xref: /openbsd/sys/net/radix.c (revision df8d9afd)
1 /*	$OpenBSD: radix.c,v 1.61 2022/01/02 22:36:04 jsg Exp $	*/
2 /*	$NetBSD: radix.c,v 1.20 2003/08/07 16:32:56 agc Exp $	*/
3 
4 /*
5  * Copyright (c) 1988, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)radix.c	8.6 (Berkeley) 10/17/95
33  */
34 
35 /*
36  * Routines to build and maintain radix trees for routing lookups.
37  */
38 
39 #ifndef _KERNEL
40 #include "kern_compat.h"
41 #else
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/syslog.h>
46 #include <sys/pool.h>
47 #endif
48 
49 #include <net/radix.h>
50 
51 #define SALEN(sa)	(*(u_char *)(sa))
52 
53 /*
54  * Read-only variables, allocated & filled during rn_init().
55  */
56 static char		*rn_zeros;	/* array of 0s */
57 static char		*rn_ones;	/* array of 1s */
58 static unsigned int	 max_keylen;	/* size of the above arrays */
59 #define KEYLEN_LIMIT	 64		/* maximum allowed keylen */
60 
61 
62 struct radix_node_head	*mask_rnhead;	/* head of shared mask tree */
63 struct pool		 rtmask_pool;	/* pool for radix_mask structures */
64 
65 static inline int rn_satisfies_leaf(char *, struct radix_node *, int);
66 static inline int rn_lexobetter(void *, void *);
67 static inline struct radix_mask *rn_new_radix_mask(struct radix_node *,
68     struct radix_mask *);
69 
70 int rn_refines(void *, void *);
71 int rn_inithead0(struct radix_node_head *, int);
72 struct radix_node *rn_addmask(void *, int, int);
73 struct radix_node *rn_insert(void *, struct radix_node_head *, int *,
74     struct radix_node [2]);
75 struct radix_node *rn_newpair(void *, int, struct radix_node[2]);
76 void rn_link_dupedkey(struct radix_node *, struct radix_node *, int);
77 
78 static inline struct radix_node *rn_search(void *, struct radix_node *);
79 struct radix_node *rn_search_m(void *, struct radix_node *, void *);
80 int rn_add_dupedkey(struct radix_node *, struct radix_node_head *,
81     struct radix_node [2], u_int8_t);
82 void rn_fixup_nodes(struct radix_node *);
83 static inline struct radix_node *rn_lift_node(struct radix_node *);
84 void rn_add_radix_mask(struct radix_node *, int);
85 int rn_del_radix_mask(struct radix_node *);
86 static inline void rn_swap_nodes(struct radix_node *, struct radix_node *);
87 
88 /*
89  * The data structure for the keys is a radix tree with one way
90  * branching removed.  The index rn_b at an internal node n represents a bit
91  * position to be tested.  The tree is arranged so that all descendants
92  * of a node n have keys whose bits all agree up to position rn_b - 1.
93  * (We say the index of n is rn_b.)
94  *
95  * There is at least one descendant which has a one bit at position rn_b,
96  * and at least one with a zero there.
97  *
98  * A route is determined by a pair of key and mask.  We require that the
99  * bit-wise logical and of the key and mask to be the key.
100  * We define the index of a route to associated with the mask to be
101  * the first bit number in the mask where 0 occurs (with bit number 0
102  * representing the highest order bit).
103  *
104  * We say a mask is normal if every bit is 0, past the index of the mask.
105  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
106  * and m is a normal mask, then the route applies to every descendant of n.
107  * If the index(m) < rn_b, this implies the trailing last few bits of k
108  * before bit b are all 0, (and hence consequently true of every descendant
109  * of n), so the route applies to all descendants of the node as well.
110  *
111  * Similar logic shows that a non-normal mask m such that
112  * index(m) <= index(n) could potentially apply to many children of n.
113  * Thus, for each non-host route, we attach its mask to a list at an internal
114  * node as high in the tree as we can go.
115  *
116  * The present version of the code makes use of normal routes in short-
117  * circuiting an explicit mask and compare operation when testing whether
118  * a key satisfies a normal route, and also in remembering the unique leaf
119  * that governs a subtree.
