xref: /netbsd/sys/netinet6/ip6_output.c (revision fc7ed244)
1 /*	$NetBSD: ip6_output.c,v 1.233 2023/03/20 09:15:52 ozaki-r Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.233 2023/03/20 09:15:52 ozaki-r Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83 
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87 
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102 
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #endif
108 
109 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
110 
111 struct ip6_exthdrs {
112 	struct mbuf *ip6e_ip6;
113 	struct mbuf *ip6e_hbh;
114 	struct mbuf *ip6e_dest1;
115 	struct mbuf *ip6e_rthdr;
116 	struct mbuf *ip6e_dest2;
117 };
118 
119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
120 	kauth_cred_t, int);
121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
123 	int, int, int);
124 static int ip6_setmoptions(const struct sockopt *, struct inpcb *);
125 static int ip6_getmoptions(struct sockopt *, struct inpcb *);
126 static int ip6_copyexthdr(struct mbuf **, void *, int);
127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
128 	struct ip6_frag **);
129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
135 
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139 
140 static int
ip6_handle_rthdr(struct ip6_rthdr * rh,struct ip6_hdr * ip6)141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
142 {
143 	int error = 0;
144 
145 	switch (rh->ip6r_type) {
146 	case IPV6_RTHDR_TYPE_0:
147 		/* Dropped, RFC5095. */
148 	default:	/* is it possible? */
149 		error = EINVAL;
150 	}
151 
152 	return error;
153 }
154 
155 /*
156  * Send an IP packet to a host.
157  */
158 int
ip6_if_output(struct ifnet * const ifp,struct ifnet * const origifp,struct mbuf * const m,const struct sockaddr_in6 * const dst,const struct rtentry * rt)159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
160     struct mbuf * const m, const struct sockaddr_in6 * const dst,
161     const struct rtentry *rt)
162 {
163 	int error = 0;
164 
165 	if (rt != NULL) {
166 		error = rt_check_reject_route(rt, ifp);
167 		if (error != 0) {
168 			IP6_STATINC(IP6_STAT_RTREJECT);
169 			m_freem(m);
170 			return error;
171 		}
172 	}
173 
174 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
175 		error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
176 	else
177 		error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
178 	return error;
179 }
180 
181 /*
182  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
183  * header (with pri, len, nxt, hlim, src, dst).
184  *
185  * This function may modify ver and hlim only. The mbuf chain containing the
186  * packet will be freed. The mbuf opt, if present, will not be freed.
187  *
188  * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
189  * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
190  * which is rt_rmx.rmx_mtu.
191  */
192 int
ip6_output(struct mbuf * m0,struct ip6_pktopts * opt,struct route * ro,int flags,struct ip6_moptions * im6o,struct inpcb * inp,struct ifnet ** ifpp)193 ip6_output(
194     struct mbuf *m0,
195     struct ip6_pktopts *opt,
196     struct route *ro,
197     int flags,
198     struct ip6_moptions *im6o,
199     struct inpcb *inp,
200     struct ifnet **ifpp		/* XXX: just for statistics */
201 )
202 {
203 	struct ip6_hdr *ip6, *mhip6;
204 	struct ifnet *ifp = NULL, *origifp = NULL;
205 	struct mbuf *m = m0;
206 	int tlen, len, off;
207 	bool tso;
208 	struct route ip6route;
209 	struct rtentry *rt = NULL, *rt_pmtu;
210 	const struct sockaddr_in6 *dst;
211 	struct sockaddr_in6 src_sa, dst_sa;
212 	int error = 0;
213 	struct in6_ifaddr *ia = NULL;
214 	u_long mtu;
215 	int alwaysfrag, dontfrag;
216 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
217 	struct ip6_exthdrs exthdrs;
218 	struct in6_addr finaldst, src0, dst0;
219 	u_int32_t zone;
220 	struct route *ro_pmtu = NULL;
221 	int hdrsplit = 0;
222 	int needipsec = 0;
223 #ifdef IPSEC
224 	struct secpolicy *sp = NULL;
225 #endif
226 	struct psref psref, psref_ia;
227 	int bound = curlwp_bind();
228 	bool release_psref_ia = false;
229 
230 #ifdef DIAGNOSTIC
231 	if ((m->m_flags & M_PKTHDR) == 0)
232 		panic("ip6_output: no HDR");
233 	if ((m->m_pkthdr.csum_flags &
234 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
235 		panic("ip6_output: IPv4 checksum offload flags: %d",
236 		    m->m_pkthdr.csum_flags);
237 	}
238 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
239 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
240 		panic("ip6_output: conflicting checksum offload flags: %d",
241 		    m->m_pkthdr.csum_flags);
242 	}
243 #endif
244 
245 	M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
246 
247 #define MAKE_EXTHDR(hp, mp)						\
248     do {								\
249 	if (hp) {							\
250 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
251 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
252 		    ((eh)->ip6e_len + 1) << 3);				\
253 		if (error)						\
254 			goto freehdrs;					\
255 	}								\
256     } while (/*CONSTCOND*/ 0)
257 
258 	memset(&exthdrs, 0, sizeof(exthdrs));
259 	if (opt) {
260 		/* Hop-by-Hop options header */
261 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
262 		/* Destination options header (1st part) */
263 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
264 		/* Routing header */
265 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
266 		/* Destination options header (2nd part) */
267 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
268 	}
269 
270 	/*
271 	 * Calculate the total length of the extension header chain.
272 	 * Keep the length of the unfragmentable part for fragmentation.
273 	 */
274 	optlen = 0;
275 	if (exthdrs.ip6e_hbh)
276 		optlen += exthdrs.ip6e_hbh->m_len;
277 	if (exthdrs.ip6e_dest1)
278 		optlen += exthdrs.ip6e_dest1->m_len;
279 	if (exthdrs.ip6e_rthdr)
280 		optlen += exthdrs.ip6e_rthdr->m_len;
281 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
282 	/* NOTE: we don't add AH/ESP length here. do that later. */
283 	if (exthdrs.ip6e_dest2)
284 		optlen += exthdrs.ip6e_dest2->m_len;
285 
286 #ifdef IPSEC
287 	if (ipsec_used) {
288 		/* Check the security policy (SP) for the packet */
289 		sp = ipsec6_check_policy(m, inp, flags, &needipsec, &error);
290 		if (error != 0) {
291 			/*
292 			 * Hack: -EINVAL is used to signal that a packet
293 			 * should be silently discarded.  This is typically
294 			 * because we asked key management for an SA and
295 			 * it was delayed (e.g. kicked up to IKE).
296 			 */
297 			if (error == -EINVAL)
298 				error = 0;
299 			IP6_STATINC(IP6_STAT_IPSECDROP_OUT);
300 			goto freehdrs;
301 		}
302 	}
303 #endif
304 
305 	if (needipsec &&
306 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
307 		in6_undefer_cksum_tcpudp(m);
308 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
309 	}
310 
311 	/*
312 	 * If we need IPsec, or there is at least one extension header,
313 	 * separate IP6 header from the payload.
314 	 */
315 	if ((needipsec || optlen) && !hdrsplit) {
316 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
317 			IP6_STATINC(IP6_STAT_ODROPPED);
318 			m = NULL;
319 			goto freehdrs;
320 		}
321 		m = exthdrs.ip6e_ip6;
322 		hdrsplit++;
323 	}
324 
325 	/* adjust pointer */
326 	ip6 = mtod(m, struct ip6_hdr *);
327 
328 	/* adjust mbuf packet header length */
329 	m->m_pkthdr.len += optlen;
330 	plen = m->m_pkthdr.len - sizeof(*ip6);
331 
332 	/* If this is a jumbo payload, insert a jumbo payload option. */
333 	if (plen > IPV6_MAXPACKET) {
334 		if (!hdrsplit) {
335 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
336 				IP6_STATINC(IP6_STAT_ODROPPED);
337 				m = NULL;
338 				goto freehdrs;
339 			}
340 			m = exthdrs.ip6e_ip6;
341 			hdrsplit++;
342 		}
343 		/* adjust pointer */
344 		ip6 = mtod(m, struct ip6_hdr *);
345 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) {
346 			IP6_STATINC(IP6_STAT_ODROPPED);
347 			goto freehdrs;
348 		}
349 		optlen += 8; /* XXX JUMBOOPTLEN */
350 		ip6->ip6_plen = 0;
351 	} else
352 		ip6->ip6_plen = htons(plen);
353 
354 	/*
355 	 * Concatenate headers and fill in next header fields.
356 	 * Here we have, on "m"
357 	 *	IPv6 payload
358 	 * and we insert headers accordingly.  Finally, we should be getting:
359 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
360 	 *
361 	 * during the header composing process, "m" points to IPv6 header.
362 	 * "mprev" points to an extension header prior to esp.
363 	 */
364 	{
365 		u_char *nexthdrp = &ip6->ip6_nxt;
366 		struct mbuf *mprev = m;
367 
368 		/*
369 		 * we treat dest2 specially.  this makes IPsec processing
370 		 * much easier.  the goal here is to make mprev point the
371 		 * mbuf prior to dest2.
372 		 *
373 		 * result: IPv6 dest2 payload
374 		 * m and mprev will point to IPv6 header.
375 		 */
376 		if (exthdrs.ip6e_dest2) {
377 			if (!hdrsplit)
378 				panic("assumption failed: hdr not split");
379 			exthdrs.ip6e_dest2->m_next = m->m_next;
380 			m->m_next = exthdrs.ip6e_dest2;
381 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
382 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
383 		}
384 
385 #define MAKE_CHAIN(m, mp, p, i)\
386     do {\
387 	if (m) {\
388 		if (!hdrsplit) \
389 			panic("assumption failed: hdr not split"); \
390 		*mtod((m), u_char *) = *(p);\
391 		*(p) = (i);\
392 		p = mtod((m), u_char *);\
393 		(m)->m_next = (mp)->m_next;\
394 		(mp)->m_next = (m);\
395 		(mp) = (m);\
396 	}\
397     } while (/*CONSTCOND*/ 0)
398 		/*
399 		 * result: IPv6 hbh dest1 rthdr dest2 payload
400 		 * m will point to IPv6 header.  mprev will point to the
401 		 * extension header prior to dest2 (rthdr in the above case).
402 		 */
403 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
404 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
405 		    IPPROTO_DSTOPTS);
406 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
407 		    IPPROTO_ROUTING);
408 
409 		M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
410 		    sizeof(struct ip6_hdr) + optlen);
411 	}
412 
413 	/* Need to save for pmtu */
414 	finaldst = ip6->ip6_dst;
415 
416 	/*
417 	 * If there is a routing header, replace destination address field
418 	 * with the first hop of the routing header.
419 	 */
420 	if (exthdrs.ip6e_rthdr) {
421 		struct ip6_rthdr *rh;
422 
423 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
424 
425 		error = ip6_handle_rthdr(rh, ip6);
426 		if (error != 0) {
427 			IP6_STATINC(IP6_STAT_ODROPPED);
428 			goto bad;
429 		}
430 	}
431 
432 	/* Source address validation */
433 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
434 	    (flags & IPV6_UNSPECSRC) == 0) {
435 		error = EOPNOTSUPP;
436 		IP6_STATINC(IP6_STAT_BADSCOPE);
437 		goto bad;
438 	}
439 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
440 		error = EOPNOTSUPP;
441 		IP6_STATINC(IP6_STAT_BADSCOPE);
442 		goto bad;
443 	}
444 
445 	IP6_STATINC(IP6_STAT_LOCALOUT);
446 
447 	/*
448 	 * Route packet.
449 	 */
450 	/* initialize cached route */
451 	if (ro == NULL) {
452 		memset(&ip6route, 0, sizeof(ip6route));
453 		ro = &ip6route;
454 	}
455 	ro_pmtu = ro;
456 	if (opt && opt->ip6po_rthdr)
457 		ro = &opt->ip6po_route;
458 
459 	/*
460 	 * if specified, try to fill in the traffic class field.
461 	 * do not override if a non-zero value is already set.
462 	 * we check the diffserv field and the ecn field separately.
463 	 */
464 	if (opt && opt->ip6po_tclass >= 0) {
465 		int mask = 0;
466 
467 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
468 			mask |= 0xfc;
469 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
470 			mask |= 0x03;
471 		if (mask != 0)
472 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
473 	}
474 
475 	/* fill in or override the hop limit field, if necessary. */
476 	if (opt && opt->ip6po_hlim != -1)
477 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
478 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
479 		if (im6o != NULL)
480 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
481 		else
482 			ip6->ip6_hlim = ip6_defmcasthlim;
483 	}
484 
485 #ifdef IPSEC
486 	if (needipsec) {
487 		error = ipsec6_process_packet(m, sp->req, flags);
488 
489 		/*
490 		 * Preserve KAME behaviour: ENOENT can be returned
491 		 * when an SA acquire is in progress.  Don't propagate
492 		 * this to user-level; it confuses applications.
493 		 * XXX this will go away when the SADB is redone.
494 		 */
495 		if (error == ENOENT)
496 			error = 0;
497 
498 		goto done;
499 	}
500 #endif
501 
502 	/* adjust pointer */
503 	ip6 = mtod(m, struct ip6_hdr *);
504 
505 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
506 
507 	/* We do not need a route for multicast */
508 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
509 		struct in6_pktinfo *pi = NULL;
510 
511 		/*
512 		 * If the outgoing interface for the address is specified by
513 		 * the caller, use it.
