xref: /freebsd/sys/dev/rl/if_rl.c (revision aa386085)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 /*
35  * RealTek 8129/8139 PCI NIC driver
36  *
37  * Supports several extremely cheap PCI 10/100 adapters based on
38  * the RealTek chipset. Datasheets can be obtained from
39  * www.realtek.com.tw.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Electrical Engineering Department
43  * Columbia University, New York City
44  */
45 /*
46  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
47  * probably the worst PCI ethernet controller ever made, with the possible
48  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
49  * DMA, but it has a terrible interface that nullifies any performance
50  * gains that bus-master DMA usually offers.
51  *
52  * For transmission, the chip offers a series of four TX descriptor
53  * registers. Each transmit frame must be in a contiguous buffer, aligned
54  * on a longword (32-bit) boundary. This means we almost always have to
55  * do mbuf copies in order to transmit a frame, except in the unlikely
56  * case where a) the packet fits into a single mbuf, and b) the packet
57  * is 32-bit aligned within the mbuf's data area. The presence of only
58  * four descriptor registers means that we can never have more than four
59  * packets queued for transmission at any one time.
60  *
61  * Reception is not much better. The driver has to allocate a single large
62  * buffer area (up to 64K in size) into which the chip will DMA received
63  * frames. Because we don't know where within this region received packets
64  * will begin or end, we have no choice but to copy data from the buffer
65  * area into mbufs in order to pass the packets up to the higher protocol
66  * levels.
67  *
68  * It's impossible given this rotten design to really achieve decent
69  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
70  * some equally overmuscled CPU to drive it.
71  *
72  * On the bright side, the 8139 does have a built-in PHY, although
73  * rather than using an MDIO serial interface like most other NICs, the
74  * PHY registers are directly accessible through the 8139's register
75  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
76  * filter.
77  *
78  * The 8129 chip is an older version of the 8139 that uses an external PHY
79  * chip. The 8129 has a serial MDIO interface for accessing the MII where
80  * the 8139 lets you directly access the on-board PHY registers. We need
81  * to select which interface to use depending on the chip type.
82  */
83 
84 #ifdef HAVE_KERNEL_OPTION_HEADERS
85 #include "opt_device_polling.h"
86 #endif
87 
88 #include <sys/param.h>
89 #include <sys/endian.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sysctl.h>
98 
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_types.h>
106 
107 #include <net/bpf.h>
108 
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/mii_bitbang.h>
116 #include <dev/mii/miivar.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 MODULE_DEPEND(rl, pci, 1, 1, 1);
122 MODULE_DEPEND(rl, ether, 1, 1, 1);
123 MODULE_DEPEND(rl, miibus, 1, 1, 1);
124 
125 /* "device miibus" required.  See GENERIC if you get errors here. */
126 #include "miibus_if.h"
127 
128 #include <dev/rl/if_rlreg.h>
129 
130 /*
131  * Various supported device vendors/types and their names.
132  */
133 static const struct rl_type rl_devs[] = {
134 	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
135 		"RealTek 8129 10/100BaseTX" },
136 	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
137 		"RealTek 8139 10/100BaseTX" },
138 	{ RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
139 		"RealTek 8139 10/100BaseTX" },
140 	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
141 		"RealTek 8139 10/100BaseTX CardBus" },
142 	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
143 		"RealTek 8100 10/100BaseTX" },
144 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
145 		"Accton MPX 5030/5038 10/100BaseTX" },
146 	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
147 		"Delta Electronics 8139 10/100BaseTX" },
148 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
149 		"Addtron Technology 8139 10/100BaseTX" },
150 	{ DLINK_VENDORID, DLINK_DEVICEID_520TX_REVC1, RL_8139,
151 		"D-Link DFE-520TX (rev. C1) 10/100BaseTX" },
152 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
153 		"D-Link DFE-530TX+ 10/100BaseTX" },
154 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
155 		"D-Link DFE-690TXD 10/100BaseTX" },
156 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
157 		"Nortel Networks 10/100BaseTX" },
158 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
159 		"Corega FEther CB-TXD" },
160 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
161 		"Corega FEtherII CB-TXD" },
162 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
163 		"Peppercon AG ROL-F" },
164 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
165 		"Planex FNW-3603-TX" },
166 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
167 		"Planex FNW-3800-TX" },
168 	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
169 		"Compaq HNE-300" },
170 	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
171 		"LevelOne FPC-0106TX" },
172 	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
173 		"Edimax EP-4103DL CardBus" }
174 };
175 
176 static int rl_attach(device_t);
177 static int rl_detach(device_t);
178 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
179 static int rl_dma_alloc(struct rl_softc *);
180 static void rl_dma_free(struct rl_softc *);
181 static void rl_eeprom_putbyte(struct rl_softc *, int);
182 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
183 static int rl_encap(struct rl_softc *, struct mbuf **);
184 static int rl_list_tx_init(struct rl_softc *);
185 static int rl_list_rx_init(struct rl_softc *);
186 static int rl_ifmedia_upd(if_t);
187 static void rl_ifmedia_sts(if_t, struct ifmediareq *);
188 static int rl_ioctl(if_t, u_long, caddr_t);
189 static void rl_intr(void *);
190 static void rl_init(void *);
191 static void rl_init_locked(struct rl_softc *sc);
192 static int rl_miibus_readreg(device_t, int, int);
193 static void rl_miibus_statchg(device_t);
194 static int rl_miibus_writereg(device_t, int, int, int);
195 #ifdef DEVICE_POLLING
196 static int rl_poll(if_t ifp, enum poll_cmd cmd, int count);
197 static int rl_poll_locked(if_t ifp, enum poll_cmd cmd, int count);
198 #endif
199 static int rl_probe(device_t);
200 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
201 static void rl_reset(struct rl_softc *);
202 static int rl_resume(device_t);
203 static int rl_rxeof(struct rl_softc *);
204 static void rl_rxfilter(struct rl_softc *);
205 static int rl_shutdown(device_t);
206 static void rl_start(if_t);
207 static void rl_start_locked(if_t);
208 static void rl_stop(struct rl_softc *);
209 static int rl_suspend(device_t);
210 static void rl_tick(void *);
211 static void rl_txeof(struct rl_softc *);
212 static void rl_watchdog(struct rl_softc *);
213 static void rl_setwol(struct rl_softc *);
214 static void rl_clrwol(struct rl_softc *);
215 
216 /*
217  * MII bit-bang glue
218  */
219 static uint32_t rl_mii_bitbang_read(device_t);
220 static void rl_mii_bitbang_write(device_t, uint32_t);
221 
222 static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
223 	rl_mii_bitbang_read,
224 	rl_mii_bitbang_write,
225 	{
226 		RL_MII_DATAOUT,	/* MII_BIT_MDO */
227 		RL_MII_DATAIN,	/* MII_BIT_MDI */
228 		RL_MII_CLK,	/* MII_BIT_MDC */
229 		RL_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
230 		0,		/* MII_BIT_DIR_PHY_HOST */
231 	}
232 };
233 
234 static device_method_t rl_methods[] = {
235 	/* Device interface */
236 	DEVMETHOD(device_probe,		rl_probe),
237 	DEVMETHOD(device_attach,	rl_attach),
238 	DEVMETHOD(device_detach,	rl_detach),
239 	DEVMETHOD(device_suspend,	rl_suspend),
240 	DEVMETHOD(device_resume,	rl_resume),
241 	DEVMETHOD(device_shutdown,	rl_shutdown),
242 
243 	/* MII interface */
244 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
245 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
246 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
247 
248 	DEVMETHOD_END
249 };
250 
251 static driver_t rl_driver = {
252 	"rl",
253 	rl_methods,
254 	sizeof(struct rl_softc)
255 };
256 
257 DRIVER_MODULE(rl, pci, rl_driver, 0, 0);
258 MODULE_PNP_INFO("U16:vendor;U16:device", pci, rl, rl_devs,
259     nitems(rl_devs) - 1);
260 DRIVER_MODULE(rl, cardbus, rl_driver, 0, 0);
261 DRIVER_MODULE(miibus, rl, miibus_driver, 0, 0);
262 
263 #define EE_SET(x)					\
264 	CSR_WRITE_1(sc, RL_EECMD,			\
265 		CSR_READ_1(sc, RL_EECMD) | x)
266 
267 #define EE_CLR(x)					\
268 	CSR_WRITE_1(sc, RL_EECMD,			\
269 		CSR_READ_1(sc, RL_EECMD) & ~x)
270 
271 /*
272  * Send a read command and address to the EEPROM, check for ACK.
