xref: /openbsd/sys/dev/usb/if_rum.c (revision 81508fe3)
1 /*	$OpenBSD: if_rum.c,v 1.129 2024/05/23 03:21:08 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2501USB/RT2601USB chipset driver
22  * http://www.ralinktech.com.tw/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/systm.h>
31 #include <sys/timeout.h>
32 #include <sys/device.h>
33 #include <sys/endian.h>
34 
35 #include <machine/intr.h>
36 
37 #if NBPFILTER > 0
38 #include <net/bpf.h>
39 #endif
40 #include <net/if.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 
44 #include <netinet/in.h>
45 #include <netinet/if_ether.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_amrr.h>
49 #include <net80211/ieee80211_radiotap.h>
50 
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdevs.h>
54 
55 #include <dev/usb/if_rumreg.h>
56 #include <dev/usb/if_rumvar.h>
57 
58 #ifdef RUM_DEBUG
59 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
60 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
61 int rum_debug = 0;
62 #else
63 #define DPRINTF(x)
64 #define DPRINTFN(n, x)
65 #endif
66 
67 /* various supported device vendors/products */
68 static const struct usb_devno rum_devs[] = {
69 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
70 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
71 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
72 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
73 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
74 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
75 	{ USB_VENDOR_ASUS,		USB_PRODUCT_ASUS_RT2573_1 },
76 	{ USB_VENDOR_ASUS,		USB_PRODUCT_ASUS_RT2573_2 },
77 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
78 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
79 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
80 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
81 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
82 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
83 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
84 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_RT2573 },
85 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
86 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
87 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
88 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
89 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
90 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
91 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
92 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
93 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
94 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
95 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
96 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
97 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
98 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
99 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
100 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
101 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_WUB320G },
102 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
103 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
104 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
105 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_1 },
106 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
107 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
108 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
109 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
110 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
111 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
112 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
113 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
114 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
115 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
116 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
117 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573_2 },
118 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
119 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
120 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
121 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
122 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
123 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
124 };
125 
126 void		rum_attachhook(struct device *);
127 int		rum_alloc_tx_list(struct rum_softc *);
128 void		rum_free_tx_list(struct rum_softc *);
129 int		rum_alloc_rx_list(struct rum_softc *);
130 void		rum_free_rx_list(struct rum_softc *);
131 int		rum_media_change(struct ifnet *);
132 void		rum_next_scan(void *);
133 void		rum_task(void *);
134 int		rum_newstate(struct ieee80211com *, enum ieee80211_state, int);
135 void		rum_txeof(struct usbd_xfer *, void *, usbd_status);
136 void		rum_rxeof(struct usbd_xfer *, void *, usbd_status);
137 #if NBPFILTER > 0
138 uint8_t		rum_rxrate(const struct rum_rx_desc *);
139 #endif
140 int		rum_ack_rate(struct ieee80211com *, int);
141 uint16_t	rum_txtime(int, int, uint32_t);
142 uint8_t		rum_plcp_signal(int);
143 void		rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *,
144 		    uint32_t, uint16_t, int, int);
145 int		rum_tx_data(struct rum_softc *, struct mbuf *,
146 		    struct ieee80211_node *);
147 void		rum_start(struct ifnet *);
148 void		rum_watchdog(struct ifnet *);
149 int		rum_ioctl(struct ifnet *, u_long, caddr_t);
150 void		rum_eeprom_read(struct rum_softc *, uint16_t, void *, int);
151 uint32_t	rum_read(struct rum_softc *, uint16_t);
152 void		rum_read_multi(struct rum_softc *, uint16_t, void *, int);
153 void		rum_write(struct rum_softc *, uint16_t, uint32_t);
154 void		rum_write_multi(struct rum_softc *, uint16_t, void *, size_t);
155 void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
156 uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
157 void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
158 void		rum_select_antenna(struct rum_softc *);
159 void		rum_enable_mrr(struct rum_softc *);
160 void		rum_set_txpreamble(struct rum_softc *);
161 void		rum_set_basicrates(struct rum_softc *);
162 void		rum_select_band(struct rum_softc *,
163 		    struct ieee80211_channel *);
164 void		rum_set_chan(struct rum_softc *, struct ieee80211_channel *);
165 void		rum_enable_tsf_sync(struct rum_softc *);
166 void		rum_update_slot(struct rum_softc *);
167 void		rum_set_bssid(struct rum_softc *, const uint8_t *);
168 void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
169 void		rum_update_promisc(struct rum_softc *);
170 const char	*rum_get_rf(int);
171 void		rum_read_eeprom(struct rum_softc *);
172 int		rum_bbp_init(struct rum_softc *);
173 int		rum_init(struct ifnet *);
174 void		rum_stop(struct ifnet *, int);
175 int		rum_load_microcode(struct rum_softc *, const u_char *, size_t);
176 #ifndef IEEE80211_STA_ONLY
177 int		rum_prepare_beacon(struct rum_softc *);
178 #endif
179 void		rum_newassoc(struct ieee80211com *, struct ieee80211_node *,
180 		    int);
181 void		rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
182 void		rum_amrr_timeout(void *);
183 void		rum_amrr_update(struct usbd_xfer *, void *,
184 		    usbd_status status);
185 
186 static const struct {
187 	uint32_t	reg;
188 	uint32_t	val;
189 } rum_def_mac[] = {
190 	RT2573_DEF_MAC
191 };
192 
193 static const struct {
194 	uint8_t	reg;
195 	uint8_t	val;
196 } rum_def_bbp[] = {
197 	RT2573_DEF_BBP
198 };
199 
200 static const struct rfprog {
201 	uint8_t		chan;
202 	uint32_t	r1, r2, r3, r4;
203 }  rum_rf5226[] = {
204 	RT2573_RF5226
205 }, rum_rf5225[] = {
206 	RT2573_RF5225
207 };
208 
209 int rum_match(struct device *, void *, void *);
210 void rum_attach(struct device *, struct device *, void *);
211 int rum_detach(struct device *, int);
212 
213 struct cfdriver rum_cd = {
214 	NULL, "rum", DV_IFNET
215 };
216 
217 const struct cfattach rum_ca = {
218 	sizeof(struct rum_softc), rum_match, rum_attach, rum_detach
219 };
220 
221 int
rum_match(struct device * parent,void * match,void * aux)222 rum_match(struct device *parent, void *match, void *aux)
223 {
224 	struct usb_attach_arg *uaa = aux;
225 
226 	if (uaa->iface == NULL || uaa->configno != 1)
227 		return UMATCH_NONE;
228 
229 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
230 	    UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE;
231 }
232 
233 void
rum_attachhook(struct device * self)234 rum_attachhook(struct device *self)
235 {
236 	struct rum_softc *sc = (struct rum_softc *)self;
237 	const char *name = "rum-rt2573";
238 	u_char *ucode;
239 	size_t size;
240 	int error;
241 
242 	if ((error = loadfirmware(name, &ucode, &size)) != 0) {
243 		printf("%s: failed loadfirmware of file %s (error %d)\n",
244 		    sc->sc_dev.dv_xname, name, error);
245 		return;
246 	}
247 
248 	if (rum_load_microcode(sc, ucode, size) != 0) {
249 		printf("%s: could not load 8051 microcode\n",
250 		    sc->sc_dev.dv_xname);
251 	}
252 
253 	free(ucode, M_DEVBUF, size);
254 }
255 
256 void
rum_attach(struct device * parent,struct device * self,void * aux)257 rum_attach(struct device *parent, struct device *self, void *aux)
258 {
259 	struct rum_softc *sc = (struct rum_softc *)self;
260 	struct usb_attach_arg *uaa = aux;
261 	struct ieee80211com *ic = &sc->sc_ic;
262 	struct ifnet *ifp = &ic->ic_if;
263 	usb_interface_descriptor_t *id;
264 	usb_endpoint_descriptor_t *ed;
265 	int i, ntries;
266 	uint32_t tmp;
267 
268 	sc->sc_udev = uaa->device;
269 	sc->sc_iface = uaa->iface;
270 
271 	/*
272 	 * Find endpoints.
