xref: /netbsd/sys/dev/ic/rtl81x9.c (revision 8a598a41)
1 /*	$NetBSD: rtl81x9.c,v 1.114 2023/05/21 18:01:38 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35  */
36 
37 /*
38  * RealTek 8129/8139 PCI NIC driver
39  *
40  * Supports several extremely cheap PCI 10/100 adapters based on
41  * the RealTek chipset. Datasheets can be obtained from
42  * www.realtek.com.tw.
43  *
44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 
49 /*
50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51  * probably the worst PCI ethernet controller ever made, with the possible
52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53  * DMA, but it has a terrible interface that nullifies any performance
54  * gains that bus-master DMA usually offers.
55  *
56  * For transmission, the chip offers a series of four TX descriptor
57  * registers. Each transmit frame must be in a contiguous buffer, aligned
58  * on a longword (32-bit) boundary. This means we almost always have to
59  * do mbuf copies in order to transmit a frame, except in the unlikely
60  * case where a) the packet fits into a single mbuf, and b) the packet
61  * is 32-bit aligned within the mbuf's data area. The presence of only
62  * four descriptor registers means that we can never have more than four
63  * packets queued for transmission at any one time.
64  *
65  * Reception is not much better. The driver has to allocate a single large
66  * buffer area (up to 64K in size) into which the chip will DMA received
67  * frames. Because we don't know where within this region received packets
68  * will begin or end, we have no choice but to copy data from the buffer
69  * area into mbufs in order to pass the packets up to the higher protocol
70  * levels.
71  *
72  * It's impossible given this rotten design to really achieve decent
73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
74  * some equally overmuscled CPU to drive it.
75  *
76  * On the bright side, the 8139 does have a built-in PHY, although
77  * rather than using an MDIO serial interface like most other NICs, the
78  * PHY registers are directly accessible through the 8139's register
79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80  * filter.
81  *
82  * The 8129 chip is an older version of the 8139 that uses an external PHY
83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
84  * the 8139 lets you directly access the on-board PHY registers. We need
85  * to select which interface to use depending on the chip type.
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.114 2023/05/21 18:01:38 andvar Exp $");
90 
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/callout.h>
95 #include <sys/device.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/if_ether.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 #include <sys/rndsource.h>
109 
110 #include <sys/bus.h>
111 #include <machine/endian.h>
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/ic/rtl81x9reg.h>
117 #include <dev/ic/rtl81x9var.h>
118 
119 static void rtk_reset(struct rtk_softc *);
120 static void rtk_rxeof(struct rtk_softc *);
121 static void rtk_txeof(struct rtk_softc *);
122 static void rtk_start(struct ifnet *);
123 static int rtk_ioctl(struct ifnet *, u_long, void *);
124 static int rtk_init(struct ifnet *);
125 static void rtk_stop(struct ifnet *, int);
126 
127 static void rtk_watchdog(struct ifnet *);
128 
129 static void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
130 static void rtk_mii_sync(struct rtk_softc *);
131 static void rtk_mii_send(struct rtk_softc *, uint32_t, int);
132 static int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
133 static int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
134 
135 static int rtk_phy_readreg(device_t, int, int, uint16_t *);
136 static int rtk_phy_writereg(device_t, int, int, uint16_t);
137 static void rtk_phy_statchg(struct ifnet *);
138 static void rtk_tick(void *);
139 
140 static int rtk_enable(struct rtk_softc *);
141 static void rtk_disable(struct rtk_softc *);
142 
143 static void rtk_list_tx_init(struct rtk_softc *);
144 
145 #define EE_SET(x)					\
146 	CSR_WRITE_1(sc, RTK_EECMD,			\
147 		CSR_READ_1(sc, RTK_EECMD) | (x))
148 
149 #define EE_CLR(x)					\
150 	CSR_WRITE_1(sc, RTK_EECMD,			\
151 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
152 
153 #define EE_DELAY()	DELAY(100)
154 
155 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
156 
157 /*
158  * Send a read command and address to the EEPROM, check for ACK.
159  */
160 static void
rtk_eeprom_putbyte(struct rtk_softc * sc,int addr,int addr_len)161 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
162 {
163 	int d, i;
164 
165 	d = (RTK_EECMD_READ << addr_len) | addr;
166 
167 	/*
168 	 * Feed in each bit and stobe the clock.
169 	 */
170 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
171 		if (d & (1 << (i - 1))) {
172 			EE_SET(RTK_EE_DATAIN);
173 		} else {
174 			EE_CLR(RTK_EE_DATAIN);
175 		}
176 		EE_DELAY();
177 		EE_SET(RTK_EE_CLK);
178 		EE_DELAY();
179 		EE_CLR(RTK_EE_CLK);
180 		EE_DELAY();
181 	}
182 }
183 
184 /*
185  * Read a word of data stored in the EEPROM at address 'addr.'
186  */
187 uint16_t
rtk_read_eeprom(struct rtk_softc * sc,int addr,int addr_len)188 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
189 {
190 	uint16_t word;
191 	int i;
192 
193 	/* Enter EEPROM access mode. */
194 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
195 	EE_DELAY();
196 	EE_SET(RTK_EE_SEL);
197 
198 	/*
199 	 * Send address of word we want to read.
200 	 */
201 	rtk_eeprom_putbyte(sc, addr, addr_len);
202 
203 	/*
204 	 * Start reading bits from EEPROM.
205 	 */
206 	word = 0;
207 	for (i = 16; i > 0; i--) {
208 		EE_SET(RTK_EE_CLK);
209 		EE_DELAY();
210 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
211 			word |= 1 << (i - 1);
212 		EE_CLR(RTK_EE_CLK);
213 		EE_DELAY();
214 	}
215 
216 	/* Turn off EEPROM access mode. */
217 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
218 
219 	return word;
220 }
221 
222 /*
223  * MII access routines are provided for the 8129, which
224  * doesn't have a built-in PHY. For the 8139, we fake things
225  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
226  * direct access PHY registers.