273  */
274 static void
rl_eeprom_putbyte(struct rl_softc * sc,int addr)275 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
276 {
277 	int			d, i;
278 
279 	d = addr | sc->rl_eecmd_read;
280 
281 	/*
282 	 * Feed in each bit and strobe the clock.
283 	 */
284 	for (i = 0x400; i; i >>= 1) {
285 		if (d & i) {
286 			EE_SET(RL_EE_DATAIN);
287 		} else {
288 			EE_CLR(RL_EE_DATAIN);
289 		}
290 		DELAY(100);
291 		EE_SET(RL_EE_CLK);
292 		DELAY(150);
293 		EE_CLR(RL_EE_CLK);
294 		DELAY(100);
295 	}
296 }
297 
298 /*
299  * Read a word of data stored in the EEPROM at address 'addr.'
300  */
301 static void
rl_eeprom_getword(struct rl_softc * sc,int addr,uint16_t * dest)302 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
303 {
304 	int			i;
305 	uint16_t		word = 0;
306 
307 	/* Enter EEPROM access mode. */
308 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
309 
310 	/*
311 	 * Send address of word we want to read.
312 	 */
313 	rl_eeprom_putbyte(sc, addr);
314 
315 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
316 
317 	/*
318 	 * Start reading bits from EEPROM.
319 	 */
320 	for (i = 0x8000; i; i >>= 1) {
321 		EE_SET(RL_EE_CLK);
322 		DELAY(100);
323 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
324 			word |= i;
325 		EE_CLR(RL_EE_CLK);
326 		DELAY(100);
327 	}
328 
329 	/* Turn off EEPROM access mode. */
330 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
331 
332 	*dest = word;
333 }
334 
335 /*
336  * Read a sequence of words from the EEPROM.
337  */
338 static void
rl_read_eeprom(struct rl_softc * sc,uint8_t * dest,int off,int cnt,int swap)339 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
340 {
341 	int			i;
342 	uint16_t		word = 0, *ptr;
343 
344 	for (i = 0; i < cnt; i++) {
345 		rl_eeprom_getword(sc, off + i, &word);
346 		ptr = (uint16_t *)(dest + (i * 2));
347 		if (swap)
348 			*ptr = ntohs(word);
349 		else
350 			*ptr = word;
351 	}
352 }
353 
354 /*
355  * Read the MII serial port for the MII bit-bang module.
356  */
357 static uint32_t
rl_mii_bitbang_read(device_t dev)358 rl_mii_bitbang_read(device_t dev)
359 {
360 	struct rl_softc *sc;
361 	uint32_t val;
362 
363 	sc = device_get_softc(dev);
364 
365 	val = CSR_READ_1(sc, RL_MII);
366 	CSR_BARRIER(sc, RL_MII, 1,
367 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
368 
369 	return (val);
370 }
371 
372 /*
373  * Write the MII serial port for the MII bit-bang module.
374  */
375 static void
rl_mii_bitbang_write(device_t dev,uint32_t val)376 rl_mii_bitbang_write(device_t dev, uint32_t val)
377 {
378 	struct rl_softc *sc;
379 
380 	sc = device_get_softc(dev);
381 
382 	CSR_WRITE_1(sc, RL_MII, val);
383 	CSR_BARRIER(sc, RL_MII, 1,
384 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
385 }
386 
387 static int
rl_miibus_readreg(device_t dev,int phy,int reg)388 rl_miibus_readreg(device_t dev, int phy, int reg)
389 {
390 	struct rl_softc		*sc;
391 	uint16_t		rl8139_reg;
392 
393 	sc = device_get_softc(dev);
394 
395 	if (sc->rl_type == RL_8139) {
396 		switch (reg) {
397 		case MII_BMCR:
398 			rl8139_reg = RL_BMCR;
399 			break;
400 		case MII_BMSR:
401 			rl8139_reg = RL_BMSR;
402 			break;
403 		case MII_ANAR:
404 			rl8139_reg = RL_ANAR;
405 			break;
406 		case MII_ANER:
407 			rl8139_reg = RL_ANER;
408 			break;
409 		case MII_ANLPAR:
410 			rl8139_reg = RL_LPAR;
411 			break;
412 		case MII_PHYIDR1:
413 		case MII_PHYIDR2:
414 			return (0);
415 		/*
416 		 * Allow the rlphy driver to read the media status
417 		 * register. If we have a link partner which does not
418 		 * support NWAY, this is the register which will tell
419 		 * us the results of parallel detection.
420 		 */
421 		case RL_MEDIASTAT:
422 			return (CSR_READ_1(sc, RL_MEDIASTAT));
423 		default:
424 			device_printf(sc->rl_dev, "bad phy register\n");
425 			return (0);
426 		}
427 		return (CSR_READ_2(sc, rl8139_reg));
428 	}
429 
430 	return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
431 }
432 
433 static int
rl_miibus_writereg(device_t dev,int phy,int reg,int data)434 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
435 {
436 	struct rl_softc		*sc;
437 	uint16_t		rl8139_reg;
438 
439 	sc = device_get_softc(dev);
440 
441 	if (sc->rl_type == RL_8139) {
442 		switch (reg) {
443 		case MII_BMCR:
444 			rl8139_reg = RL_BMCR;
445 			break;
446 		case MII_BMSR:
447 			rl8139_reg = RL_BMSR;
448 			break;
449 		case MII_ANAR:
450 			rl8139_reg = RL_ANAR;
451 			break;
452 		case MII_ANER:
453 			rl8139_reg = RL_ANER;
454 			break;
455 		case MII_ANLPAR:
456 			rl8139_reg = RL_LPAR;
457 			break;
458 		case MII_PHYIDR1:
459 		case MII_PHYIDR2:
460 			return (0);
461 			break;
462 		default:
463 			device_printf(sc->rl_dev, "bad phy register\n");
464 			return (0);
465 		}
466 		CSR_WRITE_2(sc, rl8139_reg, data);
467 		return (0);
468 	}
469 
470 	mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
471 
472 	return (0);
473 }
474 
475 static void
rl_miibus_statchg(device_t dev)476 rl_miibus_statchg(device_t dev)
477 {
478 	struct rl_softc		*sc;
479 	if_t			ifp;
480 	struct mii_data		*mii;
481 
482 	sc = device_get_softc(dev);
483 	mii = device_get_softc(sc->rl_miibus);
484 	ifp = sc->rl_ifp;
485 	if (mii == NULL || ifp == NULL ||
486 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
487 		return;
488 
489 	sc->rl_flags &= ~RL_FLAG_LINK;
490 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
491 	    (IFM_ACTIVE | IFM_AVALID)) {
492 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
493 		case IFM_10_T:
494 		case IFM_100_TX:
495 			sc->rl_flags |= RL_FLAG_LINK;
496 			break;
497 		default:
498 			break;
499 		}
500 	}
501 	/*
502 	 * RealTek controllers do not provide any interface to
503 	 * Tx/Rx MACs for resolved speed, duplex and flow-control
504 	 * parameters.
505 	 */
506 }
507 
508 static u_int
rl_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)509 rl_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
510 {
511 	uint32_t *hashes = arg;
512 	int h;
513 
514 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
515 	if (h < 32)
516 		hashes[0] |= (1 << h);
517 	else
518 		hashes[1] |= (1 << (h - 32));
519 
520 	return (1);
521 }
522 
523 /*
524  * Program the 64-bit multicast hash filter.
525  */
526 static void
rl_rxfilter(struct rl_softc * sc)527 rl_rxfilter(struct rl_softc *sc)
528 {
529 	if_t			ifp = sc->rl_ifp;
530 	uint32_t		hashes[2] = { 0, 0 };
531 	uint32_t		rxfilt;
532 
533 	RL_LOCK_ASSERT(sc);
534 
535 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
536 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
537 	    RL_RXCFG_RX_MULTI);
538 	/* Always accept frames destined for this host. */
539 	rxfilt |= RL_RXCFG_RX_INDIV;
540 	/* Set capture broadcast bit to capture broadcast frames. */
541 	if (if_getflags(ifp) & IFF_BROADCAST)
542 		rxfilt |= RL_RXCFG_RX_BROAD;
543 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
544 		rxfilt |= RL_RXCFG_RX_MULTI;
545 		if (if_getflags(ifp) & IFF_PROMISC)
546 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
547 		hashes[0] = 0xFFFFFFFF;
548 		hashes[1] = 0xFFFFFFFF;
549 	} else {
550 		/* Now program new ones. */
551 		if_foreach_llmaddr(ifp, rl_hash_maddr, hashes);
552 		if (hashes[0] != 0 || hashes[1] != 0)
553 			rxfilt |= RL_RXCFG_RX_MULTI;
554 	}
555 
556 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
557 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
558 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
559 }
560 
561 static void
rl_reset(struct rl_softc * sc)562 rl_reset(struct rl_softc *sc)
563 {
564 	int			i;
565 
566 	RL_LOCK_ASSERT(sc);
567 
568 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
569 
570 	for (i = 0; i < RL_TIMEOUT; i++) {
571 		DELAY(10);
572 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
573 			break;
574 	}
575 	if (i == RL_TIMEOUT)
576 		device_printf(sc->rl_dev, "reset never completed!\n");
577 }
578 
579 /*
580  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
581  * IDs against our list and return a device name if we find a match.
