1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // | | Higher address
22 // |-----------------------------------|
23 // | |
24 // | arguments passed on the stack |
25 // | |
26 // |-----------------------------------| <- sp
27 // | | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // | | Higher address
37 // |-----------------------------------|
38 // | |
39 // | arguments passed on the stack |
40 // | |
41 // |-----------------------------------|
42 // | |
43 // | (Win64 only) varargs from reg |
44 // | |
45 // |-----------------------------------|
46 // | |
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | prev_lr | | (frame record first)
51 // | prev_fp | <--'
52 // | async context if needed |
53 // | (a.k.a. "frame record") |
54 // |-----------------------------------| <- fp(=x29)
55 // | |
56 // | callee-saved fp/simd/SVE regs |
57 // | |
58 // |-----------------------------------|
59 // | |
60 // | SVE stack objects |
61 // | |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....| compile time; if present)
66 // |-----------------------------------|
67 // | |
68 // | local variables of fixed size |
69 // | including spill slots |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....| LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................| compile time)
74 // |-----------------------------------| <- sp
75 // | | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 // variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 // more-than-default alignment requirements.
91 //
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
99 // as:
100 // ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
105 //
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
109 // or stores.
110 //
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
117 //
118 // FIXME: also explain the redzone concept.
119 //
120 // An example of the prologue:
121 //
122 // .globl __foo
123 // .align 2
124 // __foo:
125 // Ltmp0:
126 // .cfi_startproc
127 // .cfi_personality 155, ___gxx_personality_v0
128 // Leh_func_begin:
129 // .cfi_lsda 16, Lexception33
130 //
131 // stp xa,bx, [sp, -#offset]!
132 // ...
133 // stp x28, x27, [sp, #offset-32]
134 // stp fp, lr, [sp, #offset-16]
135 // add fp, sp, #offset - 16
136 // sub sp, sp, #1360
137 //
138 // The Stack:
139 // +-------------------------------------------+
140 // 10000 | ........ | ........ | ........ | ........ |
141 // 10004 | ........ | ........ | ........ | ........ |
142 // +-------------------------------------------+
143 // 10008 | ........ | ........ | ........ | ........ |
144 // 1000c | ........ | ........ | ........ | ........ |
145 // +===========================================+
146 // 10010 | X28 Register |
147 // 10014 | X28 Register |
148 // +-------------------------------------------+
149 // 10018 | X27 Register |
150 // 1001c | X27 Register |
151 // +===========================================+
152 // 10020 | Frame Pointer |
153 // 10024 | Frame Pointer |
154 // +-------------------------------------------+
155 // 10028 | Link Register |
156 // 1002c | Link Register |
157 // +===========================================+
158 // 10030 | ........ | ........ | ........ | ........ |
159 // 10034 | ........ | ........ | ........ | ........ |
160 // +-------------------------------------------+
161 // 10038 | ........ | ........ | ........ | ........ |
162 // 1003c | ........ | ........ | ........ | ........ |
163 // +-------------------------------------------+
164 //
165 // [sp] = 10030 :: >>initial value<<
166 // sp = 10020 :: stp fp, lr, [sp, #-16]!
167 // fp = sp == 10020 :: mov fp, sp
168 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
169 // sp == 10010 :: >>final value<<
170 //
171 // The frame pointer (w29) points to address 10020. If we use an offset of
172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
173 // for w27, and -32 for w28:
174 //
175 // Ltmp1:
176 // .cfi_def_cfa w29, 16
177 // Ltmp2:
178 // .cfi_offset w30, -8
179 // Ltmp3:
180 // .cfi_offset w29, -16
181 // Ltmp4:
182 // .cfi_offset w27, -24
183 // Ltmp5:
184 // .cfi_offset w28, -32
185 //
186 //===----------------------------------------------------------------------===//
187
188 #include "AArch64FrameLowering.h"
189 #include "AArch64InstrInfo.h"
190 #include "AArch64MachineFunctionInfo.h"
191 #include "AArch64RegisterInfo.h"
192 #include "AArch64ReturnProtectorLowering.h"
193 #include "AArch64Subtarget.h"
194 #include "AArch64TargetMachine.h"
195 #include "MCTargetDesc/AArch64AddressingModes.h"
196 #include "MCTargetDesc/AArch64MCTargetDesc.h"
197 #include "llvm/ADT/ScopeExit.h"
198 #include "llvm/ADT/SmallVector.h"
199 #include "llvm/ADT/Statistic.h"
200 #include "llvm/CodeGen/LivePhysRegs.h"
201 #include "llvm/CodeGen/MachineBasicBlock.h"
202 #include "llvm/CodeGen/MachineFrameInfo.h"
203 #include "llvm/CodeGen/MachineFunction.h"
204 #include "llvm/CodeGen/MachineInstr.h"
205 #include "llvm/CodeGen/MachineInstrBuilder.h"
206 #include "llvm/CodeGen/MachineMemOperand.h"
207 #include "llvm/CodeGen/MachineModuleInfo.h"
208 #include "llvm/CodeGen/MachineOperand.h"
209 #include "llvm/CodeGen/MachineRegisterInfo.h"
210 #include "llvm/CodeGen/RegisterScavenging.h"
211 #include "llvm/CodeGen/TargetInstrInfo.h"
212 #include "llvm/CodeGen/TargetRegisterInfo.h"
213 #include "llvm/CodeGen/TargetSubtargetInfo.h"
214 #include "llvm/CodeGen/WinEHFuncInfo.h"
215 #include "llvm/IR/Attributes.h"
216 #include "llvm/IR/CallingConv.h"
217 #include "llvm/IR/DataLayout.h"
218 #include "llvm/IR/DebugLoc.h"
219 #include "llvm/IR/Function.h"
220 #include "llvm/MC/MCAsmInfo.h"
221 #include "llvm/MC/MCDwarf.h"
222 #include "llvm/Support/CommandLine.h"
223 #include "llvm/Support/Debug.h"
224 #include "llvm/Support/ErrorHandling.h"
225 #include "llvm/Support/MathExtras.h"
226 #include "llvm/Support/raw_ostream.h"
227 #include "llvm/Target/TargetMachine.h"
228 #include "llvm/Target/TargetOptions.h"
229 #include <cassert>
230 #include <cstdint>
231 #include <iterator>
232 #include <optional>
233 #include <vector>
234
235 using namespace llvm;
236
237 #define DEBUG_TYPE "frame-info"
238
239 static cl::opt<bool> EnableRedZone("aarch64-redzone",
240 cl::desc("enable use of redzone on AArch64"),
241 cl::init(false), cl::Hidden);
242
243 static cl::opt<bool>
244 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
245 cl::desc("reverse the CSR restore sequence"),
246 cl::init(false), cl::Hidden);
247
248 static cl::opt<bool> StackTaggingMergeSetTag(
249 "stack-tagging-merge-settag",
250 cl::desc("merge settag instruction in function epilog"), cl::init(true),
251 cl::Hidden);
252
253 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
254 cl::desc("sort stack allocations"),
255 cl::init(true), cl::Hidden);
256
257 cl::opt<bool> EnableHomogeneousPrologEpilog(
258 "homogeneous-prolog-epilog", cl::Hidden,
259 cl::desc("Emit homogeneous prologue and epilogue for the size "
260 "optimization (default = off)"));
261
262 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
263
264 /// Returns how much of the incoming argument stack area (in bytes) we should
265 /// clean up in an epilogue. For the C calling convention this will be 0, for
266 /// guaranteed tail call conventions it can be positive (a normal return or a
267 /// tail call to a function that uses less stack space for arguments) or
268 /// negative (for a tail call to a function that needs more stack space than us
269 /// for arguments).
getArgumentStackToRestore(MachineFunction & MF,MachineBasicBlock & MBB)270 static int64_t getArgumentStackToRestore(MachineFunction &MF,
271 MachineBasicBlock &MBB) {
272 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
273 bool IsTailCallReturn = false;
274 if (MBB.end() != MBBI) {
275 unsigned RetOpcode = MBBI->getOpcode();
276 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
277 RetOpcode == AArch64::TCRETURNri ||
278 RetOpcode == AArch64::TCRETURNriBTI;
279 }
280 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
281
282 int64_t ArgumentPopSize = 0;
283 if (IsTailCallReturn) {
284 MachineOperand &StackAdjust = MBBI->getOperand(1);
285
286 // For a tail-call in a callee-pops-arguments environment, some or all of
287 // the stack may actually be in use for the call's arguments, this is
288 // calculated during LowerCall and consumed here...
289 ArgumentPopSize = StackAdjust.getImm();
290 } else {
291 // ... otherwise the amount to pop is *all* of the argument space,
292 // conveniently stored in the MachineFunctionInfo by
293 // LowerFormalArguments. This will, of course, be zero for the C calling
294 // convention.
295 ArgumentPopSize = AFI->getArgumentStackToRestore();
296 }
297
298 return ArgumentPopSize;
299 }
300
301 static bool produceCompactUnwindFrame(MachineFunction &MF);
302 static bool needsWinCFI(const MachineFunction &MF);
303 static StackOffset getSVEStackSize(const MachineFunction &MF);
304 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF);
305
306 /// Returns true if a homogeneous prolog or epilog code can be emitted
307 /// for the size optimization. If possible, a frame helper call is injected.
308 /// When Exit block is given, this check is for epilog.
homogeneousPrologEpilog(MachineFunction & MF,MachineBasicBlock * Exit) const309 bool AArch64FrameLowering::homogeneousPrologEpilog(
310 MachineFunction &MF, MachineBasicBlock *Exit) const {
311 if (!MF.getFunction().hasMinSize())
312 return false;
313 if (!EnableHomogeneousPrologEpilog)
314 return false;
315 if (ReverseCSRRestoreSeq)
316 return false;
317 if (EnableRedZone)
318 return false;
319
320 // TODO: Window is supported yet.
321 if (needsWinCFI(MF))
322 return false;
323 // TODO: SVE is not supported yet.
324 if (getSVEStackSize(MF))
325 return false;
326
327 // Bail on stack adjustment needed on return for simplicity.
328 const MachineFrameInfo &MFI = MF.getFrameInfo();
329 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
330 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
331 return false;
332 if (Exit && getArgumentStackToRestore(MF, *Exit))
333 return false;
334
335 return true;
336 }
337
338 /// Returns true if CSRs should be paired.
producePairRegisters(MachineFunction & MF) const339 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
340 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
341 }
342
343 /// This is the biggest offset to the stack pointer we can encode in aarch64
344 /// instructions (without using a separate calculation and a temp register).
345 /// Note that the exception here are vector stores/loads which cannot encode any
346 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
347 static const unsigned DefaultSafeSPDisplacement = 255;
348
349 /// Look at each instruction that references stack frames and return the stack
350 /// size limit beyond which some of these instructions will require a scratch
351 /// register during their expansion later.
estimateRSStackSizeLimit(MachineFunction & MF)352 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
353 // FIXME: For now, just conservatively guestimate based on unscaled indexing
354 // range. We'll end up allocating an unnecessary spill slot a lot, but
355 // realistically that's not a big deal at this stage of the game.
356 for (MachineBasicBlock &MBB : MF) {
357 for (MachineInstr &MI : MBB) {
358 if (MI.isDebugInstr() || MI.isPseudo() ||
359 MI.getOpcode() == AArch64::ADDXri ||
360 MI.getOpcode() == AArch64::ADDSXri)
361 continue;
362
363 for (const MachineOperand &MO : MI.operands()) {
364 if (!MO.isFI())
365 continue;
366
367 StackOffset Offset;
368 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
369 AArch64FrameOffsetCannotUpdate)
370 return 0;
371 }
372 }
373 }
374 return DefaultSafeSPDisplacement;
375 }
376
377 TargetStackID::Value
getStackIDForScalableVectors() const378 AArch64FrameLowering::getStackIDForScalableVectors() const {
379 return TargetStackID::ScalableVector;
380 }
381
382 /// Returns the size of the fixed object area (allocated next to sp on entry)
383 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
getFixedObjectSize(const MachineFunction & MF,const AArch64FunctionInfo * AFI,bool IsWin64,bool IsFunclet)384 static unsigned getFixedObjectSize(const MachineFunction &MF,
385 const AArch64FunctionInfo *AFI, bool IsWin64,
386 bool IsFunclet) {
387 if (!IsWin64 || IsFunclet) {
388 return AFI->getTailCallReservedStack();
389 } else {
390 if (AFI->getTailCallReservedStack() != 0)
391 report_fatal_error("cannot generate ABI-changing tail call for Win64");
392 // Var args are stored here in the primary function.
393 const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
394 // To support EH funclets we allocate an UnwindHelp object
395 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
396 return alignTo(VarArgsArea + UnwindHelpObject, 16);
397 }
398 }
399
400 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
getSVEStackSize(const MachineFunction & MF)401 static StackOffset getSVEStackSize(const MachineFunction &MF) {
402 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
403 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
404 }
405
canUseRedZone(const MachineFunction & MF) const406 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
407 if (!EnableRedZone)
408 return false;
409
410 // Don't use the red zone if the function explicitly asks us not to.
411 // This is typically used for kernel code.
412 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
413 const unsigned RedZoneSize =
414 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
415 if (!RedZoneSize)
416 return false;
417
418 const MachineFrameInfo &MFI = MF.getFrameInfo();
419 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
420 uint64_t NumBytes = AFI->getLocalStackSize();
421
422 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
423 getSVEStackSize(MF));
424 }
425
426 /// hasFP - Return true if the specified function should have a dedicated frame
427 /// pointer register.
hasFP(const MachineFunction & MF) const428 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
429 const MachineFrameInfo &MFI = MF.getFrameInfo();
430 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
431 // Win64 EH requires a frame pointer if funclets are present, as the locals
432 // are accessed off the frame pointer in both the parent function and the
433 // funclets.
434 if (MF.hasEHFunclets())
435 return true;
436 // Retain behavior of always omitting the FP for leaf functions when possible.
437 if (MF.getTarget().Options.DisableFramePointerElim(MF))
438 return true;
439 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
440 MFI.hasStackMap() || MFI.hasPatchPoint() ||
441 RegInfo->hasStackRealignment(MF))
442 return true;
443 // With large callframes around we may need to use FP to access the scavenging
444 // emergency spillslot.
445 //
446 // Unfortunately some calls to hasFP() like machine verifier ->
447 // getReservedReg() -> hasFP in the middle of global isel are too early
448 // to know the max call frame size. Hopefully conservatively returning "true"
449 // in those cases is fine.
450 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
451 if (!MFI.isMaxCallFrameSizeComputed() ||
452 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
453 return true;
454
455 return false;
456 }
457
458 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
459 /// not required, we reserve argument space for call sites in the function
460 /// immediately on entry to the current function. This eliminates the need for
461 /// add/sub sp brackets around call sites. Returns true if the call frame is
462 /// included as part of the stack frame.
463 bool
hasReservedCallFrame(const MachineFunction & MF) const464 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
465 return !MF.getFrameInfo().hasVarSizedObjects();
466 }
467
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const468 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
469 MachineFunction &MF, MachineBasicBlock &MBB,
470 MachineBasicBlock::iterator I) const {
471 const AArch64InstrInfo *TII =
472 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
473 DebugLoc DL = I->getDebugLoc();
474 unsigned Opc = I->getOpcode();
475 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
476 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
477
478 if (!hasReservedCallFrame(MF)) {
479 int64_t Amount = I->getOperand(0).getImm();
480 Amount = alignTo(Amount, getStackAlign());
481 if (!IsDestroy)
482 Amount = -Amount;
483
484 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
485 // doesn't have to pop anything), then the first operand will be zero too so
486 // this adjustment is a no-op.
487 if (CalleePopAmount == 0) {
488 // FIXME: in-function stack adjustment for calls is limited to 24-bits
489 // because there's no guaranteed temporary register available.
490 //
491 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
492 // 1) For offset <= 12-bit, we use LSL #0
493 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
494 // LSL #0, and the other uses LSL #12.
495 //
496 // Most call frames will be allocated at the start of a function so
497 // this is OK, but it is a limitation that needs dealing with.
498 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
499 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
500 StackOffset::getFixed(Amount), TII);
501 }
502 } else if (CalleePopAmount != 0) {
503 // If the calling convention demands that the callee pops arguments from the
504 // stack, we want to add it back if we have a reserved call frame.
505 assert(CalleePopAmount < 0xffffff && "call frame too large");
506 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
507 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
508 }
509 return MBB.erase(I);
510 }
511
emitCalleeSavedGPRLocations(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const512 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
513 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
514 MachineFunction &MF = *MBB.getParent();
515 MachineFrameInfo &MFI = MF.getFrameInfo();
516
517 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
518 if (CSI.empty())
519 return;
520
521 const TargetSubtargetInfo &STI = MF.getSubtarget();
522 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
523 const TargetInstrInfo &TII = *STI.getInstrInfo();
524 DebugLoc DL = MBB.findDebugLoc(MBBI);
525
526 for (const auto &Info : CSI) {
527 if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)
528 continue;
529
530 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
531 unsigned DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
532
533 int64_t Offset =
534 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
535 unsigned CFIIndex = MF.addFrameInst(
536 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
537 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
538 .addCFIIndex(CFIIndex)
539 .setMIFlags(MachineInstr::FrameSetup);
540 }
541 }
542
emitCalleeSavedSVELocations(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const543 void AArch64FrameLowering::emitCalleeSavedSVELocations(
544 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
545 MachineFunction &MF = *MBB.getParent();
546 MachineFrameInfo &MFI = MF.getFrameInfo();
547
548 // Add callee saved registers to move list.
