xref: /netbsd/sys/dev/raidframe/rf_dagutils.c (revision dfc45731)
1 /*	$NetBSD: rf_dagutils.c,v 1.58 2021/07/23 00:54:45 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /******************************************************************************
30  *
31  * rf_dagutils.c -- utility routines for manipulating dags
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.58 2021/07/23 00:54:45 oster Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49 
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 
52 const RF_RedFuncs_t rf_xorFuncs = {
53 	rf_RegularXorFunc, "Reg Xr",
54 	rf_SimpleXorFunc, "Simple Xr"};
55 
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 	rf_RecoveryXorFunc, "Recovery Xr",
58 	rf_RecoveryXorFunc, "Recovery Xr"};
59 
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 			     RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68 
69 /* The maximum number of nodes in a DAG is bounded by
70 
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 	(1 * 2 * layoutPtr->numParityCol) + 3
73 
74 which is:  2*RF_MAXCOL+1*2+1*2*2+3
75 
76 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
78 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82 
83 
84 /******************************************************************************
85  *
86  * InitNode - initialize a dag node
87  *
88  * the size of the propList array is always the same as that of the
89  * successors array.
90  *
91  *****************************************************************************/
92 void
rf_InitNode(RF_DagNode_t * node,RF_NodeStatus_t initstatus,int commit,void (* doFunc)(RF_DagNode_t * node),void (* undoFunc)(RF_DagNode_t * node),void (* wakeFunc)(void * node,int status),int nSucc,int nAnte,int nParam,int nResult,RF_DagHeader_t * hdr,const char * name,RF_AllocListElem_t * alist)93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94     void (*doFunc) (RF_DagNode_t *node),
95     void (*undoFunc) (RF_DagNode_t *node),
96     void (*wakeFunc) (void *node, int status),
97     int nSucc, int nAnte, int nParam, int nResult,
98     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
99 {
100 	void  **ptrs;
101 	int     nptrs;
102 	RF_Raid_t *raidPtr;
103 
104 	if (nAnte > RF_MAX_ANTECEDENTS)
105 		RF_PANIC();
106 	node->status = initstatus;
107 	node->commitNode = commit;
108 	node->doFunc = doFunc;
109 	node->undoFunc = undoFunc;
110 	node->wakeFunc = wakeFunc;
111 	node->numParams = nParam;
112 	node->numResults = nResult;
113 	node->numAntecedents = nAnte;
114 	node->numAntDone = 0;
115 	node->next = NULL;
116 	/* node->list_next = NULL */  /* Don't touch this here!
117 	                                 It may already be
118 					 in use by the caller! */
119 	node->numSuccedents = nSucc;
120 	node->name = name;
121 	node->dagHdr = hdr;
122 	node->big_dag_ptrs = NULL;
123 	node->big_dag_params = NULL;
124 	node->visited = 0;
125 
126 	RF_ASSERT(hdr != NULL);
127 	raidPtr = hdr->raidPtr;
128 
129 	/* allocate all the pointers with one call to malloc */
130 	nptrs = nSucc + nAnte + nResult + nSucc;
131 
132 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
133 		/*
134 	         * The dag_ptrs field of the node is basically some scribble
135 	         * space to be used here. We could get rid of it, and always
136 	         * allocate the range of pointers, but that's expensive. So,
137 	         * we pick a "common case" size for the pointer cache. Hopefully,
138 	         * we'll find that:
139 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
140 	         *     only a little bit (least efficient case)
141 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
142 	         *     (wasted memory)
143 	         */
144 		ptrs = (void **) node->dag_ptrs;
145 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
146 		node->big_dag_ptrs = rf_AllocDAGPCache(raidPtr);
147 		ptrs = (void **) node->big_dag_ptrs;
148 	} else {
149 		ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist);
150 	}
151 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
152 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
153 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
154 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
155 
156 	if (nParam) {
157 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
158 			node->params = (RF_DagParam_t *) node->dag_params;
159 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
160 			node->big_dag_params = rf_AllocDAGPCache(raidPtr);
161 			node->params = node->big_dag_params;
162 		} else {
163 			node->params = RF_MallocAndAdd(
164 			    nParam * sizeof(*node->params), alist);
165 		}
166 	} else {
167 		node->params = NULL;
168 	}
169 }
170 
171 
172 
173 /******************************************************************************
174  *
175  * allocation and deallocation routines
176  *
177  *****************************************************************************/
178 
179 void
rf_FreeDAG(RF_DagHeader_t * dag_h)180 rf_FreeDAG(RF_DagHeader_t *dag_h)
181 {
182 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