120  */
121 
122 static inline struct radix_node *
rn_search(void * v_arg,struct radix_node * head)123 rn_search(void *v_arg, struct radix_node *head)
124 {
125 	struct radix_node *x = head;
126 	caddr_t v = v_arg;
127 
128 	while (x->rn_b >= 0) {
129 		if (x->rn_bmask & v[x->rn_off])
130 			x = x->rn_r;
131 		else
132 			x = x->rn_l;
133 	}
134 	return (x);
135 }
136 
137 struct radix_node *
rn_search_m(void * v_arg,struct radix_node * head,void * m_arg)138 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
139 {
140 	struct radix_node *x = head;
141 	caddr_t v = v_arg;
142 	caddr_t m = m_arg;
143 
144 	while (x->rn_b >= 0) {
145 		if ((x->rn_bmask & m[x->rn_off]) &&
146 		    (x->rn_bmask & v[x->rn_off]))
147 			x = x->rn_r;
148 		else
149 			x = x->rn_l;
150 	}
151 	return x;
152 }
153 
154 int
rn_refines(void * m_arg,void * n_arg)155 rn_refines(void *m_arg, void *n_arg)
156 {
157 	caddr_t m = m_arg;
158 	caddr_t n = n_arg;
159 	caddr_t lim, lim2;
160 	int longer;
161 	int masks_are_equal = 1;
162 
163 	lim2 = lim = n + *(u_char *)n;
164 	longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
165 	if (longer > 0)
166 		lim -= longer;
167 	while (n < lim) {
168 		if (*n & ~(*m))
169 			return 0;
170 		if (*n++ != *m++)
171 			masks_are_equal = 0;
172 	}
173 	while (n < lim2)
174 		if (*n++)
175 			return 0;
176 	if (masks_are_equal && (longer < 0))
177 		for (lim2 = m - longer; m < lim2; )
178 			if (*m++)
179 				return 1;
180 	return (!masks_are_equal);
181 }
182 
183 /* return a perfect match if m_arg is set, else do a regular rn_match */
184 struct radix_node *
rn_lookup(void * v_arg,void * m_arg,struct radix_node_head * head)185 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
186 {
187 	struct radix_node *x, *tm;
188 	caddr_t netmask = 0;
189 
190 	if (m_arg) {
191 		tm = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off);
192 		if (tm == NULL)
193 			return (NULL);
194 		netmask = tm->rn_key;
195 	}
196 	x = rn_match(v_arg, head);
197 	if (x && netmask) {
198 		while (x && x->rn_mask != netmask)
199 			x = x->rn_dupedkey;
200 	}
201 	/* Never return internal nodes to the upper layer. */
202 	if (x && (x->rn_flags & RNF_ROOT))
203 		return (NULL);
204 	return x;
205 }
206 
207 static inline int
rn_satisfies_leaf(char * trial,struct radix_node * leaf,int skip)208 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
209 {
210 	char *cp = trial;
211 	char *cp2 = leaf->rn_key;
212 	char *cp3 = leaf->rn_mask;
213 	char *cplim;
214 	int length;
215 
216 	length = min(SALEN(cp), SALEN(cp2));
217 	if (cp3 == NULL)
218 		cp3 = rn_ones;
219 	else
220 		length = min(length, SALEN(cp3));
221 	cplim = cp + length;
222 	cp += skip;
223 	cp2 += skip;
224 	cp3 += skip;
225 	while (cp < cplim) {
226 		if ((*cp ^ *cp2) & *cp3)
227 			return 0;
228 		cp++, cp2++, cp3++;
229 	}
230 	return 1;
231 }
232 
233 struct radix_node *
rn_match(void * v_arg,struct radix_node_head * head)234 rn_match(void *v_arg, struct radix_node_head *head)
235 {
236 	caddr_t v = v_arg;
237 	caddr_t cp, cp2, cplim;
238 	struct radix_node *top = head->rnh_treetop;
239 	struct radix_node *saved_t, *t;
240 	int off = top->rn_off;
241 	int vlen, matched_off;
242 	int test, b, rn_b;
243 
244 	t = rn_search(v, top);
245 	/*
246 	 * See if we match exactly as a host destination
247 	 * or at least learn how many bits match, for normal mask finesse.
248 	 *
249 	 * It doesn't hurt us to limit how many bytes to check
250 	 * to the length of the mask, since if it matches we had a genuine
251 	 * match and the leaf we have is the most specific one anyway;
252 	 * if it didn't match with a shorter length it would fail
253 	 * with a long one.  This wins big for class B&C netmasks which
254 	 * are probably the most common case...
255 	 */
256 	if (t->rn_mask)
257 		vlen = SALEN(t->rn_mask);
258 	else
259 		vlen = SALEN(v);
260 	cp = v + off;
261 	cp2 = t->rn_key + off;
262 	cplim = v + vlen;
263 	for (; cp < cplim; cp++, cp2++)
264 		if (*cp != *cp2)
265 			goto on1;
266 	/*
267 	 * This extra grot is in case we are explicitly asked
268 	 * to look up the default.  Ugh!
269 	 */
270 	if (t->rn_flags & RNF_ROOT)
271 		t = t->rn_dupedkey;
272 
273 	KASSERT(t == NULL || (t->rn_flags & RNF_ROOT) == 0);
274 	return t;
275 on1:
276 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
277 	for (b = 7; (test >>= 1) > 0;)
278 		b--;
279 	matched_off = cp - v;
280 	b += matched_off << 3;
281 	rn_b = -1 - b;
282 	/*
283 	 * If there is a host route in a duped-key chain, it will be first.
284 	 */
285 	saved_t = t;
286 	if (t->rn_mask == NULL)
287 		t = t->rn_dupedkey;
288 	for (; t; t = t->rn_dupedkey)
289 		/*
290 		 * Even if we don't match exactly as a host,
291 		 * we may match if the leaf we wound up at is
292 		 * a route to a net.
293 		 */
294 		if (t->rn_flags & RNF_NORMAL) {
295 			if (rn_b <= t->rn_b) {
296 				KASSERT((t->rn_flags & RNF_ROOT) == 0);
297 				return t;
298 			}
299 		} else if (rn_satisfies_leaf(v, t, matched_off)) {
300 			KASSERT((t->rn_flags & RNF_ROOT) == 0);
301 			return t;
302 		}
303 	t = saved_t;
304 	/* start searching up the tree */
305 	do {
306 		struct radix_mask *m;
307 		t = t->rn_p;
308 		m = t->rn_mklist;
309 		while (m) {
310 			/*
311 			 * If non-contiguous masks ever become important
312 			 * we can restore the masking and open coding of
313 			 * the search and satisfaction test and put the
314 			 * calculation of "off" back before the "do".
