1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include "md5.h"
6 
7 static void rpmMD5Transform(uint32 buf[4], uint32 const in[16]);
8 
9 
10 /*
11  * This code implements the MD5 message-digest algorithm.
12  * The algorithm is due to Ron Rivest.  This code was
13  * written by Colin Plumb in 1993, no copyright is claimed.
14  * This code is in the public domain; do with it what you wish.
15  *
16  * Equivalent code is available from RSA Data Security, Inc.
17  * This code has been tested against that, and is equivalent,
18  * except that you don't need to include two pages of legalese
19  * with every copy.
20  *
21  * To compute the message digest of a chunk of bytes, declare an
22  * MD5Context structure, pass it to rpmMD5Init, call rpmMD5Update as
23  * needed on buffers full of bytes, and then call rpmMD5Final, which
24  * will fill a supplied 16-byte array with the digest.
25  */
26 
27 static int _ie = 0x44332211;
28 static union _endian { int i; char b[4]; } *_endian = (union _endian *)&_ie;
29 #define	IS_BIG_ENDIAN()		(_endian->b[0] == '\x44')
30 #define	IS_LITTLE_ENDIAN()	(_endian->b[0] == '\x11')
31 
32 static void byteReverse(unsigned char *buf, unsigned longs);
33 
34 /*
35  * Note: this code is harmless on little-endian machines.
36  */
byteReverse(unsigned char * buf,unsigned longs)37 static void byteReverse(unsigned char *buf, unsigned longs)
38 {
39     uint32 t;
40     do {
41 	t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
42 	    ((unsigned) buf[1] << 8 | buf[0]);
43 	*(uint32 *) buf = t;
44 	buf += 4;
45     } while (--longs);
46 }
47 
48 /*
49  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
50  * initialization constants.
51  */
rpmMD5Init(struct MD5Context * ctx)52 void rpmMD5Init(struct MD5Context *ctx)
53 {
54     ctx->buf[0] = 0x67452301;
55     ctx->buf[1] = 0xefcdab89;
56     ctx->buf[2] = 0x98badcfe;
57     ctx->buf[3] = 0x10325476;
58 
59     ctx->bits[0] = 0;
60     ctx->bits[1] = 0;
61 
62     if (IS_BIG_ENDIAN()) {
63 	ctx->doByteReverse = 1;
64     } else {
65 	ctx->doByteReverse = 0;
66     }
67 }
68 
69 /*
70  * Update context to reflect the concatenation of another buffer full
71  * of bytes.
72  */
rpmMD5Update(struct MD5Context * ctx,unsigned char const * buf,unsigned len)73 void rpmMD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
74 {
75     uint32 t;
76 
77     /* Update bitcount */
78 
79     t = ctx->bits[0];
80     if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
81 	ctx->bits[1]++;		/* Carry from low to high */
82     ctx->bits[1] += len >> 29;
83 
84     t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
85 
86     /* Handle any leading odd-sized chunks */
87 
88     if (t) {
89 	unsigned char *p = (unsigned char *) ctx->in + t;
90 
91 	t = 64 - t;
92 	if (len < t) {
93 	    memcpy(p, buf, len);
94 	    return;
95 	}
96 	memcpy(p, buf, t);
97 	if (ctx->doByteReverse)
98 	    byteReverse(ctx->in, 16);
99 	rpmMD5Transform(ctx->buf, (uint32 *) ctx->in);
100 	buf += t;
101 	len -= t;
102     }
103     /* Process data in 64-byte chunks */
104 
105     while (len >= 64) {
106 	memcpy(ctx->in, buf, 64);
107 	if (ctx->doByteReverse)
108 	    byteReverse(ctx->in, 16);
109 	rpmMD5Transform(ctx->buf, (uint32 *) ctx->in);
110 	buf += 64;
111 	len -= 64;
112     }
113 
114     /* Handle any remaining bytes of data. */
115 
116     memcpy(ctx->in, buf, len);
117 }
118 
119 /*
120  * Final wrapup - pad to 64-byte boundary with the bit pattern
121  * 1 0* (64-bit count of bits processed, MSB-first)
122  */
rpmMD5Final(unsigned char digest[16],struct MD5Context * ctx)123 void rpmMD5Final(unsigned char digest[16], struct MD5Context *ctx)
124 {
125     unsigned count;
126     unsigned char *p;
127 
128     /* Compute number of bytes mod 64 */
129     count = (ctx->bits[0] >> 3) & 0x3F;
130 
131     /* Set the first char of padding to 0x80.  This is safe since there is
132        always at least one byte free */
133     p = ctx->in + count;
134     *p++ = 0x80;
135 
136     /* Bytes of padding needed to make 64 bytes */
137     count = 64 - 1 - count;
138 
139     /* Pad out to 56 mod 64 */
140     if (count < 8) {
141 	/* Two lots of padding:  Pad the first block to 64 bytes */
142 	memset(p, 0, count);
143 	if (ctx->doByteReverse)
144 	    byteReverse(ctx->in, 16);
145 	rpmMD5Transform(ctx->buf, (uint32 *) ctx->in);
146 
147 	/* Now fill the next block with 56 bytes */
148 	memset(ctx->in, 0, 56);
149     } else {
150 	/* Pad block to 56 bytes */
151 	memset(p, 0, count - 8);
152     }
153     if (ctx->doByteReverse)
154 	byteReverse(ctx->in, 14);
155 
156     /* Append length in bits and transform */
157     ((uint32 *) ctx->in)[14] = ctx->bits[0];
158     ((uint32 *) ctx->in)[15] = ctx->bits[1];
159 
160     rpmMD5Transform(ctx->buf, (uint32 *) ctx->in);
161     if (ctx->doByteReverse)
162 	byteReverse((unsigned char *) ctx->buf, 4);
163     memcpy(digest, ctx->buf, 16);
164     memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
165 }
166 
167 /* The four core functions - F1 is optimized somewhat */
168 
169 /* #define F1(x, y, z) (x & y | ~x & z) */