183 	RF_PhysDiskAddr_t *pda;
184 	RF_DagNode_t *tmpnode;
185 	RF_DagHeader_t *nextDag;
186 	RF_Raid_t *raidPtr;
187 
188 	if (dag_h)
189 		raidPtr = dag_h->raidPtr;
190 
191 	while (dag_h) {
192 		nextDag = dag_h->next;
193 		rf_FreeAllocList(dag_h->allocList);
194 		for (asmap = dag_h->asmList; asmap;) {
195 			t_asmap = asmap;
196 			asmap = asmap->next;
197 			rf_FreeAccessStripeMap(raidPtr, t_asmap);
198 		}
199 		while (dag_h->pda_cleanup_list) {
200 			pda = dag_h->pda_cleanup_list;
201 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
202 			rf_FreePhysDiskAddr(raidPtr, pda);
203 		}
204 		while (dag_h->nodes) {
205 			tmpnode = dag_h->nodes;
206 			dag_h->nodes = dag_h->nodes->list_next;
207 			rf_FreeDAGNode(raidPtr, tmpnode);
208 		}
209 		rf_FreeDAGHeader(raidPtr, dag_h);
210 		dag_h = nextDag;
211 	}
212 }
213 
214 #define RF_MAX_FREE_DAGH 128
215 #define RF_MIN_FREE_DAGH  32
216 
217 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
218 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
219 
220 #define RF_MAX_FREE_DAGLIST 128
221 #define RF_MIN_FREE_DAGLIST  32
222 
223 #define RF_MAX_FREE_DAGPCACHE 128
224 #define RF_MIN_FREE_DAGPCACHE   8
225 
226 #define RF_MAX_FREE_FUNCLIST 128
227 #define RF_MIN_FREE_FUNCLIST  32
228 
229 #define RF_MAX_FREE_BUFFERS 128
230 #define RF_MIN_FREE_BUFFERS  32
231 
232 static void rf_ShutdownDAGs(void *);
233 static void
rf_ShutdownDAGs(void * arg)234 rf_ShutdownDAGs(void *arg)
235 {
236 	RF_Raid_t *raidPtr;
237 
238 	raidPtr = (RF_Raid_t *) arg;
239 
240 	pool_destroy(&raidPtr->pools.dagh);
241 	pool_destroy(&raidPtr->pools.dagnode);
242 	pool_destroy(&raidPtr->pools.daglist);
243 	pool_destroy(&raidPtr->pools.dagpcache);
244 	pool_destroy(&raidPtr->pools.funclist);
245 }
246 
247 int
rf_ConfigureDAGs(RF_ShutdownList_t ** listp,RF_Raid_t * raidPtr,RF_Config_t * cfgPtr)248 rf_ConfigureDAGs(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
249 		 RF_Config_t *cfgPtr)
250 {
251 
252 	rf_pool_init(raidPtr, raidPtr->poolNames.dagnode, &raidPtr->pools.dagnode, sizeof(RF_DagNode_t),
253 		     "dagnode", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
254 	rf_pool_init(raidPtr, raidPtr->poolNames.dagh, &raidPtr->pools.dagh, sizeof(RF_DagHeader_t),
255 		     "dagh", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
256 	rf_pool_init(raidPtr, raidPtr->poolNames.daglist, &raidPtr->pools.daglist, sizeof(RF_DagList_t),
257 		     "daglist", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
258 	rf_pool_init(raidPtr, raidPtr->poolNames.dagpcache, &raidPtr->pools.dagpcache, RF_DAGPCACHE_SIZE,
259 		     "dagpcache", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
260 	rf_pool_init(raidPtr, raidPtr->poolNames.funclist, &raidPtr->pools.funclist, sizeof(RF_FuncList_t),
261 		     "funclist", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
262 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, raidPtr);
263 
264 	return (0);
265 }
266 
267 RF_DagHeader_t *
rf_AllocDAGHeader(RF_Raid_t * raidPtr)268 rf_AllocDAGHeader(RF_Raid_t *raidPtr)
269 {
270 	return pool_get(&raidPtr->pools.dagh, PR_WAITOK | PR_ZERO);
271 }
272 
273 void
rf_FreeDAGHeader(RF_Raid_t * raidPtr,RF_DagHeader_t * dh)274 rf_FreeDAGHeader(RF_Raid_t *raidPtr, RF_DagHeader_t * dh)
275 {
276 	pool_put(&raidPtr->pools.dagh, dh);
277 }
278 
279 RF_DagNode_t *
rf_AllocDAGNode(RF_Raid_t * raidPtr)280 rf_AllocDAGNode(RF_Raid_t *raidPtr)
281 {
282 	return pool_get(&raidPtr->pools.dagnode, PR_WAITOK | PR_ZERO);
283 }
284 
285 void
rf_FreeDAGNode(RF_Raid_t * raidPtr,RF_DagNode_t * node)286 rf_FreeDAGNode(RF_Raid_t *raidPtr, RF_DagNode_t *node)
287 {
288 	if (node->big_dag_ptrs) {
289 		rf_FreeDAGPCache(raidPtr, node->big_dag_ptrs);
290 	}
291 	if (node->big_dag_params) {
292 		rf_FreeDAGPCache(raidPtr, node->big_dag_params);
293 	}
294 	pool_put(&raidPtr->pools.dagnode, node);
295 }
296 
297 RF_DagList_t *
rf_AllocDAGList(RF_Raid_t * raidPtr)298 rf_AllocDAGList(RF_Raid_t *raidPtr)
299 {
300 	return pool_get(&raidPtr->pools.daglist, PR_WAITOK | PR_ZERO);
301 }
302 
303 void
rf_FreeDAGList(RF_Raid_t * raidPtr,RF_DagList_t * dagList)304 rf_FreeDAGList(RF_Raid_t *raidPtr, RF_DagList_t *dagList)
305 {
306 	pool_put(&raidPtr->pools.daglist, dagList);
307 }
308 
309 void *
rf_AllocDAGPCache(RF_Raid_t * raidPtr)310 rf_AllocDAGPCache(RF_Raid_t *raidPtr)
311 {
312 	return pool_get(&raidPtr->pools.dagpcache, PR_WAITOK | PR_ZERO);
313 }
314 
315 void
rf_FreeDAGPCache(RF_Raid_t * raidPtr,void * p)316 rf_FreeDAGPCache(RF_Raid_t *raidPtr, void *p)
317 {
318 	pool_put(&raidPtr->pools.dagpcache, p);
319 }
320 
321 RF_FuncList_t *
rf_AllocFuncList(RF_Raid_t * raidPtr)322 rf_AllocFuncList(RF_Raid_t *raidPtr)
323 {
324 	return pool_get(&raidPtr->pools.funclist, PR_WAITOK | PR_ZERO);
325 }
326 
327 void
rf_FreeFuncList(RF_Raid_t * raidPtr,RF_FuncList_t * funcList)328 rf_FreeFuncList(RF_Raid_t *raidPtr, RF_FuncList_t *funcList)
329 {
330 	pool_put(&raidPtr->pools.funclist, funcList);
331 }
332 
333 /* allocates a stripe buffer -- a buffer large enough to hold all the data
334    in an entire stripe.