549 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
550 if (CSI.empty())
551 return;
552
553 const TargetSubtargetInfo &STI = MF.getSubtarget();
554 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
555 const TargetInstrInfo &TII = *STI.getInstrInfo();
556 DebugLoc DL = MBB.findDebugLoc(MBBI);
557 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
558
559 for (const auto &Info : CSI) {
560 if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
561 continue;
562
563 // Not all unwinders may know about SVE registers, so assume the lowest
564 // common demoninator.
565 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
566 unsigned Reg = Info.getReg();
567 if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
568 continue;
569
570 StackOffset Offset =
571 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
572 StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
573
574 unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
575 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
576 .addCFIIndex(CFIIndex)
577 .setMIFlags(MachineInstr::FrameSetup);
578 }
579 }
580
insertCFISameValue(const MCInstrDesc & Desc,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,unsigned DwarfReg)581 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
582 MachineBasicBlock &MBB,
583 MachineBasicBlock::iterator InsertPt,
584 unsigned DwarfReg) {
585 unsigned CFIIndex =
586 MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
587 BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
588 }
589
resetCFIToInitialState(MachineBasicBlock & MBB) const590 void AArch64FrameLowering::resetCFIToInitialState(
591 MachineBasicBlock &MBB) const {
592
593 MachineFunction &MF = *MBB.getParent();
594 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
595 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
596 const auto &TRI =
597 static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
598 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
599
600 const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
601 DebugLoc DL;
602
603 // Reset the CFA to `SP + 0`.
604 MachineBasicBlock::iterator InsertPt = MBB.begin();
605 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
606 nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
607 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
608
609 // Flip the RA sign state.
610 if (MFI.shouldSignReturnAddress(MF)) {
611 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
612 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
613 }
614
615 // Shadow call stack uses X18, reset it.
616 if (needsShadowCallStackPrologueEpilogue(MF))
617 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
618 TRI.getDwarfRegNum(AArch64::X18, true));
619
620 // Emit .cfi_same_value for callee-saved registers.
621 const std::vector<CalleeSavedInfo> &CSI =
622 MF.getFrameInfo().getCalleeSavedInfo();
623 for (const auto &Info : CSI) {
624 unsigned Reg = Info.getReg();
625 if (!TRI.regNeedsCFI(Reg, Reg))
626 continue;
627 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
628 TRI.getDwarfRegNum(Reg, true));
629 }
630 }
631
emitCalleeSavedRestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,bool SVE)632 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
633 MachineBasicBlock::iterator MBBI,
634 bool SVE) {
635 MachineFunction &MF = *MBB.getParent();
636 MachineFrameInfo &MFI = MF.getFrameInfo();
637
638 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
639 if (CSI.empty())
640 return;
641
642 const TargetSubtargetInfo &STI = MF.getSubtarget();
643 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
644 const TargetInstrInfo &TII = *STI.getInstrInfo();
645 DebugLoc DL = MBB.findDebugLoc(MBBI);
646
647 for (const auto &Info : CSI) {
648 if (SVE !=
649 (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
650 continue;
651
652 unsigned Reg = Info.getReg();
653 if (SVE &&
654 !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
655 continue;
656
657 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
658 nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
659 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
660 .addCFIIndex(CFIIndex)
661 .setMIFlags(MachineInstr::FrameDestroy);
662 }
663 }
664
emitCalleeSavedGPRRestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const665 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
666 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
667 emitCalleeSavedRestores(MBB, MBBI, false);
668 }
669
emitCalleeSavedSVERestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const670 void AArch64FrameLowering::emitCalleeSavedSVERestores(
671 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
672 emitCalleeSavedRestores(MBB, MBBI, true);
673 }
674
getRegisterOrZero(MCRegister Reg,bool HasSVE)675 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
676 switch (Reg.id()) {
677 default:
678 // The called routine is expected to preserve r19-r28
679 // r29 and r30 are used as frame pointer and link register resp.
680 return 0;
681
682 // GPRs
683 #define CASE(n) \
684 case AArch64::W##n: \
685 case AArch64::X##n: \
686 return AArch64::X##n
687 CASE(0);
688 CASE(1);
689 CASE(2);
690 CASE(3);
691 CASE(4);
692 CASE(5);
693 CASE(6);
694 CASE(7);
695 CASE(8);
696 CASE(9);
697 CASE(10);
698 CASE(11);
699 CASE(12);
700 CASE(13);
701 CASE(14);
702 CASE(15);
703 CASE(16);
704 CASE(17);
705 CASE(18);
706 #undef CASE
707
708 // FPRs
709 #define CASE(n) \
710 case AArch64::B##n: \
711 case AArch64::H##n: \
712 case AArch64::S##n: \
713 case AArch64::D##n: \
714 case AArch64::Q##n: \
715 return HasSVE ? AArch64::Z##n : AArch64::Q##n
716 CASE(0);
717 CASE(1);
718 CASE(2);
719 CASE(3);
720 CASE(4);
721 CASE(5);
722 CASE(6);
723 CASE(7);
724 CASE(8);
725 CASE(9);
726 CASE(10);
727 CASE(11);
728 CASE(12);
729 CASE(13);
730 CASE(14);
731 CASE(15);
732 CASE(16);
733 CASE(17);
734 CASE(18);
735 CASE(19);
736 CASE(20);
737 CASE(21);
738 CASE(22);
739 CASE(23);
740 CASE(24);
741 CASE(25);
742 CASE(26);
743 CASE(27);
744 CASE(28);
745 CASE(29);
746 CASE(30);
747 CASE(31);
748 #undef CASE
749 }
750 }
751
emitZeroCallUsedRegs(BitVector RegsToZero,MachineBasicBlock & MBB) const752 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
753 MachineBasicBlock &MBB) const {
754 // Insertion point.
755 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
756
757 // Fake a debug loc.
758 DebugLoc DL;
759 if (MBBI != MBB.end())
760 DL = MBBI->getDebugLoc();
761
762 const MachineFunction &MF = *MBB.getParent();
763 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
764 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
765
766 BitVector GPRsToZero(TRI.getNumRegs());
767 BitVector FPRsToZero(TRI.getNumRegs());
768 bool HasSVE = STI.hasSVE();
769 for (MCRegister Reg : RegsToZero.set_bits()) {
770 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
771 // For GPRs, we only care to clear out the 64-bit register.
772 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
773 GPRsToZero.set(XReg);
774 } else if (AArch64::FPR128RegClass.contains(Reg) ||
775 AArch64::FPR64RegClass.contains(Reg) ||
776 AArch64::FPR32RegClass.contains(Reg) ||
777 AArch64::FPR16RegClass.contains(Reg) ||
778 AArch64::FPR8RegClass.contains(Reg)) {
779 // For FPRs,
780 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
781 FPRsToZero.set(XReg);
782 }
783 }
784
785 const AArch64InstrInfo &TII = *STI.getInstrInfo();
786
787 // Zero out GPRs.
788 for (MCRegister Reg : GPRsToZero.set_bits())
789 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), Reg).addImm(0);
790
791 // Zero out FP/vector registers.
792 for (MCRegister Reg : FPRsToZero.set_bits())
793 if (HasSVE)
794 BuildMI(MBB, MBBI, DL, TII.get(AArch64::DUP_ZI_D), Reg)
795 .addImm(0)
796 .addImm(0);
797 else
798 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVIv2d_ns), Reg).addImm(0);
799
800 if (HasSVE) {
801 for (MCRegister PReg :
802 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
803 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
804 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
805 AArch64::P15}) {
806 if (RegsToZero[PReg])
807 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
808 }
809 }
810 }
811
812 // Find a scratch register that we can use at the start of the prologue to
813 // re-align the stack pointer. We avoid using callee-save registers since they
814 // may appear to be free when this is called from canUseAsPrologue (during
815 // shrink wrapping), but then no longer be free when this is called from
816 // emitPrologue.
817 //
818 // FIXME: This is a bit conservative, since in the above case we could use one
819 // of the callee-save registers as a scratch temp to re-align the stack pointer,
820 // but we would then have to make sure that we were in fact saving at least one
821 // callee-save register in the prologue, which is additional complexity that
822 // doesn't seem worth the benefit.
findScratchNonCalleeSaveRegister(MachineBasicBlock * MBB)823 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
824 MachineFunction *MF = MBB->getParent();
825
826 // If MBB is an entry block, use X9 as the scratch register
827 if (&MF->front() == MBB)
828 return AArch64::X9;
829
830 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
831 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
832 LivePhysRegs LiveRegs(TRI);
833 LiveRegs.addLiveIns(*MBB);
834
835 // Mark callee saved registers as used so we will not choose them.
836 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
837 for (unsigned i = 0; CSRegs[i]; ++i)
838 LiveRegs.addReg(CSRegs[i]);
839
840 // Prefer X9 since it was historically used for the prologue scratch reg.
841 const MachineRegisterInfo &MRI = MF->getRegInfo();
842 if (LiveRegs.available(MRI, AArch64::X9))
843 return AArch64::X9;
844
845 for (unsigned Reg : AArch64::GPR64RegClass) {
846 if (LiveRegs.available(MRI, Reg))
847 return Reg;
848 }
849 return AArch64::NoRegister;
850 }
851
canUseAsPrologue(const MachineBasicBlock & MBB) const852 bool AArch64FrameLowering::canUseAsPrologue(
853 const MachineBasicBlock &MBB) const {
854 const MachineFunction *MF = MBB.getParent();
855 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
856 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
857 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
858
859 // Don't need a scratch register if we're not going to re-align the stack.
860 if (!RegInfo->hasStackRealignment(*MF))
861 return true;
862 // Otherwise, we can use any block as long as it has a scratch register
863 // available.
864 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
865 }
866
windowsRequiresStackProbe(MachineFunction & MF,uint64_t StackSizeInBytes)867 static bool windowsRequiresStackProbe(MachineFunction &MF,
868 uint64_t StackSizeInBytes) {
869 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
870 if (!Subtarget.isTargetWindows())
871 return false;
872 const Function &F = MF.getFunction();
873 // TODO: When implementing stack protectors, take that into account
874 // for the probe threshold.
875 unsigned StackProbeSize =
876 F.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
877 return (StackSizeInBytes >= StackProbeSize) &&
878 !F.hasFnAttribute("no-stack-arg-probe");
879 }
880
needsWinCFI(const MachineFunction & MF)881 static bool needsWinCFI(const MachineFunction &MF) {
882 const Function &F = MF.getFunction();
883 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
884 F.needsUnwindTableEntry();
885 }
886
shouldCombineCSRLocalStackBump(MachineFunction & MF,uint64_t StackBumpBytes) const887 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
888 MachineFunction &MF, uint64_t StackBumpBytes) const {
889 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
890 const MachineFrameInfo &MFI = MF.getFrameInfo();
891 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
892 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
893 if (homogeneousPrologEpilog(MF))
894 return false;
895
896 if (AFI->getLocalStackSize() == 0)
897 return false;
898
899 // For WinCFI, if optimizing for size, prefer to not combine the stack bump
900 // (to force a stp with predecrement) to match the packed unwind format,
901 // provided that there actually are any callee saved registers to merge the
902 // decrement with.
903 // This is potentially marginally slower, but allows using the packed
904 // unwind format for functions that both have a local area and callee saved
905 // registers. Using the packed unwind format notably reduces the size of
906 // the unwind info.
907 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
908 MF.getFunction().hasOptSize())
909 return false;
910
911 // 512 is the maximum immediate for stp/ldp that will be used for
912 // callee-save save/restores
913 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
914 return false;
915
916 if (MFI.hasVarSizedObjects())
917 return false;
918
919 if (RegInfo->hasStackRealignment(MF))
920 return false;
921
922 // This isn't strictly necessary, but it simplifies things a bit since the
923 // current RedZone handling code assumes the SP is adjusted by the
924 // callee-save save/restore code.
925 if (canUseRedZone(MF))
926 return false;
927
928 // When there is an SVE area on the stack, always allocate the
929 // callee-saves and spills/locals separately.
930 if (getSVEStackSize(MF))
931 return false;
932
933 return true;
934 }
935
shouldCombineCSRLocalStackBumpInEpilogue(MachineBasicBlock & MBB,unsigned StackBumpBytes) const936 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
937 MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
938 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
939 return false;
940
941 if (MBB.empty())
942 return true;
943
944 // Disable combined SP bump if the last instruction is an MTE tag store. It
945 // is almost always better to merge SP adjustment into those instructions.
946 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
947 MachineBasicBlock::iterator Begin = MBB.begin();
948 while (LastI != Begin) {
949 --LastI;
950 if (LastI->isTransient())
951 continue;
952 if (!LastI->getFlag(MachineInstr::FrameDestroy))
953 break;
954 }
955 switch (LastI->getOpcode()) {
956 case AArch64::STGloop:
957 case AArch64::STZGloop:
958 case AArch64::STGOffset:
959 case AArch64::STZGOffset:
960 case AArch64::ST2GOffset:
961 case AArch64::STZ2GOffset:
962 return false;
963 default:
964 return true;
965 }
966 llvm_unreachable("unreachable");
967 }
968
969 // Given a load or a store instruction, generate an appropriate unwinding SEH
970 // code on Windows.
InsertSEH(MachineBasicBlock::iterator MBBI,const TargetInstrInfo & TII,MachineInstr::MIFlag Flag)971 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
972 const TargetInstrInfo &TII,
973 MachineInstr::MIFlag Flag) {
974 unsigned Opc = MBBI->getOpcode();
975 MachineBasicBlock *MBB = MBBI->getParent();
976 MachineFunction &MF = *MBB->getParent();
977 DebugLoc DL = MBBI->getDebugLoc();
978 unsigned ImmIdx = MBBI->getNumOperands() - 1;
979 int Imm = MBBI->getOperand(ImmIdx).getImm();
980 MachineInstrBuilder MIB;
981 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
982 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
983
984 switch (Opc) {
985 default:
986 llvm_unreachable("No SEH Opcode for this instruction");
987 case AArch64::LDPDpost:
988 Imm = -Imm;
989 [[fallthrough]];
990 case AArch64::STPDpre: {
991 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
992 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
993 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
994 .addImm(Reg0)
995 .addImm(Reg1)
996 .addImm(Imm * 8)
997 .setMIFlag(Flag);
998 break;
999 }
1000 case AArch64::LDPXpost:
1001 Imm = -Imm;
1002 [[fallthrough]];
1003 case AArch64::STPXpre: {
1004 Register Reg0 = MBBI->getOperand(1).getReg();
1005 Register Reg1 = MBBI->getOperand(2).getReg();
1006 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1007 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1008 .addImm(Imm * 8)
1009 .setMIFlag(Flag);
1010 else
1011 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1012 .addImm(RegInfo->getSEHRegNum(Reg0))
1013 .addImm(RegInfo->getSEHRegNum(Reg1))
1014 .addImm(Imm * 8)
1015 .setMIFlag(Flag);
1016 break;
1017 }
1018 case AArch64::LDRDpost:
1019 Imm = -Imm;
1020 [[fallthrough]];
1021 case AArch64::STRDpre: {
1022 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1023 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1024 .addImm(Reg)
1025 .addImm(Imm)
1026 .setMIFlag(Flag);
1027 break;
1028 }
1029 case AArch64::LDRXpost:
1030 Imm = -Imm;
1031 [[fallthrough]];
1032 case AArch64::STRXpre: {
1033 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1034 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1035 .addImm(Reg)
1036 .addImm(Imm)
1037 .setMIFlag(Flag);
1038 break;
1039 }
1040 case AArch64::STPDi:
1041 case AArch64::LDPDi: {
1042 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1043 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1044 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1045 .addImm(Reg0)
1046 .addImm(Reg1)
1047 .addImm(Imm * 8)
1048 .setMIFlag(Flag);
1049 break;
1050 }
1051 case AArch64::STPXi:
1052 case AArch64::LDPXi: {
1053 Register Reg0 = MBBI->getOperand(0).getReg();
1054 Register Reg1 = MBBI->getOperand(1).getReg();
1055 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1056 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1057 .addImm(Imm * 8)
1058 .setMIFlag(Flag);
1059 else
1060 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1061 .addImm(RegInfo->getSEHRegNum(Reg0))
1062 .addImm(RegInfo->getSEHRegNum(Reg1))
1063 .addImm(Imm * 8)
1064 .setMIFlag(Flag);
1065 break;
1066 }
1067 case AArch64::STRXui:
1068 case AArch64::LDRXui: {
1069 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1070 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1071 .addImm(Reg)
1072 .addImm(Imm * 8)
1073 .setMIFlag(Flag);
1074 break;
1075 }
1076 case AArch64::STRDui:
1077 case AArch64::LDRDui: {
1078 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1079 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1080 .addImm(Reg)
1081 .addImm(Imm * 8)
1082 .setMIFlag(Flag);
1083 break;
1084 }
1085 }
1086 auto I = MBB->insertAfter(MBBI, MIB);
1087 return I;
1088 }
1089
1090 // Fix up the SEH opcode associated with the save/restore instruction.