582  */
583 static int
rl_probe(device_t dev)584 rl_probe(device_t dev)
585 {
586 	const struct rl_type	*t;
587 	uint16_t		devid, revid, vendor;
588 	int			i;
589 
590 	vendor = pci_get_vendor(dev);
591 	devid = pci_get_device(dev);
592 	revid = pci_get_revid(dev);
593 
594 	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
595 		if (revid == 0x20) {
596 			/* 8139C+, let re(4) take care of this device. */
597 			return (ENXIO);
598 		}
599 	}
600 	t = rl_devs;
601 	for (i = 0; i < nitems(rl_devs); i++, t++) {
602 		if (vendor == t->rl_vid && devid == t->rl_did) {
603 			device_set_desc(dev, t->rl_name);
604 			return (BUS_PROBE_DEFAULT);
605 		}
606 	}
607 
608 	return (ENXIO);
609 }
610 
611 struct rl_dmamap_arg {
612 	bus_addr_t	rl_busaddr;
613 };
614 
615 static void
rl_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)616 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
617 {
618 	struct rl_dmamap_arg	*ctx;
619 
620 	if (error != 0)
621 		return;
622 
623 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
624 
625         ctx = (struct rl_dmamap_arg *)arg;
626         ctx->rl_busaddr = segs[0].ds_addr;
627 }
628 
629 /*
630  * Attach the interface. Allocate softc structures, do ifmedia
631  * setup and ethernet/BPF attach.
632  */
633 static int
rl_attach(device_t dev)634 rl_attach(device_t dev)
635 {
636 	uint8_t			eaddr[ETHER_ADDR_LEN];
637 	uint16_t		as[3];
638 	if_t			ifp;
639 	struct rl_softc		*sc;
640 	const struct rl_type	*t;
641 	struct sysctl_ctx_list	*ctx;
642 	struct sysctl_oid_list	*children;
643 	int			error = 0, hwrev, i, phy, pmc, rid;
644 	int			prefer_iomap, unit;
645 	uint16_t		rl_did = 0;
646 	char			tn[32];
647 
648 	sc = device_get_softc(dev);
649 	unit = device_get_unit(dev);
650 	sc->rl_dev = dev;
651 
652 	sc->rl_twister_enable = 0;
653 	snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
654 	TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
655 	ctx = device_get_sysctl_ctx(sc->rl_dev);
656 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
657 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
658 	   &sc->rl_twister_enable, 0, "");
659 
660 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
661 	    MTX_DEF);
662 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
663 
664 	pci_enable_busmaster(dev);
665 
666 	/*
667 	 * Map control/status registers.
668 	 * Default to using PIO access for this driver. On SMP systems,
669 	 * there appear to be problems with memory mapped mode: it looks
670 	 * like doing too many memory mapped access back to back in rapid
671 	 * succession can hang the bus. I'm inclined to blame this on
672 	 * crummy design/construction on the part of RealTek. Memory
673 	 * mapped mode does appear to work on uniprocessor systems though.
674 	 */
675 	prefer_iomap = 1;
676 	snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
677 	TUNABLE_INT_FETCH(tn, &prefer_iomap);
678 	if (prefer_iomap) {
679 		sc->rl_res_id = PCIR_BAR(0);
680 		sc->rl_res_type = SYS_RES_IOPORT;
681 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
682 		    &sc->rl_res_id, RF_ACTIVE);
683 	}
684 	if (prefer_iomap == 0 || sc->rl_res == NULL) {
685 		sc->rl_res_id = PCIR_BAR(1);
686 		sc->rl_res_type = SYS_RES_MEMORY;
687 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
688 		    &sc->rl_res_id, RF_ACTIVE);
689 	}
690 	if (sc->rl_res == NULL) {
691 		device_printf(dev, "couldn't map ports/memory\n");
692 		error = ENXIO;
693 		goto fail;
694 	}
695 
696 #ifdef notdef
697 	/*
698 	 * Detect the Realtek 8139B. For some reason, this chip is very
699 	 * unstable when left to autoselect the media
700 	 * The best workaround is to set the device to the required
701 	 * media type or to set it to the 10 Meg speed.
702 	 */
703 	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
704 		device_printf(dev,
705 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
706 #endif
707 
708 	sc->rl_btag = rman_get_bustag(sc->rl_res);
709 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
710 
711 	/* Allocate interrupt */
712 	rid = 0;
713 	sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
714 	    RF_SHAREABLE | RF_ACTIVE);
715 
716 	if (sc->rl_irq[0] == NULL) {
717 		device_printf(dev, "couldn't map interrupt\n");
718 		error = ENXIO;
719 		goto fail;
720 	}
721 
722 	sc->rl_cfg0 = RL_8139_CFG0;
723 	sc->rl_cfg1 = RL_8139_CFG1;
724 	sc->rl_cfg2 = 0;
725 	sc->rl_cfg3 = RL_8139_CFG3;
726 	sc->rl_cfg4 = RL_8139_CFG4;
727 	sc->rl_cfg5 = RL_8139_CFG5;
728 
729 	/*
730 	 * Reset the adapter. Only take the lock here as it's needed in
731 	 * order to call rl_reset().
732 	 */
733 	RL_LOCK(sc);
734 	rl_reset(sc);
735 	RL_UNLOCK(sc);
736 
737 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
738 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
739 	if (rl_did != 0x8129)
740 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
741 
742 	/*
743 	 * Get station address from the EEPROM.
744 	 */
745 	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
746 	for (i = 0; i < 3; i++) {
747 		eaddr[(i * 2) + 0] = as[i] & 0xff;
748 		eaddr[(i * 2) + 1] = as[i] >> 8;
749 	}
750 
751 	/*
752 	 * Now read the exact device type from the EEPROM to find
753 	 * out if it's an 8129 or 8139.
754 	 */
755 	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
756 
757 	t = rl_devs;
758 	sc->rl_type = 0;
759 	while(t->rl_name != NULL) {
760 		if (rl_did == t->rl_did) {
761 			sc->rl_type = t->rl_basetype;
762 			break;
763 		}
764 		t++;
765 	}
766 
767 	if (sc->rl_type == 0) {
768 		device_printf(dev, "unknown device ID: %x assuming 8139\n",
769 		    rl_did);
770 		sc->rl_type = RL_8139;
771 		/*
772 		 * Read RL_IDR register to get ethernet address as accessing
773 		 * EEPROM may not extract correct address.
774 		 */
775 		for (i = 0; i < ETHER_ADDR_LEN; i++)
776 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
777 	}
778 
779 	if ((error = rl_dma_alloc(sc)) != 0)
780 		goto fail;
781 
782 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
783 
784 #define	RL_PHYAD_INTERNAL	0
785 
786 	/* Do MII setup */
787 	phy = MII_PHY_ANY;
788 	if (sc->rl_type == RL_8139)
789 		phy = RL_PHYAD_INTERNAL;
790 	error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
791 	    rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
792 	if (error != 0) {
793 		device_printf(dev, "attaching PHYs failed\n");
794 		goto fail;
795 	}
796 
797 	if_setsoftc(ifp, sc);
798 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
799 	if_setmtu(ifp, ETHERMTU);
800 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
801 	if_setioctlfn(ifp, rl_ioctl);
802 	if_setstartfn(ifp, rl_start);
803 	if_setinitfn(ifp, rl_init);
804 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
805 	/* Check WOL for RTL8139B or newer controllers. */
806 	if (sc->rl_type == RL_8139 &&
807 	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
808 		hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
809 		switch (hwrev) {
810 		case RL_HWREV_8139B:
811 		case RL_HWREV_8130:
812 		case RL_HWREV_8139C:
813 		case RL_HWREV_8139D:
814 		case RL_HWREV_8101:
815 		case RL_HWREV_8100:
816 			if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
817 			/* Disable WOL. */
818 			rl_clrwol(sc);
819 			break;
820 		default:
821 			break;
822 		}
823 	}
824 	if_setcapenable(ifp, if_getcapabilities(ifp));
825 	if_setcapenablebit(ifp, 0, (IFCAP_WOL_UCAST | IFCAP_WOL_MCAST));
826 #ifdef DEVICE_POLLING
827 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
828 #endif
829 	if_setsendqlen(ifp, ifqmaxlen);
830 	if_setsendqready(ifp);
831 
832 	/*
833 	 * Call MI attach routine.
