1 /*	$NetBSD: rf_raid1.c,v 1.35 2013/09/15 12:47:26 martin Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*****************************************************************************
30  *
31  * rf_raid1.c -- implements RAID Level 1
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.35 2013/09/15 12:47:26 martin Exp $");
37 
38 #include "rf_raid.h"
39 #include "rf_raid1.h"
40 #include "rf_dag.h"
41 #include "rf_dagffrd.h"
42 #include "rf_dagffwr.h"
43 #include "rf_dagdegrd.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_diskqueue.h"
47 #include "rf_general.h"
48 #include "rf_utils.h"
49 #include "rf_parityscan.h"
50 #include "rf_mcpair.h"
51 #include "rf_layout.h"
52 #include "rf_map.h"
53 #include "rf_engine.h"
54 #include "rf_reconbuffer.h"
55 
56 typedef struct RF_Raid1ConfigInfo_s {
57 	RF_RowCol_t **stripeIdentifier;
58 }       RF_Raid1ConfigInfo_t;
59 /* start of day code specific to RAID level 1 */
60 int
rf_ConfigureRAID1(RF_ShutdownList_t ** listp,RF_Raid_t * raidPtr,RF_Config_t * cfgPtr)61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
62 		  RF_Config_t *cfgPtr)
63 {
64 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
65 	RF_Raid1ConfigInfo_t *info;
66 	RF_RowCol_t i;
67 
68 	/* create a RAID level 1 configuration structure */
69 	RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
70 	if (info == NULL)
71 		return (ENOMEM);
72 	layoutPtr->layoutSpecificInfo = (void *) info;
73 
74 	/* ... and fill it in. */
75 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
76 	if (info->stripeIdentifier == NULL)
77 		return (ENOMEM);
78 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
79 		info->stripeIdentifier[i][0] = (2 * i);
80 		info->stripeIdentifier[i][1] = (2 * i) + 1;
81 	}
82 
83 	/* this implementation of RAID level 1 uses one row of numCol disks
84 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
85 	 * consists of a single data unit and a single parity (mirror) unit.
86 	 * stripe id = raidAddr / stripeUnitSize */
87 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
88 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
89 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
90 	layoutPtr->numDataCol = 1;
91 	layoutPtr->numParityCol = 1;
92 	return (0);
93 }
94 
95 
96 /* returns the physical disk location of the primary copy in the mirror pair */
97 void
rf_MapSectorRAID1(RF_Raid_t * raidPtr,RF_RaidAddr_t raidSector,RF_RowCol_t * col,RF_SectorNum_t * diskSector,int remap)98 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
99 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector,
100 		  int remap)
101 {
102 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
103 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
104 
105 	*col = 2 * mirrorPair;
106 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
107 }
108 
109 
110 /* Map Parity
111  *
112  * returns the physical disk location of the secondary copy in the mirror
113  * pair
114  */
115 void
rf_MapParityRAID1(RF_Raid_t * raidPtr,RF_RaidAddr_t raidSector,RF_RowCol_t * col,RF_SectorNum_t * diskSector,int remap)116 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
117 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector,
118 		  int remap)
119 {
120 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
121 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
122 
123 	*col = (2 * mirrorPair) + 1;
124 
125 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
126 }
127 
128 
129 /* IdentifyStripeRAID1
130  *
131  * returns a list of disks for a given redundancy group
132  */
133 void
rf_IdentifyStripeRAID1(RF_Raid_t * raidPtr,RF_RaidAddr_t addr,RF_RowCol_t ** diskids)134 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
135 		       RF_RowCol_t **diskids)
136 {
137 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