227  */
228 #define MII_SET(x)					\
229 	CSR_WRITE_1(sc, RTK_MII,			\
230 		CSR_READ_1(sc, RTK_MII) | (x))
231 
232 #define MII_CLR(x)					\
233 	CSR_WRITE_1(sc, RTK_MII,			\
234 		CSR_READ_1(sc, RTK_MII) & ~(x))
235 
236 /*
237  * Sync the PHYs by setting data bit and strobing the clock 32 times.
238  */
239 static void
rtk_mii_sync(struct rtk_softc * sc)240 rtk_mii_sync(struct rtk_softc *sc)
241 {
242 	int i;
243 
244 	MII_SET(RTK_MII_DIR | RTK_MII_DATAOUT);
245 
246 	for (i = 0; i < 32; i++) {
247 		MII_SET(RTK_MII_CLK);
248 		DELAY(1);
249 		MII_CLR(RTK_MII_CLK);
250 		DELAY(1);
251 	}
252 }
253 
254 /*
255  * Clock a series of bits through the MII.
256  */
257 static void
rtk_mii_send(struct rtk_softc * sc,uint32_t bits,int cnt)258 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
259 {
260 	int i;
261 
262 	MII_CLR(RTK_MII_CLK);
263 
264 	for (i = cnt; i > 0; i--) {
265 		if (bits & (1 << (i - 1))) {
266 			MII_SET(RTK_MII_DATAOUT);
267 		} else {
268 			MII_CLR(RTK_MII_DATAOUT);
269 		}
270 		DELAY(1);
271 		MII_CLR(RTK_MII_CLK);
272 		DELAY(1);
273 		MII_SET(RTK_MII_CLK);
274 	}
275 }
276 
277 /*
278  * Read an PHY register through the MII.
279  */
280 static int
rtk_mii_readreg(struct rtk_softc * sc,struct rtk_mii_frame * frame)281 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
282 {
283 	int i, ack, s, rv = 0;
284 
285 	s = splnet();
286 
287 	/*
288 	 * Set up frame for RX.
289 	 */
290 	frame->mii_stdelim = RTK_MII_STARTDELIM;
291 	frame->mii_opcode = RTK_MII_READOP;
292 	frame->mii_turnaround = 0;
293 	frame->mii_data = 0;
294 
295 	CSR_WRITE_2(sc, RTK_MII, 0);
296 
297 	/*
298 	 * Turn on data xmit.
299 	 */
300 	MII_SET(RTK_MII_DIR);
301 
302 	rtk_mii_sync(sc);
303 
304 	/*
305 	 * Send command/address info.
306 	 */
307 	rtk_mii_send(sc, frame->mii_stdelim, 2);
308 	rtk_mii_send(sc, frame->mii_opcode, 2);
309 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
310 	rtk_mii_send(sc, frame->mii_regaddr, 5);
311 
312 	/* Idle bit */
313 	MII_CLR((RTK_MII_CLK | RTK_MII_DATAOUT));
314 	DELAY(1);
315 	MII_SET(RTK_MII_CLK);
316 	DELAY(1);
317 
318 	/* Turn off xmit. */
319 	MII_CLR(RTK_MII_DIR);
320 
321 	/* Check for ack */
322 	MII_CLR(RTK_MII_CLK);
323 	DELAY(1);
324 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
325 	MII_SET(RTK_MII_CLK);
326 	DELAY(1);
327 
328 	/*
329 	 * Now try reading data bits. If the ack failed, we still
330 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
331 	 */
332 	if (ack) {
333 		for (i = 0; i < 16; i++) {
334 			MII_CLR(RTK_MII_CLK);
335 			DELAY(1);
336 			MII_SET(RTK_MII_CLK);
337 			DELAY(1);
338 		}
339 		rv = -1;
340 		goto fail;
341 	}
342 
343 	for (i = 16; i > 0; i--) {
344 		MII_CLR(RTK_MII_CLK);
345 		DELAY(1);
346 		if (!ack) {
347 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
348 				frame->mii_data |= 1 << (i - 1);
349 			DELAY(1);
350 		}
351 		MII_SET(RTK_MII_CLK);
352 		DELAY(1);
353 	}
354 
355  fail:
356 	MII_CLR(RTK_MII_CLK);
357 	DELAY(1);
358 	MII_SET(RTK_MII_CLK);
359 	DELAY(1);
360 
361 	splx(s);
362 
363 	return rv;
364 }
365 
366 /*
367  * Write to a PHY register through the MII.
368  */
369 static int
rtk_mii_writereg(struct rtk_softc * sc,struct rtk_mii_frame * frame)370 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
371 {
372 	int s;
373 
374 	s = splnet();
375 	/*
376 	 * Set up frame for TX.
377 	 */
378 	frame->mii_stdelim = RTK_MII_STARTDELIM;
379 	frame->mii_opcode = RTK_MII_WRITEOP;
380 	frame->mii_turnaround = RTK_MII_TURNAROUND;
381 
382 	/*
383 	 * Turn on data output.
384 	 */
385 	MII_SET(RTK_MII_DIR);
386 
387 	rtk_mii_sync(sc);
388 
389 	rtk_mii_send(sc, frame->mii_stdelim, 2);
390 	rtk_mii_send(sc, frame->mii_opcode, 2);
391 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
392 	rtk_mii_send(sc, frame->mii_regaddr, 5);
393 	rtk_mii_send(sc, frame->mii_turnaround, 2);
394 	rtk_mii_send(sc, frame->mii_data, 16);
395 
396 	/* Idle bit. */
397 	MII_SET(RTK_MII_CLK);
398 	DELAY(1);
399 	MII_CLR(RTK_MII_CLK);
400 	DELAY(1);
401 
402 	/*
403 	 * Turn off xmit.