335 */
336 
337 void *
rf_AllocStripeBuffer(RF_Raid_t * raidPtr,RF_DagHeader_t * dag_h,int size)338 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
339     int size)
340 {
341 	RF_VoidPointerListElem_t *vple;
342 	void *p;
343 
344 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
345 					       raidPtr->logBytesPerSector))));
346 
347 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
348 					raidPtr->logBytesPerSector),
349 		     M_RAIDFRAME, M_NOWAIT);
350 	if (!p) {
351 		rf_lock_mutex2(raidPtr->mutex);
352 		if (raidPtr->stripebuf_count > 0) {
353 			vple = raidPtr->stripebuf;
354 			raidPtr->stripebuf = vple->next;
355 			p = vple->p;
356 			rf_FreeVPListElem(raidPtr, vple);
357 			raidPtr->stripebuf_count--;
358 		} else {
359 #ifdef DIAGNOSTIC
360 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
361 #endif
362 		}
363 		rf_unlock_mutex2(raidPtr->mutex);
364 		if (!p) {
365 			/* We didn't get a buffer... not much we can do other than wait,
366 			   and hope that someone frees up memory for us.. */
367 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
368 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
369 		}
370 	}
371 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
372 
373 	vple = rf_AllocVPListElem(raidPtr);
374 	vple->p = p;
375         vple->next = dag_h->desc->stripebufs;
376         dag_h->desc->stripebufs = vple;
377 
378 	return (p);
379 }
380 
381 
382 void
rf_FreeStripeBuffer(RF_Raid_t * raidPtr,RF_VoidPointerListElem_t * vple)383 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
384 {
385 	rf_lock_mutex2(raidPtr->mutex);
386 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
387 		/* just tack it in */
388 		vple->next = raidPtr->stripebuf;
389 		raidPtr->stripebuf = vple;
390 		raidPtr->stripebuf_count++;
391 	} else {
392 		free(vple->p, M_RAIDFRAME);
393 		rf_FreeVPListElem(raidPtr, vple);
394 	}
395 	rf_unlock_mutex2(raidPtr->mutex);
396 }
397 
398 /* allocates a buffer big enough to hold the data described by the
399 caller (ie. the data of the associated PDA).  Glue this buffer
400 into our dag_h cleanup structure. */
401 
402 void *
rf_AllocBuffer(RF_Raid_t * raidPtr,RF_DagHeader_t * dag_h,int size)403 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
404 {
405 	RF_VoidPointerListElem_t *vple;
406 	void *p;
407 
408 	p = rf_AllocIOBuffer(raidPtr, size);
409 	vple = rf_AllocVPListElem(raidPtr);
410 	vple->p = p;
411 	vple->next = dag_h->desc->iobufs;
412 	dag_h->desc->iobufs = vple;
413 
414 	return (p);
415 }
416 
417 void *
rf_AllocIOBuffer(RF_Raid_t * raidPtr,int size)418 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
419 {
420 	RF_VoidPointerListElem_t *vple;
421 	void *p;
422 
423 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
424 			   raidPtr->logBytesPerSector)));
425 
426 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
427 				 raidPtr->logBytesPerSector,
428 				 M_RAIDFRAME, M_NOWAIT);
429 	if (!p) {
430 		rf_lock_mutex2(raidPtr->mutex);
431 		if (raidPtr->iobuf_count > 0) {
432 			vple = raidPtr->iobuf;
433 			raidPtr->iobuf = vple->next;
434 			p = vple->p;
435 			rf_FreeVPListElem(raidPtr, vple);
436 			raidPtr->iobuf_count--;
437 		} else {
438 #ifdef DIAGNOSTIC
439 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
440 #endif
441 		}
442 		rf_unlock_mutex2(raidPtr->mutex);
443 		if (!p) {
444 			/* We didn't get a buffer... not much we can do other than wait,
445 			   and hope that someone frees up memory for us.. */
446 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
447 				    raidPtr->logBytesPerSector,
448 				    M_RAIDFRAME, M_WAITOK);
449 		}
450 	}
451 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
452 	return (p);
453 }
454 
455 void
rf_FreeIOBuffer(RF_Raid_t * raidPtr,RF_VoidPointerListElem_t * vple)456 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
457 {
458 	rf_lock_mutex2(raidPtr->mutex);
459 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
460 		/* just tack it in */
461 		vple->next = raidPtr->iobuf;
462 		raidPtr->iobuf = vple;
463 		raidPtr->iobuf_count++;
464 	} else {
465 		free(vple->p, M_RAIDFRAME);
466 		rf_FreeVPListElem(raidPtr, vple);
467 	}
468 	rf_unlock_mutex2(raidPtr->mutex);
469 }
470 
471 
472 
473 #if RF_DEBUG_VALIDATE_DAG
474 /******************************************************************************
475  *
476  * debug routines
477  *
478  *****************************************************************************/
479 
480 char   *
rf_NodeStatusString(RF_DagNode_t * node)481 rf_NodeStatusString(RF_DagNode_t *node)
482 {
483 	switch (node->status) {
484 	case rf_wait:
485 		return ("wait");
486 	case rf_fired:
487 		return ("fired");
488 	case rf_good:
489 		return ("good");
490 	case rf_bad:
491 		return ("bad");
492 	default:
493 		return ("?");
494 	}
495 }
496 
497 void
rf_PrintNodeInfoString(RF_DagNode_t * node)498 rf_PrintNodeInfoString(RF_DagNode_t *node)
499 {
500 	RF_PhysDiskAddr_t *pda;
501 	int     (*df) (RF_DagNode_t *) = node->doFunc;
502 	int     i, lk, unlk;
503 	void   *bufPtr;
504 
505 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
506 	    || (df == rf_DiskReadMirrorIdleFunc)
507 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
508 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
509 		bufPtr = (void *) node->params[1].p;
510 		lk = 0;
511 		unlk = 0;
512 		RF_ASSERT(!(lk && unlk));
513 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
514 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
515 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
516 		return;
517 	}
518 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
519 	    || (df == rf_RecoveryXorFunc)) {
520 		printf("result buf 0x%lx\n", (long) node->results[0]);
521 		for (i = 0; i < node->numParams - 1; i += 2) {
522 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
523 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
524 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
525 			    (long) bufPtr, pda->col,
526 			    (long) pda->startSector, (int) pda->numSector);
527 		}
528 		return;
529 	}
530 #if RF_INCLUDE_PARITYLOGGING > 0
531 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