fixupSEHOpcode(MachineBasicBlock::iterator MBBI,unsigned LocalStackSize)1091 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1092 unsigned LocalStackSize) {
1093 MachineOperand *ImmOpnd = nullptr;
1094 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1095 switch (MBBI->getOpcode()) {
1096 default:
1097 llvm_unreachable("Fix the offset in the SEH instruction");
1098 case AArch64::SEH_SaveFPLR:
1099 case AArch64::SEH_SaveRegP:
1100 case AArch64::SEH_SaveReg:
1101 case AArch64::SEH_SaveFRegP:
1102 case AArch64::SEH_SaveFReg:
1103 ImmOpnd = &MBBI->getOperand(ImmIdx);
1104 break;
1105 }
1106 if (ImmOpnd)
1107 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1108 }
1109
1110 // Convert callee-save register save/restore instruction to do stack pointer
1111 // decrement/increment to allocate/deallocate the callee-save stack area by
1112 // converting store/load to use pre/post increment version.
convertCalleeSaveRestoreToSPPrePostIncDec(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const TargetInstrInfo * TII,int CSStackSizeInc,bool NeedsWinCFI,bool * HasWinCFI,bool EmitCFI,MachineInstr::MIFlag FrameFlag=MachineInstr::FrameSetup,int CFAOffset=0)1113 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1114 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1115 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1116 bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1117 MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1118 int CFAOffset = 0) {
1119 unsigned NewOpc;
1120 switch (MBBI->getOpcode()) {
1121 default:
1122 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1123 case AArch64::STPXi:
1124 NewOpc = AArch64::STPXpre;
1125 break;
1126 case AArch64::STPDi:
1127 NewOpc = AArch64::STPDpre;
1128 break;
1129 case AArch64::STPQi:
1130 NewOpc = AArch64::STPQpre;
1131 break;
1132 case AArch64::STRXui:
1133 NewOpc = AArch64::STRXpre;
1134 break;
1135 case AArch64::STRDui:
1136 NewOpc = AArch64::STRDpre;
1137 break;
1138 case AArch64::STRQui:
1139 NewOpc = AArch64::STRQpre;
1140 break;
1141 case AArch64::LDPXi:
1142 NewOpc = AArch64::LDPXpost;
1143 break;
1144 case AArch64::LDPDi:
1145 NewOpc = AArch64::LDPDpost;
1146 break;
1147 case AArch64::LDPQi:
1148 NewOpc = AArch64::LDPQpost;
1149 break;
1150 case AArch64::LDRXui:
1151 NewOpc = AArch64::LDRXpost;
1152 break;
1153 case AArch64::LDRDui:
1154 NewOpc = AArch64::LDRDpost;
1155 break;
1156 case AArch64::LDRQui:
1157 NewOpc = AArch64::LDRQpost;
1158 break;
1159 }
1160 // Get rid of the SEH code associated with the old instruction.
1161 if (NeedsWinCFI) {
1162 auto SEH = std::next(MBBI);
1163 if (AArch64InstrInfo::isSEHInstruction(*SEH))
1164 SEH->eraseFromParent();
1165 }
1166
1167 TypeSize Scale = TypeSize::Fixed(1);
1168 unsigned Width;
1169 int64_t MinOffset, MaxOffset;
1170 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1171 NewOpc, Scale, Width, MinOffset, MaxOffset);
1172 (void)Success;
1173 assert(Success && "unknown load/store opcode");
1174
1175 // If the first store isn't right where we want SP then we can't fold the
1176 // update in so create a normal arithmetic instruction instead.
1177 MachineFunction &MF = *MBB.getParent();
1178 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1179 CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1180 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1181 StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1182 false, false, nullptr, EmitCFI,
1183 StackOffset::getFixed(CFAOffset));
1184
1185 return std::prev(MBBI);
1186 }
1187
1188 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1189 MIB.addReg(AArch64::SP, RegState::Define);
1190
1191 // Copy all operands other than the immediate offset.
1192 unsigned OpndIdx = 0;
1193 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1194 ++OpndIdx)
1195 MIB.add(MBBI->getOperand(OpndIdx));
1196
1197 assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1198 "Unexpected immediate offset in first/last callee-save save/restore "
1199 "instruction!");
1200 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1201 "Unexpected base register in callee-save save/restore instruction!");
1202 assert(CSStackSizeInc % Scale == 0);
1203 MIB.addImm(CSStackSizeInc / (int)Scale);
1204
1205 MIB.setMIFlags(MBBI->getFlags());
1206 MIB.setMemRefs(MBBI->memoperands());
1207
1208 // Generate a new SEH code that corresponds to the new instruction.
1209 if (NeedsWinCFI) {
1210 *HasWinCFI = true;
1211 InsertSEH(*MIB, *TII, FrameFlag);
1212 }
1213
1214 if (EmitCFI) {
1215 unsigned CFIIndex = MF.addFrameInst(
1216 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1217 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1218 .addCFIIndex(CFIIndex)
1219 .setMIFlags(FrameFlag);
1220 }
1221
1222 return std::prev(MBB.erase(MBBI));
1223 }
1224
1225 // Fixup callee-save register save/restore instructions to take into account
1226 // combined SP bump by adding the local stack size to the stack offsets.
fixupCalleeSaveRestoreStackOffset(MachineInstr & MI,uint64_t LocalStackSize,bool NeedsWinCFI,bool * HasWinCFI)1227 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1228 uint64_t LocalStackSize,
1229 bool NeedsWinCFI,
1230 bool *HasWinCFI) {
1231 if (AArch64InstrInfo::isSEHInstruction(MI))
1232 return;
1233
1234 unsigned Opc = MI.getOpcode();
1235 unsigned Scale;
1236 switch (Opc) {
1237 case AArch64::STPXi:
1238 case AArch64::STRXui:
1239 case AArch64::STPDi:
1240 case AArch64::STRDui:
1241 case AArch64::LDPXi:
1242 case AArch64::LDRXui:
1243 case AArch64::LDPDi:
1244 case AArch64::LDRDui:
1245 Scale = 8;
1246 break;
1247 case AArch64::STPQi:
1248 case AArch64::STRQui:
1249 case AArch64::LDPQi:
1250 case AArch64::LDRQui:
1251 Scale = 16;
1252 break;
1253 default:
1254 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1255 }
1256
1257 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1258 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1259 "Unexpected base register in callee-save save/restore instruction!");
1260 // Last operand is immediate offset that needs fixing.
1261 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1262 // All generated opcodes have scaled offsets.
1263 assert(LocalStackSize % Scale == 0);
1264 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1265
1266 if (NeedsWinCFI) {
1267 *HasWinCFI = true;
1268 auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1269 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1270 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1271 "Expecting a SEH instruction");
1272 fixupSEHOpcode(MBBI, LocalStackSize);
1273 }
1274 }
1275
isTargetWindows(const MachineFunction & MF)1276 static bool isTargetWindows(const MachineFunction &MF) {
1277 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1278 }
1279
1280 // Convenience function to determine whether I is an SVE callee save.
IsSVECalleeSave(MachineBasicBlock::iterator I)1281 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1282 switch (I->getOpcode()) {
1283 default:
1284 return false;
1285 case AArch64::STR_ZXI:
1286 case AArch64::STR_PXI:
1287 case AArch64::LDR_ZXI:
1288 case AArch64::LDR_PXI:
1289 return I->getFlag(MachineInstr::FrameSetup) ||
1290 I->getFlag(MachineInstr::FrameDestroy);
1291 }
1292 }
1293
needsShadowCallStackPrologueEpilogue(MachineFunction & MF)1294 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF) {
1295 if (!(llvm::any_of(
1296 MF.getFrameInfo().getCalleeSavedInfo(),
1297 [](const auto &Info) { return Info.getReg() == AArch64::LR; }) &&
1298 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)))
1299 return false;
1300
1301 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
1302 report_fatal_error("Must reserve x18 to use shadow call stack");
1303
1304 return true;
1305 }
1306
emitShadowCallStackPrologue(const TargetInstrInfo & TII,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool NeedsWinCFI,bool NeedsUnwindInfo)1307 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1308 MachineFunction &MF,
1309 MachineBasicBlock &MBB,
1310 MachineBasicBlock::iterator MBBI,
1311 const DebugLoc &DL, bool NeedsWinCFI,
1312 bool NeedsUnwindInfo) {
1313 // Shadow call stack prolog: str x30, [x18], #8
1314 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1315 .addReg(AArch64::X18, RegState::Define)
1316 .addReg(AArch64::LR)
1317 .addReg(AArch64::X18)
1318 .addImm(8)
1319 .setMIFlag(MachineInstr::FrameSetup);
1320
1321 // This instruction also makes x18 live-in to the entry block.
1322 MBB.addLiveIn(AArch64::X18);
1323
1324 if (NeedsWinCFI)
1325 BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1326 .setMIFlag(MachineInstr::FrameSetup);
1327
1328 if (NeedsUnwindInfo) {
1329 // Emit a CFI instruction that causes 8 to be subtracted from the value of
1330 // x18 when unwinding past this frame.
1331 static const char CFIInst[] = {
1332 dwarf::DW_CFA_val_expression,
1333 18, // register
1334 2, // length
1335 static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1336 static_cast<char>(-8) & 0x7f, // addend (sleb128)
1337 };
1338 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1339 nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1340 BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1341 .addCFIIndex(CFIIndex)
1342 .setMIFlag(MachineInstr::FrameSetup);
1343 }
1344 }
1345
emitShadowCallStackEpilogue(const TargetInstrInfo & TII,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL)1346 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1347 MachineFunction &MF,
1348 MachineBasicBlock &MBB,
1349 MachineBasicBlock::iterator MBBI,
1350 const DebugLoc &DL) {
1351 // Shadow call stack epilog: ldr x30, [x18, #-8]!
1352 BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1353 .addReg(AArch64::X18, RegState::Define)
1354 .addReg(AArch64::LR, RegState::Define)
1355 .addReg(AArch64::X18)
1356 .addImm(-8)
1357 .setMIFlag(MachineInstr::FrameDestroy);
1358
1359 if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1360 unsigned CFIIndex =
1361 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1362 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1363 .addCFIIndex(CFIIndex)
1364 .setMIFlags(MachineInstr::FrameDestroy);
1365 }
1366 }
1367
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const1368 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1369 MachineBasicBlock &MBB) const {
1370 MachineBasicBlock::iterator MBBI = MBB.begin();
1371 const MachineFrameInfo &MFI = MF.getFrameInfo();
1372 const Function &F = MF.getFunction();
1373 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1374 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1375 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1376 MachineModuleInfo &MMI = MF.getMMI();
1377 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1378 bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1379 bool HasFP = hasFP(MF);
1380 bool NeedsWinCFI = needsWinCFI(MF);
1381 bool HasWinCFI = false;
1382 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1383
1384 bool IsFunclet = MBB.isEHFuncletEntry();
1385
1386 // At this point, we're going to decide whether or not the function uses a
1387 // redzone. In most cases, the function doesn't have a redzone so let's
1388 // assume that's false and set it to true in the case that there's a redzone.
1389 AFI->setHasRedZone(false);
1390
1391 // Debug location must be unknown since the first debug location is used
1392 // to determine the end of the prologue.
1393 DebugLoc DL;
1394
1395 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1396 if (needsShadowCallStackPrologueEpilogue(MF))
1397 emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1398 MFnI.needsDwarfUnwindInfo(MF));
1399
1400 if (MFnI.shouldSignReturnAddress(MF)) {
1401 if (MFnI.shouldSignWithBKey()) {
1402 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
1403 .setMIFlag(MachineInstr::FrameSetup);
1404 }
1405
1406 // No SEH opcode for this one; it doesn't materialize into an
1407 // instruction on Windows.
1408 BuildMI(MBB, MBBI, DL,
1409 TII->get(MFnI.shouldSignWithBKey() ? AArch64::PACIBSP
1410 : AArch64::PACIASP))
1411 .setMIFlag(MachineInstr::FrameSetup);
1412
1413 if (EmitCFI) {
1414 unsigned CFIIndex =
1415 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1416 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1417 .addCFIIndex(CFIIndex)
1418 .setMIFlags(MachineInstr::FrameSetup);
1419 } else if (NeedsWinCFI) {
1420 HasWinCFI = true;
1421 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
1422 .setMIFlag(MachineInstr::FrameSetup);
1423 }
1424 }
1425 if (EmitCFI && MFnI.isMTETagged()) {
1426 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1427 .setMIFlag(MachineInstr::FrameSetup);
1428 }
1429
1430 // We signal the presence of a Swift extended frame to external tools by
1431 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1432 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1433 // bits so that is still true.
1434 if (HasFP && AFI->hasSwiftAsyncContext()) {
1435 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1436 case SwiftAsyncFramePointerMode::DeploymentBased:
1437 if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1438 // The special symbol below is absolute and has a *value* that can be
1439 // combined with the frame pointer to signal an extended frame.
1440 BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1441 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1442 AArch64II::MO_GOT);
1443 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1444 .addUse(AArch64::FP)
1445 .addUse(AArch64::X16)
1446 .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1447 break;
1448 }
1449 [[fallthrough]];
1450
1451 case SwiftAsyncFramePointerMode::Always:
1452 // ORR x29, x29, #0x1000_0000_0000_0000
1453 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1454 .addUse(AArch64::FP)
1455 .addImm(0x1100)
1456 .setMIFlag(MachineInstr::FrameSetup);
1457 break;
1458
1459 case SwiftAsyncFramePointerMode::Never:
1460 break;
1461 }
1462 }
1463
1464 // All calls are tail calls in GHC calling conv, and functions have no
1465 // prologue/epilogue.
1466 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1467 return;
1468
1469 // Set tagged base pointer to the requested stack slot.
1470 // Ideally it should match SP value after prologue.
1471 std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1472 if (TBPI)
1473 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1474 else
1475 AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1476
1477 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1478
1479 // getStackSize() includes all the locals in its size calculation. We don't
1480 // include these locals when computing the stack size of a funclet, as they
1481 // are allocated in the parent's stack frame and accessed via the frame
1482 // pointer from the funclet. We only save the callee saved registers in the
1483 // funclet, which are really the callee saved registers of the parent
1484 // function, including the funclet.
1485 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1486 : MFI.getStackSize();
1487 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1488 assert(!HasFP && "unexpected function without stack frame but with FP");
1489 assert(!SVEStackSize &&
1490 "unexpected function without stack frame but with SVE objects");
1491 // All of the stack allocation is for locals.
1492 AFI->setLocalStackSize(NumBytes);
1493 if (!NumBytes)
1494 return;
1495 // REDZONE: If the stack size is less than 128 bytes, we don't need
1496 // to actually allocate.
1497 if (canUseRedZone(MF)) {
1498 AFI->setHasRedZone(true);
1499 ++NumRedZoneFunctions;
1500 } else {
1501 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1502 StackOffset::getFixed(-NumBytes), TII,
1503 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1504 if (EmitCFI) {
1505 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1506 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1507 // Encode the stack size of the leaf function.
1508 unsigned CFIIndex = MF.addFrameInst(
1509 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1510 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1511 .addCFIIndex(CFIIndex)
1512 .setMIFlags(MachineInstr::FrameSetup);
1513 }
1514 }
1515
1516 if (NeedsWinCFI) {
1517 HasWinCFI = true;
1518 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1519 .setMIFlag(MachineInstr::FrameSetup);
1520 }
1521
1522 return;
1523 }
1524
1525 bool IsWin64 =
1526 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1527 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1528
1529 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1530 // All of the remaining stack allocations are for locals.
1531 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1532 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1533 bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1534 if (CombineSPBump) {
1535 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1536 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1537 StackOffset::getFixed(-NumBytes), TII,
1538 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1539 EmitCFI);
1540 NumBytes = 0;
1541 } else if (HomPrologEpilog) {
1542 // Stack has been already adjusted.
1543 NumBytes -= PrologueSaveSize;
1544 } else if (PrologueSaveSize != 0) {
1545 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1546 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1547 EmitCFI);
1548 NumBytes -= PrologueSaveSize;
1549 }
1550 assert(NumBytes >= 0 && "Negative stack allocation size!?");
1551
1552 // Move past the saves of the callee-saved registers, fixing up the offsets
1553 // and pre-inc if we decided to combine the callee-save and local stack
1554 // pointer bump above.
1555 MachineBasicBlock::iterator End = MBB.end();
1556 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1557 !IsSVECalleeSave(MBBI)) {
1558 if (CombineSPBump)
1559 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1560 NeedsWinCFI, &HasWinCFI);
1561 ++MBBI;
1562 }
1563
1564 // For funclets the FP belongs to the containing function.
1565 if (!IsFunclet && HasFP) {
1566 // Only set up FP if we actually need to.
1567 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1568
1569 if (CombineSPBump)
1570 FPOffset += AFI->getLocalStackSize();
1571
1572 if (AFI->hasSwiftAsyncContext()) {
1573 // Before we update the live FP we have to ensure there's a valid (or
1574 // null) asynchronous context in its slot just before FP in the frame
1575 // record, so store it now.