404 	 */
405 	MII_CLR(RTK_MII_DIR);
406 
407 	splx(s);
408 
409 	return 0;
410 }
411 
412 static int
rtk_phy_readreg(device_t self,int phy,int reg,uint16_t * val)413 rtk_phy_readreg(device_t self, int phy, int reg, uint16_t *val)
414 {
415 	struct rtk_softc *sc = device_private(self);
416 	struct rtk_mii_frame frame;
417 	int rv;
418 	int rtk8139_reg;
419 
420 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
421 		if (phy != 7)
422 			return -1;
423 
424 		switch (reg) {
425 		case MII_BMCR:
426 			rtk8139_reg = RTK_BMCR;
427 			break;
428 		case MII_BMSR:
429 			rtk8139_reg = RTK_BMSR;
430 			break;
431 		case MII_ANAR:
432 			rtk8139_reg = RTK_ANAR;
433 			break;
434 		case MII_ANER:
435 			rtk8139_reg = RTK_ANER;
436 			break;
437 		case MII_ANLPAR:
438 			rtk8139_reg = RTK_LPAR;
439 			break;
440 		case MII_PHYIDR1:
441 		case MII_PHYIDR2:
442 			*val = 0;
443 			return 0;
444 		default:
445 #if 0
446 			printf("%s: bad phy register\n", device_xname(self));
447 #endif
448 			return -1;
449 		}
450 		*val = CSR_READ_2(sc, rtk8139_reg);
451 		return 0;
452 	}
453 
454 	memset(&frame, 0, sizeof(frame));
455 
456 	frame.mii_phyaddr = phy;
457 	frame.mii_regaddr = reg;
458 	rv = rtk_mii_readreg(sc, &frame);
459 	*val = frame.mii_data;
460 
461 	return rv;
462 }
463 
464 static int
rtk_phy_writereg(device_t self,int phy,int reg,uint16_t val)465 rtk_phy_writereg(device_t self, int phy, int reg, uint16_t val)
466 {
467 	struct rtk_softc *sc = device_private(self);
468 	struct rtk_mii_frame frame;
469 	int rtk8139_reg;
470 
471 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
472 		if (phy != 7)
473 			return -1;
474 
475 		switch (reg) {
476 		case MII_BMCR:
477 			rtk8139_reg = RTK_BMCR;
478 			break;
479 		case MII_BMSR:
480 			rtk8139_reg = RTK_BMSR;
481 			break;
482 		case MII_ANAR:
483 			rtk8139_reg = RTK_ANAR;
484 			break;
485 		case MII_ANER:
486 			rtk8139_reg = RTK_ANER;
487 			break;
488 		case MII_ANLPAR:
489 			rtk8139_reg = RTK_LPAR;
490 			break;
491 		default:
492 #if 0
493 			printf("%s: bad phy register\n", device_xname(self));
494 #endif
495 			return -1;
496 		}
497 		CSR_WRITE_2(sc, rtk8139_reg, val);
498 		return 0;
499 	}
500 
501 	memset(&frame, 0, sizeof(frame));
502 
503 	frame.mii_phyaddr = phy;
504 	frame.mii_regaddr = reg;
505 	frame.mii_data = val;
506 
507 	return rtk_mii_writereg(sc, &frame);
508 }
509 
510 static void
rtk_phy_statchg(struct ifnet * ifp)511 rtk_phy_statchg(struct ifnet *ifp)
512 {
513 
514 	/* Nothing to do. */
515 }
516 
517 #define	rtk_calchash(addr) \
518 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
519 
520 /*
521  * Program the 64-bit multicast hash filter.
522  */
523 void
rtk_setmulti(struct rtk_softc * sc)524 rtk_setmulti(struct rtk_softc *sc)
525 {
526 	struct ethercom *ec = &sc->ethercom;
527 	struct ifnet *ifp = &ec->ec_if;
528 	uint32_t hashes[2] = { 0, 0 };
529 	uint32_t rxfilt;
530 	struct ether_multi *enm;
531 	struct ether_multistep step;
532 	int h, mcnt;
533 
534 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
535 
536 	if (ifp->if_flags & IFF_PROMISC) {
537  allmulti:
538 		ifp->if_flags |= IFF_ALLMULTI;
539 		rxfilt |= RTK_RXCFG_RX_MULTI;
540 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
541 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
542 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
543 		return;
544 	}
545 
546 	/* first, zot all the existing hash bits */
547 	CSR_WRITE_4(sc, RTK_MAR0, 0);
548 	CSR_WRITE_4(sc, RTK_MAR4, 0);
549 
550 	/* now program new ones */
551 	ETHER_LOCK(ec);
552 	ETHER_FIRST_MULTI(step, ec, enm);
553 	mcnt = 0;
554 	while (enm != NULL) {
555 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
556 		    ETHER_ADDR_LEN) != 0) {
557 			ETHER_UNLOCK(ec);
558 			goto allmulti;
559 		}
560 
561 		h = rtk_calchash(enm->enm_addrlo);
562 		if (h < 32)
563 			hashes[0] |= __BIT(h);
564 		else
565 			hashes[1] |= __BIT(h - 32);
566 		mcnt++;
567 		ETHER_NEXT_MULTI(step, enm);
568 	}
569 	ETHER_UNLOCK(ec);
570 
571 	ifp->if_flags &= ~IFF_ALLMULTI;
572 
573 	if (mcnt)
574 		rxfilt |= RTK_RXCFG_RX_MULTI;
575 	else
576 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
577 
578 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
579 
580 	/*
581 	 * For some unfathomable reason, RealTek decided to reverse
582 	 * the order of the multicast hash registers in the PCI Express
583 	 * parts. This means we have to write the hash pattern in reverse
584 	 * order for those devices.
