1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5 #include <linux/devcoredump.h>
6
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 #include "sdio.h"
22
23 bool rtw_disable_lps_deep_mode;
24 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
25 bool rtw_bf_support = true;
26 unsigned int rtw_debug_mask;
27 EXPORT_SYMBOL(rtw_debug_mask);
28 /* EDCCA is enabled during normal behavior. For debugging purpose in
29 * a noisy environment, it can be disabled via edcca debugfs. Because
30 * all rtw88 devices will probably be affected if environment is noisy,
31 * rtw_edcca_enabled is just declared by driver instead of by device.
32 * So, turning it off will take effect for all rtw88 devices before
33 * there is a tough reason to maintain rtw_edcca_enabled by device.
34 */
35 bool rtw_edcca_enabled = true;
36
37 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
38 module_param_named(support_bf, rtw_bf_support, bool, 0644);
39 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
40
41 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
42 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
43 MODULE_PARM_DESC(debug_mask, "Debugging mask");
44
45 static struct ieee80211_channel rtw_channeltable_2g[] = {
46 {.center_freq = 2412, .hw_value = 1,},
47 {.center_freq = 2417, .hw_value = 2,},
48 {.center_freq = 2422, .hw_value = 3,},
49 {.center_freq = 2427, .hw_value = 4,},
50 {.center_freq = 2432, .hw_value = 5,},
51 {.center_freq = 2437, .hw_value = 6,},
52 {.center_freq = 2442, .hw_value = 7,},
53 {.center_freq = 2447, .hw_value = 8,},
54 {.center_freq = 2452, .hw_value = 9,},
55 {.center_freq = 2457, .hw_value = 10,},
56 {.center_freq = 2462, .hw_value = 11,},
57 {.center_freq = 2467, .hw_value = 12,},
58 {.center_freq = 2472, .hw_value = 13,},
59 {.center_freq = 2484, .hw_value = 14,},
60 };
61
62 static struct ieee80211_channel rtw_channeltable_5g[] = {
63 {.center_freq = 5180, .hw_value = 36,},
64 {.center_freq = 5200, .hw_value = 40,},
65 {.center_freq = 5220, .hw_value = 44,},
66 {.center_freq = 5240, .hw_value = 48,},
67 {.center_freq = 5260, .hw_value = 52,},
68 {.center_freq = 5280, .hw_value = 56,},
69 {.center_freq = 5300, .hw_value = 60,},
70 {.center_freq = 5320, .hw_value = 64,},
71 {.center_freq = 5500, .hw_value = 100,},
72 {.center_freq = 5520, .hw_value = 104,},
73 {.center_freq = 5540, .hw_value = 108,},
74 {.center_freq = 5560, .hw_value = 112,},
75 {.center_freq = 5580, .hw_value = 116,},
76 {.center_freq = 5600, .hw_value = 120,},
77 {.center_freq = 5620, .hw_value = 124,},
78 {.center_freq = 5640, .hw_value = 128,},
79 {.center_freq = 5660, .hw_value = 132,},
80 {.center_freq = 5680, .hw_value = 136,},
81 {.center_freq = 5700, .hw_value = 140,},
82 {.center_freq = 5720, .hw_value = 144,},
83 {.center_freq = 5745, .hw_value = 149,},
84 {.center_freq = 5765, .hw_value = 153,},
85 {.center_freq = 5785, .hw_value = 157,},
86 {.center_freq = 5805, .hw_value = 161,},
87 {.center_freq = 5825, .hw_value = 165,
88 .flags = IEEE80211_CHAN_NO_HT40MINUS},
89 };
90
91 static struct ieee80211_rate rtw_ratetable[] = {
92 {.bitrate = 10, .hw_value = 0x00,},
93 {.bitrate = 20, .hw_value = 0x01,},
94 {.bitrate = 55, .hw_value = 0x02,},
95 {.bitrate = 110, .hw_value = 0x03,},
96 {.bitrate = 60, .hw_value = 0x04,},
97 {.bitrate = 90, .hw_value = 0x05,},
98 {.bitrate = 120, .hw_value = 0x06,},
99 {.bitrate = 180, .hw_value = 0x07,},
100 {.bitrate = 240, .hw_value = 0x08,},
101 {.bitrate = 360, .hw_value = 0x09,},
102 {.bitrate = 480, .hw_value = 0x0a,},
103 {.bitrate = 540, .hw_value = 0x0b,},
104 };
105
106 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
107 {
108 .max = 1,
109 .types = BIT(NL80211_IFTYPE_STATION),
110 },
111 {
112 .max = 1,
113 .types = BIT(NL80211_IFTYPE_AP),
114 }
115 };
116
117 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
118 {
119 .limits = rtw_iface_limits,
120 .n_limits = ARRAY_SIZE(rtw_iface_limits),
121 .max_interfaces = 2,
122 .num_different_channels = 1,
123 }
124 };
125
rtw_desc_to_bitrate(u8 desc_rate)126 u16 rtw_desc_to_bitrate(u8 desc_rate)
127 {
128 struct ieee80211_rate rate;
129
130 if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
131 return 0;
132
133 rate = rtw_ratetable[desc_rate];
134
135 return rate.bitrate;
136 }
137
138 static struct ieee80211_supported_band rtw_band_2ghz = {
139 .band = NL80211_BAND_2GHZ,
140
141 .channels = rtw_channeltable_2g,
142 .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
143
144 .bitrates = rtw_ratetable,
145 .n_bitrates = ARRAY_SIZE(rtw_ratetable),
146
147 .ht_cap = {0},
148 .vht_cap = {0},
149 };
150
151 static struct ieee80211_supported_band rtw_band_5ghz = {
152 .band = NL80211_BAND_5GHZ,
153
154 .channels = rtw_channeltable_5g,
155 .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
156
157 /* 5G has no CCK rates */
158 .bitrates = rtw_ratetable + 4,
159 .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
160
161 .ht_cap = {0},
162 .vht_cap = {0},
163 };
164
165 struct rtw_watch_dog_iter_data {
166 struct rtw_dev *rtwdev;
167 struct rtw_vif *rtwvif;
168 };
169
rtw_dynamic_csi_rate(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif)170 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
171 {
172 struct rtw_bf_info *bf_info = &rtwdev->bf_info;
173 u8 fix_rate_enable = 0;
174 u8 new_csi_rate_idx;
175
176 if (rtwvif->bfee.role != RTW_BFEE_SU &&
177 rtwvif->bfee.role != RTW_BFEE_MU)
178 return;
179
180 rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
181 bf_info->cur_csi_rpt_rate,
182 fix_rate_enable, &new_csi_rate_idx);
183
184 if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
185 bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
186 }
187
rtw_vif_watch_dog_iter(void * data,struct ieee80211_vif * vif)188 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
189 {
190 struct rtw_watch_dog_iter_data *iter_data = data;
191 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
192
193 if (vif->type == NL80211_IFTYPE_STATION)
194 if (vif->cfg.assoc)
195 iter_data->rtwvif = rtwvif;
196
197 rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
198
199 rtwvif->stats.tx_unicast = 0;
200 rtwvif->stats.rx_unicast = 0;
201 rtwvif->stats.tx_cnt = 0;
202 rtwvif->stats.rx_cnt = 0;
203 }
204
205 /* process TX/RX statistics periodically for hardware,
206 * the information helps hardware to enhance performance
207 */
rtw_watch_dog_work(struct work_struct * work)208 static void rtw_watch_dog_work(struct work_struct *work)
209 {
210 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
211 watch_dog_work.work);
212 struct rtw_traffic_stats *stats = &rtwdev->stats;
213 struct rtw_watch_dog_iter_data data = {};
214 bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
215 u32 tx_unicast_mbps, rx_unicast_mbps;
216 bool ps_active;
217
218 mutex_lock(&rtwdev->mutex);
219
220 if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
221 goto unlock;
222
223 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
224 RTW_WATCH_DOG_DELAY_TIME);
225
226 if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
227 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
228 else
229 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
230
231 if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
232 rtw_coex_wl_status_change_notify(rtwdev, 0);
233
234 if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
235 stats->rx_cnt > RTW_LPS_THRESHOLD)
236 ps_active = true;
237 else
238 ps_active = false;
239
240 tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT;
241 rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT;
242
243 ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps);
244 ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps);
245 stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
246 stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
247
248 /* reset tx/rx statictics */
249 stats->tx_unicast = 0;
250 stats->rx_unicast = 0;
251 stats->tx_cnt = 0;
252 stats->rx_cnt = 0;
253
254 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
255 goto unlock;
256
257 /* make sure BB/RF is working for dynamic mech */
258 rtw_leave_lps(rtwdev);
259 rtw_coex_wl_status_check(rtwdev);
260 rtw_coex_query_bt_hid_list(rtwdev);
261
262 rtw_phy_dynamic_mechanism(rtwdev);
263
264 rtw_hci_dynamic_rx_agg(rtwdev,
265 tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1);
266
267 data.rtwdev = rtwdev;
268 /* rtw_iterate_vifs internally uses an atomic iterator which is needed
269 * to avoid taking local->iflist_mtx mutex
270 */
271 rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
272
273 /* fw supports only one station associated to enter lps, if there are
274 * more than two stations associated to the AP, then we can not enter
275 * lps, because fw does not handle the overlapped beacon interval
276 *
277 * rtw_recalc_lps() iterate vifs and determine if driver can enter
278 * ps by vif->type and vif->cfg.ps, all we need to do here is to
279 * get that vif and check if device is having traffic more than the
280 * threshold.