315 			 */
316 			if (m->rm_flags & RNF_NORMAL) {
317 				if (rn_b <= m->rm_b) {
318 					KASSERT((m->rm_leaf->rn_flags &
319 					    RNF_ROOT) == 0);
320 					return (m->rm_leaf);
321 				}
322 			} else {
323 				struct radix_node *x;
324 				off = min(t->rn_off, matched_off);
325 				x = rn_search_m(v, t, m->rm_mask);
326 				while (x && x->rn_mask != m->rm_mask)
327 					x = x->rn_dupedkey;
328 				if (x && rn_satisfies_leaf(v, x, off)) {
329 					KASSERT((x->rn_flags & RNF_ROOT) == 0);
330 					return x;
331 				}
332 			}
333 			m = m->rm_mklist;
334 		}
335 	} while (t != top);
336 	return NULL;
337 }
338 
339 struct radix_node *
rn_newpair(void * v,int b,struct radix_node nodes[2])340 rn_newpair(void *v, int b, struct radix_node nodes[2])
341 {
342 	struct radix_node *tt = nodes, *t = nodes + 1;
343 	t->rn_b = b;
344 	t->rn_bmask = 0x80 >> (b & 7);
345 	t->rn_l = tt;
346 	t->rn_off = b >> 3;
347 	tt->rn_b = -1;
348 	tt->rn_key = v;
349 	tt->rn_p = t;
350 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
351 	return t;
352 }
353 
354 struct radix_node *
rn_insert(void * v_arg,struct radix_node_head * head,int * dupentry,struct radix_node nodes[2])355 rn_insert(void *v_arg, struct radix_node_head *head,
356     int *dupentry, struct radix_node nodes[2])
357 {
358 	caddr_t v = v_arg;
359 	struct radix_node *top = head->rnh_treetop;
360 	struct radix_node *t, *tt;
361 	int off = top->rn_off;
362 	int b;
363 
364 	t = rn_search(v_arg, top);
365 	/*
366 	 * Find first bit at which v and t->rn_key differ
367 	 */
368     {
369 	caddr_t cp, cp2, cplim;
370 	int vlen, cmp_res;
371 
372 	vlen =  SALEN(v);
373 	cp = v + off;
374 	cp2 = t->rn_key + off;
375 	cplim = v + vlen;
376 
377 	while (cp < cplim)
378 		if (*cp2++ != *cp++)
379 			goto on1;
380 	*dupentry = 1;
381 	return t;
382 on1:
383 	*dupentry = 0;
384 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
385 	for (b = (cp - v) << 3; cmp_res; b--)
386 		cmp_res >>= 1;
387     }
388     {
389 	struct radix_node *p, *x = top;
390 	caddr_t cp = v;
391 	do {
392 		p = x;
393 		if (cp[x->rn_off] & x->rn_bmask)
394 			x = x->rn_r;
395 		else
396 			x = x->rn_l;
397 	} while (b > (unsigned int) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
398 	t = rn_newpair(v_arg, b, nodes);
399 	tt = t->rn_l;
400 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
401 		p->rn_l = t;
402 	else
403 		p->rn_r = t;
404 	x->rn_p = t;
405 	t->rn_p = p; /* frees x, p as temp vars below */
406 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
407 		t->rn_r = x;
408 	} else {
409 		t->rn_r = tt;
410 		t->rn_l = x;
411 	}
412     }
413 	return (tt);
414 }
415 
416 struct radix_node *
rn_addmask(void * n_arg,int search,int skip)417 rn_addmask(void *n_arg, int search, int skip)
418 {
419 	caddr_t netmask = n_arg;
420 	struct radix_node *tm, *saved_tm;
421 	caddr_t cp, cplim;
422 	int b = 0, mlen, j;
423 	int maskduplicated, m0, isnormal;
424 	char addmask_key[KEYLEN_LIMIT];
425 
426 	if ((mlen = SALEN(netmask)) > max_keylen)
427 		mlen = max_keylen;
428 	if (skip == 0)
429 		skip = 1;
430 	if (mlen <= skip)
431 		return (mask_rnhead->rnh_nodes);	/* rn_zero root node */
432 	if (skip > 1)
433 		memcpy(addmask_key + 1, rn_ones + 1, skip - 1);
434 	if ((m0 = mlen) > skip)
435 		memcpy(addmask_key + skip, netmask + skip, mlen - skip);
436 	/*
437 	 * Trim trailing zeroes.
