_indexed_OP2) ||
5302 Match(AArch64::FMULv4f16, 2, MCP::FMLSv4f16_OP2);
5303
5304 Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLSv4i16_indexed_OP1) ||
5305 Match(AArch64::FMULv4f16, 1, MCP::FMLSv4f16_OP1);
5306 break;
5307 case AArch64::FSUBv8f16:
5308 Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLSv8i16_indexed_OP2) ||
5309 Match(AArch64::FMULv8f16, 2, MCP::FMLSv8f16_OP2);
5310
5311 Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLSv8i16_indexed_OP1) ||
5312 Match(AArch64::FMULv8f16, 1, MCP::FMLSv8f16_OP1);
5313 break;
5314 case AArch64::FSUBv2f32:
5315 Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLSv2i32_indexed_OP2) ||
5316 Match(AArch64::FMULv2f32, 2, MCP::FMLSv2f32_OP2);
5317
5318 Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLSv2i32_indexed_OP1) ||
5319 Match(AArch64::FMULv2f32, 1, MCP::FMLSv2f32_OP1);
5320 break;
5321 case AArch64::FSUBv2f64:
5322 Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLSv2i64_indexed_OP2) ||
5323 Match(AArch64::FMULv2f64, 2, MCP::FMLSv2f64_OP2);
5324
5325 Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLSv2i64_indexed_OP1) ||
5326 Match(AArch64::FMULv2f64, 1, MCP::FMLSv2f64_OP1);
5327 break;
5328 case AArch64::FSUBv4f32:
5329 Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLSv4i32_indexed_OP2) ||
5330 Match(AArch64::FMULv4f32, 2, MCP::FMLSv4f32_OP2);
5331
5332 Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLSv4i32_indexed_OP1) ||
5333 Match(AArch64::FMULv4f32, 1, MCP::FMLSv4f32_OP1);
5334 break;
5335 }
5336 return Found;
5337 }
5338
getFMULPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns)5339 static bool getFMULPatterns(MachineInstr &Root,
5340 SmallVectorImpl<MachineCombinerPattern> &Patterns) {
5341 MachineBasicBlock &MBB = *Root.getParent();
5342 bool Found = false;
5343
5344 auto Match = [&](unsigned Opcode, int Operand,
5345 MachineCombinerPattern Pattern) -> bool {
5346 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
5347 MachineOperand &MO = Root.getOperand(Operand);
5348 MachineInstr *MI = nullptr;
5349 if (MO.isReg() && MO.getReg().isVirtual())
5350 MI = MRI.getUniqueVRegDef(MO.getReg());
5351 // Ignore No-op COPYs in FMUL(COPY(DUP(..)))
5352 if (MI && MI->getOpcode() == TargetOpcode::COPY &&
5353 MI->getOperand(1).getReg().isVirtual())
5354 MI = MRI.getUniqueVRegDef(MI->getOperand(1).getReg());
5355 if (MI && MI->getOpcode() == Opcode) {
5356 Patterns.push_back(Pattern);
5357 return true;
5358 }
5359 return false;
5360 };
5361
5362 typedef MachineCombinerPattern MCP;
5363
5364 switch (Root.getOpcode()) {
5365 default:
5366 return false;
5367 case AArch64::FMULv2f32:
5368 Found = Match(AArch64::DUPv2i32lane, 1, MCP::FMULv2i32_indexed_OP1);
5369 Found |= Match(AArch64::DUPv2i32lane, 2, MCP::FMULv2i32_indexed_OP2);
5370 break;
5371 case AArch64::FMULv2f64:
5372 Found = Match(AArch64::DUPv2i64lane, 1, MCP::FMULv2i64_indexed_OP1);
5373 Found |= Match(AArch64::DUPv2i64lane, 2, MCP::FMULv2i64_indexed_OP2);
5374 break;
5375 case AArch64::FMULv4f16:
5376 Found = Match(AArch64::DUPv4i16lane, 1, MCP::FMULv4i16_indexed_OP1);
5377 Found |= Match(AArch64::DUPv4i16lane, 2, MCP::FMULv4i16_indexed_OP2);
5378 break;
5379 case AArch64::FMULv4f32:
5380 Found = Match(AArch64::DUPv4i32lane, 1, MCP::FMULv4i32_indexed_OP1);
5381 Found |= Match(AArch64::DUPv4i32lane, 2, MCP::FMULv4i32_indexed_OP2);
5382 break;
5383 case AArch64::FMULv8f16:
5384 Found = Match(AArch64::DUPv8i16lane, 1, MCP::FMULv8i16_indexed_OP1);
5385 Found |= Match(AArch64::DUPv8i16lane, 2, MCP::FMULv8i16_indexed_OP2);
5386 break;
5387 }
5388
5389 return Found;
5390 }
5391
5392 /// Return true when a code sequence can improve throughput. It
5393 /// should be called only for instructions in loops.
5394 /// \param Pattern - combiner pattern
isThroughputPattern(MachineCombinerPattern Pattern) const5395 bool AArch64InstrInfo::isThroughputPattern(
5396 MachineCombinerPattern Pattern) const {
5397 switch (Pattern) {
5398 default:
5399 break;
5400 case MachineCombinerPattern::FMULADDH_OP1:
5401 case MachineCombinerPattern::FMULADDH_OP2:
5402 case MachineCombinerPattern::FMULSUBH_OP1:
5403 case MachineCombinerPattern::FMULSUBH_OP2:
5404 case MachineCombinerPattern::FMULADDS_OP1:
5405 case MachineCombinerPattern::FMULADDS_OP2:
5406 case MachineCombinerPattern::FMULSUBS_OP1:
5407 case MachineCombinerPattern::FMULSUBS_OP2:
5408 case MachineCombinerPattern::FMULADDD_OP1:
5409 case MachineCombinerPattern::FMULADDD_OP2:
5410 case MachineCombinerPattern::FMULSUBD_OP1:
5411 case MachineCombinerPattern::FMULSUBD_OP2:
5412 case MachineCombinerPattern::FNMULSUBH_OP1:
5413 case MachineCombinerPattern::FNMULSUBS_OP1:
5414 case MachineCombinerPattern::FNMULSUBD_OP1:
5415 case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
5416 case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
5417 case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
5418 case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
5419 case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
5420 case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
5421 case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
5422 case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
5423 case MachineCombinerPattern::FMLAv4f16_OP2:
5424 case MachineCombinerPattern::FMLAv4f16_OP1:
5425 case MachineCombinerPattern::FMLAv8f16_OP1:
5426 case MachineCombinerPattern::FMLAv8f16_OP2:
5427 case MachineCombinerPattern::FMLAv2f32_OP2:
5428 case MachineCombinerPattern::FMLAv2f32_OP1:
5429 case MachineCombinerPattern::FMLAv2f64_OP1:
5430 case MachineCombinerPattern::FMLAv2f64_OP2:
5431 case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
5432 case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
5433 case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
5434 case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
5435 case MachineCombinerPattern::FMLAv4f32_OP1:
5436 case MachineCombinerPattern::FMLAv4f32_OP2:
5437 case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
5438 case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
5439 case MachineCombinerPattern::FMLSv4i16_indexed_OP1:
5440 case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
5441 case MachineCombinerPattern::FMLSv8i16_indexed_OP1:
5442 case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
5443 case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
5444 case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
5445 case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
5446 case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
5447 case MachineCombinerPattern::FMLSv4f16_OP1:
5448 case MachineCombinerPattern::FMLSv4f16_OP2:
5449 case MachineCombinerPattern::FMLSv8f16_OP1:
5450 case MachineCombinerPattern::FMLSv8f16_OP2:
5451 case MachineCombinerPattern::FMLSv2f32_OP2:
5452 case MachineCombinerPattern::FMLSv2f64_OP2:
5453 case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
5454 case MachineCombinerPattern::FMLSv4f32_OP2:
5455 case MachineCombinerPattern::FMULv2i32_indexed_OP1:
5456 case MachineCombinerPattern::FMULv2i32_indexed_OP2:
5457 case MachineCombinerPattern::FMULv2i64_indexed_OP1:
5458 case MachineCombinerPattern::FMULv2i64_indexed_OP2:
5459 case MachineCombinerPattern::FMULv4i16_indexed_OP1:
5460 case MachineCombinerPattern::FMULv4i16_indexed_OP2:
5461 case MachineCombinerPattern::FMULv4i32_indexed_OP1:
5462 case MachineCombinerPattern::FMULv4i32_indexed_OP2:
5463 case MachineCombinerPattern::FMULv8i16_indexed_OP1:
5464 case MachineCombinerPattern::FMULv8i16_indexed_OP2:
5465 case MachineCombinerPattern::MULADDv8i8_OP1:
5466 case MachineCombinerPattern::MULADDv8i8_OP2:
5467 case MachineCombinerPattern::MULADDv16i8_OP1:
5468 case MachineCombinerPattern::MULADDv16i8_OP2:
5469 case MachineCombinerPattern::MULADDv4i16_OP1:
5470 case MachineCombinerPattern::MULADDv4i16_OP2:
5471 case MachineCombinerPattern::MULADDv8i16_OP1:
5472 case MachineCombinerPattern::MULADDv8i16_OP2:
5473 case MachineCombinerPattern::MULADDv2i32_OP1:
5474 case MachineCombinerPattern::MULADDv2i32_OP2:
5475 case MachineCombinerPattern::MULADDv4i32_OP1:
5476 case MachineCombinerPattern::MULADDv4i32_OP2:
5477 case MachineCombinerPattern::MULSUBv8i8_OP1:
5478 case MachineCombinerPattern::MULSUBv8i8_OP2:
5479 case MachineCombinerPattern::MULSUBv16i8_OP1:
5480 case MachineCombinerPattern::MULSUBv16i8_OP2:
5481 case MachineCombinerPattern::MULSUBv4i16_OP1:
5482 case MachineCombinerPattern::MULSUBv4i16_OP2:
5483 case MachineCombinerPattern::MULSUBv8i16_OP1:
5484 case MachineCombinerPattern::MULSUBv8i16_OP2:
5485 case MachineCombinerPattern::MULSUBv2i32_OP1:
5486 case MachineCombinerPattern::MULSUBv2i32_OP2:
5487 case MachineCombinerPattern::MULSUBv4i32_OP1:
5488 case MachineCombinerPattern::MULSUBv4i32_OP2:
5489 case MachineCombinerPattern::MULADDv4i16_indexed_OP1:
5490 case MachineCombinerPattern::MULADDv4i16_indexed_OP2:
5491 case MachineCombinerPattern::MULADDv8i16_indexed_OP1:
5492 case MachineCombinerPattern::MULADDv8i16_indexed_OP2:
5493 case MachineCombinerPattern::MULADDv2i32_indexed_OP1:
5494 case MachineCombinerPattern::MULADDv2i32_indexed_OP2:
5495 case MachineCombinerPattern::MULADDv4i32_indexed_OP1:
5496 case MachineCombinerPattern::MULADDv4i32_indexed_OP2:
5497 case MachineCombinerPattern::MULSUBv4i16_indexed_OP1:
5498 case MachineCombinerPattern::MULSUBv4i16_indexed_OP2:
5499 case MachineCombinerPattern::MULSUBv8i16_indexed_OP1:
5500 case MachineCombinerPattern::MULSUBv8i16_indexed_OP2:
5501 case MachineCombinerPattern::MULSUBv2i32_indexed_OP1:
5502 case MachineCombinerPattern::MULSUBv2i32_indexed_OP2:
5503 case MachineCombinerPattern::MULSUBv4i32_indexed_OP1:
5504 case MachineCombinerPattern::MULSUBv4i32_indexed_OP2:
5505 return true;
5506 } // end switch (Pattern)
5507 return false;
5508 }
5509
5510 /// Find other MI combine patterns.
getMiscPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns)5511 static bool getMiscPatterns(MachineInstr &Root,
5512 SmallVectorImpl<MachineCombinerPattern> &Patterns)
5513 {
5514 // A - (B + C) ==> (A - B) - C or (A - C) - B
5515 unsigned Opc = Root.getOpcode();
5516 MachineBasicBlock &MBB = *Root.getParent();
5517
5518 switch (Opc) {
5519 case AArch64::SUBWrr:
5520 case AArch64::SUBSWrr:
5521 case AArch64::SUBXrr:
5522 case AArch64::SUBSXrr:
5523 // Found candidate root.
5524 break;
5525 default:
5526 return false;
5527 }
5528
5529 if (isCombineInstrSettingFlag(Opc) &&
5530 Root.findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
5531 return false;
5532
5533 if (canCombine(MBB, Root.getOperand(2), AArch64::ADDWrr) ||
5534 canCombine(MBB, Root.getOperand(2), AArch64::ADDSWrr) ||
5535 canCombine(MBB, Root.getOperand(2), AArch64::ADDXrr) ||
5536 canCombine(MBB, Root.getOperand(2), AArch64::ADDSXrr)) {
5537 Patterns.push_back(MachineCombinerPattern::SUBADD_OP1);
5538 Patterns.push_back(MachineCombinerPattern::SUBADD_OP2);
5539 return true;
5540 }
5541
5542 return false;
5543 }
5544
5545 /// Return true when there is potentially a faster code sequence for an
5546 /// instruction chain ending in \p Root. All potential patterns are listed in
5547 /// the \p Pattern vector. Pattern should be sorted in priority order since the
5548 /// pattern evaluator stops checking as soon as it finds a faster sequence.
5549
getMachineCombinerPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns,bool DoRegPressureReduce) const5550 bool AArch64InstrInfo::getMachineCombinerPatterns(
5551 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
5552 bool DoRegPressureReduce) const {
5553 // Integer patterns
5554 if (getMaddPatterns(Root, Patterns))
5555 return true;
5556 // Floating point patterns
5557 if (getFMULPatterns(Root, Patterns))
5558 return true;
5559 if (getFMAPatterns(Root, Patterns))
5560 return true;
5561
5562 // Other patterns
5563 if (getMiscPatterns(Root, Patterns))
5564 return true;
5565
5566 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
5567 DoRegPressureReduce);
5568 }
5569
5570 enum class FMAInstKind { Default, Indexed, Accumulator };
5571 /// genFusedMultiply - Generate fused multiply instructions.
5572 /// This function supports both integer and floating point instructions.
5573 /// A typical example:
5574 /// F|MUL I=A,B,0
5575 /// F|ADD R,I,C
5576 /// ==> F|MADD R,A,B,C
5577 /// \param MF Containing MachineFunction
5578 /// \param MRI Register information
5579 /// \param TII Target information
5580 /// \param Root is the F|ADD instruction
5581 /// \param [out] InsInstrs is a vector of machine instructions and will
5582 /// contain the generated madd instruction
5583 /// \param IdxMulOpd is index of operand in Root that is the result of
5584 /// the F|MUL. In the example above IdxMulOpd is 1.
5585 /// \param MaddOpc the opcode fo the f|madd instruction
5586 /// \param RC Register class of operands
5587 /// \param kind of fma instruction (addressing mode) to be generated
5588 /// \param ReplacedAddend is the result register from the instruction
5589 /// replacing the non-combined operand, if any.
5590 static MachineInstr *
genFusedMultiply(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,unsigned IdxMulOpd,unsigned MaddOpc,const TargetRegisterClass * RC,FMAInstKind kind=FMAInstKind::Default,const Register * ReplacedAddend=nullptr)5591 genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI,
5592 const TargetInstrInfo *TII, MachineInstr &Root,
5593 SmallVectorImpl<MachineInstr *> &InsInstrs, unsigned IdxMulOpd,
5594 unsigned MaddOpc, const TargetRegisterClass *RC,
5595 FMAInstKind kind = FMAInstKind::Default,
5596 const Register *ReplacedAddend = nullptr) {
5597 assert(IdxMulOpd == 1 || IdxMulOpd == 2);
5598
5599 unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
5600 MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
5601 Register ResultReg = Root.getOperand(0).getReg();
5602 Register SrcReg0 = MUL->getOperand(1).getReg();
5603 bool Src0IsKill = MUL->getOperand(1).isKill();
5604 Register SrcReg1 = MUL->getOperand(2).getReg();
5605 bool Src1IsKill = MUL->getOperand(2).isKill();
5606
5607 Register SrcReg2;
5608 bool Src2IsKill;
5609 if (ReplacedAddend) {
5610 // If we just generated a new addend, we must be it's only use.