514 		 */
515 		if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
516 			/* XXX boundary check is assumed to be already done. */
517 			ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
518 		} else if (im6o != NULL) {
519 			ifp = if_get_byindex(im6o->im6o_multicast_if_index,
520 			    &psref);
521 		}
522 	}
523 
524 	if (ifp == NULL) {
525 		error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
526 		if (error != 0)
527 			goto bad;
528 		ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
529 	}
530 
531 	if (rt == NULL) {
532 		/*
533 		 * If in6_selectroute() does not return a route entry,
534 		 * dst may not have been updated.
535 		 */
536 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
537 		if (error) {
538 			IP6_STATINC(IP6_STAT_ODROPPED);
539 			goto bad;
540 		}
541 	}
542 
543 	/*
544 	 * then rt (for unicast) and ifp must be non-NULL valid values.
545 	 */
546 	if ((flags & IPV6_FORWARDING) == 0) {
547 		/* XXX: the FORWARDING flag can be set for mrouting. */
548 		in6_ifstat_inc(ifp, ifs6_out_request);
549 	}
550 	if (rt != NULL) {
551 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
552 		rt->rt_use++;
553 	}
554 
555 	/*
556 	 * The outgoing interface must be in the zone of source and
557 	 * destination addresses.  We should use ia_ifp to support the
558 	 * case of sending packets to an address of our own.
559 	 */
560 	if (ia != NULL) {
561 		origifp = ia->ia_ifp;
562 		if (if_is_deactivated(origifp)) {
563 			IP6_STATINC(IP6_STAT_ODROPPED);
564 			goto bad;
565 		}
566 		if_acquire(origifp, &psref_ia);
567 		release_psref_ia = true;
568 	} else
569 		origifp = ifp;
570 
571 	src0 = ip6->ip6_src;
572 	if (in6_setscope(&src0, origifp, &zone))
573 		goto badscope;
574 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
575 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
576 		goto badscope;
577 
578 	dst0 = ip6->ip6_dst;
579 	if (in6_setscope(&dst0, origifp, &zone))
580 		goto badscope;
581 	/* re-initialize to be sure */
582 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
583 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
584 		goto badscope;
585 
586 	/* scope check is done. */
587 
588 	/* Ensure we only send from a valid address. */
589 	if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
590 	    (flags & IPV6_FORWARDING) == 0 &&
591 	    (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
592 	{
593 		char ip6buf[INET6_ADDRSTRLEN];
594 		nd6log(LOG_ERR,
595 		    "refusing to send from invalid address %s (pid %d)\n",
596 		    IN6_PRINT(ip6buf, &src0), curproc->p_pid);
597 		IP6_STATINC(IP6_STAT_ODROPPED);
598 		in6_ifstat_inc(origifp, ifs6_out_discard);
599 		if (error == 1)
600 			/*
601 			 * Address exists, but is tentative or detached.
602 			 * We can't send from it because it's invalid,
603 			 * so we drop the packet.
604 			 */
605 			error = 0;
606 		else
607 			error = EADDRNOTAVAIL;
608 		goto bad;
609 	}
610 
611 	if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
612 	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
613 		dst = satocsin6(rt->rt_gateway);
614 	else
615 		dst = satocsin6(rtcache_getdst(ro));
616 
617 	/*
618 	 * XXXXXX: original code follows:
619 	 */
620 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
621 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
622 	else {
623 		bool ingroup;
624 
625 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
626 
627 		in6_ifstat_inc(ifp, ifs6_out_mcast);
628 
629 		/*
630 		 * Confirm that the outgoing interface supports multicast.
631 		 */
632 		if (!(ifp->if_flags & IFF_MULTICAST)) {
633 			IP6_STATINC(IP6_STAT_NOROUTE);
634 			in6_ifstat_inc(ifp, ifs6_out_discard);
635 			error = ENETUNREACH;
636 			goto bad;
637 		}
638 
639 		ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
640 		if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
641 			/*
642 			 * If we belong to the destination multicast group
643 			 * on the outgoing interface, and the caller did not
644 			 * forbid loopback, loop back a copy.
645 			 */
646 			KASSERT(dst != NULL);
647 			ip6_mloopback(ifp, m, dst);
648 		} else {
649 			/*
650 			 * If we are acting as a multicast router, perform
651 			 * multicast forwarding as if the packet had just
652 			 * arrived on the interface to which we are about
653 			 * to send.  The multicast forwarding function
654 			 * recursively calls this function, using the
655 			 * IPV6_FORWARDING flag to prevent infinite recursion.
656 			 *
657 			 * Multicasts that are looped back by ip6_mloopback(),
658 			 * above, will be forwarded by the ip6_input() routine,
659 			 * if necessary.
660 			 */
661 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
662 				if (ip6_mforward(ip6, ifp, m) != 0) {
663 					m_freem(m);
664 					goto done;
665 				}
666 			}
667 		}
668 		/*
669 		 * Multicasts with a hoplimit of zero may be looped back,
670 		 * above, but must not be transmitted on a network.
671 		 * Also, multicasts addressed to the loopback interface
672 		 * are not sent -- the above call to ip6_mloopback() will
673 		 * loop back a copy if this host actually belongs to the
674 		 * destination group on the loopback interface.
675 		 */
676 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
677 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
678 			m_freem(m);
679 			goto done;
680 		}
681 	}
682 
683 	/*
684 	 * Fill the outgoing interface to tell the upper layer
685 	 * to increment per-interface statistics.
686 	 */
687 	if (ifpp)
688 		*ifpp = ifp;
689 
690 	/* Determine path MTU. */
691 	/*
692 	 * ro_pmtu represent final destination while
693 	 * ro might represent immediate destination.
694 	 * Use ro_pmtu destination since MTU might differ.
695 	 */
696 	if (ro_pmtu != ro) {
697 		union {
698 			struct sockaddr		dst;
699 			struct sockaddr_in6	dst6;
700 		} u;
701 
702 		/* ro_pmtu may not have a cache */
703 		sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
704 		rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
705 	} else
706 		rt_pmtu = rt;
707 	error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
708 	if (rt_pmtu != NULL && rt_pmtu != rt)
709 		rtcache_unref(rt_pmtu, ro_pmtu);
710 	KASSERT(error == 0); /* ip6_getpmtu never fail if ifp is passed */
711 
712 	/*
713 	 * The caller of this function may specify to use the minimum MTU
714 	 * in some cases.
715 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
716 	 * setting.  The logic is a bit complicated; by default, unicast
717 	 * packets will follow path MTU while multicast packets will be sent at
718 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
719 	 * including unicast ones will be sent at the minimum MTU.  Multicast
720 	 * packets will always be sent at the minimum MTU unless
721 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
722 	 * See RFC 3542 for more details.
723 	 */
724 	if (mtu > IPV6_MMTU) {
725 		if ((flags & IPV6_MINMTU))
726 			mtu = IPV6_MMTU;
727 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
728 			mtu = IPV6_MMTU;
729 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
730 			 (opt == NULL ||
731 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
732 			mtu = IPV6_MMTU;
733 		}
734 	}
735 
736 	/*
737 	 * clear embedded scope identifiers if necessary.
738 	 * in6_clearscope will touch the addresses only when necessary.
739 	 */
740 	in6_clearscope(&ip6->ip6_src);
741 	in6_clearscope(&ip6->ip6_dst);
742 
743 	/*
744 	 * If the outgoing packet contains a hop-by-hop options header,
745 	 * it must be examined and processed even by the source node.
746 	 * (RFC 2460, section 4.)
747 	 *
748 	 * XXX Is this really necessary?
749 	 */
750 	if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
751 		u_int32_t dummy1; /* XXX unused */
752 		u_int32_t dummy2; /* XXX unused */
753 		int hoff = sizeof(struct ip6_hdr);
754 
755 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
756 			/* m was already freed at this point */
757 			error = EINVAL;
758 			goto done;
759 		}
760 
761 		ip6 = mtod(m, struct ip6_hdr *);
762 	}
763 
764 	/*
765 	 * Run through list of hooks for output packets.
766 	 */
767 	error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT);
768 	if (error != 0 || m == NULL) {
769 		IP6_STATINC(IP6_STAT_PFILDROP_OUT);
770 		goto done;
771 	}
772 	ip6 = mtod(m, struct ip6_hdr *);
773 
774 	/*
775 	 * Send the packet to the outgoing interface.
776 	 * If necessary, do IPv6 fragmentation before sending.
777 	 *
778 	 * the logic here is rather complex:
779 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
780 	 * 1-a:	send as is if tlen <= path mtu
781 	 * 1-b:	fragment if tlen > path mtu
782 	 *
783 	 * 2: if user asks us not to fragment (dontfrag == 1)
784 	 * 2-a:	send as is if tlen <= interface mtu
785 	 * 2-b:	error if tlen > interface mtu
786 	 *
787 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
788 	 *	always fragment
789 	 *
790 	 * 4: if dontfrag == 1 && alwaysfrag == 1
791 	 *	error, as we cannot handle this conflicting request
792 	 */
793 	tlen = m->m_pkthdr.len;
794 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
795 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
796 		dontfrag = 1;
797 	else
798 		dontfrag = 0;
799 
800 	if (dontfrag && alwaysfrag) {	/* case 4 */
801 		/* conflicting request - can't transmit */
802 		IP6_STATINC(IP6_STAT_CANTFRAG);
803 		error = EMSGSIZE;
804 		goto bad;
805 	}
806 	if (dontfrag && (!tso && tlen > ifp->if_mtu)) {	/* case 2-b */
807 		/*
808 		 * Even if the DONTFRAG option is specified, we cannot send the
809 		 * packet when the data length is larger than the MTU of the
810 		 * outgoing interface.
811 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
812 		 * well as returning an error code (the latter is not described
813 		 * in the API spec.)
814 		 */
815 		u_int32_t mtu32;
816 		struct ip6ctlparam ip6cp;
817 
818 		mtu32 = (u_int32_t)mtu;
819 		memset(&ip6cp, 0, sizeof(ip6cp));
820 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
821 		pfctlinput2(PRC_MSGSIZE,
822 		    rtcache_getdst(ro_pmtu), &ip6cp);
823 
824 		IP6_STATINC(IP6_STAT_CANTFRAG);
825 		error = EMSGSIZE;
826 		goto bad;
827 	}
828 
829 	/*
830 	 * transmit packet without fragmentation
831 	 */
832 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
833 		/* case 1-a and 2-a */
834 		struct in6_ifaddr *ia6;
835 		int sw_csum;
836 		int s;
837 
838 		ip6 = mtod(m, struct ip6_hdr *);
839 		s = pserialize_read_enter();
840 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
841 		if (ia6) {
842 			/* Record statistics for this interface address. */
843 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
844 		}
845 		pserialize_read_exit(s);
846 
847 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
848 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
849 			if (IN6_NEED_CHECKSUM(ifp,
850 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
851 				in6_undefer_cksum_tcpudp(m);
852 			}
853 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
854 		}
855 
856 		KASSERT(dst != NULL);
857 		if (__predict_false(sw_csum & M_CSUM_TSOv6)) {
858 			/*
859 			 * TSO6 is required by a packet, but disabled for
860 			 * the interface.
861 			 */
862 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
863 		} else
864 			error = ip6_if_output(ifp, origifp, m, dst, rt);
865 		goto done;
866 	}
867 
868 	if (tso) {
869 		IP6_STATINC(IP6_STAT_CANTFRAG); /* XXX */
870 		error = EINVAL; /* XXX */
871 		goto bad;
872 	}
873 
874 	/*
875 	 * try to fragment the packet.  case 1-b and 3
876 	 */
877 	if (mtu < IPV6_MMTU) {
878 		/* path MTU cannot be less than IPV6_MMTU */
879 		IP6_STATINC(IP6_STAT_CANTFRAG);
880 		error = EMSGSIZE;
881 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
882 		goto bad;
883 	} else if (ip6->ip6_plen == 0) {
884 		/* jumbo payload cannot be fragmented */
885 		IP6_STATINC(IP6_STAT_CANTFRAG);
886 		error = EMSGSIZE;
887 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
888 		goto bad;
889 	} else {
890 		const uint32_t id = ip6_randomid();
891 		struct mbuf **mnext, *m_frgpart;
892 		const int hlen = unfragpartlen;
893 		struct ip6_frag *ip6f;
894 		u_char nextproto;
895 
896 		if (mtu > IPV6_MAXPACKET)
897 			mtu = IPV6_MAXPACKET;
898 
899 		/*
900 		 * Must be able to put at least 8 bytes per fragment.
901 		 */
902 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
903 		if (len < 8) {
904 			IP6_STATINC(IP6_STAT_CANTFRAG);
905 			error = EMSGSIZE;
906 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
907 			goto bad;
908 		}
909 
910 		mnext = &m->m_nextpkt;
911 
912 		/*
913 		 * Change the next header field of the last header in the
914 		 * unfragmentable part.
915 		 */
916 		if (exthdrs.ip6e_rthdr) {
917 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
918 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
919 		} else if (exthdrs.ip6e_dest1) {
920 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
921 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
922 		} else if (exthdrs.ip6e_hbh) {
923 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
924 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
925 		} else {
926 			nextproto = ip6->ip6_nxt;
927 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
928 		}
929 
930 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
931 		    != 0) {
932 			if (IN6_NEED_CHECKSUM(ifp,
933 			    m->m_pkthdr.csum_flags &
934 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
935 				in6_undefer_cksum_tcpudp(m);
936 			}
937 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
938 		}
939 
940 		/*
941 		 * Loop through length of segment after first fragment,
942 		 * make new header and copy data of each part and link onto
943 		 * chain.