834 	 */
835 	ether_ifattach(ifp, eaddr);
836 
837 	/* Hook interrupt last to avoid having to lock softc */
838 	error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
839 	    NULL, rl_intr, sc, &sc->rl_intrhand[0]);
840 	if (error) {
841 		device_printf(sc->rl_dev, "couldn't set up irq\n");
842 		ether_ifdetach(ifp);
843 	}
844 
845 fail:
846 	if (error)
847 		rl_detach(dev);
848 
849 	return (error);
850 }
851 
852 /*
853  * Shutdown hardware and free up resources. This can be called any
854  * time after the mutex has been initialized. It is called in both
855  * the error case in attach and the normal detach case so it needs
856  * to be careful about only freeing resources that have actually been
857  * allocated.
858  */
859 static int
rl_detach(device_t dev)860 rl_detach(device_t dev)
861 {
862 	struct rl_softc		*sc;
863 	if_t			ifp;
864 
865 	sc = device_get_softc(dev);
866 	ifp = sc->rl_ifp;
867 
868 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
869 
870 #ifdef DEVICE_POLLING
871 	if (if_getcapenable(ifp) & IFCAP_POLLING)
872 		ether_poll_deregister(ifp);
873 #endif
874 	/* These should only be active if attach succeeded */
875 	if (device_is_attached(dev)) {
876 		RL_LOCK(sc);
877 		rl_stop(sc);
878 		RL_UNLOCK(sc);
879 		callout_drain(&sc->rl_stat_callout);
880 		ether_ifdetach(ifp);
881 	}
882 #if 0
883 	sc->suspended = 1;
884 #endif
885 	if (sc->rl_miibus)
886 		device_delete_child(dev, sc->rl_miibus);
887 	bus_generic_detach(dev);
888 
889 	if (sc->rl_intrhand[0])
890 		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
891 	if (sc->rl_irq[0])
892 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
893 	if (sc->rl_res)
894 		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
895 		    sc->rl_res);
896 
897 	if (ifp)
898 		if_free(ifp);
899 
900 	rl_dma_free(sc);
901 
902 	mtx_destroy(&sc->rl_mtx);
903 
904 	return (0);
905 }
906 
907 static int
rl_dma_alloc(struct rl_softc * sc)908 rl_dma_alloc(struct rl_softc *sc)
909 {
910 	struct rl_dmamap_arg	ctx;
911 	int			error, i;
912 
913 	/*
914 	 * Allocate the parent bus DMA tag appropriate for PCI.
915 	 */
916 	error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev),	/* parent */
917 	    1, 0,			/* alignment, boundary */
918 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
919 	    BUS_SPACE_MAXADDR,		/* highaddr */
920 	    NULL, NULL,			/* filter, filterarg */
921 	    BUS_SPACE_MAXSIZE_32BIT, 0,	/* maxsize, nsegments */
922 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
923 	    0,				/* flags */
924 	    NULL, NULL,			/* lockfunc, lockarg */
925 	    &sc->rl_parent_tag);
926 	if (error) {
927                 device_printf(sc->rl_dev,
928 		    "failed to create parent DMA tag.\n");
929 		goto fail;
930 	}
931 	/* Create DMA tag for Rx memory block. */
932 	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
933 	    RL_RX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
934 	    BUS_SPACE_MAXADDR,		/* lowaddr */
935 	    BUS_SPACE_MAXADDR,		/* highaddr */
936 	    NULL, NULL,			/* filter, filterarg */
937 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,	/* maxsize,nsegments */
938 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,	/* maxsegsize */
939 	    0,				/* flags */
940 	    NULL, NULL,			/* lockfunc, lockarg */
941 	    &sc->rl_cdata.rl_rx_tag);
942 	if (error) {
943                 device_printf(sc->rl_dev,
944 		    "failed to create Rx memory block DMA tag.\n");
945 		goto fail;
946 	}
947 	/* Create DMA tag for Tx buffer. */
948 	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
949 	    RL_TX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
950 	    BUS_SPACE_MAXADDR,		/* lowaddr */
951 	    BUS_SPACE_MAXADDR,		/* highaddr */
952 	    NULL, NULL,			/* filter, filterarg */
953 	    MCLBYTES, 1,		/* maxsize, nsegments */
954 	    MCLBYTES,			/* maxsegsize */
955 	    0,				/* flags */
956 	    NULL, NULL,			/* lockfunc, lockarg */
957 	    &sc->rl_cdata.rl_tx_tag);
958 	if (error) {
959                 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
960 		goto fail;
961 	}
962 
963 	/*
964 	 * Allocate DMA'able memory and load DMA map for Rx memory block.
965 	 */
966 	error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
967 	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
968 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
969 	if (error != 0) {
970 		device_printf(sc->rl_dev,
971 		    "failed to allocate Rx DMA memory block.\n");
972 		goto fail;
973 	}
974 	ctx.rl_busaddr = 0;
975 	error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
976 	    sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
977 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
978 	    BUS_DMA_NOWAIT);
979 	if (error != 0 || ctx.rl_busaddr == 0) {
980 		device_printf(sc->rl_dev,
981 		    "could not load Rx DMA memory block.\n");
982 		goto fail;
983 	}
984 	sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
985 
986 	/* Create DMA maps for Tx buffers. */
987 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
988 		sc->rl_cdata.rl_tx_chain[i] = NULL;
989 		sc->rl_cdata.rl_tx_dmamap[i] = NULL;
990 		error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
991 		    &sc->rl_cdata.rl_tx_dmamap[i]);
992 		if (error != 0) {
993 			device_printf(sc->rl_dev,
994 			    "could not create Tx dmamap.\n");
995 			goto fail;
996 		}
997 	}
998 
999 	/* Leave a few bytes before the start of the RX ring buffer. */
1000 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1001 	sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1002 
1003 fail:
1004 	return (error);
1005 }
1006 
1007 static void
rl_dma_free(struct rl_softc * sc)1008 rl_dma_free(struct rl_softc *sc)
1009 {
1010 	int			i;
1011 
1012 	/* Rx memory block. */
1013 	if (sc->rl_cdata.rl_rx_tag != NULL) {
1014 		if (sc->rl_cdata.rl_rx_buf_paddr != 0)
1015 			bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1016 			    sc->rl_cdata.rl_rx_dmamap);
1017 		if (sc->rl_cdata.rl_rx_buf_ptr != NULL)
1018 			bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1019 			    sc->rl_cdata.rl_rx_buf_ptr,
1020 			    sc->rl_cdata.rl_rx_dmamap);
1021 		sc->rl_cdata.rl_rx_buf_ptr = NULL;
1022 		sc->rl_cdata.rl_rx_buf = NULL;
1023 		sc->rl_cdata.rl_rx_buf_paddr = 0;
1024 		bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1025 		sc->rl_cdata.rl_tx_tag = NULL;
1026 	}
1027 
1028 	/* Tx buffers. */
1029 	if (sc->rl_cdata.rl_tx_tag != NULL) {
1030 		for (i = 0; i < RL_TX_LIST_CNT; i++) {
1031 			if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1032 				bus_dmamap_destroy(
1033 				    sc->rl_cdata.rl_tx_tag,
1034 				    sc->rl_cdata.rl_tx_dmamap[i]);
1035 				sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1036 			}
1037 		}
1038 		bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1039 		sc->rl_cdata.rl_tx_tag = NULL;
1040 	}
1041 
1042 	if (sc->rl_parent_tag != NULL) {
1043 		bus_dma_tag_destroy(sc->rl_parent_tag);
1044 		sc->rl_parent_tag = NULL;
1045 	}
1046 }
1047 
1048 /*
1049  * Initialize the transmit descriptors.