281 */
282 if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
283 !rtwdev->beacon_loss && !rtwdev->ap_active)
284 rtw_enter_lps(rtwdev, data.rtwvif->port);
285
286 rtwdev->watch_dog_cnt++;
287
288 unlock:
289 mutex_unlock(&rtwdev->mutex);
290 }
291
rtw_c2h_work(struct work_struct * work)292 static void rtw_c2h_work(struct work_struct *work)
293 {
294 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
295 struct sk_buff *skb, *tmp;
296
297 skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
298 skb_unlink(skb, &rtwdev->c2h_queue);
299 rtw_fw_c2h_cmd_handle(rtwdev, skb);
300 dev_kfree_skb_any(skb);
301 }
302 }
303
rtw_ips_work(struct work_struct * work)304 static void rtw_ips_work(struct work_struct *work)
305 {
306 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
307
308 mutex_lock(&rtwdev->mutex);
309 if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
310 rtw_enter_ips(rtwdev);
311 mutex_unlock(&rtwdev->mutex);
312 }
313
rtw_sta_rc_work(struct work_struct * work)314 static void rtw_sta_rc_work(struct work_struct *work)
315 {
316 struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
317 rc_work);
318 struct rtw_dev *rtwdev = si->rtwdev;
319
320 mutex_lock(&rtwdev->mutex);
321 rtw_update_sta_info(rtwdev, si, true);
322 mutex_unlock(&rtwdev->mutex);
323 }
324
rtw_sta_add(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,struct ieee80211_vif * vif)325 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
326 struct ieee80211_vif *vif)
327 {
328 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
329 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
330 int i;
331
332 if (vif->type == NL80211_IFTYPE_STATION) {
333 si->mac_id = rtwvif->mac_id;
334 } else {
335 si->mac_id = rtw_acquire_macid(rtwdev);
336 if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
337 return -ENOSPC;
338 }
339
340 si->rtwdev = rtwdev;
341 si->sta = sta;
342 si->vif = vif;
343 si->init_ra_lv = 1;
344 ewma_rssi_init(&si->avg_rssi);
345 for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
346 rtw_txq_init(rtwdev, sta->txq[i]);
347 INIT_WORK(&si->rc_work, rtw_sta_rc_work);
348
349 rtw_update_sta_info(rtwdev, si, true);
350 rtw_fw_media_status_report(rtwdev, si->mac_id, true);
351
352 rtwdev->sta_cnt++;
353 rtwdev->beacon_loss = false;
354 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
355 sta->addr, si->mac_id);
356
357 return 0;
358 }
359
rtw_sta_remove(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,bool fw_exist)360 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
361 bool fw_exist)
362 {
363 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
364 struct ieee80211_vif *vif = si->vif;
365 int i;
366
367 cancel_work_sync(&si->rc_work);
368
369 if (vif->type != NL80211_IFTYPE_STATION)
370 rtw_release_macid(rtwdev, si->mac_id);
371 if (fw_exist)
372 rtw_fw_media_status_report(rtwdev, si->mac_id, false);
373
374 for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
375 rtw_txq_cleanup(rtwdev, sta->txq[i]);
376
377 kfree(si->mask);
378
379 rtwdev->sta_cnt--;
380 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
381 sta->addr, si->mac_id);
382 }
383
384 struct rtw_fwcd_hdr {
385 u32 item;
386 u32 size;
387 u32 padding1;
388 u32 padding2;
389 } __packed;
390
rtw_fwcd_prep(struct rtw_dev * rtwdev)391 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
392 {
393 const struct rtw_chip_info *chip = rtwdev->chip;
394 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
395 const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
396 u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
397 u8 i;
398
399 if (segs) {
400 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
401
402 for (i = 0; i < segs->num; i++)
403 prep_size += segs->segs[i];
404 }
405
406 desc->data = vmalloc(prep_size);
407 if (!desc->data)
408 return -ENOMEM;
409
410 desc->size = prep_size;
411 desc->next = desc->data;
412
413 return 0;
414 }
415
rtw_fwcd_next(struct rtw_dev * rtwdev,u32 item,u32 size)416 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
417 {
418 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
419 struct rtw_fwcd_hdr *hdr;
420 u8 *next;
421
422 if (!desc->data) {
423 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
424 return NULL;
425 }
426
427 next = desc->next + sizeof(struct rtw_fwcd_hdr);
428 if (next - desc->data + size > desc->size) {
429 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
430 return NULL;
431 }
432
433 hdr = (struct rtw_fwcd_hdr *)(desc->next);
434 hdr->item = item;
435 hdr->size = size;
436 hdr->padding1 = 0x01234567;
437 hdr->padding2 = 0x89abcdef;
438 desc->next = next + size;
439
440 return next;
441 }
442
rtw_fwcd_dump(struct rtw_dev * rtwdev)443 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
444 {
445 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
446
447 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
448
449 /* Data will be freed after lifetime of device coredump. After calling
450 * dev_coredump, data is supposed to be handled by the device coredump
451 * framework. Note that a new dump will be discarded if a previous one
452 * hasn't been released yet.
453 */
454 dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
455 }
456
rtw_fwcd_free(struct rtw_dev * rtwdev,bool free_self)457 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
458 {
459 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
460
461 if (free_self) {
462 rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
463 vfree(desc->data);
464 }
465
466 desc->data = NULL;
467 desc->next = NULL;
468 }
469
rtw_fw_dump_crash_log(struct rtw_dev * rtwdev)470 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
471 {
472 u32 size = rtwdev->chip->fw_rxff_size;
473 u32 *buf;
474 u8 seq;
475
476 buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
477 if (!buf)
478 return -ENOMEM;
479
480 if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
481 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
482 return -EINVAL;
483 }
484
485 if (GET_FW_DUMP_LEN(buf) == 0) {
486 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
487 return -EINVAL;
488 }
489
490 seq = GET_FW_DUMP_SEQ(buf);
491 if (seq > 0) {
492 rtw_dbg(rtwdev, RTW_DBG_FW,
493 "fw crash dump's seq is wrong: %d\n", seq);
494 return -EINVAL;
495 }
496
497 return 0;
498 }
499
rtw_dump_fw(struct rtw_dev * rtwdev,const u32 ocp_src,u32 size,u32 fwcd_item)500 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
501 u32 fwcd_item)
502 {
503 u32 rxff = rtwdev->chip->fw_rxff_size;
504 u32 dump_size, done_size = 0;
505 u8 *buf;
506 int ret;
507
508 buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
509 if (!buf)
510 return -ENOMEM;
511
512 while (size) {
513 dump_size = size > rxff ? rxff : size;
514
515 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
516 dump_size);
517 if (ret) {
518 rtw_err(rtwdev,
519 "ddma fw 0x%x [+0x%x] to fw fifo fail\n",
520 ocp_src, done_size);
521 return ret;
522 }
523
524 ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
525 dump_size, (u32 *)(buf + done_size));
526 if (ret) {
527 rtw_err(rtwdev,
528 "dump fw 0x%x [+0x%x] from fw fifo fail\n",
529 ocp_src, done_size);
530 return ret;
531 }
532
533 size -= dump_size;
534 done_size += dump_size;
535 }
536
537 return 0;
538 }
539 EXPORT_SYMBOL(rtw_dump_fw);
540
rtw_dump_reg(struct rtw_dev * rtwdev,const u32 addr,const u32 size)541 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
542 {
543 u8 *buf;
544 u32 i;
545
546 if (addr & 0x3) {
547 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
548 return -EINVAL;
549 }
550
551 buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
552 if (!buf)
553 return -ENOMEM;
554
555 for (i = 0; i < size; i += 4)
556 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
557
558 return 0;
559 }
560 EXPORT_SYMBOL(rtw_dump_reg);
561
rtw_vif_assoc_changed(struct rtw_vif * rtwvif,struct ieee80211_bss_conf * conf)562 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
563 struct ieee80211_bss_conf *conf)
564 {
565 struct ieee80211_vif *vif = NULL;
566
567 if (conf)
568 vif = container_of(conf, struct ieee80211_vif, bss_conf);
569
570 if (conf && vif->cfg.assoc) {
571 rtwvif->aid = vif->cfg.aid;
572 rtwvif->net_type = RTW_NET_MGD_LINKED;
573 } else {
574 rtwvif->aid = 0;
575 rtwvif->net_type = RTW_NET_NO_LINK;
576 }
577 }
578
rtw_reset_key_iter(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ieee80211_key_conf * key,void * data)579 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
580 struct ieee80211_vif *vif,
581 struct ieee80211_sta *sta,
582 struct ieee80211_key_conf *key,
583 void *data)
584 {
585 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
586 struct rtw_sec_desc *sec = &rtwdev->sec;
587
588 rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
589 }
590
rtw_reset_sta_iter(void * data,struct ieee80211_sta * sta)591 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
592 {
593 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
594
595 if (rtwdev->sta_cnt == 0) {
596 rtw_warn(rtwdev, "sta count before reset should not be 0\n");
597 return;