5611 SrcReg2 = *ReplacedAddend;
5612 Src2IsKill = true;
5613 } else {
5614 SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
5615 Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
5616 }
5617
5618 if (ResultReg.isVirtual())
5619 MRI.constrainRegClass(ResultReg, RC);
5620 if (SrcReg0.isVirtual())
5621 MRI.constrainRegClass(SrcReg0, RC);
5622 if (SrcReg1.isVirtual())
5623 MRI.constrainRegClass(SrcReg1, RC);
5624 if (SrcReg2.isVirtual())
5625 MRI.constrainRegClass(SrcReg2, RC);
5626
5627 MachineInstrBuilder MIB;
5628 if (kind == FMAInstKind::Default)
5629 MIB = BuildMI(MF, MIMetadata(Root), TII->get(MaddOpc), ResultReg)
5630 .addReg(SrcReg0, getKillRegState(Src0IsKill))
5631 .addReg(SrcReg1, getKillRegState(Src1IsKill))
5632 .addReg(SrcReg2, getKillRegState(Src2IsKill));
5633 else if (kind == FMAInstKind::Indexed)
5634 MIB = BuildMI(MF, MIMetadata(Root), TII->get(MaddOpc), ResultReg)
5635 .addReg(SrcReg2, getKillRegState(Src2IsKill))
5636 .addReg(SrcReg0, getKillRegState(Src0IsKill))
5637 .addReg(SrcReg1, getKillRegState(Src1IsKill))
5638 .addImm(MUL->getOperand(3).getImm());
5639 else if (kind == FMAInstKind::Accumulator)
5640 MIB = BuildMI(MF, MIMetadata(Root), TII->get(MaddOpc), ResultReg)
5641 .addReg(SrcReg2, getKillRegState(Src2IsKill))
5642 .addReg(SrcReg0, getKillRegState(Src0IsKill))
5643 .addReg(SrcReg1, getKillRegState(Src1IsKill));
5644 else
5645 assert(false && "Invalid FMA instruction kind \n");
5646 // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL)
5647 InsInstrs.push_back(MIB);
5648 return MUL;
5649 }
5650
5651 /// Fold (FMUL x (DUP y lane)) into (FMUL_indexed x y lane)
5652 static MachineInstr *
genIndexedMultiply(MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,unsigned IdxDupOp,unsigned MulOpc,const TargetRegisterClass * RC,MachineRegisterInfo & MRI)5653 genIndexedMultiply(MachineInstr &Root,
5654 SmallVectorImpl<MachineInstr *> &InsInstrs,
5655 unsigned IdxDupOp, unsigned MulOpc,
5656 const TargetRegisterClass *RC, MachineRegisterInfo &MRI) {
5657 assert(((IdxDupOp == 1) || (IdxDupOp == 2)) &&
5658 "Invalid index of FMUL operand");
5659
5660 MachineFunction &MF = *Root.getMF();
5661 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5662
5663 MachineInstr *Dup =
5664 MF.getRegInfo().getUniqueVRegDef(Root.getOperand(IdxDupOp).getReg());
5665
5666 if (Dup->getOpcode() == TargetOpcode::COPY)
5667 Dup = MRI.getUniqueVRegDef(Dup->getOperand(1).getReg());
5668
5669 Register DupSrcReg = Dup->getOperand(1).getReg();
5670 MRI.clearKillFlags(DupSrcReg);
5671 MRI.constrainRegClass(DupSrcReg, RC);
5672
5673 unsigned DupSrcLane = Dup->getOperand(2).getImm();
5674
5675 unsigned IdxMulOp = IdxDupOp == 1 ? 2 : 1;
5676 MachineOperand &MulOp = Root.getOperand(IdxMulOp);
5677
5678 Register ResultReg = Root.getOperand(0).getReg();
5679
5680 MachineInstrBuilder MIB;
5681 MIB = BuildMI(MF, MIMetadata(Root), TII->get(MulOpc), ResultReg)
5682 .add(MulOp)
5683 .addReg(DupSrcReg)
5684 .addImm(DupSrcLane);
5685
5686 InsInstrs.push_back(MIB);
5687 return &Root;
5688 }
5689
5690 /// genFusedMultiplyAcc - Helper to generate fused multiply accumulate
5691 /// instructions.
5692 ///
5693 /// \see genFusedMultiply
genFusedMultiplyAcc(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,unsigned IdxMulOpd,unsigned MaddOpc,const TargetRegisterClass * RC)5694 static MachineInstr *genFusedMultiplyAcc(
5695 MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5696 MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5697 unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) {
5698 return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5699 FMAInstKind::Accumulator);
5700 }
5701
5702 /// genNeg - Helper to generate an intermediate negation of the second operand
5703 /// of Root
genNeg(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,unsigned MnegOpc,const TargetRegisterClass * RC)5704 static Register genNeg(MachineFunction &MF, MachineRegisterInfo &MRI,
5705 const TargetInstrInfo *TII, MachineInstr &Root,
5706 SmallVectorImpl<MachineInstr *> &InsInstrs,
5707 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
5708 unsigned MnegOpc, const TargetRegisterClass *RC) {
5709 Register NewVR = MRI.createVirtualRegister(RC);
5710 MachineInstrBuilder MIB =
5711 BuildMI(MF, MIMetadata(Root), TII->get(MnegOpc), NewVR)
5712 .add(Root.getOperand(2));
5713 InsInstrs.push_back(MIB);
5714
5715 assert(InstrIdxForVirtReg.empty());
5716 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5717
5718 return NewVR;
5719 }
5720
5721 /// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate
5722 /// instructions with an additional negation of the accumulator
genFusedMultiplyAccNeg(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,unsigned IdxMulOpd,unsigned MaddOpc,unsigned MnegOpc,const TargetRegisterClass * RC)5723 static MachineInstr *genFusedMultiplyAccNeg(
5724 MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5725 MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5726 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd,
5727 unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) {
5728 assert(IdxMulOpd == 1);
5729
5730 Register NewVR =
5731 genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC);
5732 return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5733 FMAInstKind::Accumulator, &NewVR);
5734 }
5735
5736 /// genFusedMultiplyIdx - Helper to generate fused multiply accumulate
5737 /// instructions.
5738 ///
5739 /// \see genFusedMultiply
genFusedMultiplyIdx(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,unsigned IdxMulOpd,unsigned MaddOpc,const TargetRegisterClass * RC)5740 static MachineInstr *genFusedMultiplyIdx(
5741 MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5742 MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5743 unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) {
5744 return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5745 FMAInstKind::Indexed);
5746 }
5747
5748 /// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate
5749 /// instructions with an additional negation of the accumulator
genFusedMultiplyIdxNeg(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,unsigned IdxMulOpd,unsigned MaddOpc,unsigned MnegOpc,const TargetRegisterClass * RC)5750 static MachineInstr *genFusedMultiplyIdxNeg(
5751 MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5752 MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5753 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd,
5754 unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) {
5755 assert(IdxMulOpd == 1);
5756
5757 Register NewVR =
5758 genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC);
5759
5760 return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5761 FMAInstKind::Indexed, &NewVR);
5762 }
5763
5764 /// genMaddR - Generate madd instruction and combine mul and add using
5765 /// an extra virtual register
5766 /// Example - an ADD intermediate needs to be stored in a register:
5767 /// MUL I=A,B,0
5768 /// ADD R,I,Imm
5769 /// ==> ORR V, ZR, Imm
5770 /// ==> MADD R,A,B,V
5771 /// \param MF Containing MachineFunction
5772 /// \param MRI Register information
5773 /// \param TII Target information
5774 /// \param Root is the ADD instruction
5775 /// \param [out] InsInstrs is a vector of machine instructions and will
5776 /// contain the generated madd instruction
5777 /// \param IdxMulOpd is index of operand in Root that is the result of
5778 /// the MUL. In the example above IdxMulOpd is 1.
5779 /// \param MaddOpc the opcode fo the madd instruction
5780 /// \param VR is a virtual register that holds the value of an ADD operand
5781 /// (V in the example above).
5782 /// \param RC Register class of operands
genMaddR(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,unsigned IdxMulOpd,unsigned MaddOpc,unsigned VR,const TargetRegisterClass * RC)5783 static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
5784 const TargetInstrInfo *TII, MachineInstr &Root,
5785 SmallVectorImpl<MachineInstr *> &InsInstrs,
5786 unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR,
5787 const TargetRegisterClass *RC) {
5788 assert(IdxMulOpd == 1 || IdxMulOpd == 2);
5789
5790 MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
5791 Register ResultReg = Root.getOperand(0).getReg();
5792 Register SrcReg0 = MUL->getOperand(1).getReg();
5793 bool Src0IsKill = MUL->getOperand(1).isKill();
5794 Register SrcReg1 = MUL->getOperand(2).getReg();
5795 bool Src1IsKill = MUL->getOperand(2).isKill();
5796
5797 if (ResultReg.isVirtual())
5798 MRI.constrainRegClass(ResultReg, RC);
5799 if (SrcReg0.isVirtual())
5800 MRI.constrainRegClass(SrcReg0, RC);
5801 if (SrcReg1.isVirtual())
5802 MRI.constrainRegClass(SrcReg1, RC);
5803 if (Register::isVirtualRegister(VR))
5804 MRI.constrainRegClass(VR, RC);
5805
5806 MachineInstrBuilder MIB =
5807 BuildMI(MF, MIMetadata(Root), TII->get(MaddOpc), ResultReg)
5808 .addReg(SrcReg0, getKillRegState(Src0IsKill))
5809 .addReg(SrcReg1, getKillRegState(Src1IsKill))
5810 .addReg(VR);
5811 // Insert the MADD
5812 InsInstrs.push_back(MIB);
5813 return MUL;
5814 }
5815
5816 /// Do the following transformation
5817 /// A - (B + C) ==> (A - B) - C
5818 /// A - (B + C) ==> (A - C) - B
5819 static void
genSubAdd2SubSub(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,unsigned IdxOpd1,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg)5820 genSubAdd2SubSub(MachineFunction &MF, MachineRegisterInfo &MRI,
5821 const TargetInstrInfo *TII, MachineInstr &Root,
5822 SmallVectorImpl<MachineInstr *> &InsInstrs,
5823 SmallVectorImpl<MachineInstr *> &DelInstrs,
5824 unsigned IdxOpd1,
5825 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
5826 assert(IdxOpd1 == 1 || IdxOpd1 == 2);
5827 unsigned IdxOtherOpd = IdxOpd1 == 1 ? 2 : 1;
5828 MachineInstr *AddMI = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
5829
5830 Register ResultReg = Root.getOperand(0).getReg();
5831 Register RegA = Root.getOperand(1).getReg();
5832 bool RegAIsKill = Root.getOperand(1).isKill();
5833 Register RegB = AddMI->getOperand(IdxOpd1).getReg();
5834 bool RegBIsKill = AddMI->getOperand(IdxOpd1).isKill();
5835 Register RegC = AddMI->getOperand(IdxOtherOpd).getReg();
5836 bool RegCIsKill = AddMI->getOperand(IdxOtherOpd).isKill();
5837 Register NewVR = MRI.createVirtualRegister(MRI.getRegClass(RegA));
5838
5839 unsigned Opcode = Root.getOpcode();
5840 if (Opcode == AArch64::SUBSWrr)
5841 Opcode = AArch64::SUBWrr;
5842 else if (Opcode == AArch64::SUBSXrr)
5843 Opcode = AArch64::SUBXrr;
5844 else
5845 assert((Opcode == AArch64::SUBWrr || Opcode == AArch64::SUBXrr) &&
5846 "Unexpected instruction opcode.");
5847
5848 MachineInstrBuilder MIB1 =
5849 BuildMI(MF, MIMetadata(Root), TII->get(Opcode), NewVR)
5850 .addReg(RegA, getKillRegState(RegAIsKill))
5851 .addReg(RegB, getKillRegState(RegBIsKill));
5852 MachineInstrBuilder MIB2 =
5853 BuildMI(MF, MIMetadata(Root), TII->get(Opcode), ResultReg)
5854 .addReg(NewVR, getKillRegState(true))
5855 .addReg(RegC, getKillRegState(RegCIsKill));
5856
5857 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5858 InsInstrs.push_back(MIB1);
5859 InsInstrs.push_back(MIB2);
5860 DelInstrs.push_back(AddMI);
5861 }
5862
5863 /// When getMachineCombinerPatterns() finds potential patterns,
5864 /// this function generates the instructions that could replace the
5865 /// original code sequence
genAlternativeCodeSequence(MachineInstr & Root,MachineCombinerPattern Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg) const5866 void AArch64InstrInfo::genAlternativeCodeSequence(
5867 MachineInstr &Root, MachineCombinerPattern Pattern,
5868 SmallVectorImpl<MachineInstr *> &InsInstrs,
5869 SmallVectorImpl<MachineInstr *> &DelInstrs,
5870 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
5871 MachineBasicBlock &MBB = *Root.getParent();
5872 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
5873 MachineFunction &MF = *MBB.getParent();
5874 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5875
5876 MachineInstr *MUL = nullptr;
5877 const TargetRegisterClass *RC;
5878 unsigned Opc;
5879 switch (Pattern) {
5880 default:
5881 // Reassociate instructions.
5882 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
5883 DelInstrs, InstrIdxForVirtReg);
5884 return;
5885 case MachineCombinerPattern::SUBADD_OP1:
5886 // A - (B + C)
5887 // ==> (A - B) - C
5888 genSubAdd2SubSub(MF, MRI, TII, Root, InsInstrs, DelInstrs, 1,
5889 InstrIdxForVirtReg);
5890 break;
5891 case MachineCombinerPattern::SUBADD_OP2:
5892 // A - (B + C)
5893 // ==> (A - C) - B
5894 genSubAdd2SubSub(MF, MRI, TII, Root, InsInstrs, DelInstrs, 2,
5895 InstrIdxForVirtReg);
5896 break;
5897 case MachineCombinerPattern::MULADDW_OP1:
5898 case MachineCombinerPattern::MULADDX_OP1:
5899 // MUL I=A,B,0
5900 // ADD R,I,C
5901 // ==> MADD R,A,B,C
5902 // --- Create(MADD);
5903 if (Pattern == MachineCombinerPattern::MULADDW_OP1) {
5904 Opc = AArch64::MADDWrrr;
5905 RC = &AArch64::GPR32RegClass;
5906 } else {
5907 Opc = AArch64::MADDXrrr;
5908 RC = &AArch64::GPR64RegClass;
5909 }
5910 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5911 break;
5912 case MachineCombinerPattern::MULADDW_OP2:
5913 case MachineCombinerPattern::MULADDX_OP2:
5914 // MUL I=A,B,0
5915 // ADD R,C,I
5916 // ==> MADD R,A,B,C
5917 // --- Create(MADD);
5918 if (Pattern == MachineCombinerPattern::MULADDW_OP2) {
5919 Opc = AArch64::MADDWrrr;
5920 RC = &AArch64::GPR32RegClass;
5921 } else {
5922 Opc = AArch64::MADDXrrr;
5923 RC = &AArch64::GPR64RegClass;
5924 }
5925 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5926 break;
5927 case MachineCombinerPattern::MULADDWI_OP1:
5928 case MachineCombinerPattern::MULADDXI_OP1: {
5929 // MUL I=A,B,0
5930 // ADD R,I,Imm
5931 // ==> MOV V, Imm
5932 // ==> MADD R,A,B,V
5933 // --- Create(MADD);
5934 const TargetRegisterClass *OrrRC;
5935 unsigned BitSize, OrrOpc, ZeroReg;
5936 if (Pattern == MachineCombinerPattern::MULADDWI_OP1) {
5937 OrrOpc = AArch64::ORRWri;
5938 OrrRC = &AArch64::GPR32spRegClass;
5939 BitSize = 32;
5940 ZeroReg = AArch64::WZR;
5941 Opc = AArch64::MADDWrrr;
5942 RC = &AArch64::GPR32RegClass;
5943 } else {
5944 OrrOpc = AArch64::ORRXri;
5945 OrrRC = &AArch64::GPR64spRegClass;
5946 BitSize = 64;
5947 ZeroReg = AArch64::XZR;
5948 Opc = AArch64::MADDXrrr;
5949 RC = &AArch64::GPR64RegClass;
5950 }
5951 Register NewVR = MRI.createVirtualRegister(OrrRC);
5952 uint64_t Imm = Root.getOperand(2).getImm();
5953
5954 if (Root.getOperand(3).isImm()) {
5955 unsigned Val = Root.getOperand(3).getImm();
5956 Imm = Imm << Val;
5957 }
5958 uint64_t UImm = SignExtend64(Imm, BitSize);
5959 // The immediate can be composed via a single instruction.