944 		 */
945 		m0 = m;
946 		for (off = hlen; off < tlen; off += len) {
947 			struct mbuf *mlast;
948 
949 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
950 			if (!m) {
951 				error = ENOBUFS;
952 				IP6_STATINC(IP6_STAT_ODROPPED);
953 				goto sendorfree;
954 			}
955 			m_reset_rcvif(m);
956 			m->m_flags = m0->m_flags & M_COPYFLAGS;
957 			*mnext = m;
958 			mnext = &m->m_nextpkt;
959 			m->m_data += max_linkhdr;
960 			mhip6 = mtod(m, struct ip6_hdr *);
961 			*mhip6 = *ip6;
962 			m->m_len = sizeof(*mhip6);
963 
964 			ip6f = NULL;
965 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
966 			if (error) {
967 				IP6_STATINC(IP6_STAT_ODROPPED);
968 				goto sendorfree;
969 			}
970 
971 			/* Fill in the Frag6 Header */
972 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
973 			if (off + len >= tlen)
974 				len = tlen - off;
975 			else
976 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
977 			ip6f->ip6f_reserved = 0;
978 			ip6f->ip6f_ident = id;
979 			ip6f->ip6f_nxt = nextproto;
980 
981 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
982 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
983 			if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
984 				error = ENOBUFS;
985 				IP6_STATINC(IP6_STAT_ODROPPED);
986 				goto sendorfree;
987 			}
988 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
989 				;
990 			mlast->m_next = m_frgpart;
991 
992 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
993 			m_reset_rcvif(m);
994 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
995 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
996 		}
997 
998 		in6_ifstat_inc(ifp, ifs6_out_fragok);
999 	}
1000 
1001 sendorfree:
1002 	m = m0->m_nextpkt;
1003 	m0->m_nextpkt = 0;
1004 	m_freem(m0);
1005 	for (m0 = m; m; m = m0) {
1006 		m0 = m->m_nextpkt;
1007 		m->m_nextpkt = 0;
1008 		if (error == 0) {
1009 			struct in6_ifaddr *ia6;
1010 			int s;
1011 			ip6 = mtod(m, struct ip6_hdr *);
1012 			s = pserialize_read_enter();
1013 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1014 			if (ia6) {
1015 				/*
1016 				 * Record statistics for this interface
1017 				 * address.
1018 				 */
1019 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
1020 				    m->m_pkthdr.len;
1021 			}
1022 			pserialize_read_exit(s);
1023 			KASSERT(dst != NULL);
1024 			error = ip6_if_output(ifp, origifp, m, dst, rt);
1025 		} else
1026 			m_freem(m);
1027 	}
1028 
1029 	if (error == 0)
1030 		IP6_STATINC(IP6_STAT_FRAGMENTED);
1031 
1032 done:
1033 	rtcache_unref(rt, ro);
1034 	if (ro == &ip6route)
1035 		rtcache_free(&ip6route);
1036 #ifdef IPSEC
1037 	if (sp != NULL)
1038 		KEY_SP_UNREF(&sp);
1039 #endif
1040 	if_put(ifp, &psref);
1041 	if (release_psref_ia)
1042 		if_put(origifp, &psref_ia);
1043 	curlwp_bindx(bound);
1044 
1045 	return error;
1046 
1047 freehdrs:
1048 	m_freem(exthdrs.ip6e_hbh);
1049 	m_freem(exthdrs.ip6e_dest1);
1050 	m_freem(exthdrs.ip6e_rthdr);
1051 	m_freem(exthdrs.ip6e_dest2);
1052 	/* FALLTHROUGH */
1053 bad:
1054 	m_freem(m);
1055 	goto done;
1056 
1057 badscope:
1058 	IP6_STATINC(IP6_STAT_BADSCOPE);
1059 	in6_ifstat_inc(origifp, ifs6_out_discard);
1060 	if (error == 0)
1061 		error = EHOSTUNREACH; /* XXX */
1062 	goto bad;
1063 }
1064 
1065 static int
ip6_copyexthdr(struct mbuf ** mp,void * hdr,int hlen)1066 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1067 {
1068 	struct mbuf *m;
1069 
1070 	if (hlen > MCLBYTES)
1071 		return ENOBUFS; /* XXX */
1072 
1073 	MGET(m, M_DONTWAIT, MT_DATA);
1074 	if (!m)
1075 		return ENOBUFS;
1076 
1077 	if (hlen > MLEN) {
1078 		MCLGET(m, M_DONTWAIT);
1079 		if ((m->m_flags & M_EXT) == 0) {
1080 			m_free(m);
1081 			return ENOBUFS;
1082 		}
1083 	}
1084 	m->m_len = hlen;
1085 	if (hdr)
1086 		memcpy(mtod(m, void *), hdr, hlen);
1087 
1088 	*mp = m;
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Insert jumbo payload option.
1094  */
1095 static int
ip6_insert_jumboopt(struct ip6_exthdrs * exthdrs,u_int32_t plen)1096 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1097 {
1098 	struct mbuf *mopt;
1099 	u_int8_t *optbuf;
1100 	u_int32_t v;
1101 
1102 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1103 
1104 	/*
1105 	 * If there is no hop-by-hop options header, allocate new one.
1106 	 * If there is one but it doesn't have enough space to store the
1107 	 * jumbo payload option, allocate a cluster to store the whole options.
1108 	 * Otherwise, use it to store the options.
1109 	 */
1110 	if (exthdrs->ip6e_hbh == NULL) {
1111 		MGET(mopt, M_DONTWAIT, MT_DATA);
1112 		if (mopt == 0)
1113 			return (ENOBUFS);
1114 		mopt->m_len = JUMBOOPTLEN;
1115 		optbuf = mtod(mopt, u_int8_t *);
1116 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1117 		exthdrs->ip6e_hbh = mopt;
1118 	} else {
1119 		struct ip6_hbh *hbh;
1120 
1121 		mopt = exthdrs->ip6e_hbh;
1122 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1123 			const int oldoptlen = mopt->m_len;
1124 			struct mbuf *n;
1125 
1126 			/*
1127 			 * Assumptions:
1128 			 * - exthdrs->ip6e_hbh is not referenced from places
1129 			 *   other than exthdrs.
1130 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1131 			 */
1132 			KASSERT(mopt->m_next == NULL);
1133 
1134 			/*
1135 			 * Give up if the whole (new) hbh header does not fit
1136 			 * even in an mbuf cluster.
1137 			 */
1138 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1139 				return ENOBUFS;
1140 
1141 			/*
1142 			 * At this point, we must always prepare a cluster.
1143 			 */
1144 			MGET(n, M_DONTWAIT, MT_DATA);
1145 			if (n) {
1146 				MCLGET(n, M_DONTWAIT);
1147 				if ((n->m_flags & M_EXT) == 0) {
1148 					m_freem(n);
1149 					n = NULL;
1150 				}
1151 			}
1152 			if (!n)
1153 				return ENOBUFS;
1154 
1155 			n->m_len = oldoptlen + JUMBOOPTLEN;
1156 			bcopy(mtod(mopt, void *), mtod(n, void *),
1157 			    oldoptlen);
1158 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
1159 			m_freem(mopt);
1160 			mopt = exthdrs->ip6e_hbh = n;
1161 		} else {
1162 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1163 			mopt->m_len += JUMBOOPTLEN;
1164 		}
1165 		optbuf[0] = IP6OPT_PADN;
1166 		optbuf[1] = 0;
1167 
1168 		/*
1169 		 * Adjust the header length according to the pad and
1170 		 * the jumbo payload option.
1171 		 */
1172 		hbh = mtod(mopt, struct ip6_hbh *);
1173 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1174 	}
1175 
1176 	/* fill in the option. */
1177 	optbuf[2] = IP6OPT_JUMBO;
1178 	optbuf[3] = 4;
1179 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1180 	memcpy(&optbuf[4], &v, sizeof(u_int32_t));
1181 
1182 	/* finally, adjust the packet header length */
1183 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1184 
1185 	return 0;
1186 #undef JUMBOOPTLEN
1187 }
1188 
1189 /*
1190  * Insert fragment header and copy unfragmentable header portions.
1191  *
1192  * *frghdrp will not be read, and it is guaranteed that either an
1193  * error is returned or that *frghdrp will point to space allocated
1194  * for the fragment header.
1195  *
1196  * On entry, m contains:
1197  *     IPv6 Header
1198  * On exit, it contains:
1199  *     IPv6 Header -> Unfragmentable Part -> Frag6 Header
1200  */
1201 static int
ip6_insertfraghdr(struct mbuf * m0,struct mbuf * m,int hlen,struct ip6_frag ** frghdrp)1202 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1203 	struct ip6_frag **frghdrp)
1204 {
1205 	struct mbuf *n, *mlast;
1206 
1207 	if (hlen > sizeof(struct ip6_hdr)) {
1208 		n = m_copym(m0, sizeof(struct ip6_hdr),
1209 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1210 		if (n == NULL)
1211 			return ENOBUFS;
1212 		m->m_next = n;
1213 	} else
1214 		n = m;
1215 
1216 	/* Search for the last mbuf of unfragmentable part. */
1217 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1218 		;
1219 
1220 	if ((mlast->m_flags & M_EXT) == 0 &&
1221 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1222 		/* use the trailing space of the last mbuf for the fragment hdr */
1223 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1224 		    mlast->m_len);
1225 		mlast->m_len += sizeof(struct ip6_frag);
1226 	} else {
1227 		/* allocate a new mbuf for the fragment header */
1228 		struct mbuf *mfrg;
1229 
1230 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1231 		if (mfrg == NULL)
1232 			return ENOBUFS;
1233 		mfrg->m_len = sizeof(struct ip6_frag);
1234 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1235 		mlast->m_next = mfrg;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static int
ip6_getpmtu(struct rtentry * rt,struct ifnet * ifp,u_long * mtup,int * alwaysfragp)1242 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1243     int *alwaysfragp)
1244 {
1245 	u_int32_t mtu = 0;
1246 	int alwaysfrag = 0;
1247 	int error = 0;
1248 
1249 	if (rt != NULL) {
1250 		if (ifp == NULL)
1251 			ifp = rt->rt_ifp;
1252 		mtu = rt->rt_rmx.rmx_mtu;
1253 		if (mtu == 0)
1254 			mtu = ifp->if_mtu;
1255 		else if (mtu < IPV6_MMTU) {
1256 			/*
1257 			 * RFC2460 section 5, last paragraph:
1258 			 * if we record ICMPv6 too big message with
1259 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1260 			 * or smaller, with fragment header attached.
1261 			 * (fragment header is needed regardless from the
1262 			 * packet size, for translators to identify packets)
1263 			 */
1264 			alwaysfrag = 1;
1265 			mtu = IPV6_MMTU;
1266 		} else if (mtu > ifp->if_mtu) {
1267 			/*
1268 			 * The MTU on the route is larger than the MTU on
1269 			 * the interface!  This shouldn't happen, unless the
1270 			 * MTU of the interface has been changed after the
1271 			 * interface was brought up.  Change the MTU in the
1272 			 * route to match the interface MTU (as long as the
1273 			 * field isn't locked).
1274 			 */
1275 			mtu = ifp->if_mtu;
1276 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1277 				rt->rt_rmx.rmx_mtu = mtu;
1278 		}
1279 	} else if (ifp) {
1280 		mtu = ifp->if_mtu;
1281 	} else
1282 		error = EHOSTUNREACH; /* XXX */
1283 
1284 	*mtup = mtu;
1285 	if (alwaysfragp)
1286 		*alwaysfragp = alwaysfrag;
1287 	return (error);
1288 }
1289 
1290 /*
1291  * IP6 socket option processing.
1292  */
1293 int
ip6_ctloutput(int op,struct socket * so,struct sockopt * sopt)1294 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1295 {
1296 	int optdatalen, uproto;
1297 	void *optdata;
1298 	struct inpcb *inp = sotoinpcb(so);
1299 	struct ip_moptions **mopts;
1300 	int error, optval;
1301 	int level, optname;
1302 
1303 	KASSERT(solocked(so));
1304 	KASSERT(sopt != NULL);
1305 
1306 	level = sopt->sopt_level;
1307 	optname = sopt->sopt_name;
1308 
1309 	error = optval = 0;
1310 	uproto = (int)so->so_proto->pr_protocol;
1311 
1312 	switch (level) {
1313 	case IPPROTO_IP:
1314 		switch (optname) {
1315 		case IP_ADD_MEMBERSHIP:
1316 		case IP_DROP_MEMBERSHIP:
1317 		case IP_MULTICAST_IF:
1318 		case IP_MULTICAST_LOOP:
1319 		case IP_MULTICAST_TTL:
1320 			mopts = &inp->inp_moptions;
1321 			switch (op) {
1322 			case PRCO_GETOPT:
1323 				return ip_getmoptions(*mopts, sopt);
1324 			case PRCO_SETOPT:
1325 				return ip_setmoptions(mopts, sopt);
1326 			default:
1327 				return EINVAL;
1328 			}
1329 		default:
1330 			return ENOPROTOOPT;
1331 		}
1332 	case IPPROTO_IPV6:
1333 		break;
1334 	default:
1335 		return ENOPROTOOPT;
1336 	}
1337 	switch (op) {
1338 	case PRCO_SETOPT:
1339 		switch (optname) {
1340 #ifdef RFC2292
1341 		case IPV6_2292PKTOPTIONS:
1342 			error = ip6_pcbopts(&in6p_outputopts(inp), so, sopt);
1343 			break;
1344 #endif
1345 
1346 		/*
1347 		 * Use of some Hop-by-Hop options or some
1348 		 * Destination options, might require special
1349 		 * privilege.  That is, normal applications
1350 		 * (without special privilege) might be forbidden
1351 		 * from setting certain options in outgoing packets,
1352 		 * and might never see certain options in received
1353 		 * packets. [RFC 2292 Section 6]
1354 		 * KAME specific note:
1355 		 *  KAME prevents non-privileged users from sending or
1356 		 *  receiving ANY hbh/dst options in order to avoid
1357 		 *  overhead of parsing options in the kernel.