1576 const auto &Attrs = MF.getFunction().getAttributes();
1577 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1578 if (HaveInitialContext)
1579 MBB.addLiveIn(AArch64::X22);
1580 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1581 .addUse(HaveInitialContext ? AArch64::X22 : AArch64::XZR)
1582 .addUse(AArch64::SP)
1583 .addImm(FPOffset - 8)
1584 .setMIFlags(MachineInstr::FrameSetup);
1585 }
1586
1587 if (HomPrologEpilog) {
1588 auto Prolog = MBBI;
1589 --Prolog;
1590 assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1591 Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1592 } else {
1593 // Issue sub fp, sp, FPOffset or
1594 // mov fp,sp when FPOffset is zero.
1595 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1596 // This code marks the instruction(s) that set the FP also.
1597 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1598 StackOffset::getFixed(FPOffset), TII,
1599 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1600 if (NeedsWinCFI && HasWinCFI) {
1601 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1602 .setMIFlag(MachineInstr::FrameSetup);
1603 // After setting up the FP, the rest of the prolog doesn't need to be
1604 // included in the SEH unwind info.
1605 NeedsWinCFI = false;
1606 }
1607 }
1608 if (EmitCFI) {
1609 // Define the current CFA rule to use the provided FP.
1610 const int OffsetToFirstCalleeSaveFromFP =
1611 AFI->getCalleeSaveBaseToFrameRecordOffset() -
1612 AFI->getCalleeSavedStackSize();
1613 Register FramePtr = RegInfo->getFrameRegister(MF);
1614 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1615 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1616 nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1617 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1618 .addCFIIndex(CFIIndex)
1619 .setMIFlags(MachineInstr::FrameSetup);
1620 }
1621 }
1622
1623 // Now emit the moves for whatever callee saved regs we have (including FP,
1624 // LR if those are saved). Frame instructions for SVE register are emitted
1625 // later, after the instruction which actually save SVE regs.
1626 if (EmitCFI)
1627 emitCalleeSavedGPRLocations(MBB, MBBI);
1628
1629 // Alignment is required for the parent frame, not the funclet
1630 const bool NeedsRealignment =
1631 NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
1632 int64_t RealignmentPadding =
1633 (NeedsRealignment && MFI.getMaxAlign() > Align(16))
1634 ? MFI.getMaxAlign().value() - 16
1635 : 0;
1636
1637 if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
1638 uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
1639 if (NeedsWinCFI) {
1640 HasWinCFI = true;
1641 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1642 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1643 // This is at most two instructions, MOVZ follwed by MOVK.
1644 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1645 // exceeding 256MB in size.
1646 if (NumBytes >= (1 << 28))
1647 report_fatal_error("Stack size cannot exceed 256MB for stack "
1648 "unwinding purposes");
1649
1650 uint32_t LowNumWords = NumWords & 0xFFFF;
1651 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1652 .addImm(LowNumWords)
1653 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1654 .setMIFlag(MachineInstr::FrameSetup);
1655 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1656 .setMIFlag(MachineInstr::FrameSetup);
1657 if ((NumWords & 0xFFFF0000) != 0) {
1658 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1659 .addReg(AArch64::X15)
1660 .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1661 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1662 .setMIFlag(MachineInstr::FrameSetup);
1663 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1664 .setMIFlag(MachineInstr::FrameSetup);
1665 }
1666 } else {
1667 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1668 .addImm(NumWords)
1669 .setMIFlags(MachineInstr::FrameSetup);
1670 }
1671
1672 const char* ChkStk = Subtarget.getChkStkName();
1673 switch (MF.getTarget().getCodeModel()) {
1674 case CodeModel::Tiny:
1675 case CodeModel::Small:
1676 case CodeModel::Medium:
1677 case CodeModel::Kernel:
1678 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1679 .addExternalSymbol(ChkStk)
1680 .addReg(AArch64::X15, RegState::Implicit)
1681 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1682 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1683 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1684 .setMIFlags(MachineInstr::FrameSetup);
1685 if (NeedsWinCFI) {
1686 HasWinCFI = true;
1687 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1688 .setMIFlag(MachineInstr::FrameSetup);
1689 }
1690 break;
1691 case CodeModel::Large:
1692 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1693 .addReg(AArch64::X16, RegState::Define)
1694 .addExternalSymbol(ChkStk)
1695 .addExternalSymbol(ChkStk)
1696 .setMIFlags(MachineInstr::FrameSetup);
1697 if (NeedsWinCFI) {
1698 HasWinCFI = true;
1699 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1700 .setMIFlag(MachineInstr::FrameSetup);
1701 }
1702
1703 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
1704 .addReg(AArch64::X16, RegState::Kill)
1705 .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1706 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1707 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1708 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1709 .setMIFlags(MachineInstr::FrameSetup);
1710 if (NeedsWinCFI) {
1711 HasWinCFI = true;
1712 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1713 .setMIFlag(MachineInstr::FrameSetup);
1714 }
1715 break;
1716 }
1717
1718 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1719 .addReg(AArch64::SP, RegState::Kill)
1720 .addReg(AArch64::X15, RegState::Kill)
1721 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1722 .setMIFlags(MachineInstr::FrameSetup);
1723 if (NeedsWinCFI) {
1724 HasWinCFI = true;
1725 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1726 .addImm(NumBytes)
1727 .setMIFlag(MachineInstr::FrameSetup);
1728 }
1729 NumBytes = 0;
1730
1731 if (RealignmentPadding > 0) {
1732 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
1733 .addReg(AArch64::SP)
1734 .addImm(RealignmentPadding)
1735 .addImm(0);
1736
1737 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1738 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1739 .addReg(AArch64::X15, RegState::Kill)
1740 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1741 AFI->setStackRealigned(true);
1742
1743 // No need for SEH instructions here; if we're realigning the stack,
1744 // we've set a frame pointer and already finished the SEH prologue.
1745 assert(!NeedsWinCFI);
1746 }
1747 }
1748
1749 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1750 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1751
1752 // Process the SVE callee-saves to determine what space needs to be
1753 // allocated.
1754 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
1755 // Find callee save instructions in frame.
1756 CalleeSavesBegin = MBBI;
1757 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1758 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1759 ++MBBI;
1760 CalleeSavesEnd = MBBI;
1761
1762 AllocateBefore = StackOffset::getScalable(CalleeSavedSize);
1763 AllocateAfter = SVEStackSize - AllocateBefore;
1764 }
1765
1766 // Allocate space for the callee saves (if any).
1767 emitFrameOffset(
1768 MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, -AllocateBefore, TII,
1769 MachineInstr::FrameSetup, false, false, nullptr,
1770 EmitCFI && !HasFP && AllocateBefore,
1771 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1772
1773 if (EmitCFI)
1774 emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
1775
1776 // Finally allocate remaining SVE stack space.
1777 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1778 -AllocateAfter, TII, MachineInstr::FrameSetup, false, false,
1779 nullptr, EmitCFI && !HasFP && AllocateAfter,
1780 AllocateBefore + StackOffset::getFixed(
1781 (int64_t)MFI.getStackSize() - NumBytes));
1782
1783 // Allocate space for the rest of the frame.
1784 if (NumBytes) {
1785 unsigned scratchSPReg = AArch64::SP;
1786
1787 if (NeedsRealignment) {
1788 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1789 assert(scratchSPReg != AArch64::NoRegister);
1790 }
1791
1792 // If we're a leaf function, try using the red zone.
1793 if (!canUseRedZone(MF)) {
1794 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1795 // the correct value here, as NumBytes also includes padding bytes,
1796 // which shouldn't be counted here.
1797 emitFrameOffset(
1798 MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1799 StackOffset::getFixed(-NumBytes), TII, MachineInstr::FrameSetup,
1800 false, NeedsWinCFI, &HasWinCFI, EmitCFI && !HasFP,
1801 SVEStackSize +
1802 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1803 }
1804 if (NeedsRealignment) {
1805 assert(MFI.getMaxAlign() > Align(1));
1806 assert(scratchSPReg != AArch64::SP);
1807
1808 // SUB X9, SP, NumBytes
1809 // -- X9 is temporary register, so shouldn't contain any live data here,
1810 // -- free to use. This is already produced by emitFrameOffset above.
1811 // AND SP, X9, 0b11111...0000
1812 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1813
1814 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1815 .addReg(scratchSPReg, RegState::Kill)
1816 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1817 AFI->setStackRealigned(true);
1818
1819 // No need for SEH instructions here; if we're realigning the stack,
1820 // we've set a frame pointer and already finished the SEH prologue.
1821 assert(!NeedsWinCFI);
1822 }
1823 }
1824
1825 // If we need a base pointer, set it up here. It's whatever the value of the
1826 // stack pointer is at this point. Any variable size objects will be allocated
1827 // after this, so we can still use the base pointer to reference locals.
1828 //
1829 // FIXME: Clarify FrameSetup flags here.
1830 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1831 // needed.
1832 // For funclets the BP belongs to the containing function.
1833 if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1834 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1835 false);
1836 if (NeedsWinCFI) {
1837 HasWinCFI = true;
1838 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1839 .setMIFlag(MachineInstr::FrameSetup);
1840 }
1841 }
1842
1843 // The very last FrameSetup instruction indicates the end of prologue. Emit a
1844 // SEH opcode indicating the prologue end.
1845 if (NeedsWinCFI && HasWinCFI) {
1846 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1847 .setMIFlag(MachineInstr::FrameSetup);
1848 }
1849
1850 // SEH funclets are passed the frame pointer in X1. If the parent
1851 // function uses the base register, then the base register is used
1852 // directly, and is not retrieved from X1.
1853 if (IsFunclet && F.hasPersonalityFn()) {
1854 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1855 if (isAsynchronousEHPersonality(Per)) {
1856 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1857 .addReg(AArch64::X1)
1858 .setMIFlag(MachineInstr::FrameSetup);
1859 MBB.addLiveIn(AArch64::X1);
1860 }
1861 }
1862 }
1863
InsertReturnAddressAuth(MachineFunction & MF,MachineBasicBlock & MBB,bool NeedsWinCFI,bool * HasWinCFI)1864 static void InsertReturnAddressAuth(MachineFunction &MF, MachineBasicBlock &MBB,
1865 bool NeedsWinCFI, bool *HasWinCFI) {
1866 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
1867 if (!MFI.shouldSignReturnAddress(MF))
1868 return;
1869 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1870 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1871
1872 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1873 DebugLoc DL;
1874 if (MBBI != MBB.end())
1875 DL = MBBI->getDebugLoc();
1876
1877 // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1878 // this instruction can safely used for any v8a architecture.
1879 // From v8.3a onwards there are optimised authenticate LR and return
1880 // instructions, namely RETA{A,B}, that can be used instead. In this case the
1881 // DW_CFA_AARCH64_negate_ra_state can't be emitted.
1882 if (Subtarget.hasPAuth() &&
1883 !MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack) &&
1884 MBBI != MBB.end() && MBBI->getOpcode() == AArch64::RET_ReallyLR &&
1885 !NeedsWinCFI) {
1886 BuildMI(MBB, MBBI, DL,
1887 TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA))
1888 .copyImplicitOps(*MBBI);
1889 MBB.erase(MBBI);
1890 } else {
1891 BuildMI(
1892 MBB, MBBI, DL,
1893 TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP))
1894 .setMIFlag(MachineInstr::FrameDestroy);
1895
1896 unsigned CFIIndex =
1897 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1898 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1899 .addCFIIndex(CFIIndex)
1900 .setMIFlags(MachineInstr::FrameDestroy);
1901 if (NeedsWinCFI) {
1902 *HasWinCFI = true;
1903 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
1904 .setMIFlag(MachineInstr::FrameDestroy);
1905 }
1906 }
1907 }
1908
isFuncletReturnInstr(const MachineInstr & MI)1909 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1910 switch (MI.getOpcode()) {
1911 default:
1912 return false;
1913 case AArch64::CATCHRET:
1914 case AArch64::CLEANUPRET:
1915 return true;
1916 }
1917 }
1918
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1919 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1920 MachineBasicBlock &MBB) const {
1921 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1922 MachineFrameInfo &MFI = MF.getFrameInfo();
1923 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1924 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1925 DebugLoc DL;
1926 bool NeedsWinCFI = needsWinCFI(MF);
1927 bool EmitCFI =
1928 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
1929 bool HasWinCFI = false;
1930 bool IsFunclet = false;
1931 auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); });
1932
1933 if (MBB.end() != MBBI) {
1934 DL = MBBI->getDebugLoc();
1935 IsFunclet = isFuncletReturnInstr(*MBBI);
1936 }
1937
1938 auto FinishingTouches = make_scope_exit([&]() {
1939 InsertReturnAddressAuth(MF, MBB, NeedsWinCFI, &HasWinCFI);
1940 if (needsShadowCallStackPrologueEpilogue(MF))
1941 emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
1942 if (EmitCFI)
1943 emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
1944 if (HasWinCFI)
1945 BuildMI(MBB, MBB.getFirstTerminator(), DL,
1946 TII->get(AArch64::SEH_EpilogEnd))
1947 .setMIFlag(MachineInstr::FrameDestroy);
1948 });
1949
1950 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1951 : MFI.getStackSize();
1952 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1953
1954 // All calls are tail calls in GHC calling conv, and functions have no
1955 // prologue/epilogue.
1956 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1957 return;
1958
1959 // How much of the stack used by incoming arguments this function is expected
1960 // to restore in this particular epilogue.
1961 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
1962 bool IsWin64 =
1963 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1964 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1965
1966 int64_t AfterCSRPopSize = ArgumentStackToRestore;
1967 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1968 // We cannot rely on the local stack size set in emitPrologue if the function
1969 // has funclets, as funclets have different local stack size requirements, and
1970 // the current value set in emitPrologue may be that of the containing
1971 // function.
1972 if (MF.hasEHFunclets())
1973 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1974 if (homogeneousPrologEpilog(MF, &MBB)) {
1975 assert(!NeedsWinCFI);
1976 auto LastPopI = MBB.getFirstTerminator();
1977 if (LastPopI != MBB.begin()) {
1978 auto HomogeneousEpilog = std::prev(LastPopI);
1979 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
1980 LastPopI = HomogeneousEpilog;
1981 }
1982
1983 // Adjust local stack
1984 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1985 StackOffset::getFixed(AFI->getLocalStackSize()), TII,
1986 MachineInstr::FrameDestroy, false, NeedsWinCFI);
1987
1988 // SP has been already adjusted while restoring callee save regs.
1989 // We've bailed-out the case with adjusting SP for arguments.
1990 assert(AfterCSRPopSize == 0);
1991 return;
1992 }
1993 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
1994 // Assume we can't combine the last pop with the sp restore.
1995
1996 bool CombineAfterCSRBump = false;
1997 if (!CombineSPBump && PrologueSaveSize != 0) {
1998 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1999 while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
2000 AArch64InstrInfo::isSEHInstruction(*Pop))
2001 Pop = std::prev(Pop);
2002 // Converting the last ldp to a post-index ldp is valid only if the last
2003 // ldp's offset is 0.
2004 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2005 // If the offset is 0 and the AfterCSR pop is not actually trying to
2006 // allocate more stack for arguments (in space that an untimely interrupt
2007 // may clobber), convert it to a post-index ldp.
2008 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2009 convertCalleeSaveRestoreToSPPrePostIncDec(
2010 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2011 MachineInstr::FrameDestroy, PrologueSaveSize);
2012 } else {
2013 // If not, make sure to emit an add after the last ldp.
2014 // We're doing this by transfering the size to be restored from the
2015 // adjustment *before* the CSR pops to the adjustment *after* the CSR
2016 // pops.
2017 AfterCSRPopSize += PrologueSaveSize;
2018 CombineAfterCSRBump = true;
2019 }
2020 }
2021
2022 // Move past the restores of the callee-saved registers.
2023 // If we plan on combining the sp bump of the local stack size and the callee
2024 // save stack size, we might need to adjust the CSR save and restore offsets.
2025 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2026 MachineBasicBlock::iterator Begin = MBB.begin();
2027 while (LastPopI != Begin) {
2028 --LastPopI;
2029 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2030 IsSVECalleeSave(LastPopI)) {
2031 ++LastPopI;
2032 break;
2033 } else if (CombineSPBump)
2034 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2035 NeedsWinCFI, &HasWinCFI);
2036 }
2037
2038 if (MF.hasWinCFI()) {
2039 // If the prologue didn't contain any SEH opcodes and didn't set the
2040 // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the
2041 // EpilogStart - to avoid generating CFI for functions that don't need it.
2042 // (And as we didn't generate any prologue at all, it would be asymmetrical
2043 // to the epilogue.) By the end of the function, we assert that
2044 // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption.
2045 HasWinCFI = true;
2046 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2047 .setMIFlag(MachineInstr::FrameDestroy);
2048 }
2049
2050 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2051 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2052 case SwiftAsyncFramePointerMode::DeploymentBased:
2053 // Avoid the reload as it is GOT relative, and instead fall back to the
2054 // hardcoded value below. This allows a mismatch between the OS and
2055 // application without immediately terminating on the difference.