438 	 */
439 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
440 		cp--;
441 	mlen = cp - addmask_key;
442 	if (mlen <= skip)
443 		return (mask_rnhead->rnh_nodes);
444 	memset(addmask_key + m0, 0, max_keylen - m0);
445 	SALEN(addmask_key) = mlen;
446 	tm = rn_search(addmask_key, mask_rnhead->rnh_treetop);
447 	if (memcmp(addmask_key, tm->rn_key, mlen) != 0)
448 		tm = NULL;
449 	if (tm || search)
450 		return (tm);
451 	tm = malloc(max_keylen + 2 * sizeof(*tm), M_RTABLE, M_NOWAIT | M_ZERO);
452 	if (tm == NULL)
453 		return (0);
454 	saved_tm = tm;
455 	netmask = cp = (caddr_t)(tm + 2);
456 	memcpy(cp, addmask_key, mlen);
457 	tm = rn_insert(cp, mask_rnhead, &maskduplicated, tm);
458 	if (maskduplicated) {
459 		log(LOG_ERR, "%s: mask impossibly already in tree\n", __func__);
460 		free(saved_tm, M_RTABLE, max_keylen + 2 * sizeof(*saved_tm));
461 		return (tm);
462 	}
463 	/*
464 	 * Calculate index of mask, and check for normalcy.
465 	 */
466 	cplim = netmask + mlen;
467 	isnormal = 1;
468 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
469 		cp++;
470 	if (cp != cplim) {
471 		static const char normal_chars[] = {
472 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
473 		};
474 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
475 			b++;
476 		if (*cp != normal_chars[b] || cp != (cplim - 1))
477 			isnormal = 0;
478 	}
479 	b += (cp - netmask) << 3;
480 	tm->rn_b = -1 - b;
481 	if (isnormal)
482 		tm->rn_flags |= RNF_NORMAL;
483 	return (tm);
484 }
485 
486 /* rn_lexobetter: return a arbitrary ordering for non-contiguous masks */
487 static inline int
rn_lexobetter(void * m_arg,void * n_arg)488 rn_lexobetter(void *m_arg, void *n_arg)
489 {
490 	u_char *mp = m_arg, *np = n_arg;
491 
492 	/*
493 	 * Longer masks might not really be lexicographically better,
494 	 * but longer masks always have precedence since they must be checked
495 	 * first. The netmasks were normalized before calling this function and
496 	 * don't have unneeded trailing zeros.
497 	 */
498 	if (SALEN(mp) > SALEN(np))
499 		return 1;
500 	if (SALEN(mp) < SALEN(np))
501 		return 0;
502 	/*
503 	 * Must return the first difference between the masks
504 	 * to ensure deterministic sorting.
505 	 */
506 	return (memcmp(mp, np, *mp) > 0);
507 }
508 
509 static inline struct radix_mask *
rn_new_radix_mask(struct radix_node * tt,struct radix_mask * next)510 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
511 {
512 	struct radix_mask *m;
513 
514 	m = pool_get(&rtmask_pool, PR_NOWAIT | PR_ZERO);
515 	if (m == NULL) {
516 		log(LOG_ERR, "Mask for route not entered\n");
517 		return (0);
518 	}
519 	m->rm_b = tt->rn_b;
520 	m->rm_flags = tt->rn_flags;
521 	if (tt->rn_flags & RNF_NORMAL)
522 		m->rm_leaf = tt;
523 	else
524 		m->rm_mask = tt->rn_mask;
525 	m->rm_mklist = next;
526 	tt->rn_mklist = m;
527 	return m;
528 }
529 
530 /*
531  * Find the point where the rn_mklist needs to be changed.
532  */
533 static inline struct radix_node *
rn_lift_node(struct radix_node * t)534 rn_lift_node(struct radix_node *t)
535 {
536 	struct radix_node *x = t;
537 	int b = -1 - t->rn_b;
538 
539 	/* rewind possible dupedkey list to head */
540 	while (t->rn_b < 0)
541 		t = t->rn_p;
542 
543 	/* can't lift node above head of dupedkey list, give up */
544 	if (b > t->rn_b)
545 		return (NULL);
546 
547 	do {
548 		x = t;
549 		t = t->rn_p;
550 	} while (b <= t->rn_b && x != t);
551 
552 	return (x);
553 }
554 
555 void
rn_add_radix_mask(struct radix_node * tt,int keyduplicated)556 rn_add_radix_mask(struct radix_node *tt, int keyduplicated)
557 {
558 	caddr_t netmask, mmask;
559 	struct radix_node *x;
560 	struct radix_mask *m, **mp;
561 	int b_leaf = tt->rn_b;
562 
563 	/* Add new route to highest possible ancestor's list */
564 	if (tt->rn_mask == NULL)
565 		return; /* can't lift at all */
566 	x = rn_lift_node(tt);
567 	if (x == NULL)
568 		return; /* didn't lift either */
569 
570 	/*
571 	 * Search through routes associated with node to
572 	 * insert new route according to index.
573 	 * Need same criteria as when sorting dupedkeys to avoid
574 	 * double loop on deletion.