1358 		 */
1359 		case IPV6_RECVHOPOPTS:
1360 		case IPV6_RECVDSTOPTS:
1361 		case IPV6_RECVRTHDRDSTOPTS:
1362 			error = kauth_authorize_network(
1363 			    kauth_cred_get(),
1364 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1365 			    NULL, NULL, NULL);
1366 			if (error)
1367 				break;
1368 			/* FALLTHROUGH */
1369 		case IPV6_UNICAST_HOPS:
1370 		case IPV6_HOPLIMIT:
1371 		case IPV6_FAITH:
1372 
1373 		case IPV6_RECVPKTINFO:
1374 		case IPV6_RECVHOPLIMIT:
1375 		case IPV6_RECVRTHDR:
1376 		case IPV6_RECVPATHMTU:
1377 		case IPV6_RECVTCLASS:
1378 		case IPV6_V6ONLY:
1379 		case IPV6_BINDANY:
1380 			error = sockopt_getint(sopt, &optval);
1381 			if (error)
1382 				break;
1383 			switch (optname) {
1384 			case IPV6_UNICAST_HOPS:
1385 				if (optval < -1 || optval >= 256)
1386 					error = EINVAL;
1387 				else {
1388 					/* -1 = kernel default */
1389 					in6p_hops6(inp) = optval;
1390 				}
1391 				break;
1392 #define OPTSET(bit) \
1393 do { \
1394 if (optval) \
1395 	inp->inp_flags |= (bit); \
1396 else \
1397 	inp->inp_flags &= ~(bit); \
1398 } while (/*CONSTCOND*/ 0)
1399 
1400 #ifdef RFC2292
1401 #define OPTSET2292(bit) 			\
1402 do { 						\
1403 inp->inp_flags |= IN6P_RFC2292; 	\
1404 if (optval) 				\
1405 	inp->inp_flags |= (bit); 	\
1406 else 					\
1407 	inp->inp_flags &= ~(bit); 	\
1408 } while (/*CONSTCOND*/ 0)
1409 #endif
1410 
1411 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1412 
1413 			case IPV6_RECVPKTINFO:
1414 #ifdef RFC2292
1415 				/* cannot mix with RFC2292 */
1416 				if (OPTBIT(IN6P_RFC2292)) {
1417 					error = EINVAL;
1418 					break;
1419 				}
1420 #endif
1421 				OPTSET(IN6P_PKTINFO);
1422 				break;
1423 
1424 			case IPV6_HOPLIMIT:
1425 			{
1426 				struct ip6_pktopts **optp;
1427 
1428 #ifdef RFC2292
1429 				/* cannot mix with RFC2292 */
1430 				if (OPTBIT(IN6P_RFC2292)) {
1431 					error = EINVAL;
1432 					break;
1433 				}
1434 #endif
1435 				optp = &in6p_outputopts(inp);
1436 				error = ip6_pcbopt(IPV6_HOPLIMIT,
1437 						   (u_char *)&optval,
1438 						   sizeof(optval),
1439 						   optp,
1440 						   kauth_cred_get(), uproto);
1441 				break;
1442 			}
1443 
1444 			case IPV6_RECVHOPLIMIT:
1445 #ifdef RFC2292
1446 				/* cannot mix with RFC2292 */
1447 				if (OPTBIT(IN6P_RFC2292)) {
1448 					error = EINVAL;
1449 					break;
1450 				}
1451 #endif
1452 				OPTSET(IN6P_HOPLIMIT);
1453 				break;
1454 
1455 			case IPV6_RECVHOPOPTS:
1456 #ifdef RFC2292
1457 				/* cannot mix with RFC2292 */
1458 				if (OPTBIT(IN6P_RFC2292)) {
1459 					error = EINVAL;
1460 					break;
1461 				}
1462 #endif
1463 				OPTSET(IN6P_HOPOPTS);
1464 				break;
1465 
1466 			case IPV6_RECVDSTOPTS:
1467 #ifdef RFC2292
1468 				/* cannot mix with RFC2292 */
1469 				if (OPTBIT(IN6P_RFC2292)) {
1470 					error = EINVAL;
1471 					break;
1472 				}
1473 #endif
1474 				OPTSET(IN6P_DSTOPTS);
1475 				break;
1476 
1477 			case IPV6_RECVRTHDRDSTOPTS:
1478 #ifdef RFC2292
1479 				/* cannot mix with RFC2292 */
1480 				if (OPTBIT(IN6P_RFC2292)) {
1481 					error = EINVAL;
1482 					break;
1483 				}
1484 #endif
1485 				OPTSET(IN6P_RTHDRDSTOPTS);
1486 				break;
1487 
1488 			case IPV6_RECVRTHDR:
1489 #ifdef RFC2292
1490 				/* cannot mix with RFC2292 */
1491 				if (OPTBIT(IN6P_RFC2292)) {
1492 					error = EINVAL;
1493 					break;
1494 				}
1495 #endif
1496 				OPTSET(IN6P_RTHDR);
1497 				break;
1498 
1499 			case IPV6_FAITH:
1500 				OPTSET(IN6P_FAITH);
1501 				break;
1502 
1503 			case IPV6_RECVPATHMTU:
1504 				/*
1505 				 * We ignore this option for TCP
1506 				 * sockets.
1507 				 * (RFC3542 leaves this case
1508 				 * unspecified.)
1509 				 */
1510 				if (uproto != IPPROTO_TCP)
1511 					OPTSET(IN6P_MTU);
1512 				break;
1513 
1514 			case IPV6_V6ONLY:
1515 				/*
1516 				 * make setsockopt(IPV6_V6ONLY)
1517 				 * available only prior to bind(2).
1518 				 * see ipng mailing list, Jun 22 2001.
1519 				 */
1520 				if (inp->inp_lport ||
1521 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p_laddr(inp))) {
1522 					error = EINVAL;
1523 					break;
1524 				}
1525 #ifdef INET6_BINDV6ONLY
1526 				if (!optval)
1527 					error = EINVAL;
1528 #else
1529 				OPTSET(IN6P_IPV6_V6ONLY);
1530 #endif
1531 				break;
1532 
1533 			case IPV6_RECVTCLASS:
1534 #ifdef RFC2292
1535 				/* cannot mix with RFC2292 XXX */
1536 				if (OPTBIT(IN6P_RFC2292)) {
1537 					error = EINVAL;
1538 					break;
1539 				}
1540 #endif
1541 				OPTSET(IN6P_TCLASS);
1542 				break;
1543 
1544 			case IPV6_BINDANY:
1545 				error = kauth_authorize_network(
1546 				    kauth_cred_get(), KAUTH_NETWORK_BIND,
1547 				    KAUTH_REQ_NETWORK_BIND_ANYADDR, so, NULL,
1548 				    NULL);
1549 				if (error)
1550 					break;
1551 				OPTSET(IN6P_BINDANY);
1552 				break;
1553 			}
1554 			break;
1555 
1556 		case IPV6_OTCLASS:
1557 		{
1558 			struct ip6_pktopts **optp;
1559 			u_int8_t tclass;
1560 
1561 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
1562 			if (error)
1563 				break;
1564 			optp = &in6p_outputopts(inp);
1565 			error = ip6_pcbopt(optname,
1566 					   (u_char *)&tclass,
1567 					   sizeof(tclass),
1568 					   optp,
1569 					   kauth_cred_get(), uproto);
1570 			break;
1571 		}
1572 
1573 		case IPV6_TCLASS:
1574 		case IPV6_DONTFRAG:
1575 		case IPV6_USE_MIN_MTU:
1576 		case IPV6_PREFER_TEMPADDR:
1577 			error = sockopt_getint(sopt, &optval);
1578 			if (error)
1579 				break;
1580 			{
1581 				struct ip6_pktopts **optp;
1582 				optp = &in6p_outputopts(inp);
1583 				error = ip6_pcbopt(optname,
1584 						   (u_char *)&optval,
1585 						   sizeof(optval),
1586 						   optp,
1587 						   kauth_cred_get(), uproto);
1588 				break;
1589 			}
1590 
1591 #ifdef RFC2292
1592 		case IPV6_2292PKTINFO:
1593 		case IPV6_2292HOPLIMIT:
1594 		case IPV6_2292HOPOPTS:
1595 		case IPV6_2292DSTOPTS:
1596 		case IPV6_2292RTHDR:
1597 			/* RFC 2292 */
1598 			error = sockopt_getint(sopt, &optval);
1599 			if (error)
1600 				break;
1601 
1602 			switch (optname) {
1603 			case IPV6_2292PKTINFO:
1604 				OPTSET2292(IN6P_PKTINFO);
1605 				break;
1606 			case IPV6_2292HOPLIMIT:
1607 				OPTSET2292(IN6P_HOPLIMIT);
1608 				break;
1609 			case IPV6_2292HOPOPTS:
1610 				/*
1611 				 * Check super-user privilege.
1612 				 * See comments for IPV6_RECVHOPOPTS.
1613 				 */
1614 				error = kauth_authorize_network(
1615 				    kauth_cred_get(),
1616 				    KAUTH_NETWORK_IPV6,
1617 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1618 				    NULL, NULL);
1619 				if (error)
1620 					return (error);
1621 				OPTSET2292(IN6P_HOPOPTS);
1622 				break;
1623 			case IPV6_2292DSTOPTS:
1624 				error = kauth_authorize_network(
1625 				    kauth_cred_get(),
1626 				    KAUTH_NETWORK_IPV6,
1627 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1628 				    NULL, NULL);
1629 				if (error)
1630 					return (error);
1631 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1632 				break;
1633 			case IPV6_2292RTHDR:
1634 				OPTSET2292(IN6P_RTHDR);
1635 				break;
1636 			}
1637 			break;
1638 #endif
1639 		case IPV6_PKTINFO:
1640 		case IPV6_HOPOPTS:
1641 		case IPV6_RTHDR:
1642 		case IPV6_DSTOPTS:
1643 		case IPV6_RTHDRDSTOPTS:
1644 		case IPV6_NEXTHOP: {
1645 			/* new advanced API (RFC3542) */
1646 			void *optbuf;
1647 			int optbuflen;
1648 			struct ip6_pktopts **optp;
1649 
1650 #ifdef RFC2292
1651 			/* cannot mix with RFC2292 */
1652 			if (OPTBIT(IN6P_RFC2292)) {
1653 				error = EINVAL;
1654 				break;
1655 			}
1656 #endif
1657 
1658 			optbuflen = sopt->sopt_size;
1659 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1660 			if (optbuf == NULL) {
1661 				error = ENOBUFS;
1662 				break;
1663 			}
1664 
1665 			error = sockopt_get(sopt, optbuf, optbuflen);
1666 			if (error) {
1667 				free(optbuf, M_IP6OPT);
1668 				break;
1669 			}
1670 			optp = &in6p_outputopts(inp);
1671 			error = ip6_pcbopt(optname, optbuf, optbuflen,
1672 			    optp, kauth_cred_get(), uproto);
1673 
1674 			free(optbuf, M_IP6OPT);
1675 			break;
1676 			}
1677 #undef OPTSET
1678 
1679 		case IPV6_MULTICAST_IF:
1680 		case IPV6_MULTICAST_HOPS:
1681 		case IPV6_MULTICAST_LOOP:
1682 		case IPV6_JOIN_GROUP:
1683 		case IPV6_LEAVE_GROUP:
1684 			error = ip6_setmoptions(sopt, inp);
1685 			break;
1686 
1687 		case IPV6_PORTRANGE:
1688 			error = sockopt_getint(sopt, &optval);
1689 			if (error)
1690 				break;
1691 
1692 			switch (optval) {
1693 			case IPV6_PORTRANGE_DEFAULT:
1694 				inp->inp_flags &= ~(IN6P_LOWPORT);
1695 				inp->inp_flags &= ~(IN6P_HIGHPORT);
1696 				break;
1697 
1698 			case IPV6_PORTRANGE_HIGH:
1699 				inp->inp_flags &= ~(IN6P_LOWPORT);
1700 				inp->inp_flags |= IN6P_HIGHPORT;
1701 				break;
1702 
1703 			case IPV6_PORTRANGE_LOW:
1704 				inp->inp_flags &= ~(IN6P_HIGHPORT);
1705 				inp->inp_flags |= IN6P_LOWPORT;
1706 				break;
1707 
1708 			default:
1709 				error = EINVAL;
1710 				break;
1711 			}
1712 			break;
1713 
1714 		case IPV6_PORTALGO:
1715 			error = sockopt_getint(sopt, &optval);
1716 			if (error)
1717 				break;
1718 
1719 			error = portalgo_algo_index_select(inp, optval);
1720 			break;
1721 
1722 #if defined(IPSEC)
1723 		case IPV6_IPSEC_POLICY:
1724 			if (ipsec_enabled) {
1725 				error = ipsec_set_policy(inp,
1726 				    sopt->sopt_data, sopt->sopt_size,
1727 				    kauth_cred_get());
1728 			} else
1729 				error = ENOPROTOOPT;
1730 			break;
1731 #endif /* IPSEC */
1732 
1733 		default:
1734 			error = ENOPROTOOPT;
1735 			break;
1736 		}
1737 		break;
1738 
1739 	case PRCO_GETOPT:
1740 		switch (optname) {
1741 #ifdef RFC2292
1742 		case IPV6_2292PKTOPTIONS:
1743 			/*
1744 			 * RFC3542 (effectively) deprecated the
1745 			 * semantics of the 2292-style pktoptions.