5960 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
5961 AArch64_IMM::expandMOVImm(UImm, BitSize, Insn);
5962 if (Insn.size() != 1)
5963 return;
5964 auto MovI = Insn.begin();
5965 MachineInstrBuilder MIB1;
5966 // MOV is an alias for one of three instructions: movz, movn, and orr.
5967 if (MovI->Opcode == OrrOpc)
5968 MIB1 = BuildMI(MF, MIMetadata(Root), TII->get(OrrOpc), NewVR)
5969 .addReg(ZeroReg)
5970 .addImm(MovI->Op2);
5971 else {
5972 if (BitSize == 32)
5973 assert((MovI->Opcode == AArch64::MOVNWi ||
5974 MovI->Opcode == AArch64::MOVZWi) &&
5975 "Expected opcode");
5976 else
5977 assert((MovI->Opcode == AArch64::MOVNXi ||
5978 MovI->Opcode == AArch64::MOVZXi) &&
5979 "Expected opcode");
5980 MIB1 = BuildMI(MF, MIMetadata(Root), TII->get(MovI->Opcode), NewVR)
5981 .addImm(MovI->Op1)
5982 .addImm(MovI->Op2);
5983 }
5984 InsInstrs.push_back(MIB1);
5985 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5986 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
5987 break;
5988 }
5989 case MachineCombinerPattern::MULSUBW_OP1:
5990 case MachineCombinerPattern::MULSUBX_OP1: {
5991 // MUL I=A,B,0
5992 // SUB R,I, C
5993 // ==> SUB V, 0, C
5994 // ==> MADD R,A,B,V // = -C + A*B
5995 // --- Create(MADD);
5996 const TargetRegisterClass *SubRC;
5997 unsigned SubOpc, ZeroReg;
5998 if (Pattern == MachineCombinerPattern::MULSUBW_OP1) {
5999 SubOpc = AArch64::SUBWrr;
6000 SubRC = &AArch64::GPR32spRegClass;
6001 ZeroReg = AArch64::WZR;
6002 Opc = AArch64::MADDWrrr;
6003 RC = &AArch64::GPR32RegClass;
6004 } else {
6005 SubOpc = AArch64::SUBXrr;
6006 SubRC = &AArch64::GPR64spRegClass;
6007 ZeroReg = AArch64::XZR;
6008 Opc = AArch64::MADDXrrr;
6009 RC = &AArch64::GPR64RegClass;
6010 }
6011 Register NewVR = MRI.createVirtualRegister(SubRC);
6012 // SUB NewVR, 0, C
6013 MachineInstrBuilder MIB1 =
6014 BuildMI(MF, MIMetadata(Root), TII->get(SubOpc), NewVR)
6015 .addReg(ZeroReg)
6016 .add(Root.getOperand(2));
6017 InsInstrs.push_back(MIB1);
6018 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6019 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
6020 break;
6021 }
6022 case MachineCombinerPattern::MULSUBW_OP2:
6023 case MachineCombinerPattern::MULSUBX_OP2:
6024 // MUL I=A,B,0
6025 // SUB R,C,I
6026 // ==> MSUB R,A,B,C (computes C - A*B)
6027 // --- Create(MSUB);
6028 if (Pattern == MachineCombinerPattern::MULSUBW_OP2) {
6029 Opc = AArch64::MSUBWrrr;
6030 RC = &AArch64::GPR32RegClass;
6031 } else {
6032 Opc = AArch64::MSUBXrrr;
6033 RC = &AArch64::GPR64RegClass;
6034 }
6035 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6036 break;
6037 case MachineCombinerPattern::MULSUBWI_OP1:
6038 case MachineCombinerPattern::MULSUBXI_OP1: {
6039 // MUL I=A,B,0
6040 // SUB R,I, Imm
6041 // ==> MOV V, -Imm
6042 // ==> MADD R,A,B,V // = -Imm + A*B
6043 // --- Create(MADD);
6044 const TargetRegisterClass *OrrRC;
6045 unsigned BitSize, OrrOpc, ZeroReg;
6046 if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) {
6047 OrrOpc = AArch64::ORRWri;
6048 OrrRC = &AArch64::GPR32spRegClass;
6049 BitSize = 32;
6050 ZeroReg = AArch64::WZR;
6051 Opc = AArch64::MADDWrrr;
6052 RC = &AArch64::GPR32RegClass;
6053 } else {
6054 OrrOpc = AArch64::ORRXri;
6055 OrrRC = &AArch64::GPR64spRegClass;
6056 BitSize = 64;
6057 ZeroReg = AArch64::XZR;
6058 Opc = AArch64::MADDXrrr;
6059 RC = &AArch64::GPR64RegClass;
6060 }
6061 Register NewVR = MRI.createVirtualRegister(OrrRC);
6062 uint64_t Imm = Root.getOperand(2).getImm();
6063 if (Root.getOperand(3).isImm()) {
6064 unsigned Val = Root.getOperand(3).getImm();
6065 Imm = Imm << Val;
6066 }
6067 uint64_t UImm = SignExtend64(-Imm, BitSize);
6068 // The immediate can be composed via a single instruction.
6069 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
6070 AArch64_IMM::expandMOVImm(UImm, BitSize, Insn);
6071 if (Insn.size() != 1)
6072 return;
6073 auto MovI = Insn.begin();
6074 MachineInstrBuilder MIB1;
6075 // MOV is an alias for one of three instructions: movz, movn, and orr.
6076 if (MovI->Opcode == OrrOpc)
6077 MIB1 = BuildMI(MF, MIMetadata(Root), TII->get(OrrOpc), NewVR)
6078 .addReg(ZeroReg)
6079 .addImm(MovI->Op2);
6080 else {
6081 if (BitSize == 32)
6082 assert((MovI->Opcode == AArch64::MOVNWi ||
6083 MovI->Opcode == AArch64::MOVZWi) &&
6084 "Expected opcode");
6085 else
6086 assert((MovI->Opcode == AArch64::MOVNXi ||
6087 MovI->Opcode == AArch64::MOVZXi) &&
6088 "Expected opcode");
6089 MIB1 = BuildMI(MF, MIMetadata(Root), TII->get(MovI->Opcode), NewVR)
6090 .addImm(MovI->Op1)
6091 .addImm(MovI->Op2);
6092 }
6093 InsInstrs.push_back(MIB1);
6094 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6095 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
6096 break;
6097 }
6098
6099 case MachineCombinerPattern::MULADDv8i8_OP1:
6100 Opc = AArch64::MLAv8i8;
6101 RC = &AArch64::FPR64RegClass;
6102 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6103 break;
6104 case MachineCombinerPattern::MULADDv8i8_OP2:
6105 Opc = AArch64::MLAv8i8;
6106 RC = &AArch64::FPR64RegClass;
6107 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6108 break;
6109 case MachineCombinerPattern::MULADDv16i8_OP1:
6110 Opc = AArch64::MLAv16i8;
6111 RC = &AArch64::FPR128RegClass;
6112 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6113 break;
6114 case MachineCombinerPattern::MULADDv16i8_OP2:
6115 Opc = AArch64::MLAv16i8;
6116 RC = &AArch64::FPR128RegClass;
6117 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6118 break;
6119 case MachineCombinerPattern::MULADDv4i16_OP1:
6120 Opc = AArch64::MLAv4i16;
6121 RC = &AArch64::FPR64RegClass;
6122 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6123 break;
6124 case MachineCombinerPattern::MULADDv4i16_OP2:
6125 Opc = AArch64::MLAv4i16;
6126 RC = &AArch64::FPR64RegClass;
6127 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6128 break;
6129 case MachineCombinerPattern::MULADDv8i16_OP1:
6130 Opc = AArch64::MLAv8i16;
6131 RC = &AArch64::FPR128RegClass;
6132 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6133 break;
6134 case MachineCombinerPattern::MULADDv8i16_OP2:
6135 Opc = AArch64::MLAv8i16;
6136 RC = &AArch64::FPR128RegClass;
6137 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6138 break;
6139 case MachineCombinerPattern::MULADDv2i32_OP1:
6140 Opc = AArch64::MLAv2i32;
6141 RC = &AArch64::FPR64RegClass;
6142 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6143 break;
6144 case MachineCombinerPattern::MULADDv2i32_OP2:
6145 Opc = AArch64::MLAv2i32;
6146 RC = &AArch64::FPR64RegClass;
6147 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6148 break;
6149 case MachineCombinerPattern::MULADDv4i32_OP1:
6150 Opc = AArch64::MLAv4i32;
6151 RC = &AArch64::FPR128RegClass;
6152 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6153 break;
6154 case MachineCombinerPattern::MULADDv4i32_OP2:
6155 Opc = AArch64::MLAv4i32;
6156 RC = &AArch64::FPR128RegClass;
6157 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6158 break;
6159
6160 case MachineCombinerPattern::MULSUBv8i8_OP1:
6161 Opc = AArch64::MLAv8i8;
6162 RC = &AArch64::FPR64RegClass;
6163 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6164 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i8,
6165 RC);
6166 break;
6167 case MachineCombinerPattern::MULSUBv8i8_OP2:
6168 Opc = AArch64::MLSv8i8;
6169 RC = &AArch64::FPR64RegClass;
6170 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6171 break;
6172 case MachineCombinerPattern::MULSUBv16i8_OP1:
6173 Opc = AArch64::MLAv16i8;
6174 RC = &AArch64::FPR128RegClass;
6175 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6176 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv16i8,
6177 RC);
6178 break;
6179 case MachineCombinerPattern::MULSUBv16i8_OP2:
6180 Opc = AArch64::MLSv16i8;
6181 RC = &AArch64::FPR128RegClass;
6182 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6183 break;
6184 case MachineCombinerPattern::MULSUBv4i16_OP1:
6185 Opc = AArch64::MLAv4i16;
6186 RC = &AArch64::FPR64RegClass;
6187 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6188 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16,
6189 RC);
6190 break;
6191 case MachineCombinerPattern::MULSUBv4i16_OP2:
6192 Opc = AArch64::MLSv4i16;
6193 RC = &AArch64::FPR64RegClass;
6194 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6195 break;
6196 case MachineCombinerPattern::MULSUBv8i16_OP1:
6197 Opc = AArch64::MLAv8i16;
6198 RC = &AArch64::FPR128RegClass;
6199 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6200 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16,
6201 RC);
6202 break;
6203 case MachineCombinerPattern::MULSUBv8i16_OP2:
6204 Opc = AArch64::MLSv8i16;
6205 RC = &AArch64::FPR128RegClass;
6206 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6207 break;
6208 case MachineCombinerPattern::MULSUBv2i32_OP1:
6209 Opc = AArch64::MLAv2i32;
6210 RC = &AArch64::FPR64RegClass;
6211 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6212 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32,
6213 RC);
6214 break;
6215 case MachineCombinerPattern::MULSUBv2i32_OP2:
6216 Opc = AArch64::MLSv2i32;
6217 RC = &AArch64::FPR64RegClass;
6218 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6219 break;
6220 case MachineCombinerPattern::MULSUBv4i32_OP1:
6221 Opc = AArch64::MLAv4i32;
6222 RC = &AArch64::FPR128RegClass;
6223 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6224 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32,
6225 RC);
6226 break;
6227 case MachineCombinerPattern::MULSUBv4i32_OP2:
6228 Opc = AArch64::MLSv4i32;
6229 RC = &AArch64::FPR128RegClass;
6230 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6231 break;
6232
6233 case MachineCombinerPattern::MULADDv4i16_indexed_OP1:
6234 Opc = AArch64::MLAv4i16_indexed;
6235 RC = &AArch64::FPR64RegClass;
6236 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6237 break;
6238 case MachineCombinerPattern::MULADDv4i16_indexed_OP2:
6239 Opc = AArch64::MLAv4i16_indexed;
6240 RC = &AArch64::FPR64RegClass;
6241 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6242 break;
6243 case MachineCombinerPattern::MULADDv8i16_indexed_OP1:
6244 Opc = AArch64::MLAv8i16_indexed;
6245 RC = &AArch64::FPR128RegClass;
6246 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6247 break;
6248 case MachineCombinerPattern::MULADDv8i16_indexed_OP2:
6249 Opc = AArch64::MLAv8i16_indexed;
6250 RC = &AArch64::FPR128RegClass;
6251 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6252 break;
6253 case MachineCombinerPattern::MULADDv2i32_indexed_OP1:
6254 Opc = AArch64::MLAv2i32_indexed;
6255 RC = &AArch64::FPR64RegClass;
6256 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6257 break;
6258 case MachineCombinerPattern::MULADDv2i32_indexed_OP2:
6259 Opc = AArch64::MLAv2i32_indexed;
6260 RC = &AArch64::FPR64RegClass;
6261 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6262 break;
6263 case MachineCombinerPattern::MULADDv4i32_indexed_OP1:
6264 Opc = AArch64::MLAv4i32_indexed;
6265 RC = &AArch64::FPR128RegClass;
6266 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6267 break;
6268 case MachineCombinerPattern::MULADDv4i32_indexed_OP2:
6269 Opc = AArch64::MLAv4i32_indexed;
6270 RC = &AArch64::FPR128RegClass;
6271 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6272 break;
6273
6274 case MachineCombinerPattern::MULSUBv4i16_indexed_OP1:
6275 Opc = AArch64::MLAv4i16_indexed;
6276 RC = &AArch64::FPR64RegClass;
6277 MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
6278 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16,
6279 RC);
6280 break;
6281 case MachineCombinerPattern::MULSUBv4i16_indexed_OP2:
6282 Opc = AArch64::MLSv4i16_indexed;
6283 RC = &AArch64::FPR64RegClass;
6284 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6285 break;
6286 case MachineCombinerPattern::MULSUBv8i16_indexed_OP1:
6287 Opc = AArch64::MLAv8i16_indexed;
6288 RC = &AArch64::FPR128RegClass;
6289 MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
6290 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16,
6291 RC);
6292 break;
6293 case MachineCombinerPattern::MULSUBv8i16_indexed_OP2:
6294 Opc = AArch64::MLSv8i16_indexed;
6295 RC = &AArch64::FPR128RegClass;
6296 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6297 break;
6298 case MachineCombinerPattern::MULSUBv2i32_indexed_OP1:
6299 Opc = AArch64::MLAv2i32_indexed;
6300 RC = &AArch64::FPR64RegClass;
6301 MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
6302 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32,
6303 RC);
6304 break;
6305 case MachineCombinerPattern::MULSUBv2i32_indexed_OP2:
6306 Opc = AArch64::MLSv2i32_indexed;
6307 RC = &AArch64::FPR64RegClass;
6308 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6309 break;
6310 case MachineCombinerPattern::MULSUBv4i32_indexed_OP1:
6311 Opc = AArch64::MLAv4i32_indexed;
6312 RC = &AArch64::FPR128RegClass;
6313 MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
6314 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32,
6315 RC);
6316 break;
6317 case MachineCombinerPattern::MULSUBv4i32_indexed_OP2:
6318 Opc = AArch64::MLSv4i32_indexed;
6319 RC = &AArch64::FPR128RegClass;
6320 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6321 break;
6322
6323 // Floating Point Support
6324 case MachineCombinerPattern::FMULADDH_OP1:
6325 Opc = AArch64::FMADDHrrr;
6326 RC = &AArch64::FPR16RegClass;
6327 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6328 break;
6329 case MachineCombinerPattern::FMULADDS_OP1:
6330 Opc = AArch64::FMADDSrrr;
6331 RC = &AArch64::FPR32RegClass;
6332 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6333 break;
6334 case MachineCombinerPattern::FMULADDD_OP1:
6335 Opc = AArch64::FMADDDrrr;
6336 RC = &AArch64::FPR64RegClass;
6337 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6338 break;
6339
6340 case MachineCombinerPattern::FMULADDH_OP2:
6341 Opc = AArch64::FMADDHrrr;
6342 RC = &AArch64::FPR16RegClass;
6343 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6344 break;
6345 case MachineCombinerPattern::FMULADDS_OP2:
6346 Opc = AArch64::FMADDSrrr;
6347 RC = &AArch64::FPR32RegClass;
6348 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6349 break;
6350 case MachineCombinerPattern::FMULADDD_OP2:
6351 Opc = AArch64::FMADDDrrr;
6352 RC = &AArch64::FPR64RegClass;
6353 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6354 break;
6355
6356 case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
6357 Opc = AArch64::FMLAv1i32_indexed;
6358 RC = &AArch64::FPR32RegClass;
6359 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6360 FMAInstKind::Indexed);
6361 break;
6362 case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
6363 Opc = AArch64::FMLAv1i32_indexed;
6364 RC = &AArch64::FPR32RegClass;
6365 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6366 FMAInstKind::Indexed);
6367 break;
6368
6369 case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
6370 Opc = AArch64::FMLAv1i64_indexed;
6371 RC = &AArch64::FPR64RegClass;
6372 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6373 FMAInstKind::Indexed);
6374 break;
6375 case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
6376 Opc = AArch64::FMLAv1i64_indexed;
6377 RC = &AArch64::FPR64RegClass;
6378 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6379 FMAInstKind::Indexed);
6380 break;
6381