273 	 */
274 	id = usbd_get_interface_descriptor(sc->sc_iface);
275 
276 	sc->sc_rx_no = sc->sc_tx_no = -1;
277 	for (i = 0; i < id->bNumEndpoints; i++) {
278 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
279 		if (ed == NULL) {
280 			printf("%s: no endpoint descriptor for iface %d\n",
281 			    sc->sc_dev.dv_xname, i);
282 			return;
283 		}
284 
285 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
286 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
287 			sc->sc_rx_no = ed->bEndpointAddress;
288 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
289 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
290 			sc->sc_tx_no = ed->bEndpointAddress;
291 	}
292 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
293 		printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
294 		return;
295 	}
296 
297 	usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC);
298 	timeout_set(&sc->scan_to, rum_next_scan, sc);
299 
300 	sc->amrr.amrr_min_success_threshold =  1;
301 	sc->amrr.amrr_max_success_threshold = 10;
302 	timeout_set(&sc->amrr_to, rum_amrr_timeout, sc);
303 
304 	/* retrieve RT2573 rev. no */
305 	for (ntries = 0; ntries < 1000; ntries++) {
306 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
307 			break;
308 		DELAY(1000);
309 	}
310 	if (ntries == 1000) {
311 		printf("%s: timeout waiting for chip to settle\n",
312 		    sc->sc_dev.dv_xname);
313 		return;
314 	}
315 
316 	/* retrieve MAC address and various other things from EEPROM */
317 	rum_read_eeprom(sc);
318 
319 	printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
320 	    sc->sc_dev.dv_xname, sc->macbbp_rev, tmp,
321 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
322 
323 	config_mountroot(self, rum_attachhook);
324 
325 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
326 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
327 	ic->ic_state = IEEE80211_S_INIT;
328 
329 	/* set device capabilities */
330 	ic->ic_caps =
331 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
332 #ifndef IEEE80211_STA_ONLY
333 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
334 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
335 #endif
336 	    IEEE80211_C_TXPMGT |	/* tx power management */
337 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
338 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
339 	    IEEE80211_C_WEP |		/* s/w WEP */
340 	    IEEE80211_C_RSN;		/* WPA/RSN */
341 
342 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
343 		/* set supported .11a rates */
344 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
345 		    ieee80211_std_rateset_11a;
346 
347 		/* set supported .11a channels */
348 		for (i = 34; i <= 46; i += 4) {
349 			ic->ic_channels[i].ic_freq =
350 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
351 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
352 		}
353 		for (i = 36; i <= 64; i += 4) {
354 			ic->ic_channels[i].ic_freq =
355 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
356 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
357 		}
358 		for (i = 100; i <= 140; i += 4) {
359 			ic->ic_channels[i].ic_freq =
360 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
361 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
362 		}
363 		for (i = 149; i <= 165; i += 4) {
364 			ic->ic_channels[i].ic_freq =
365 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
366 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
367 		}
368 	}
369 
370 	/* set supported .11b and .11g rates */
371 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
372 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
373 
374 	/* set supported .11b and .11g channels (1 through 14) */
375 	for (i = 1; i <= 14; i++) {
376 		ic->ic_channels[i].ic_freq =
377 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
378 		ic->ic_channels[i].ic_flags =
379 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
380 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
381 	}
382 
383 	ifp->if_softc = sc;
384 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
385 	ifp->if_ioctl = rum_ioctl;
386 	ifp->if_start = rum_start;
387 	ifp->if_watchdog = rum_watchdog;
388 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
389 
390 	if_attach(ifp);
391 	ieee80211_ifattach(ifp);
392 	ic->ic_newassoc = rum_newassoc;
393 
394 	/* override state transition machine */
395 	sc->sc_newstate = ic->ic_newstate;
396 	ic->ic_newstate = rum_newstate;
397 	ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status);
398 
399 #if NBPFILTER > 0
400 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
401 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
402 
403 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
404 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
405 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
406 
407 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
408 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
409 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
410 #endif
411 }
412 
413 int
rum_detach(struct device * self,int flags)414 rum_detach(struct device *self, int flags)
415 {
416 	struct rum_softc *sc = (struct rum_softc *)self;
417 	struct ifnet *ifp = &sc->sc_ic.ic_if;
418 	int s;
419 
420 	s = splusb();
421 
422 	if (timeout_initialized(&sc->scan_to))
423 		timeout_del(&sc->scan_to);
424 	if (timeout_initialized(&sc->amrr_to))
425 		timeout_del(&sc->amrr_to);
426 
427 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
428 
429 	usbd_ref_wait(sc->sc_udev);
430 
431 	if (ifp->if_softc != NULL) {
432 		ieee80211_ifdetach(ifp);	/* free all nodes */
433 		if_detach(ifp);
434 	}
435 
436 	if (sc->amrr_xfer != NULL) {
437 		usbd_free_xfer(sc->amrr_xfer);
438 		sc->amrr_xfer = NULL;
439 	}
440 	if (sc->sc_rx_pipeh != NULL)
441 		usbd_close_pipe(sc->sc_rx_pipeh);
442 	if (sc->sc_tx_pipeh != NULL)
443 		usbd_close_pipe(sc->sc_tx_pipeh);
444 
445 	rum_free_rx_list(sc);
446 	rum_free_tx_list(sc);
447 
448 	splx(s);
449 
450 	return 0;
451 }
452 
453 int
rum_alloc_tx_list(struct rum_softc * sc)454 rum_alloc_tx_list(struct rum_softc *sc)
455 {
456 	int i, error;
457 
458 	sc->tx_cur = sc->tx_queued = 0;
459 
460 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
461 		struct rum_tx_data *data = &sc->tx_data[i];
462 
463 		data->sc = sc;
464 
465 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
466 		if (data->xfer == NULL) {
467 			printf("%s: could not allocate tx xfer\n",
468 			    sc->sc_dev.dv_xname);
469 			error = ENOMEM;
470 			goto fail;
471 		}
472 		data->buf = usbd_alloc_buffer(data->xfer,
473 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
474 		if (data->buf == NULL) {
475 			printf("%s: could not allocate tx buffer\n",
476 			    sc->sc_dev.dv_xname);
477 			error = ENOMEM;
478 			goto fail;
479 		}
480 		/* clean Tx descriptor */
481 		bzero(data->buf, RT2573_TX_DESC_SIZE);
482 	}
483 
484 	return 0;
485 
486 fail:	rum_free_tx_list(sc);
487 	return error;
488 }
489 
490 void
rum_free_tx_list(struct rum_softc * sc)491 rum_free_tx_list(struct rum_softc *sc)
492 {
493 	int i;
494 
495 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
496 		struct rum_tx_data *data = &sc->tx_data[i];
497 
498 		if (data->xfer != NULL) {
499 			usbd_free_xfer(data->xfer);
500 			data->xfer = NULL;
501 		}
502 		/*
503 		 * The node has already been freed at that point so don't call
504 		 * ieee80211_release_node() here.