1050  */
1051 static int
rl_list_tx_init(struct rl_softc * sc)1052 rl_list_tx_init(struct rl_softc *sc)
1053 {
1054 	struct rl_chain_data	*cd;
1055 	int			i;
1056 
1057 	RL_LOCK_ASSERT(sc);
1058 
1059 	cd = &sc->rl_cdata;
1060 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1061 		cd->rl_tx_chain[i] = NULL;
1062 		CSR_WRITE_4(sc,
1063 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1064 	}
1065 
1066 	sc->rl_cdata.cur_tx = 0;
1067 	sc->rl_cdata.last_tx = 0;
1068 
1069 	return (0);
1070 }
1071 
1072 static int
rl_list_rx_init(struct rl_softc * sc)1073 rl_list_rx_init(struct rl_softc *sc)
1074 {
1075 
1076 	RL_LOCK_ASSERT(sc);
1077 
1078 	bzero(sc->rl_cdata.rl_rx_buf_ptr,
1079 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1080 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1081 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1082 
1083 	return (0);
1084 }
1085 
1086 /*
1087  * A frame has been uploaded: pass the resulting mbuf chain up to
1088  * the higher level protocols.
1089  *
1090  * You know there's something wrong with a PCI bus-master chip design
1091  * when you have to use m_devget().
1092  *
1093  * The receive operation is badly documented in the datasheet, so I'll
1094  * attempt to document it here. The driver provides a buffer area and
1095  * places its base address in the RX buffer start address register.
1096  * The chip then begins copying frames into the RX buffer. Each frame
1097  * is preceded by a 32-bit RX status word which specifies the length
1098  * of the frame and certain other status bits. Each frame (starting with
1099  * the status word) is also 32-bit aligned. The frame length is in the
1100  * first 16 bits of the status word; the lower 15 bits correspond with
1101  * the 'rx status register' mentioned in the datasheet.
1102  *
1103  * Note: to make the Alpha happy, the frame payload needs to be aligned
1104  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1105  * as the offset argument to m_devget().
1106  */
1107 static int
rl_rxeof(struct rl_softc * sc)1108 rl_rxeof(struct rl_softc *sc)
1109 {
1110 	struct mbuf		*m;
1111 	if_t			ifp = sc->rl_ifp;
1112 	uint8_t			*rxbufpos;
1113 	int			total_len = 0;
1114 	int			wrap = 0;
1115 	int			rx_npkts = 0;
1116 	uint32_t		rxstat;
1117 	uint16_t		cur_rx;
1118 	uint16_t		limit;
1119 	uint16_t		max_bytes, rx_bytes = 0;
1120 
1121 	RL_LOCK_ASSERT(sc);
1122 
1123 	bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1124 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1125 
1126 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1127 
1128 	/* Do not try to read past this point. */
1129 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1130 
1131 	if (limit < cur_rx)
1132 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1133 	else
1134 		max_bytes = limit - cur_rx;
1135 
1136 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1137 #ifdef DEVICE_POLLING
1138 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1139 			if (sc->rxcycles <= 0)
1140 				break;
1141 			sc->rxcycles--;
1142 		}
1143 #endif
1144 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1145 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1146 
1147 		/*
1148 		 * Here's a totally undocumented fact for you. When the
1149 		 * RealTek chip is in the process of copying a packet into
1150 		 * RAM for you, the length will be 0xfff0. If you spot a
1151 		 * packet header with this value, you need to stop. The
1152 		 * datasheet makes absolutely no mention of this and
1153 		 * RealTek should be shot for this.
1154 		 */
1155 		total_len = rxstat >> 16;
1156 		if (total_len == RL_RXSTAT_UNFINISHED)
1157 			break;
1158 
1159 		if (!(rxstat & RL_RXSTAT_RXOK) ||
1160 		    total_len < ETHER_MIN_LEN ||
1161 		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1162 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1163 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1164 			rl_init_locked(sc);
1165 			return (rx_npkts);
1166 		}
1167 
1168 		/* No errors; receive the packet. */
1169 		rx_bytes += total_len + 4;
1170 
1171 		/*
1172 		 * XXX The RealTek chip includes the CRC with every
1173 		 * received frame, and there's no way to turn this
1174 		 * behavior off (at least, I can't find anything in
1175 		 * the manual that explains how to do it) so we have
1176 		 * to trim off the CRC manually.
1177 		 */
1178 		total_len -= ETHER_CRC_LEN;
1179 
1180 		/*
1181 		 * Avoid trying to read more bytes than we know
1182 		 * the chip has prepared for us.
1183 		 */
1184 		if (rx_bytes > max_bytes)
1185 			break;
1186 
1187 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1188 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1189 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1190 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1191 
1192 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1193 		if (total_len > wrap) {
1194 			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1195 			    NULL);
1196 			if (m != NULL)
1197 				m_copyback(m, wrap, total_len - wrap,
1198 					sc->rl_cdata.rl_rx_buf);
1199 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1200 		} else {
1201 			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1202 			    NULL);
1203 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1204 		}
1205 
1206 		/* Round up to 32-bit boundary. */
1207 		cur_rx = (cur_rx + 3) & ~3;
1208 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1209 
1210 		if (m == NULL) {
1211 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1212 			continue;
1213 		}
1214 
1215 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1216 		RL_UNLOCK(sc);
1217 		if_input(ifp, m);
1218 		RL_LOCK(sc);
1219 		rx_npkts++;
1220 	}
1221 
1222 	/* No need to sync Rx memory block as we didn't modify it. */
1223 	return (rx_npkts);
1224 }
1225 
1226 /*
1227  * A frame was downloaded to the chip. It's safe for us to clean up
1228  * the list buffers.
1229  */
1230 static void
rl_txeof(struct rl_softc * sc)1231 rl_txeof(struct rl_softc *sc)
1232 {
1233 	if_t			ifp = sc->rl_ifp;
1234 	uint32_t		txstat;
1235 
1236 	RL_LOCK_ASSERT(sc);
1237 
1238 	/*
1239 	 * Go through our tx list and free mbufs for those
1240 	 * frames that have been uploaded.
1241 	 */
1242 	do {
1243 		if (RL_LAST_TXMBUF(sc) == NULL)
1244 			break;
1245 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1246 		if (!(txstat & (RL_TXSTAT_TX_OK|
1247 		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1248 			break;
1249 
1250 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & RL_TXSTAT_COLLCNT) >> 24);
1251 
1252 		bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1253 		    BUS_DMASYNC_POSTWRITE);
1254 		bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1255 		m_freem(RL_LAST_TXMBUF(sc));
1256 		RL_LAST_TXMBUF(sc) = NULL;
1257 		/*
1258 		 * If there was a transmit underrun, bump the TX threshold.
1259 		 * Make sure not to overflow the 63 * 32byte we can address
1260 		 * with the 6 available bit.
1261 		 */
1262 		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1263 		    (sc->rl_txthresh < 2016))
1264 			sc->rl_txthresh += 32;
1265 		if (txstat & RL_TXSTAT_TX_OK)
1266 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1267 		else {
1268 			int			oldthresh;
1269 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1270 			if ((txstat & RL_TXSTAT_TXABRT) ||
1271 			    (txstat & RL_TXSTAT_OUTOFWIN))
1272 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1273 			oldthresh = sc->rl_txthresh;
1274 			/* error recovery */
1275 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1276 			rl_init_locked(sc);
1277 			/* restore original threshold */
1278 			sc->rl_txthresh = oldthresh;
1279 			return;
1280 		}
1281 		RL_INC(sc->rl_cdata.last_tx);
1282 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1283 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1284 
1285 	if (RL_LAST_TXMBUF(sc) == NULL)
1286 		sc->rl_watchdog_timer = 0;
1287 }
1288 
1289 static void
rl_twister_update(struct rl_softc * sc)1290 rl_twister_update(struct rl_softc *sc)
1291 {
1292 	uint16_t linktest;
1293 	/*
1294 	 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1295 	 * Linux driver.  Values undocumented otherwise.
1296 	 */
1297 	static const uint32_t param[4][4] = {
1298 		{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1299 		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1300 		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1301 		{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1302 	};
1303 
1304 	/*
1305 	 * Tune the so-called twister registers of the RTL8139.  These
1306 	 * are used to compensate for impedance mismatches.  The
1307 	 * method for tuning these registers is undocumented and the
1308 	 * following procedure is collected from public sources.
1309 	 */
1310 	switch (sc->rl_twister)
1311 	{
1312 	case CHK_LINK:
1313 		/*
1314 		 * If we have a sufficient link, then we can proceed in
1315 		 * the state machine to the next stage.  If not, then
1316 		 * disable further tuning after writing sane defaults.