2056 [[fallthrough]];
2057 case SwiftAsyncFramePointerMode::Always:
2058 // We need to reset FP to its untagged state on return. Bit 60 is
2059 // currently used to show the presence of an extended frame.
2060
2061 // BIC x29, x29, #0x1000_0000_0000_0000
2062 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2063 AArch64::FP)
2064 .addUse(AArch64::FP)
2065 .addImm(0x10fe)
2066 .setMIFlag(MachineInstr::FrameDestroy);
2067 break;
2068
2069 case SwiftAsyncFramePointerMode::Never:
2070 break;
2071 }
2072 }
2073
2074 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2075
2076 // If there is a single SP update, insert it before the ret and we're done.
2077 if (CombineSPBump) {
2078 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2079
2080 // When we are about to restore the CSRs, the CFA register is SP again.
2081 if (EmitCFI && hasFP(MF)) {
2082 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2083 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2084 unsigned CFIIndex =
2085 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2086 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2087 .addCFIIndex(CFIIndex)
2088 .setMIFlags(MachineInstr::FrameDestroy);
2089 }
2090
2091 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2092 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2093 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2094 &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2095 return;
2096 }
2097
2098 NumBytes -= PrologueSaveSize;
2099 assert(NumBytes >= 0 && "Negative stack allocation size!?");
2100
2101 // Process the SVE callee-saves to determine what space needs to be
2102 // deallocated.
2103 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2104 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2105 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2106 RestoreBegin = std::prev(RestoreEnd);
2107 while (RestoreBegin != MBB.begin() &&
2108 IsSVECalleeSave(std::prev(RestoreBegin)))
2109 --RestoreBegin;
2110
2111 assert(IsSVECalleeSave(RestoreBegin) &&
2112 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2113
2114 StackOffset CalleeSavedSizeAsOffset =
2115 StackOffset::getScalable(CalleeSavedSize);
2116 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2117 DeallocateAfter = CalleeSavedSizeAsOffset;
2118 }
2119
2120 // Deallocate the SVE area.
2121 if (SVEStackSize) {
2122 // If we have stack realignment or variable sized objects on the stack,
2123 // restore the stack pointer from the frame pointer prior to SVE CSR
2124 // restoration.
2125 if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2126 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2127 // Set SP to start of SVE callee-save area from which they can
2128 // be reloaded. The code below will deallocate the stack space
2129 // space by moving FP -> SP.
2130 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2131 StackOffset::getScalable(-CalleeSavedSize), TII,
2132 MachineInstr::FrameDestroy);
2133 }
2134 } else {
2135 if (AFI->getSVECalleeSavedStackSize()) {
2136 // Deallocate the non-SVE locals first before we can deallocate (and
2137 // restore callee saves) from the SVE area.
2138 emitFrameOffset(
2139 MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2140 StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2141 false, false, nullptr, EmitCFI && !hasFP(MF),
2142 SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2143 NumBytes = 0;
2144 }
2145
2146 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2147 DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2148 false, nullptr, EmitCFI && !hasFP(MF),
2149 SVEStackSize +
2150 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2151
2152 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2153 DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2154 false, nullptr, EmitCFI && !hasFP(MF),
2155 DeallocateAfter +
2156 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2157 }
2158 if (EmitCFI)
2159 emitCalleeSavedSVERestores(MBB, RestoreEnd);
2160 }
2161
2162 if (!hasFP(MF)) {
2163 bool RedZone = canUseRedZone(MF);
2164 // If this was a redzone leaf function, we don't need to restore the
2165 // stack pointer (but we may need to pop stack args for fastcc).
2166 if (RedZone && AfterCSRPopSize == 0)
2167 return;
2168
2169 // Pop the local variables off the stack. If there are no callee-saved
2170 // registers, it means we are actually positioned at the terminator and can
2171 // combine stack increment for the locals and the stack increment for
2172 // callee-popped arguments into (possibly) a single instruction and be done.
2173 bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2174 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2175 if (NoCalleeSaveRestore)
2176 StackRestoreBytes += AfterCSRPopSize;
2177
2178 emitFrameOffset(
2179 MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2180 StackOffset::getFixed(StackRestoreBytes), TII,
2181 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2182 StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2183
2184 // If we were able to combine the local stack pop with the argument pop,
2185 // then we're done.
2186 if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2187 return;
2188 }
2189
2190 NumBytes = 0;
2191 }
2192
2193 // Restore the original stack pointer.
2194 // FIXME: Rather than doing the math here, we should instead just use
2195 // non-post-indexed loads for the restores if we aren't actually going to
2196 // be able to save any instructions.
2197 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2198 emitFrameOffset(
2199 MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2200 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2201 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
2202 } else if (NumBytes)
2203 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2204 StackOffset::getFixed(NumBytes), TII,
2205 MachineInstr::FrameDestroy, false, NeedsWinCFI);
2206
2207 // When we are about to restore the CSRs, the CFA register is SP again.
2208 if (EmitCFI && hasFP(MF)) {
2209 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2210 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2211 unsigned CFIIndex = MF.addFrameInst(
2212 MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2213 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2214 .addCFIIndex(CFIIndex)
2215 .setMIFlags(MachineInstr::FrameDestroy);
2216 }
2217
2218 // This must be placed after the callee-save restore code because that code
2219 // assumes the SP is at the same location as it was after the callee-save save
2220 // code in the prologue.
2221 if (AfterCSRPopSize) {
2222 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2223 "interrupt may have clobbered");
2224
2225 emitFrameOffset(
2226 MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2227 StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2228 false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2229 StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2230 }
2231 }
2232
2233 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2234 /// debug info. It's the same as what we use for resolving the code-gen
2235 /// references for now. FIXME: This can go wrong when references are
2236 /// SP-relative and simple call frames aren't used.
2237 StackOffset
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const2238 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2239 Register &FrameReg) const {
2240 return resolveFrameIndexReference(
2241 MF, FI, FrameReg,
2242 /*PreferFP=*/
2243 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
2244 /*ForSimm=*/false);
2245 }
2246
2247 StackOffset
getNonLocalFrameIndexReference(const MachineFunction & MF,int FI) const2248 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2249 int FI) const {
2250 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2251 }
2252
getFPOffset(const MachineFunction & MF,int64_t ObjectOffset)2253 static StackOffset getFPOffset(const MachineFunction &MF,
2254 int64_t ObjectOffset) {
2255 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2256 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2257 bool IsWin64 =
2258 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2259 unsigned FixedObject =
2260 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2261 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2262 int64_t FPAdjust =
2263 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2264 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2265 }
2266
getStackOffset(const MachineFunction & MF,int64_t ObjectOffset)2267 static StackOffset getStackOffset(const MachineFunction &MF,
2268 int64_t ObjectOffset) {
2269 const auto &MFI = MF.getFrameInfo();
2270 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2271 }
2272
2273 // TODO: This function currently does not work for scalable vectors.
getSEHFrameIndexOffset(const MachineFunction & MF,int FI) const2274 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2275 int FI) const {
2276 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2277 MF.getSubtarget().getRegisterInfo());
2278 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2279 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2280 ? getFPOffset(MF, ObjectOffset).getFixed()
2281 : getStackOffset(MF, ObjectOffset).getFixed();
2282 }
2283
resolveFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg,bool PreferFP,bool ForSimm) const2284 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2285 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2286 bool ForSimm) const {
2287 const auto &MFI = MF.getFrameInfo();
2288 int64_t ObjectOffset = MFI.getObjectOffset(FI);
2289 bool isFixed = MFI.isFixedObjectIndex(FI);
2290 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2291 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2292 PreferFP, ForSimm);
2293 }
2294
resolveFrameOffsetReference(const MachineFunction & MF,int64_t ObjectOffset,bool isFixed,bool isSVE,Register & FrameReg,bool PreferFP,bool ForSimm) const2295 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2296 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2297 Register &FrameReg, bool PreferFP, bool ForSimm) const {
2298 const auto &MFI = MF.getFrameInfo();
2299 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2300 MF.getSubtarget().getRegisterInfo());
2301 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2302 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2303
2304 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2305 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2306 bool isCSR =
2307 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2308
2309 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2310
2311 // Use frame pointer to reference fixed objects. Use it for locals if
2312 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2313 // reliable as a base). Make sure useFPForScavengingIndex() does the
2314 // right thing for the emergency spill slot.
2315 bool UseFP = false;
2316 if (AFI->hasStackFrame() && !isSVE) {
2317 // We shouldn't prefer using the FP to access fixed-sized stack objects when
2318 // there are scalable (SVE) objects in between the FP and the fixed-sized
2319 // objects.
2320 PreferFP &= !SVEStackSize;
2321
2322 // Note: Keeping the following as multiple 'if' statements rather than
2323 // merging to a single expression for readability.
2324 //
2325 // Argument access should always use the FP.
2326 if (isFixed) {
2327 UseFP = hasFP(MF);
2328 } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2329 // References to the CSR area must use FP if we're re-aligning the stack
2330 // since the dynamically-sized alignment padding is between the SP/BP and
2331 // the CSR area.
2332 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2333 UseFP = true;
2334 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2335 // If the FPOffset is negative and we're producing a signed immediate, we
2336 // have to keep in mind that the available offset range for negative
2337 // offsets is smaller than for positive ones. If an offset is available
2338 // via the FP and the SP, use whichever is closest.
2339 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2340 PreferFP |= Offset > -FPOffset && !SVEStackSize;
2341
2342 if (MFI.hasVarSizedObjects()) {
2343 // If we have variable sized objects, we can use either FP or BP, as the
2344 // SP offset is unknown. We can use the base pointer if we have one and
2345 // FP is not preferred. If not, we're stuck with using FP.
2346 bool CanUseBP = RegInfo->hasBasePointer(MF);
2347 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2348 UseFP = PreferFP;
2349 else if (!CanUseBP) // Can't use BP. Forced to use FP.
2350 UseFP = true;
2351 // else we can use BP and FP, but the offset from FP won't fit.
2352 // That will make us scavenge registers which we can probably avoid by
2353 // using BP. If it won't fit for BP either, we'll scavenge anyway.
2354 } else if (FPOffset >= 0) {
2355 // Use SP or FP, whichever gives us the best chance of the offset
2356 // being in range for direct access. If the FPOffset is positive,
2357 // that'll always be best, as the SP will be even further away.
2358 UseFP = true;
2359 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2360 // Funclets access the locals contained in the parent's stack frame
2361 // via the frame pointer, so we have to use the FP in the parent
2362 // function.
2363 (void) Subtarget;
2364 assert(
2365 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
2366 "Funclets should only be present on Win64");
2367 UseFP = true;
2368 } else {
2369 // We have the choice between FP and (SP or BP).
2370 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2371 UseFP = true;
2372 }
2373 }
2374 }
2375
2376 assert(
2377 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2378 "In the presence of dynamic stack pointer realignment, "
2379 "non-argument/CSR objects cannot be accessed through the frame pointer");
2380
2381 if (isSVE) {
2382 StackOffset FPOffset =
2383 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2384 StackOffset SPOffset =
2385 SVEStackSize +
2386 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2387 ObjectOffset);
2388 // Always use the FP for SVE spills if available and beneficial.
2389 if (hasFP(MF) && (SPOffset.getFixed() ||
2390 FPOffset.getScalable() < SPOffset.getScalable() ||
2391 RegInfo->hasStackRealignment(MF))) {
2392 FrameReg = RegInfo->getFrameRegister(MF);
2393 return FPOffset;
2394 }
2395
2396 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2397 : (unsigned)AArch64::SP;
2398 return SPOffset;
2399 }
2400
2401 StackOffset ScalableOffset = {};
2402 if (UseFP && !(isFixed || isCSR))
2403 ScalableOffset = -SVEStackSize;
2404 if (!UseFP && (isFixed || isCSR))
2405 ScalableOffset = SVEStackSize;
2406
2407 if (UseFP) {
2408 FrameReg = RegInfo->getFrameRegister(MF);
2409 return StackOffset::getFixed(FPOffset) + ScalableOffset;
2410 }
2411
2412 // Use the base pointer if we have one.
2413 if (RegInfo->hasBasePointer(MF))
2414 FrameReg = RegInfo->getBaseRegister();
2415 else {
2416 assert(!MFI.hasVarSizedObjects() &&
2417 "Can't use SP when we have var sized objects.");
2418 FrameReg = AArch64::SP;
2419 // If we're using the red zone for this function, the SP won't actually
2420 // be adjusted, so the offsets will be negative. They're also all
2421 // within range of the signed 9-bit immediate instructions.
2422 if (canUseRedZone(MF))
2423 Offset -= AFI->getLocalStackSize();
2424 }
2425
2426 return StackOffset::getFixed(Offset) + ScalableOffset;
2427 }
2428
getPrologueDeath(MachineFunction & MF,unsigned Reg)2429 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2430 // Do not set a kill flag on values that are also marked as live-in. This
2431 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2432 // callee saved registers.
2433 // Omitting the kill flags is conservatively correct even if the live-in
2434 // is not used after all.
2435 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2436 return getKillRegState(!IsLiveIn);
2437 }
2438
produceCompactUnwindFrame(MachineFunction & MF)2439 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2440 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2441 AttributeList Attrs = MF.getFunction().getAttributes();
2442 return Subtarget.isTargetMachO() &&
2443 !(Subtarget.getTargetLowering()->supportSwiftError() &&
2444 Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2445 MF.getFunction().getCallingConv() != CallingConv::SwiftTail;
2446 }
2447
invalidateWindowsRegisterPairing(unsigned Reg1,unsigned Reg2,bool NeedsWinCFI,bool IsFirst,const TargetRegisterInfo * TRI)2448 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2449 bool NeedsWinCFI, bool IsFirst,
2450 const TargetRegisterInfo *TRI) {
2451 // If we are generating register pairs for a Windows function that requires
2452 // EH support, then pair consecutive registers only. There are no unwind
2453 // opcodes for saves/restores of non-consectuve register pairs.
2454 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2455 // save_lrpair.
2456 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2457
2458 if (Reg2 == AArch64::FP)
2459 return true;
2460 if (!NeedsWinCFI)
2461 return false;
2462 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2463 return false;
2464 // If pairing a GPR with LR, the pair can be described by the save_lrpair
2465 // opcode. If this is the first register pair, it would end up with a
2466 // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2467 // if LR is paired with something else than the first register.
2468 // The save_lrpair opcode requires the first register to be an odd one.
2469 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2470 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2471 return false;
2472 return true;
2473 }
2474
2475 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2476 /// WindowsCFI requires that only consecutive registers can be paired.
2477 /// LR and FP need to be allocated together when the frame needs to save
2478 /// the frame-record. This means any other register pairing with LR is invalid.
invalidateRegisterPairing(unsigned Reg1,unsigned Reg2,bool UsesWinAAPCS,bool NeedsWinCFI,bool NeedsFrameRecord,bool IsFirst,const TargetRegisterInfo * TRI)2479 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2480 bool UsesWinAAPCS, bool NeedsWinCFI,
2481 bool NeedsFrameRecord, bool IsFirst,
2482 const TargetRegisterInfo *TRI) {
2483 if (UsesWinAAPCS)
2484 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2485 TRI);
2486
2487 // If we need to store the frame record, don't pair any register
2488 // with LR other than FP.
2489 if (NeedsFrameRecord)
2490 return Reg2 == AArch64::LR;
2491
2492 return false;
2493 }
2494
2495 namespace {
2496
2497 struct RegPairInfo {
2498 unsigned Reg1 = AArch64::NoRegister;
2499 unsigned Reg2 = AArch64::NoRegister;
2500 int FrameIdx;
2501 int Offset;
2502 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
2503
2504 RegPairInfo() = default;
2505
isPaired__anon61e914860511::RegPairInfo2506 bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2507
getScale__anon61e914860511::RegPairInfo2508 unsigned getScale() const {
2509 switch (Type) {
2510 case PPR:
2511 return 2;
2512 case GPR:
2513 case FPR64:
2514 return 8;
2515 case ZPR:
2516 case FPR128:
2517 return 16;
2518 }
2519 llvm_unreachable("Unsupported type");
2520 }
2521
isScalable__anon61e914860511::RegPairInfo2522 bool isScalable() const { return Type == PPR || Type == ZPR; }
2523 };
2524
2525 } // end anonymous namespace
2526
computeCalleeSaveRegisterPairs(MachineFunction & MF,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI,SmallVectorImpl<RegPairInfo> & RegPairs,bool NeedsFrameRecord)2527 static void computeCalleeSaveRegisterPairs(
2528 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2529 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2530 bool NeedsFrameRecord) {
2531
2532 if (CSI.empty())
2533 return;
2534
2535 bool IsWindows = isTargetWindows(MF);
2536 bool NeedsWinCFI = needsWinCFI(MF);
2537 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2538 MachineFrameInfo &MFI = MF.getFrameInfo();
2539 CallingConv::ID CC = MF.getFunction().getCallingConv();
2540 unsigned Count = CSI.size();
2541 (void)CC;
2542 // MachO's compact unwind format relies on all registers being stored in
2543 // pairs.