585 	 */
586 	if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
587 		CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
588 		CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
589 	} else {
590 		CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
591 		CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
592 	}
593 }
594 
595 void
rtk_reset(struct rtk_softc * sc)596 rtk_reset(struct rtk_softc *sc)
597 {
598 	int i;
599 
600 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
601 
602 	for (i = 0; i < RTK_TIMEOUT; i++) {
603 		DELAY(10);
604 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
605 			break;
606 	}
607 	if (i == RTK_TIMEOUT)
608 		printf("%s: reset never completed!\n",
609 		    device_xname(sc->sc_dev));
610 }
611 
612 /*
613  * Attach the interface. Allocate softc structures, do ifmedia
614  * setup and ethernet/BPF attach.
615  */
616 void
rtk_attach(struct rtk_softc * sc)617 rtk_attach(struct rtk_softc *sc)
618 {
619 	device_t self = sc->sc_dev;
620 	struct ifnet *ifp;
621 	struct mii_data * const mii = &sc->mii;
622 	struct rtk_tx_desc *txd;
623 	uint16_t val;
624 	uint8_t eaddr[ETHER_ADDR_LEN];
625 	int error;
626 	int i, addr_len;
627 
628 	callout_init(&sc->rtk_tick_ch, 0);
629 	callout_setfunc(&sc->rtk_tick_ch, rtk_tick, sc);
630 
631 	/*
632 	 * Check EEPROM type 9346 or 9356.
633 	 */
634 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
635 		addr_len = RTK_EEADDR_LEN1;
636 	else
637 		addr_len = RTK_EEADDR_LEN0;
638 
639 	/*
640 	 * Get station address.
641 	 */
642 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
643 	eaddr[0] = val & 0xff;
644 	eaddr[1] = val >> 8;
645 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
646 	eaddr[2] = val & 0xff;
647 	eaddr[3] = val >> 8;
648 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
649 	eaddr[4] = val & 0xff;
650 	eaddr[5] = val >> 8;
651 
652 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
653 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
654 	    BUS_DMA_NOWAIT)) != 0) {
655 		aprint_error_dev(self,
656 		    "can't allocate recv buffer, error = %d\n", error);
657 		goto fail_0;
658 	}
659 
660 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
661 	    RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
662 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
663 		aprint_error_dev(self,
664 		    "can't map recv buffer, error = %d\n", error);
665 		goto fail_1;
666 	}
667 
668 	if ((error = bus_dmamap_create(sc->sc_dmat,
669 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
670 	    &sc->recv_dmamap)) != 0) {
671 		aprint_error_dev(self,
672 		    "can't create recv buffer DMA map, error = %d\n", error);
673 		goto fail_2;
674 	}
675 
676 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
677 	    sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
678 	    NULL, BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
679 		aprint_error_dev(self,
680 		    "can't load recv buffer DMA map, error = %d\n", error);
681 		goto fail_3;
682 	}
683 
684 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
685 		txd = &sc->rtk_tx_descs[i];
686 		if ((error = bus_dmamap_create(sc->sc_dmat,
687 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
688 		    &txd->txd_dmamap)) != 0) {
689 			aprint_error_dev(self,
690 			    "can't create snd buffer DMA map, error = %d\n",
691 			    error);
692 			goto fail_4;
693 		}
694 		txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
695 		txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
696 	}
697 	SIMPLEQ_INIT(&sc->rtk_tx_free);
698 	SIMPLEQ_INIT(&sc->rtk_tx_dirty);
699 
700 	/*
701 	 * From this point forward, the attachment cannot fail. A failure
702 	 * before this releases all resources that may have been
703 	 * allocated.
704 	 */
705 	sc->sc_flags |= RTK_ATTACHED;
706 
707 	/* Reset the adapter. */
708 	rtk_reset(sc);
709 
710 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
711 
712 	ifp = &sc->ethercom.ec_if;
713 	ifp->if_softc = sc;
714 	strcpy(ifp->if_xname, device_xname(self));
715 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
716 	ifp->if_ioctl = rtk_ioctl;
717 	ifp->if_start = rtk_start;
718 	ifp->if_watchdog = rtk_watchdog;
719 	ifp->if_init = rtk_init;
720 	ifp->if_stop = rtk_stop;
721 	IFQ_SET_READY(&ifp->if_snd);
722 
723 	/*
724 	 * Do ifmedia setup.
725 	 */
726 	mii->mii_ifp = ifp;
727 	mii->mii_readreg = rtk_phy_readreg;
728 	mii->mii_writereg = rtk_phy_writereg;
729 	mii->mii_statchg = rtk_phy_statchg;
730 	sc->ethercom.ec_mii = mii;
731 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
732 	    ether_mediastatus);
733 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
734 
735 	/* Choose a default media. */
736 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
737 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
738 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
739 	} else
740 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
741 
742 	/*
743 	 * Call MI attach routines.
744 	 */
745 	if_attach(ifp);
746 	if_deferred_start_init(ifp, NULL);
747 	ether_ifattach(ifp, eaddr);
748 
749 	rnd_attach_source(&sc->rnd_source, device_xname(self),
750 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
751 
752 	return;
753  fail_4:
754 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
755 		txd = &sc->rtk_tx_descs[i];
756 		if (txd->txd_dmamap != NULL)
757 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
758 	}
759  fail_3:
760 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
761  fail_2:
762 	bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
763 	    RTK_RXBUFLEN + 16);
764  fail_1:
765 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
766  fail_0:
767 	return;
768 }
769 
770 /*
771  * Initialize the transmit descriptors.
772  */
773 static void
rtk_list_tx_init(struct rtk_softc * sc)774 rtk_list_tx_init(struct rtk_softc *sc)
775 {
776 	struct rtk_tx_desc *txd;
777 	int i;
778 
779 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
780 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
781 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
782 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
783 
784 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
785 		txd = &sc->rtk_tx_descs[i];
786 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
787 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
788 	}
789 }
790 
791 /*
792  * rtk_activate:
793  *     Handle device activation/deactivation requests.