505 		 */
506 		data->ni = NULL;
507 	}
508 }
509 
510 int
rum_alloc_rx_list(struct rum_softc * sc)511 rum_alloc_rx_list(struct rum_softc *sc)
512 {
513 	int i, error;
514 
515 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
516 		struct rum_rx_data *data = &sc->rx_data[i];
517 
518 		data->sc = sc;
519 
520 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
521 		if (data->xfer == NULL) {
522 			printf("%s: could not allocate rx xfer\n",
523 			    sc->sc_dev.dv_xname);
524 			error = ENOMEM;
525 			goto fail;
526 		}
527 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
528 			printf("%s: could not allocate rx buffer\n",
529 			    sc->sc_dev.dv_xname);
530 			error = ENOMEM;
531 			goto fail;
532 		}
533 
534 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
535 		if (data->m == NULL) {
536 			printf("%s: could not allocate rx mbuf\n",
537 			    sc->sc_dev.dv_xname);
538 			error = ENOMEM;
539 			goto fail;
540 		}
541 		MCLGET(data->m, M_DONTWAIT);
542 		if (!(data->m->m_flags & M_EXT)) {
543 			printf("%s: could not allocate rx mbuf cluster\n",
544 			    sc->sc_dev.dv_xname);
545 			error = ENOMEM;
546 			goto fail;
547 		}
548 		data->buf = mtod(data->m, uint8_t *);
549 	}
550 
551 	return 0;
552 
553 fail:	rum_free_rx_list(sc);
554 	return error;
555 }
556 
557 void
rum_free_rx_list(struct rum_softc * sc)558 rum_free_rx_list(struct rum_softc *sc)
559 {
560 	int i;
561 
562 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
563 		struct rum_rx_data *data = &sc->rx_data[i];
564 
565 		if (data->xfer != NULL) {
566 			usbd_free_xfer(data->xfer);
567 			data->xfer = NULL;
568 		}
569 		if (data->m != NULL) {
570 			m_freem(data->m);
571 			data->m = NULL;
572 		}
573 	}
574 }
575 
576 int
rum_media_change(struct ifnet * ifp)577 rum_media_change(struct ifnet *ifp)
578 {
579 	int error;
580 
581 	error = ieee80211_media_change(ifp);
582 	if (error != ENETRESET)
583 		return error;
584 
585 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
586 		error = rum_init(ifp);
587 
588 	return error;
589 }
590 
591 /*
592  * This function is called periodically (every 200ms) during scanning to
593  * switch from one channel to another.
594  */
595 void
rum_next_scan(void * arg)596 rum_next_scan(void *arg)
597 {
598 	struct rum_softc *sc = arg;
599 	struct ieee80211com *ic = &sc->sc_ic;
600 	struct ifnet *ifp = &ic->ic_if;
601 
602 	if (usbd_is_dying(sc->sc_udev))
603 		return;
604 
605 	usbd_ref_incr(sc->sc_udev);
606 
607 	if (ic->ic_state == IEEE80211_S_SCAN)
608 		ieee80211_next_scan(ifp);
609 
610 	usbd_ref_decr(sc->sc_udev);
611 }
612 
613 void
rum_task(void * arg)614 rum_task(void *arg)
615 {
616 	struct rum_softc *sc = arg;
617 	struct ieee80211com *ic = &sc->sc_ic;
618 	enum ieee80211_state ostate;
619 	struct ieee80211_node *ni;
620 	uint32_t tmp;
621 
622 	if (usbd_is_dying(sc->sc_udev))
623 		return;
624 
625 	ostate = ic->ic_state;
626 
627 	switch (sc->sc_state) {
628 	case IEEE80211_S_INIT:
629 		if (ostate == IEEE80211_S_RUN) {
630 			/* abort TSF synchronization */
631 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
632 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
633 		}
634 		break;
635 
636 	case IEEE80211_S_SCAN:
637 		rum_set_chan(sc, ic->ic_bss->ni_chan);
638 		if (!usbd_is_dying(sc->sc_udev))
639 			timeout_add_msec(&sc->scan_to, 200);
640 		break;
641 
642 	case IEEE80211_S_AUTH:
643 		rum_set_chan(sc, ic->ic_bss->ni_chan);
644 		break;
645 
646 	case IEEE80211_S_ASSOC:
647 		rum_set_chan(sc, ic->ic_bss->ni_chan);
648 		break;
649 
650 	case IEEE80211_S_RUN:
651 		rum_set_chan(sc, ic->ic_bss->ni_chan);
652 
653 		ni = ic->ic_bss;
654 
655 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
656 			rum_update_slot(sc);
657 			rum_enable_mrr(sc);
658 			rum_set_txpreamble(sc);
659 			rum_set_basicrates(sc);
660 			rum_set_bssid(sc, ni->ni_bssid);
661 		}
662 
663 #ifndef IEEE80211_STA_ONLY
664 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
665 		    ic->ic_opmode == IEEE80211_M_IBSS)
666 			rum_prepare_beacon(sc);
667 #endif
668 
669 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
670 			rum_enable_tsf_sync(sc);
671 
672 		if (ic->ic_opmode == IEEE80211_M_STA) {
673 			/* fake a join to init the tx rate */
674 			rum_newassoc(ic, ic->ic_bss, 1);
675 
676 			/* enable automatic rate control in STA mode */
677 			if (ic->ic_fixed_rate == -1)
678 				rum_amrr_start(sc, ni);
679 		}
680 		break;
681 	}
682 
683 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
684 }
685 
686 int
rum_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)687 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
688 {
689 	struct rum_softc *sc = ic->ic_if.if_softc;
690 
691 	usb_rem_task(sc->sc_udev, &sc->sc_task);
692 	timeout_del(&sc->scan_to);
693 	timeout_del(&sc->amrr_to);
694 
695 	/* do it in a process context */
696 	sc->sc_state = nstate;
697 	sc->sc_arg = arg;
698 	usb_add_task(sc->sc_udev, &sc->sc_task);
699 	return 0;
700 }
701 
702 /* quickly determine if a given rate is CCK or OFDM */
703 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
704 
705 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
706 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