1317 		 */
1318 		if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1319 			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1320 			sc->rl_twister = FIND_ROW;
1321 		} else {
1322 			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1323 			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1324 			CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1325 			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1326 			sc->rl_twister = DONE;
1327 		}
1328 		break;
1329 	case FIND_ROW:
1330 		/*
1331 		 * Read how long it took to see the echo to find the tuning
1332 		 * row to use.
1333 		 */
1334 		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1335 		if (linktest == RL_CSCFG_ROW3)
1336 			sc->rl_twist_row = 3;
1337 		else if (linktest == RL_CSCFG_ROW2)
1338 			sc->rl_twist_row = 2;
1339 		else if (linktest == RL_CSCFG_ROW1)
1340 			sc->rl_twist_row = 1;
1341 		else
1342 			sc->rl_twist_row = 0;
1343 		sc->rl_twist_col = 0;
1344 		sc->rl_twister = SET_PARAM;
1345 		break;
1346 	case SET_PARAM:
1347 		if (sc->rl_twist_col == 0)
1348 			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1349 		CSR_WRITE_4(sc, RL_PARA7C,
1350 		    param[sc->rl_twist_row][sc->rl_twist_col]);
1351 		if (++sc->rl_twist_col == 4) {
1352 			if (sc->rl_twist_row == 3)
1353 				sc->rl_twister = RECHK_LONG;
1354 			else
1355 				sc->rl_twister = DONE;
1356 		}
1357 		break;
1358 	case RECHK_LONG:
1359 		/*
1360 		 * For long cables, we have to double check to make sure we
1361 		 * don't mistune.
1362 		 */
1363 		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1364 		if (linktest == RL_CSCFG_ROW3)
1365 			sc->rl_twister = DONE;
1366 		else {
1367 			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1368 			sc->rl_twister = RETUNE;
1369 		}
1370 		break;
1371 	case RETUNE:
1372 		/* Retune for a shorter cable (try column 2) */
1373 		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1374 		CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1375 		CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1376 		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1377 		sc->rl_twist_row--;
1378 		sc->rl_twist_col = 0;
1379 		sc->rl_twister = SET_PARAM;
1380 		break;
1381 
1382 	case DONE:
1383 		break;
1384 	}
1385 
1386 }
1387 
1388 static void
rl_tick(void * xsc)1389 rl_tick(void *xsc)
1390 {
1391 	struct rl_softc		*sc = xsc;
1392 	struct mii_data		*mii;
1393 	int ticks;
1394 
1395 	RL_LOCK_ASSERT(sc);
1396 	/*
1397 	 * If we're doing the twister cable calibration, then we need to defer
1398 	 * watchdog timeouts.  This is a no-op in normal operations, but
1399 	 * can falsely trigger when the cable calibration takes a while and
1400 	 * there was traffic ready to go when rl was started.
1401 	 *
1402 	 * We don't defer mii_tick since that updates the mii status, which
1403 	 * helps the twister process, at least according to similar patches
1404 	 * for the Linux driver I found online while doing the fixes.  Worst
1405 	 * case is a few extra mii reads during calibration.
1406 	 */
1407 	mii = device_get_softc(sc->rl_miibus);
1408 	mii_tick(mii);
1409 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1410 		rl_miibus_statchg(sc->rl_dev);
1411 	if (sc->rl_twister_enable) {
1412 		if (sc->rl_twister == DONE)
1413 			rl_watchdog(sc);
1414 		else
1415 			rl_twister_update(sc);
1416 		if (sc->rl_twister == DONE)
1417 			ticks = hz;
1418 		else
1419 			ticks = hz / 10;
1420 	} else {
1421 		rl_watchdog(sc);
1422 		ticks = hz;
1423 	}
1424 
1425 	callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1426 }
1427 
1428 #ifdef DEVICE_POLLING
1429 static int
rl_poll(if_t ifp,enum poll_cmd cmd,int count)1430 rl_poll(if_t ifp, enum poll_cmd cmd, int count)
1431 {
1432 	struct rl_softc *sc = if_getsoftc(ifp);
1433 	int rx_npkts = 0;
1434 
1435 	RL_LOCK(sc);
1436 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1437 		rx_npkts = rl_poll_locked(ifp, cmd, count);
1438 	RL_UNLOCK(sc);
1439 	return (rx_npkts);
1440 }
1441 
1442 static int
rl_poll_locked(if_t ifp,enum poll_cmd cmd,int count)1443 rl_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
1444 {
1445 	struct rl_softc *sc = if_getsoftc(ifp);
1446 	int rx_npkts;
1447 
1448 	RL_LOCK_ASSERT(sc);
1449 
1450 	sc->rxcycles = count;
1451 	rx_npkts = rl_rxeof(sc);
1452 	rl_txeof(sc);
1453 
1454 	if (!if_sendq_empty(ifp))
1455 		rl_start_locked(ifp);
1456 
1457 	if (cmd == POLL_AND_CHECK_STATUS) {
1458 		uint16_t	status;
1459 
1460 		/* We should also check the status register. */
1461 		status = CSR_READ_2(sc, RL_ISR);
1462 		if (status == 0xffff)
1463 			return (rx_npkts);
1464 		if (status != 0)
1465 			CSR_WRITE_2(sc, RL_ISR, status);
1466 
1467 		/* XXX We should check behaviour on receiver stalls. */
1468 
1469 		if (status & RL_ISR_SYSTEM_ERR) {
1470 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1471 			rl_init_locked(sc);
1472 		}
1473 	}
1474 	return (rx_npkts);
1475 }
1476 #endif /* DEVICE_POLLING */
1477 
1478 static void
rl_intr(void * arg)1479 rl_intr(void *arg)
1480 {
1481 	struct rl_softc		*sc = arg;
1482 	if_t			ifp = sc->rl_ifp;
1483 	uint16_t		status;
1484 	int			count;
1485 
1486 	RL_LOCK(sc);
1487 
1488 	if (sc->suspended)
1489 		goto done_locked;
1490 
1491 #ifdef DEVICE_POLLING
1492 	if  (if_getcapenable(ifp) & IFCAP_POLLING)
1493 		goto done_locked;
1494 #endif
1495 
1496 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1497 		goto done_locked2;
1498 	status = CSR_READ_2(sc, RL_ISR);
1499 	if (status == 0xffff || (status & RL_INTRS) == 0)
1500 		goto done_locked;
1501 	/*
1502 	 * Ours, disable further interrupts.
1503 	 */
1504 	CSR_WRITE_2(sc, RL_IMR, 0);
1505 	for (count = 16; count > 0; count--) {
1506 		CSR_WRITE_2(sc, RL_ISR, status);
1507 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1508 			if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
1509 				rl_rxeof(sc);
1510 			if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
1511 				rl_txeof(sc);
1512 			if (status & RL_ISR_SYSTEM_ERR) {
1513 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1514 				rl_init_locked(sc);
1515 				RL_UNLOCK(sc);
1516 				return;
1517 			}
1518 		}
1519 		status = CSR_READ_2(sc, RL_ISR);
1520 		/* If the card has gone away, the read returns 0xffff. */
1521 		if (status == 0xffff || (status & RL_INTRS) == 0)
1522 			break;
1523 	}
1524 
1525 	if (!if_sendq_empty(ifp))
1526 		rl_start_locked(ifp);
1527 
1528 done_locked2:
1529 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1530 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1531 done_locked:
1532 	RL_UNLOCK(sc);
1533 }
1534 
1535 /*
1536  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1537  * pointers to the fragment pointers.
1538  */
1539 static int
rl_encap(struct rl_softc * sc,struct mbuf ** m_head)1540 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1541 {
1542 	struct mbuf		*m;
1543 	bus_dma_segment_t	txsegs[1];
1544 	int			error, nsegs, padlen;
1545 
1546 	RL_LOCK_ASSERT(sc);
1547 
1548 	m = *m_head;
1549 	padlen = 0;
1550 	/*
1551 	 * Hardware doesn't auto-pad, so we have to make sure
1552 	 * pad short frames out to the minimum frame length.
1553 	 */
1554 	if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1555 		padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1556 	/*
1557 	 * The RealTek is brain damaged and wants longword-aligned
1558 	 * TX buffers, plus we can only have one fragment buffer
1559 	 * per packet. We have to copy pretty much all the time.
1560 	 */
1561 	if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1562 	    (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1563 		m = m_defrag(*m_head, M_NOWAIT);
1564 		if (m == NULL) {
1565 			m_freem(*m_head);
1566 			*m_head = NULL;
1567 			return (ENOMEM);
1568 		}
1569 	}
1570 	*m_head = m;
1571 
1572 	if (padlen > 0) {
1573 		/*
1574 		 * Make security-conscious people happy: zero out the
1575 		 * bytes in the pad area, since we don't know what
1576 		 * this mbuf cluster buffer's previous user might
1577 		 * have left in it.