575 	 */
576 	netmask = tt->rn_mask;
577 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
578 		if (m->rm_b < b_leaf)
579 			continue;
580 		if (m->rm_b > b_leaf)
581 			break;
582 		if (m->rm_flags & RNF_NORMAL) {
583 			if (keyduplicated) {
584 				if (m->rm_leaf->rn_p == tt)
585 					/* new route is better */
586 					m->rm_leaf = tt;
587 #ifdef DIAGNOSTIC
588 				else {
589 					struct radix_node *t;
590 
591 					for (t = m->rm_leaf;
592 					    t && t->rn_mklist == m;
593 					    t = t->rn_dupedkey)
594 						if (t == tt)
595 							break;
596 					if (t == NULL) {
597 						log(LOG_ERR, "Non-unique "
598 						    "normal route on dupedkey, "
599 						    "mask not entered\n");
600 						return;
601 					}
602 				}
603 #endif
604 				m->rm_refs++;
605 				tt->rn_mklist = m;
606 				return;
607 			} else if (tt->rn_flags & RNF_NORMAL) {
608 				log(LOG_ERR, "Non-unique normal route,"
609 				    " mask not entered\n");
610 				return;
611 			}
612 			mmask = m->rm_leaf->rn_mask;
613 		} else
614 			mmask = m->rm_mask;
615 		if (mmask == netmask) {
616 			m->rm_refs++;
617 			tt->rn_mklist = m;
618 			return;
619 		}
620 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
621 			break;
622 	}
623 	*mp = rn_new_radix_mask(tt, *mp);
624 }
625 
626 int
rn_add_dupedkey(struct radix_node * saved_tt,struct radix_node_head * head,struct radix_node * tt,u_int8_t prio)627 rn_add_dupedkey(struct radix_node *saved_tt, struct radix_node_head *head,
628     struct radix_node *tt, u_int8_t prio)
629 {
630 	caddr_t netmask = tt->rn_mask;
631 	struct radix_node *x = saved_tt, *xp;
632 	int before = -1;
633 	int b_leaf = 0;
634 
635 	if (netmask)
636 		b_leaf = tt->rn_b;
637 
638 	for (xp = x; x; xp = x, x = x->rn_dupedkey) {
639 		if (x->rn_mask == netmask)
640 			return (-1);
641 		if (netmask == NULL ||
642 		    (x->rn_mask &&
643 		     ((b_leaf < x->rn_b) || /* index(netmask) > node */
644 		       rn_refines(netmask, x->rn_mask) ||
645 		       rn_lexobetter(netmask, x->rn_mask))))
646 			break;
647 	}
648 	/*
649 	 * If the mask is not duplicated, we wouldn't
650 	 * find it among possible duplicate key entries
651 	 * anyway, so the above test doesn't hurt.
652 	 *
653 	 * We sort the masks for a duplicated key the same way as
654 	 * in a masklist -- most specific to least specific.
655 	 * This may require the unfortunate nuisance of relocating
656 	 * the head of the list.
657 	 *
658 	 * We also reverse, or doubly link the list through the
659 	 * parent pointer.
660 	 */
661 
662 	if ((x == saved_tt && before) || before == 1)
663 		before = 1;
664 	else
665 		before = 0;
666 	rn_link_dupedkey(tt, xp, before);
667 
668 	return (0);
669 }
670 
671 /*
672  * Insert tt after x or in place of x if before is true.
673  */
674 void
rn_link_dupedkey(struct radix_node * tt,struct radix_node * x,int before)675 rn_link_dupedkey(struct radix_node *tt, struct radix_node *x, int before)
676 {
677 	if (before) {
678 		if (x->rn_p->rn_b > 0) {
679 			/* link in at head of list */
680 			tt->rn_dupedkey = x;
681 			tt->rn_flags = x->rn_flags;
682 			tt->rn_p = x->rn_p;
683 			x->rn_p = tt;
684 			if (tt->rn_p->rn_l == x)
685 				tt->rn_p->rn_l = tt;
686 			else
687 				tt->rn_p->rn_r = tt;
688 		} else {
689 			tt->rn_dupedkey = x;
690 			x->rn_p->rn_dupedkey = tt;
691 			tt->rn_p = x->rn_p;
692 			x->rn_p = tt;
693 		}
694 	} else {
695 		tt->rn_dupedkey = x->rn_dupedkey;
696 		x->rn_dupedkey = tt;
697 		tt->rn_p = x;
698 		if (tt->rn_dupedkey)
699 			tt->rn_dupedkey->rn_p = tt;
700 	}
701 }
702 
703 /*
704  * This function ensures that routes are properly promoted upwards.
705  * It adjusts the rn_mklist of the parent node to make sure overlapping
706  * routes can be found.
707  *
708  * There are two cases:
709  * - leaf nodes with possible rn_dupedkey list
710  * - internal nodes with maybe their own mklist
711  * If the mask of the route is bigger than the current branch bit then
712  * a rn_mklist entry needs to be made.
713  */
714 void
rn_fixup_nodes(struct radix_node * tt)715 rn_fixup_nodes(struct radix_node *tt)
716 {
717 	struct radix_node *tp, *x;
718 	struct radix_mask *m, **mp;
719 	int b_leaf;
720 
721 	tp = tt->rn_p;
722 	if (tp->rn_r == tt)
723 		x = tp->rn_l;
724 	else
725 		x = tp->rn_r;
726 
727 	b_leaf = -1 - tp->rn_b;
728 	if (x->rn_b < 0) {	/* x is a leaf node */
729 		struct	radix_node *xx = NULL;
730 
731 		for (mp = &tp->rn_mklist; x; xx = x, x = x->rn_dupedkey) {
732 			if (xx && xx->rn_mklist && xx->rn_mask == x->rn_mask &&
733 			    x->rn_mklist == 0) {
734 				/* multipath route */
735 				x->rn_mklist = xx->rn_mklist;
736 				x->rn_mklist->rm_refs++;
737 			}
738 			if (x->rn_mask && (x->rn_b >= b_leaf) &&
739 			    x->rn_mklist == 0) {
740 				*mp = m = rn_new_radix_mask(x, 0);
741 				if (m)
742 					mp = &m->rm_mklist;
743 			}
744 		}
745 	} else if (x->rn_mklist) {	/* x is an internal node */
746 		/*
747 		 * Skip over masks whose index is > that of new node
748 		 */
749 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
750 			if (m->rm_b >= b_leaf)
751 				break;
752 		tp->rn_mklist = m;
753 		*mp = 0;
754 	}
755 }
756 
757 struct radix_node *
rn_addroute(void * v_arg,void * n_arg,struct radix_node_head * head,struct radix_node treenodes[2],u_int8_t prio)758 rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
759     struct radix_node treenodes[2], u_int8_t prio)
760 {
761 	caddr_t v = v_arg;
762 	struct radix_node *top = head->rnh_treetop;
763 	struct radix_node *tt, *saved_tt, *tm = NULL;
764 	int keyduplicated;
765 
766 	/*
767 	 * In dealing with non-contiguous masks, there may be
768 	 * many different routes which have the same mask.