6382 case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
6383 RC = &AArch64::FPR64RegClass;
6384 Opc = AArch64::FMLAv4i16_indexed;
6385 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6386 FMAInstKind::Indexed);
6387 break;
6388 case MachineCombinerPattern::FMLAv4f16_OP1:
6389 RC = &AArch64::FPR64RegClass;
6390 Opc = AArch64::FMLAv4f16;
6391 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6392 FMAInstKind::Accumulator);
6393 break;
6394 case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
6395 RC = &AArch64::FPR64RegClass;
6396 Opc = AArch64::FMLAv4i16_indexed;
6397 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6398 FMAInstKind::Indexed);
6399 break;
6400 case MachineCombinerPattern::FMLAv4f16_OP2:
6401 RC = &AArch64::FPR64RegClass;
6402 Opc = AArch64::FMLAv4f16;
6403 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6404 FMAInstKind::Accumulator);
6405 break;
6406
6407 case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
6408 case MachineCombinerPattern::FMLAv2f32_OP1:
6409 RC = &AArch64::FPR64RegClass;
6410 if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP1) {
6411 Opc = AArch64::FMLAv2i32_indexed;
6412 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6413 FMAInstKind::Indexed);
6414 } else {
6415 Opc = AArch64::FMLAv2f32;
6416 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6417 FMAInstKind::Accumulator);
6418 }
6419 break;
6420 case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
6421 case MachineCombinerPattern::FMLAv2f32_OP2:
6422 RC = &AArch64::FPR64RegClass;
6423 if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP2) {
6424 Opc = AArch64::FMLAv2i32_indexed;
6425 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6426 FMAInstKind::Indexed);
6427 } else {
6428 Opc = AArch64::FMLAv2f32;
6429 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6430 FMAInstKind::Accumulator);
6431 }
6432 break;
6433
6434 case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
6435 RC = &AArch64::FPR128RegClass;
6436 Opc = AArch64::FMLAv8i16_indexed;
6437 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6438 FMAInstKind::Indexed);
6439 break;
6440 case MachineCombinerPattern::FMLAv8f16_OP1:
6441 RC = &AArch64::FPR128RegClass;
6442 Opc = AArch64::FMLAv8f16;
6443 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6444 FMAInstKind::Accumulator);
6445 break;
6446 case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
6447 RC = &AArch64::FPR128RegClass;
6448 Opc = AArch64::FMLAv8i16_indexed;
6449 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6450 FMAInstKind::Indexed);
6451 break;
6452 case MachineCombinerPattern::FMLAv8f16_OP2:
6453 RC = &AArch64::FPR128RegClass;
6454 Opc = AArch64::FMLAv8f16;
6455 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6456 FMAInstKind::Accumulator);
6457 break;
6458
6459 case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
6460 case MachineCombinerPattern::FMLAv2f64_OP1:
6461 RC = &AArch64::FPR128RegClass;
6462 if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP1) {
6463 Opc = AArch64::FMLAv2i64_indexed;
6464 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6465 FMAInstKind::Indexed);
6466 } else {
6467 Opc = AArch64::FMLAv2f64;
6468 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6469 FMAInstKind::Accumulator);
6470 }
6471 break;
6472 case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
6473 case MachineCombinerPattern::FMLAv2f64_OP2:
6474 RC = &AArch64::FPR128RegClass;
6475 if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP2) {
6476 Opc = AArch64::FMLAv2i64_indexed;
6477 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6478 FMAInstKind::Indexed);
6479 } else {
6480 Opc = AArch64::FMLAv2f64;
6481 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6482 FMAInstKind::Accumulator);
6483 }
6484 break;
6485
6486 case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
6487 case MachineCombinerPattern::FMLAv4f32_OP1:
6488 RC = &AArch64::FPR128RegClass;
6489 if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP1) {
6490 Opc = AArch64::FMLAv4i32_indexed;
6491 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6492 FMAInstKind::Indexed);
6493 } else {
6494 Opc = AArch64::FMLAv4f32;
6495 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6496 FMAInstKind::Accumulator);
6497 }
6498 break;
6499
6500 case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
6501 case MachineCombinerPattern::FMLAv4f32_OP2:
6502 RC = &AArch64::FPR128RegClass;
6503 if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP2) {
6504 Opc = AArch64::FMLAv4i32_indexed;
6505 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6506 FMAInstKind::Indexed);
6507 } else {
6508 Opc = AArch64::FMLAv4f32;
6509 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6510 FMAInstKind::Accumulator);
6511 }
6512 break;
6513
6514 case MachineCombinerPattern::FMULSUBH_OP1:
6515 Opc = AArch64::FNMSUBHrrr;
6516 RC = &AArch64::FPR16RegClass;
6517 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6518 break;
6519 case MachineCombinerPattern::FMULSUBS_OP1:
6520 Opc = AArch64::FNMSUBSrrr;
6521 RC = &AArch64::FPR32RegClass;
6522 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6523 break;
6524 case MachineCombinerPattern::FMULSUBD_OP1:
6525 Opc = AArch64::FNMSUBDrrr;
6526 RC = &AArch64::FPR64RegClass;
6527 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6528 break;
6529
6530 case MachineCombinerPattern::FNMULSUBH_OP1:
6531 Opc = AArch64::FNMADDHrrr;
6532 RC = &AArch64::FPR16RegClass;
6533 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6534 break;
6535 case MachineCombinerPattern::FNMULSUBS_OP1:
6536 Opc = AArch64::FNMADDSrrr;
6537 RC = &AArch64::FPR32RegClass;
6538 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6539 break;
6540 case MachineCombinerPattern::FNMULSUBD_OP1:
6541 Opc = AArch64::FNMADDDrrr;
6542 RC = &AArch64::FPR64RegClass;
6543 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6544 break;
6545
6546 case MachineCombinerPattern::FMULSUBH_OP2:
6547 Opc = AArch64::FMSUBHrrr;
6548 RC = &AArch64::FPR16RegClass;
6549 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6550 break;
6551 case MachineCombinerPattern::FMULSUBS_OP2:
6552 Opc = AArch64::FMSUBSrrr;
6553 RC = &AArch64::FPR32RegClass;
6554 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6555 break;
6556 case MachineCombinerPattern::FMULSUBD_OP2:
6557 Opc = AArch64::FMSUBDrrr;
6558 RC = &AArch64::FPR64RegClass;
6559 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6560 break;
6561
6562 case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
6563 Opc = AArch64::FMLSv1i32_indexed;
6564 RC = &AArch64::FPR32RegClass;
6565 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6566 FMAInstKind::Indexed);
6567 break;
6568
6569 case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
6570 Opc = AArch64::FMLSv1i64_indexed;
6571 RC = &AArch64::FPR64RegClass;
6572 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6573 FMAInstKind::Indexed);
6574 break;
6575
6576 case MachineCombinerPattern::FMLSv4f16_OP1:
6577 case MachineCombinerPattern::FMLSv4i16_indexed_OP1: {
6578 RC = &AArch64::FPR64RegClass;
6579 Register NewVR = MRI.createVirtualRegister(RC);
6580 MachineInstrBuilder MIB1 =
6581 BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv4f16), NewVR)
6582 .add(Root.getOperand(2));
6583 InsInstrs.push_back(MIB1);
6584 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6585 if (Pattern == MachineCombinerPattern::FMLSv4f16_OP1) {
6586 Opc = AArch64::FMLAv4f16;
6587 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6588 FMAInstKind::Accumulator, &NewVR);
6589 } else {
6590 Opc = AArch64::FMLAv4i16_indexed;
6591 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6592 FMAInstKind::Indexed, &NewVR);
6593 }
6594 break;
6595 }
6596 case MachineCombinerPattern::FMLSv4f16_OP2:
6597 RC = &AArch64::FPR64RegClass;
6598 Opc = AArch64::FMLSv4f16;
6599 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6600 FMAInstKind::Accumulator);
6601 break;
6602 case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
6603 RC = &AArch64::FPR64RegClass;
6604 Opc = AArch64::FMLSv4i16_indexed;
6605 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6606 FMAInstKind::Indexed);
6607 break;
6608
6609 case MachineCombinerPattern::FMLSv2f32_OP2:
6610 case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
6611 RC = &AArch64::FPR64RegClass;
6612 if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP2) {
6613 Opc = AArch64::FMLSv2i32_indexed;
6614 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6615 FMAInstKind::Indexed);
6616 } else {
6617 Opc = AArch64::FMLSv2f32;
6618 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6619 FMAInstKind::Accumulator);
6620 }
6621 break;
6622
6623 case MachineCombinerPattern::FMLSv8f16_OP1:
6624 case MachineCombinerPattern::FMLSv8i16_indexed_OP1: {
6625 RC = &AArch64::FPR128RegClass;
6626 Register NewVR = MRI.createVirtualRegister(RC);
6627 MachineInstrBuilder MIB1 =
6628 BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv8f16), NewVR)
6629 .add(Root.getOperand(2));
6630 InsInstrs.push_back(MIB1);
6631 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6632 if (Pattern == MachineCombinerPattern::FMLSv8f16_OP1) {
6633 Opc = AArch64::FMLAv8f16;
6634 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6635 FMAInstKind::Accumulator, &NewVR);
6636 } else {
6637 Opc = AArch64::FMLAv8i16_indexed;
6638 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6639 FMAInstKind::Indexed, &NewVR);
6640 }
6641 break;
6642 }
6643 case MachineCombinerPattern::FMLSv8f16_OP2:
6644 RC = &AArch64::FPR128RegClass;
6645 Opc = AArch64::FMLSv8f16;
6646 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6647 FMAInstKind::Accumulator);
6648 break;
6649 case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
6650 RC = &AArch64::FPR128RegClass;
6651 Opc = AArch64::FMLSv8i16_indexed;
6652 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6653 FMAInstKind::Indexed);
6654 break;
6655
6656 case MachineCombinerPattern::FMLSv2f64_OP2:
6657 case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
6658 RC = &AArch64::FPR128RegClass;
6659 if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP2) {
6660 Opc = AArch64::FMLSv2i64_indexed;
6661 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6662 FMAInstKind::Indexed);
6663 } else {
6664 Opc = AArch64::FMLSv2f64;
6665 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6666 FMAInstKind::Accumulator);
6667 }
6668 break;
6669
6670 case MachineCombinerPattern::FMLSv4f32_OP2:
6671 case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
6672 RC = &AArch64::FPR128RegClass;
6673 if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP2) {
6674 Opc = AArch64::FMLSv4i32_indexed;
6675 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6676 FMAInstKind::Indexed);
6677 } else {
6678 Opc = AArch64::FMLSv4f32;
6679 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6680 FMAInstKind::Accumulator);
6681 }
6682 break;
6683 case MachineCombinerPattern::FMLSv2f32_OP1:
6684 case MachineCombinerPattern::FMLSv2i32_indexed_OP1: {
6685 RC = &AArch64::FPR64RegClass;
6686 Register NewVR = MRI.createVirtualRegister(RC);
6687 MachineInstrBuilder MIB1 =
6688 BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv2f32), NewVR)
6689 .add(Root.getOperand(2));
6690 InsInstrs.push_back(MIB1);
6691 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6692 if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP1) {
6693 Opc = AArch64::FMLAv2i32_indexed;
6694 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6695 FMAInstKind::Indexed, &NewVR);
6696 } else {
6697 Opc = AArch64::FMLAv2f32;
6698 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6699 FMAInstKind::Accumulator, &NewVR);
6700 }
6701 break;
6702 }
6703 case MachineCombinerPattern::FMLSv4f32_OP1:
6704 case MachineCombinerPattern::FMLSv4i32_indexed_OP1: {
6705 RC = &AArch64::FPR128RegClass;
6706 Register NewVR = MRI.createVirtualRegister(RC);
6707 MachineInstrBuilder MIB1 =
6708 BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv4f32), NewVR)
6709 .add(Root.getOperand(2));
6710 InsInstrs.push_back(MIB1);
6711 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6712 if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP1) {
6713 Opc = AArch64::FMLAv4i32_indexed;
6714 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6715 FMAInstKind::Indexed, &NewVR);
6716 } else {
6717 Opc = AArch64::FMLAv4f32;
6718 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6719 FMAInstKind::Accumulator, &NewVR);
6720 }
6721 break;
6722 }
6723 case MachineCombinerPattern::FMLSv2f64_OP1:
6724 case MachineCombinerPattern::FMLSv2i64_indexed_OP1: {
6725 RC = &AArch64::FPR128RegClass;
6726 Register NewVR = MRI.createVirtualRegister(RC);
6727 MachineInstrBuilder MIB1 =
6728 BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv2f64), NewVR)
6729 .add(Root.getOperand(2));
6730 InsInstrs.push_back(MIB1);
6731 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6732 if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP1) {
6733 Opc = AArch64::FMLAv2i64_indexed;
6734 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6735 FMAInstKind::Indexed, &NewVR);
6736 } else {
6737 Opc = AArch64::FMLAv2f64;
6738 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6739 FMAInstKind::Accumulator, &NewVR);
6740 }
6741 break;
6742 }
6743 case MachineCombinerPattern::FMULv2i32_indexed_OP1:
6744 case MachineCombinerPattern::FMULv2i32_indexed_OP2: {
6745 unsigned IdxDupOp =
6746 (Pattern == MachineCombinerPattern::FMULv2i32_indexed_OP1) ? 1 : 2;
6747 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv2i32_indexed,
6748 &AArch64::FPR128RegClass, MRI);
6749 break;
6750 }
6751 case MachineCombinerPattern::FMULv2i64_indexed_OP1:
6752 case MachineCombinerPattern::FMULv2i64_indexed_OP2: {
6753 unsigned IdxDupOp =
6754 (Pattern == MachineCombinerPattern::FMULv2i64_indexed_OP1) ? 1 : 2;
6755 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv2i64_indexed,
6756 &AArch64::FPR128RegClass, MRI);
6757 break;
6758 }
6759 case MachineCombinerPattern::FMULv4i16_indexed_OP1:
6760 case MachineCombinerPattern::FMULv4i16_indexed_OP2: {
6761 unsigned IdxDupOp =
6762 (Pattern == MachineCombinerPattern::FMULv4i16_indexed_OP1) ? 1 : 2;
6763 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv4i16_indexed,
6764 &AArch64::FPR128_loRegClass, MRI);
6765 break;
6766 }
6767 case MachineCombinerPattern::FMULv4i32_indexed_OP1:
6768 case MachineCombinerPattern::FMULv4i32_indexed_OP2: {
6769 unsigned IdxDupOp =
6770 (Pattern == MachineCombinerPattern::FMULv4i32_indexed_OP1) ? 1 : 2;
6771 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv4i32_indexed,
6772 &AArch64::FPR128RegClass, MRI);
6773 break;
6774 }
6775 case MachineCombinerPattern::FMULv8i16_indexed_OP1:
6776 case MachineCombinerPattern::FMULv8i16_indexed_OP2: {
6777 unsigned IdxDupOp =
6778 (Pattern == MachineCombinerPattern::FMULv8i16_indexed_OP1) ? 1 : 2;
6779 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv8i16_indexed,
6780 &AArch64::FPR128_loRegClass, MRI);
6781 break;
6782 }
6783 } // end switch (Pattern)
6784 // Record MUL and ADD/SUB for deletion
6785 if (MUL)
6786 DelInstrs.push_back(MUL);
6787 DelInstrs.push_back(&Root);
6788
6789 // Set the flags on the inserted instructions to be the merged flags of the
6790 // instructions that we have combined.