598 }
599 rtw_sta_remove(rtwdev, sta, false);
600 }
601
rtw_reset_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)602 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
603 {
604 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
605 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
606
607 rtw_bf_disassoc(rtwdev, vif, NULL);
608 rtw_vif_assoc_changed(rtwvif, NULL);
609 rtw_txq_cleanup(rtwdev, vif->txq);
610
611 rtw_release_macid(rtwdev, rtwvif->mac_id);
612 }
613
rtw_fw_recovery(struct rtw_dev * rtwdev)614 void rtw_fw_recovery(struct rtw_dev *rtwdev)
615 {
616 if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
617 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
618 }
619
__fw_recovery_work(struct rtw_dev * rtwdev)620 static void __fw_recovery_work(struct rtw_dev *rtwdev)
621 {
622 int ret = 0;
623
624 set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
625 clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
626
627 ret = rtw_fwcd_prep(rtwdev);
628 if (ret)
629 goto free;
630 ret = rtw_fw_dump_crash_log(rtwdev);
631 if (ret)
632 goto free;
633 ret = rtw_chip_dump_fw_crash(rtwdev);
634 if (ret)
635 goto free;
636
637 rtw_fwcd_dump(rtwdev);
638 free:
639 rtw_fwcd_free(rtwdev, !!ret);
640 rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
641
642 WARN(1, "firmware crash, start reset and recover\n");
643
644 rcu_read_lock();
645 rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
646 rcu_read_unlock();
647 rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
648 rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
649 bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
650 rtw_enter_ips(rtwdev);
651 }
652
rtw_fw_recovery_work(struct work_struct * work)653 static void rtw_fw_recovery_work(struct work_struct *work)
654 {
655 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
656 fw_recovery_work);
657
658 mutex_lock(&rtwdev->mutex);
659 __fw_recovery_work(rtwdev);
660 mutex_unlock(&rtwdev->mutex);
661
662 ieee80211_restart_hw(rtwdev->hw);
663 }
664
665 struct rtw_txq_ba_iter_data {
666 };
667
rtw_txq_ba_iter(void * data,struct ieee80211_sta * sta)668 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
669 {
670 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
671 int ret;
672 u8 tid;
673
674 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
675 while (tid != IEEE80211_NUM_TIDS) {
676 clear_bit(tid, si->tid_ba);
677 ret = ieee80211_start_tx_ba_session(sta, tid, 0);
678 if (ret == -EINVAL) {
679 struct ieee80211_txq *txq;
680 struct rtw_txq *rtwtxq;
681
682 txq = sta->txq[tid];
683 rtwtxq = (struct rtw_txq *)txq->drv_priv;
684 set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
685 }
686
687 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
688 }
689 }
690
rtw_txq_ba_work(struct work_struct * work)691 static void rtw_txq_ba_work(struct work_struct *work)
692 {
693 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
694 struct rtw_txq_ba_iter_data data;
695
696 rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
697 }
698
rtw_set_rx_freq_band(struct rtw_rx_pkt_stat * pkt_stat,u8 channel)699 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
700 {
701 if (IS_CH_2G_BAND(channel))
702 pkt_stat->band = NL80211_BAND_2GHZ;
703 else if (IS_CH_5G_BAND(channel))
704 pkt_stat->band = NL80211_BAND_5GHZ;
705 else
706 return;
707
708 pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
709 }
710 EXPORT_SYMBOL(rtw_set_rx_freq_band);
711
rtw_set_dtim_period(struct rtw_dev * rtwdev,int dtim_period)712 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
713 {
714 rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
715 rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
716 }
717
rtw_update_channel(struct rtw_dev * rtwdev,u8 center_channel,u8 primary_channel,enum rtw_supported_band band,enum rtw_bandwidth bandwidth)718 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
719 u8 primary_channel, enum rtw_supported_band band,
720 enum rtw_bandwidth bandwidth)
721 {
722 enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
723 struct rtw_hal *hal = &rtwdev->hal;
724 u8 *cch_by_bw = hal->cch_by_bw;
725 u32 center_freq, primary_freq;
726 enum rtw_sar_bands sar_band;
727 u8 primary_channel_idx;
728
729 center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
730 primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
731
732 /* assign the center channel used while 20M bw is selected */
733 cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
734
735 /* assign the center channel used while current bw is selected */
736 cch_by_bw[bandwidth] = center_channel;
737
738 switch (bandwidth) {
739 case RTW_CHANNEL_WIDTH_20:
740 default:
741 primary_channel_idx = RTW_SC_DONT_CARE;
742 break;
743 case RTW_CHANNEL_WIDTH_40:
744 if (primary_freq > center_freq)
745 primary_channel_idx = RTW_SC_20_UPPER;
746 else
747 primary_channel_idx = RTW_SC_20_LOWER;
748 break;
749 case RTW_CHANNEL_WIDTH_80:
750 if (primary_freq > center_freq) {
751 if (primary_freq - center_freq == 10)
752 primary_channel_idx = RTW_SC_20_UPPER;
753 else
754 primary_channel_idx = RTW_SC_20_UPMOST;
755
756 /* assign the center channel used
757 * while 40M bw is selected
758 */
759 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
760 } else {
761 if (center_freq - primary_freq == 10)
762 primary_channel_idx = RTW_SC_20_LOWER;
763 else
764 primary_channel_idx = RTW_SC_20_LOWEST;
765
766 /* assign the center channel used
767 * while 40M bw is selected
768 */
769 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
770 }
771 break;
772 }
773
774 switch (center_channel) {
775 case 1 ... 14:
776 sar_band = RTW_SAR_BAND_0;
777 break;
778 case 36 ... 64:
779 sar_band = RTW_SAR_BAND_1;
780 break;
781 case 100 ... 144:
782 sar_band = RTW_SAR_BAND_3;
783 break;
784 case 149 ... 177:
785 sar_band = RTW_SAR_BAND_4;
786 break;
787 default:
788 WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
789 sar_band = RTW_SAR_BAND_0;
790 break;
791 }
792
793 hal->current_primary_channel_index = primary_channel_idx;
794 hal->current_band_width = bandwidth;
795 hal->primary_channel = primary_channel;
796 hal->current_channel = center_channel;
797 hal->current_band_type = band;
798 hal->sar_band = sar_band;
799 }
800
rtw_get_channel_params(struct cfg80211_chan_def * chandef,struct rtw_channel_params * chan_params)801 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
802 struct rtw_channel_params *chan_params)
803 {
804 struct ieee80211_channel *channel = chandef->chan;
805 enum nl80211_chan_width width = chandef->width;
806 u32 primary_freq, center_freq;
807 u8 center_chan;
808 u8 bandwidth = RTW_CHANNEL_WIDTH_20;
809
810 center_chan = channel->hw_value;
811 primary_freq = channel->center_freq;
812 center_freq = chandef->center_freq1;
813
814 switch (width) {
815 case NL80211_CHAN_WIDTH_20_NOHT:
816 case NL80211_CHAN_WIDTH_20:
817 bandwidth = RTW_CHANNEL_WIDTH_20;
818 break;
819 case NL80211_CHAN_WIDTH_40:
820 bandwidth = RTW_CHANNEL_WIDTH_40;
821 if (primary_freq > center_freq)
822 center_chan -= 2;
823 else
824 center_chan += 2;
825 break;
826 case NL80211_CHAN_WIDTH_80:
827 bandwidth = RTW_CHANNEL_WIDTH_80;
828 if (primary_freq > center_freq) {
829 if (primary_freq - center_freq == 10)
830 center_chan -= 2;
831 else
832 center_chan -= 6;
833 } else {
834 if (center_freq - primary_freq == 10)
835 center_chan += 2;
836 else
837 center_chan += 6;
838 }
839 break;
840 default:
841 center_chan = 0;
842 break;
843 }
844
845 chan_params->center_chan = center_chan;
846 chan_params->bandwidth = bandwidth;
847 chan_params->primary_chan = channel->hw_value;
848 }
849
rtw_set_channel(struct rtw_dev * rtwdev)850 void rtw_set_channel(struct rtw_dev *rtwdev)
851 {
852 const struct rtw_chip_info *chip = rtwdev->chip;
853 struct ieee80211_hw *hw = rtwdev->hw;
854 struct rtw_hal *hal = &rtwdev->hal;
855 struct rtw_channel_params ch_param;
856 u8 center_chan, primary_chan, bandwidth, band;
857
858 rtw_get_channel_params(&hw->conf.chandef, &ch_param);
859 if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
860 return;
861
862 center_chan = ch_param.center_chan;
863 primary_chan = ch_param.primary_chan;
864 bandwidth = ch_param.bandwidth;
865 band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
866
867 rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
868
869 if (rtwdev->scan_info.op_chan)
870 rtw_store_op_chan(rtwdev, true);
871
872 chip->ops->set_channel(rtwdev, center_chan, bandwidth,
873 hal->current_primary_channel_index);
874
875 if (hal->current_band_type == RTW_BAND_5G) {
876 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
877 } else {
878 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
879 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
880 else
881 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
882 }
883
884 rtw_phy_set_tx_power_level(rtwdev, center_chan);
885
886 /* if the channel isn't set for scanning, we will do RF calibration
887 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
888 * during scanning on each channel takes too long.