532 		for (i = 0; i < node->numParams - 1; i += 2) {
533 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
534 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
535 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
536 			    pda->col, (long) pda->startSector,
537 			    (int) pda->numSector, (long) bufPtr);
538 		}
539 		return;
540 	}
541 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
542 
543 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
544 		printf("\n");
545 		return;
546 	}
547 	printf("?\n");
548 }
549 #ifdef DEBUG
550 static void
rf_RecurPrintDAG(RF_DagNode_t * node,int depth,int unvisited)551 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
552 {
553 	char   *anttype;
554 	int     i;
555 
556 	node->visited = (unvisited) ? 0 : 1;
557 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
558 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
559 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
560 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
561 	for (i = 0; i < node->numSuccedents; i++) {
562 		printf("%d%s", node->succedents[i]->nodeNum,
563 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
564 	}
565 	printf("} A{");
566 	for (i = 0; i < node->numAntecedents; i++) {
567 		switch (node->antType[i]) {
568 		case rf_trueData:
569 			anttype = "T";
570 			break;
571 		case rf_antiData:
572 			anttype = "A";
573 			break;
574 		case rf_outputData:
575 			anttype = "O";
576 			break;
577 		case rf_control:
578 			anttype = "C";
579 			break;
580 		default:
581 			anttype = "?";
582 			break;
583 		}
584 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
585 	}
586 	printf("}; ");
587 	rf_PrintNodeInfoString(node);
588 	for (i = 0; i < node->numSuccedents; i++) {
589 		if (node->succedents[i]->visited == unvisited)
590 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
591 	}
592 }
593 
594 static void
rf_PrintDAG(RF_DagHeader_t * dag_h)595 rf_PrintDAG(RF_DagHeader_t *dag_h)
596 {
597 	int     unvisited, i;
598 	char   *status;
599 
600 	/* set dag status */
601 	switch (dag_h->status) {
602 	case rf_enable:
603 		status = "enable";
604 		break;
605 	case rf_rollForward:
606 		status = "rollForward";
607 		break;
608 	case rf_rollBackward:
609 		status = "rollBackward";
610 		break;
611 	default:
612 		status = "illegal!";
613 		break;
614 	}
615 	/* find out if visited bits are currently set or clear */
616 	unvisited = dag_h->succedents[0]->visited;
617 
618 	printf("DAG type:  %s\n", dag_h->creator);
619 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
620 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
621 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
622 	for (i = 0; i < dag_h->numSuccedents; i++) {
623 		printf("%d%s", dag_h->succedents[i]->nodeNum,
624 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
625 	}
626 	printf("};\n");
627 	for (i = 0; i < dag_h->numSuccedents; i++) {
628 		if (dag_h->succedents[i]->visited == unvisited)
629 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
630 	}
631 }
632 #endif
633 /* assigns node numbers */
634 int
rf_AssignNodeNums(RF_DagHeader_t * dag_h)635 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
636 {
637 	int     unvisited, i, nnum;
638 	RF_DagNode_t *node;
639 
640 	nnum = 0;
641 	unvisited = dag_h->succedents[0]->visited;
642 
643 	dag_h->nodeNum = nnum++;
644 	for (i = 0; i < dag_h->numSuccedents; i++) {
645 		node = dag_h->succedents[i];
646 		if (node->visited == unvisited) {
647 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
648 		}
649 	}
650 	return (nnum);
651 }
652 
653 int
rf_RecurAssignNodeNums(RF_DagNode_t * node,int num,int unvisited)654 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
655 {
656 	int     i;
657 
658 	node->visited = (unvisited) ? 0 : 1;
659 
660 	node->nodeNum = num++;
661 	for (i = 0; i < node->numSuccedents; i++) {
662 		if (node->succedents[i]->visited == unvisited) {
663 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
664 		}
665 	}
666 	return (num);
667 }
668 /* set the header pointers in each node to "newptr" */
669 void
rf_ResetDAGHeaderPointers(RF_DagHeader_t * dag_h,RF_DagHeader_t * newptr)670 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
671 {
672 	int     i;
673 	for (i = 0; i < dag_h->numSuccedents; i++)
674 		if (dag_h->succedents[i]->dagHdr != newptr)
675 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
676 }
677 
678 void
rf_RecurResetDAGHeaderPointers(RF_DagNode_t * node,RF_DagHeader_t * newptr)679 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
680 {
681 	int     i;
682 	node->dagHdr = newptr;
683 	for (i = 0; i < node->numSuccedents; i++)
684 		if (node->succedents[i]->dagHdr != newptr)
685 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
686 }
687 
688 
689 void
rf_PrintDAGList(RF_DagHeader_t * dag_h)690 rf_PrintDAGList(RF_DagHeader_t * dag_h)
691 {
692 	int     i = 0;
693 
694 	for (; dag_h; dag_h = dag_h->next) {
695 		rf_AssignNodeNums(dag_h);
696 		printf("\n\nDAG %d IN LIST:\n", i++);
697 		rf_PrintDAG(dag_h);
698 	}
699 }
700 
701 static int
rf_ValidateBranch(RF_DagNode_t * node,int * scount,int * acount,RF_DagNode_t ** nodes,int unvisited)702 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
703 		  RF_DagNode_t **nodes, int unvisited)
704 {
705 	int     i, retcode = 0;
706 
707 	/* construct an array of node pointers indexed by node num */
708 	node->visited = (unvisited) ? 0 : 1;
709 	nodes[node->nodeNum] = node;
710 
711 	if (node->next != NULL) {
712 		printf("INVALID DAG: next pointer in node is not NULL\n");
713 		retcode = 1;
714 	}
715 	if (node->status != rf_wait) {
716 		printf("INVALID DAG: Node status is not wait\n");
717 		retcode = 1;
718 	}
719 	if (node->numAntDone != 0) {
720 		printf("INVALID DAG: numAntDone is not zero\n");
721 		retcode = 1;
722 	}
723 	if (node->doFunc == rf_TerminateFunc) {
724 		if (node->numSuccedents != 0) {
725 			printf("INVALID DAG: Terminator node has succedents\n");
726 			retcode = 1;
727 		}
728 	} else {
729 		if (node->numSuccedents == 0) {
730 			printf("INVALID DAG: Non-terminator node has no succedents\n");
731 			retcode = 1;
732 		}
733 	}