2544 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2545 CC == CallingConv::CXX_FAST_TLS || CC == CallingConv::Win64 ||
2546 (Count & 1) == 0) &&
2547 "Odd number of callee-saved regs to spill!");
2548 int ByteOffset = AFI->getCalleeSavedStackSize();
2549 int StackFillDir = -1;
2550 int RegInc = 1;
2551 unsigned FirstReg = 0;
2552 if (NeedsWinCFI) {
2553 // For WinCFI, fill the stack from the bottom up.
2554 ByteOffset = 0;
2555 StackFillDir = 1;
2556 // As the CSI array is reversed to match PrologEpilogInserter, iterate
2557 // backwards, to pair up registers starting from lower numbered registers.
2558 RegInc = -1;
2559 FirstReg = Count - 1;
2560 }
2561 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2562 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2563
2564 // When iterating backwards, the loop condition relies on unsigned wraparound.
2565 for (unsigned i = FirstReg; i < Count; i += RegInc) {
2566 RegPairInfo RPI;
2567 RPI.Reg1 = CSI[i].getReg();
2568
2569 if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2570 RPI.Type = RegPairInfo::GPR;
2571 else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2572 RPI.Type = RegPairInfo::FPR64;
2573 else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2574 RPI.Type = RegPairInfo::FPR128;
2575 else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2576 RPI.Type = RegPairInfo::ZPR;
2577 else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2578 RPI.Type = RegPairInfo::PPR;
2579 else
2580 llvm_unreachable("Unsupported register class.");
2581
2582 // Add the next reg to the pair if it is in the same register class.
2583 if (unsigned(i + RegInc) < Count) {
2584 Register NextReg = CSI[i + RegInc].getReg();
2585 bool IsFirst = i == FirstReg;
2586 switch (RPI.Type) {
2587 case RegPairInfo::GPR:
2588 if (AArch64::GPR64RegClass.contains(NextReg) &&
2589 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
2590 NeedsWinCFI, NeedsFrameRecord, IsFirst,
2591 TRI))
2592 RPI.Reg2 = NextReg;
2593 break;
2594 case RegPairInfo::FPR64:
2595 if (AArch64::FPR64RegClass.contains(NextReg) &&
2596 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
2597 IsFirst, TRI))
2598 RPI.Reg2 = NextReg;
2599 break;
2600 case RegPairInfo::FPR128:
2601 if (AArch64::FPR128RegClass.contains(NextReg))
2602 RPI.Reg2 = NextReg;
2603 break;
2604 case RegPairInfo::PPR:
2605 case RegPairInfo::ZPR:
2606 break;
2607 }
2608 }
2609
2610 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2611 // list to come in sorted by frame index so that we can issue the store
2612 // pair instructions directly. Assert if we see anything otherwise.
2613 //
2614 // The order of the registers in the list is controlled by
2615 // getCalleeSavedRegs(), so they will always be in-order, as well.
2616 assert((!RPI.isPaired() ||
2617 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
2618 "Out of order callee saved regs!");
2619
2620 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2621 RPI.Reg1 == AArch64::LR) &&
2622 "FrameRecord must be allocated together with LR");
2623
2624 // Windows AAPCS has FP and LR reversed.
2625 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2626 RPI.Reg2 == AArch64::LR) &&
2627 "FrameRecord must be allocated together with LR");
2628
2629 // MachO's compact unwind format relies on all registers being stored in
2630 // adjacent register pairs.
2631 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2632 CC == CallingConv::CXX_FAST_TLS || CC == CallingConv::Win64 ||
2633 (RPI.isPaired() &&
2634 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2635 RPI.Reg1 + 1 == RPI.Reg2))) &&
2636 "Callee-save registers not saved as adjacent register pair!");
2637
2638 RPI.FrameIdx = CSI[i].getFrameIdx();
2639 if (NeedsWinCFI &&
2640 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2641 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
2642
2643 int Scale = RPI.getScale();
2644
2645 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2646 assert(OffsetPre % Scale == 0);
2647
2648 if (RPI.isScalable())
2649 ScalableByteOffset += StackFillDir * Scale;
2650 else
2651 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
2652
2653 // Swift's async context is directly before FP, so allocate an extra
2654 // 8 bytes for it.
2655 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2656 RPI.Reg2 == AArch64::FP)
2657 ByteOffset += StackFillDir * 8;
2658
2659 assert(!(RPI.isScalable() && RPI.isPaired()) &&
2660 "Paired spill/fill instructions don't exist for SVE vectors");
2661
2662 // Round up size of non-pair to pair size if we need to pad the
2663 // callee-save area to ensure 16-byte alignment.
2664 if (NeedGapToAlignStack && !NeedsWinCFI &&
2665 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2666 !RPI.isPaired() && ByteOffset % 16 != 0) {
2667 ByteOffset += 8 * StackFillDir;
2668 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
2669 // A stack frame with a gap looks like this, bottom up:
2670 // d9, d8. x21, gap, x20, x19.
2671 // Set extra alignment on the x21 object to create the gap above it.
2672 MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
2673 NeedGapToAlignStack = false;
2674 }
2675
2676 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2677 assert(OffsetPost % Scale == 0);
2678 // If filling top down (default), we want the offset after incrementing it.
2679 // If fillibg bootom up (WinCFI) we need the original offset.
2680 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
2681
2682 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2683 // Swift context can directly precede FP.
2684 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2685 RPI.Reg2 == AArch64::FP)
2686 Offset += 8;
2687 RPI.Offset = Offset / Scale;
2688
2689 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2690 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2691 "Offset out of bounds for LDP/STP immediate");
2692
2693 // Save the offset to frame record so that the FP register can point to the
2694 // innermost frame record (spilled FP and LR registers).
2695 if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
2696 RPI.Reg2 == AArch64::FP) ||
2697 (IsWindows && RPI.Reg1 == AArch64::FP &&
2698 RPI.Reg2 == AArch64::LR)))
2699 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
2700
2701 RegPairs.push_back(RPI);
2702 if (RPI.isPaired())
2703 i += RegInc;
2704 }
2705 if (NeedsWinCFI) {
2706 // If we need an alignment gap in the stack, align the topmost stack
2707 // object. A stack frame with a gap looks like this, bottom up:
2708 // x19, d8. d9, gap.
2709 // Set extra alignment on the topmost stack object (the first element in
2710 // CSI, which goes top down), to create the gap above it.
2711 if (AFI->hasCalleeSaveStackFreeSpace())
2712 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
2713 // We iterated bottom up over the registers; flip RegPairs back to top
2714 // down order.
2715 std::reverse(RegPairs.begin(), RegPairs.end());
2716 }
2717 }
2718
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2719 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2720 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2721 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2722 MachineFunction &MF = *MBB.getParent();
2723 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2724 bool NeedsWinCFI = needsWinCFI(MF);
2725 DebugLoc DL;
2726 SmallVector<RegPairInfo, 8> RegPairs;
2727
2728 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2729
2730 const MachineRegisterInfo &MRI = MF.getRegInfo();
2731 if (homogeneousPrologEpilog(MF)) {
2732 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
2733 .setMIFlag(MachineInstr::FrameSetup);
2734
2735 for (auto &RPI : RegPairs) {
2736 MIB.addReg(RPI.Reg1);
2737 MIB.addReg(RPI.Reg2);
2738
2739 // Update register live in.
2740 if (!MRI.isReserved(RPI.Reg1))
2741 MBB.addLiveIn(RPI.Reg1);
2742 if (!MRI.isReserved(RPI.Reg2))
2743 MBB.addLiveIn(RPI.Reg2);
2744 }
2745 return true;
2746 }
2747 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
2748 unsigned Reg1 = RPI.Reg1;
2749 unsigned Reg2 = RPI.Reg2;
2750 unsigned StrOpc;
2751
2752 // Issue sequence of spills for cs regs. The first spill may be converted
2753 // to a pre-decrement store later by emitPrologue if the callee-save stack
2754 // area allocation can't be combined with the local stack area allocation.
2755 // For example:
2756 // stp x22, x21, [sp, #0] // addImm(+0)
2757 // stp x20, x19, [sp, #16] // addImm(+2)
2758 // stp fp, lr, [sp, #32] // addImm(+4)
2759 // Rationale: This sequence saves uop updates compared to a sequence of
2760 // pre-increment spills like stp xi,xj,[sp,#-16]!
2761 // Note: Similar rationale and sequence for restores in epilog.
2762 unsigned Size;
2763 Align Alignment;
2764 switch (RPI.Type) {
2765 case RegPairInfo::GPR:
2766 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2767 Size = 8;
2768 Alignment = Align(8);
2769 break;
2770 case RegPairInfo::FPR64:
2771 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2772 Size = 8;
2773 Alignment = Align(8);
2774 break;
2775 case RegPairInfo::FPR128:
2776 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2777 Size = 16;
2778 Alignment = Align(16);
2779 break;
2780 case RegPairInfo::ZPR:
2781 StrOpc = AArch64::STR_ZXI;
2782 Size = 16;
2783 Alignment = Align(16);
2784 break;
2785 case RegPairInfo::PPR:
2786 StrOpc = AArch64::STR_PXI;
2787 Size = 2;
2788 Alignment = Align(2);
2789 break;
2790 }
2791 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2792 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2793 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2794 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2795 dbgs() << ")\n");
2796
2797 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2798 "Windows unwdinding requires a consecutive (FP,LR) pair");
2799 // Windows unwind codes require consecutive registers if registers are
2800 // paired. Make the switch here, so that the code below will save (x,x+1)
2801 // and not (x+1,x).
2802 unsigned FrameIdxReg1 = RPI.FrameIdx;
2803 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2804 if (NeedsWinCFI && RPI.isPaired()) {
2805 std::swap(Reg1, Reg2);
2806 std::swap(FrameIdxReg1, FrameIdxReg2);
2807 }
2808 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2809 if (!MRI.isReserved(Reg1))
2810 MBB.addLiveIn(Reg1);
2811 if (RPI.isPaired()) {
2812 if (!MRI.isReserved(Reg2))
2813 MBB.addLiveIn(Reg2);
2814 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2815 MIB.addMemOperand(MF.getMachineMemOperand(
2816 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2817 MachineMemOperand::MOStore, Size, Alignment));
2818 }
2819 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2820 .addReg(AArch64::SP)
2821 .addImm(RPI.Offset) // [sp, #offset*scale],
2822 // where factor*scale is implicit
2823 .setMIFlag(MachineInstr::FrameSetup);
2824 MIB.addMemOperand(MF.getMachineMemOperand(
2825 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2826 MachineMemOperand::MOStore, Size, Alignment));
2827 if (NeedsWinCFI)
2828 InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2829
2830 // Update the StackIDs of the SVE stack slots.
2831 MachineFrameInfo &MFI = MF.getFrameInfo();
2832 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2833 MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
2834
2835 }
2836 return true;
2837 }
2838
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2839 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2840 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2841 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2842 MachineFunction &MF = *MBB.getParent();
2843 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2844 DebugLoc DL;
2845 SmallVector<RegPairInfo, 8> RegPairs;
2846 bool NeedsWinCFI = needsWinCFI(MF);
2847
2848 if (MBBI != MBB.end())
2849 DL = MBBI->getDebugLoc();
2850
2851 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2852
2853 auto EmitMI = [&](const RegPairInfo &RPI) -> MachineBasicBlock::iterator {
2854 unsigned Reg1 = RPI.Reg1;
2855 unsigned Reg2 = RPI.Reg2;
2856
2857 // Issue sequence of restores for cs regs. The last restore may be converted
2858 // to a post-increment load later by emitEpilogue if the callee-save stack
2859 // area allocation can't be combined with the local stack area allocation.
2860 // For example:
2861 // ldp fp, lr, [sp, #32] // addImm(+4)
2862 // ldp x20, x19, [sp, #16] // addImm(+2)
2863 // ldp x22, x21, [sp, #0] // addImm(+0)
2864 // Note: see comment in spillCalleeSavedRegisters()
2865 unsigned LdrOpc;
2866 unsigned Size;
2867 Align Alignment;
2868 switch (RPI.Type) {
2869 case RegPairInfo::GPR:
2870 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2871 Size = 8;
2872 Alignment = Align(8);
2873 break;
2874 case RegPairInfo::FPR64:
2875 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2876 Size = 8;
2877 Alignment = Align(8);
2878 break;
2879 case RegPairInfo::FPR128:
2880 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2881 Size = 16;
2882 Alignment = Align(16);
2883 break;
2884 case RegPairInfo::ZPR:
2885 LdrOpc = AArch64::LDR_ZXI;
2886 Size = 16;
2887 Alignment = Align(16);
2888 break;
2889 case RegPairInfo::PPR:
2890 LdrOpc = AArch64::LDR_PXI;
2891 Size = 2;
2892 Alignment = Align(2);
2893 break;
2894 }
2895 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2896 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2897 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2898 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2899 dbgs() << ")\n");
2900
2901 // Windows unwind codes require consecutive registers if registers are
2902 // paired. Make the switch here, so that the code below will save (x,x+1)
2903 // and not (x+1,x).
2904 unsigned FrameIdxReg1 = RPI.FrameIdx;
2905 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2906 if (NeedsWinCFI && RPI.isPaired()) {
2907 std::swap(Reg1, Reg2);
2908 std::swap(FrameIdxReg1, FrameIdxReg2);
2909 }
2910 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2911 if (RPI.isPaired()) {
2912 MIB.addReg(Reg2, getDefRegState(true));
2913 MIB.addMemOperand(MF.getMachineMemOperand(
2914 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2915 MachineMemOperand::MOLoad, Size, Alignment));
2916 }
2917 MIB.addReg(Reg1, getDefRegState(true))
2918 .addReg(AArch64::SP)
2919 .addImm(RPI.Offset) // [sp, #offset*scale]
2920 // where factor*scale is implicit
2921 .setMIFlag(MachineInstr::FrameDestroy);
2922 MIB.addMemOperand(MF.getMachineMemOperand(
2923 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2924 MachineMemOperand::MOLoad, Size, Alignment));
2925 if (NeedsWinCFI)
2926 InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2927
2928 return MIB->getIterator();
2929 };
2930
2931 // SVE objects are always restored in reverse order.
2932 for (const RegPairInfo &RPI : reverse(RegPairs))
2933 if (RPI.isScalable())
2934 EmitMI(RPI);
2935
2936 if (homogeneousPrologEpilog(MF, &MBB)) {
2937 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
2938 .setMIFlag(MachineInstr::FrameDestroy);
2939 for (auto &RPI : RegPairs) {
2940 MIB.addReg(RPI.Reg1, RegState::Define);
2941 MIB.addReg(RPI.Reg2, RegState::Define);
2942 }
2943 return true;
2944 }
2945
2946 if (ReverseCSRRestoreSeq) {
2947 MachineBasicBlock::iterator First = MBB.end();
2948 for (const RegPairInfo &RPI : reverse(RegPairs)) {
2949 if (RPI.isScalable())
2950 continue;
2951 MachineBasicBlock::iterator It = EmitMI(RPI);
2952 if (First == MBB.end())
2953 First = It;
2954 }
2955 if (First != MBB.end())
2956 MBB.splice(MBBI, &MBB, First);
2957 } else {
2958 for (const RegPairInfo &RPI : RegPairs) {
2959 if (RPI.isScalable())
2960 continue;
2961 (void)EmitMI(RPI);
2962 }
2963 }
2964
2965 return true;
2966 }
2967
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2968 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2969 BitVector &SavedRegs,
2970 RegScavenger *RS) const {
2971 // All calls are tail calls in GHC calling conv, and functions have no
2972 // prologue/epilogue.
2973 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2974 return;
2975
2976 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2977 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2978 MF.getSubtarget().getRegisterInfo());
2979 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2980 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2981 unsigned UnspilledCSGPR = AArch64::NoRegister;
2982 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2983
2984 MachineFrameInfo &MFI = MF.getFrameInfo();
2985 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2986
2987 unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2988 ? RegInfo->getBaseRegister()
2989 : (unsigned)AArch64::NoRegister;
2990
2991 if (MFI.hasReturnProtectorRegister() && MFI.getReturnProtectorNeedsStore()) {
2992 SavedRegs.set(MFI.getReturnProtectorRegister());
2993 }
2994
2995 unsigned ExtraCSSpill = 0;
2996 // Figure out which callee-saved registers to save/restore.
2997 for (unsigned i = 0; CSRegs[i]; ++i) {
2998 const unsigned Reg = CSRegs[i];
2999
3000 // Add the base pointer register to SavedRegs if it is callee-save.
3001 if (Reg == BasePointerReg)
3002 SavedRegs.set(Reg);
3003
3004 bool RegUsed = SavedRegs.test(Reg);
3005 unsigned PairedReg = AArch64::NoRegister;
3006 if (AArch64::GPR64RegClass.contains(Reg) ||
3007 AArch64::FPR64RegClass.contains(Reg) ||
3008 AArch64::FPR128RegClass.contains(Reg))
3009 PairedReg = CSRegs[i ^ 1];
3010
3011 if (!RegUsed) {
3012 if (AArch64::GPR64RegClass.contains(Reg) &&
3013 !RegInfo->isReservedReg(MF, Reg)) {
3014 UnspilledCSGPR = Reg;
3015 UnspilledCSGPRPaired = PairedReg;
3016 }
3017 continue;
3018 }
3019
3020 // MachO's compact unwind format relies on all registers being stored in
3021 // pairs.