889 */
890 if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
891 rtwdev->need_rfk = true;
892 }
893
rtw_chip_prepare_tx(struct rtw_dev * rtwdev)894 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
895 {
896 const struct rtw_chip_info *chip = rtwdev->chip;
897
898 if (rtwdev->need_rfk) {
899 rtwdev->need_rfk = false;
900 chip->ops->phy_calibration(rtwdev);
901 }
902 }
903
rtw_vif_write_addr(struct rtw_dev * rtwdev,u32 start,u8 * addr)904 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
905 {
906 int i;
907
908 for (i = 0; i < ETH_ALEN; i++)
909 rtw_write8(rtwdev, start + i, addr[i]);
910 }
911
rtw_vif_port_config(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,u32 config)912 void rtw_vif_port_config(struct rtw_dev *rtwdev,
913 struct rtw_vif *rtwvif,
914 u32 config)
915 {
916 u32 addr, mask;
917
918 if (config & PORT_SET_MAC_ADDR) {
919 addr = rtwvif->conf->mac_addr.addr;
920 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
921 }
922 if (config & PORT_SET_BSSID) {
923 addr = rtwvif->conf->bssid.addr;
924 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
925 }
926 if (config & PORT_SET_NET_TYPE) {
927 addr = rtwvif->conf->net_type.addr;
928 mask = rtwvif->conf->net_type.mask;
929 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
930 }
931 if (config & PORT_SET_AID) {
932 addr = rtwvif->conf->aid.addr;
933 mask = rtwvif->conf->aid.mask;
934 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
935 }
936 if (config & PORT_SET_BCN_CTRL) {
937 addr = rtwvif->conf->bcn_ctrl.addr;
938 mask = rtwvif->conf->bcn_ctrl.mask;
939 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
940 }
941 }
942
hw_bw_cap_to_bitamp(u8 bw_cap)943 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
944 {
945 u8 bw = 0;
946
947 switch (bw_cap) {
948 case EFUSE_HW_CAP_IGNORE:
949 case EFUSE_HW_CAP_SUPP_BW80:
950 bw |= BIT(RTW_CHANNEL_WIDTH_80);
951 fallthrough;
952 case EFUSE_HW_CAP_SUPP_BW40:
953 bw |= BIT(RTW_CHANNEL_WIDTH_40);
954 fallthrough;
955 default:
956 bw |= BIT(RTW_CHANNEL_WIDTH_20);
957 break;
958 }
959
960 return bw;
961 }
962
rtw_hw_config_rf_ant_num(struct rtw_dev * rtwdev,u8 hw_ant_num)963 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
964 {
965 const struct rtw_chip_info *chip = rtwdev->chip;
966 struct rtw_hal *hal = &rtwdev->hal;
967
968 if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
969 hw_ant_num >= hal->rf_path_num)
970 return;
971
972 switch (hw_ant_num) {
973 case 1:
974 hal->rf_type = RF_1T1R;
975 hal->rf_path_num = 1;
976 if (!chip->fix_rf_phy_num)
977 hal->rf_phy_num = hal->rf_path_num;
978 hal->antenna_tx = BB_PATH_A;
979 hal->antenna_rx = BB_PATH_A;
980 break;
981 default:
982 WARN(1, "invalid hw configuration from efuse\n");
983 break;
984 }
985 }
986
get_vht_ra_mask(struct ieee80211_sta * sta)987 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
988 {
989 u64 ra_mask = 0;
990 u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
991 u8 vht_mcs_cap;
992 int i, nss;
993
994 /* 4SS, every two bits for MCS7/8/9 */
995 for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
996 vht_mcs_cap = mcs_map & 0x3;
997 switch (vht_mcs_cap) {
998 case 2: /* MCS9 */
999 ra_mask |= 0x3ffULL << nss;
1000 break;
1001 case 1: /* MCS8 */
1002 ra_mask |= 0x1ffULL << nss;
1003 break;
1004 case 0: /* MCS7 */
1005 ra_mask |= 0x0ffULL << nss;
1006 break;
1007 default:
1008 break;
1009 }
1010 }
1011
1012 return ra_mask;
1013 }
1014
get_rate_id(u8 wireless_set,enum rtw_bandwidth bw_mode,u8 tx_num)1015 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1016 {
1017 u8 rate_id = 0;
1018
1019 switch (wireless_set) {
1020 case WIRELESS_CCK:
1021 rate_id = RTW_RATEID_B_20M;
1022 break;
1023 case WIRELESS_OFDM:
1024 rate_id = RTW_RATEID_G;
1025 break;
1026 case WIRELESS_CCK | WIRELESS_OFDM:
1027 rate_id = RTW_RATEID_BG;
1028 break;
1029 case WIRELESS_OFDM | WIRELESS_HT:
1030 if (tx_num == 1)
1031 rate_id = RTW_RATEID_GN_N1SS;
1032 else if (tx_num == 2)
1033 rate_id = RTW_RATEID_GN_N2SS;
1034 else if (tx_num == 3)
1035 rate_id = RTW_RATEID_ARFR5_N_3SS;
1036 break;
1037 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1038 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1039 if (tx_num == 1)
1040 rate_id = RTW_RATEID_BGN_40M_1SS;
1041 else if (tx_num == 2)
1042 rate_id = RTW_RATEID_BGN_40M_2SS;
1043 else if (tx_num == 3)
1044 rate_id = RTW_RATEID_ARFR5_N_3SS;
1045 else if (tx_num == 4)
1046 rate_id = RTW_RATEID_ARFR7_N_4SS;
1047 } else {
1048 if (tx_num == 1)
1049 rate_id = RTW_RATEID_BGN_20M_1SS;
1050 else if (tx_num == 2)
1051 rate_id = RTW_RATEID_BGN_20M_2SS;
1052 else if (tx_num == 3)
1053 rate_id = RTW_RATEID_ARFR5_N_3SS;
1054 else if (tx_num == 4)
1055 rate_id = RTW_RATEID_ARFR7_N_4SS;
1056 }
1057 break;
1058 case WIRELESS_OFDM | WIRELESS_VHT:
1059 if (tx_num == 1)
1060 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1061 else if (tx_num == 2)
1062 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1063 else if (tx_num == 3)
1064 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1065 else if (tx_num == 4)
1066 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1067 break;
1068 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1069 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1070 if (tx_num == 1)
1071 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1072 else if (tx_num == 2)
1073 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1074 else if (tx_num == 3)
1075 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1076 else if (tx_num == 4)
1077 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1078 } else {
1079 if (tx_num == 1)
1080 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1081 else if (tx_num == 2)
1082 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1083 else if (tx_num == 3)
1084 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1085 else if (tx_num == 4)
1086 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1087 }
1088 break;
1089 default:
1090 break;
1091 }
1092
1093 return rate_id;
1094 }
1095
1096 #define RA_MASK_CCK_RATES 0x0000f
1097 #define RA_MASK_OFDM_RATES 0x00ff0
1098 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0)
1099 #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8)
1100 #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16)
1101 #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \
1102 RA_MASK_HT_RATES_2SS | \
1103 RA_MASK_HT_RATES_3SS)
1104 #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0)
1105 #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10)
1106 #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20)
1107 #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \
1108 RA_MASK_VHT_RATES_2SS | \
1109 RA_MASK_VHT_RATES_3SS)
1110 #define RA_MASK_CCK_IN_BG 0x00005
1111 #define RA_MASK_CCK_IN_HT 0x00005
1112 #define RA_MASK_CCK_IN_VHT 0x00005
1113 #define RA_MASK_OFDM_IN_VHT 0x00010
1114 #define RA_MASK_OFDM_IN_HT_2G 0x00010
1115 #define RA_MASK_OFDM_IN_HT_5G 0x00030
1116
rtw_rate_mask_rssi(struct rtw_sta_info * si,u8 wireless_set)1117 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1118 {
1119 u8 rssi_level = si->rssi_level;
1120
1121 if (wireless_set == WIRELESS_CCK)
1122 return 0xffffffffffffffffULL;
1123
1124 if (rssi_level == 0)
1125 return 0xffffffffffffffffULL;
1126 else if (rssi_level == 1)
1127 return 0xfffffffffffffff0ULL;
1128 else if (rssi_level == 2)
1129 return 0xffffffffffffefe0ULL;
1130 else if (rssi_level == 3)
1131 return 0xffffffffffffcfc0ULL;
1132 else if (rssi_level == 4)
1133 return 0xffffffffffff8f80ULL;
1134 else
1135 return 0xffffffffffff0f00ULL;
1136 }
1137
rtw_rate_mask_recover(u64 ra_mask,u64 ra_mask_bak)1138 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1139 {
1140 if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1141 ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1142
1143 if (ra_mask == 0)
1144 ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1145
1146 return ra_mask;
1147 }
1148
rtw_rate_mask_cfg(struct rtw_dev * rtwdev,struct rtw_sta_info * si,u64 ra_mask,bool is_vht_enable)1149 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1150 u64 ra_mask, bool is_vht_enable)
1151 {
1152 struct rtw_hal *hal = &rtwdev->hal;
1153 const struct cfg80211_bitrate_mask *mask = si->mask;
1154 u64 cfg_mask = GENMASK_ULL(63, 0);
1155 u8 band;
1156
1157 if (!si->use_cfg_mask)
1158 return ra_mask;
1159
1160 band = hal->current_band_type;
1161 if (band == RTW_BAND_2G) {
1162 band = NL80211_BAND_2GHZ;
1163 cfg_mask = mask->control[band].legacy;
1164 } else if (band == RTW_BAND_5G) {
1165 band = NL80211_BAND_5GHZ;
1166 cfg_mask = u64_encode_bits(mask->control[band].legacy,
1167 RA_MASK_OFDM_RATES);
1168 }
1169
1170 if (!is_vht_enable) {
1171 if (ra_mask & RA_MASK_HT_RATES_1SS)
1172 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1173 RA_MASK_HT_RATES_1SS);
1174 if (ra_mask & RA_MASK_HT_RATES_2SS)
1175 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1176 RA_MASK_HT_RATES_2SS);
1177 } else {
1178 if (ra_mask & RA_MASK_VHT_RATES_1SS)
1179 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1180 RA_MASK_VHT_RATES_1SS);
1181 if (ra_mask & RA_MASK_VHT_RATES_2SS)
1182 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1183 RA_MASK_VHT_RATES_2SS);
1184 }
1185
1186 ra_mask &= cfg_mask;
1187
1188 return ra_mask;
1189 }
1190
rtw_update_sta_info(struct rtw_dev * rtwdev,struct rtw_sta_info * si,bool reset_ra_mask)1191 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1192 bool reset_ra_mask)
1193 {
1194 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1195 struct ieee80211_sta *sta = si->sta;
1196 struct rtw_efuse *efuse = &rtwdev->efuse;
1197 struct rtw_hal *hal = &rtwdev->hal;
1198 u8 wireless_set;
1199 u8 bw_mode;
1200 u8 rate_id;
1201 u8 rf_type = RF_1T1R;
1202 u8 stbc_en = 0;
1203 u8 ldpc_en = 0;
1204 u8 tx_num = 1;
1205 u64 ra_mask = 0;
1206 u64 ra_mask_bak = 0;
1207 bool is_vht_enable = false;
1208 bool is_support_sgi = false;
1209
1210 if (sta->deflink.vht_cap.vht_supported) {