769 	 * We will find it useful to have a unique pointer to
770 	 * the mask to speed avoiding duplicate references at
771 	 * nodes and possibly save time in calculating indices.
772 	 */
773 	if (n_arg)  {
774 		if ((tm = rn_addmask(n_arg, 0, top->rn_off)) == 0)
775 			return (0);
776 	}
777 
778 	tt = rn_insert(v, head, &keyduplicated, treenodes);
779 
780 	if (keyduplicated) {
781 		saved_tt = tt;
782 		tt = treenodes;
783 
784 		tt->rn_key = v_arg;
785 		tt->rn_b = -1;
786 		tt->rn_flags = RNF_ACTIVE;
787 	}
788 
789 	/* Put mask into the node. */
790 	if (tm) {
791 		tt->rn_mask = tm->rn_key;
792 		tt->rn_b = tm->rn_b;
793 		tt->rn_flags |= tm->rn_flags & RNF_NORMAL;
794 	}
795 
796 	/* Either insert into dupedkey list or as a leaf node.  */
797 	if (keyduplicated) {
798 		if (rn_add_dupedkey(saved_tt, head, tt, prio))
799 			return (NULL);
800 	} else {
801 		rn_fixup_nodes(tt);
802 	}
803 
804 	/* finally insert a radix_mask element if needed */
805 	rn_add_radix_mask(tt, keyduplicated);
806 	return (tt);
807 }
808 
809 /*
810  * Cleanup mask list, tt points to route that needs to be cleaned
811  */
812 int
rn_del_radix_mask(struct radix_node * tt)813 rn_del_radix_mask(struct radix_node *tt)
814 {
815 	struct radix_node *x;
816 	struct radix_mask *m, *saved_m, **mp;
817 
818 	/*
819 	 * Cleanup mask list from possible references to this route.
820 	 */
821 	saved_m = m = tt->rn_mklist;
822 	if (tt->rn_mask == NULL || m == NULL)
823 		return (0);
824 
825 	if (tt->rn_flags & RNF_NORMAL) {
826 		if (m->rm_leaf != tt && m->rm_refs == 0) {
827 			log(LOG_ERR, "rn_delete: inconsistent normal "
828 			    "annotation\n");
829 			return (-1);
830 		}
831 		if (m->rm_leaf != tt) {
832 			if (--m->rm_refs >= 0)
833 				return (0);
834 			else
835 				log(LOG_ERR, "rn_delete: "
836 				    "inconsistent mklist refcount\n");
837 		}
838 		/*
839 		 * If we end up here tt should be m->rm_leaf and therefore
840 		 * tt should be the head of a multipath chain.
841 		 * If this is not the case the table is no longer consistent.
842 		 */
843 		if (m->rm_refs > 0) {
844 			if (tt->rn_dupedkey == NULL ||
845 			    tt->rn_dupedkey->rn_mklist != m) {
846 				log(LOG_ERR, "rn_delete: inconsistent "
847 				    "dupedkey list\n");
848 				return (-1);
849 			}
850 			m->rm_leaf = tt->rn_dupedkey;
851 			--m->rm_refs;
852 			return (0);
853 		}
854 		/* else tt is last and only route */
855 	} else {
856 		if (m->rm_mask != tt->rn_mask) {
857 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
858 			return (0);
859 		}
860 		if (--m->rm_refs >= 0)
861 			return (0);
862 	}
863 
864 	/*
865 	 * No other references hold to the radix_mask remove it from
866 	 * the tree.