138 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
139 	RF_ASSERT(stripeID >= 0);
140 	RF_ASSERT(addr >= 0);
141 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
142 	RF_ASSERT(*diskids);
143 }
144 
145 
146 /* MapSIDToPSIDRAID1
147  *
148  * maps a logical stripe to a stripe in the redundant array
149  */
150 void
rf_MapSIDToPSIDRAID1(RF_RaidLayout_t * layoutPtr,RF_StripeNum_t stripeID,RF_StripeNum_t * psID,RF_ReconUnitNum_t * which_ru)151 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr,
152 		     RF_StripeNum_t stripeID,
153 		     RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
154 {
155 	*which_ru = 0;
156 	*psID = stripeID;
157 }
158 
159 
160 
161 /******************************************************************************
162  * select a graph to perform a single-stripe access
163  *
164  * Parameters:  raidPtr    - description of the physical array
165  *              type       - type of operation (read or write) requested
166  *              asmap      - logical & physical addresses for this access
167  *              createFunc - name of function to use to create the graph
168  *****************************************************************************/
169 
170 void
rf_RAID1DagSelect(RF_Raid_t * raidPtr,RF_IoType_t type,RF_AccessStripeMap_t * asmap,RF_VoidFuncPtr * createFunc)171 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
172 		  RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
173 {
174 	RF_RowCol_t fcol, oc __unused;
175 	RF_PhysDiskAddr_t *failedPDA;
176 	int     prior_recon;
177 	RF_RowStatus_t rstat;
178 	RF_SectorNum_t oo __unused;
179 
180 
181 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
182 
183 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
184 #if RF_DEBUG_DAG
185 		if (rf_dagDebug)
186 			RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
187 #endif
188 		*createFunc = NULL;
189 		return;
190 	}
191 	if (asmap->numDataFailed + asmap->numParityFailed) {
192 		/*
193 	         * We've got a fault. Re-map to spare space, iff applicable.
194 	         * Shouldn't the arch-independent code do this for us?
195 	         * Anyway, it turns out if we don't do this here, then when
196 	         * we're reconstructing, writes go only to the surviving
197 	         * original disk, and aren't reflected on the reconstructed
198 	         * spare. Oops. --jimz
199 	         */
200 		failedPDA = asmap->failedPDAs[0];
201 		fcol = failedPDA->col;
202 		rstat = raidPtr->status;
203 		prior_recon = (rstat == rf_rs_reconfigured) || (
204 		    (rstat == rf_rs_reconstructing) ?
205 		    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
206 		    );
207 		if (prior_recon) {
208 			oc = fcol;
209 			oo = failedPDA->startSector;
210 			/*
211 		         * If we did distributed sparing, we'd monkey with that here.
212 		         * But we don't, so we'll
213 		         */
214 			failedPDA->col = raidPtr->Disks[fcol].spareCol;
215 			/*
216 		         * Redirect other components, iff necessary. This looks
217 		         * pretty suspicious to me, but it's what the raid5
218 		         * DAG select does.
219 		         */
220 			if (asmap->parityInfo->next) {
221 				if (failedPDA == asmap->parityInfo) {
222 					failedPDA->next->col = failedPDA->col;
223 				} else {
224 					if (failedPDA == asmap->parityInfo->next) {
225 						asmap->parityInfo->col = failedPDA->col;
226 					}
227 				}
228 			}
229 #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
230 			if (rf_dagDebug || rf_mapDebug) {
231 				printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
232 				       raidPtr->raidid, type, oc,
233 				       (long) oo,
234 				       failedPDA->col,
235 				       (long) failedPDA->startSector);
236 			}
237 #endif
238 			asmap->numDataFailed = asmap->numParityFailed = 0;
239 		}
240 	}