1211 is_vht_enable = true;
1212 ra_mask |= get_vht_ra_mask(sta);
1213 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1214 stbc_en = VHT_STBC_EN;
1215 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1216 ldpc_en = VHT_LDPC_EN;
1217 } else if (sta->deflink.ht_cap.ht_supported) {
1218 ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1219 (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1220 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1221 stbc_en = HT_STBC_EN;
1222 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1223 ldpc_en = HT_LDPC_EN;
1224 }
1225
1226 if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1227 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1228
1229 if (hal->current_band_type == RTW_BAND_5G) {
1230 ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1231 ra_mask_bak = ra_mask;
1232 if (sta->deflink.vht_cap.vht_supported) {
1233 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1234 wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1235 } else if (sta->deflink.ht_cap.ht_supported) {
1236 ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1237 wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1238 } else {
1239 wireless_set = WIRELESS_OFDM;
1240 }
1241 dm_info->rrsr_val_init = RRSR_INIT_5G;
1242 } else if (hal->current_band_type == RTW_BAND_2G) {
1243 ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1244 ra_mask_bak = ra_mask;
1245 if (sta->deflink.vht_cap.vht_supported) {
1246 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1247 RA_MASK_OFDM_IN_VHT;
1248 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1249 WIRELESS_HT | WIRELESS_VHT;
1250 } else if (sta->deflink.ht_cap.ht_supported) {
1251 ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1252 RA_MASK_OFDM_IN_HT_2G;
1253 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1254 WIRELESS_HT;
1255 } else if (sta->deflink.supp_rates[0] <= 0xf) {
1256 wireless_set = WIRELESS_CCK;
1257 } else {
1258 ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1259 wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1260 }
1261 dm_info->rrsr_val_init = RRSR_INIT_2G;
1262 } else {
1263 rtw_err(rtwdev, "Unknown band type\n");
1264 ra_mask_bak = ra_mask;
1265 wireless_set = 0;
1266 }
1267
1268 switch (sta->deflink.bandwidth) {
1269 case IEEE80211_STA_RX_BW_80:
1270 bw_mode = RTW_CHANNEL_WIDTH_80;
1271 is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1272 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1273 break;
1274 case IEEE80211_STA_RX_BW_40:
1275 bw_mode = RTW_CHANNEL_WIDTH_40;
1276 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1277 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1278 break;
1279 default:
1280 bw_mode = RTW_CHANNEL_WIDTH_20;
1281 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1282 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1283 break;
1284 }
1285
1286 if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1287 tx_num = 2;
1288 rf_type = RF_2T2R;
1289 } else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1290 tx_num = 2;
1291 rf_type = RF_2T2R;
1292 }
1293
1294 rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1295
1296 ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1297 ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1298 ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1299
1300 si->bw_mode = bw_mode;
1301 si->stbc_en = stbc_en;
1302 si->ldpc_en = ldpc_en;
1303 si->rf_type = rf_type;
1304 si->sgi_enable = is_support_sgi;
1305 si->vht_enable = is_vht_enable;
1306 si->ra_mask = ra_mask;
1307 si->rate_id = rate_id;
1308
1309 rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1310 }
1311
rtw_wait_firmware_completion(struct rtw_dev * rtwdev)1312 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1313 {
1314 const struct rtw_chip_info *chip = rtwdev->chip;
1315 struct rtw_fw_state *fw;
1316 int ret = 0;
1317
1318 fw = &rtwdev->fw;
1319 wait_for_completion(&fw->completion);
1320 if (!fw->firmware)
1321 ret = -EINVAL;
1322
1323 if (chip->wow_fw_name) {
1324 fw = &rtwdev->wow_fw;
1325 wait_for_completion(&fw->completion);
1326 if (!fw->firmware)
1327 ret = -EINVAL;
1328 }
1329
1330 return ret;
1331 }
1332
rtw_update_lps_deep_mode(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1333 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1334 struct rtw_fw_state *fw)
1335 {
1336 const struct rtw_chip_info *chip = rtwdev->chip;
1337
1338 if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1339 !fw->feature)
1340 return LPS_DEEP_MODE_NONE;
1341
1342 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1343 rtw_fw_feature_check(fw, FW_FEATURE_PG))
1344 return LPS_DEEP_MODE_PG;
1345
1346 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1347 rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1348 return LPS_DEEP_MODE_LCLK;
1349
1350 return LPS_DEEP_MODE_NONE;
1351 }
1352
rtw_power_on(struct rtw_dev * rtwdev)1353 static int rtw_power_on(struct rtw_dev *rtwdev)
1354 {
1355 const struct rtw_chip_info *chip = rtwdev->chip;
1356 struct rtw_fw_state *fw = &rtwdev->fw;
1357 bool wifi_only;
1358 int ret;
1359
1360 ret = rtw_hci_setup(rtwdev);
1361 if (ret) {
1362 rtw_err(rtwdev, "failed to setup hci\n");
1363 goto err;
1364 }
1365
1366 /* power on MAC before firmware downloaded */
1367 ret = rtw_mac_power_on(rtwdev);
1368 if (ret) {
1369 rtw_err(rtwdev, "failed to power on mac\n");
1370 goto err;
1371 }
1372
1373 ret = rtw_wait_firmware_completion(rtwdev);
1374 if (ret) {
1375 rtw_err(rtwdev, "failed to wait firmware completion\n");
1376 goto err_off;
1377 }
1378
1379 ret = rtw_download_firmware(rtwdev, fw);
1380 if (ret) {
1381 rtw_err(rtwdev, "failed to download firmware\n");
1382 goto err_off;
1383 }
1384
1385 /* config mac after firmware downloaded */
1386 ret = rtw_mac_init(rtwdev);
1387 if (ret) {
1388 rtw_err(rtwdev, "failed to configure mac\n");
1389 goto err_off;
1390 }
1391
1392 chip->ops->phy_set_param(rtwdev);
1393
1394 ret = rtw_hci_start(rtwdev);
1395 if (ret) {
1396 rtw_err(rtwdev, "failed to start hci\n");
1397 goto err_off;
1398 }
1399
1400 /* send H2C after HCI has started */
1401 rtw_fw_send_general_info(rtwdev);
1402 rtw_fw_send_phydm_info(rtwdev);
1403
1404 wifi_only = !rtwdev->efuse.btcoex;
1405 rtw_coex_power_on_setting(rtwdev);
1406 rtw_coex_init_hw_config(rtwdev, wifi_only);
1407
1408 return 0;
1409
1410 err_off:
1411 rtw_mac_power_off(rtwdev);
1412
1413 err:
1414 return ret;
1415 }
1416
rtw_core_fw_scan_notify(struct rtw_dev * rtwdev,bool start)1417 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1418 {
1419 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1420 return;
1421
1422 if (start) {
1423 rtw_fw_scan_notify(rtwdev, true);
1424 } else {
1425 reinit_completion(&rtwdev->fw_scan_density);
1426 rtw_fw_scan_notify(rtwdev, false);
1427 if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1428 SCAN_NOTIFY_TIMEOUT))
1429 rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1430 }
1431 }
1432
rtw_core_scan_start(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,const u8 * mac_addr,bool hw_scan)1433 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1434 const u8 *mac_addr, bool hw_scan)
1435 {
1436 u32 config = 0;
1437 int ret = 0;
1438
1439 rtw_leave_lps(rtwdev);
1440
1441 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1442 ret = rtw_leave_ips(rtwdev);
1443 if (ret) {
1444 rtw_err(rtwdev, "failed to leave idle state\n");
1445 return;
1446 }
1447 }
1448
1449 ether_addr_copy(rtwvif->mac_addr, mac_addr);
1450 config |= PORT_SET_MAC_ADDR;
1451 rtw_vif_port_config(rtwdev, rtwvif, config);
1452
1453 rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1454 rtw_core_fw_scan_notify(rtwdev, true);
1455
1456 set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1457 set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1458 }
1459
rtw_core_scan_complete(struct rtw_dev * rtwdev,struct ieee80211_vif * vif,bool hw_scan)1460 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1461 bool hw_scan)
1462 {
1463 struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1464 u32 config = 0;
1465
1466 if (!rtwvif)
1467 return;
1468
1469 clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1470 clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1471
1472 rtw_core_fw_scan_notify(rtwdev, false);
1473
1474 ether_addr_copy(rtwvif->mac_addr, vif->addr);
1475 config |= PORT_SET_MAC_ADDR;
1476 rtw_vif_port_config(rtwdev, rtwvif, config);
1477
1478 rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1479
1480 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1481 ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1482 }
1483
rtw_core_start(struct rtw_dev * rtwdev)1484 int rtw_core_start(struct rtw_dev *rtwdev)
1485 {
1486 int ret;
1487
1488 ret = rtw_power_on(rtwdev);
1489 if (ret)
1490 return ret;
1491
1492 rtw_sec_enable_sec_engine(rtwdev);
1493
1494 rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1495 rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1496
1497 /* rcr reset after powered on */
1498 rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1499
1500 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1501 RTW_WATCH_DOG_DELAY_TIME);
1502
1503 set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1504
1505 return 0;
1506 }
1507
rtw_power_off(struct rtw_dev * rtwdev)1508 static void rtw_power_off(struct rtw_dev *rtwdev)
1509 {
1510 rtw_hci_stop(rtwdev);
1511 rtw_coex_power_off_setting(rtwdev);
1512 rtw_mac_power_off(rtwdev);
1513 }
1514
rtw_core_stop(struct rtw_dev * rtwdev)1515 void rtw_core_stop(struct rtw_dev *rtwdev)
1516 {
1517 struct rtw_coex *coex = &rtwdev->coex;
1518
1519 clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1520 clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1521
1522 mutex_unlock(&rtwdev->mutex);
1523
1524 cancel_work_sync(&rtwdev->c2h_work);
1525 cancel_work_sync(&rtwdev->update_beacon_work);
1526 cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1527 cancel_delayed_work_sync(&coex->bt_relink_work);