1746 			 * Since it was not reliable in nature (i.e.,
1747 			 * applications had to expect the lack of some
1748 			 * information after all), it would make sense
1749 			 * to simplify this part by always returning
1750 			 * empty data.
1751 			 */
1752 			break;
1753 #endif
1754 
1755 		case IPV6_RECVHOPOPTS:
1756 		case IPV6_RECVDSTOPTS:
1757 		case IPV6_RECVRTHDRDSTOPTS:
1758 		case IPV6_UNICAST_HOPS:
1759 		case IPV6_RECVPKTINFO:
1760 		case IPV6_RECVHOPLIMIT:
1761 		case IPV6_RECVRTHDR:
1762 		case IPV6_RECVPATHMTU:
1763 
1764 		case IPV6_FAITH:
1765 		case IPV6_V6ONLY:
1766 		case IPV6_PORTRANGE:
1767 		case IPV6_RECVTCLASS:
1768 		case IPV6_BINDANY:
1769 			switch (optname) {
1770 
1771 			case IPV6_RECVHOPOPTS:
1772 				optval = OPTBIT(IN6P_HOPOPTS);
1773 				break;
1774 
1775 			case IPV6_RECVDSTOPTS:
1776 				optval = OPTBIT(IN6P_DSTOPTS);
1777 				break;
1778 
1779 			case IPV6_RECVRTHDRDSTOPTS:
1780 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1781 				break;
1782 
1783 			case IPV6_UNICAST_HOPS:
1784 				optval = in6p_hops6(inp);
1785 				break;
1786 
1787 			case IPV6_RECVPKTINFO:
1788 				optval = OPTBIT(IN6P_PKTINFO);
1789 				break;
1790 
1791 			case IPV6_RECVHOPLIMIT:
1792 				optval = OPTBIT(IN6P_HOPLIMIT);
1793 				break;
1794 
1795 			case IPV6_RECVRTHDR:
1796 				optval = OPTBIT(IN6P_RTHDR);
1797 				break;
1798 
1799 			case IPV6_RECVPATHMTU:
1800 				optval = OPTBIT(IN6P_MTU);
1801 				break;
1802 
1803 			case IPV6_FAITH:
1804 				optval = OPTBIT(IN6P_FAITH);
1805 				break;
1806 
1807 			case IPV6_V6ONLY:
1808 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
1809 				break;
1810 
1811 			case IPV6_PORTRANGE:
1812 			    {
1813 				int flags;
1814 				flags = inp->inp_flags;
1815 				if (flags & IN6P_HIGHPORT)
1816 					optval = IPV6_PORTRANGE_HIGH;
1817 				else if (flags & IN6P_LOWPORT)
1818 					optval = IPV6_PORTRANGE_LOW;
1819 				else
1820 					optval = 0;
1821 				break;
1822 			    }
1823 			case IPV6_RECVTCLASS:
1824 				optval = OPTBIT(IN6P_TCLASS);
1825 				break;
1826 
1827 			case IPV6_BINDANY:
1828 				optval = OPTBIT(IN6P_BINDANY);
1829 				break;
1830 			}
1831 
1832 			if (error)
1833 				break;
1834 			error = sockopt_setint(sopt, optval);
1835 			break;
1836 
1837 		case IPV6_PATHMTU:
1838 		    {
1839 			u_long pmtu = 0;
1840 			struct ip6_mtuinfo mtuinfo;
1841 			struct route *ro = &inp->inp_route;
1842 			struct rtentry *rt;
1843 			union {
1844 				struct sockaddr		dst;
1845 				struct sockaddr_in6	dst6;
1846 			} u;
1847 
1848 			if (!(so->so_state & SS_ISCONNECTED))
1849 				return (ENOTCONN);
1850 			/*
1851 			 * XXX: we dot not consider the case of source
1852 			 * routing, or optional information to specify
1853 			 * the outgoing interface.
1854 			 */
1855 			sockaddr_in6_init(&u.dst6, &in6p_faddr(inp), 0, 0, 0);
1856 			rt = rtcache_lookup(ro, &u.dst);
1857 			error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1858 			rtcache_unref(rt, ro);
1859 			if (error)
1860 				break;
1861 			if (pmtu > IPV6_MAXPACKET)
1862 				pmtu = IPV6_MAXPACKET;
1863 
1864 			memset(&mtuinfo, 0, sizeof(mtuinfo));
1865 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1866 			optdata = (void *)&mtuinfo;
1867 			optdatalen = sizeof(mtuinfo);
1868 			if (optdatalen > MCLBYTES)
1869 				return (EMSGSIZE); /* XXX */
1870 			error = sockopt_set(sopt, optdata, optdatalen);
1871 			break;
1872 		    }
1873 
1874 #ifdef RFC2292
1875 		case IPV6_2292PKTINFO:
1876 		case IPV6_2292HOPLIMIT:
1877 		case IPV6_2292HOPOPTS:
1878 		case IPV6_2292RTHDR:
1879 		case IPV6_2292DSTOPTS:
1880 			switch (optname) {
1881 			case IPV6_2292PKTINFO:
1882 				optval = OPTBIT(IN6P_PKTINFO);
1883 				break;
1884 			case IPV6_2292HOPLIMIT:
1885 				optval = OPTBIT(IN6P_HOPLIMIT);
1886 				break;
1887 			case IPV6_2292HOPOPTS:
1888 				optval = OPTBIT(IN6P_HOPOPTS);
1889 				break;
1890 			case IPV6_2292RTHDR:
1891 				optval = OPTBIT(IN6P_RTHDR);
1892 				break;
1893 			case IPV6_2292DSTOPTS:
1894 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1895 				break;
1896 			}
1897 			error = sockopt_setint(sopt, optval);
1898 			break;
1899 #endif
1900 		case IPV6_PKTINFO:
1901 		case IPV6_HOPOPTS:
1902 		case IPV6_RTHDR:
1903 		case IPV6_DSTOPTS:
1904 		case IPV6_RTHDRDSTOPTS:
1905 		case IPV6_NEXTHOP:
1906 		case IPV6_OTCLASS:
1907 		case IPV6_TCLASS:
1908 		case IPV6_DONTFRAG:
1909 		case IPV6_USE_MIN_MTU:
1910 		case IPV6_PREFER_TEMPADDR:
1911 			error = ip6_getpcbopt(in6p_outputopts(inp),
1912 			    optname, sopt);
1913 			break;
1914 
1915 		case IPV6_MULTICAST_IF:
1916 		case IPV6_MULTICAST_HOPS:
1917 		case IPV6_MULTICAST_LOOP:
1918 		case IPV6_JOIN_GROUP:
1919 		case IPV6_LEAVE_GROUP:
1920 			error = ip6_getmoptions(sopt, inp);
1921 			break;
1922 
1923 		case IPV6_PORTALGO:
1924 			optval = inp->inp_portalgo;
1925 			error = sockopt_setint(sopt, optval);
1926 			break;
1927 
1928 #if defined(IPSEC)
1929 		case IPV6_IPSEC_POLICY:
1930 			if (ipsec_used) {
1931 				struct mbuf *m = NULL;
1932 
1933 				/*
1934 				 * XXX: this will return EINVAL as sopt is
1935 				 * empty
1936 				 */
1937 				error = ipsec_get_policy(inp, sopt->sopt_data,
1938 				    sopt->sopt_size, &m);
1939 				if (!error)
1940 					error = sockopt_setmbuf(sopt, m);
1941 			} else
1942 				error = ENOPROTOOPT;
1943 			break;
1944 #endif /* IPSEC */
1945 
1946 		default:
1947 			error = ENOPROTOOPT;
1948 			break;
1949 		}
1950 		break;
1951 	}
1952 	return (error);
1953 }
1954 
1955 int
ip6_raw_ctloutput(int op,struct socket * so,struct sockopt * sopt)1956 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1957 {
1958 	int error = 0, optval;
1959 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1960 	struct inpcb *inp = sotoinpcb(so);
1961 	int level, optname;
1962 
1963 	KASSERT(sopt != NULL);
1964 
1965 	level = sopt->sopt_level;
1966 	optname = sopt->sopt_name;
1967 
1968 	if (level != IPPROTO_IPV6) {
1969 		return ENOPROTOOPT;
1970 	}
1971 
1972 	switch (optname) {
1973 	case IPV6_CHECKSUM:
1974 		/*
1975 		 * For ICMPv6 sockets, no modification allowed for checksum
1976 		 * offset, permit "no change" values to help existing apps.
1977 		 *
1978 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1979 		 * for an ICMPv6 socket will fail."  The current
1980 		 * behavior does not meet RFC3542.
1981 		 */
1982 		switch (op) {
1983 		case PRCO_SETOPT:
1984 			error = sockopt_getint(sopt, &optval);
1985 			if (error)
1986 				break;
1987 			if (optval < -1 ||
1988 			    (optval > 0 && (optval % 2) != 0)) {
1989 				/*
1990 				 * The API assumes non-negative even offset
1991 				 * values or -1 as a special value.
1992 				 */
1993 				error = EINVAL;
1994 			} else if (so->so_proto->pr_protocol ==
1995 			    IPPROTO_ICMPV6) {
1996 				if (optval != icmp6off)
1997 					error = EINVAL;
1998 			} else
1999 				in6p_cksum(inp) = optval;
2000 			break;
2001 
2002 		case PRCO_GETOPT:
2003 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2004 				optval = icmp6off;
2005 			else
2006 				optval = in6p_cksum(inp);
2007 
2008 			error = sockopt_setint(sopt, optval);
2009 			break;
2010 
2011 		default:
2012 			error = EINVAL;
2013 			break;
2014 		}
2015 		break;
2016 
2017 	default:
2018 		error = ENOPROTOOPT;
2019 		break;
2020 	}
2021 
2022 	return (error);
2023 }
2024 
2025 #ifdef RFC2292
2026 /*
2027  * Set up IP6 options in pcb for insertion in output packets or
2028  * specifying behavior of outgoing packets.
2029  */
2030 static int
ip6_pcbopts(struct ip6_pktopts ** pktopt,struct socket * so,struct sockopt * sopt)2031 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2032     struct sockopt *sopt)
2033 {
2034 	struct ip6_pktopts *opt = *pktopt;
2035 	struct mbuf *m;
2036 	int error = 0;
2037 
2038 	KASSERT(solocked(so));
2039 
2040 	/* turn off any old options. */
2041 	if (opt) {
2042 #ifdef DIAGNOSTIC
2043 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2044 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2045 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2046 		    printf("ip6_pcbopts: all specified options are cleared.\n");
2047 #endif
2048 		ip6_clearpktopts(opt, -1);
2049 	} else {
2050 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2051 		if (opt == NULL)
2052 			return (ENOBUFS);
2053 	}
2054 	*pktopt = NULL;
2055 
2056 	if (sopt == NULL || sopt->sopt_size == 0) {
2057 		/*
2058 		 * Only turning off any previous options, regardless of
2059 		 * whether the opt is just created or given.
2060 		 */
2061 		free(opt, M_IP6OPT);
2062 		return (0);
2063 	}
2064 
2065 	/*  set options specified by user. */
2066 	m = sockopt_getmbuf(sopt);
2067 	if (m == NULL) {
2068 		free(opt, M_IP6OPT);
2069 		return (ENOBUFS);
2070 	}
2071 
2072 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2073 	    so->so_proto->pr_protocol);
2074 	m_freem(m);
2075 	if (error != 0) {
2076 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2077 		free(opt, M_IP6OPT);
2078 		return (error);
2079 	}
2080 	*pktopt = opt;
2081 	return (0);
2082 }
2083 #endif
2084 
2085 /*
2086  * initialize ip6_pktopts.  beware that there are non-zero default values in
2087  * the struct.