734 	for (i = 0; i < node->numSuccedents; i++) {
735 		if (!node->succedents[i]) {
736 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
737 			retcode = 1;
738 		}
739 		scount[node->succedents[i]->nodeNum]++;
740 	}
741 	for (i = 0; i < node->numAntecedents; i++) {
742 		if (!node->antecedents[i]) {
743 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
744 			retcode = 1;
745 		}
746 		acount[node->antecedents[i]->nodeNum]++;
747 	}
748 	for (i = 0; i < node->numSuccedents; i++) {
749 		if (node->succedents[i]->visited == unvisited) {
750 			if (rf_ValidateBranch(node->succedents[i], scount,
751 				acount, nodes, unvisited)) {
752 				retcode = 1;
753 			}
754 		}
755 	}
756 	return (retcode);
757 }
758 
759 static void
rf_ValidateBranchVisitedBits(RF_DagNode_t * node,int unvisited,int rl)760 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
761 {
762 	int     i;
763 
764 	RF_ASSERT(node->visited == unvisited);
765 	for (i = 0; i < node->numSuccedents; i++) {
766 		if (node->succedents[i] == NULL) {
767 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
768 			RF_ASSERT(0);
769 		}
770 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
771 	}
772 }
773 /* NOTE:  never call this on a big dag, because it is exponential
774  * in execution time
775  */
776 static void
rf_ValidateVisitedBits(RF_DagHeader_t * dag)777 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
778 {
779 	int     i, unvisited;
780 
781 	unvisited = dag->succedents[0]->visited;
782 
783 	for (i = 0; i < dag->numSuccedents; i++) {
784 		if (dag->succedents[i] == NULL) {
785 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
786 			RF_ASSERT(0);
787 		}
788 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
789 	}
790 }
791 /* validate a DAG.  _at entry_ verify that:
792  *   -- numNodesCompleted is zero
793  *   -- node queue is null
794  *   -- dag status is rf_enable
795  *   -- next pointer is null on every node
796  *   -- all nodes have status wait
797  *   -- numAntDone is zero in all nodes
798  *   -- terminator node has zero successors
799  *   -- no other node besides terminator has zero successors
800  *   -- no successor or antecedent pointer in a node is NULL
801  *   -- number of times that each node appears as a successor of another node
802  *      is equal to the antecedent count on that node
803  *   -- number of times that each node appears as an antecedent of another node
804  *      is equal to the succedent count on that node
805  *   -- what else?
806  */
807 int
rf_ValidateDAG(RF_DagHeader_t * dag_h)808 rf_ValidateDAG(RF_DagHeader_t *dag_h)
809 {
810 	int     i, nodecount;
811 	int    *scount, *acount;/* per-node successor and antecedent counts */
812 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
813 	int     retcode = 0;
814 	int     unvisited;
815 	int     commitNodeCount = 0;
816 
817 	if (rf_validateVisitedDebug)
818 		rf_ValidateVisitedBits(dag_h);
819 
820 	if (dag_h->numNodesCompleted != 0) {
821 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
822 		retcode = 1;
823 		goto validate_dag_bad;
824 	}
825 	if (dag_h->status != rf_enable) {
826 		printf("INVALID DAG: not enabled\n");
827 		retcode = 1;
828 		goto validate_dag_bad;
829 	}
830 	if (dag_h->numCommits != 0) {
831 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
832 		retcode = 1;
833 		goto validate_dag_bad;
834 	}
835 	if (dag_h->numSuccedents != 1) {
836 		/* currently, all dags must have only one succedent */
837 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
838 		retcode = 1;
839 		goto validate_dag_bad;
840 	}
841 	nodecount = rf_AssignNodeNums(dag_h);
842 
843 	unvisited = dag_h->succedents[0]->visited;
844 
845 	scount = RF_Malloc(nodecount * sizeof(*scount));
846 	acount = RF_Malloc(nodecount * sizeof(*acount));
847 	nodes = RF_Malloc(nodecount * sizeof(*nodes));
848 	for (i = 0; i < dag_h->numSuccedents; i++) {
849 		if ((dag_h->succedents[i]->visited == unvisited)
850 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
851 			acount, nodes, unvisited)) {
852 			retcode = 1;
853 		}
854 	}
855 	/* start at 1 to skip the header node */
856 	for (i = 1; i < nodecount; i++) {
857 		if (nodes[i]->commitNode)
858 			commitNodeCount++;
859 		if (nodes[i]->doFunc == NULL) {
860 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
861 			retcode = 1;
862 			goto validate_dag_out;
863 		}
864 		if (nodes[i]->undoFunc == NULL) {
865 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
866 			retcode = 1;
867 			goto validate_dag_out;
868 		}
869 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
870 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
871 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
872 			retcode = 1;
873 			goto validate_dag_out;
874 		}
875 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
876 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
877 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
878 			retcode = 1;
879 			goto validate_dag_out;
880 		}
881 	}
882 
883 	if (dag_h->numCommitNodes != commitNodeCount) {
884 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
885 		    dag_h->numCommitNodes, commitNodeCount);
886 		retcode = 1;
887 		goto validate_dag_out;
888 	}
889 validate_dag_out:
890 	RF_Free(scount, nodecount * sizeof(int));
891 	RF_Free(acount, nodecount * sizeof(int));
892 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
893 	if (retcode)
894 		rf_PrintDAGList(dag_h);
895 
896 	if (rf_validateVisitedDebug)
897 		rf_ValidateVisitedBits(dag_h);
898 
899 	return (retcode);
900 
901 validate_dag_bad:
902 	rf_PrintDAGList(dag_h);
903 	return (retcode);
904 }
905 
906 #endif /* RF_DEBUG_VALIDATE_DAG */
907 
908 /******************************************************************************
909  *
910  * misc construction routines
911  *
912  *****************************************************************************/
913 
914 void
rf_redirect_asm(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap)915 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
916 {
917 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
918 	int     fcol = raidPtr->reconControl->fcol;