3022 // FIXME: the usual format is actually better if unwinding isn't needed.
3023 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3024 !SavedRegs.test(PairedReg)) {
3025 SavedRegs.set(PairedReg);
3026 if (AArch64::GPR64RegClass.contains(PairedReg) &&
3027 !RegInfo->isReservedReg(MF, PairedReg))
3028 ExtraCSSpill = PairedReg;
3029 }
3030 }
3031
3032 if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3033 !Subtarget.isTargetWindows()) {
3034 // For Windows calling convention on a non-windows OS, where X18 is treated
3035 // as reserved, back up X18 when entering non-windows code (marked with the
3036 // Windows calling convention) and restore when returning regardless of
3037 // whether the individual function uses it - it might call other functions
3038 // that clobber it.
3039 SavedRegs.set(AArch64::X18);
3040 }
3041
3042 // Calculates the callee saved stack size.
3043 unsigned CSStackSize = 0;
3044 unsigned SVECSStackSize = 0;
3045 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3046 const MachineRegisterInfo &MRI = MF.getRegInfo();
3047 for (unsigned Reg : SavedRegs.set_bits()) {
3048 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3049 if (AArch64::PPRRegClass.contains(Reg) ||
3050 AArch64::ZPRRegClass.contains(Reg))
3051 SVECSStackSize += RegSize;
3052 else
3053 CSStackSize += RegSize;
3054 }
3055
3056 // Save number of saved regs, so we can easily update CSStackSize later.
3057 unsigned NumSavedRegs = SavedRegs.count();
3058
3059 // The frame record needs to be created by saving the appropriate registers
3060 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3061 if (hasFP(MF) ||
3062 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3063 SavedRegs.set(AArch64::FP);
3064 SavedRegs.set(AArch64::LR);
3065 }
3066
3067 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3068 for (unsigned Reg
3069 : SavedRegs.set_bits()) dbgs()
3070 << ' ' << printReg(Reg, RegInfo);
3071 dbgs() << "\n";);
3072
3073 // If any callee-saved registers are used, the frame cannot be eliminated.
3074 int64_t SVEStackSize =
3075 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3076 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3077
3078 // The CSR spill slots have not been allocated yet, so estimateStackSize
3079 // won't include them.
3080 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3081
3082 // Conservatively always assume BigStack when there are SVE spills.
3083 bool BigStack = SVEStackSize ||
3084 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
3085 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3086 AFI->setHasStackFrame(true);
3087
3088 // Estimate if we might need to scavenge a register at some point in order
3089 // to materialize a stack offset. If so, either spill one additional
3090 // callee-saved register or reserve a special spill slot to facilitate
3091 // register scavenging. If we already spilled an extra callee-saved register
3092 // above to keep the number of spills even, we don't need to do anything else
3093 // here.
3094 if (BigStack) {
3095 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3096 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3097 << " to get a scratch register.\n");
3098 SavedRegs.set(UnspilledCSGPR);
3099 // MachO's compact unwind format relies on all registers being stored in
3100 // pairs, so if we need to spill one extra for BigStack, then we need to
3101 // store the pair.
3102 if (producePairRegisters(MF))
3103 SavedRegs.set(UnspilledCSGPRPaired);
3104 ExtraCSSpill = UnspilledCSGPR;
3105 }
3106
3107 // If we didn't find an extra callee-saved register to spill, create
3108 // an emergency spill slot.
3109 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3110 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3111 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3112 unsigned Size = TRI->getSpillSize(RC);
3113 Align Alignment = TRI->getSpillAlign(RC);
3114 int FI = MFI.CreateStackObject(Size, Alignment, false);
3115 RS->addScavengingFrameIndex(FI);
3116 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3117 << " as the emergency spill slot.\n");
3118 }
3119 }
3120
3121 // Adding the size of additional 64bit GPR saves.
3122 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3123
3124 // A Swift asynchronous context extends the frame record with a pointer
3125 // directly before FP.
3126 if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3127 CSStackSize += 8;
3128
3129 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3130 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3131 << EstimatedStackSize + AlignedCSStackSize
3132 << " bytes.\n");
3133
3134 assert((!MFI.isCalleeSavedInfoValid() ||
3135 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3136 "Should not invalidate callee saved info");
3137
3138 // Round up to register pair alignment to avoid additional SP adjustment
3139 // instructions.
3140 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3141 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3142 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3143 }
3144
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * RegInfo,std::vector<CalleeSavedInfo> & CSI,unsigned & MinCSFrameIndex,unsigned & MaxCSFrameIndex) const3145 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3146 MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3147 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3148 unsigned &MaxCSFrameIndex) const {
3149 bool NeedsWinCFI = needsWinCFI(MF);
3150 // To match the canonical windows frame layout, reverse the list of
3151 // callee saved registers to get them laid out by PrologEpilogInserter
3152 // in the right order. (PrologEpilogInserter allocates stack objects top
3153 // down. Windows canonical prologs store higher numbered registers at
3154 // the top, thus have the CSI array start from the highest registers.)
3155 if (NeedsWinCFI)
3156 std::reverse(CSI.begin(), CSI.end());
3157
3158 if (CSI.empty())
3159 return true; // Early exit if no callee saved registers are modified!
3160
3161 // Now that we know which registers need to be saved and restored, allocate
3162 // stack slots for them.
3163 MachineFrameInfo &MFI = MF.getFrameInfo();
3164 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3165
3166 bool UsesWinAAPCS = isTargetWindows(MF);
3167 if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3168 int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3169 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3170 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3171 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3172 }
3173
3174 for (auto &CS : CSI) {
3175 Register Reg = CS.getReg();
3176 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3177
3178 unsigned Size = RegInfo->getSpillSize(*RC);
3179 Align Alignment(RegInfo->getSpillAlign(*RC));
3180 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3181 CS.setFrameIdx(FrameIdx);
3182
3183 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3184 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3185
3186 // Grab 8 bytes below FP for the extended asynchronous frame info.
3187 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3188 Reg == AArch64::FP) {
3189 FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3190 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3191 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3192 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3193 }
3194 }
3195 return true;
3196 }
3197
enableStackSlotScavenging(const MachineFunction & MF) const3198 bool AArch64FrameLowering::enableStackSlotScavenging(
3199 const MachineFunction &MF) const {
3200 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3201 return AFI->hasCalleeSaveStackFreeSpace();
3202 }
3203
3204 /// returns true if there are any SVE callee saves.
getSVECalleeSaveSlotRange(const MachineFrameInfo & MFI,int & Min,int & Max)3205 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3206 int &Min, int &Max) {
3207 Min = std::numeric_limits<int>::max();
3208 Max = std::numeric_limits<int>::min();
3209
3210 if (!MFI.isCalleeSavedInfoValid())
3211 return false;
3212
3213 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3214 for (auto &CS : CSI) {
3215 if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
3216 AArch64::PPRRegClass.contains(CS.getReg())) {
3217 assert((Max == std::numeric_limits<int>::min() ||
3218 Max + 1 == CS.getFrameIdx()) &&
3219 "SVE CalleeSaves are not consecutive");
3220
3221 Min = std::min(Min, CS.getFrameIdx());
3222 Max = std::max(Max, CS.getFrameIdx());
3223 }
3224 }
3225 return Min != std::numeric_limits<int>::max();
3226 }
3227
3228 // Process all the SVE stack objects and determine offsets for each
3229 // object. If AssignOffsets is true, the offsets get assigned.
3230 // Fills in the first and last callee-saved frame indices into
3231 // Min/MaxCSFrameIndex, respectively.
3232 // Returns the size of the stack.
determineSVEStackObjectOffsets(MachineFrameInfo & MFI,int & MinCSFrameIndex,int & MaxCSFrameIndex,bool AssignOffsets)3233 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
3234 int &MinCSFrameIndex,
3235 int &MaxCSFrameIndex,
3236 bool AssignOffsets) {
3237 #ifndef NDEBUG
3238 // First process all fixed stack objects.
3239 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
3240 assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
3241 "SVE vectors should never be passed on the stack by value, only by "
3242 "reference.");
3243 #endif
3244
3245 auto Assign = [&MFI](int FI, int64_t Offset) {
3246 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
3247 MFI.setObjectOffset(FI, Offset);
3248 };
3249
3250 int64_t Offset = 0;
3251
3252 // Then process all callee saved slots.
3253 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
3254 // Assign offsets to the callee save slots.
3255 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
3256 Offset += MFI.getObjectSize(I);
3257 Offset = alignTo(Offset, MFI.getObjectAlign(I));
3258 if (AssignOffsets)
3259 Assign(I, -Offset);
3260 }
3261 }
3262
3263 // Ensure that the Callee-save area is aligned to 16bytes.
3264 Offset = alignTo(Offset, Align(16U));
3265
3266 // Create a buffer of SVE objects to allocate and sort it.
3267 SmallVector<int, 8> ObjectsToAllocate;
3268 // If we have a stack protector, and we've previously decided that we have SVE
3269 // objects on the stack and thus need it to go in the SVE stack area, then it
3270 // needs to go first.
3271 int StackProtectorFI = -1;
3272 if (MFI.hasStackProtectorIndex()) {
3273 StackProtectorFI = MFI.getStackProtectorIndex();
3274 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
3275 ObjectsToAllocate.push_back(StackProtectorFI);
3276 }
3277 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
3278 unsigned StackID = MFI.getStackID(I);
3279 if (StackID != TargetStackID::ScalableVector)
3280 continue;
3281 if (I == StackProtectorFI)
3282 continue;
3283 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
3284 continue;
3285 if (MFI.isDeadObjectIndex(I))
3286 continue;
3287
3288 ObjectsToAllocate.push_back(I);
3289 }
3290
3291 // Allocate all SVE locals and spills
3292 for (unsigned FI : ObjectsToAllocate) {
3293 Align Alignment = MFI.getObjectAlign(FI);
3294 // FIXME: Given that the length of SVE vectors is not necessarily a power of
3295 // two, we'd need to align every object dynamically at runtime if the
3296 // alignment is larger than 16. This is not yet supported.
3297 if (Alignment > Align(16))
3298 report_fatal_error(
3299 "Alignment of scalable vectors > 16 bytes is not yet supported");
3300
3301 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
3302 if (AssignOffsets)
3303 Assign(FI, -Offset);
3304 }
3305
3306 return Offset;
3307 }
3308
estimateSVEStackObjectOffsets(MachineFrameInfo & MFI) const3309 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3310 MachineFrameInfo &MFI) const {
3311 int MinCSFrameIndex, MaxCSFrameIndex;
3312 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
3313 }
3314
assignSVEStackObjectOffsets(MachineFrameInfo & MFI,int & MinCSFrameIndex,int & MaxCSFrameIndex) const3315 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3316 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
3317 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
3318 true);
3319 }
3320
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const3321 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3322 MachineFunction &MF, RegScavenger *RS) const {
3323 MachineFrameInfo &MFI = MF.getFrameInfo();
3324
3325 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
3326 "Upwards growing stack unsupported");
3327
3328 int MinCSFrameIndex, MaxCSFrameIndex;
3329 int64_t SVEStackSize =
3330 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
3331
3332 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3333 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
3334 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
3335
3336 // If this function isn't doing Win64-style C++ EH, we don't need to do
3337 // anything.
3338 if (!MF.hasEHFunclets())
3339 return;
3340 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3341 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3342
3343 MachineBasicBlock &MBB = MF.front();
3344 auto MBBI = MBB.begin();
3345 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3346 ++MBBI;
3347
3348 // Create an UnwindHelp object.
3349 // The UnwindHelp object is allocated at the start of the fixed object area
3350 int64_t FixedObject =
3351 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
3352 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
3353 /*SPOffset*/ -FixedObject,
3354 /*IsImmutable=*/false);
3355 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3356
3357 // We need to store -2 into the UnwindHelp object at the start of the
3358 // function.
3359 DebugLoc DL;
3360 RS->enterBasicBlockEnd(MBB);
3361 RS->backward(std::prev(MBBI));
3362 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3363 assert(DstReg && "There must be a free register after frame setup");
3364 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3365 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3366 .addReg(DstReg, getKillRegState(true))
3367 .addFrameIndex(UnwindHelpFI)
3368 .addImm(0);
3369 }
3370
3371 namespace {
3372 struct TagStoreInstr {
3373 MachineInstr *MI;
3374 int64_t Offset, Size;
TagStoreInstr__anon61e914860811::TagStoreInstr3375 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3376 : MI(MI), Offset(Offset), Size(Size) {}
3377 };
3378
3379 class TagStoreEdit {
3380 MachineFunction *MF;
3381 MachineBasicBlock *MBB;
3382 MachineRegisterInfo *MRI;
3383 // Tag store instructions that are being replaced.
3384 SmallVector<TagStoreInstr, 8> TagStores;
3385 // Combined memref arguments of the above instructions.
3386 SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
3387
3388 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3389 // FrameRegOffset + Size) with the address tag of SP.
3390 Register FrameReg;
3391 StackOffset FrameRegOffset;
3392 int64_t Size;
3393 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
3394 std::optional<int64_t> FrameRegUpdate;
3395 // MIFlags for any FrameReg updating instructions.
3396 unsigned FrameRegUpdateFlags;
3397
3398 // Use zeroing instruction variants.
3399 bool ZeroData;
3400 DebugLoc DL;
3401
3402 void emitUnrolled(MachineBasicBlock::iterator InsertI);
3403 void emitLoop(MachineBasicBlock::iterator InsertI);
3404
3405 public:
TagStoreEdit(MachineBasicBlock * MBB,bool ZeroData)3406 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3407 : MBB(MBB), ZeroData(ZeroData) {
3408 MF = MBB->getParent();
3409 MRI = &MF->getRegInfo();
3410 }
3411 // Add an instruction to be replaced. Instructions must be added in the
3412 // ascending order of Offset, and have to be adjacent.
addInstruction(TagStoreInstr I)3413 void addInstruction(TagStoreInstr I) {
3414 assert((TagStores.empty() ||
3415 TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3416 "Non-adjacent tag store instructions.");
3417 TagStores.push_back(I);
3418 }
clear()3419 void clear() { TagStores.clear(); }
3420 // Emit equivalent code at the given location, and erase the current set of
3421 // instructions. May skip if the replacement is not profitable. May invalidate
3422 // the input iterator and replace it with a valid one.
3423 void emitCode(MachineBasicBlock::iterator &InsertI,
3424 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3425 };
3426
emitUnrolled(MachineBasicBlock::iterator InsertI)3427 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3428 const AArch64InstrInfo *TII =
3429 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3430
3431 const int64_t kMinOffset = -256 * 16;
3432 const int64_t kMaxOffset = 255 * 16;
3433
3434 Register BaseReg = FrameReg;
3435 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3436 if (BaseRegOffsetBytes < kMinOffset ||
3437 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) {
3438 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3439 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3440 StackOffset::getFixed(BaseRegOffsetBytes), TII);
3441 BaseReg = ScratchReg;
3442 BaseRegOffsetBytes = 0;
3443 }
3444
3445 MachineInstr *LastI = nullptr;
3446 while (Size) {
3447 int64_t InstrSize = (Size > 16) ? 32 : 16;
3448 unsigned Opcode =
3449 InstrSize == 16
3450 ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset)
3451 : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset);
3452 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3453 .addReg(AArch64::SP)
3454 .addReg(BaseReg)
3455 .addImm(BaseRegOffsetBytes / 16)
3456 .setMemRefs(CombinedMemRefs);
3457 // A store to [BaseReg, #0] should go last for an opportunity to fold the
3458 // final SP adjustment in the epilogue.
3459 if (BaseRegOffsetBytes == 0)
3460 LastI = I;
3461 BaseRegOffsetBytes += InstrSize;
3462 Size -= InstrSize;
3463 }
3464
3465 if (LastI)
3466 MBB->splice(InsertI, MBB, LastI);
3467 }
3468
emitLoop(MachineBasicBlock::iterator InsertI)3469 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3470 const AArch64InstrInfo *TII =
3471 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3472
3473 Register BaseReg = FrameRegUpdate
3474 ? FrameReg
3475 : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3476 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3477
3478 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3479
3480 int64_t LoopSize = Size;
3481 // If the loop size is not a multiple of 32, split off one 16-byte store at
3482 // the end to fold BaseReg update into.
3483 if (FrameRegUpdate && *FrameRegUpdate)
3484 LoopSize -= LoopSize % 32;
3485 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3486 TII->get(ZeroData ? AArch64::STZGloop_wback
3487 : AArch64::STGloop_wback))
3488 .addDef(SizeReg)
3489 .addDef(BaseReg)
3490 .addImm(LoopSize)
3491 .addReg(BaseReg)
3492 .setMemRefs(CombinedMemRefs);
3493 if (FrameRegUpdate)
3494 LoopI->setFlags(FrameRegUpdateFlags);
3495
3496 int64_t ExtraBaseRegUpdate =
3497 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3498 if (LoopSize < Size) {
3499 assert(FrameRegUpdate);
3500 assert(Size - LoopSize == 16);
3501 // Tag 16 more bytes at BaseReg and update BaseReg.