1578 		 */
1579 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1580 		m->m_pkthdr.len += padlen;
1581 		m->m_len = m->m_pkthdr.len;
1582 	}
1583 
1584 	error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1585 	    RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1586 	if (error != 0)
1587 		return (error);
1588 	if (nsegs == 0) {
1589 		m_freem(*m_head);
1590 		*m_head = NULL;
1591 		return (EIO);
1592 	}
1593 
1594 	RL_CUR_TXMBUF(sc) = m;
1595 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1596 	    BUS_DMASYNC_PREWRITE);
1597 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1598 
1599 	return (0);
1600 }
1601 
1602 /*
1603  * Main transmit routine.
1604  */
1605 static void
rl_start(if_t ifp)1606 rl_start(if_t ifp)
1607 {
1608 	struct rl_softc		*sc = if_getsoftc(ifp);
1609 
1610 	RL_LOCK(sc);
1611 	rl_start_locked(ifp);
1612 	RL_UNLOCK(sc);
1613 }
1614 
1615 static void
rl_start_locked(if_t ifp)1616 rl_start_locked(if_t ifp)
1617 {
1618 	struct rl_softc		*sc = if_getsoftc(ifp);
1619 	struct mbuf		*m_head = NULL;
1620 
1621 	RL_LOCK_ASSERT(sc);
1622 
1623 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1624 	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1625 		return;
1626 
1627 	while (RL_CUR_TXMBUF(sc) == NULL) {
1628 		m_head = if_dequeue(ifp);
1629 
1630 		if (m_head == NULL)
1631 			break;
1632 
1633 		if (rl_encap(sc, &m_head)) {
1634 			if (m_head == NULL)
1635 				break;
1636 			if_sendq_prepend(ifp, m_head);
1637 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1638 			break;
1639 		}
1640 
1641 		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1642 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1643 
1644 		/* Transmit the frame. */
1645 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1646 		    RL_TXTHRESH(sc->rl_txthresh) |
1647 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1648 
1649 		RL_INC(sc->rl_cdata.cur_tx);
1650 
1651 		/* Set a timeout in case the chip goes out to lunch. */
1652 		sc->rl_watchdog_timer = 5;
1653 	}
1654 
1655 	/*
1656 	 * We broke out of the loop because all our TX slots are
1657 	 * full. Mark the NIC as busy until it drains some of the
1658 	 * packets from the queue.
1659 	 */
1660 	if (RL_CUR_TXMBUF(sc) != NULL)
1661 		if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1662 }
1663 
1664 static void
rl_init(void * xsc)1665 rl_init(void *xsc)
1666 {
1667 	struct rl_softc		*sc = xsc;
1668 
1669 	RL_LOCK(sc);
1670 	rl_init_locked(sc);
1671 	RL_UNLOCK(sc);
1672 }
1673 
1674 static void
rl_init_locked(struct rl_softc * sc)1675 rl_init_locked(struct rl_softc *sc)
1676 {
1677 	if_t			ifp = sc->rl_ifp;
1678 	struct mii_data		*mii;
1679 	uint32_t		eaddr[2];
1680 
1681 	RL_LOCK_ASSERT(sc);
1682 
1683 	mii = device_get_softc(sc->rl_miibus);
1684 
1685 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1686 		return;
1687 
1688 	/*
1689 	 * Cancel pending I/O and free all RX/TX buffers.
1690 	 */
1691 	rl_stop(sc);
1692 
1693 	rl_reset(sc);
1694 	if (sc->rl_twister_enable) {
1695 		/*
1696 		 * Reset twister register tuning state.  The twister
1697 		 * registers and their tuning are undocumented, but
1698 		 * are necessary to cope with bad links.  rl_twister =
1699 		 * DONE here will disable this entirely.
1700 		 */
1701 		sc->rl_twister = CHK_LINK;
1702 	}
1703 
1704 	/*
1705 	 * Init our MAC address.  Even though the chipset
1706 	 * documentation doesn't mention it, we need to enter "Config
1707 	 * register write enable" mode to modify the ID registers.
1708 	 */
1709 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1710 	bzero(eaddr, sizeof(eaddr));
1711 	bcopy(if_getlladdr(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1712 	CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1713 	CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1714 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1715 
1716 	/* Init the RX memory block pointer register. */
1717 	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1718 	    RL_RX_8139_BUF_RESERVE);
1719 	/* Init TX descriptors. */
1720 	rl_list_tx_init(sc);
1721 	/* Init Rx memory block. */
1722 	rl_list_rx_init(sc);
1723 
1724 	/*
1725 	 * Enable transmit and receive.
1726 	 */
1727 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1728 
1729 	/*
1730 	 * Set the initial TX and RX configuration.
1731 	 */
1732 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1733 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1734 
1735 	/* Set RX filter. */
1736 	rl_rxfilter(sc);
1737 
1738 #ifdef DEVICE_POLLING
1739 	/* Disable interrupts if we are polling. */
1740 	if (if_getcapenable(ifp) & IFCAP_POLLING)
1741 		CSR_WRITE_2(sc, RL_IMR, 0);
1742 	else
1743 #endif
1744 	/* Enable interrupts. */
1745 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1746 
1747 	/* Set initial TX threshold */
1748 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1749 
1750 	/* Start RX/TX process. */
1751 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1752 
1753 	/* Enable receiver and transmitter. */
1754 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1755 
1756 	sc->rl_flags &= ~RL_FLAG_LINK;
1757 	mii_mediachg(mii);
1758 
1759 	CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1760 
1761 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1762 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1763 
1764 	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1765 }
1766 
1767 /*
1768  * Set media options.
1769  */
1770 static int
rl_ifmedia_upd(if_t ifp)1771 rl_ifmedia_upd(if_t ifp)
1772 {
1773 	struct rl_softc		*sc = if_getsoftc(ifp);
1774 	struct mii_data		*mii;
1775 
1776 	mii = device_get_softc(sc->rl_miibus);
1777 
1778 	RL_LOCK(sc);
1779 	mii_mediachg(mii);
1780 	RL_UNLOCK(sc);
1781 
1782 	return (0);
1783 }
1784 
1785 /*
1786  * Report current media status.
1787  */
1788 static void
rl_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)1789 rl_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1790 {
1791 	struct rl_softc		*sc = if_getsoftc(ifp);
1792 	struct mii_data		*mii;
1793 
1794 	mii = device_get_softc(sc->rl_miibus);
1795 
1796 	RL_LOCK(sc);
1797 	mii_pollstat(mii);
1798 	ifmr->ifm_active = mii->mii_media_active;
1799 	ifmr->ifm_status = mii->mii_media_status;
1800 	RL_UNLOCK(sc);
1801 }
1802 
1803 static int
rl_ioctl(if_t ifp,u_long command,caddr_t data)1804 rl_ioctl(if_t ifp, u_long command, caddr_t data)
1805 {
1806 	struct ifreq		*ifr = (struct ifreq *)data;
1807 	struct mii_data		*mii;
1808 	struct rl_softc		*sc = if_getsoftc(ifp);
1809 	int			error = 0, mask;
1810 
1811 	switch (command) {
1812 	case SIOCSIFFLAGS:
1813 		RL_LOCK(sc);
1814 		if (if_getflags(ifp) & IFF_UP) {
1815 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
1816 			    ((if_getflags(ifp) ^ sc->rl_if_flags) &
1817                             (IFF_PROMISC | IFF_ALLMULTI)))
1818 				rl_rxfilter(sc);
1819                         else
1820 				rl_init_locked(sc);
1821                 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1822 			rl_stop(sc);
1823 		sc->rl_if_flags = if_getflags(ifp);
1824 		RL_UNLOCK(sc);
1825 		break;
1826 	case SIOCADDMULTI:
1827 	case SIOCDELMULTI:
1828 		RL_LOCK(sc);
1829 		rl_rxfilter(sc);
1830 		RL_UNLOCK(sc);
1831 		break;
1832 	case SIOCGIFMEDIA:
1833 	case SIOCSIFMEDIA:
1834 		mii = device_get_softc(sc->rl_miibus);
1835 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1836 		break;
1837 	case SIOCSIFCAP:
1838 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1839 #ifdef DEVICE_POLLING
1840 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1841 		    !(if_getcapenable(ifp) & IFCAP_POLLING)) {
1842 			error = ether_poll_register(rl_poll, ifp);
1843 			if (error)
1844 				return(error);
1845 			RL_LOCK(sc);
1846 			/* Disable interrupts */
1847 			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1848 			if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1849 			RL_UNLOCK(sc);
1850 			return (error);
1851 
1852 		}
1853 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1854 		    if_getcapenable(ifp) & IFCAP_POLLING) {
1855 			error = ether_poll_deregister(ifp);
1856 			/* Enable interrupts. */
1857 			RL_LOCK(sc);
1858 			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1859 			if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1860 			RL_UNLOCK(sc);
1861 			return (error);
1862 		}
1863 #endif /* DEVICE_POLLING */
1864 		if ((mask & IFCAP_WOL) != 0 &&
1865 		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
1866 			if ((mask & IFCAP_WOL_UCAST) != 0)
1867 				if_togglecapenable(ifp, IFCAP_WOL_UCAST);
1868 			if ((mask & IFCAP_WOL_MCAST) != 0)
1869 				if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1870 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1871 				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1872 		}
1873 		break;
1874 	default:
1875 		error = ether_ioctl(ifp, command, data);
1876 		break;
1877 	}
1878 
1879 	return (error);
1880 }
1881 
1882 static void
rl_watchdog(struct rl_softc * sc)1883 rl_watchdog(struct rl_softc *sc)
1884 {
1885 
1886 	RL_LOCK_ASSERT(sc);
1887 
1888 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1889 		return;
1890 
1891 	device_printf(sc->rl_dev, "watchdog timeout\n");
1892 	if_inc_counter(sc->rl_ifp, IFCOUNTER_OERRORS, 1);
1893 
1894 	rl_txeof(sc);
1895 	rl_rxeof(sc);
1896 	if_setdrvflagbits(sc->rl_ifp, 0, IFF_DRV_RUNNING);
1897 	rl_init_locked(sc);
1898 }
1899 
1900 /*
1901  * Stop the adapter and free any mbufs allocated to the
1902  * RX and TX lists.