919 	int     scol = raidPtr->reconControl->spareCol;
920 	RF_PhysDiskAddr_t *pda;
921 
922 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
923 	for (pda = asmap->physInfo; pda; pda = pda->next) {
924 		if (pda->col == fcol) {
925 #if RF_DEBUG_DAG
926 			if (rf_dagDebug) {
927 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
928 					pda->startSector)) {
929 					RF_PANIC();
930 				}
931 			}
932 #endif
933 			/* printf("Remapped data for large write\n"); */
934 			if (ds) {
935 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
936 				    &pda->col, &pda->startSector, RF_REMAP);
937 			} else {
938 				pda->col = scol;
939 			}
940 		}
941 	}
942 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
943 		if (pda->col == fcol) {
944 #if RF_DEBUG_DAG
945 			if (rf_dagDebug) {
946 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
947 					RF_PANIC();
948 				}
949 			}
950 #endif
951 		}
952 		if (ds) {
953 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
954 		} else {
955 			pda->col = scol;
956 		}
957 	}
958 }
959 
960 
961 /* this routine allocates read buffers and generates stripe maps for the
962  * regions of the array from the start of the stripe to the start of the
963  * access, and from the end of the access to the end of the stripe.  It also
964  * computes and returns the number of DAG nodes needed to read all this data.
965  * Note that this routine does the wrong thing if the access is fully
966  * contained within one stripe unit, so we RF_ASSERT against this case at the
967  * start.
968  *
969  * layoutPtr - in: layout information
970  * asmap     - in: access stripe map
971  * dag_h     - in: header of the dag to create
972  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
973  * nRodNodes - out: num nodes to be generated to read unaccessed data
974  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
975  */
976 void
rf_MapUnaccessedPortionOfStripe(RF_Raid_t * raidPtr,RF_RaidLayout_t * layoutPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,RF_AccessStripeMapHeader_t ** new_asm_h,int * nRodNodes,char ** sosBuffer,char ** eosBuffer,RF_AllocListElem_t * allocList)977 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
978 				RF_RaidLayout_t *layoutPtr,
979 				RF_AccessStripeMap_t *asmap,
980 				RF_DagHeader_t *dag_h,
981 				RF_AccessStripeMapHeader_t **new_asm_h,
982 				int *nRodNodes,
983 				char **sosBuffer, char **eosBuffer,
984 				RF_AllocListElem_t *allocList)
985 {
986 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
987 	RF_SectorNum_t sosNumSector, eosNumSector;
988 
989 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
990 	/* generate an access map for the region of the array from start of
991 	 * stripe to start of access */
992 	new_asm_h[0] = new_asm_h[1] = NULL;
993 	*nRodNodes = 0;
994 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
995 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
996 		sosNumSector = asmap->raidAddress - sosRaidAddress;
997 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
998 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
999 		new_asm_h[0]->next = dag_h->asmList;
1000 		dag_h->asmList = new_asm_h[0];
1001 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1002 
1003 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
1004 		/* we're totally within one stripe here */
1005 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1006 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
1007 	}
1008 	/* generate an access map for the region of the array from end of
1009 	 * access to end of stripe */
1010 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
1011 		eosRaidAddress = asmap->endRaidAddress;
1012 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1013 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1014 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1015 		new_asm_h[1]->next = dag_h->asmList;
1016 		dag_h->asmList = new_asm_h[1];
1017 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1018 
1019 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1020 		/* we're totally within one stripe here */
1021 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1022 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1023 	}
1024 }
1025 
1026 
1027 
1028 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1029 int
rf_PDAOverlap(RF_RaidLayout_t * layoutPtr,RF_PhysDiskAddr_t * src,RF_PhysDiskAddr_t * dest)1030 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1031 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1032 {
1033 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1034 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1035 	/* use -1 to be sure we stay within SU */
1036 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1037 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1038 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1039 }
1040 
1041 
1042 /* GenerateFailedAccessASMs
1043  *
1044  * this routine figures out what portion of the stripe needs to be read
1045  * to effect the degraded read or write operation.  It's primary function
1046  * is to identify everything required to recover the data, and then
1047  * eliminate anything that is already being accessed by the user.
1048  *
1049  * The main result is two new ASMs, one for the region from the start of the
1050  * stripe to the start of the access, and one for the region from the end of
1051  * the access to the end of the stripe.  These ASMs describe everything that
1052  * needs to be read to effect the degraded access.  Other results are:
1053  *    nXorBufs -- the total number of buffers that need to be XORed together to
1054  *                recover the lost data,
1055  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
1056  *                at entry, not allocated.
1057  *    overlappingPDAs --
1058  *                describes which of the non-failed PDAs in the user access
1059  *                overlap data that needs to be read to effect recovery.
1060  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
1061  *                PDA, the ith pda in the input asm overlaps data that needs
1062  *                to be read for recovery.