867 	 */
868 	x = rn_lift_node(tt);
869 	if (x == NULL)
870 		return (0);	/* Wasn't lifted at all */
871 
872 	/* Finally eliminate the radix_mask from the tree */
873 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
874 		if (m == saved_m) {
875 			*mp = m->rm_mklist;
876 			pool_put(&rtmask_pool, m);
877 			break;
878 		}
879 
880 	if (m == NULL) {
881 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
882 		if (tt->rn_flags & RNF_NORMAL)
883 			return (-1); /* Dangling ref to us */
884 	}
885 
886 	return (0);
887 }
888 
889 /* swap two internal nodes and fixup the parent and child pointers */
890 static inline void
rn_swap_nodes(struct radix_node * from,struct radix_node * to)891 rn_swap_nodes(struct radix_node *from, struct radix_node *to)
892 {
893 	*to = *from;
894 	if (from->rn_p->rn_l == from)
895 		from->rn_p->rn_l = to;
896 	else
897 		from->rn_p->rn_r = to;
898 
899 	to->rn_l->rn_p = to;
900 	to->rn_r->rn_p = to;
901 }
902 
903 struct radix_node *
rn_delete(void * v_arg,void * n_arg,struct radix_node_head * head,struct radix_node * rn)904 rn_delete(void *v_arg, void *n_arg, struct radix_node_head *head,
905     struct radix_node *rn)
906 {
907 	caddr_t v = v_arg;
908 	caddr_t netmask = n_arg;
909 	struct radix_node *top = head->rnh_treetop;
910 	struct radix_node *tt, *tp, *pp, *x;
911 	struct radix_node *dupedkey_tt, *saved_tt;
912 	int off = top->rn_off;
913 	int vlen;
914 
915 	vlen = SALEN(v);
916 
917 	/*
918 	 * Implement a lookup similar to rn_lookup but we need to save
919 	 * the radix leaf node (where th rn_dupedkey list starts) so
920 	 * it is not possible to use rn_lookup.
921 	 */
922 	tt = rn_search(v, top);
923 	/* make sure the key is a perfect match */
924 	if (memcmp(v + off, tt->rn_key + off, vlen - off))
925 		return (NULL);
926 
927 	/*
928 	 * Here, tt is the deletion target, and
929 	 * saved_tt is the head of the dupedkey chain.
930 	 * dupedkey_tt will point to the start of the multipath chain.
931 	 */
932 	saved_tt = tt;
933 
934 	/*
935 	 * make tt point to the start of the rn_dupedkey list of multipath
936 	 * routes.
937 	 */
938 	if (netmask) {
939 		struct radix_node *tm;
940 
941 		if ((tm = rn_addmask(netmask, 1, off)) == NULL)
942 			return (NULL);
943 		netmask = tm->rn_key;
944 		while (tt->rn_mask != netmask)
945 			if ((tt = tt->rn_dupedkey) == NULL)
946 				return (NULL);
947 	}
948 
949 	/* save start of multi path chain for later use */
950 	dupedkey_tt = tt;
951 
952 	KASSERT((tt->rn_flags & RNF_ROOT) == 0);
953 
954 	/* remove possible radix_mask */
955 	if (rn_del_radix_mask(tt))
956 		return (NULL);
957 
958 	/*
959 	 * Finally eliminate us from tree
960 	 */
961 	tp = tt->rn_p;
962 	if (saved_tt->rn_dupedkey) {
963 		if (tt == saved_tt) {
964 			x = saved_tt->rn_dupedkey;
965 			x->rn_p = tp;
966 			if (tp->rn_l == tt)
967 				tp->rn_l = x;
968 			else
969 				tp->rn_r = x;
970 			/* head changed adjust dupedkey pointer */
971 			dupedkey_tt = x;
972 		} else {
973 			x = saved_tt;
974 			/* dupedkey will change so adjust pointer */
975 			if (dupedkey_tt == tt)
976 				dupedkey_tt = tt->rn_dupedkey;
977 			tp->rn_dupedkey = tt->rn_dupedkey;
978 			if (tt->rn_dupedkey)
979 				tt->rn_dupedkey->rn_p = tp;
980 		}
981 
982 		/*
983 		 * We may be holding an active internal node in the tree.
984 		 */
985 		if  (tt[1].rn_flags & RNF_ACTIVE)
986 			rn_swap_nodes(&tt[1], &x[1]);
987 
988 		/* over and out */
989 		goto out;
990 	}
991 
992 	/* non-rn_dupedkey case, remove tt and tp node from the tree */
993 	if (tp->rn_l == tt)
994 		x = tp->rn_r;
995 	else
996 		x = tp->rn_l;
997 	pp = tp->rn_p;
998 	if (pp->rn_r == tp)
999 		pp->rn_r = x;
1000 	else
1001 		pp->rn_l = x;
1002 	x->rn_p = pp;
1003 
1004 	/*
1005 	 * Demote routes attached to us (actually on the internal parent node).
1006 	 */
1007 	if (tp->rn_mklist) {
1008 		struct radix_mask *m, **mp;
1009 		if (x->rn_b >= 0) {
1010 			for (mp = &x->rn_mklist; (m = *mp);)
1011 				mp = &m->rm_mklist;
1012 			*mp = tp->rn_mklist;
1013 		} else {
1014 			/* If there are any key,mask pairs in a sibling
1015 			   duped-key chain, some subset will appear sorted
1016 			   in the same order attached to our mklist */
1017 			for (m = tp->rn_mklist; m && x; x = x->rn_dupedkey)
1018 				if (m == x->rn_mklist) {
1019 					struct radix_mask *mm = m->rm_mklist;
1020 					x->rn_mklist = 0;
1021 					if (--(m->rm_refs) < 0)
1022 						pool_put(&rtmask_pool, m);
1023 					else if (m->rm_flags & RNF_NORMAL)
1024 						/*
1025 						 * don't progress because this
1026 						 * a multipath route. Next
1027 						 * route will use the same m.
1028 						 */
1029 						mm = m;
1030 					m = mm;
1031 				}
1032 			if (m)
1033 				log(LOG_ERR, "%s %p at %p\n",
1034 				    "rn_delete: Orphaned Mask", m, x);
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * We may be holding an active internal node in the tree.