707 
708 void
rum_txeof(struct usbd_xfer * xfer,void * priv,usbd_status status)709 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
710 {
711 	struct rum_tx_data *data = priv;
712 	struct rum_softc *sc = data->sc;
713 	struct ieee80211com *ic = &sc->sc_ic;
714 	struct ifnet *ifp = &ic->ic_if;
715 	int s;
716 
717 	if (status != USBD_NORMAL_COMPLETION) {
718 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
719 			return;
720 
721 		printf("%s: could not transmit buffer: %s\n",
722 		    sc->sc_dev.dv_xname, usbd_errstr(status));
723 
724 		if (status == USBD_STALLED)
725 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
726 
727 		ifp->if_oerrors++;
728 		return;
729 	}
730 
731 	s = splnet();
732 
733 	ieee80211_release_node(ic, data->ni);
734 	data->ni = NULL;
735 
736 	sc->tx_queued--;
737 
738 	DPRINTFN(10, ("tx done\n"));
739 
740 	sc->sc_tx_timer = 0;
741 	ifq_clr_oactive(&ifp->if_snd);
742 	rum_start(ifp);
743 
744 	splx(s);
745 }
746 
747 void
rum_rxeof(struct usbd_xfer * xfer,void * priv,usbd_status status)748 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
749 {
750 	struct rum_rx_data *data = priv;
751 	struct rum_softc *sc = data->sc;
752 	struct ieee80211com *ic = &sc->sc_ic;
753 	struct ifnet *ifp = &ic->ic_if;
754 	const struct rum_rx_desc *desc;
755 	struct ieee80211_frame *wh;
756 	struct ieee80211_rxinfo rxi;
757 	struct ieee80211_node *ni;
758 	struct mbuf *mnew, *m;
759 	int s, len;
760 
761 	if (status != USBD_NORMAL_COMPLETION) {
762 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
763 			return;
764 
765 		if (status == USBD_STALLED)
766 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
767 		goto skip;
768 	}
769 
770 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
771 
772 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
773 		DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname,
774 		    len));
775 		ifp->if_ierrors++;
776 		goto skip;
777 	}
778 
779 	desc = (const struct rum_rx_desc *)data->buf;
780 
781 	if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) {
782 		/*
783 		 * This should not happen since we did not request to receive
784 		 * those frames when we filled RT2573_TXRX_CSR0.
785 		 */
786 		DPRINTFN(5, ("CRC error\n"));
787 		ifp->if_ierrors++;
788 		goto skip;
789 	}
790 
791 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
792 	if (mnew == NULL) {
793 		printf("%s: could not allocate rx mbuf\n",
794 		    sc->sc_dev.dv_xname);
795 		ifp->if_ierrors++;
796 		goto skip;
797 	}
798 	MCLGET(mnew, M_DONTWAIT);
799 	if (!(mnew->m_flags & M_EXT)) {
800 		printf("%s: could not allocate rx mbuf cluster\n",
801 		    sc->sc_dev.dv_xname);
802 		m_freem(mnew);
803 		ifp->if_ierrors++;
804 		goto skip;
805 	}
806 	m = data->m;
807 	data->m = mnew;
808 	data->buf = mtod(data->m, uint8_t *);
809 
810 	/* finalize mbuf */
811 	m->m_data = (caddr_t)(desc + 1);
812 	m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff;
813 
814 	s = splnet();
815 
816 #if NBPFILTER > 0
817 	if (sc->sc_drvbpf != NULL) {
818 		struct mbuf mb;
819 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
820 
821 		tap->wr_flags = 0;
822 		tap->wr_rate = rum_rxrate(desc);
823 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
824 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
825 		tap->wr_antenna = sc->rx_ant;
826 		tap->wr_antsignal = desc->rssi;
827 
828 		mb.m_data = (caddr_t)tap;
829 		mb.m_len = sc->sc_rxtap_len;
830 		mb.m_next = m;
831 		mb.m_nextpkt = NULL;
832 		mb.m_type = 0;
833 		mb.m_flags = 0;
834 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
835 	}
836 #endif
837 
838 	wh = mtod(m, struct ieee80211_frame *);
839 	ni = ieee80211_find_rxnode(ic, wh);
840 
841 	/* send the frame to the 802.11 layer */
842 	memset(&rxi, 0, sizeof(rxi));
843 	rxi.rxi_rssi = desc->rssi;
844 	ieee80211_input(ifp, m, ni, &rxi);
845 
846 	/* node is no longer needed */
847 	ieee80211_release_node(ic, ni);
848 
849 	splx(s);
850 
851 	DPRINTFN(15, ("rx done\n"));
852 
853 skip:	/* setup a new transfer */
854 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
855 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
856 	(void)usbd_transfer(xfer);
857 }
858 
859 /*
860  * This function is only used by the Rx radiotap code. It returns the rate at
861  * which a given frame was received.
862  */
863 #if NBPFILTER > 0
864 uint8_t
rum_rxrate(const struct rum_rx_desc * desc)865 rum_rxrate(const struct rum_rx_desc *desc)
866 {
867 	if (letoh32(desc->flags) & RT2573_RX_OFDM) {
868 		/* reverse function of rum_plcp_signal */
869 		switch (desc->rate) {
870 		case 0xb:	return 12;
871 		case 0xf:	return 18;
872 		case 0xa:	return 24;
873 		case 0xe:	return 36;
874 		case 0x9:	return 48;
875 		case 0xd:	return 72;
876 		case 0x8:	return 96;
877 		case 0xc:	return 108;
878 		}
879 	} else {
880 		if (desc->rate == 10)
881 			return 2;
882 		if (desc->rate == 20)
883 			return 4;
884 		if (desc->rate == 55)
885 			return 11;
886 		if (desc->rate == 110)
887 			return 22;
888 	}
889 	return 2;	/* should not get there */
890 }
891 #endif
892 
893 /*
894  * Return the expected ack rate for a frame transmitted at rate `rate'.