6791 uint16_t Flags = Root.getFlags();
6792 if (MUL)
6793 Flags = Root.mergeFlagsWith(*MUL);
6794 for (auto *MI : InsInstrs)
6795 MI->setFlags(Flags);
6796 }
6797
6798 /// Replace csincr-branch sequence by simple conditional branch
6799 ///
6800 /// Examples:
6801 /// 1. \code
6802 /// csinc w9, wzr, wzr, <condition code>
6803 /// tbnz w9, #0, 0x44
6804 /// \endcode
6805 /// to
6806 /// \code
6807 /// b.<inverted condition code>
6808 /// \endcode
6809 ///
6810 /// 2. \code
6811 /// csinc w9, wzr, wzr, <condition code>
6812 /// tbz w9, #0, 0x44
6813 /// \endcode
6814 /// to
6815 /// \code
6816 /// b.<condition code>
6817 /// \endcode
6818 ///
6819 /// Replace compare and branch sequence by TBZ/TBNZ instruction when the
6820 /// compare's constant operand is power of 2.
6821 ///
6822 /// Examples:
6823 /// \code
6824 /// and w8, w8, #0x400
6825 /// cbnz w8, L1
6826 /// \endcode
6827 /// to
6828 /// \code
6829 /// tbnz w8, #10, L1
6830 /// \endcode
6831 ///
6832 /// \param MI Conditional Branch
6833 /// \return True when the simple conditional branch is generated
6834 ///
optimizeCondBranch(MachineInstr & MI) const6835 bool AArch64InstrInfo::optimizeCondBranch(MachineInstr &MI) const {
6836 bool IsNegativeBranch = false;
6837 bool IsTestAndBranch = false;
6838 unsigned TargetBBInMI = 0;
6839 switch (MI.getOpcode()) {
6840 default:
6841 llvm_unreachable("Unknown branch instruction?");
6842 case AArch64::Bcc:
6843 return false;
6844 case AArch64::CBZW:
6845 case AArch64::CBZX:
6846 TargetBBInMI = 1;
6847 break;
6848 case AArch64::CBNZW:
6849 case AArch64::CBNZX:
6850 TargetBBInMI = 1;
6851 IsNegativeBranch = true;
6852 break;
6853 case AArch64::TBZW:
6854 case AArch64::TBZX:
6855 TargetBBInMI = 2;
6856 IsTestAndBranch = true;
6857 break;
6858 case AArch64::TBNZW:
6859 case AArch64::TBNZX:
6860 TargetBBInMI = 2;
6861 IsNegativeBranch = true;
6862 IsTestAndBranch = true;
6863 break;
6864 }
6865 // So we increment a zero register and test for bits other
6866 // than bit 0? Conservatively bail out in case the verifier
6867 // missed this case.
6868 if (IsTestAndBranch && MI.getOperand(1).getImm())
6869 return false;
6870
6871 // Find Definition.
6872 assert(MI.getParent() && "Incomplete machine instruciton\n");
6873 MachineBasicBlock *MBB = MI.getParent();
6874 MachineFunction *MF = MBB->getParent();
6875 MachineRegisterInfo *MRI = &MF->getRegInfo();
6876 Register VReg = MI.getOperand(0).getReg();
6877 if (!VReg.isVirtual())
6878 return false;
6879
6880 MachineInstr *DefMI = MRI->getVRegDef(VReg);
6881
6882 // Look through COPY instructions to find definition.
6883 while (DefMI->isCopy()) {
6884 Register CopyVReg = DefMI->getOperand(1).getReg();
6885 if (!MRI->hasOneNonDBGUse(CopyVReg))
6886 return false;
6887 if (!MRI->hasOneDef(CopyVReg))
6888 return false;
6889 DefMI = MRI->getVRegDef(CopyVReg);
6890 }
6891
6892 switch (DefMI->getOpcode()) {
6893 default:
6894 return false;
6895 // Fold AND into a TBZ/TBNZ if constant operand is power of 2.
6896 case AArch64::ANDWri:
6897 case AArch64::ANDXri: {
6898 if (IsTestAndBranch)
6899 return false;
6900 if (DefMI->getParent() != MBB)
6901 return false;
6902 if (!MRI->hasOneNonDBGUse(VReg))
6903 return false;
6904
6905 bool Is32Bit = (DefMI->getOpcode() == AArch64::ANDWri);
6906 uint64_t Mask = AArch64_AM::decodeLogicalImmediate(
6907 DefMI->getOperand(2).getImm(), Is32Bit ? 32 : 64);
6908 if (!isPowerOf2_64(Mask))
6909 return false;
6910
6911 MachineOperand &MO = DefMI->getOperand(1);
6912 Register NewReg = MO.getReg();
6913 if (!NewReg.isVirtual())
6914 return false;
6915
6916 assert(!MRI->def_empty(NewReg) && "Register must be defined.");
6917
6918 MachineBasicBlock &RefToMBB = *MBB;
6919 MachineBasicBlock *TBB = MI.getOperand(1).getMBB();
6920 DebugLoc DL = MI.getDebugLoc();
6921 unsigned Imm = Log2_64(Mask);
6922 unsigned Opc = (Imm < 32)
6923 ? (IsNegativeBranch ? AArch64::TBNZW : AArch64::TBZW)
6924 : (IsNegativeBranch ? AArch64::TBNZX : AArch64::TBZX);
6925 MachineInstr *NewMI = BuildMI(RefToMBB, MI, DL, get(Opc))
6926 .addReg(NewReg)
6927 .addImm(Imm)
6928 .addMBB(TBB);
6929 // Register lives on to the CBZ now.
6930 MO.setIsKill(false);
6931
6932 // For immediate smaller than 32, we need to use the 32-bit
6933 // variant (W) in all cases. Indeed the 64-bit variant does not
6934 // allow to encode them.
6935 // Therefore, if the input register is 64-bit, we need to take the
6936 // 32-bit sub-part.
6937 if (!Is32Bit && Imm < 32)
6938 NewMI->getOperand(0).setSubReg(AArch64::sub_32);
6939 MI.eraseFromParent();
6940 return true;
6941 }
6942 // Look for CSINC
6943 case AArch64::CSINCWr:
6944 case AArch64::CSINCXr: {
6945 if (!(DefMI->getOperand(1).getReg() == AArch64::WZR &&
6946 DefMI->getOperand(2).getReg() == AArch64::WZR) &&
6947 !(DefMI->getOperand(1).getReg() == AArch64::XZR &&
6948 DefMI->getOperand(2).getReg() == AArch64::XZR))
6949 return false;
6950
6951 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
6952 return false;
6953
6954 AArch64CC::CondCode CC = (AArch64CC::CondCode)DefMI->getOperand(3).getImm();
6955 // Convert only when the condition code is not modified between
6956 // the CSINC and the branch. The CC may be used by other
6957 // instructions in between.
6958 if (areCFlagsAccessedBetweenInstrs(DefMI, MI, &getRegisterInfo(), AK_Write))
6959 return false;
6960 MachineBasicBlock &RefToMBB = *MBB;
6961 MachineBasicBlock *TBB = MI.getOperand(TargetBBInMI).getMBB();
6962 DebugLoc DL = MI.getDebugLoc();
6963 if (IsNegativeBranch)
6964 CC = AArch64CC::getInvertedCondCode(CC);
6965 BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
6966 MI.eraseFromParent();
6967 return true;
6968 }
6969 }
6970 }
6971
6972 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const6973 AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
6974 const unsigned Mask = AArch64II::MO_FRAGMENT;
6975 return std::make_pair(TF & Mask, TF & ~Mask);
6976 }
6977
6978 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const6979 AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
6980 using namespace AArch64II;
6981
6982 static const std::pair<unsigned, const char *> TargetFlags[] = {
6983 {MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"},
6984 {MO_G3, "aarch64-g3"}, {MO_G2, "aarch64-g2"},
6985 {MO_G1, "aarch64-g1"}, {MO_G0, "aarch64-g0"},
6986 {MO_HI12, "aarch64-hi12"}};
6987 return ArrayRef(TargetFlags);
6988 }
6989
6990 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const6991 AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
6992 using namespace AArch64II;
6993
6994 static const std::pair<unsigned, const char *> TargetFlags[] = {
6995 {MO_COFFSTUB, "aarch64-coffstub"},
6996 {MO_GOT, "aarch64-got"},
6997 {MO_NC, "aarch64-nc"},
6998 {MO_S, "aarch64-s"},
6999 {MO_TLS, "aarch64-tls"},
7000 {MO_DLLIMPORT, "aarch64-dllimport"},
7001 {MO_DLLIMPORTAUX, "aarch64-dllimportaux"},
7002 {MO_PREL, "aarch64-prel"},
7003 {MO_TAGGED, "aarch64-tagged"}};
7004 return ArrayRef(TargetFlags);
7005 }
7006
7007 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
getSerializableMachineMemOperandTargetFlags() const7008 AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
7009 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
7010 {{MOSuppressPair, "aarch64-suppress-pair"},
7011 {MOStridedAccess, "aarch64-strided-access"}};
7012 return ArrayRef(TargetFlags);
7013 }
7014
7015 /// Constants defining how certain sequences should be outlined.
7016 /// This encompasses how an outlined function should be called, and what kind of
7017 /// frame should be emitted for that outlined function.
7018 ///
7019 /// \p MachineOutlinerDefault implies that the function should be called with
7020 /// a save and restore of LR to the stack.
7021 ///
7022 /// That is,
7023 ///
7024 /// I1 Save LR OUTLINED_FUNCTION:
7025 /// I2 --> BL OUTLINED_FUNCTION I1
7026 /// I3 Restore LR I2
7027 /// I3
7028 /// RET
7029 ///
7030 /// * Call construction overhead: 3 (save + BL + restore)
7031 /// * Frame construction overhead: 1 (ret)
7032 /// * Requires stack fixups? Yes
7033 ///
7034 /// \p MachineOutlinerTailCall implies that the function is being created from
7035 /// a sequence of instructions ending in a return.
7036 ///
7037 /// That is,
7038 ///
7039 /// I1 OUTLINED_FUNCTION:
7040 /// I2 --> B OUTLINED_FUNCTION I1
7041 /// RET I2
7042 /// RET
7043 ///
7044 /// * Call construction overhead: 1 (B)
7045 /// * Frame construction overhead: 0 (Return included in sequence)
7046 /// * Requires stack fixups? No
7047 ///
7048 /// \p MachineOutlinerNoLRSave implies that the function should be called using
7049 /// a BL instruction, but doesn't require LR to be saved and restored. This
7050 /// happens when LR is known to be dead.
7051 ///
7052 /// That is,
7053 ///
7054 /// I1 OUTLINED_FUNCTION:
7055 /// I2 --> BL OUTLINED_FUNCTION I1
7056 /// I3 I2
7057 /// I3
7058 /// RET
7059 ///
7060 /// * Call construction overhead: 1 (BL)
7061 /// * Frame construction overhead: 1 (RET)
7062 /// * Requires stack fixups? No
7063 ///
7064 /// \p MachineOutlinerThunk implies that the function is being created from
7065 /// a sequence of instructions ending in a call. The outlined function is
7066 /// called with a BL instruction, and the outlined function tail-calls the
7067 /// original call destination.
7068 ///
7069 /// That is,
7070 ///
7071 /// I1 OUTLINED_FUNCTION:
7072 /// I2 --> BL OUTLINED_FUNCTION I1
7073 /// BL f I2
7074 /// B f
7075 /// * Call construction overhead: 1 (BL)
7076 /// * Frame construction overhead: 0
7077 /// * Requires stack fixups? No
7078 ///
7079 /// \p MachineOutlinerRegSave implies that the function should be called with a
7080 /// save and restore of LR to an available register. This allows us to avoid
7081 /// stack fixups. Note that this outlining variant is compatible with the
7082 /// NoLRSave case.
7083 ///
7084 /// That is,
7085 ///
7086 /// I1 Save LR OUTLINED_FUNCTION:
7087 /// I2 --> BL OUTLINED_FUNCTION I1
7088 /// I3 Restore LR I2
7089 /// I3
7090 /// RET
7091 ///
7092 /// * Call construction overhead: 3 (save + BL + restore)
7093 /// * Frame construction overhead: 1 (ret)
7094 /// * Requires stack fixups? No
7095 enum MachineOutlinerClass {
7096 MachineOutlinerDefault, /// Emit a save, restore, call, and return.
7097 MachineOutlinerTailCall, /// Only emit a branch.
7098 MachineOutlinerNoLRSave, /// Emit a call and return.
7099 MachineOutlinerThunk, /// Emit a call and tail-call.
7100 MachineOutlinerRegSave /// Same as default, but save to a register.
7101 };
7102
7103 enum MachineOutlinerMBBFlags {
7104 LRUnavailableSomewhere = 0x2,
7105 HasCalls = 0x4,
7106 UnsafeRegsDead = 0x8
7107 };
7108
7109 Register
findRegisterToSaveLRTo(outliner::Candidate & C) const7110 AArch64InstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
7111 MachineFunction *MF = C.getMF();
7112 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
7113 const AArch64RegisterInfo *ARI =
7114 static_cast<const AArch64RegisterInfo *>(&TRI);
7115 // Check if there is an available register across the sequence that we can
7116 // use.
7117 for (unsigned Reg : AArch64::GPR64RegClass) {
7118 if (!ARI->isReservedReg(*MF, Reg) &&
7119 Reg != AArch64::LR && // LR is not reserved, but don't use it.
7120 Reg != AArch64::X16 && // X16 is not guaranteed to be preserved.
7121 Reg != AArch64::X17 && // Ditto for X17.
7122 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
7123 C.isAvailableInsideSeq(Reg, TRI))
7124 return Reg;
7125 }
7126 return Register();
7127 }
7128
7129 static bool
outliningCandidatesSigningScopeConsensus(const outliner::Candidate & a,const outliner::Candidate & b)7130 outliningCandidatesSigningScopeConsensus(const outliner::Candidate &a,
7131 const outliner::Candidate &b) {
7132 const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>();
7133 const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>();
7134
7135 return MFIa->shouldSignReturnAddress(false) == MFIb->shouldSignReturnAddress(false) &&
7136 MFIa->shouldSignReturnAddress(true) == MFIb->shouldSignReturnAddress(true);
7137 }
7138
7139 static bool
outliningCandidatesSigningKeyConsensus(const outliner::Candidate & a,const outliner::Candidate & b)7140 outliningCandidatesSigningKeyConsensus(const outliner::Candidate &a,
7141 const outliner::Candidate &b) {
7142 const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>();
7143 const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>();
7144
7145 return MFIa->shouldSignWithBKey() == MFIb->shouldSignWithBKey();
7146 }
7147
outliningCandidatesV8_3OpsConsensus(const outliner::Candidate & a,const outliner::Candidate & b)7148 static bool outliningCandidatesV8_3OpsConsensus(const outliner::Candidate &a,
7149 const outliner::Candidate &b) {
7150 const AArch64Subtarget &SubtargetA =
7151 a.getMF()->getSubtarget<AArch64Subtarget>();
7152 const AArch64Subtarget &SubtargetB =
7153 b.getMF()->getSubtarget<AArch64Subtarget>();
7154 return SubtargetA.hasV8_3aOps() == SubtargetB.hasV8_3aOps();
7155 }
7156
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const7157 outliner::OutlinedFunction AArch64InstrInfo::getOutliningCandidateInfo(
7158 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
7159 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
7160 unsigned SequenceSize =
7161 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
7162 [this](unsigned Sum, const MachineInstr &MI) {
7163 return Sum + getInstSizeInBytes(MI);
7164 });
7165 unsigned NumBytesToCreateFrame = 0;
7166
7167 // We only allow outlining for functions having exactly matching return
7168 // address signing attributes, i.e., all share the same value for the
7169 // attribute "sign-return-address" and all share the same type of key they
7170 // are signed with.