1528 cancel_delayed_work_sync(&coex->bt_reenable_work);
1529 cancel_delayed_work_sync(&coex->defreeze_work);
1530 cancel_delayed_work_sync(&coex->wl_remain_work);
1531 cancel_delayed_work_sync(&coex->bt_remain_work);
1532 cancel_delayed_work_sync(&coex->wl_connecting_work);
1533 cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1534 cancel_delayed_work_sync(&coex->wl_ccklock_work);
1535
1536 mutex_lock(&rtwdev->mutex);
1537
1538 rtw_power_off(rtwdev);
1539 }
1540
rtw_init_ht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_ht_cap * ht_cap)1541 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1542 struct ieee80211_sta_ht_cap *ht_cap)
1543 {
1544 const struct rtw_chip_info *chip = rtwdev->chip;
1545 struct rtw_efuse *efuse = &rtwdev->efuse;
1546
1547 ht_cap->ht_supported = true;
1548 ht_cap->cap = 0;
1549 ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1550 IEEE80211_HT_CAP_MAX_AMSDU |
1551 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1552
1553 if (rtw_chip_has_rx_ldpc(rtwdev))
1554 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1555 if (rtw_chip_has_tx_stbc(rtwdev))
1556 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1557
1558 if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1559 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1560 IEEE80211_HT_CAP_DSSSCCK40 |
1561 IEEE80211_HT_CAP_SGI_40;
1562 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1563 ht_cap->ampdu_density = chip->ampdu_density;
1564 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1565 if (efuse->hw_cap.nss > 1) {
1566 ht_cap->mcs.rx_mask[0] = 0xFF;
1567 ht_cap->mcs.rx_mask[1] = 0xFF;
1568 ht_cap->mcs.rx_mask[4] = 0x01;
1569 ht_cap->mcs.rx_highest = cpu_to_le16(300);
1570 } else {
1571 ht_cap->mcs.rx_mask[0] = 0xFF;
1572 ht_cap->mcs.rx_mask[1] = 0x00;
1573 ht_cap->mcs.rx_mask[4] = 0x01;
1574 ht_cap->mcs.rx_highest = cpu_to_le16(150);
1575 }
1576 }
1577
rtw_init_vht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_vht_cap * vht_cap)1578 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1579 struct ieee80211_sta_vht_cap *vht_cap)
1580 {
1581 struct rtw_efuse *efuse = &rtwdev->efuse;
1582 u16 mcs_map;
1583 __le16 highest;
1584
1585 if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1586 efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1587 return;
1588
1589 vht_cap->vht_supported = true;
1590 vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1591 IEEE80211_VHT_CAP_SHORT_GI_80 |
1592 IEEE80211_VHT_CAP_RXSTBC_1 |
1593 IEEE80211_VHT_CAP_HTC_VHT |
1594 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1595 0;
1596 if (rtwdev->hal.rf_path_num > 1)
1597 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1598 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1599 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1600 vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1601 IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1602
1603 if (rtw_chip_has_rx_ldpc(rtwdev))
1604 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1605
1606 mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1607 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1608 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1609 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1610 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1611 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1612 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1613 if (efuse->hw_cap.nss > 1) {
1614 highest = cpu_to_le16(780);
1615 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1616 } else {
1617 highest = cpu_to_le16(390);
1618 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1619 }
1620
1621 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1622 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1623 vht_cap->vht_mcs.rx_highest = highest;
1624 vht_cap->vht_mcs.tx_highest = highest;
1625 }
1626
rtw_get_max_scan_ie_len(struct rtw_dev * rtwdev)1627 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1628 {
1629 u16 len;
1630
1631 len = rtwdev->chip->max_scan_ie_len;
1632
1633 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1634 rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1635 len = IEEE80211_MAX_DATA_LEN;
1636 else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1637 len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1638
1639 return len;
1640 }
1641
rtw_set_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1642 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1643 const struct rtw_chip_info *chip)
1644 {
1645 struct rtw_dev *rtwdev = hw->priv;
1646 struct ieee80211_supported_band *sband;
1647
1648 if (chip->band & RTW_BAND_2G) {
1649 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1650 if (!sband)
1651 goto err_out;
1652 if (chip->ht_supported)
1653 rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1654 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1655 }
1656
1657 if (chip->band & RTW_BAND_5G) {
1658 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1659 if (!sband)
1660 goto err_out;
1661 if (chip->ht_supported)
1662 rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1663 if (chip->vht_supported)
1664 rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1665 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1666 }
1667
1668 return;
1669
1670 err_out:
1671 rtw_err(rtwdev, "failed to set supported band\n");
1672 }
1673
rtw_unset_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1674 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1675 const struct rtw_chip_info *chip)
1676 {
1677 kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1678 kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1679 }
1680
rtw_vif_smps_iter(void * data,u8 * mac,struct ieee80211_vif * vif)1681 static void rtw_vif_smps_iter(void *data, u8 *mac,
1682 struct ieee80211_vif *vif)
1683 {
1684 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1685
1686 if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1687 return;
1688
1689 if (rtwdev->hal.txrx_1ss)
1690 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1691 else
1692 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1693 }
1694
rtw_set_txrx_1ss(struct rtw_dev * rtwdev,bool txrx_1ss)1695 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1696 {
1697 const struct rtw_chip_info *chip = rtwdev->chip;
1698 struct rtw_hal *hal = &rtwdev->hal;
1699
1700 if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1701 return;
1702
1703 rtwdev->hal.txrx_1ss = txrx_1ss;
1704 if (txrx_1ss)
1705 chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1706 else
1707 chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1708 hal->antenna_rx, false);
1709 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1710 }
1711
__update_firmware_feature(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1712 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1713 struct rtw_fw_state *fw)
1714 {
1715 u32 feature;
1716 const struct rtw_fw_hdr *fw_hdr =
1717 (const struct rtw_fw_hdr *)fw->firmware->data;
1718
1719 feature = le32_to_cpu(fw_hdr->feature);
1720 fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1721
1722 if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1723 RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1724 fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1725 }
1726
__update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1727 static void __update_firmware_info(struct rtw_dev *rtwdev,
1728 struct rtw_fw_state *fw)
1729 {
1730 const struct rtw_fw_hdr *fw_hdr =
1731 (const struct rtw_fw_hdr *)fw->firmware->data;
1732
1733 fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1734 fw->version = le16_to_cpu(fw_hdr->version);
1735 fw->sub_version = fw_hdr->subversion;
1736 fw->sub_index = fw_hdr->subindex;
1737
1738 __update_firmware_feature(rtwdev, fw);
1739 }
1740
__update_firmware_info_legacy(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1741 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1742 struct rtw_fw_state *fw)
1743 {
1744 struct rtw_fw_hdr_legacy *legacy =
1745 (struct rtw_fw_hdr_legacy *)fw->firmware->data;
1746
1747 fw->h2c_version = 0;
1748 fw->version = le16_to_cpu(legacy->version);
1749 fw->sub_version = legacy->subversion1;
1750 fw->sub_index = legacy->subversion2;
1751 }
1752
update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1753 static void update_firmware_info(struct rtw_dev *rtwdev,
1754 struct rtw_fw_state *fw)
1755 {
1756 if (rtw_chip_wcpu_11n(rtwdev))
1757 __update_firmware_info_legacy(rtwdev, fw);
1758 else
1759 __update_firmware_info(rtwdev, fw);
1760 }
1761
rtw_load_firmware_cb(const struct firmware * firmware,void * context)1762 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1763 {
1764 struct rtw_fw_state *fw = context;
1765 struct rtw_dev *rtwdev = fw->rtwdev;
1766
1767 if (!firmware || !firmware->data) {
1768 rtw_err(rtwdev, "failed to request firmware\n");
1769 complete_all(&fw->completion);
1770 return;
1771 }
1772
1773 fw->firmware = firmware;
1774 update_firmware_info(rtwdev, fw);
1775 complete_all(&fw->completion);
1776
1777 rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1778 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1779 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1780 }
1781
rtw_load_firmware(struct rtw_dev * rtwdev,enum rtw_fw_type type)1782 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1783 {
1784 const char *fw_name;
1785 struct rtw_fw_state *fw;
1786 int ret;
1787
1788 switch (type) {
1789 case RTW_WOWLAN_FW:
1790 fw = &rtwdev->wow_fw;
1791 fw_name = rtwdev->chip->wow_fw_name;
1792 break;
1793
1794 case RTW_NORMAL_FW:
1795 fw = &rtwdev->fw;
1796 fw_name = rtwdev->chip->fw_name;
1797 break;
1798
1799 default:
1800 rtw_warn(rtwdev, "unsupported firmware type\n");
1801 return -ENOENT;
1802 }
1803
1804 fw->type = type;
1805 fw->rtwdev = rtwdev;
1806 init_completion(&fw->completion);
1807