2088  */
2089 void
ip6_initpktopts(struct ip6_pktopts * opt)2090 ip6_initpktopts(struct ip6_pktopts *opt)
2091 {
2092 
2093 	memset(opt, 0, sizeof(*opt));
2094 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2095 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2096 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2097 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2098 }
2099 
2100 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
2101 static int
ip6_pcbopt(int optname,u_char * buf,int len,struct ip6_pktopts ** pktopt,kauth_cred_t cred,int uproto)2102 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2103     kauth_cred_t cred, int uproto)
2104 {
2105 	struct ip6_pktopts *opt;
2106 
2107 	if (*pktopt == NULL) {
2108 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2109 		    M_NOWAIT);
2110 		if (*pktopt == NULL)
2111 			return (ENOBUFS);
2112 
2113 		ip6_initpktopts(*pktopt);
2114 	}
2115 	opt = *pktopt;
2116 
2117 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2118 }
2119 
2120 static int
ip6_getpcbopt(struct ip6_pktopts * pktopt,int optname,struct sockopt * sopt)2121 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2122 {
2123 	void *optdata = NULL;
2124 	int optdatalen = 0;
2125 	struct ip6_ext *ip6e;
2126 	int error = 0;
2127 	struct in6_pktinfo null_pktinfo;
2128 	int deftclass = 0, on;
2129 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2130 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2131 
2132 	switch (optname) {
2133 	case IPV6_PKTINFO:
2134 		if (pktopt && pktopt->ip6po_pktinfo)
2135 			optdata = (void *)pktopt->ip6po_pktinfo;
2136 		else {
2137 			/* XXX: we don't have to do this every time... */
2138 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2139 			optdata = (void *)&null_pktinfo;
2140 		}
2141 		optdatalen = sizeof(struct in6_pktinfo);
2142 		break;
2143 	case IPV6_OTCLASS:
2144 		/* XXX */
2145 		return (EINVAL);
2146 	case IPV6_TCLASS:
2147 		if (pktopt && pktopt->ip6po_tclass >= 0)
2148 			optdata = (void *)&pktopt->ip6po_tclass;
2149 		else
2150 			optdata = (void *)&deftclass;
2151 		optdatalen = sizeof(int);
2152 		break;
2153 	case IPV6_HOPOPTS:
2154 		if (pktopt && pktopt->ip6po_hbh) {
2155 			optdata = (void *)pktopt->ip6po_hbh;
2156 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2157 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2158 		}
2159 		break;
2160 	case IPV6_RTHDR:
2161 		if (pktopt && pktopt->ip6po_rthdr) {
2162 			optdata = (void *)pktopt->ip6po_rthdr;
2163 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2164 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2165 		}
2166 		break;
2167 	case IPV6_RTHDRDSTOPTS:
2168 		if (pktopt && pktopt->ip6po_dest1) {
2169 			optdata = (void *)pktopt->ip6po_dest1;
2170 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2171 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2172 		}
2173 		break;
2174 	case IPV6_DSTOPTS:
2175 		if (pktopt && pktopt->ip6po_dest2) {
2176 			optdata = (void *)pktopt->ip6po_dest2;
2177 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2178 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2179 		}
2180 		break;
2181 	case IPV6_NEXTHOP:
2182 		if (pktopt && pktopt->ip6po_nexthop) {
2183 			optdata = (void *)pktopt->ip6po_nexthop;
2184 			optdatalen = pktopt->ip6po_nexthop->sa_len;
2185 		}
2186 		break;
2187 	case IPV6_USE_MIN_MTU:
2188 		if (pktopt)
2189 			optdata = (void *)&pktopt->ip6po_minmtu;
2190 		else
2191 			optdata = (void *)&defminmtu;
2192 		optdatalen = sizeof(int);
2193 		break;
2194 	case IPV6_DONTFRAG:
2195 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2196 			on = 1;
2197 		else
2198 			on = 0;
2199 		optdata = (void *)&on;
2200 		optdatalen = sizeof(on);
2201 		break;
2202 	case IPV6_PREFER_TEMPADDR:
2203 		if (pktopt)
2204 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2205 		else
2206 			optdata = (void *)&defpreftemp;
2207 		optdatalen = sizeof(int);
2208 		break;
2209 	default:		/* should not happen */
2210 #ifdef DIAGNOSTIC
2211 		panic("ip6_getpcbopt: unexpected option\n");
2212 #endif
2213 		return (ENOPROTOOPT);
2214 	}
2215 
2216 	error = sockopt_set(sopt, optdata, optdatalen);
2217 
2218 	return (error);
2219 }
2220 
2221 void
ip6_clearpktopts(struct ip6_pktopts * pktopt,int optname)2222 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2223 {
2224 	if (optname == -1 || optname == IPV6_PKTINFO) {
2225 		if (pktopt->ip6po_pktinfo)
2226 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2227 		pktopt->ip6po_pktinfo = NULL;
2228 	}
2229 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2230 		pktopt->ip6po_hlim = -1;
2231 	if (optname == -1 || optname == IPV6_TCLASS)
2232 		pktopt->ip6po_tclass = -1;
2233 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2234 		rtcache_free(&pktopt->ip6po_nextroute);
2235 		if (pktopt->ip6po_nexthop)
2236 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2237 		pktopt->ip6po_nexthop = NULL;
2238 	}
2239 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2240 		if (pktopt->ip6po_hbh)
2241 			free(pktopt->ip6po_hbh, M_IP6OPT);
2242 		pktopt->ip6po_hbh = NULL;
2243 	}
2244 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2245 		if (pktopt->ip6po_dest1)
2246 			free(pktopt->ip6po_dest1, M_IP6OPT);
2247 		pktopt->ip6po_dest1 = NULL;
2248 	}
2249 	if (optname == -1 || optname == IPV6_RTHDR) {
2250 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2251 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2252 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2253 		rtcache_free(&pktopt->ip6po_route);
2254 	}
2255 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2256 		if (pktopt->ip6po_dest2)
2257 			free(pktopt->ip6po_dest2, M_IP6OPT);
2258 		pktopt->ip6po_dest2 = NULL;
2259 	}
2260 }
2261 
2262 #define PKTOPT_EXTHDRCPY(type) 					\
2263 do {								\
2264 	if (src->type) {					\
2265 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2266 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
2267 		if (dst->type == NULL)				\
2268 			goto bad;				\
2269 		memcpy(dst->type, src->type, hlen);		\
2270 	}							\
2271 } while (/*CONSTCOND*/ 0)
2272 
2273 static int
copypktopts(struct ip6_pktopts * dst,struct ip6_pktopts * src,int canwait)2274 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2275 {
2276 	dst->ip6po_hlim = src->ip6po_hlim;
2277 	dst->ip6po_tclass = src->ip6po_tclass;
2278 	dst->ip6po_flags = src->ip6po_flags;
2279 	dst->ip6po_minmtu = src->ip6po_minmtu;
2280 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2281 	if (src->ip6po_pktinfo) {
2282 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2283 		    M_IP6OPT, canwait);
2284 		if (dst->ip6po_pktinfo == NULL)
2285 			goto bad;
2286 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2287 	}
2288 	if (src->ip6po_nexthop) {
2289 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2290 		    M_IP6OPT, canwait);
2291 		if (dst->ip6po_nexthop == NULL)
2292 			goto bad;
2293 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2294 		    src->ip6po_nexthop->sa_len);
2295 	}
2296 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2297 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2298 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2299 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2300 	return (0);
2301 
2302   bad:
2303 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2304 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2305 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2306 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2307 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2308 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2309 
2310 	return (ENOBUFS);
2311 }
2312 #undef PKTOPT_EXTHDRCPY
2313 
2314 struct ip6_pktopts *
ip6_copypktopts(struct ip6_pktopts * src,int canwait)2315 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2316 {
2317 	int error;
2318 	struct ip6_pktopts *dst;
2319 
2320 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2321 	if (dst == NULL)
2322 		return (NULL);
2323 	ip6_initpktopts(dst);
2324 
2325 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2326 		free(dst, M_IP6OPT);
2327 		return (NULL);
2328 	}
2329 
2330 	return (dst);
2331 }
2332 
2333 void
ip6_freepcbopts(struct ip6_pktopts * pktopt)2334 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2335 {
2336 	if (pktopt == NULL)
2337 		return;
2338 
2339 	ip6_clearpktopts(pktopt, -1);
2340 
2341 	free(pktopt, M_IP6OPT);
2342 }
2343 
2344 int
ip6_get_membership(const struct sockopt * sopt,struct ifnet ** ifp,struct psref * psref,void * v,size_t l)2345 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
2346     struct psref *psref, void *v, size_t l)
2347 {
2348 	struct ipv6_mreq mreq;
2349 	int error;
2350 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2351 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2352 
2353 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
2354 	if (error != 0)
2355 		return error;
2356 
2357 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2358 		/*
2359 		 * We use the unspecified address to specify to accept
2360 		 * all multicast addresses. Only super user is allowed
2361 		 * to do this.
2362 		 */
2363 		if (kauth_authorize_network(kauth_cred_get(),
2364 		    KAUTH_NETWORK_IPV6,
2365 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2366 			return EACCES;
2367 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2368 		// Don't bother if we are not going to use ifp.
2369 		if (l == sizeof(*ia)) {
2370 			memcpy(v, ia, l);
2371 			return 0;
2372 		}
2373 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2374 		return EINVAL;
2375 	}
2376 
2377 	/*
2378 	 * If no interface was explicitly specified, choose an
2379 	 * appropriate one according to the given multicast address.
2380 	 */
2381 	if (mreq.ipv6mr_interface == 0) {
2382 		struct rtentry *rt;
2383 		union {
2384 			struct sockaddr		dst;
2385 			struct sockaddr_in	dst4;
2386 			struct sockaddr_in6	dst6;
2387 		} u;
2388 		struct route ro;
2389 
2390 		/*
2391 		 * Look up the routing table for the
2392 		 * address, and choose the outgoing interface.
2393 		 *   XXX: is it a good approach?
2394 		 */
2395 		memset(&ro, 0, sizeof(ro));
2396 		if (IN6_IS_ADDR_V4MAPPED(ia))
2397 			sockaddr_in_init(&u.dst4, ia4, 0);
2398 		else
2399 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2400 		error = rtcache_setdst(&ro, &u.dst);
2401 		if (error != 0)
2402 			return error;
2403 		rt = rtcache_init(&ro);
2404 		*ifp = rt != NULL ?
2405 		    if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
2406 		rtcache_unref(rt, &ro);
2407 		rtcache_free(&ro);
2408 	} else {
2409 		/*
2410 		 * If the interface is specified, validate it.
2411 		 */
2412 		*ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
2413 		if (*ifp == NULL)
2414 			return ENXIO;	/* XXX EINVAL? */
2415 	}
2416 	if (sizeof(*ia) == l)
2417 		memcpy(v, ia, l);
2418 	else
2419 		memcpy(v, ia4, l);
2420 	return 0;
2421 }
2422 
2423 /*
2424  * Set the IP6 multicast options in response to user setsockopt().
2425  */
2426 static int
ip6_setmoptions(const struct sockopt * sopt,struct inpcb * inp)2427 ip6_setmoptions(const struct sockopt *sopt, struct inpcb *inp)
2428 {
2429 	int error = 0;
2430 	u_int loop, ifindex;
2431 	struct ipv6_mreq mreq;
2432 	struct in6_addr ia;
2433 	struct ifnet *ifp;
2434 	struct ip6_moptions *im6o = in6p_moptions(inp);
2435 	struct in6_multi_mship *imm;
2436 
2437 	KASSERT(inp_locked(inp));
2438 
2439 	if (im6o == NULL) {
2440 		/*
2441 		 * No multicast option buffer attached to the pcb;
2442 		 * allocate one and initialize to default values.
2443 		 */
2444 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2445 		if (im6o == NULL)
2446 			return (ENOBUFS);
2447 		in6p_moptions(inp) = im6o;
2448 		im6o->im6o_multicast_if_index = 0;
2449 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2450 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2451 		LIST_INIT(&im6o->im6o_memberships);
2452 	}
2453 
2454 	switch (sopt->sopt_name) {
2455 
2456 	case IPV6_MULTICAST_IF: {
2457 		int s;
2458 		/*
2459 		 * Select the interface for outgoing multicast packets.
2460 		 */
2461 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2462 		if (error != 0)
2463 			break;
2464 
2465 		s = pserialize_read_enter();
2466 		if (ifindex != 0) {
2467 			if ((ifp = if_byindex(ifindex)) == NULL) {
2468 				pserialize_read_exit(s);
2469 				error = ENXIO;	/* XXX EINVAL? */
2470 				break;
2471 			}
2472 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2473 				pserialize_read_exit(s);
2474 				error = EADDRNOTAVAIL;
2475 				break;
2476 			}
2477 		} else
2478 			ifp = NULL;
2479 		im6o->im6o_multicast_if_index = if_get_index(ifp);
2480 		pserialize_read_exit(s);
2481 		break;
2482 	    }
2483 
2484 	case IPV6_MULTICAST_HOPS:
2485 	    {
2486 		/*
2487 		 * Set the IP6 hoplimit for outgoing multicast packets.
2488 		 */
2489 		int optval;
2490 
2491 		error = sockopt_getint(sopt, &optval);
2492 		if (error != 0)
2493 			break;
2494 
2495 		if (optval < -1 || optval >= 256)
2496 			error = EINVAL;
2497 		else if (optval == -1)
2498 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2499 		else
2500 			im6o->im6o_multicast_hlim = optval;
2501 		break;
2502 	    }
2503 
2504 	case IPV6_MULTICAST_LOOP:
2505 		/*
2506 		 * Set the loopback flag for outgoing multicast packets.
2507 		 * Must be zero or one.
2508 		 */
2509 		error = sockopt_get(sopt, &loop, sizeof(loop));
2510 		if (error != 0)
2511 			break;
2512 		if (loop > 1) {
2513 			error = EINVAL;
2514 			break;
2515 		}
2516 		im6o->im6o_multicast_loop = loop;
2517 		break;
2518 
2519 	case IPV6_JOIN_GROUP: {
2520 		int bound;
2521 		struct psref psref;
2522 		/*
2523 		 * Add a multicast group membership.
2524 		 * Group must be a valid IP6 multicast address.