241 	if (type == RF_IO_TYPE_READ) {
242 		if (asmap->numDataFailed == 0)
243 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
244 		else
245 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
246 	} else {
247 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
248 	}
249 }
250 
251 int
rf_VerifyParityRAID1(RF_Raid_t * raidPtr,RF_RaidAddr_t raidAddr,RF_PhysDiskAddr_t * parityPDA,int correct_it,RF_RaidAccessFlags_t flags)252 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
253 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
254 		     RF_RaidAccessFlags_t flags)
255 {
256 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
257 	RF_DagNode_t *blockNode, *wrBlock;
258 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
259 	RF_AccessStripeMapHeader_t *asm_h;
260 	RF_AllocListElem_t *allocList;
261 #if RF_ACC_TRACE > 0
262 	RF_AccTraceEntry_t tracerec;
263 #endif
264 	RF_ReconUnitNum_t which_ru;
265 	RF_RaidLayout_t *layoutPtr;
266 	RF_AccessStripeMap_t *aasm;
267 	RF_SectorCount_t nsector;
268 	RF_RaidAddr_t startAddr;
269 	char   *bf, *buf1, *buf2;
270 	RF_PhysDiskAddr_t *pda;
271 	RF_StripeNum_t psID;
272 	RF_MCPair_t *mcpair;
273 
274 	layoutPtr = &raidPtr->Layout;
275 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
276 	nsector = parityPDA->numSector;
277 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
278 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
279 
280 	asm_h = NULL;
281 	rd_dag_h = wr_dag_h = NULL;
282 	mcpair = NULL;
283 
284 	ret = RF_PARITY_COULD_NOT_VERIFY;
285 
286 	rf_MakeAllocList(allocList);
287 	if (allocList == NULL)
288 		return (RF_PARITY_COULD_NOT_VERIFY);
289 	mcpair = rf_AllocMCPair();
290 	if (mcpair == NULL)
291 		goto done;
292 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
293 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
294 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
295 	RF_MallocAndAdd(bf, bcount, (char *), allocList);
296 	if (bf == NULL)
297 		goto done;
298 #if RF_DEBUG_VERIFYPARITY
299 	if (rf_verifyParityDebug) {
300 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
301 		       raidPtr->raidid, (long) bf, bcount, (long) bf,
302 		       (long) bf + bcount);
303 	}
304 #endif
305 	/*
306          * Generate a DAG which will read the entire stripe- then we can
307          * just compare data chunks versus "parity" chunks.
308          */
309 
310 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, bf,
311 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
312 	    RF_IO_NORMAL_PRIORITY);
313 	if (rd_dag_h == NULL)
314 		goto done;
315 	blockNode = rd_dag_h->succedents[0];
316 
317 	/*
318          * Map the access to physical disk addresses (PDAs)- this will
319          * get us both a list of data addresses, and "parity" addresses
320          * (which are really mirror copies).
321          */
322 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
323 	    bf, RF_DONT_REMAP);
324 	aasm = asm_h->stripeMap;
325 
326 	buf1 = bf;
327 	/*
328          * Loop through the data blocks, setting up read nodes for each.
329          */
330 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
331 		RF_ASSERT(pda);
332 
333 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
334 
335 		RF_ASSERT(pda->numSector != 0);
336 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
337 			/* cannot verify parity with dead disk */
338 			goto done;
339 		}
340 		pda->bufPtr = buf1;
341 		blockNode->succedents[i]->params[0].p = pda;
342 		blockNode->succedents[i]->params[1].p = buf1;
343 		blockNode->succedents[i]->params[2].v = psID;
344 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
345 		buf1 += nbytes;
346 	}
347 	RF_ASSERT(pda == NULL);
348 	/*
349          * keep i, buf1 running
350          *
351          * Loop through parity blocks, setting up read nodes for each.