7171 // Additionally we require all functions to simultaniously either support
7172 // v8.3a features or not. Otherwise an outlined function could get signed
7173 // using dedicated v8.3 instructions and a call from a function that doesn't
7174 // support v8.3 instructions would therefore be invalid.
7175 if (std::adjacent_find(
7176 RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
7177 [](const outliner::Candidate &a, const outliner::Candidate &b) {
7178 // Return true if a and b are non-equal w.r.t. return address
7179 // signing or support of v8.3a features
7180 if (outliningCandidatesSigningScopeConsensus(a, b) &&
7181 outliningCandidatesSigningKeyConsensus(a, b) &&
7182 outliningCandidatesV8_3OpsConsensus(a, b)) {
7183 return false;
7184 }
7185 return true;
7186 }) != RepeatedSequenceLocs.end()) {
7187 return outliner::OutlinedFunction();
7188 }
7189
7190 // Since at this point all candidates agree on their return address signing
7191 // picking just one is fine. If the candidate functions potentially sign their
7192 // return addresses, the outlined function should do the same. Note that in
7193 // the case of "sign-return-address"="non-leaf" this is an assumption: It is
7194 // not certainly true that the outlined function will have to sign its return
7195 // address but this decision is made later, when the decision to outline
7196 // has already been made.
7197 // The same holds for the number of additional instructions we need: On
7198 // v8.3a RET can be replaced by RETAA/RETAB and no AUT instruction is
7199 // necessary. However, at this point we don't know if the outlined function
7200 // will have a RET instruction so we assume the worst.
7201 const TargetRegisterInfo &TRI = getRegisterInfo();
7202 if (FirstCand.getMF()
7203 ->getInfo<AArch64FunctionInfo>()
7204 ->shouldSignReturnAddress(true)) {
7205 // One PAC and one AUT instructions
7206 NumBytesToCreateFrame += 8;
7207
7208 // We have to check if sp modifying instructions would get outlined.
7209 // If so we only allow outlining if sp is unchanged overall, so matching
7210 // sub and add instructions are okay to outline, all other sp modifications
7211 // are not
7212 auto hasIllegalSPModification = [&TRI](outliner::Candidate &C) {
7213 int SPValue = 0;
7214 MachineBasicBlock::iterator MBBI = C.front();
7215 for (;;) {
7216 if (MBBI->modifiesRegister(AArch64::SP, &TRI)) {
7217 switch (MBBI->getOpcode()) {
7218 case AArch64::ADDXri:
7219 case AArch64::ADDWri:
7220 assert(MBBI->getNumOperands() == 4 && "Wrong number of operands");
7221 assert(MBBI->getOperand(2).isImm() &&
7222 "Expected operand to be immediate");
7223 assert(MBBI->getOperand(1).isReg() &&
7224 "Expected operand to be a register");
7225 // Check if the add just increments sp. If so, we search for
7226 // matching sub instructions that decrement sp. If not, the
7227 // modification is illegal
7228 if (MBBI->getOperand(1).getReg() == AArch64::SP)
7229 SPValue += MBBI->getOperand(2).getImm();
7230 else
7231 return true;
7232 break;
7233 case AArch64::SUBXri:
7234 case AArch64::SUBWri:
7235 assert(MBBI->getNumOperands() == 4 && "Wrong number of operands");
7236 assert(MBBI->getOperand(2).isImm() &&
7237 "Expected operand to be immediate");
7238 assert(MBBI->getOperand(1).isReg() &&
7239 "Expected operand to be a register");
7240 // Check if the sub just decrements sp. If so, we search for
7241 // matching add instructions that increment sp. If not, the
7242 // modification is illegal
7243 if (MBBI->getOperand(1).getReg() == AArch64::SP)
7244 SPValue -= MBBI->getOperand(2).getImm();
7245 else
7246 return true;
7247 break;
7248 default:
7249 return true;
7250 }
7251 }
7252 if (MBBI == C.back())
7253 break;
7254 ++MBBI;
7255 }
7256 if (SPValue)
7257 return true;
7258 return false;
7259 };
7260 // Remove candidates with illegal stack modifying instructions
7261 llvm::erase_if(RepeatedSequenceLocs, hasIllegalSPModification);
7262
7263 // If the sequence doesn't have enough candidates left, then we're done.
7264 if (RepeatedSequenceLocs.size() < 2)
7265 return outliner::OutlinedFunction();
7266 }
7267
7268 // Properties about candidate MBBs that hold for all of them.
7269 unsigned FlagsSetInAll = 0xF;
7270
7271 // Compute liveness information for each candidate, and set FlagsSetInAll.
7272 for (outliner::Candidate &C : RepeatedSequenceLocs)
7273 FlagsSetInAll &= C.Flags;
7274
7275 // According to the AArch64 Procedure Call Standard, the following are
7276 // undefined on entry/exit from a function call:
7277 //
7278 // * Registers x16, x17, (and thus w16, w17)
7279 // * Condition codes (and thus the NZCV register)
7280 //
7281 // Because if this, we can't outline any sequence of instructions where
7282 // one
7283 // of these registers is live into/across it. Thus, we need to delete
7284 // those
7285 // candidates.
7286 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
7287 // If the unsafe registers in this block are all dead, then we don't need
7288 // to compute liveness here.
7289 if (C.Flags & UnsafeRegsDead)
7290 return false;
7291 return C.isAnyUnavailableAcrossOrOutOfSeq(
7292 {AArch64::W16, AArch64::W17, AArch64::NZCV}, TRI);
7293 };
7294
7295 // Are there any candidates where those registers are live?
7296 if (!(FlagsSetInAll & UnsafeRegsDead)) {
7297 // Erase every candidate that violates the restrictions above. (It could be
7298 // true that we have viable candidates, so it's not worth bailing out in
7299 // the case that, say, 1 out of 20 candidates violate the restructions.)
7300 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
7301
7302 // If the sequence doesn't have enough candidates left, then we're done.
7303 if (RepeatedSequenceLocs.size() < 2)
7304 return outliner::OutlinedFunction();
7305 }
7306
7307 // At this point, we have only "safe" candidates to outline. Figure out
7308 // frame + call instruction information.
7309
7310 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
7311
7312 // Helper lambda which sets call information for every candidate.
7313 auto SetCandidateCallInfo =
7314 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
7315 for (outliner::Candidate &C : RepeatedSequenceLocs)
7316 C.setCallInfo(CallID, NumBytesForCall);
7317 };
7318
7319 unsigned FrameID = MachineOutlinerDefault;
7320 NumBytesToCreateFrame += 4;
7321
7322 bool HasBTI = any_of(RepeatedSequenceLocs, [](outliner::Candidate &C) {
7323 return C.getMF()->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement();
7324 });
7325
7326 // We check to see if CFI Instructions are present, and if they are
7327 // we find the number of CFI Instructions in the candidates.
7328 unsigned CFICount = 0;
7329 for (auto &I : make_range(RepeatedSequenceLocs[0].front(),
7330 std::next(RepeatedSequenceLocs[0].back()))) {
7331 if (I.isCFIInstruction())
7332 CFICount++;
7333 }
7334
7335 // We compare the number of found CFI Instructions to the number of CFI
7336 // instructions in the parent function for each candidate. We must check this
7337 // since if we outline one of the CFI instructions in a function, we have to
7338 // outline them all for correctness. If we do not, the address offsets will be
7339 // incorrect between the two sections of the program.
7340 for (outliner::Candidate &C : RepeatedSequenceLocs) {
7341 std::vector<MCCFIInstruction> CFIInstructions =
7342 C.getMF()->getFrameInstructions();
7343
7344 if (CFICount > 0 && CFICount != CFIInstructions.size())
7345 return outliner::OutlinedFunction();
7346 }
7347
7348 // Returns true if an instructions is safe to fix up, false otherwise.
7349 auto IsSafeToFixup = [this, &TRI](MachineInstr &MI) {
7350 if (MI.isCall())
7351 return true;
7352
7353 if (!MI.modifiesRegister(AArch64::SP, &TRI) &&
7354 !MI.readsRegister(AArch64::SP, &TRI))
7355 return true;
7356
7357 // Any modification of SP will break our code to save/restore LR.
7358 // FIXME: We could handle some instructions which add a constant
7359 // offset to SP, with a bit more work.
7360 if (MI.modifiesRegister(AArch64::SP, &TRI))
7361 return false;
7362
7363 // At this point, we have a stack instruction that we might need to
7364 // fix up. We'll handle it if it's a load or store.
7365 if (MI.mayLoadOrStore()) {
7366 const MachineOperand *Base; // Filled with the base operand of MI.
7367 int64_t Offset; // Filled with the offset of MI.
7368 bool OffsetIsScalable;
7369
7370 // Does it allow us to offset the base operand and is the base the
7371 // register SP?
7372 if (!getMemOperandWithOffset(MI, Base, Offset, OffsetIsScalable, &TRI) ||
7373 !Base->isReg() || Base->getReg() != AArch64::SP)
7374 return false;
7375
7376 // Fixe-up code below assumes bytes.
7377 if (OffsetIsScalable)
7378 return false;
7379
7380 // Find the minimum/maximum offset for this instruction and check
7381 // if fixing it up would be in range.
7382 int64_t MinOffset,
7383 MaxOffset; // Unscaled offsets for the instruction.
7384 TypeSize Scale(0U, false); // The scale to multiply the offsets by.
7385 unsigned DummyWidth;
7386 getMemOpInfo(MI.getOpcode(), Scale, DummyWidth, MinOffset, MaxOffset);
7387
7388 Offset += 16; // Update the offset to what it would be if we outlined.
7389 if (Offset < MinOffset * (int64_t)Scale.getFixedValue() ||
7390 Offset > MaxOffset * (int64_t)Scale.getFixedValue())
7391 return false;
7392
7393 // It's in range, so we can outline it.
7394 return true;
7395 }
7396
7397 // FIXME: Add handling for instructions like "add x0, sp, #8".
7398
7399 // We can't fix it up, so don't outline it.
7400 return false;
7401 };
7402
7403 // True if it's possible to fix up each stack instruction in this sequence.
7404 // Important for frames/call variants that modify the stack.
7405 bool AllStackInstrsSafe = std::all_of(
7406 FirstCand.front(), std::next(FirstCand.back()), IsSafeToFixup);
7407
7408 // If the last instruction in any candidate is a terminator, then we should
7409 // tail call all of the candidates.
7410 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
7411 FrameID = MachineOutlinerTailCall;
7412 NumBytesToCreateFrame = 0;
7413 SetCandidateCallInfo(MachineOutlinerTailCall, 4);
7414 }
7415
7416 else if (LastInstrOpcode == AArch64::BL ||
7417 ((LastInstrOpcode == AArch64::BLR ||
7418 LastInstrOpcode == AArch64::BLRNoIP) &&
7419 !HasBTI)) {
7420 // FIXME: Do we need to check if the code after this uses the value of LR?
7421 FrameID = MachineOutlinerThunk;
7422 NumBytesToCreateFrame = 0;
7423 SetCandidateCallInfo(MachineOutlinerThunk, 4);
7424 }
7425
7426 else {
7427 // We need to decide how to emit calls + frames. We can always emit the same
7428 // frame if we don't need to save to the stack. If we have to save to the
7429 // stack, then we need a different frame.
7430 unsigned NumBytesNoStackCalls = 0;
7431 std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
7432
7433 // Check if we have to save LR.
7434 for (outliner::Candidate &C : RepeatedSequenceLocs) {
7435 // If we have a noreturn caller, then we're going to be conservative and
7436 // say that we have to save LR. If we don't have a ret at the end of the
7437 // block, then we can't reason about liveness accurately.
7438 //
7439 // FIXME: We can probably do better than always disabling this in
7440 // noreturn functions by fixing up the liveness info.
7441 bool IsNoReturn =
7442 C.getMF()->getFunction().hasFnAttribute(Attribute::NoReturn);
7443
7444 // Is LR available? If so, we don't need a save.
7445 if (C.isAvailableAcrossAndOutOfSeq(AArch64::LR, TRI) && !IsNoReturn) {
7446 NumBytesNoStackCalls += 4;
7447 C.setCallInfo(MachineOutlinerNoLRSave, 4);
7448 CandidatesWithoutStackFixups.push_back(C);
7449 }
7450
7451 // Is an unused register available? If so, we won't modify the stack, so
7452 // we can outline with the same frame type as those that don't save LR.
7453 else if (findRegisterToSaveLRTo(C)) {
7454 NumBytesNoStackCalls += 12;
7455 C.setCallInfo(MachineOutlinerRegSave, 12);
7456 CandidatesWithoutStackFixups.push_back(C);
7457 }
7458
7459 // Is SP used in the sequence at all? If not, we don't have to modify
7460 // the stack, so we are guaranteed to get the same frame.
7461 else if (C.isAvailableInsideSeq(AArch64::SP, TRI)) {
7462 NumBytesNoStackCalls += 12;
7463 C.setCallInfo(MachineOutlinerDefault, 12);
7464 CandidatesWithoutStackFixups.push_back(C);
7465 }
7466
7467 // If we outline this, we need to modify the stack. Pretend we don't
7468 // outline this by saving all of its bytes.
7469 else {
7470 NumBytesNoStackCalls += SequenceSize;
7471 }
7472 }
7473
7474 // If there are no places where we have to save LR, then note that we
7475 // don't have to update the stack. Otherwise, give every candidate the
7476 // default call type, as long as it's safe to do so.
7477 if (!AllStackInstrsSafe ||
7478 NumBytesNoStackCalls <= RepeatedSequenceLocs.size() * 12) {
7479 RepeatedSequenceLocs = CandidatesWithoutStackFixups;
7480 FrameID = MachineOutlinerNoLRSave;
7481 } else {
7482 SetCandidateCallInfo(MachineOutlinerDefault, 12);
7483
7484 // Bugzilla ID: 46767
7485 // TODO: Check if fixing up the stack more than once is safe so we can
7486 // outline these.
7487 //
7488 // An outline resulting in a caller that requires stack fixups at the
7489 // callsite to a callee that also requires stack fixups can happen when
7490 // there are no available registers at the candidate callsite for a
7491 // candidate that itself also has calls.
7492 //
7493 // In other words if function_containing_sequence in the following pseudo
7494 // assembly requires that we save LR at the point of the call, but there
7495 // are no available registers: in this case we save using SP and as a
7496 // result the SP offsets requires stack fixups by multiples of 16.
7497 //
7498 // function_containing_sequence:
7499 // ...
7500 // save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N
7501 // call OUTLINED_FUNCTION_N
7502 // restore LR from SP
7503 // ...
7504 //
7505 // OUTLINED_FUNCTION_N:
7506 // save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N
7507 // ...
7508 // bl foo
7509 // restore LR from SP
7510 // ret
7511 //
7512 // Because the code to handle more than one stack fixup does not
7513 // currently have the proper checks for legality, these cases will assert
7514 // in the AArch64 MachineOutliner. This is because the code to do this
7515 // needs more hardening, testing, better checks that generated code is
7516 // legal, etc and because it is only verified to handle a single pass of
7517 // stack fixup.
7518 //
7519 // The assert happens in AArch64InstrInfo::buildOutlinedFrame to catch
7520 // these cases until they are known to be handled. Bugzilla 46767 is
7521 // referenced in comments at the assert site.
7522 //
7523 // To avoid asserting (or generating non-legal code on noassert builds)
7524 // we remove all candidates which would need more than one stack fixup by
7525 // pruning the cases where the candidate has calls while also having no
7526 // available LR and having no available general purpose registers to copy
7527 // LR to (ie one extra stack save/restore).
7528 //
7529 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
7530 erase_if(RepeatedSequenceLocs, [this, &TRI](outliner::Candidate &C) {
7531 return (std::any_of(
7532 C.front(), std::next(C.back()),
7533 [](const MachineInstr &MI) { return MI.isCall(); })) &&
7534 (!C.isAvailableAcrossAndOutOfSeq(AArch64::LR, TRI) ||
7535 !findRegisterToSaveLRTo(C));
7536 });
7537 }
7538 }
7539
7540 // If we dropped all of the candidates, bail out here.