2525 		 */
2526 		bound = curlwp_bind();
2527 		ifp = NULL;
2528 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
2529 		if (error != 0) {
2530 			KASSERT(ifp == NULL);
2531 			curlwp_bindx(bound);
2532 			return error;
2533 		}
2534 
2535 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2536 			error = ip_setmoptions(&inp->inp_moptions, sopt);
2537 			goto put_break;
2538 		}
2539 		/*
2540 		 * See if we found an interface, and confirm that it
2541 		 * supports multicast
2542 		 */
2543 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2544 			error = EADDRNOTAVAIL;
2545 			goto put_break;
2546 		}
2547 
2548 		if (in6_setscope(&ia, ifp, NULL)) {
2549 			error = EADDRNOTAVAIL; /* XXX: should not happen */
2550 			goto put_break;
2551 		}
2552 
2553 		/*
2554 		 * See if the membership already exists.
2555 		 */
2556 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2557 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2558 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2559 			    &ia))
2560 				goto put_break;
2561 		}
2562 		if (imm != NULL) {
2563 			error = EADDRINUSE;
2564 			goto put_break;
2565 		}
2566 		/*
2567 		 * Everything looks good; add a new record to the multicast
2568 		 * address list for the given interface.
2569 		 */
2570 		imm = in6_joingroup(ifp, &ia, &error, 0);
2571 		if (imm == NULL)
2572 			goto put_break;
2573 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2574 	    put_break:
2575 		if_put(ifp, &psref);
2576 		curlwp_bindx(bound);
2577 		break;
2578 	    }
2579 
2580 	case IPV6_LEAVE_GROUP: {
2581 		/*
2582 		 * Drop a multicast group membership.
2583 		 * Group must be a valid IP6 multicast address.
2584 		 */
2585 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
2586 		if (error != 0)
2587 			break;
2588 
2589 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2590 			error = ip_setmoptions(&inp->inp_moptions, sopt);
2591 			break;
2592 		}
2593 		/*
2594 		 * If an interface address was specified, get a pointer
2595 		 * to its ifnet structure.
2596 		 */
2597 		if (mreq.ipv6mr_interface != 0) {
2598 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2599 				error = ENXIO;	/* XXX EINVAL? */
2600 				break;
2601 			}
2602 		} else
2603 			ifp = NULL;
2604 
2605 		/* Fill in the scope zone ID */
2606 		if (ifp) {
2607 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2608 				/* XXX: should not happen */
2609 				error = EADDRNOTAVAIL;
2610 				break;
2611 			}
2612 		} else if (mreq.ipv6mr_interface != 0) {
2613 			/*
2614 			 * XXX: This case would happens when the (positive)
2615 			 * index is in the valid range, but the corresponding
2616 			 * interface has been detached dynamically.  The above
2617 			 * check probably avoids such case to happen here, but
2618 			 * we check it explicitly for safety.
2619 			 */
2620 			error = EADDRNOTAVAIL;
2621 			break;
2622 		} else {	/* ipv6mr_interface == 0 */
2623 			struct sockaddr_in6 sa6_mc;
2624 
2625 			/*
2626 			 * The API spec says as follows:
2627 			 *  If the interface index is specified as 0, the
2628 			 *  system may choose a multicast group membership to
2629 			 *  drop by matching the multicast address only.
2630 			 * On the other hand, we cannot disambiguate the scope
2631 			 * zone unless an interface is provided.  Thus, we
2632 			 * check if there's ambiguity with the default scope
2633 			 * zone as the last resort.
2634 			 */
2635 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2636 			    0, 0, 0);
2637 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2638 			if (error != 0)
2639 				break;
2640 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2641 		}
2642 
2643 		/*
2644 		 * Find the membership in the membership list.
2645 		 */
2646 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2647 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2648 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2649 			    &mreq.ipv6mr_multiaddr))
2650 				break;
2651 		}
2652 		if (imm == NULL) {
2653 			/* Unable to resolve interface */
2654 			error = EADDRNOTAVAIL;
2655 			break;
2656 		}
2657 		/*
2658 		 * Give up the multicast address record to which the
2659 		 * membership points.
2660 		 */
2661 		LIST_REMOVE(imm, i6mm_chain);
2662 		in6_leavegroup(imm);
2663 		/* in6m_ifp should not leave thanks to inp_lock */
2664 		break;
2665 	    }
2666 
2667 	default:
2668 		error = EOPNOTSUPP;
2669 		break;
2670 	}
2671 
2672 	/*
2673 	 * If all options have default values, no need to keep the mbuf.
2674 	 */
2675 	if (im6o->im6o_multicast_if_index == 0 &&
2676 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2677 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2678 	    LIST_EMPTY(&im6o->im6o_memberships)) {
2679 		free(in6p_moptions(inp), M_IPMOPTS);
2680 		in6p_moptions(inp) = NULL;
2681 	}
2682 
2683 	return (error);
2684 }
2685 
2686 /*
2687  * Return the IP6 multicast options in response to user getsockopt().
2688  */
2689 static int
ip6_getmoptions(struct sockopt * sopt,struct inpcb * inp)2690 ip6_getmoptions(struct sockopt *sopt, struct inpcb *inp)
2691 {
2692 	u_int optval;
2693 	int error;
2694 	struct ip6_moptions *im6o = in6p_moptions(inp);
2695 
2696 	switch (sopt->sopt_name) {
2697 	case IPV6_MULTICAST_IF:
2698 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2699 			optval = 0;
2700 		else
2701 			optval = im6o->im6o_multicast_if_index;
2702 
2703 		error = sockopt_set(sopt, &optval, sizeof(optval));
2704 		break;
2705 
2706 	case IPV6_MULTICAST_HOPS:
2707 		if (im6o == NULL)
2708 			optval = ip6_defmcasthlim;
2709 		else
2710 			optval = im6o->im6o_multicast_hlim;
2711 
2712 		error = sockopt_set(sopt, &optval, sizeof(optval));
2713 		break;
2714 
2715 	case IPV6_MULTICAST_LOOP:
2716 		if (im6o == NULL)
2717 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
2718 		else
2719 			optval = im6o->im6o_multicast_loop;
2720 
2721 		error = sockopt_set(sopt, &optval, sizeof(optval));
2722 		break;
2723 
2724 	default:
2725 		error = EOPNOTSUPP;
2726 	}
2727 
2728 	return (error);
2729 }
2730 
2731 /*
2732  * Discard the IP6 multicast options.
2733  */
2734 void
ip6_freemoptions(struct ip6_moptions * im6o)2735 ip6_freemoptions(struct ip6_moptions *im6o)
2736 {
2737 	struct in6_multi_mship *imm, *nimm;
2738 
2739 	if (im6o == NULL)
2740 		return;
2741 
2742 	/* The owner of im6o (inp) should be protected by solock */
2743 	LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
2744 		LIST_REMOVE(imm, i6mm_chain);
2745 		in6_leavegroup(imm);
2746 	}
2747 	free(im6o, M_IPMOPTS);
2748 }
2749 
2750 /*
2751  * Set IPv6 outgoing packet options based on advanced API.
2752  */
2753 int
ip6_setpktopts(struct mbuf * control,struct ip6_pktopts * opt,struct ip6_pktopts * stickyopt,kauth_cred_t cred,int uproto)2754 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2755 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2756 {
2757 	struct cmsghdr *cm = 0;
2758 
2759 	if (control == NULL || opt == NULL)
2760 		return (EINVAL);
2761 
2762 	ip6_initpktopts(opt);
2763 	if (stickyopt) {
2764 		int error;
2765 
2766 		/*
2767 		 * If stickyopt is provided, make a local copy of the options
2768 		 * for this particular packet, then override them by ancillary
2769 		 * objects.
2770 		 * XXX: copypktopts() does not copy the cached route to a next
2771 		 * hop (if any).  This is not very good in terms of efficiency,
2772 		 * but we can allow this since this option should be rarely
2773 		 * used.
2774 		 */
2775 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2776 			return (error);
2777 	}
2778 
2779 	/*
2780 	 * XXX: Currently, we assume all the optional information is stored
2781 	 * in a single mbuf.
2782 	 */
2783 	if (control->m_next)
2784 		return (EINVAL);
2785 
2786 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2787 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2788 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2789 		int error;
2790 
2791 		if (control->m_len < CMSG_LEN(0))
2792 			return (EINVAL);
2793 
2794 		cm = mtod(control, struct cmsghdr *);
2795 		if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len)
2796 			return (EINVAL);
2797 		if (cm->cmsg_level != IPPROTO_IPV6)
2798 			continue;
2799 
2800 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2801 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2802 		if (error)
2803 			return (error);
2804 	}
2805 
2806 	return (0);
2807 }
2808 
2809 /*
2810  * Set a particular packet option, as a sticky option or an ancillary data
2811  * item.  "len" can be 0 only when it's a sticky option.
2812  * We have 4 cases of combination of "sticky" and "cmsg":
2813  * "sticky=0, cmsg=0": impossible
2814  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2815  * "sticky=1, cmsg=0": RFC3542 socket option
2816  * "sticky=1, cmsg=1": RFC2292 socket option
2817  */
2818 static int
ip6_setpktopt(int optname,u_char * buf,int len,struct ip6_pktopts * opt,kauth_cred_t cred,int sticky,int cmsg,int uproto)2819 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2820     kauth_cred_t cred, int sticky, int cmsg, int uproto)
2821 {
2822 	int minmtupolicy;
2823 	int error;
2824 
2825 	if (!sticky && !cmsg) {
2826 #ifdef DIAGNOSTIC
2827 		printf("ip6_setpktopt: impossible case\n");
2828 #endif
2829 		return (EINVAL);
2830 	}
2831 
2832 	/*
2833 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2834 	 * not be specified in the context of RFC3542.  Conversely,
2835 	 * RFC3542 types should not be specified in the context of RFC2292.
2836 	 */
2837 	if (!cmsg) {
2838 		switch (optname) {
2839 		case IPV6_2292PKTINFO:
2840 		case IPV6_2292HOPLIMIT:
2841 		case IPV6_2292NEXTHOP:
2842 		case IPV6_2292HOPOPTS:
2843 		case IPV6_2292DSTOPTS:
2844 		case IPV6_2292RTHDR:
2845 		case IPV6_2292PKTOPTIONS:
2846 			return (ENOPROTOOPT);
2847 		}
2848 	}
2849 	if (sticky && cmsg) {
2850 		switch (optname) {
2851 		case IPV6_PKTINFO:
2852 		case IPV6_HOPLIMIT:
2853 		case IPV6_NEXTHOP:
2854 		case IPV6_HOPOPTS:
2855 		case IPV6_DSTOPTS:
2856 		case IPV6_RTHDRDSTOPTS:
2857 		case IPV6_RTHDR:
2858 		case IPV6_USE_MIN_MTU:
2859 		case IPV6_DONTFRAG:
2860 		case IPV6_OTCLASS:
2861 		case IPV6_TCLASS:
2862 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2863 			return (ENOPROTOOPT);
2864 		}
2865 	}
2866 
2867 	switch (optname) {
2868 #ifdef RFC2292
2869 	case IPV6_2292PKTINFO:
2870 #endif
2871 	case IPV6_PKTINFO:
2872 	{
2873 		struct in6_pktinfo *pktinfo;
2874 
2875 		if (len != sizeof(struct in6_pktinfo))
2876 			return (EINVAL);
2877 
2878 		pktinfo = (struct in6_pktinfo *)buf;
2879 
2880 		/*
2881 		 * An application can clear any sticky IPV6_PKTINFO option by
2882 		 * doing a "regular" setsockopt with ipi6_addr being
2883 		 * in6addr_any and ipi6_ifindex being zero.
2884 		 * [RFC 3542, Section 6]
2885 		 */
2886 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2887 		    pktinfo->ipi6_ifindex == 0 &&
2888 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2889 			ip6_clearpktopts(opt, optname);
2890 			break;
2891 		}
2892 
2893 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2894 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2895 			return (EINVAL);
2896 		}
2897 
2898 		/* Validate the interface index if specified. */
2899 		if (pktinfo->ipi6_ifindex) {
2900 			struct ifnet *ifp;
2901 			int s = pserialize_read_enter();
2902 			ifp = if_byindex(pktinfo->ipi6_ifindex);
2903 			if (ifp == NULL) {
2904 				pserialize_read_exit(s);
2905 				return ENXIO;
2906 			}
2907 			pserialize_read_exit(s);
2908 		}
2909 
2910 		/*
2911 		 * We store the address anyway, and let in6_selectsrc()
2912 		 * validate the specified address.  This is because ipi6_addr
2913 		 * may not have enough information about its scope zone, and
2914 		 * we may need additional information (such as outgoing
2915 		 * interface or the scope zone of a destination address) to
2916 		 * disambiguate the scope.
2917 		 * XXX: the delay of the validation may confuse the
2918 		 * application when it is used as a sticky option.
2919 		 */
2920 		if (opt->ip6po_pktinfo == NULL) {
2921 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2922 			    M_IP6OPT, M_NOWAIT);
2923 			if (opt->ip6po_pktinfo == NULL)
2924 				return (ENOBUFS);
2925 		}
2926 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2927 		break;
2928 	}
2929 
2930 #ifdef RFC2292
2931 	case IPV6_2292HOPLIMIT:
2932 #endif
2933 	case IPV6_HOPLIMIT:
2934 	{
2935 		int *hlimp;
2936 
2937 		/*
2938 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2939 		 * to simplify the ordering among hoplimit options.