352          */
353 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
354 		RF_ASSERT(pda);
355 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
356 		RF_ASSERT(pda->numSector != 0);
357 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
358 			/* cannot verify parity with dead disk */
359 			goto done;
360 		}
361 		pda->bufPtr = buf1;
362 		blockNode->succedents[i]->params[0].p = pda;
363 		blockNode->succedents[i]->params[1].p = buf1;
364 		blockNode->succedents[i]->params[2].v = psID;
365 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
366 		buf1 += nbytes;
367 	}
368 	RF_ASSERT(pda == NULL);
369 
370 #if RF_ACC_TRACE > 0
371 	memset((char *) &tracerec, 0, sizeof(tracerec));
372 	rd_dag_h->tracerec = &tracerec;
373 #endif
374 #if 0
375 	if (rf_verifyParityDebug > 1) {
376 		printf("raid%d: RAID1 parity verify read dag:\n",
377 		       raidPtr->raidid);
378 		rf_PrintDAGList(rd_dag_h);
379 	}
380 #endif
381 	RF_LOCK_MCPAIR(mcpair);
382 	mcpair->flag = 0;
383 	RF_UNLOCK_MCPAIR(mcpair);
384 
385 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
386 	    (void *) mcpair);
387 
388 	RF_LOCK_MCPAIR(mcpair);
389 	while (mcpair->flag == 0) {
390 		RF_WAIT_MCPAIR(mcpair);
391 	}
392 	RF_UNLOCK_MCPAIR(mcpair);
393 
394 	if (rd_dag_h->status != rf_enable) {
395 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
396 		ret = RF_PARITY_COULD_NOT_VERIFY;
397 		goto done;
398 	}
399 	/*
400          * buf1 is the beginning of the data blocks chunk
401          * buf2 is the beginning of the parity blocks chunk
402          */
403 	buf1 = bf;
404 	buf2 = bf + (nbytes * layoutPtr->numDataCol);
405 	ret = RF_PARITY_OKAY;
406 	/*
407          * bbufs is "bad bufs"- an array whose entries are the data
408          * column numbers where we had miscompares. (That is, column 0
409          * and column 1 of the array are mirror copies, and are considered
410          * "data column 0" for this purpose).
411          */
412 	RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
413 	    allocList);
414 	nbad = 0;
415 	/*
416          * Check data vs "parity" (mirror copy).
417          */
418 	for (i = 0; i < layoutPtr->numDataCol; i++) {
419 #if RF_DEBUG_VERIFYPARITY
420 		if (rf_verifyParityDebug) {
421 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
422 			       raidPtr->raidid, nbytes, i, (long) buf1,
423 			       (long) buf2, (long) bf);
424 		}
425 #endif
426 		ret = memcmp(buf1, buf2, nbytes);
427 		if (ret) {
428 #if RF_DEBUG_VERIFYPARITY
429 			if (rf_verifyParityDebug > 1) {
430 				for (j = 0; j < nbytes; j++) {
431 					if (buf1[j] != buf2[j])
432 						break;
433 				}
434 				printf("psid=%ld j=%d\n", (long) psID, j);
435 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
436 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
437 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
438 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
439 			}
440 			if (rf_verifyParityDebug) {
441 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
442 			}
443 #endif
444 			/*
445 		         * Parity is bad. Keep track of which columns were bad.
446 		         */
447 			if (bbufs)
448 				bbufs[nbad] = i;
449 			nbad++;
450 			ret = RF_PARITY_BAD;
451 		}
452 		buf1 += nbytes;
453 		buf2 += nbytes;
454 	}
455 
456 	if ((ret != RF_PARITY_OKAY) && correct_it) {
457 		ret = RF_PARITY_COULD_NOT_CORRECT;
458 #if RF_DEBUG_VERIFYPARITY
459 		if (rf_verifyParityDebug) {
460 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
461 		}
462 #endif
463 		if (bbufs == NULL)
464 			goto done;
465 		/*
466 	         * Make a DAG with one write node for each bad unit. We'll simply
467 	         * write the contents of the data unit onto the parity unit for
468 	         * correction. (It's possible that the mirror copy was the correct
469 	         * copy, and that we're spooging good data by writing bad over it,
470 	         * but there's no way we can know that.
471 	         */
472 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, bf,
473 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
474 		    RF_IO_NORMAL_PRIORITY);
475 		if (wr_dag_h == NULL)
476 			goto done;
477 		wrBlock = wr_dag_h->succedents[0];
478 		/*
479 	         * Fill in a write node for each bad compare.