1063  */
1064  /* in: asm - ASM for the actual access, one stripe only */
1065  /* in: failedPDA - which component of the access has failed */
1066  /* in: dag_h - header of the DAG we're going to create */
1067  /* out: new_asm_h - the two new ASMs */
1068  /* out: nXorBufs - the total number of xor bufs required */
1069  /* out: rpBufPtr - a buffer for the parity read */
1070 void
rf_GenerateFailedAccessASMs(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_PhysDiskAddr_t * failedPDA,RF_DagHeader_t * dag_h,RF_AccessStripeMapHeader_t ** new_asm_h,int * nXorBufs,char ** rpBufPtr,char * overlappingPDAs,RF_AllocListElem_t * allocList)1071 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1072 			    RF_PhysDiskAddr_t *failedPDA,
1073 			    RF_DagHeader_t *dag_h,
1074 			    RF_AccessStripeMapHeader_t **new_asm_h,
1075 			    int *nXorBufs, char **rpBufPtr,
1076 			    char *overlappingPDAs,
1077 			    RF_AllocListElem_t *allocList)
1078 {
1079 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1080 
1081 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1082 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1083 	RF_PhysDiskAddr_t *pda;
1084 	int     foundit, i;
1085 
1086 	foundit = 0;
1087 	/* first compute the following raid addresses: start of stripe,
1088 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
1089 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
1090 	 * stripe (i.e. start of next stripe)   (eosAddr) */
1091 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1092 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1093 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1094 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1095 
1096 	/* now generate access stripe maps for each of the above regions of
1097 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
1098 
1099 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1100 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1101 
1102 	/* walk through the PDAs and range-restrict each SU to the region of
1103 	 * the SU touched on the failed PDA.  also compute total data buffer
1104 	 * space requirements in this step.  Ignore the parity for now. */
1105 	/* Also count nodes to find out how many bufs need to be xored together */
1106 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
1107 				 * case, 1 is for failed data */
1108 
1109 	if (new_asm_h[0]) {
1110 		new_asm_h[0]->next = dag_h->asmList;
1111 		dag_h->asmList = new_asm_h[0];
1112 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1113 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1114 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1115 		}
1116 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1117 	}
1118 	if (new_asm_h[1]) {
1119 		new_asm_h[1]->next = dag_h->asmList;
1120 		dag_h->asmList = new_asm_h[1];
1121 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1122 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1123 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1124 		}
1125 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1126 	}
1127 
1128 	/* allocate a buffer for parity */
1129 	if (rpBufPtr)
1130 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1131 
1132 	/* the last step is to figure out how many more distinct buffers need
1133 	 * to get xor'd to produce the missing unit.  there's one for each
1134 	 * user-data read node that overlaps the portion of the failed unit
1135 	 * being accessed */
1136 
1137 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1138 		if (pda == failedPDA) {
1139 			i--;
1140 			foundit = 1;
1141 			continue;
1142 		}
1143 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1144 			overlappingPDAs[i] = 1;
1145 			(*nXorBufs)++;
1146 		}
1147 	}
1148 	if (!foundit) {
1149 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1150 		RF_ASSERT(0);
1151 	}
1152 #if RF_DEBUG_DAG
1153 	if (rf_degDagDebug) {
1154 		if (new_asm_h[0]) {
1155 			printf("First asm:\n");
1156 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1157 		}
1158 		if (new_asm_h[1]) {
1159 			printf("Second asm:\n");
1160 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1161 		}
1162 	}
1163 #endif
1164 }
1165 
1166 
1167 /* adjusts the offset and number of sectors in the destination pda so that
1168  * it covers at most the region of the SU covered by the source PDA.  This
1169  * is exclusively a restriction:  the number of sectors indicated by the
1170  * target PDA can only shrink.
1171  *
1172  * For example:  s = sectors within SU indicated by source PDA
1173  *               d = sectors within SU indicated by dest PDA
1174  *               r = results, stored in dest PDA
1175  *
1176  * |--------------- one stripe unit ---------------------|
1177  * |           sssssssssssssssssssssssssssssssss         |
1178  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
1179  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
1180  *
1181  * Another example:
1182  *
1183  * |--------------- one stripe unit ---------------------|
1184  * |           sssssssssssssssssssssssssssssssss         |
1185  * |    ddddddddddddddddddddddd                          |
1186  * |           rrrrrrrrrrrrrrrr                          |
1187  *
1188  */
1189 void
rf_RangeRestrictPDA(RF_Raid_t * raidPtr,RF_PhysDiskAddr_t * src,RF_PhysDiskAddr_t * dest,int dobuffer,int doraidaddr)1190 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1191 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1192 {
1193 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1194 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1195 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1196 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
1197 													 * stay within SU */
1198 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1199 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
1200 
1201 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
1202 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1203 
1204 	if (dobuffer)
1205 		dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
1206 	if (doraidaddr) {
1207 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1208 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
1209 	}
1210 }
1211 
1212 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1213 
1214 /*
1215  * Want the highest of these primes to be the largest one
1216  * less than the max expected number of columns (won't hurt
1217  * to be too small or too large, but won't be optimal, either)
1218  * --jimz
1219  */
1220 #define NLOWPRIMES 8
1221 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1222 /*****************************************************************************
1223  * compute the workload shift factor.  (chained declustering)
1224  *
1225  * return nonzero if access should shift to secondary, otherwise,
1226  * access is to primary
1227  *****************************************************************************/
1228 int
rf_compute_workload_shift(RF_Raid_t * raidPtr,RF_PhysDiskAddr_t * pda)1229 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1230 {
1231 	/*
1232          * variables:
1233          *  d   = column of disk containing primary
1234          *  f   = column of failed disk
1235          *  n   = number of disks in array
1236          *  sd  = "shift distance" (number of columns that d is to the right of f)
1237          *  v   = numerator of redirection ratio
1238          *  k   = denominator of redirection ratio
1239          */
1240 	RF_RowCol_t d, f, sd, n;
1241 	int     k, v, ret, i;
1242 
1243 	n = raidPtr->numCol;
1244 
1245 	/* assign column of primary copy to d */
1246 	d = pda->col;
1247 
1248 	/* assign column of dead disk to f */
1249 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
1250 		continue;
1251 
1252 	RF_ASSERT(f < n);
1253 	RF_ASSERT(f != d);
1254 
1255 	sd = (f > d) ? (n + d - f) : (d - f);
1256 	RF_ASSERT(sd < n);
1257 
1258 	/*
1259          * v of every k accesses should be redirected
1260          *
1261          * v/k := (n-1-sd)/(n-1)
1262          */
1263 	v = (n - 1 - sd);
1264 	k = (n - 1);
1265 
1266 #if 1
1267 	/*
1268          * XXX
1269          * Is this worth it?