895  */
896 int
rum_ack_rate(struct ieee80211com * ic,int rate)897 rum_ack_rate(struct ieee80211com *ic, int rate)
898 {
899 	switch (rate) {
900 	/* CCK rates */
901 	case 2:
902 		return 2;
903 	case 4:
904 	case 11:
905 	case 22:
906 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
907 
908 	/* OFDM rates */
909 	case 12:
910 	case 18:
911 		return 12;
912 	case 24:
913 	case 36:
914 		return 24;
915 	case 48:
916 	case 72:
917 	case 96:
918 	case 108:
919 		return 48;
920 	}
921 
922 	/* default to 1Mbps */
923 	return 2;
924 }
925 
926 /*
927  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
928  * The function automatically determines the operating mode depending on the
929  * given rate. `flags' indicates whether short preamble is in use or not.
930  */
931 uint16_t
rum_txtime(int len,int rate,uint32_t flags)932 rum_txtime(int len, int rate, uint32_t flags)
933 {
934 	uint16_t txtime;
935 
936 	if (RUM_RATE_IS_OFDM(rate)) {
937 		/* IEEE Std 802.11a-1999, pp. 37 */
938 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
939 		txtime = 16 + 4 + 4 * txtime + 6;
940 	} else {
941 		/* IEEE Std 802.11b-1999, pp. 28 */
942 		txtime = (16 * len + rate - 1) / rate;
943 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
944 			txtime +=  72 + 24;
945 		else
946 			txtime += 144 + 48;
947 	}
948 	return txtime;
949 }
950 
951 uint8_t
rum_plcp_signal(int rate)952 rum_plcp_signal(int rate)
953 {
954 	switch (rate) {
955 	/* CCK rates (returned values are device-dependent) */
956 	case 2:		return 0x0;
957 	case 4:		return 0x1;
958 	case 11:	return 0x2;
959 	case 22:	return 0x3;
960 
961 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
962 	case 12:	return 0xb;
963 	case 18:	return 0xf;
964 	case 24:	return 0xa;
965 	case 36:	return 0xe;
966 	case 48:	return 0x9;
967 	case 72:	return 0xd;
968 	case 96:	return 0x8;
969 	case 108:	return 0xc;
970 
971 	/* unsupported rates (should not get there) */
972 	default:	return 0xff;
973 	}
974 }
975 
976 void
rum_setup_tx_desc(struct rum_softc * sc,struct rum_tx_desc * desc,uint32_t flags,uint16_t xflags,int len,int rate)977 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
978     uint32_t flags, uint16_t xflags, int len, int rate)
979 {
980 	struct ieee80211com *ic = &sc->sc_ic;
981 	uint16_t plcp_length;
982 	int remainder;
983 
984 	desc->flags = htole32(flags);
985 	desc->flags |= htole32(RT2573_TX_VALID);
986 	desc->flags |= htole32(len << 16);
987 
988 	desc->xflags = htole16(xflags);
989 
990 	desc->wme = htole16(
991 	    RT2573_QID(0) |
992 	    RT2573_AIFSN(2) |
993 	    RT2573_LOGCWMIN(4) |
994 	    RT2573_LOGCWMAX(10));
995 
996 	/* setup PLCP fields */
997 	desc->plcp_signal  = rum_plcp_signal(rate);
998 	desc->plcp_service = 4;
999 
1000 	len += IEEE80211_CRC_LEN;
1001 	if (RUM_RATE_IS_OFDM(rate)) {
1002 		desc->flags |= htole32(RT2573_TX_OFDM);
1003 
1004 		plcp_length = len & 0xfff;
1005 		desc->plcp_length_hi = plcp_length >> 6;
1006 		desc->plcp_length_lo = plcp_length & 0x3f;
1007 	} else {
1008 		plcp_length = (16 * len + rate - 1) / rate;
1009 		if (rate == 22) {
1010 			remainder = (16 * len) % 22;
1011 			if (remainder != 0 && remainder < 7)
1012 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1013 		}
1014 		desc->plcp_length_hi = plcp_length >> 8;
1015 		desc->plcp_length_lo = plcp_length & 0xff;
1016 
1017 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1018 			desc->plcp_signal |= 0x08;
1019 	}
1020 }
1021 
1022 #define RUM_TX_TIMEOUT	5000
1023 
1024 int
rum_tx_data(struct rum_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1025 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1026 {
1027 	struct ieee80211com *ic = &sc->sc_ic;
1028 	struct rum_tx_desc *desc;
1029 	struct rum_tx_data *data;
1030 	struct ieee80211_frame *wh;
1031 	struct ieee80211_key *k;
1032 	uint32_t flags = 0;
1033 	uint16_t dur;
1034 	usbd_status error;
1035 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1036 
1037 	wh = mtod(m0, struct ieee80211_frame *);
1038 
1039 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1040 		k = ieee80211_get_txkey(ic, wh, ni);
1041 
1042 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1043 			return ENOBUFS;
1044 
1045 		/* packet header may have moved, reset our local pointer */
1046 		wh = mtod(m0, struct ieee80211_frame *);
1047 	}
1048 
1049 	/* compute actual packet length (including CRC and crypto overhead) */
1050 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1051 
1052 	/* pickup a rate */
1053 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1054 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1055 	     IEEE80211_FC0_TYPE_MGT)) {
1056 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1057 		rate = ni->ni_rates.rs_rates[0];
1058 	} else if (ic->ic_fixed_rate != -1) {
1059 		rate = ic->ic_sup_rates[ic->ic_curmode].