7541 if (RepeatedSequenceLocs.size() < 2) {
7542 RepeatedSequenceLocs.clear();
7543 return outliner::OutlinedFunction();
7544 }
7545 }
7546
7547 // Does every candidate's MBB contain a call? If so, then we might have a call
7548 // in the range.
7549 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
7550 // Check if the range contains a call. These require a save + restore of the
7551 // link register.
7552 bool ModStackToSaveLR = false;
7553 if (std::any_of(FirstCand.front(), FirstCand.back(),
7554 [](const MachineInstr &MI) { return MI.isCall(); }))
7555 ModStackToSaveLR = true;
7556
7557 // Handle the last instruction separately. If this is a tail call, then the
7558 // last instruction is a call. We don't want to save + restore in this case.
7559 // However, it could be possible that the last instruction is a call without
7560 // it being valid to tail call this sequence. We should consider this as
7561 // well.
7562 else if (FrameID != MachineOutlinerThunk &&
7563 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
7564 ModStackToSaveLR = true;
7565
7566 if (ModStackToSaveLR) {
7567 // We can't fix up the stack. Bail out.
7568 if (!AllStackInstrsSafe) {
7569 RepeatedSequenceLocs.clear();
7570 return outliner::OutlinedFunction();
7571 }
7572
7573 // Save + restore LR.
7574 NumBytesToCreateFrame += 8;
7575 }
7576 }
7577
7578 // If we have CFI instructions, we can only outline if the outlined section
7579 // can be a tail call
7580 if (FrameID != MachineOutlinerTailCall && CFICount > 0)
7581 return outliner::OutlinedFunction();
7582
7583 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7584 NumBytesToCreateFrame, FrameID);
7585 }
7586
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const7587 bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(
7588 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
7589 const Function &F = MF.getFunction();
7590
7591 // Can F be deduplicated by the linker? If it can, don't outline from it.
7592 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7593 return false;
7594
7595 // Don't outline from functions with section markings; the program could
7596 // expect that all the code is in the named section.
7597 // FIXME: Allow outlining from multiple functions with the same section
7598 // marking.
7599 if (F.hasSection())
7600 return false;
7601
7602 // Outlining from functions with redzones is unsafe since the outliner may
7603 // modify the stack. Check if hasRedZone is true or unknown; if yes, don't
7604 // outline from it.
7605 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
7606 if (!AFI || AFI->hasRedZone().value_or(true))
7607 return false;
7608
7609 // FIXME: Teach the outliner to generate/handle Windows unwind info.
7610 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
7611 return false;
7612
7613 // It's safe to outline from MF.
7614 return true;
7615 }
7616
isMBBSafeToOutlineFrom(MachineBasicBlock & MBB,unsigned & Flags) const7617 bool AArch64InstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
7618 unsigned &Flags) const {
7619 if (!TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags))
7620 return false;
7621 // Check if LR is available through all of the MBB. If it's not, then set
7622 // a flag.
7623 assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
7624 "Suitable Machine Function for outlining must track liveness");
7625 LiveRegUnits LRU(getRegisterInfo());
7626
7627 for (MachineInstr &MI : llvm::reverse(MBB))
7628 LRU.accumulate(MI);
7629
7630 // Check if each of the unsafe registers are available...
7631 bool W16AvailableInBlock = LRU.available(AArch64::W16);
7632 bool W17AvailableInBlock = LRU.available(AArch64::W17);
7633 bool NZCVAvailableInBlock = LRU.available(AArch64::NZCV);
7634
7635 // If all of these are dead (and not live out), we know we don't have to check
7636 // them later.
7637 if (W16AvailableInBlock && W17AvailableInBlock && NZCVAvailableInBlock)
7638 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
7639
7640 // Now, add the live outs to the set.
7641 LRU.addLiveOuts(MBB);
7642
7643 // If any of these registers is available in the MBB, but also a live out of
7644 // the block, then we know outlining is unsafe.
7645 if (W16AvailableInBlock && !LRU.available(AArch64::W16))
7646 return false;
7647 if (W17AvailableInBlock && !LRU.available(AArch64::W17))
7648 return false;
7649 if (NZCVAvailableInBlock && !LRU.available(AArch64::NZCV))
7650 return false;
7651
7652 // Check if there's a call inside this MachineBasicBlock. If there is, then
7653 // set a flag.
7654 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
7655 Flags |= MachineOutlinerMBBFlags::HasCalls;
7656
7657 MachineFunction *MF = MBB.getParent();
7658
7659 // In the event that we outline, we may have to save LR. If there is an
7660 // available register in the MBB, then we'll always save LR there. Check if
7661 // this is true.
7662 bool CanSaveLR = false;
7663 const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(
7664 MF->getSubtarget().getRegisterInfo());
7665
7666 // Check if there is an available register across the sequence that we can
7667 // use.
7668 for (unsigned Reg : AArch64::GPR64RegClass) {
7669 if (!ARI->isReservedReg(*MF, Reg) && Reg != AArch64::LR &&
7670 Reg != AArch64::X16 && Reg != AArch64::X17 && LRU.available(Reg)) {
7671 CanSaveLR = true;
7672 break;
7673 }
7674 }
7675
7676 // Check if we have a register we can save LR to, and if LR was used
7677 // somewhere. If both of those things are true, then we need to evaluate the
7678 // safety of outlining stack instructions later.
7679 if (!CanSaveLR && !LRU.available(AArch64::LR))
7680 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
7681
7682 return true;
7683 }
7684
7685 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const7686 AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
7687 unsigned Flags) const {
7688 MachineInstr &MI = *MIT;
7689 MachineBasicBlock *MBB = MI.getParent();
7690 MachineFunction *MF = MBB->getParent();
7691 AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>();
7692
7693 // Don't outline anything used for return address signing. The outlined
7694 // function will get signed later if needed
7695 switch (MI.getOpcode()) {
7696 case AArch64::PACIASP:
7697 case AArch64::PACIBSP:
7698 case AArch64::AUTIASP:
7699 case AArch64::AUTIBSP:
7700 case AArch64::RETAA:
7701 case AArch64::RETAB:
7702 case AArch64::EMITBKEY:
7703 return outliner::InstrType::Illegal;
7704 }
7705
7706 // Don't outline LOHs.
7707 if (FuncInfo->getLOHRelated().count(&MI))
7708 return outliner::InstrType::Illegal;
7709
7710 // We can only outline these if we will tail call the outlined function, or
7711 // fix up the CFI offsets. Currently, CFI instructions are outlined only if
7712 // in a tail call.
7713 //
7714 // FIXME: If the proper fixups for the offset are implemented, this should be
7715 // possible.
7716 if (MI.isCFIInstruction())
7717 return outliner::InstrType::Legal;
7718
7719 // Don't allow debug values to impact outlining type.
7720 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
7721 return outliner::InstrType::Invisible;
7722
7723 // At this point, KILL instructions don't really tell us much so we can go
7724 // ahead and skip over them.
7725 if (MI.isKill())
7726 return outliner::InstrType::Invisible;
7727
7728 // Is this a terminator for a basic block?
7729 if (MI.isTerminator()) {
7730
7731 // Is this the end of a function?
7732 if (MI.getParent()->succ_empty())
7733 return outliner::InstrType::Legal;
7734
7735 // It's not, so don't outline it.
7736 return outliner::InstrType::Illegal;
7737 }
7738
7739 // Make sure none of the operands are un-outlinable.
7740 for (const MachineOperand &MOP : MI.operands()) {
7741 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
7742 MOP.isTargetIndex())
7743 return outliner::InstrType::Illegal;
7744
7745 // If it uses LR or W30 explicitly, then don't touch it.
7746 if (MOP.isReg() && !MOP.isImplicit() &&
7747 (MOP.getReg() == AArch64::LR || MOP.getReg() == AArch64::W30))
7748 return outliner::InstrType::Illegal;
7749 }
7750
7751 // Special cases for instructions that can always be outlined, but will fail
7752 // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always
7753 // be outlined because they don't require a *specific* value to be in LR.
7754 if (MI.getOpcode() == AArch64::ADRP)
7755 return outliner::InstrType::Legal;
7756
7757 // If MI is a call we might be able to outline it. We don't want to outline
7758 // any calls that rely on the position of items on the stack. When we outline
7759 // something containing a call, we have to emit a save and restore of LR in
7760 // the outlined function. Currently, this always happens by saving LR to the
7761 // stack. Thus, if we outline, say, half the parameters for a function call
7762 // plus the call, then we'll break the callee's expectations for the layout
7763 // of the stack.
7764 //
7765 // FIXME: Allow calls to functions which construct a stack frame, as long
7766 // as they don't access arguments on the stack.
7767 // FIXME: Figure out some way to analyze functions defined in other modules.
7768 // We should be able to compute the memory usage based on the IR calling
7769 // convention, even if we can't see the definition.
7770 if (MI.isCall()) {
7771 // Get the function associated with the call. Look at each operand and find
7772 // the one that represents the callee and get its name.
7773 const Function *Callee = nullptr;
7774 for (const MachineOperand &MOP : MI.operands()) {
7775 if (MOP.isGlobal()) {
7776 Callee = dyn_cast<Function>(MOP.getGlobal());
7777 break;
7778 }
7779 }
7780
7781 // Never outline calls to mcount. There isn't any rule that would require
7782 // this, but the Linux kernel's "ftrace" feature depends on it.
7783 if (Callee && Callee->getName() == "\01_mcount")
7784 return outliner::InstrType::Illegal;
7785
7786 // If we don't know anything about the callee, assume it depends on the
7787 // stack layout of the caller. In that case, it's only legal to outline
7788 // as a tail-call. Explicitly list the call instructions we know about so we
7789 // don't get unexpected results with call pseudo-instructions.
7790 auto UnknownCallOutlineType = outliner::InstrType::Illegal;
7791 if (MI.getOpcode() == AArch64::BLR ||
7792 MI.getOpcode() == AArch64::BLRNoIP || MI.getOpcode() == AArch64::BL)
7793 UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
7794
7795 if (!Callee)
7796 return UnknownCallOutlineType;
7797
7798 // We have a function we have information about. Check it if it's something
7799 // can safely outline.
7800 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
7801
7802 // We don't know what's going on with the callee at all. Don't touch it.
7803 if (!CalleeMF)
7804 return UnknownCallOutlineType;
7805
7806 // Check if we know anything about the callee saves on the function. If we
7807 // don't, then don't touch it, since that implies that we haven't
7808 // computed anything about its stack frame yet.
7809 MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
7810 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
7811 MFI.getNumObjects() > 0)
7812 return UnknownCallOutlineType;
7813
7814 // At this point, we can say that CalleeMF ought to not pass anything on the
7815 // stack. Therefore, we can outline it.
7816 return outliner::InstrType::Legal;
7817 }
7818
7819 // Don't outline positions.
7820 if (MI.isPosition())
7821 return outliner::InstrType::Illegal;
7822
7823 // Don't touch the link register or W30.
7824 if (MI.readsRegister(AArch64::W30, &getRegisterInfo()) ||
7825 MI.modifiesRegister(AArch64::W30, &getRegisterInfo()))
7826 return outliner::InstrType::Illegal;
7827
7828 // Don't outline BTI instructions, because that will prevent the outlining
7829 // site from being indirectly callable.
7830 if (MI.getOpcode() == AArch64::HINT) {
7831 int64_t Imm = MI.getOperand(0).getImm();
7832 if (Imm == 32 || Imm == 34 || Imm == 36 || Imm == 38)
7833 return outliner::InstrType::Illegal;
7834 }
7835
7836 return outliner::InstrType::Legal;
7837 }
7838
fixupPostOutline(MachineBasicBlock & MBB) const7839 void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
7840 for (MachineInstr &MI : MBB) {
7841 const MachineOperand *Base;
7842 unsigned Width;
7843 int64_t Offset;
7844 bool OffsetIsScalable;
7845
7846 // Is this a load or store with an immediate offset with SP as the base?
7847 if (!MI.mayLoadOrStore() ||
7848 !getMemOperandWithOffsetWidth(MI, Base, Offset, OffsetIsScalable, Width,
7849 &RI) ||
7850 (Base->isReg() && Base->getReg() != AArch64::SP))
7851 continue;
7852
7853 // It is, so we have to fix it up.
7854 TypeSize Scale(0U, false);
7855 int64_t Dummy1, Dummy2;
7856
7857 MachineOperand &StackOffsetOperand = getMemOpBaseRegImmOfsOffsetOperand(MI);
7858 assert(StackOffsetOperand.isImm() && "Stack offset wasn't immediate!");
7859 getMemOpInfo(MI.getOpcode(), Scale, Width, Dummy1, Dummy2);
7860 assert(Scale != 0 && "Unexpected opcode!");
7861 assert(!OffsetIsScalable && "Expected offset to be a byte offset");
7862
7863 // We've pushed the return address to the stack, so add 16 to the offset.
7864 // This is safe, since we already checked if it would overflow when we
7865 // checked if this instruction was legal to outline.
7866 int64_t NewImm = (Offset + 16) / (int64_t)Scale.getFixedValue();
7867 StackOffsetOperand.setImm(NewImm);
7868 }
7869 }
7870
signOutlinedFunction(MachineFunction & MF,MachineBasicBlock & MBB,bool ShouldSignReturnAddr,bool ShouldSignReturnAddrWithBKey)7871 static void signOutlinedFunction(MachineFunction &MF, MachineBasicBlock &MBB,
7872 bool ShouldSignReturnAddr,
7873 bool ShouldSignReturnAddrWithBKey) {
7874 if (ShouldSignReturnAddr) {
7875 MachineBasicBlock::iterator MBBPAC = MBB.begin();
7876 MachineBasicBlock::iterator MBBAUT = MBB.getFirstTerminator();
7877 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
7878 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
7879 DebugLoc DL;
7880
7881 if (MBBAUT != MBB.end())
7882 DL = MBBAUT->getDebugLoc();
7883
7884 // At the very beginning of the basic block we insert the following
7885 // depending on the key type
7886 //
7887 // a_key: b_key:
7888 // PACIASP EMITBKEY
7889 // CFI_INSTRUCTION PACIBSP
7890 // CFI_INSTRUCTION
7891 if (ShouldSignReturnAddrWithBKey) {
7892 BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::EMITBKEY))
7893 .setMIFlag(MachineInstr::FrameSetup);
7894 }
7895
7896 BuildMI(MBB, MBBPAC, DebugLoc(),
7897 TII->get(ShouldSignReturnAddrWithBKey ? AArch64::PACIBSP
7898 : AArch64::PACIASP))
7899 .setMIFlag(MachineInstr::FrameSetup);
7900
7901 if (MF.getInfo<AArch64FunctionInfo>()->needsDwarfUnwindInfo(MF)) {
7902 unsigned CFIIndex =
7903 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
7904 BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::CFI_INSTRUCTION))
7905 .addCFIIndex(CFIIndex)
7906 .setMIFlags(MachineInstr::FrameSetup);
7907 }
7908
7909 // If v8.3a features are available we can replace a RET instruction by
7910 // RETAA or RETAB and omit the AUT instructions. In this case the
7911 // DW_CFA_AARCH64_negate_ra_state can't be emitted.
7912 if (Subtarget.hasPAuth() && MBBAUT != MBB.end() &&
7913 MBBAUT->getOpcode() == AArch64::RET) {
7914 BuildMI(MBB, MBBAUT, DL,
7915 TII->get(ShouldSignReturnAddrWithBKey ? AArch64::RETAB
7916 : AArch64::RETAA))
7917 .copyImplicitOps(*MBBAUT);
7918 MBB.erase(MBBAUT);
7919 } else {
7920 BuildMI(MBB, MBBAUT, DL,
7921 TII->get(ShouldSignReturnAddrWithBKey ? AArch64::AUTIBSP
7922 : AArch64::AUTIASP))
7923 .setMIFlag(MachineInstr::FrameDestroy);
7924 unsigned CFIIndexAuth =
7925 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
7926 BuildMI(MBB, MBBAUT, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
7927 .addCFIIndex(CFIIndexAuth)
7928 .setMIFlags(MachineInstr::FrameDestroy);
7929 }
7930 }
7931 }
7932
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const7933 void AArch64InstrInfo::buildOutlinedFrame(
7934 MachineBasicBlock &MBB, MachineFunction &MF,
7935 const outliner::OutlinedFunction &OF) const {
7936
7937 AArch64FunctionInfo *FI = MF.getInfo<AArch64FunctionInfo>();
7938
7939 if (OF.FrameConstructionID == MachineOutlinerTailCall)
7940 FI->setOutliningStyle("Tail Call");
7941 else if (OF.FrameConstructionID == MachineOutlinerThunk) {
7942 // For thunk outlining, rewrite the last instruction from a call to a
7943 // tail-call.