794  */
795 int
rtk_activate(device_t self,enum devact act)796 rtk_activate(device_t self, enum devact act)
797 {
798 	struct rtk_softc *sc = device_private(self);
799 
800 	switch (act) {
801 	case DVACT_DEACTIVATE:
802 		if_deactivate(&sc->ethercom.ec_if);
803 		return 0;
804 	default:
805 		return EOPNOTSUPP;
806 	}
807 }
808 
809 /*
810  * rtk_detach:
811  *     Detach a rtk interface.
812  */
813 int
rtk_detach(struct rtk_softc * sc)814 rtk_detach(struct rtk_softc *sc)
815 {
816 	struct ifnet *ifp = &sc->ethercom.ec_if;
817 	struct rtk_tx_desc *txd;
818 	int i;
819 
820 	/*
821 	 * Succeed now if there isn't any work to do.
822 	 */
823 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
824 		return 0;
825 
826 	/* Unhook our tick handler. */
827 	callout_stop(&sc->rtk_tick_ch);
828 
829 	/* Detach all PHYs. */
830 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
831 
832 	rnd_detach_source(&sc->rnd_source);
833 
834 	ether_ifdetach(ifp);
835 	if_detach(ifp);
836 
837 	/* Delete all remaining media. */
838 	ifmedia_fini(&sc->mii.mii_media);
839 
840 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
841 		txd = &sc->rtk_tx_descs[i];
842 		if (txd->txd_dmamap != NULL)
843 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
844 	}
845 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
846 	bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
847 	    RTK_RXBUFLEN + 16);
848 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
849 
850 	/* we don't want to run again */
851 	sc->sc_flags &= ~RTK_ATTACHED;
852 
853 	return 0;
854 }
855 
856 /*
857  * rtk_enable:
858  *     Enable the RTL81X9 chip.
859  */
860 int
rtk_enable(struct rtk_softc * sc)861 rtk_enable(struct rtk_softc *sc)
862 {
863 
864 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
865 		if ((*sc->sc_enable)(sc) != 0) {
866 			printf("%s: device enable failed\n",
867 			    device_xname(sc->sc_dev));
868 			return EIO;
869 		}
870 		sc->sc_flags |= RTK_ENABLED;
871 	}
872 	return 0;
873 }
874 
875 /*
876  * rtk_disable:
877  *     Disable the RTL81X9 chip.
878  */
879 void
rtk_disable(struct rtk_softc * sc)880 rtk_disable(struct rtk_softc *sc)
881 {
882 
883 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
884 		(*sc->sc_disable)(sc);
885 		sc->sc_flags &= ~RTK_ENABLED;
886 	}
887 }
888 
889 /*
890  * A frame has been uploaded: pass the resulting mbuf chain up to
891  * the higher level protocols.
892  *
893  * You know there's something wrong with a PCI bus-master chip design.
894  *
895  * The receive operation is badly documented in the datasheet, so I'll
896  * attempt to document it here. The driver provides a buffer area and
897  * places its base address in the RX buffer start address register.
898  * The chip then begins copying frames into the RX buffer. Each frame
899  * is preceded by a 32-bit RX status word which specifies the length
900  * of the frame and certain other status bits. Each frame (starting with
901  * the status word) is also 32-bit aligned. The frame length is in the
902  * first 16 bits of the status word; the lower 15 bits correspond with
903  * the 'rx status register' mentioned in the datasheet.
904  *
905  * Note: to make the Alpha happy, the frame payload needs to be aligned
906  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
907  * shifted forward 2 bytes.
908  */
909 static void
rtk_rxeof(struct rtk_softc * sc)910 rtk_rxeof(struct rtk_softc *sc)
911 {
912 	struct mbuf *m;
913 	struct ifnet *ifp;
914 	uint8_t *rxbufpos, *dst;
915 	u_int total_len, wrap;
916 	uint32_t rxstat;
917 	uint16_t cur_rx, new_rx;
918 	uint16_t limit;
919 	uint16_t rx_bytes, max_bytes;
920 
921 	ifp = &sc->ethercom.ec_if;
922 
923 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
924 
925 	/* Do not try to read past this point. */
926 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
927 
928 	if (limit < cur_rx)
929 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
930 	else
931 		max_bytes = limit - cur_rx;
932 	rx_bytes = 0;
933 
934 	while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
935 		rxbufpos = sc->rtk_rx_buf + cur_rx;
936 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
937 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
938 		rxstat = le32toh(*(uint32_t *)rxbufpos);
939 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
940 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
941 
942 		/*
943 		 * Here's a totally undocumented fact for you. When the
944 		 * RealTek chip is in the process of copying a packet into
945 		 * RAM for you, the length will be 0xfff0. If you spot a
946 		 * packet header with this value, you need to stop. The
947 		 * datasheet makes absolutely no mention of this and
948 		 * RealTek should be shot for this.
949 		 */
950 		total_len = rxstat >> 16;
951 		if (total_len == RTK_RXSTAT_UNFINISHED)
952 			break;
953 
954 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
955 		    total_len < ETHER_MIN_LEN ||
956 		    total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
957 			if_statinc(ifp, if_ierrors);
958 
959 			/*
960 			 * submitted by:[netbsd-pcmcia:00484]
961 			 *	Takahiro Kambe <taca@sky.yamashina.kyoto.jp>
962 			 * obtain from:
963 			 *     FreeBSD if_rl.c rev 1.24->1.25
964 			 *
965 			 */
966 #if 0
967 			if (rxstat & (RTK_RXSTAT_BADSYM | RTK_RXSTAT_RUNT |
968 			    RTK_RXSTAT_GIANT | RTK_RXSTAT_CRCERR |
969 			    RTK_RXSTAT_ALIGNERR)) {
970 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
971 				CSR_WRITE_2(sc, RTK_COMMAND,
972 				    RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
973 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
974 				CSR_WRITE_4(sc, RTK_RXADDR,
975 				    sc->recv_dmamap->dm_segs[0].ds_addr);
976 				cur_rx = 0;
977 			}
978 			break;
979 #else
980 			rtk_init(ifp);
981 			return;
982 #endif
983 		}
984 
985 		/* No errors; receive the packet. */
986 		rx_bytes += total_len + RTK_RXSTAT_LEN;
987 
988 		/*
989 		 * Avoid trying to read more bytes than we know
990 		 * the chip has prepared for us.