1040 	 * If so swap our internal node (t) with the parent node (tp)
1041 	 * since that one was just removed from the tree.
1042 	 */
1043 	if (tp != &tt[1])
1044 		rn_swap_nodes(&tt[1], tp);
1045 
1046 	/* no rn_dupedkey list so no need to fixup multipath chains */
1047 out:
1048 	tt[0].rn_flags &= ~RNF_ACTIVE;
1049 	tt[1].rn_flags &= ~RNF_ACTIVE;
1050 	return (tt);
1051 }
1052 
1053 int
rn_walktree(struct radix_node_head * h,int (* f)(struct radix_node *,void *,u_int),void * w)1054 rn_walktree(struct radix_node_head *h, int (*f)(struct radix_node *, void *,
1055     u_int), void *w)
1056 {
1057 	int error;
1058 	struct radix_node *base, *next;
1059 	struct radix_node *rn = h->rnh_treetop;
1060 
1061 	/*
1062 	 * This gets complicated because we may delete the node
1063 	 * while applying the function f to it, so we need to calculate
1064 	 * the successor node in advance.
1065 	 */
1066 	/* First time through node, go left */
1067 	while (rn->rn_b >= 0)
1068 		rn = rn->rn_l;
1069 	for (;;) {
1070 		base = rn;
1071 		/* If at right child go back up, otherwise, go right */
1072 		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
1073 			rn = rn->rn_p;
1074 		/* Find the next *leaf* since next node might vanish, too */
1075 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
1076 			rn = rn->rn_l;
1077 		next = rn;
1078 		/* Process leaves */
1079 		while ((rn = base) != NULL) {
1080 			base = rn->rn_dupedkey;
1081 			if (!(rn->rn_flags & RNF_ROOT) &&
1082 			    (error = (*f)(rn, w, h->rnh_rtableid)))
1083 				return (error);
1084 		}
1085 		rn = next;
1086 		if (rn->rn_flags & RNF_ROOT)
1087 			return (0);
1088 	}
1089 	/* NOTREACHED */
1090 }
1091 
1092 int
rn_initmask(void)1093 rn_initmask(void)
1094 {
1095 	if (mask_rnhead != NULL)
1096 		return (0);
1097 
1098 	KASSERT(max_keylen > 0);
1099 
1100 	mask_rnhead = malloc(sizeof(*mask_rnhead), M_RTABLE, M_NOWAIT);
1101 	if (mask_rnhead == NULL)
1102 		return (1);
1103 
1104 	rn_inithead0(mask_rnhead, 0);
1105 	return (0);
1106 }
1107 
1108 int
rn_inithead(void ** head,int off)1109 rn_inithead(void **head, int off)
1110 {
1111 	struct radix_node_head *rnh;
1112 
1113 	if (*head != NULL)
1114 		return (1);
1115 
1116 	if (rn_initmask())
1117 		panic("failed to initialize the mask tree");
1118 
1119 	rnh = malloc(sizeof(*rnh), M_RTABLE, M_NOWAIT);
1120 	if (rnh == NULL)
1121 		return (0);
1122 	*head = rnh;
1123 	rn_inithead0(rnh, off);
1124 	return (1);
1125 }
1126 
1127 int
rn_inithead0(struct radix_node_head * rnh,int offset)1128 rn_inithead0(struct radix_node_head *rnh, int offset)
1129 {
1130 	struct radix_node *t, *tt, *ttt;
1131 	int off = offset * NBBY;
1132 
1133 	memset(rnh, 0, sizeof(*rnh));
1134 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1135 	ttt = rnh->rnh_nodes + 2;
1136 	t->rn_r = ttt;
1137 	t->rn_p = t;
1138 	tt = t->rn_l;
1139 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1140 	tt->rn_b = -1 - off;
1141 	*ttt = *tt;
1142 	ttt->rn_key = rn_ones;
1143 	rnh->rnh_treetop = t;
1144 	return (1);
1145 }
1146 
1147 /*
1148  * rn_init() can be called multiple time with a different key length
1149  * as long as no radix tree head has been allocated.
1150  */
1151 void
rn_init(unsigned int keylen)1152 rn_init(unsigned int keylen)
1153 {
1154 	char *cp, *cplim;
1155 
1156 	KASSERT(keylen <= KEYLEN_LIMIT);
1157 
1158 	if (max_keylen == 0) {
1159 		pool_init(&rtmask_pool, sizeof(struct radix_mask), 0,
1160 		    IPL_SOFTNET, 0, "rtmask", NULL);
1161 	}
1162 
1163 	if (keylen <= max_keylen)
1164 		return;
1165 
1166 	KASSERT(mask_rnhead == NULL);
1167 
1168 	free(rn_zeros, M_RTABLE, 2 * max_keylen);
1169 	rn_zeros = mallocarray(2, keylen, M_RTABLE, M_NOWAIT | M_ZERO);
1170 	if (rn_zeros == NULL)
1171 		panic("cannot initialize a radix tree without memory");
1172 	max_keylen = keylen;
1173 
1174 	cp = rn_ones = rn_zeros + max_keylen;
1175 	cplim = rn_ones + max_keylen;
1176 	while (cp < cplim)
1177 		*cp++ = -1;
1178 }
1179