1060 		    rs_rates[ic->ic_fixed_rate];
1061 	} else
1062 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1063 	if (rate == 0)
1064 		rate = 2;	/* XXX should not happen */
1065 	rate &= IEEE80211_RATE_VAL;
1066 
1067 	/* check if RTS/CTS or CTS-to-self protection must be used */
1068 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1069 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1070 		if (pktlen > ic->ic_rtsthreshold) {
1071 			needrts = 1;	/* RTS/CTS based on frame length */
1072 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1073 		    RUM_RATE_IS_OFDM(rate)) {
1074 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1075 				needcts = 1;	/* CTS-to-self */
1076 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1077 				needrts = 1;	/* RTS/CTS */
1078 		}
1079 	}
1080 	if (needrts || needcts) {
1081 		struct mbuf *mprot;
1082 		int protrate, ackrate;
1083 		uint16_t dur;
1084 
1085 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1086 		ackrate  = rum_ack_rate(ic, rate);
1087 
1088 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1089 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1090 		      2 * sc->sifs;
1091 		if (needrts) {
1092 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1093 			    protrate), ic->ic_flags) + sc->sifs;
1094 			mprot = ieee80211_get_rts(ic, wh, dur);
1095 		} else {
1096 			mprot = ieee80211_get_cts_to_self(ic, dur);
1097 		}
1098 		if (mprot == NULL) {
1099 			printf("%s: could not allocate protection frame\n",
1100 			    sc->sc_dev.dv_xname);
1101 			m_freem(m0);
1102 			return ENOBUFS;
1103 		}
1104 
1105 		data = &sc->tx_data[sc->tx_cur];
1106 		desc = (struct rum_tx_desc *)data->buf;
1107 
1108 		/* avoid multiple free() of the same node for each fragment */
1109 		data->ni = ieee80211_ref_node(ni);
1110 
1111 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1112 		    data->buf + RT2573_TX_DESC_SIZE);
1113 		rum_setup_tx_desc(sc, desc,
1114 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1115 		    0, mprot->m_pkthdr.len, protrate);
1116 
1117 		/* no roundup necessary here */
1118 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1119 
1120 		/* XXX may want to pass the protection frame to BPF */
1121 
1122 		/* mbuf is no longer needed */
1123 		m_freem(mprot);
1124 
1125 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1126 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1127 		    RUM_TX_TIMEOUT, rum_txeof);
1128 		error = usbd_transfer(data->xfer);
1129 		if (error != 0 && error != USBD_IN_PROGRESS) {
1130 			m_freem(m0);
1131 			return error;
1132 		}
1133 
1134 		sc->tx_queued++;
1135 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1136 
1137 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1138 	}
1139 
1140 	data = &sc->tx_data[sc->tx_cur];
1141 	desc = (struct rum_tx_desc *)data->buf;
1142 
1143 	data->ni = ni;
1144 
1145 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1146 		flags |= RT2573_TX_NEED_ACK;
1147 
1148 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1149 		    ic->ic_flags) + sc->sifs;
1150 		*(uint16_t *)wh->i_dur = htole16(dur);
1151 
1152 #ifndef IEEE80211_STA_ONLY
1153 		/* tell hardware to set timestamp in probe responses */
1154 		if ((wh->i_fc[0] &
1155 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1156 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1157 			flags |= RT2573_TX_TIMESTAMP;
1158 #endif
1159 	}
1160 
1161 #if NBPFILTER > 0
1162 	if (sc->sc_drvbpf != NULL) {
1163 		struct mbuf mb;
1164 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1165 
1166 		tap->wt_flags = 0;
1167 		tap->wt_rate = rate;
1168 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1169 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1170 		tap->wt_antenna = sc->tx_ant;
1171 
1172 		mb.m_data = (caddr_t)tap;
1173 		mb.m_len = sc->sc_txtap_len;
1174 		mb.m_next = m0;
1175 		mb.m_nextpkt = NULL;
1176 		mb.m_type = 0;
1177 		mb.m_flags = 0;
1178 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1179 	}
1180 #endif
1181 
1182 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1183 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1184 
1185 	/* align end on a 4-bytes boundary */
1186 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1187 
1188 	/*
1189 	 * No space left in the last URB to store the extra 4 bytes, force
1190 	 * sending of another URB.
1191 	 */
1192 	if ((xferlen % 64) == 0)
1193 		xferlen += 4;
1194 
1195 	DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1196 	    m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1197 
1198 	/* mbuf is no longer needed */
1199 	m_freem(m0);
1200 
1201 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1202 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1203 	error = usbd_transfer(data->xfer);
1204 	if (error != 0 && error != USBD_IN_PROGRESS)
1205 		return error;
1206 
1207 	sc->tx_queued++;
1208 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1209 
1210 	return 0;
1211 }
1212 
1213 void
rum_start(struct ifnet * ifp)1214 rum_start(struct ifnet *ifp)
1215 {
1216 	struct rum_softc *sc = ifp->if_softc;
1217 	struct ieee80211com *ic = &sc->sc_ic;
1218 	struct ieee80211_node *ni;
1219 	struct mbuf *m0;
1220 
1221 	/*
1222 	 * net80211 may still try to send management frames even if the
1223 	 * IFF_RUNNING flag is not set...
1224 	 */
1225 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1226 		return;
1227 
1228 	for (;;) {
1229 		if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1230 			ifq_set_oactive(&ifp->if_snd);
1231 			break;
1232 		}
1233 
1234 		m0 = mq_dequeue(&ic->ic_mgtq);
1235 		if (m0 != NULL) {
1236 			ni = m0->m_pkthdr.ph_cookie;
1237 #if NBPFILTER > 0
1238 			if (ic->ic_rawbpf != NULL)
1239 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1240 #endif
1241 			if (rum_tx_data(sc, m0, ni) != 0)
1242 				break;
1243 
1244 		} else {
1245 			if (ic->ic_state != IEEE80211_S_RUN)
1246 				break;
1247 
1248 			m0 = ifq_dequeue(&ifp->if_snd);
1249 			if (m0 == NULL)
1250 				break;
1251 #if NBPFILTER > 0
1252 			if (ifp->if_bpf != NULL)
1253 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1254 #endif
1255 			m0 = ieee80211_encap(ifp, m0, &ni);
1256 			if (m0 == NULL)
1257 				continue;
1258 #if NBPFILTER > 0
1259 			if (ic->ic_rawbpf != NULL)
1260 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1261 #endif
1262 			if (rum_tx_data(sc, m0, ni) != 0) {
1263 				if (ni != NULL)
1264 					ieee80211_release_node(ic, ni);
1265 				ifp->if_oerrors++;
1266 				break;
1267 			}
1268 		}
1269 
1270 		sc->sc_tx_timer = 5;
1271 		ifp->if_timer = 1;
1272 	}
1273 }
1274 
1275 void
rum_watchdog(struct ifnet * ifp)1276 rum_watchdog(struct ifnet *ifp)
1277 {
1278 	struct rum_softc *sc = ifp->if_softc;
1279 
1280 	ifp->if_timer = 0;
1281 
1282 	if (sc->sc_tx_timer > 0) {
1283 		if (--sc->sc_tx_timer == 0) {
1284 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1285 			/*rum_init(ifp); XXX needs a process context! */
1286 			ifp->if_oerrors++;
1287 			return;
1288 		}
1289 		ifp->if_timer = 1;
1290 	}
1291 
1292 	ieee80211_watchdog(ifp);
1293 }
1294 
1295 int
rum_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)1296 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1297 {
1298 	struct rum_softc *sc = ifp->if_softc;
1299 	struct ieee80211com *ic = &sc->sc_ic;
1300 	int s, error = 0;
1301 
1302 	if (usbd_is_dying(sc->sc_udev))
1303 		return ENXIO;
1304 
1305 	usbd_ref_incr(sc->sc_udev);
1306 
1307 	s = splnet();
1308 
1309 	switch (cmd) {
1310 	case SIOCSIFADDR:
1311 		ifp->if_flags |= IFF_UP;
1312 		/* FALLTHROUGH */
1313 	case SIOCSIFFLAGS:
1314 		if (ifp->if_flags & IFF_UP) {
1315 			if (ifp->if_flags & IFF_RUNNING)
1316 				rum_update_promisc(sc);
1317 			else
1318 				rum_init(ifp);
1319 		} else {
1320 			if (ifp->if_flags & IFF_RUNNING)
1321 				rum_stop(ifp, 1);
1322 		}
1323 		break;
1324 
1325 	case SIOCS80211CHANNEL:
1326 		/*
1327 		 * This allows for fast channel switching in monitor mode
1328 		 * (used by kismet). In IBSS mode, we must explicitly reset
1329 		 * the interface to generate a new beacon frame.