991 		 */
992 		if (rx_bytes > max_bytes)
993 			break;
994 
995 		/*
996 		 * Skip the status word, wrapping around to the beginning
997 		 * of the Rx area, if necessary.
998 		 */
999 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1000 		rxbufpos = sc->rtk_rx_buf + cur_rx;
1001 
1002 		/*
1003 		 * Compute the number of bytes at which the packet
1004 		 * will wrap to the beginning of the ring buffer.
1005 		 */
1006 		wrap = RTK_RXBUFLEN - cur_rx;
1007 
1008 		/*
1009 		 * Compute where the next pending packet is.
1010 		 */
1011 		if (total_len > wrap)
1012 			new_rx = total_len - wrap;
1013 		else
1014 			new_rx = cur_rx + total_len;
1015 		/* Round up to 32-bit boundary. */
1016 		new_rx = roundup2(new_rx, sizeof(uint32_t)) % RTK_RXBUFLEN;
1017 
1018 		/*
1019 		 * The RealTek chip includes the CRC with every
1020 		 * incoming packet; trim it off here.
1021 		 */
1022 		total_len -= ETHER_CRC_LEN;
1023 
1024 		/*
1025 		 * Now allocate an mbuf (and possibly a cluster) to hold
1026 		 * the packet. Note we offset the packet 2 bytes so that
1027 		 * data after the Ethernet header will be 4-byte aligned.
1028 		 */
1029 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1030 		if (m == NULL) {
1031 			printf("%s: unable to allocate Rx mbuf\n",
1032 			    device_xname(sc->sc_dev));
1033 			if_statinc(ifp, if_ierrors);
1034 			goto next_packet;
1035 		}
1036 		MCLAIM(m, &sc->ethercom.ec_rx_mowner);
1037 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1038 			MCLGET(m, M_DONTWAIT);
1039 			if ((m->m_flags & M_EXT) == 0) {
1040 				printf("%s: unable to allocate Rx cluster\n",
1041 				    device_xname(sc->sc_dev));
1042 				if_statinc(ifp, if_ierrors);
1043 				m_freem(m);
1044 				m = NULL;
1045 				goto next_packet;
1046 			}
1047 		}
1048 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
1049 		m_set_rcvif(m, ifp);
1050 		m->m_pkthdr.len = m->m_len = total_len;
1051 		dst = mtod(m, void *);
1052 
1053 		/*
1054 		 * If the packet wraps, copy up to the wrapping point.
1055 		 */
1056 		if (total_len > wrap) {
1057 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1058 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1059 			memcpy(dst, rxbufpos, wrap);
1060 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1061 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
1062 			cur_rx = 0;
1063 			rxbufpos = sc->rtk_rx_buf;
1064 			total_len -= wrap;
1065 			dst += wrap;
1066 		}
1067 
1068 		/*
1069 		 * ...and now the rest.
1070 		 */
1071 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1072 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1073 		memcpy(dst, rxbufpos, total_len);
1074 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1075 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
1076 
1077  next_packet:
1078 		CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1079 		cur_rx = new_rx;
1080 
1081 		if (m == NULL)
1082 			continue;
1083 
1084 		/* pass it on. */
1085 		if_percpuq_enqueue(ifp->if_percpuq, m);
1086 	}
1087 }
1088 
1089 /*
1090  * A frame was downloaded to the chip. It's safe for us to clean up
1091  * the list buffers.
1092  */
1093 static void
rtk_txeof(struct rtk_softc * sc)1094 rtk_txeof(struct rtk_softc *sc)
1095 {
1096 	struct ifnet *ifp;
1097 	struct rtk_tx_desc *txd;
1098 	uint32_t txstat;
1099 
1100 	ifp = &sc->ethercom.ec_if;
1101 
1102 	/*
1103 	 * Go through our tx list and free mbufs for those
1104 	 * frames that have been uploaded.
1105 	 */
1106 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1107 		txstat = CSR_READ_4(sc, txd->txd_txstat);
1108 		if ((txstat & (RTK_TXSTAT_TX_OK |
1109 		    RTK_TXSTAT_TX_UNDERRUN | RTK_TXSTAT_TXABRT)) == 0)
1110 			break;
1111 
1112 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1113 
1114 		bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1115 		    txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1116 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1117 		m_freem(txd->txd_mbuf);
1118 		txd->txd_mbuf = NULL;
1119 
1120 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1121 		if_statadd_ref(nsr, if_collisions,
1122 		    (txstat & RTK_TXSTAT_COLLCNT) >> 24);
1123 
1124 		if (txstat & RTK_TXSTAT_TX_OK)
1125 			if_statinc_ref(nsr, if_opackets);
1126 		else {
1127 			if_statinc_ref(nsr, if_oerrors);
1128 
1129 			/*
1130 			 * Increase Early TX threshold if underrun occurred.
1131 			 * Increase step 64 bytes.