480 	         */
481 		for (i = 0; i < nbad; i++) {
482 			j = i + layoutPtr->numDataCol;
483 			pda = blockNode->succedents[j]->params[0].p;
484 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
485 			wrBlock->succedents[i]->params[0].p = pda;
486 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
487 			wrBlock->succedents[i]->params[2].v = psID;
488 			wrBlock->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
489 		}
490 #if RF_ACC_TRACE > 0
491 		memset((char *) &tracerec, 0, sizeof(tracerec));
492 		wr_dag_h->tracerec = &tracerec;
493 #endif
494 #if 0
495 		if (rf_verifyParityDebug > 1) {
496 			printf("Parity verify write dag:\n");
497 			rf_PrintDAGList(wr_dag_h);
498 		}
499 #endif
500 		RF_LOCK_MCPAIR(mcpair);
501 		mcpair->flag = 0;
502 		RF_UNLOCK_MCPAIR(mcpair);
503 
504 		/* fire off the write DAG */
505 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
506 		    (void *) mcpair);
507 
508 		RF_LOCK_MCPAIR(mcpair);
509 		while (!mcpair->flag) {
510 			RF_WAIT_MCPAIR(mcpair);
511 		}
512 		RF_UNLOCK_MCPAIR(mcpair);
513 		if (wr_dag_h->status != rf_enable) {
514 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
515 			goto done;
516 		}
517 		ret = RF_PARITY_CORRECTED;
518 	}
519 done:
520 	/*
521          * All done. We might've gotten here without doing part of the function,
522          * so cleanup what we have to and return our running status.
523          */
524 	if (asm_h)
525 		rf_FreeAccessStripeMap(asm_h);
526 	if (rd_dag_h)
527 		rf_FreeDAG(rd_dag_h);
528 	if (wr_dag_h)
529 		rf_FreeDAG(wr_dag_h);
530 	if (mcpair)
531 		rf_FreeMCPair(mcpair);
532 	rf_FreeAllocList(allocList);
533 #if RF_DEBUG_VERIFYPARITY
534 	if (rf_verifyParityDebug) {
535 		printf("raid%d: RAID1 parity verify, returning %d\n",
536 		       raidPtr->raidid, ret);
537 	}
538 #endif
539 	return (ret);
540 }
541 
542 /* rbuf          - the recon buffer to submit
543  * keep_it       - whether we can keep this buffer or we have to return it
544  * use_committed - whether to use a committed or an available recon buffer
545  */
546 
547 int
rf_SubmitReconBufferRAID1(RF_ReconBuffer_t * rbuf,int keep_it,int use_committed)548 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
549 			  int use_committed)
550 {
551 	RF_ReconParityStripeStatus_t *pssPtr;
552 	RF_ReconCtrl_t *reconCtrlPtr;
553 	int     retcode;
554 	RF_CallbackDesc_t *cb, *p;
555 	RF_ReconBuffer_t *t;
556 	RF_Raid_t *raidPtr;
557 	void *ta;
558 
559 	retcode = 0;
560 
561 	raidPtr = rbuf->raidPtr;
562 	reconCtrlPtr = raidPtr->reconControl;
563 
564 	RF_ASSERT(rbuf);
565 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
566 
567 #if RF_DEBUG_RECON
568 	if (rf_reconbufferDebug) {
569 		printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
570 		       raidPtr->raidid, rbuf->col,
571 		       (long) rbuf->parityStripeID, rbuf->which_ru,
572 		       (long) rbuf->failedDiskSectorOffset);
573 	}
574 #endif
575 	if (rf_reconDebug) {
576 		unsigned char *b = rbuf->buffer;
577 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
578 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
579 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
580 		    (long)rbuf->parityStripeID, b[0], b[1], b[2], b[3], b[4]);
581 	}
582 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
583 
584 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
585 	while(reconCtrlPtr->rb_lock) {
586 		rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
587 	}
588 	reconCtrlPtr->rb_lock = 1;
589 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
590 
591 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
592 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL);
593 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
594 				 * an rbuf for it */
595 
596 	/*
597          * Since this is simple mirroring, the first submission for a stripe is also
598          * treated as the last.