1903  */
1904 static void
rl_stop(struct rl_softc * sc)1905 rl_stop(struct rl_softc *sc)
1906 {
1907 	int			i;
1908 	if_t			ifp = sc->rl_ifp;
1909 
1910 	RL_LOCK_ASSERT(sc);
1911 
1912 	sc->rl_watchdog_timer = 0;
1913 	callout_stop(&sc->rl_stat_callout);
1914 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1915 	sc->rl_flags &= ~RL_FLAG_LINK;
1916 
1917 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1918 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1919 	for (i = 0; i < RL_TIMEOUT; i++) {
1920 		DELAY(10);
1921 		if ((CSR_READ_1(sc, RL_COMMAND) &
1922 		    (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
1923 			break;
1924 	}
1925 	if (i == RL_TIMEOUT)
1926 		device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
1927 
1928 	/*
1929 	 * Free the TX list buffers.
1930 	 */
1931 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1932 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1933 			bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
1934 			    sc->rl_cdata.rl_tx_dmamap[i],
1935 			    BUS_DMASYNC_POSTWRITE);
1936 			bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
1937 			    sc->rl_cdata.rl_tx_dmamap[i]);
1938 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1939 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1940 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1941 			    0x0000000);
1942 		}
1943 	}
1944 }
1945 
1946 /*
1947  * Device suspend routine.  Stop the interface and save some PCI
1948  * settings in case the BIOS doesn't restore them properly on
1949  * resume.
1950  */
1951 static int
rl_suspend(device_t dev)1952 rl_suspend(device_t dev)
1953 {
1954 	struct rl_softc		*sc;
1955 
1956 	sc = device_get_softc(dev);
1957 
1958 	RL_LOCK(sc);
1959 	rl_stop(sc);
1960 	rl_setwol(sc);
1961 	sc->suspended = 1;
1962 	RL_UNLOCK(sc);
1963 
1964 	return (0);
1965 }
1966 
1967 /*
1968  * Device resume routine.  Restore some PCI settings in case the BIOS
1969  * doesn't, re-enable busmastering, and restart the interface if
1970  * appropriate.
1971  */
1972 static int
rl_resume(device_t dev)1973 rl_resume(device_t dev)
1974 {
1975 	struct rl_softc		*sc;
1976 	if_t			ifp;
1977 	int			pmc;
1978 	uint16_t		pmstat;
1979 
1980 	sc = device_get_softc(dev);
1981 	ifp = sc->rl_ifp;
1982 
1983 	RL_LOCK(sc);
1984 
1985 	if ((if_getcapabilities(ifp) & IFCAP_WOL) != 0 &&
1986 	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
1987 		/* Disable PME and clear PME status. */
1988 		pmstat = pci_read_config(sc->rl_dev,
1989 		    pmc + PCIR_POWER_STATUS, 2);
1990 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1991 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1992 			pci_write_config(sc->rl_dev,
1993 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1994 		}
1995 		/*
1996 		 * Clear WOL matching such that normal Rx filtering
1997 		 * wouldn't interfere with WOL patterns.
1998 		 */
1999 		rl_clrwol(sc);
2000 	}
2001 
2002 	/* reinitialize interface if necessary */
2003 	if (if_getflags(ifp) & IFF_UP)
2004 		rl_init_locked(sc);
2005 
2006 	sc->suspended = 0;
2007 
2008 	RL_UNLOCK(sc);
2009 
2010 	return (0);
2011 }
2012 
2013 /*
2014  * Stop all chip I/O so that the kernel's probe routines don't
2015  * get confused by errant DMAs when rebooting.
2016  */
2017 static int
rl_shutdown(device_t dev)2018 rl_shutdown(device_t dev)
2019 {
2020 	struct rl_softc		*sc;
2021 
2022 	sc = device_get_softc(dev);
2023 
2024 	RL_LOCK(sc);
2025 	rl_stop(sc);
2026 	/*
2027 	 * Mark interface as down since otherwise we will panic if
2028 	 * interrupt comes in later on, which can happen in some
2029 	 * cases.
2030 	 */
2031 	if_setflagbits(sc->rl_ifp, 0, IFF_UP);
2032 	rl_setwol(sc);
2033 	RL_UNLOCK(sc);
2034 
2035 	return (0);
2036 }
2037 
2038 static void
rl_setwol(struct rl_softc * sc)2039 rl_setwol(struct rl_softc *sc)
2040 {
2041 	if_t			ifp;
2042 	int			pmc;
2043 	uint16_t		pmstat;
2044 	uint8_t			v;
2045 
2046 	RL_LOCK_ASSERT(sc);
2047 
2048 	ifp = sc->rl_ifp;
2049 	if ((if_getcapabilities(ifp) & IFCAP_WOL) == 0)
2050 		return;
2051 	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2052 		return;
2053 
2054 	/* Enable config register write. */
2055 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2056 
2057 	/* Enable PME. */
2058 	v = CSR_READ_1(sc, sc->rl_cfg1);
2059 	v &= ~RL_CFG1_PME;
2060 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2061 		v |= RL_CFG1_PME;
2062 	CSR_WRITE_1(sc, sc->rl_cfg1, v);
2063 
2064 	v = CSR_READ_1(sc, sc->rl_cfg3);
2065 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2066 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2067 		v |= RL_CFG3_WOL_MAGIC;
2068 	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2069 
2070 	v = CSR_READ_1(sc, sc->rl_cfg5);
2071 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2072 	v &= ~RL_CFG5_WOL_LANWAKE;
2073 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2074 		v |= RL_CFG5_WOL_UCAST;
2075 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2076 		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2077 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2078 		v |= RL_CFG5_WOL_LANWAKE;
2079 	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2080 
2081 	/* Config register write done. */
2082 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2083 
2084 	/* Request PME if WOL is requested. */
2085 	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2086 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2087 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2088 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2089 	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2090 }
2091 
2092 static void
rl_clrwol(struct rl_softc * sc)2093 rl_clrwol(struct rl_softc *sc)
2094 {
2095 	if_t			ifp;
2096 	uint8_t			v;
2097 
2098 	ifp = sc->rl_ifp;
2099 	if ((if_getcapabilities(ifp) & IFCAP_WOL) == 0)
2100 		return;
2101 
2102 	/* Enable config register write. */
2103 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2104 
2105 	v = CSR_READ_1(sc, sc->rl_cfg3);
2106 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2107 	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2108 
2109 	/* Config register write done. */
2110 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2111 
2112 	v = CSR_READ_1(sc, sc->rl_cfg5);
2113 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2114 	v &= ~RL_CFG5_WOL_LANWAKE;
2115 	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2116 }
2117