1132 			 */
1133 			if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1134 #ifdef DEBUG
1135 				printf("%s: transmit underrun;",
1136 				    device_xname(sc->sc_dev));
1137 #endif
1138 				if (sc->sc_txthresh < RTK_TXTH_MAX) {
1139 					sc->sc_txthresh += 2;
1140 #ifdef DEBUG
1141 					printf(" new threshold: %d bytes",
1142 					    sc->sc_txthresh * 32);
1143 #endif
1144 				}
1145 #ifdef DEBUG
1146 				printf("\n");
1147 #endif
1148 			}
1149 			if (txstat & (RTK_TXSTAT_TXABRT | RTK_TXSTAT_OUTOFWIN))
1150 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1151 		}
1152 		IF_STAT_PUTREF(ifp);
1153 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1154 		ifp->if_flags &= ~IFF_OACTIVE;
1155 	}
1156 
1157 	/* Clear the timeout timer if there is no pending packet. */
1158 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1159 		ifp->if_timer = 0;
1160 
1161 }
1162 
1163 int
rtk_intr(void * arg)1164 rtk_intr(void *arg)
1165 {
1166 	struct rtk_softc *sc;
1167 	struct ifnet *ifp;
1168 	uint16_t status, rndstatus = 0;
1169 	int handled;
1170 
1171 	sc = arg;
1172 	ifp = &sc->ethercom.ec_if;
1173 
1174 	if (!device_has_power(sc->sc_dev))
1175 		return 0;
1176 
1177 	/* Disable interrupts. */
1178 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1179 
1180 	handled = 0;
1181 	for (;;) {
1182 
1183 		status = CSR_READ_2(sc, RTK_ISR);
1184 
1185 		if (status == 0xffff)
1186 			break; /* Card is gone... */
1187 
1188 		if (status) {
1189 			CSR_WRITE_2(sc, RTK_ISR, status);
1190 			rndstatus = status;
1191 		}
1192 
1193 		if ((status & RTK_INTRS) == 0)
1194 			break;
1195 
1196 		handled = 1;
1197 
1198 		if (status & RTK_ISR_RX_OK)
1199 			rtk_rxeof(sc);
1200 
1201 		if (status & RTK_ISR_RX_ERR)
1202 			rtk_rxeof(sc);
1203 
1204 		if (status & (RTK_ISR_TX_OK | RTK_ISR_TX_ERR))
1205 			rtk_txeof(sc);
1206 
1207 		if (status & RTK_ISR_SYSTEM_ERR) {
1208 			rtk_reset(sc);
1209 			rtk_init(ifp);
1210 		}
1211 	}
1212 
1213 	/* Re-enable interrupts. */
1214 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1215 
1216 	if_schedule_deferred_start(ifp);
1217 
1218 	rnd_add_uint32(&sc->rnd_source, rndstatus);
1219 
1220 	return handled;
1221 }
1222 
1223 /*
1224  * Main transmit routine.
1225  */
1226 
1227 static void
rtk_start(struct ifnet * ifp)1228 rtk_start(struct ifnet *ifp)
1229 {
1230 	struct rtk_softc *sc;
1231 	struct rtk_tx_desc *txd;
1232 	struct mbuf *m_head, *m_new;
1233 	int error, len;
1234 
1235 	sc = ifp->if_softc;
1236 
1237 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1238 		IFQ_POLL(&ifp->if_snd, m_head);
1239 		if (m_head == NULL)
1240 			break;
1241 		m_new = NULL;
1242 
1243 		/*
1244 		 * Load the DMA map.  If this fails, the packet didn't
1245 		 * fit in one DMA segment, and we need to copy.  Note,
1246 		 * the packet must also be aligned.
1247 		 * if the packet is too small, copy it too, so we're sure
1248 		 * so have enough room for the pad buffer.
1249 		 */
1250 		if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1251 		    m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1252 		    bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1253 			m_head, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
1254 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1255 			if (m_new == NULL) {
1256 				printf("%s: unable to allocate Tx mbuf\n",
1257 				    device_xname(sc->sc_dev));
1258 				break;
1259 			}
1260 			MCLAIM(m_new, &sc->ethercom.ec_rx_mowner);
1261 			if (m_head->m_pkthdr.len > MHLEN) {
1262 				MCLGET(m_new, M_DONTWAIT);
1263 				if ((m_new->m_flags & M_EXT) == 0) {
1264 					printf("%s: unable to allocate Tx "
1265 					    "cluster\n",
1266 					    device_xname(sc->sc_dev));
1267 					m_freem(m_new);
1268 					break;
1269 				}
1270 			}
1271 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
1272 			    mtod(m_new, void *));
1273 			m_new->m_pkthdr.len = m_new->m_len =
1274 			    m_head->m_pkthdr.len;
1275 			if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1276 				memset(
1277 				    mtod(m_new, char *) + m_head->m_pkthdr.len,
1278 				    0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1279 				m_new->m_pkthdr.len = m_new->m_len =
1280 				    ETHER_PAD_LEN;
1281 			}
1282 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
1283 			    txd->txd_dmamap, m_new,
1284 			    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1285 			if (error) {
1286 				printf("%s: unable to load Tx buffer, "
1287 				    "error = %d\n",
1288 				    device_xname(sc->sc_dev), error);
1289 				break;
1290 			}
1291 		}
1292 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1293 		/*
1294 		 * If there's a BPF listener, bounce a copy of this frame
1295 		 * to him.
1296 		 */
1297 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1298 		if (m_new != NULL) {
1299 			m_freem(m_head);
1300 			m_head = m_new;
1301 		}
1302 		txd->txd_mbuf = m_head;
1303 
1304 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1305 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1306 
1307 		/*
1308 		 * Transmit the frame.
1309 		 */
1310 		bus_dmamap_sync(sc->sc_dmat,
1311 		    txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1312 		    BUS_DMASYNC_PREWRITE);
1313 
1314 		len = txd->txd_dmamap->dm_segs[0].ds_len;
1315 
1316 		CSR_WRITE_4(sc, txd->txd_txaddr,
1317 		    txd->txd_dmamap->dm_segs[0].ds_addr);
1318 		CSR_WRITE_4(sc, txd->txd_txstat,
1319 		    RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1320 
1321 		/*
1322 		 * Set a timeout in case the chip goes out to lunch.