7944 MachineInstr *Call = &*--MBB.instr_end();
7945 unsigned TailOpcode;
7946 if (Call->getOpcode() == AArch64::BL) {
7947 TailOpcode = AArch64::TCRETURNdi;
7948 } else {
7949 assert(Call->getOpcode() == AArch64::BLR ||
7950 Call->getOpcode() == AArch64::BLRNoIP);
7951 TailOpcode = AArch64::TCRETURNriALL;
7952 }
7953 MachineInstr *TC = BuildMI(MF, DebugLoc(), get(TailOpcode))
7954 .add(Call->getOperand(0))
7955 .addImm(0);
7956 MBB.insert(MBB.end(), TC);
7957 Call->eraseFromParent();
7958
7959 FI->setOutliningStyle("Thunk");
7960 }
7961
7962 bool IsLeafFunction = true;
7963
7964 // Is there a call in the outlined range?
7965 auto IsNonTailCall = [](const MachineInstr &MI) {
7966 return MI.isCall() && !MI.isReturn();
7967 };
7968
7969 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
7970 // Fix up the instructions in the range, since we're going to modify the
7971 // stack.
7972
7973 // Bugzilla ID: 46767
7974 // TODO: Check if fixing up twice is safe so we can outline these.
7975 assert(OF.FrameConstructionID != MachineOutlinerDefault &&
7976 "Can only fix up stack references once");
7977 fixupPostOutline(MBB);
7978
7979 IsLeafFunction = false;
7980
7981 // LR has to be a live in so that we can save it.
7982 if (!MBB.isLiveIn(AArch64::LR))
7983 MBB.addLiveIn(AArch64::LR);
7984
7985 MachineBasicBlock::iterator It = MBB.begin();
7986 MachineBasicBlock::iterator Et = MBB.end();
7987
7988 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
7989 OF.FrameConstructionID == MachineOutlinerThunk)
7990 Et = std::prev(MBB.end());
7991
7992 // Insert a save before the outlined region
7993 MachineInstr *STRXpre = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
7994 .addReg(AArch64::SP, RegState::Define)
7995 .addReg(AArch64::LR)
7996 .addReg(AArch64::SP)
7997 .addImm(-16);
7998 It = MBB.insert(It, STRXpre);
7999
8000 if (MF.getInfo<AArch64FunctionInfo>()->needsDwarfUnwindInfo(MF)) {
8001 const TargetSubtargetInfo &STI = MF.getSubtarget();
8002 const MCRegisterInfo *MRI = STI.getRegisterInfo();
8003 unsigned DwarfReg = MRI->getDwarfRegNum(AArch64::LR, true);
8004
8005 // Add a CFI saying the stack was moved 16 B down.
8006 int64_t StackPosEntry =
8007 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 16));
8008 BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
8009 .addCFIIndex(StackPosEntry)
8010 .setMIFlags(MachineInstr::FrameSetup);
8011
8012 // Add a CFI saying that the LR that we want to find is now 16 B higher
8013 // than before.
8014 int64_t LRPosEntry = MF.addFrameInst(
8015 MCCFIInstruction::createOffset(nullptr, DwarfReg, -16));
8016 BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
8017 .addCFIIndex(LRPosEntry)
8018 .setMIFlags(MachineInstr::FrameSetup);
8019 }
8020
8021 // Insert a restore before the terminator for the function.
8022 MachineInstr *LDRXpost = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
8023 .addReg(AArch64::SP, RegState::Define)
8024 .addReg(AArch64::LR, RegState::Define)
8025 .addReg(AArch64::SP)
8026 .addImm(16);
8027 Et = MBB.insert(Et, LDRXpost);
8028 }
8029
8030 // If a bunch of candidates reach this point they must agree on their return
8031 // address signing. It is therefore enough to just consider the signing
8032 // behaviour of one of them
8033 const auto &MFI = *OF.Candidates.front().getMF()->getInfo<AArch64FunctionInfo>();
8034 bool ShouldSignReturnAddr = MFI.shouldSignReturnAddress(!IsLeafFunction);
8035
8036 // a_key is the default
8037 bool ShouldSignReturnAddrWithBKey = MFI.shouldSignWithBKey();
8038
8039 // If this is a tail call outlined function, then there's already a return.
8040 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
8041 OF.FrameConstructionID == MachineOutlinerThunk) {
8042 signOutlinedFunction(MF, MBB, ShouldSignReturnAddr,
8043 ShouldSignReturnAddrWithBKey);
8044 return;
8045 }
8046
8047 // It's not a tail call, so we have to insert the return ourselves.
8048
8049 // LR has to be a live in so that we can return to it.
8050 if (!MBB.isLiveIn(AArch64::LR))
8051 MBB.addLiveIn(AArch64::LR);
8052
8053 MachineInstr *ret = BuildMI(MF, DebugLoc(), get(AArch64::RET))
8054 .addReg(AArch64::LR);
8055 MBB.insert(MBB.end(), ret);
8056
8057 signOutlinedFunction(MF, MBB, ShouldSignReturnAddr,
8058 ShouldSignReturnAddrWithBKey);
8059
8060 FI->setOutliningStyle("Function");
8061
8062 // Did we have to modify the stack by saving the link register?
8063 if (OF.FrameConstructionID != MachineOutlinerDefault)
8064 return;
8065
8066 // We modified the stack.
8067 // Walk over the basic block and fix up all the stack accesses.
8068 fixupPostOutline(MBB);
8069 }
8070
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,outliner::Candidate & C) const8071 MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall(
8072 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
8073 MachineFunction &MF, outliner::Candidate &C) const {
8074
8075 // Are we tail calling?
8076 if (C.CallConstructionID == MachineOutlinerTailCall) {
8077 // If yes, then we can just branch to the label.
8078 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::TCRETURNdi))
8079 .addGlobalAddress(M.getNamedValue(MF.getName()))
8080 .addImm(0));
8081 return It;
8082 }
8083
8084 // Are we saving the link register?
8085 if (C.CallConstructionID == MachineOutlinerNoLRSave ||
8086 C.CallConstructionID == MachineOutlinerThunk) {
8087 // No, so just insert the call.
8088 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
8089 .addGlobalAddress(M.getNamedValue(MF.getName())));
8090 return It;
8091 }
8092
8093 // We want to return the spot where we inserted the call.
8094 MachineBasicBlock::iterator CallPt;
8095
8096 // Instructions for saving and restoring LR around the call instruction we're
8097 // going to insert.
8098 MachineInstr *Save;
8099 MachineInstr *Restore;
8100 // Can we save to a register?
8101 if (C.CallConstructionID == MachineOutlinerRegSave) {
8102 // FIXME: This logic should be sunk into a target-specific interface so that
8103 // we don't have to recompute the register.
8104 Register Reg = findRegisterToSaveLRTo(C);
8105 assert(Reg && "No callee-saved register available?");
8106
8107 // LR has to be a live in so that we can save it.
8108 if (!MBB.isLiveIn(AArch64::LR))
8109 MBB.addLiveIn(AArch64::LR);
8110
8111 // Save and restore LR from Reg.
8112 Save = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), Reg)
8113 .addReg(AArch64::XZR)
8114 .addReg(AArch64::LR)
8115 .addImm(0);
8116 Restore = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), AArch64::LR)
8117 .addReg(AArch64::XZR)
8118 .addReg(Reg)
8119 .addImm(0);
8120 } else {
8121 // We have the default case. Save and restore from SP.
8122 Save = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
8123 .addReg(AArch64::SP, RegState::Define)
8124 .addReg(AArch64::LR)
8125 .addReg(AArch64::SP)
8126 .addImm(-16);
8127 Restore = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
8128 .addReg(AArch64::SP, RegState::Define)
8129 .addReg(AArch64::LR, RegState::Define)
8130 .addReg(AArch64::SP)
8131 .addImm(16);
8132 }
8133
8134 It = MBB.insert(It, Save);
8135 It++;
8136
8137 // Insert the call.
8138 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
8139 .addGlobalAddress(M.getNamedValue(MF.getName())));
8140 CallPt = It;
8141 It++;
8142
8143 It = MBB.insert(It, Restore);
8144 return CallPt;
8145 }
8146
shouldOutlineFromFunctionByDefault(MachineFunction & MF) const8147 bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault(
8148 MachineFunction &MF) const {
8149 return MF.getFunction().hasMinSize();
8150 }
8151
8152 std::optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const8153 AArch64InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
8154
8155 // AArch64::ORRWrs and AArch64::ORRXrs with WZR/XZR reg
8156 // and zero immediate operands used as an alias for mov instruction.
8157 if (MI.getOpcode() == AArch64::ORRWrs &&
8158 MI.getOperand(1).getReg() == AArch64::WZR &&
8159 MI.getOperand(3).getImm() == 0x0) {
8160 return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
8161 }
8162
8163 if (MI.getOpcode() == AArch64::ORRXrs &&
8164 MI.getOperand(1).getReg() == AArch64::XZR &&
8165 MI.getOperand(3).getImm() == 0x0) {
8166 return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
8167 }
8168
8169 return std::nullopt;
8170 }
8171
8172 std::optional<RegImmPair>
isAddImmediate(const MachineInstr & MI,Register Reg) const8173 AArch64InstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
8174 int Sign = 1;
8175 int64_t Offset = 0;
8176
8177 // TODO: Handle cases where Reg is a super- or sub-register of the
8178 // destination register.
8179 const MachineOperand &Op0 = MI.getOperand(0);
8180 if (!Op0.isReg() || Reg != Op0.getReg())
8181 return std::nullopt;
8182
8183 switch (MI.getOpcode()) {
8184 default:
8185 return std::nullopt;
8186 case AArch64::SUBWri:
8187 case AArch64::SUBXri:
8188 case AArch64::SUBSWri:
8189 case AArch64::SUBSXri:
8190 Sign *= -1;
8191 [[fallthrough]];
8192 case AArch64::ADDSWri:
8193 case AArch64::ADDSXri:
8194 case AArch64::ADDWri:
8195 case AArch64::ADDXri: {
8196 // TODO: Third operand can be global address (usually some string).
8197 if (!MI.getOperand(0).isReg() || !MI.getOperand(1).isReg() ||
8198 !MI.getOperand(2).isImm())
8199 return std::nullopt;
8200 int Shift = MI.getOperand(3).getImm();
8201 assert((Shift == 0 || Shift == 12) && "Shift can be either 0 or 12");
8202 Offset = Sign * (MI.getOperand(2).getImm() << Shift);
8203 }
8204 }
8205 return RegImmPair{MI.getOperand(1).getReg(), Offset};
8206 }
8207
8208 /// If the given ORR instruction is a copy, and \p DescribedReg overlaps with
8209 /// the destination register then, if possible, describe the value in terms of
8210 /// the source register.
8211 static std::optional<ParamLoadedValue>
describeORRLoadedValue(const MachineInstr & MI,Register DescribedReg,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)8212 describeORRLoadedValue(const MachineInstr &MI, Register DescribedReg,
8213 const TargetInstrInfo *TII,
8214 const TargetRegisterInfo *TRI) {
8215 auto DestSrc = TII->isCopyInstr(MI);
8216 if (!DestSrc)
8217 return std::nullopt;
8218
8219 Register DestReg = DestSrc->Destination->getReg();
8220 Register SrcReg = DestSrc->Source->getReg();
8221
8222 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8223
8224 // If the described register is the destination, just return the source.
8225 if (DestReg == DescribedReg)
8226 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8227
8228 // ORRWrs zero-extends to 64-bits, so we need to consider such cases.
8229 if (MI.getOpcode() == AArch64::ORRWrs &&
8230 TRI->isSuperRegister(DestReg, DescribedReg))
8231 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8232
8233 // We may need to describe the lower part of a ORRXrs move.
8234 if (MI.getOpcode() == AArch64::ORRXrs &&
8235 TRI->isSubRegister(DestReg, DescribedReg)) {
8236 Register SrcSubReg = TRI->getSubReg(SrcReg, AArch64::sub_32);
8237 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
8238 }
8239
8240 assert(!TRI->isSuperOrSubRegisterEq(DestReg, DescribedReg) &&
8241 "Unhandled ORR[XW]rs copy case");
8242
8243 return std::nullopt;
8244 }
8245
8246 std::optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const8247 AArch64InstrInfo::describeLoadedValue(const MachineInstr &MI,
8248 Register Reg) const {
8249 const MachineFunction *MF = MI.getMF();
8250 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
8251 switch (MI.getOpcode()) {
8252 case AArch64::MOVZWi:
8253 case AArch64::MOVZXi: {
8254 // MOVZWi may be used for producing zero-extended 32-bit immediates in
8255 // 64-bit parameters, so we need to consider super-registers.
8256 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8257 return std::nullopt;
8258
8259 if (!MI.getOperand(1).isImm())
8260 return std::nullopt;
8261 int64_t Immediate = MI.getOperand(1).getImm();
8262 int Shift = MI.getOperand(2).getImm();
8263 return ParamLoadedValue(MachineOperand::CreateImm(Immediate << Shift),
8264 nullptr);
8265 }
8266 case AArch64::ORRWrs:
8267 case AArch64::ORRXrs:
8268 return describeORRLoadedValue(MI, Reg, this, TRI);
8269 }
8270
8271 return TargetInstrInfo::describeLoadedValue(MI, Reg);
8272 }
8273
isExtendLikelyToBeFolded(MachineInstr & ExtMI,MachineRegisterInfo & MRI) const8274 bool AArch64InstrInfo::isExtendLikelyToBeFolded(
8275 MachineInstr &ExtMI, MachineRegisterInfo &MRI) const {
8276 assert(ExtMI.getOpcode() == TargetOpcode::G_SEXT ||
8277 ExtMI.getOpcode() == TargetOpcode::G_ZEXT ||
8278 ExtMI.getOpcode() == TargetOpcode::G_ANYEXT);
8279
8280 // Anyexts are nops.
8281 if (ExtMI.getOpcode() == TargetOpcode::G_ANYEXT)
8282 return true;
8283
8284 Register DefReg = ExtMI.getOperand(0).getReg();
8285 if (!MRI.hasOneNonDBGUse(DefReg))
8286 return false;
8287
8288 // It's likely that a sext/zext as a G_PTR_ADD offset will be folded into an
8289 // addressing mode.
8290 auto *UserMI = &*MRI.use_instr_nodbg_begin(DefReg);
8291 return UserMI->getOpcode() == TargetOpcode::G_PTR_ADD;
8292 }
8293
getElementSizeForOpcode(unsigned Opc) const8294 uint64_t AArch64InstrInfo::getElementSizeForOpcode(unsigned Opc) const {
8295 return get(Opc).TSFlags & AArch64::ElementSizeMask;
8296 }
8297
isPTestLikeOpcode(unsigned Opc) const8298 bool AArch64InstrInfo::isPTestLikeOpcode(unsigned Opc) const {
8299 return get(Opc).TSFlags & AArch64::InstrFlagIsPTestLike;
8300 }
8301
isWhileOpcode(unsigned Opc) const8302 bool AArch64InstrInfo::isWhileOpcode(unsigned Opc) const {
8303 return get(Opc).TSFlags & AArch64::InstrFlagIsWhile;
8304 }
8305
8306 unsigned int
getTailDuplicateSize(CodeGenOpt::Level OptLevel) const8307 AArch64InstrInfo::getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
8308 return OptLevel >= CodeGenOpt::Aggressive ? 6 : 2;
8309 }
8310
getBLRCallOpcode(const MachineFunction & MF)8311 unsigned llvm::getBLRCallOpcode(const MachineFunction &MF) {
8312 if (MF.getSubtarget<AArch64Subtarget>().hardenSlsBlr())
8313 return AArch64::BLRNoIP;
8314 else
8315 return AArch64::BLR;
8316 }
8317
8318 #define GET_INSTRINFO_HELPERS
8319 #define GET_INSTRMAP_INFO
8320 #include "AArch64GenInstrInfo.inc"
8321