1330 		 */
1331 		error = ieee80211_ioctl(ifp, cmd, data);
1332 		if (error == ENETRESET &&
1333 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1334 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1335 			    (IFF_UP | IFF_RUNNING))
1336 				rum_set_chan(sc, ic->ic_ibss_chan);
1337 			error = 0;
1338 		}
1339 		break;
1340 
1341 	default:
1342 		error = ieee80211_ioctl(ifp, cmd, data);
1343 	}
1344 
1345 	if (error == ENETRESET) {
1346 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1347 		    (IFF_UP | IFF_RUNNING))
1348 			rum_init(ifp);
1349 		error = 0;
1350 	}
1351 
1352 	splx(s);
1353 
1354 	usbd_ref_decr(sc->sc_udev);
1355 
1356 	return error;
1357 }
1358 
1359 void
rum_eeprom_read(struct rum_softc * sc,uint16_t addr,void * buf,int len)1360 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1361 {
1362 	usb_device_request_t req;
1363 	usbd_status error;
1364 
1365 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1366 	req.bRequest = RT2573_READ_EEPROM;
1367 	USETW(req.wValue, 0);
1368 	USETW(req.wIndex, addr);
1369 	USETW(req.wLength, len);
1370 
1371 	error = usbd_do_request(sc->sc_udev, &req, buf);
1372 	if (error != 0) {
1373 		printf("%s: could not read EEPROM: %s\n",
1374 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1375 	}
1376 }
1377 
1378 uint32_t
rum_read(struct rum_softc * sc,uint16_t reg)1379 rum_read(struct rum_softc *sc, uint16_t reg)
1380 {
1381 	uint32_t val;
1382 
1383 	rum_read_multi(sc, reg, &val, sizeof val);
1384 
1385 	return letoh32(val);
1386 }
1387 
1388 void
rum_read_multi(struct rum_softc * sc,uint16_t reg,void * buf,int len)1389 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1390 {
1391 	usb_device_request_t req;
1392 	usbd_status error;
1393 
1394 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1395 	req.bRequest = RT2573_READ_MULTI_MAC;
1396 	USETW(req.wValue, 0);
1397 	USETW(req.wIndex, reg);
1398 	USETW(req.wLength, len);
1399 
1400 	error = usbd_do_request(sc->sc_udev, &req, buf);
1401 	if (error != 0) {
1402 		printf("%s: could not multi read MAC register: %s\n",
1403 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1404 	}
1405 }
1406 
1407 void
rum_write(struct rum_softc * sc,uint16_t reg,uint32_t val)1408 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1409 {
1410 	uint32_t tmp = htole32(val);
1411 
1412 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1413 }
1414 
1415 void
rum_write_multi(struct rum_softc * sc,uint16_t reg,void * buf,size_t len)1416 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1417 {
1418 	usb_device_request_t req;
1419 	usbd_status error;
1420 	int offset;
1421 
1422 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1423 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1424 	USETW(req.wValue, 0);
1425 
1426 	/* write at most 64 bytes at a time */
1427 	for (offset = 0; offset < len; offset += 64) {
1428 		USETW(req.wIndex, reg + offset);
1429 		USETW(req.wLength, MIN(len - offset, 64));
1430 
1431 		error = usbd_do_request(sc->sc_udev, &req, buf + offset);
1432 		if (error != 0) {
1433 			printf("%s: could not multi write MAC register: %s\n",
1434 			    sc->sc_dev.dv_xname, usbd_errstr(error));
1435 		}
1436 	}
1437 }
1438 
1439 void
rum_bbp_write(struct rum_softc * sc,uint8_t reg,uint8_t val)1440 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1441 {
1442 	uint32_t tmp;
1443 	int ntries;
1444 
1445 	for (ntries = 0; ntries < 5; ntries++) {
1446 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1447 			break;
1448 	}
1449 	if (ntries == 5) {
1450 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
1451 		return;
1452 	}
1453 
1454 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1455 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1456 }
1457 
1458 uint8_t
rum_bbp_read(struct rum_softc * sc,uint8_t reg)1459 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1460 {
1461 	uint32_t val;
1462 	int ntries;
1463 
1464 	for (ntries = 0; ntries < 5; ntries++) {
1465 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1466 			break;
1467 	}
1468 	if (ntries == 5) {
1469 		printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1470 		return 0;
1471 	}
1472 
1473 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1474 	rum_write(sc, RT2573_PHY_CSR3, val);
1475 
1476 	for (ntries = 0; ntries < 100; ntries++) {
1477 		val = rum_read(sc, RT2573_PHY_CSR3);
1478 		if (!(val & RT2573_BBP_BUSY))
1479 			return val & 0xff;
1480 		DELAY(1);
1481 	}
1482 
1483 	printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1484 	return 0;
1485 }
1486 
1487 void
rum_rf_write(struct rum_softc * sc,uint8_t reg,uint32_t val)1488 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1489 {
1490 	uint32_t tmp;
1491 	int ntries;
1492 
1493 	for (ntries = 0; ntries < 5; ntries++) {
1494 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1495 			break;
1496 	}
1497 	if (ntries == 5) {
1498 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
1499 		return;
1500 	}
1501 
1502 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1503 	    (reg & 3);
1504 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1505 
1506 	/* remember last written value in sc */
1507 	sc->rf_regs[reg] = val;
1508 
1509 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1510 }
1511 
1512 void
rum_select_antenna(struct rum_softc * sc)1513 rum_select_antenna(struct rum_softc *sc)
1514 {
1515 	uint8_t bbp4, bbp77;
1516 	uint32_t tmp;
1517 
1518 	bbp4  = rum_bbp_read(sc, 4);
1519 	bbp77 = rum_bbp_read(sc, 77);
1520 
1521 	/* TBD */
1522 
1523 	/* make sure Rx is disabled before switching antenna */
1524 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1525 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1526 
1527 	rum_bbp_write(sc,  4, bbp4);
1528 	rum_bbp_write(sc, 77, bbp77);
1529 
1530 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1531 }
1532 
1533 /*
1534  * Enable multi-rate retries for frames sent at OFDM rates.