1808 ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1809 GFP_KERNEL, fw, rtw_load_firmware_cb);
1810 if (ret) {
1811 rtw_err(rtwdev, "failed to async firmware request\n");
1812 return ret;
1813 }
1814
1815 return 0;
1816 }
1817
rtw_chip_parameter_setup(struct rtw_dev * rtwdev)1818 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1819 {
1820 const struct rtw_chip_info *chip = rtwdev->chip;
1821 struct rtw_hal *hal = &rtwdev->hal;
1822 struct rtw_efuse *efuse = &rtwdev->efuse;
1823
1824 switch (rtw_hci_type(rtwdev)) {
1825 case RTW_HCI_TYPE_PCIE:
1826 rtwdev->hci.rpwm_addr = 0x03d9;
1827 rtwdev->hci.cpwm_addr = 0x03da;
1828 break;
1829 case RTW_HCI_TYPE_SDIO:
1830 rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1831 rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1832 break;
1833 case RTW_HCI_TYPE_USB:
1834 rtwdev->hci.rpwm_addr = 0xfe58;
1835 rtwdev->hci.cpwm_addr = 0xfe57;
1836 break;
1837 default:
1838 rtw_err(rtwdev, "unsupported hci type\n");
1839 return -EINVAL;
1840 }
1841
1842 hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1843 hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1844 hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1845 if (hal->chip_version & BIT_RF_TYPE_ID) {
1846 hal->rf_type = RF_2T2R;
1847 hal->rf_path_num = 2;
1848 hal->antenna_tx = BB_PATH_AB;
1849 hal->antenna_rx = BB_PATH_AB;
1850 } else {
1851 hal->rf_type = RF_1T1R;
1852 hal->rf_path_num = 1;
1853 hal->antenna_tx = BB_PATH_A;
1854 hal->antenna_rx = BB_PATH_A;
1855 }
1856 hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1857 hal->rf_path_num;
1858
1859 efuse->physical_size = chip->phy_efuse_size;
1860 efuse->logical_size = chip->log_efuse_size;
1861 efuse->protect_size = chip->ptct_efuse_size;
1862
1863 /* default use ack */
1864 rtwdev->hal.rcr |= BIT_VHT_DACK;
1865
1866 hal->bfee_sts_cap = 3;
1867
1868 return 0;
1869 }
1870
rtw_chip_efuse_enable(struct rtw_dev * rtwdev)1871 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1872 {
1873 struct rtw_fw_state *fw = &rtwdev->fw;
1874 int ret;
1875
1876 ret = rtw_hci_setup(rtwdev);
1877 if (ret) {
1878 rtw_err(rtwdev, "failed to setup hci\n");
1879 goto err;
1880 }
1881
1882 ret = rtw_mac_power_on(rtwdev);
1883 if (ret) {
1884 rtw_err(rtwdev, "failed to power on mac\n");
1885 goto err;
1886 }
1887
1888 rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1889
1890 wait_for_completion(&fw->completion);
1891 if (!fw->firmware) {
1892 ret = -EINVAL;
1893 rtw_err(rtwdev, "failed to load firmware\n");
1894 goto err;
1895 }
1896
1897 ret = rtw_download_firmware(rtwdev, fw);
1898 if (ret) {
1899 rtw_err(rtwdev, "failed to download firmware\n");
1900 goto err_off;
1901 }
1902
1903 return 0;
1904
1905 err_off:
1906 rtw_mac_power_off(rtwdev);
1907
1908 err:
1909 return ret;
1910 }
1911
rtw_dump_hw_feature(struct rtw_dev * rtwdev)1912 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1913 {
1914 struct rtw_efuse *efuse = &rtwdev->efuse;
1915 u8 hw_feature[HW_FEATURE_LEN];
1916 u8 id;
1917 u8 bw;
1918 int i;
1919
1920 id = rtw_read8(rtwdev, REG_C2HEVT);
1921 if (id != C2H_HW_FEATURE_REPORT) {
1922 rtw_err(rtwdev, "failed to read hw feature report\n");
1923 return -EBUSY;
1924 }
1925
1926 for (i = 0; i < HW_FEATURE_LEN; i++)
1927 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1928
1929 rtw_write8(rtwdev, REG_C2HEVT, 0);
1930
1931 bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1932 efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1933 efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1934 efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1935 efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1936 efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1937
1938 rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1939
1940 if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1941 efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1942 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1943
1944 rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1945 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1946 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1947 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1948
1949 return 0;
1950 }
1951
rtw_chip_efuse_disable(struct rtw_dev * rtwdev)1952 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1953 {
1954 rtw_hci_stop(rtwdev);
1955 rtw_mac_power_off(rtwdev);
1956 }
1957
rtw_chip_efuse_info_setup(struct rtw_dev * rtwdev)1958 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1959 {
1960 struct rtw_efuse *efuse = &rtwdev->efuse;
1961 int ret;
1962
1963 mutex_lock(&rtwdev->mutex);
1964
1965 /* power on mac to read efuse */
1966 ret = rtw_chip_efuse_enable(rtwdev);
1967 if (ret)
1968 goto out_unlock;
1969
1970 ret = rtw_parse_efuse_map(rtwdev);
1971 if (ret)
1972 goto out_disable;
1973
1974 ret = rtw_dump_hw_feature(rtwdev);
1975 if (ret)
1976 goto out_disable;
1977
1978 ret = rtw_check_supported_rfe(rtwdev);
1979 if (ret)
1980 goto out_disable;
1981
1982 if (efuse->crystal_cap == 0xff)
1983 efuse->crystal_cap = 0;
1984 if (efuse->pa_type_2g == 0xff)
1985 efuse->pa_type_2g = 0;
1986 if (efuse->pa_type_5g == 0xff)
1987 efuse->pa_type_5g = 0;
1988 if (efuse->lna_type_2g == 0xff)
1989 efuse->lna_type_2g = 0;
1990 if (efuse->lna_type_5g == 0xff)
1991 efuse->lna_type_5g = 0;
1992 if (efuse->channel_plan == 0xff)
1993 efuse->channel_plan = 0x7f;
1994 if (efuse->rf_board_option == 0xff)
1995 efuse->rf_board_option = 0;
1996 if (efuse->bt_setting & BIT(0))
1997 efuse->share_ant = true;
1998 if (efuse->regd == 0xff)
1999 efuse->regd = 0;
2000 if (efuse->tx_bb_swing_setting_2g == 0xff)
2001 efuse->tx_bb_swing_setting_2g = 0;
2002 if (efuse->tx_bb_swing_setting_5g == 0xff)
2003 efuse->tx_bb_swing_setting_5g = 0;
2004
2005 efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2006 efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2007 efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2008 efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2009 efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2010
2011 if (!is_valid_ether_addr(efuse->addr)) {
2012 eth_random_addr(efuse->addr);
2013 dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2014 }
2015
2016 out_disable:
2017 rtw_chip_efuse_disable(rtwdev);
2018
2019 out_unlock:
2020 mutex_unlock(&rtwdev->mutex);
2021 return ret;
2022 }
2023
rtw_chip_board_info_setup(struct rtw_dev * rtwdev)2024 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2025 {
2026 struct rtw_hal *hal = &rtwdev->hal;
2027 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2028
2029 if (!rfe_def)
2030 return -ENODEV;
2031
2032 rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2033
2034 rtw_phy_init_tx_power(rtwdev);
2035 rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2036 rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2037 rtw_phy_tx_power_by_rate_config(hal);
2038 rtw_phy_tx_power_limit_config(hal);
2039
2040 return 0;
2041 }
2042
rtw_chip_info_setup(struct rtw_dev * rtwdev)2043 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2044 {
2045 int ret;
2046
2047 ret = rtw_chip_parameter_setup(rtwdev);
2048 if (ret) {
2049 rtw_err(rtwdev, "failed to setup chip parameters\n");
2050 goto err_out;
2051 }
2052
2053 ret = rtw_chip_efuse_info_setup(rtwdev);
2054 if (ret) {
2055 rtw_err(rtwdev, "failed to setup chip efuse info\n");
2056 goto err_out;
2057 }
2058
2059 ret = rtw_chip_board_info_setup(rtwdev);
2060 if (ret) {
2061 rtw_err(rtwdev, "failed to setup chip board info\n");
2062 goto err_out;
2063 }
2064
2065 return 0;
2066
2067 err_out:
2068 return ret;
2069 }
2070 EXPORT_SYMBOL(rtw_chip_info_setup);
2071
rtw_stats_init(struct rtw_dev * rtwdev)2072 static void rtw_stats_init(struct rtw_dev *rtwdev)
2073 {
2074 struct rtw_traffic_stats *stats = &rtwdev->stats;
2075 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2076 int i;
2077
2078 ewma_tp_init(&stats->tx_ewma_tp);
2079 ewma_tp_init(&stats->rx_ewma_tp);
2080
2081 for (i = 0; i < RTW_EVM_NUM; i++)
2082 ewma_evm_init(&dm_info->ewma_evm[i]);
2083 for (i = 0; i < RTW_SNR_NUM; i++)
2084 ewma_snr_init(&dm_info->ewma_snr[i]);
2085 }
2086
rtw_core_init(struct rtw_dev * rtwdev)2087 int rtw_core_init(struct rtw_dev *rtwdev)
2088 {
2089 const struct rtw_chip_info *chip = rtwdev->chip;
2090 struct rtw_coex *coex = &rtwdev->coex;
2091 int ret;
2092
2093 INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2094 INIT_LIST_HEAD(&rtwdev->txqs);
2095
2096 timer_setup(&rtwdev->tx_report.purge_timer,
2097 rtw_tx_report_purge_timer, 0);
2098 rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2099 if (!rtwdev->tx_wq) {
2100 rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2101 return -ENOMEM;
2102 }
2103
2104 INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2105 INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2106 INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2107 INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2108 INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2109 INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2110 INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2111 INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2112 rtw_coex_bt_multi_link_remain_work);
2113 INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2114 INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2115 INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2116 INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2117 INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2118 INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2119 INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2120 skb_queue_head_init(&rtwdev->c2h_queue);
2121 skb_queue_head_init(&rtwdev->coex.queue);
2122 skb_queue_head_init(&rtwdev->tx_report.queue);
2123
2124 spin_lock_init(&rtwdev->txq_lock);
2125 spin_lock_init(&rtwdev->tx_report.q_lock);
2126
2127 mutex_init(&rtwdev->mutex);
2128 mutex_init(&rtwdev->hal.tx_power_mutex);
2129