2940 		 */
2941 		if (optname == IPV6_HOPLIMIT && sticky)
2942 			return (ENOPROTOOPT);
2943 
2944 		if (len != sizeof(int))
2945 			return (EINVAL);
2946 		hlimp = (int *)buf;
2947 		if (*hlimp < -1 || *hlimp > 255)
2948 			return (EINVAL);
2949 
2950 		opt->ip6po_hlim = *hlimp;
2951 		break;
2952 	}
2953 
2954 	case IPV6_OTCLASS:
2955 		if (len != sizeof(u_int8_t))
2956 			return (EINVAL);
2957 
2958 		opt->ip6po_tclass = *(u_int8_t *)buf;
2959 		break;
2960 
2961 	case IPV6_TCLASS:
2962 	{
2963 		int tclass;
2964 
2965 		if (len != sizeof(int))
2966 			return (EINVAL);
2967 		tclass = *(int *)buf;
2968 		if (tclass < -1 || tclass > 255)
2969 			return (EINVAL);
2970 
2971 		opt->ip6po_tclass = tclass;
2972 		break;
2973 	}
2974 
2975 #ifdef RFC2292
2976 	case IPV6_2292NEXTHOP:
2977 #endif
2978 	case IPV6_NEXTHOP:
2979 		error = kauth_authorize_network(cred,
2980 		    KAUTH_NETWORK_IPV6,
2981 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2982 		if (error)
2983 			return (error);
2984 
2985 		if (len == 0) {	/* just remove the option */
2986 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2987 			break;
2988 		}
2989 
2990 		/* check if cmsg_len is large enough for sa_len */
2991 		if (len < sizeof(struct sockaddr) || len < *buf)
2992 			return (EINVAL);
2993 
2994 		switch (((struct sockaddr *)buf)->sa_family) {
2995 		case AF_INET6:
2996 		{
2997 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2998 
2999 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3000 				return (EINVAL);
3001 
3002 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3003 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3004 				return (EINVAL);
3005 			}
3006 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3007 			    != 0) {
3008 				return (error);
3009 			}
3010 			break;
3011 		}
3012 		case AF_LINK:	/* eventually be supported? */
3013 		default:
3014 			return (EAFNOSUPPORT);
3015 		}
3016 
3017 		/* turn off the previous option, then set the new option. */
3018 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
3019 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3020 		if (opt->ip6po_nexthop == NULL)
3021 			return (ENOBUFS);
3022 		memcpy(opt->ip6po_nexthop, buf, *buf);
3023 		break;
3024 
3025 #ifdef RFC2292
3026 	case IPV6_2292HOPOPTS:
3027 #endif
3028 	case IPV6_HOPOPTS:
3029 	{
3030 		struct ip6_hbh *hbh;
3031 		int hbhlen;
3032 
3033 		/*
3034 		 * XXX: We don't allow a non-privileged user to set ANY HbH
3035 		 * options, since per-option restriction has too much
3036 		 * overhead.
3037 		 */
3038 		error = kauth_authorize_network(cred,
3039 		    KAUTH_NETWORK_IPV6,
3040 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3041 		if (error)
3042 			return (error);
3043 
3044 		if (len == 0) {
3045 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
3046 			break;	/* just remove the option */
3047 		}
3048 
3049 		/* message length validation */
3050 		if (len < sizeof(struct ip6_hbh))
3051 			return (EINVAL);
3052 		hbh = (struct ip6_hbh *)buf;
3053 		hbhlen = (hbh->ip6h_len + 1) << 3;
3054 		if (len != hbhlen)
3055 			return (EINVAL);
3056 
3057 		/* turn off the previous option, then set the new option. */
3058 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
3059 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3060 		if (opt->ip6po_hbh == NULL)
3061 			return (ENOBUFS);
3062 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
3063 
3064 		break;
3065 	}
3066 
3067 #ifdef RFC2292
3068 	case IPV6_2292DSTOPTS:
3069 #endif
3070 	case IPV6_DSTOPTS:
3071 	case IPV6_RTHDRDSTOPTS:
3072 	{
3073 		struct ip6_dest *dest, **newdest = NULL;
3074 		int destlen;
3075 
3076 		/* XXX: see the comment for IPV6_HOPOPTS */
3077 		error = kauth_authorize_network(cred,
3078 		    KAUTH_NETWORK_IPV6,
3079 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3080 		if (error)
3081 			return (error);
3082 
3083 		if (len == 0) {
3084 			ip6_clearpktopts(opt, optname);
3085 			break;	/* just remove the option */
3086 		}
3087 
3088 		/* message length validation */
3089 		if (len < sizeof(struct ip6_dest))
3090 			return (EINVAL);
3091 		dest = (struct ip6_dest *)buf;
3092 		destlen = (dest->ip6d_len + 1) << 3;
3093 		if (len != destlen)
3094 			return (EINVAL);
3095 		/*
3096 		 * Determine the position that the destination options header
3097 		 * should be inserted; before or after the routing header.
3098 		 */
3099 		switch (optname) {
3100 		case IPV6_2292DSTOPTS:
3101 			/*
3102 			 * The old advanced API is ambiguous on this point.
3103 			 * Our approach is to determine the position based
3104 			 * according to the existence of a routing header.
3105 			 * Note, however, that this depends on the order of the
3106 			 * extension headers in the ancillary data; the 1st
3107 			 * part of the destination options header must appear
3108 			 * before the routing header in the ancillary data,
3109 			 * too.
3110 			 * RFC3542 solved the ambiguity by introducing
3111 			 * separate ancillary data or option types.
3112 			 */
3113 			if (opt->ip6po_rthdr == NULL)
3114 				newdest = &opt->ip6po_dest1;
3115 			else
3116 				newdest = &opt->ip6po_dest2;
3117 			break;
3118 		case IPV6_RTHDRDSTOPTS:
3119 			newdest = &opt->ip6po_dest1;
3120 			break;
3121 		case IPV6_DSTOPTS:
3122 			newdest = &opt->ip6po_dest2;
3123 			break;
3124 		}
3125 
3126 		/* turn off the previous option, then set the new option. */
3127 		ip6_clearpktopts(opt, optname);
3128 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3129 		if (*newdest == NULL)
3130 			return (ENOBUFS);
3131 		memcpy(*newdest, dest, destlen);
3132 
3133 		break;
3134 	}
3135 
3136 #ifdef RFC2292
3137 	case IPV6_2292RTHDR:
3138 #endif
3139 	case IPV6_RTHDR:
3140 	{
3141 		struct ip6_rthdr *rth;
3142 		int rthlen;
3143 
3144 		if (len == 0) {
3145 			ip6_clearpktopts(opt, IPV6_RTHDR);
3146 			break;	/* just remove the option */
3147 		}
3148 
3149 		/* message length validation */
3150 		if (len < sizeof(struct ip6_rthdr))
3151 			return (EINVAL);
3152 		rth = (struct ip6_rthdr *)buf;
3153 		rthlen = (rth->ip6r_len + 1) << 3;
3154 		if (len != rthlen)
3155 			return (EINVAL);
3156 		switch (rth->ip6r_type) {
3157 		case IPV6_RTHDR_TYPE_0:
3158 			/* Dropped, RFC5095. */
3159 		default:
3160 			return (EINVAL);	/* not supported */
3161 		}
3162 		/* turn off the previous option */
3163 		ip6_clearpktopts(opt, IPV6_RTHDR);
3164 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3165 		if (opt->ip6po_rthdr == NULL)
3166 			return (ENOBUFS);
3167 		memcpy(opt->ip6po_rthdr, rth, rthlen);
3168 		break;
3169 	}
3170 
3171 	case IPV6_USE_MIN_MTU:
3172 		if (len != sizeof(int))
3173 			return (EINVAL);
3174 		minmtupolicy = *(int *)buf;
3175 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3176 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3177 		    minmtupolicy != IP6PO_MINMTU_ALL) {
3178 			return (EINVAL);
3179 		}
3180 		opt->ip6po_minmtu = minmtupolicy;
3181 		break;
3182 
3183 	case IPV6_DONTFRAG:
3184 		if (len != sizeof(int))
3185 			return (EINVAL);
3186 
3187 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3188 			/*
3189 			 * we ignore this option for TCP sockets.
3190 			 * (RFC3542 leaves this case unspecified.)
3191 			 */
3192 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3193 		} else
3194 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3195 		break;
3196 
3197 	case IPV6_PREFER_TEMPADDR:
3198 	{
3199 		int preftemp;
3200 
3201 		if (len != sizeof(int))
3202 			return (EINVAL);
3203 		preftemp = *(int *)buf;
3204 		switch (preftemp) {
3205 		case IP6PO_TEMPADDR_SYSTEM:
3206 		case IP6PO_TEMPADDR_NOTPREFER:
3207 		case IP6PO_TEMPADDR_PREFER:
3208 			break;
3209 		default:
3210 			return (EINVAL);
3211 		}
3212 		opt->ip6po_prefer_tempaddr = preftemp;
3213 		break;
3214 	}
3215 
3216 	default:
3217 		return (ENOPROTOOPT);
3218 	} /* end of switch */
3219 
3220 	return (0);
3221 }
3222 
3223 /*
3224  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3225  * packet to the input queue of a specified interface.  Note that this
3226  * calls the output routine of the loopback "driver", but with an interface
3227  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3228  */
3229 void
ip6_mloopback(struct ifnet * ifp,struct mbuf * m,const struct sockaddr_in6 * dst)3230 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3231 	const struct sockaddr_in6 *dst)
3232 {
3233 	struct mbuf *copym;
3234 	struct ip6_hdr *ip6;
3235 
3236 	copym = m_copypacket(m, M_DONTWAIT);
3237 	if (copym == NULL)
3238 		return;
3239 
3240 	/*
3241 	 * Make sure to deep-copy IPv6 header portion in case the data
3242 	 * is in an mbuf cluster, so that we can safely override the IPv6
3243 	 * header portion later.
3244 	 */
3245 	if ((copym->m_flags & M_EXT) != 0 ||
3246 	    copym->m_len < sizeof(struct ip6_hdr)) {
3247 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3248 		if (copym == NULL)
3249 			return;
3250 	}
3251 
3252 #ifdef DIAGNOSTIC
3253 	if (copym->m_len < sizeof(*ip6)) {
3254 		m_freem(copym);
3255 		return;
3256 	}
3257 #endif
3258 
3259 	ip6 = mtod(copym, struct ip6_hdr *);
3260 	/*
3261 	 * clear embedded scope identifiers if necessary.
3262 	 * in6_clearscope will touch the addresses only when necessary.
3263 	 */
3264 	in6_clearscope(&ip6->ip6_src);
3265 	in6_clearscope(&ip6->ip6_dst);
3266 
3267 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3268 }
3269 
3270 /*
3271  * Chop IPv6 header off from the payload.
3272  */
3273 static int
ip6_splithdr(struct mbuf * m,struct ip6_exthdrs * exthdrs)3274 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3275 {
3276 	struct mbuf *mh;
3277 	struct ip6_hdr *ip6;
3278 
3279 	ip6 = mtod(m, struct ip6_hdr *);
3280 	if (m->m_len > sizeof(*ip6)) {
3281 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3282 		if (mh == NULL) {
3283 			m_freem(m);
3284 			return ENOBUFS;
3285 		}
3286 		m_move_pkthdr(mh, m);
3287 		m_align(mh, sizeof(*ip6));
3288 		m->m_len -= sizeof(*ip6);
3289 		m->m_data += sizeof(*ip6);
3290 		mh->m_next = m;
3291 		mh->m_len = sizeof(*ip6);
3292 		memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
3293 		m = mh;
3294 	}
3295 	exthdrs->ip6e_ip6 = m;
3296 	return 0;
3297 }
3298 
3299 /*
3300  * Compute IPv6 extension header length.
3301  */
3302 int
ip6_optlen(struct inpcb * inp)3303 ip6_optlen(struct inpcb *inp)
3304 {
3305 	int len;
3306 
3307 	if (!in6p_outputopts(inp))
3308 		return 0;
3309 
3310 	len = 0;
3311 #define elen(x) \
3312     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3313 
3314 	len += elen(in6p_outputopts(inp)->ip6po_hbh);
3315 	len += elen(in6p_outputopts(inp)->ip6po_dest1);
3316 	len += elen(in6p_outputopts(inp)->ip6po_rthdr);
3317 	len += elen(in6p_outputopts(inp)->ip6po_dest2);
3318 	return len;
3319 #undef elen
3320 }
3321 
3322 /*
3323  * Ensure sending address is valid.
3324  * Returns 0 on success, -1 if an error should be sent back or 1
3325  * if the packet could be dropped without error (protocol dependent).
3326  */
3327 static int
ip6_ifaddrvalid(const struct in6_addr * src,const struct in6_addr * dst)3328 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
3329 {
3330 	struct sockaddr_in6 sin6;
3331 	int s, error;
3332 	struct ifaddr *ifa;
3333 	struct in6_ifaddr *ia6;
3334 
3335 	if (IN6_IS_ADDR_UNSPECIFIED(src))
3336 		return 0;
3337 
3338 	memset(&sin6, 0, sizeof(sin6));
3339 	sin6.sin6_family = AF_INET6;
3340 	sin6.sin6_len = sizeof(sin6);
3341 	sin6.sin6_addr = *src;
3342 
3343 	s = pserialize_read_enter();
3344 	ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3345 	if ((ia6 = ifatoia6(ifa)) == NULL ||
3346 	    ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3347 		error = -1;
3348 	else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
3349 		error = 1;
3350 	else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
3351 	    (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
3352 		/* Allow internal traffic to DETACHED addresses */
3353 		error = 1;
3354 	else
3355 		error = 0;
3356 	pserialize_read_exit(s);
3357 
3358 	return error;
3359 }
3360