1323 		 */
1324 		ifp->if_timer = 5;
1325 	}
1326 
1327 	/*
1328 	 * We broke out of the loop because all our TX slots are
1329 	 * full. Mark the NIC as busy until it drains some of the
1330 	 * packets from the queue.
1331 	 */
1332 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1333 		ifp->if_flags |= IFF_OACTIVE;
1334 }
1335 
1336 static int
rtk_init(struct ifnet * ifp)1337 rtk_init(struct ifnet *ifp)
1338 {
1339 	struct rtk_softc *sc = ifp->if_softc;
1340 	int error, i;
1341 	uint32_t rxcfg;
1342 
1343 	if ((error = rtk_enable(sc)) != 0)
1344 		goto out;
1345 
1346 	/*
1347 	 * Cancel pending I/O.
1348 	 */
1349 	rtk_stop(ifp, 0);
1350 
1351 	/* Init our MAC address */
1352 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1353 		CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
1354 	}
1355 
1356 	/* Init the RX buffer pointer register. */
1357 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1358 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1359 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1360 
1361 	/* Init TX descriptors. */
1362 	rtk_list_tx_init(sc);
1363 
1364 	/* Init Early TX threshold. */
1365 	sc->sc_txthresh = RTK_TXTH_256;
1366 	/*
1367 	 * Enable transmit and receive.
1368 	 */
1369 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1370 
1371 	/*
1372 	 * Set the initial TX and RX configuration.
1373 	 */
1374 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1375 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1376 
1377 	/* Set the individual bit to receive frames for this host only. */
1378 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1379 	rxcfg |= RTK_RXCFG_RX_INDIV;
1380 
1381 	/* If we want promiscuous mode, set the allframes bit. */
1382 	if (ifp->if_flags & IFF_PROMISC) {
1383 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1384 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1385 	} else {
1386 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1387 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1388 	}
1389 
1390 	/*
1391 	 * Set capture broadcast bit to capture broadcast frames.
1392 	 */
1393 	if (ifp->if_flags & IFF_BROADCAST) {
1394 		rxcfg |= RTK_RXCFG_RX_BROAD;
1395 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1396 	} else {
1397 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
1398 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1399 	}
1400 
1401 	/*
1402 	 * Program the multicast filter, if necessary.
1403 	 */
1404 	rtk_setmulti(sc);
1405 
1406 	/*
1407 	 * Enable interrupts.
1408 	 */
1409 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1410 
1411 	/* Start RX/TX process. */
1412 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1413 
1414 	/* Enable receiver and transmitter. */
1415 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1416 
1417 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1418 
1419 	/*
1420 	 * Set current media.
1421 	 */
1422 	if ((error = ether_mediachange(ifp)) != 0)
1423 		goto out;
1424 
1425 	ifp->if_flags |= IFF_RUNNING;
1426 	ifp->if_flags &= ~IFF_OACTIVE;
1427 
1428 	callout_schedule(&sc->rtk_tick_ch, hz);
1429 
1430  out:
1431 	if (error) {
1432 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1433 		ifp->if_timer = 0;
1434 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1435 	}
1436 	return error;
1437 }
1438 
1439 static int
rtk_ioctl(struct ifnet * ifp,u_long command,void * data)1440 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1441 {
1442 	struct rtk_softc *sc = ifp->if_softc;
1443 	int s, error;
1444 
1445 	s = splnet();
1446 	error = ether_ioctl(ifp, command, data);
1447 	if (error == ENETRESET) {
1448 		if (ifp->if_flags & IFF_RUNNING) {
1449 			/*
1450 			 * Multicast list has changed.  Set the
1451 			 * hardware filter accordingly.
1452 			 */
1453 			rtk_setmulti(sc);
1454 		}
1455 		error = 0;
1456 	}
1457 	splx(s);
1458 
1459 	return error;
1460 }
1461 
1462 static void
rtk_watchdog(struct ifnet * ifp)1463 rtk_watchdog(struct ifnet *ifp)
1464 {
1465 	struct rtk_softc *sc;
1466 
1467 	sc = ifp->if_softc;
1468 
1469 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1470 	if_statinc(ifp, if_oerrors);
1471 	rtk_txeof(sc);
1472 	rtk_rxeof(sc);
1473 	rtk_init(ifp);
1474 }
1475 
1476 /*
1477  * Stop the adapter and free any mbufs allocated to the
1478  * RX and TX lists.
1479  */
1480 static void
rtk_stop(struct ifnet * ifp,int disable)1481 rtk_stop(struct ifnet *ifp, int disable)
1482 {
1483 	struct rtk_softc *sc = ifp->if_softc;
1484 	struct rtk_tx_desc *txd;
1485 
1486 	callout_stop(&sc->rtk_tick_ch);
1487 
1488 	mii_down(&sc->mii);
1489 
1490 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1491 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1492 
1493 	/*
1494 	 * Free the TX list buffers.
1495 	 */
1496 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1497 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1498 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1499 		m_freem(txd->txd_mbuf);
1500 		txd->txd_mbuf = NULL;
1501 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1502 	}
1503 
1504 	if (disable)
1505 		rtk_disable(sc);
1506 
1507 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1508 	ifp->if_timer = 0;
1509 }
1510 
1511 static void
rtk_tick(void * arg)1512 rtk_tick(void *arg)
1513 {
1514 	struct rtk_softc *sc = arg;
1515 	int s;
1516 
1517 	s = splnet();
1518 	mii_tick(&sc->mii);
1519 	splx(s);
1520 
1521 	callout_schedule(&sc->rtk_tick_ch, hz);
1522 }
1523