2130 init_waitqueue_head(&rtwdev->coex.wait);
2131 init_completion(&rtwdev->lps_leave_check);
2132 init_completion(&rtwdev->fw_scan_density);
2133
2134 rtwdev->sec.total_cam_num = 32;
2135 rtwdev->hal.current_channel = 1;
2136 rtwdev->dm_info.fix_rate = U8_MAX;
2137
2138 rtw_stats_init(rtwdev);
2139
2140 /* default rx filter setting */
2141 rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2142 BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2143 BIT_AB | BIT_AM | BIT_APM;
2144
2145 ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2146 if (ret) {
2147 rtw_warn(rtwdev, "no firmware loaded\n");
2148 goto out;
2149 }
2150
2151 if (chip->wow_fw_name) {
2152 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2153 if (ret) {
2154 rtw_warn(rtwdev, "no wow firmware loaded\n");
2155 wait_for_completion(&rtwdev->fw.completion);
2156 if (rtwdev->fw.firmware)
2157 release_firmware(rtwdev->fw.firmware);
2158 goto out;
2159 }
2160 }
2161
2162 return 0;
2163
2164 out:
2165 destroy_workqueue(rtwdev->tx_wq);
2166 return ret;
2167 }
2168 EXPORT_SYMBOL(rtw_core_init);
2169
rtw_core_deinit(struct rtw_dev * rtwdev)2170 void rtw_core_deinit(struct rtw_dev *rtwdev)
2171 {
2172 struct rtw_fw_state *fw = &rtwdev->fw;
2173 struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2174 struct rtw_rsvd_page *rsvd_pkt, *tmp;
2175 unsigned long flags;
2176
2177 rtw_wait_firmware_completion(rtwdev);
2178
2179 if (fw->firmware)
2180 release_firmware(fw->firmware);
2181
2182 if (wow_fw->firmware)
2183 release_firmware(wow_fw->firmware);
2184
2185 destroy_workqueue(rtwdev->tx_wq);
2186 timer_delete_sync(&rtwdev->tx_report.purge_timer);
2187 spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2188 skb_queue_purge(&rtwdev->tx_report.queue);
2189 spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2190 skb_queue_purge(&rtwdev->coex.queue);
2191 skb_queue_purge(&rtwdev->c2h_queue);
2192
2193 list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2194 build_list) {
2195 list_del(&rsvd_pkt->build_list);
2196 kfree(rsvd_pkt);
2197 }
2198
2199 mutex_destroy(&rtwdev->mutex);
2200 mutex_destroy(&rtwdev->hal.tx_power_mutex);
2201 }
2202 EXPORT_SYMBOL(rtw_core_deinit);
2203
rtw_register_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2204 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2205 {
2206 bool sta_mode_only = rtwdev->hci.type == RTW_HCI_TYPE_SDIO;
2207 struct rtw_hal *hal = &rtwdev->hal;
2208 int max_tx_headroom = 0;
2209 int ret;
2210
2211 max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2212
2213 if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2214 max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2215
2216 hw->extra_tx_headroom = max_tx_headroom;
2217 hw->queues = IEEE80211_NUM_ACS;
2218 hw->txq_data_size = sizeof(struct rtw_txq);
2219 hw->sta_data_size = sizeof(struct rtw_sta_info);
2220 hw->vif_data_size = sizeof(struct rtw_vif);
2221
2222 ieee80211_hw_set(hw, SIGNAL_DBM);
2223 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2224 ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2225 ieee80211_hw_set(hw, MFP_CAPABLE);
2226 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2227 ieee80211_hw_set(hw, SUPPORTS_PS);
2228 ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2229 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2230 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2231 ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2232 ieee80211_hw_set(hw, TX_AMSDU);
2233 ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2234
2235 if (sta_mode_only)
2236 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
2237 else
2238 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2239 BIT(NL80211_IFTYPE_AP) |
2240 BIT(NL80211_IFTYPE_ADHOC);
2241 hw->wiphy->available_antennas_tx = hal->antenna_tx;
2242 hw->wiphy->available_antennas_rx = hal->antenna_rx;
2243
2244 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2245 WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2246
2247 hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2248 hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2249 hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2250
2251 if (!sta_mode_only && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2252 hw->wiphy->iface_combinations = rtw_iface_combs;
2253 hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2254 }
2255
2256 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2257 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2258 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2259
2260 #ifdef CONFIG_PM
2261 hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2262 hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2263 #endif
2264 rtw_set_supported_band(hw, rtwdev->chip);
2265 SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2266
2267 hw->wiphy->sar_capa = &rtw_sar_capa;
2268
2269 ret = rtw_regd_init(rtwdev);
2270 if (ret) {
2271 rtw_err(rtwdev, "failed to init regd\n");
2272 return ret;
2273 }
2274
2275 ret = ieee80211_register_hw(hw);
2276 if (ret) {
2277 rtw_err(rtwdev, "failed to register hw\n");
2278 return ret;
2279 }
2280
2281 ret = rtw_regd_hint(rtwdev);
2282 if (ret) {
2283 rtw_err(rtwdev, "failed to hint regd\n");
2284 return ret;
2285 }
2286
2287 rtw_debugfs_init(rtwdev);
2288
2289 rtwdev->bf_info.bfer_mu_cnt = 0;
2290 rtwdev->bf_info.bfer_su_cnt = 0;
2291
2292 return 0;
2293 }
2294 EXPORT_SYMBOL(rtw_register_hw);
2295
rtw_unregister_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2296 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2297 {
2298 const struct rtw_chip_info *chip = rtwdev->chip;
2299
2300 ieee80211_unregister_hw(hw);
2301 rtw_unset_supported_band(hw, chip);
2302 rtw_debugfs_deinit(rtwdev);
2303 }
2304 EXPORT_SYMBOL(rtw_unregister_hw);
2305
2306 static
rtw_swap_reg_nbytes(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2,u8 nbytes)2307 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2308 const struct rtw_hw_reg *reg2, u8 nbytes)
2309 {
2310 u8 i;
2311
2312 for (i = 0; i < nbytes; i++) {
2313 u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2314 u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2315
2316 rtw_write8(rtwdev, reg1->addr + i, v2);
2317 rtw_write8(rtwdev, reg2->addr + i, v1);
2318 }
2319 }
2320
2321 static
rtw_swap_reg_mask(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2)2322 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2323 const struct rtw_hw_reg *reg2)
2324 {
2325 u32 v1, v2;
2326
2327 v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2328 v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2329 rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2330 rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2331 }
2332
2333 struct rtw_iter_port_switch_data {
2334 struct rtw_dev *rtwdev;
2335 struct rtw_vif *rtwvif_ap;
2336 };
2337
rtw_port_switch_iter(void * data,struct ieee80211_vif * vif)2338 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2339 {
2340 struct rtw_iter_port_switch_data *iter_data = data;
2341 struct rtw_dev *rtwdev = iter_data->rtwdev;
2342 struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2343 struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2344 const struct rtw_hw_reg *reg1, *reg2;
2345
2346 if (rtwvif_target->port != RTW_PORT_0)
2347 return;
2348
2349 rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2350 rtwvif_ap->port, rtwvif_target->port);
2351
2352 /* Leave LPS so the value swapped are not in PS mode */
2353 rtw_leave_lps(rtwdev);
2354
2355 reg1 = &rtwvif_ap->conf->net_type;
2356 reg2 = &rtwvif_target->conf->net_type;
2357 rtw_swap_reg_mask(rtwdev, reg1, reg2);
2358
2359 reg1 = &rtwvif_ap->conf->mac_addr;
2360 reg2 = &rtwvif_target->conf->mac_addr;
2361 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2362
2363 reg1 = &rtwvif_ap->conf->bssid;
2364 reg2 = &rtwvif_target->conf->bssid;
2365 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2366
2367 reg1 = &rtwvif_ap->conf->bcn_ctrl;
2368 reg2 = &rtwvif_target->conf->bcn_ctrl;
2369 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2370
2371 swap(rtwvif_target->port, rtwvif_ap->port);
2372 swap(rtwvif_target->conf, rtwvif_ap->conf);
2373
2374 rtw_fw_default_port(rtwdev, rtwvif_target);
2375 }
2376
rtw_core_port_switch(struct rtw_dev * rtwdev,struct ieee80211_vif * vif)2377 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2378 {
2379 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2380 struct rtw_iter_port_switch_data iter_data;
2381
2382 if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2383 return;
2384
2385 iter_data.rtwdev = rtwdev;
2386 iter_data.rtwvif_ap = rtwvif;
2387 rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2388 }
2389
rtw_check_sta_active_iter(void * data,struct ieee80211_vif * vif)2390 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2391 {
2392 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2393 bool *active = data;
2394
2395 if (*active)
2396 return;
2397
2398 if (vif->type != NL80211_IFTYPE_STATION)
2399 return;
2400
2401 if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2402 *active = true;
2403 }
2404
rtw_core_check_sta_active(struct rtw_dev * rtwdev)2405 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2406 {
2407 bool sta_active = false;
2408
2409 rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2410
2411 return rtwdev->ap_active || sta_active;
2412 }
2413
rtw_core_enable_beacon(struct rtw_dev * rtwdev,bool enable)2414 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2415 {
2416 if (!rtwdev->ap_active)
2417 return;
2418
2419 if (enable) {
2420 rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2421 rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2422 } else {
2423 rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2424 rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2425 }
2426 }
2427
2428 MODULE_AUTHOR("Realtek Corporation");
2429 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2430 MODULE_LICENSE("Dual BSD/GPL");
2431