3502 BuildMI(*MBB, InsertI, DL,
3503 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3504 .addDef(BaseReg)
3505 .addReg(BaseReg)
3506 .addReg(BaseReg)
3507 .addImm(1 + ExtraBaseRegUpdate / 16)
3508 .setMemRefs(CombinedMemRefs)
3509 .setMIFlags(FrameRegUpdateFlags);
3510 } else if (ExtraBaseRegUpdate) {
3511 // Update BaseReg.
3512 BuildMI(
3513 *MBB, InsertI, DL,
3514 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3515 .addDef(BaseReg)
3516 .addReg(BaseReg)
3517 .addImm(std::abs(ExtraBaseRegUpdate))
3518 .addImm(0)
3519 .setMIFlags(FrameRegUpdateFlags);
3520 }
3521 }
3522
3523 // Check if *II is a register update that can be merged into STGloop that ends
3524 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3525 // end of the loop.
canMergeRegUpdate(MachineBasicBlock::iterator II,unsigned Reg,int64_t Size,int64_t * TotalOffset)3526 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3527 int64_t Size, int64_t *TotalOffset) {
3528 MachineInstr &MI = *II;
3529 if ((MI.getOpcode() == AArch64::ADDXri ||
3530 MI.getOpcode() == AArch64::SUBXri) &&
3531 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3532 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3533 int64_t Offset = MI.getOperand(2).getImm() << Shift;
3534 if (MI.getOpcode() == AArch64::SUBXri)
3535 Offset = -Offset;
3536 int64_t AbsPostOffset = std::abs(Offset - Size);
3537 const int64_t kMaxOffset =
3538 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3539 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
3540 *TotalOffset = Offset;
3541 return true;
3542 }
3543 }
3544 return false;
3545 }
3546
mergeMemRefs(const SmallVectorImpl<TagStoreInstr> & TSE,SmallVectorImpl<MachineMemOperand * > & MemRefs)3547 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3548 SmallVectorImpl<MachineMemOperand *> &MemRefs) {
3549 MemRefs.clear();
3550 for (auto &TS : TSE) {
3551 MachineInstr *MI = TS.MI;
3552 // An instruction without memory operands may access anything. Be
3553 // conservative and return an empty list.
3554 if (MI->memoperands_empty()) {
3555 MemRefs.clear();
3556 return;
3557 }
3558 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3559 }
3560 }
3561
emitCode(MachineBasicBlock::iterator & InsertI,const AArch64FrameLowering * TFI,bool TryMergeSPUpdate)3562 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3563 const AArch64FrameLowering *TFI,
3564 bool TryMergeSPUpdate) {
3565 if (TagStores.empty())
3566 return;
3567 TagStoreInstr &FirstTagStore = TagStores[0];
3568 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3569 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3570 DL = TagStores[0].MI->getDebugLoc();
3571
3572 Register Reg;
3573 FrameRegOffset = TFI->resolveFrameOffsetReference(
3574 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
3575 /*PreferFP=*/false, /*ForSimm=*/true);
3576 FrameReg = Reg;
3577 FrameRegUpdate = std::nullopt;
3578
3579 mergeMemRefs(TagStores, CombinedMemRefs);
3580
3581 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3582 for (const auto &Instr
3583 : TagStores) { dbgs() << " " << *Instr.MI; });
3584
3585 // Size threshold where a loop becomes shorter than a linear sequence of
3586 // tagging instructions.
3587 const int kSetTagLoopThreshold = 176;
3588 if (Size < kSetTagLoopThreshold) {
3589 if (TagStores.size() < 2)
3590 return;
3591 emitUnrolled(InsertI);
3592 } else {
3593 MachineInstr *UpdateInstr = nullptr;
3594 int64_t TotalOffset = 0;
3595 if (TryMergeSPUpdate) {
3596 // See if we can merge base register update into the STGloop.
3597 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3598 // but STGloop is way too unusual for that, and also it only
3599 // realistically happens in function epilogue. Also, STGloop is expanded
3600 // before that pass.
3601 if (InsertI != MBB->end() &&
3602 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3603 &TotalOffset)) {
3604 UpdateInstr = &*InsertI++;
3605 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
3606 << *UpdateInstr);
3607 }
3608 }
3609
3610 if (!UpdateInstr && TagStores.size() < 2)
3611 return;
3612
3613 if (UpdateInstr) {
3614 FrameRegUpdate = TotalOffset;
3615 FrameRegUpdateFlags = UpdateInstr->getFlags();
3616 }
3617 emitLoop(InsertI);
3618 if (UpdateInstr)
3619 UpdateInstr->eraseFromParent();
3620 }
3621
3622 for (auto &TS : TagStores)
3623 TS.MI->eraseFromParent();
3624 }
3625
isMergeableStackTaggingInstruction(MachineInstr & MI,int64_t & Offset,int64_t & Size,bool & ZeroData)3626 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3627 int64_t &Size, bool &ZeroData) {
3628 MachineFunction &MF = *MI.getParent()->getParent();
3629 const MachineFrameInfo &MFI = MF.getFrameInfo();
3630
3631 unsigned Opcode = MI.getOpcode();
3632 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset ||
3633 Opcode == AArch64::STZ2GOffset);
3634
3635 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3636 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3637 return false;
3638 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3639 return false;
3640 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3641 Size = MI.getOperand(2).getImm();
3642 return true;
3643 }
3644
3645 if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset)
3646 Size = 16;
3647 else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset)
3648 Size = 32;
3649 else
3650 return false;
3651
3652 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3653 return false;
3654
3655 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3656 16 * MI.getOperand(2).getImm();
3657 return true;
3658 }
3659
3660 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3661 // and replace them with a shorter instruction sequence:
3662 // * replace STG + STG with ST2G
3663 // * replace STGloop + STGloop with STGloop
3664 // This code needs to run when stack slot offsets are already known, but before
3665 // FrameIndex operands in STG instructions are eliminated.
tryMergeAdjacentSTG(MachineBasicBlock::iterator II,const AArch64FrameLowering * TFI,RegScavenger * RS)3666 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
3667 const AArch64FrameLowering *TFI,
3668 RegScavenger *RS) {
3669 bool FirstZeroData;
3670 int64_t Size, Offset;
3671 MachineInstr &MI = *II;
3672 MachineBasicBlock *MBB = MI.getParent();
3673 MachineBasicBlock::iterator NextI = ++II;
3674 if (&MI == &MBB->instr_back())
3675 return II;
3676 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3677 return II;
3678
3679 SmallVector<TagStoreInstr, 4> Instrs;
3680 Instrs.emplace_back(&MI, Offset, Size);
3681
3682 constexpr int kScanLimit = 10;
3683 int Count = 0;
3684 for (MachineBasicBlock::iterator E = MBB->end();
3685 NextI != E && Count < kScanLimit; ++NextI) {
3686 MachineInstr &MI = *NextI;
3687 bool ZeroData;
3688 int64_t Size, Offset;
3689 // Collect instructions that update memory tags with a FrameIndex operand
3690 // and (when applicable) constant size, and whose output registers are dead
3691 // (the latter is almost always the case in practice). Since these
3692 // instructions effectively have no inputs or outputs, we are free to skip
3693 // any non-aliasing instructions in between without tracking used registers.
3694 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3695 if (ZeroData != FirstZeroData)
3696 break;
3697 Instrs.emplace_back(&MI, Offset, Size);
3698 continue;
3699 }
3700
3701 // Only count non-transient, non-tagging instructions toward the scan
3702 // limit.
3703 if (!MI.isTransient())
3704 ++Count;
3705
3706 // Just in case, stop before the epilogue code starts.
3707 if (MI.getFlag(MachineInstr::FrameSetup) ||
3708 MI.getFlag(MachineInstr::FrameDestroy))
3709 break;
3710
3711 // Reject anything that may alias the collected instructions.
3712 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
3713 break;
3714 }
3715
3716 // New code will be inserted after the last tagging instruction we've found.
3717 MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3718 InsertI++;
3719
3720 llvm::stable_sort(Instrs,
3721 [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3722 return Left.Offset < Right.Offset;
3723 });
3724
3725 // Make sure that we don't have any overlapping stores.
3726 int64_t CurOffset = Instrs[0].Offset;
3727 for (auto &Instr : Instrs) {
3728 if (CurOffset > Instr.Offset)
3729 return NextI;
3730 CurOffset = Instr.Offset + Instr.Size;
3731 }
3732
3733 // Find contiguous runs of tagged memory and emit shorter instruction
3734 // sequencies for them when possible.
3735 TagStoreEdit TSE(MBB, FirstZeroData);
3736 std::optional<int64_t> EndOffset;
3737 for (auto &Instr : Instrs) {
3738 if (EndOffset && *EndOffset != Instr.Offset) {
3739 // Found a gap.
3740 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
3741 TSE.clear();
3742 }
3743
3744 TSE.addInstruction(Instr);
3745 EndOffset = Instr.Offset + Instr.Size;
3746 }
3747
3748 const MachineFunction *MF = MBB->getParent();
3749 // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
3750 TSE.emitCode(
3751 InsertI, TFI, /*TryMergeSPUpdate = */
3752 !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
3753
3754 return InsertI;
3755 }
3756 } // namespace
3757
processFunctionBeforeFrameIndicesReplaced(MachineFunction & MF,RegScavenger * RS=nullptr) const3758 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3759 MachineFunction &MF, RegScavenger *RS = nullptr) const {
3760 if (StackTaggingMergeSetTag)
3761 for (auto &BB : MF)
3762 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
3763 II = tryMergeAdjacentSTG(II, this, RS);
3764 }
3765
3766 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3767 /// before the update. This is easily retrieved as it is exactly the offset
3768 /// that is set in processFunctionBeforeFrameFinalized.
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,Register & FrameReg,bool IgnoreSPUpdates) const3769 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
3770 const MachineFunction &MF, int FI, Register &FrameReg,
3771 bool IgnoreSPUpdates) const {
3772 const MachineFrameInfo &MFI = MF.getFrameInfo();
3773 if (IgnoreSPUpdates) {
3774 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3775 << MFI.getObjectOffset(FI) << "\n");
3776 FrameReg = AArch64::SP;
3777 return StackOffset::getFixed(MFI.getObjectOffset(FI));
3778 }
3779
3780 // Go to common code if we cannot provide sp + offset.
3781 if (MFI.hasVarSizedObjects() ||
3782 MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
3783 MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
3784 return getFrameIndexReference(MF, FI, FrameReg);
3785
3786 FrameReg = AArch64::SP;
3787 return getStackOffset(MF, MFI.getObjectOffset(FI));
3788 }
3789
3790 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3791 /// the parent's frame pointer
getWinEHParentFrameOffset(const MachineFunction & MF) const3792 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3793 const MachineFunction &MF) const {
3794 return 0;
3795 }
3796
3797 /// Funclets only need to account for space for the callee saved registers,
3798 /// as the locals are accounted for in the parent's stack frame.
getWinEHFuncletFrameSize(const MachineFunction & MF) const3799 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3800 const MachineFunction &MF) const {
3801 // This is the size of the pushed CSRs.
3802 unsigned CSSize =
3803 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3804 // This is the amount of stack a funclet needs to allocate.
3805 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3806 getStackAlign());
3807 }
3808
getReturnProtector() const3809 const ReturnProtectorLowering *AArch64FrameLowering::getReturnProtector() const {
3810 return &RPL;
3811 }
3812
3813 namespace {
3814 struct FrameObject {
3815 bool IsValid = false;
3816 // Index of the object in MFI.
3817 int ObjectIndex = 0;
3818 // Group ID this object belongs to.
3819 int GroupIndex = -1;
3820 // This object should be placed first (closest to SP).
3821 bool ObjectFirst = false;
3822 // This object's group (which always contains the object with
3823 // ObjectFirst==true) should be placed first.
3824 bool GroupFirst = false;
3825 };
3826
3827 class GroupBuilder {
3828 SmallVector<int, 8> CurrentMembers;
3829 int NextGroupIndex = 0;
3830 std::vector<FrameObject> &Objects;
3831
3832 public:
GroupBuilder(std::vector<FrameObject> & Objects)3833 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
AddMember(int Index)3834 void AddMember(int Index) { CurrentMembers.push_back(Index); }
EndCurrentGroup()3835 void EndCurrentGroup() {
3836 if (CurrentMembers.size() > 1) {
3837 // Create a new group with the current member list. This might remove them
3838 // from their pre-existing groups. That's OK, dealing with overlapping
3839 // groups is too hard and unlikely to make a difference.
3840 LLVM_DEBUG(dbgs() << "group:");
3841 for (int Index : CurrentMembers) {
3842 Objects[Index].GroupIndex = NextGroupIndex;
3843 LLVM_DEBUG(dbgs() << " " << Index);
3844 }
3845 LLVM_DEBUG(dbgs() << "\n");
3846 NextGroupIndex++;
3847 }
3848 CurrentMembers.clear();
3849 }
3850 };
3851
FrameObjectCompare(const FrameObject & A,const FrameObject & B)3852 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3853 // Objects at a lower index are closer to FP; objects at a higher index are
3854 // closer to SP.
3855 //
3856 // For consistency in our comparison, all invalid objects are placed
3857 // at the end. This also allows us to stop walking when we hit the
3858 // first invalid item after it's all sorted.
3859 //
3860 // The "first" object goes first (closest to SP), followed by the members of
3861 // the "first" group.
3862 //
3863 // The rest are sorted by the group index to keep the groups together.
3864 // Higher numbered groups are more likely to be around longer (i.e. untagged
3865 // in the function epilogue and not at some earlier point). Place them closer
3866 // to SP.
3867 //
3868 // If all else equal, sort by the object index to keep the objects in the
3869 // original order.
3870 return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
3871 A.ObjectIndex) <
3872 std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
3873 B.ObjectIndex);
3874 }
3875 } // namespace
3876
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const3877 void AArch64FrameLowering::orderFrameObjects(
3878 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3879 if (!OrderFrameObjects || ObjectsToAllocate.empty())
3880 return;
3881
3882 const MachineFrameInfo &MFI = MF.getFrameInfo();
3883 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3884 for (auto &Obj : ObjectsToAllocate) {
3885 FrameObjects[Obj].IsValid = true;
3886 FrameObjects[Obj].ObjectIndex = Obj;
3887 }
3888
3889 // Identify stack slots that are tagged at the same time.
3890 GroupBuilder GB(FrameObjects);
3891 for (auto &MBB : MF) {
3892 for (auto &MI : MBB) {
3893 if (MI.isDebugInstr())
3894 continue;
3895 int OpIndex;
3896 switch (MI.getOpcode()) {
3897 case AArch64::STGloop:
3898 case AArch64::STZGloop:
3899 OpIndex = 3;
3900 break;
3901 case AArch64::STGOffset:
3902 case AArch64::STZGOffset:
3903 case AArch64::ST2GOffset:
3904 case AArch64::STZ2GOffset:
3905 OpIndex = 1;
3906 break;
3907 default:
3908 OpIndex = -1;
3909 }
3910
3911 int TaggedFI = -1;
3912 if (OpIndex >= 0) {
3913 const MachineOperand &MO = MI.getOperand(OpIndex);
3914 if (MO.isFI()) {
3915 int FI = MO.getIndex();
3916 if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3917 FrameObjects[FI].IsValid)
3918 TaggedFI = FI;
3919 }
3920 }
3921
3922 // If this is a stack tagging instruction for a slot that is not part of a
3923 // group yet, either start a new group or add it to the current one.
3924 if (TaggedFI >= 0)
3925 GB.AddMember(TaggedFI);
3926 else
3927 GB.EndCurrentGroup();
3928 }
3929 // Groups should never span multiple basic blocks.
3930 GB.EndCurrentGroup();
3931 }
3932
3933 // If the function's tagged base pointer is pinned to a stack slot, we want to
3934 // put that slot first when possible. This will likely place it at SP + 0,
3935 // and save one instruction when generating the base pointer because IRG does
3936 // not allow an immediate offset.
3937 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
3938 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
3939 if (TBPI) {
3940 FrameObjects[*TBPI].ObjectFirst = true;
3941 FrameObjects[*TBPI].GroupFirst = true;
3942 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
3943 if (FirstGroupIndex >= 0)
3944 for (FrameObject &Object : FrameObjects)
3945 if (Object.GroupIndex == FirstGroupIndex)
3946 Object.GroupFirst = true;
3947 }
3948
3949 llvm::stable_sort(FrameObjects, FrameObjectCompare);
3950
3951 int i = 0;
3952 for (auto &Obj : FrameObjects) {
3953 // All invalid items are sorted at the end, so it's safe to stop.
3954 if (!Obj.IsValid)
3955 break;
3956 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3957 }
3958
3959 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
3960 : FrameObjects) {
3961 if (!Obj.IsValid)
3962 break;
3963 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
3964 if (Obj.ObjectFirst)
3965 dbgs() << ", first";
3966 if (Obj.GroupFirst)
3967 dbgs() << ", group-first";
3968 dbgs() << "\n";
3969 });
3970 }
3971