170 #define F1(x, y, z) (z ^ (x & (y ^ z)))
171 #define F2(x, y, z) F1(z, x, y)
172 #define F3(x, y, z) (x ^ y ^ z)
173 #define F4(x, y, z) (y ^ (x | ~z))
174 
175 /* This is the central step in the MD5 algorithm. */
176 #define MD5STEP(f, w, x, y, z, data, s) \
177 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
178 
179 /*
180  * The core of the MD5 algorithm, this alters an existing MD5 hash to
181  * reflect the addition of 16 longwords of new data.  rpmMD5Update blocks
182  * the data and converts bytes into longwords for this routine.
183  */
rpmMD5Transform(uint32 buf[4],uint32 const in[16])184 static void rpmMD5Transform(uint32 buf[4], uint32 const in[16])
185 {
186     register uint32 a, b, c, d;
187 
188     a = buf[0];
189     b = buf[1];
190     c = buf[2];
191     d = buf[3];
192 
193     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
194     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
195     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
196     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
197     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
198     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
199     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
200     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
201     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
202     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
203     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
204     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
205     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
206     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
207     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
208     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
209 
210     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
211     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
212     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
213     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
214     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
215     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
216     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
217     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
218     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
219     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
220     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
221     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
222     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
223     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
224     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
225     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
226 
227     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
228     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
229     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
230     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
231     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
232     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
233     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
234     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
235     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
236     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
237     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
238     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
239     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
240     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
241     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
242     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
243 
244     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
245     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
246     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
247     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
248     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
249     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
250     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
251     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
252     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
253     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
254     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
255     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
256     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
257     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
258     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
259     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
260 
261     buf[0] += a;
262     buf[1] += b;
263     buf[2] += c;
264     buf[3] += d;
265 }
266 
267 void
rpmMD5Update32(MD5_CTX * ctx,unsigned int i)268 rpmMD5Update32(MD5_CTX *ctx, unsigned int i)
269 {
270   unsigned char d[4];
271   d[0] = i >> 24;
272   d[1] = i >> 16;
273   d[2] = i >> 8;
274   d[3] = i;
275   rpmMD5Update(ctx, d, 4);
276 }
277 
278