599          */
600 
601 	t = NULL;
602 	if (keep_it) {
603 #if RF_DEBUG_RECON
604 		if (rf_reconbufferDebug) {
605 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
606 			       raidPtr->raidid);
607 		}
608 #endif
609 		t = rbuf;
610 	} else {
611 		if (use_committed) {
612 #if RF_DEBUG_RECON
613 			if (rf_reconbufferDebug) {
614 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
615 			}
616 #endif
617 			t = reconCtrlPtr->committedRbufs;
618 			RF_ASSERT(t);
619 			reconCtrlPtr->committedRbufs = t->next;
620 			t->next = NULL;
621 		} else
622 			if (reconCtrlPtr->floatingRbufs) {
623 #if RF_DEBUG_RECON
624 				if (rf_reconbufferDebug) {
625 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
626 				}
627 #endif
628 				t = reconCtrlPtr->floatingRbufs;
629 				reconCtrlPtr->floatingRbufs = t->next;
630 				t->next = NULL;
631 			}
632 	}
633 	if (t == NULL) {
634 #if RF_DEBUG_RECON
635 		if (rf_reconbufferDebug) {
636 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
637 		}
638 #endif
639 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
640 		raidPtr->procsInBufWait++;
641 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
642 		    && (raidPtr->numFullReconBuffers == 0)) {
643 			/* ruh-ro */
644 			RF_ERRORMSG("Buffer wait deadlock\n");
645 			rf_PrintPSStatusTable(raidPtr);
646 			RF_PANIC();
647 		}
648 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
649 		cb = rf_AllocCallbackDesc();
650 		cb->col = rbuf->col;
651 		cb->callbackArg.v = rbuf->parityStripeID;
652 		cb->next = NULL;
653 		if (reconCtrlPtr->bufferWaitList == NULL) {
654 			/* we are the wait list- lucky us */
655 			reconCtrlPtr->bufferWaitList = cb;
656 		} else {
657 			/* append to wait list */
658 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
659 			p->next = cb;
660 		}
661 		retcode = 1;
662 		goto out;
663 	}
664 	if (t != rbuf) {
665 		t->col = reconCtrlPtr->fcol;
666 		t->parityStripeID = rbuf->parityStripeID;
667 		t->which_ru = rbuf->which_ru;
668 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
669 		t->spCol = rbuf->spCol;
670 		t->spOffset = rbuf->spOffset;
671 		/* Swap buffers. DANCE! */
672 		ta = t->buffer;
673 		t->buffer = rbuf->buffer;
674 		rbuf->buffer = ta;
675 	}
676 	/*
677          * Use the rbuf we've been given as the target.
678          */
679 	RF_ASSERT(pssPtr->rbuf == NULL);
680 	pssPtr->rbuf = t;
681 
682 	t->count = 1;
683 	/*
684          * Below, we use 1 for numDataCol (which is equal to the count in the
685          * previous line), so we'll always be done.
686          */
687 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
688 
689 out:
690 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
691 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
692 	reconCtrlPtr->rb_lock = 0;
693 	rf_broadcast_cond2(reconCtrlPtr->rb_cv);
694 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
695 #if RF_DEBUG_RECON
696 	if (rf_reconbufferDebug) {
697 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
698 		       raidPtr->raidid, retcode);
699 	}
700 #endif
701 	return (retcode);
702 }
703 
704 RF_HeadSepLimit_t
rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t * raidPtr)705 rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t *raidPtr)
706 {
707 	return (10);
708 }
709 
710