1270          *
1271          * Now reduce the fraction, by repeatedly factoring
1272          * out primes (just like they teach in elementary school!)
1273          */
1274 	for (i = 0; i < NLOWPRIMES; i++) {
1275 		if (lowprimes[i] > v)
1276 			break;
1277 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1278 			v /= lowprimes[i];
1279 			k /= lowprimes[i];
1280 		}
1281 	}
1282 #endif
1283 
1284 	raidPtr->hist_diskreq[d]++;
1285 	if (raidPtr->hist_diskreq[d] > v) {
1286 		ret = 0;	/* do not redirect */
1287 	} else {
1288 		ret = 1;	/* redirect */
1289 	}
1290 
1291 #if 0
1292 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1293 	    raidPtr->hist_diskreq[d]);
1294 #endif
1295 
1296 	if (raidPtr->hist_diskreq[d] >= k) {
1297 		/* reset counter */
1298 		raidPtr->hist_diskreq[d] = 0;
1299 	}
1300 	return (ret);
1301 }
1302 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1303 
1304 /*
1305  * Disk selection routines
1306  */
1307 
1308 /*
1309  * Selects the disk with the shortest queue from a mirror pair.
1310  * Both the disk I/Os queued in RAIDframe as well as those at the physical
1311  * disk are counted as members of the "queue"
1312  */
1313 void
rf_SelectMirrorDiskIdle(RF_DagNode_t * node)1314 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1315 {
1316 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1317 	RF_RowCol_t colData, colMirror;
1318 	int     dataQueueLength, mirrorQueueLength, usemirror;
1319 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1320 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1321 	RF_PhysDiskAddr_t *tmp_pda;
1322 	RF_RaidDisk_t *disks = raidPtr->Disks;
1323 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1324 
1325 	/* return the [row col] of the disk with the shortest queue */
1326 	colData = data_pda->col;
1327 	colMirror = mirror_pda->col;
1328 	dataQueue = &(dqs[colData]);
1329 	mirrorQueue = &(dqs[colMirror]);
1330 
1331 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1332 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1333 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1334 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1335 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1336 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1337 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1338 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1339 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1340 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1341 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1342 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1343 
1344 	usemirror = 0;
1345 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1346 		usemirror = 0;
1347 	} else
1348 		if (RF_DEAD_DISK(disks[colData].status)) {
1349 			usemirror = 1;
1350 		} else
1351 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1352 				/* Trust only the main disk */
1353 				usemirror = 0;
1354 			} else
1355 				if (dataQueueLength < mirrorQueueLength) {
1356 					usemirror = 0;
1357 				} else
1358 					if (mirrorQueueLength < dataQueueLength) {
1359 						usemirror = 1;
1360 					} else {
1361 						/* queues are equal length. attempt
1362 						 * cleverness. */
1363 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1364 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1365 							usemirror = 0;
1366 						} else {
1367 							usemirror = 1;
1368 						}
1369 					}
1370 
1371 	if (usemirror) {
1372 		/* use mirror (parity) disk, swap params 0 & 4 */
1373 		tmp_pda = data_pda;
1374 		node->params[0].p = mirror_pda;
1375 		node->params[4].p = tmp_pda;
1376 	} else {
1377 		/* use data disk, leave param 0 unchanged */
1378 	}
1379 	/* printf("dataQueueLength %d, mirrorQueueLength
1380 	 * %d\n",dataQueueLength, mirrorQueueLength); */
1381 }
1382 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1383 /*
1384  * Do simple partitioning. This assumes that
1385  * the data and parity disks are laid out identically.
1386  */
1387 void
rf_SelectMirrorDiskPartition(RF_DagNode_t * node)1388 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1389 {
1390 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1391 	RF_RowCol_t colData, colMirror;
1392 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1393 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1394 	RF_PhysDiskAddr_t *tmp_pda;
1395 	RF_RaidDisk_t *disks = raidPtr->Disks;
1396 	int     usemirror;
1397 
1398 	/* return the [row col] of the disk with the shortest queue */
1399 	colData = data_pda->col;
1400 	colMirror = mirror_pda->col;
1401 
1402 	usemirror = 0;
1403 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1404 		usemirror = 0;
1405 	} else
1406 		if (RF_DEAD_DISK(disks[colData].status)) {
1407 			usemirror = 1;
1408 		} else
1409 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1410 				/* Trust only the main disk */
1411 				usemirror = 0;
1412 			} else
1413 				if (data_pda->startSector <
1414 				    (disks[colData].numBlocks / 2)) {
1415 					usemirror = 0;
1416 				} else {
1417 					usemirror = 1;
1418 				}
1419 
1420 	if (usemirror) {
1421 		/* use mirror (parity) disk, swap params 0 & 4 */
1422 		tmp_pda = data_pda;
1423 		node->params[0].p = mirror_pda;
1424 		node->params[4].p = tmp_pda;
1425 	} else {
1426 		/* use data disk, leave param 0 unchanged */
1427 	}
1428 }
1429 #endif
1430