1535  * In 802.11b/g mode, allow fallback to CCK rates.
1536  */
1537 void
rum_enable_mrr(struct rum_softc * sc)1538 rum_enable_mrr(struct rum_softc *sc)
1539 {
1540 	struct ieee80211com *ic = &sc->sc_ic;
1541 	uint32_t tmp;
1542 
1543 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1544 
1545 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1546 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
1547 		tmp |= RT2573_MRR_CCK_FALLBACK;
1548 	tmp |= RT2573_MRR_ENABLED;
1549 
1550 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1551 }
1552 
1553 void
rum_set_txpreamble(struct rum_softc * sc)1554 rum_set_txpreamble(struct rum_softc *sc)
1555 {
1556 	uint32_t tmp;
1557 
1558 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1559 
1560 	tmp &= ~RT2573_SHORT_PREAMBLE;
1561 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1562 		tmp |= RT2573_SHORT_PREAMBLE;
1563 
1564 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1565 }
1566 
1567 void
rum_set_basicrates(struct rum_softc * sc)1568 rum_set_basicrates(struct rum_softc *sc)
1569 {
1570 	struct ieee80211com *ic = &sc->sc_ic;
1571 
1572 	/* update basic rate set */
1573 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1574 		/* 11b basic rates: 1, 2Mbps */
1575 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1576 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1577 		/* 11a basic rates: 6, 12, 24Mbps */
1578 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1579 	} else {
1580 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1581 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1582 	}
1583 }
1584 
1585 /*
1586  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1587  * driver.
1588  */
1589 void
rum_select_band(struct rum_softc * sc,struct ieee80211_channel * c)1590 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1591 {
1592 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1593 	uint32_t tmp;
1594 
1595 	/* update all BBP registers that depend on the band */
1596 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1597 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1598 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1599 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1600 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1601 	}
1602 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1603 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1604 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1605 	}
1606 
1607 	sc->bbp17 = bbp17;
1608 	rum_bbp_write(sc,  17, bbp17);
1609 	rum_bbp_write(sc,  96, bbp96);
1610 	rum_bbp_write(sc, 104, bbp104);
1611 
1612 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1613 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1614 		rum_bbp_write(sc, 75, 0x80);
1615 		rum_bbp_write(sc, 86, 0x80);
1616 		rum_bbp_write(sc, 88, 0x80);
1617 	}
1618 
1619 	rum_bbp_write(sc, 35, bbp35);
1620 	rum_bbp_write(sc, 97, bbp97);
1621 	rum_bbp_write(sc, 98, bbp98);
1622 
1623 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1624 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1625 	if (IEEE80211_IS_CHAN_2GHZ(c))
1626 		tmp |= RT2573_PA_PE_2GHZ;
1627 	else
1628 		tmp |= RT2573_PA_PE_5GHZ;
1629 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1630 
1631 	/* 802.11a uses a 16 microseconds short interframe space */
1632 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1633 }
1634 
1635 void
rum_set_chan(struct rum_softc * sc,struct ieee80211_channel * c)1636 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1637 {
1638 	struct ieee80211com *ic = &sc->sc_ic;
1639 	const struct rfprog *rfprog;
1640 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1641 	int8_t power;
1642 	u_int i, chan;
1643 
1644 	chan = ieee80211_chan2ieee(ic, c);
1645 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1646 		return;
1647 
1648 	/* select the appropriate RF settings based on what EEPROM says */
1649 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1650 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1651 
1652 	/* find the settings for this channel (we know it exists) */
1653 	for (i = 0; rfprog[i].chan != chan; i++)
1654 		;
1655 
1656 	power = sc->txpow[i];
1657 	if (power < 0) {
1658 		bbp94 += power;
1659 		power = 0;
1660 	} else if (power > 31) {
1661 		bbp94 += power - 31;
1662 		power = 31;
1663 	}
1664 
1665 	/*
1666 	 * If we are switching from the 2GHz band to the 5GHz band or
1667 	 * vice-versa, BBP registers need to be reprogrammed.
1668 	 */
1669 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
1670 		rum_select_band(sc, c);
1671 		rum_select_antenna(sc);
1672 	}
1673 	sc->sc_curchan = c;
1674 
1675 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1676 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1677 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1678 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1679 
1680 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1681 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1682 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1683 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1684 
1685 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1686 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1687 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1688 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1689 
1690 	DELAY(10);
1691 
1692 	/* enable smart mode for MIMO-capable RFs */
1693 	bbp3 = rum_bbp_read(sc, 3);
1694 
1695 	bbp3 &= ~RT2573_SMART_MODE;
1696 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1697 		bbp3 |= RT2573_SMART_MODE;
1698 
1699 	rum_bbp_write(sc, 3, bbp3);
1700 
1701 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1702 		rum_bbp_write(sc, 94, bbp94);
1703 }
1704 
1705 /*
1706  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1707  * and HostAP operating modes.
1708  */
1709 void
rum_enable_tsf_sync(struct rum_softc * sc)1710 rum_enable_tsf_sync(struct rum_softc *sc)
1711 {
1712 	struct ieee80211com *ic = &sc->sc_ic;
1713 	uint32_t tmp;
1714 
1715 #ifndef IEEE80211_STA_ONLY
1716 	if (ic->ic_opmode != IEEE80211_M_STA) {
1717 		/*
1718 		 * Change default 16ms TBTT adjustment to 8ms.
1719 		 * Must be done before enabling beacon generation.
1720 		 */
1721 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1722 	}
1723 #endif
1724 
1725 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1726 
1727 	/* set beacon interval (in 1/16ms unit) */
1728 	tmp |= ic->ic_bss->ni_intval * 16;
1729 
1730 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1731 	if (ic->ic_opmode == IEEE80211_M_STA)
1732 		tmp |= RT2573_TSF_MODE(1);
1733 #ifndef IEEE80211_STA_ONLY
1734 	else
1735 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1736 #endif
1737 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1738 }
1739 
1740 void
rum_update_slot(struct rum_softc * sc)1741 rum_update_slot(struct rum_softc *sc)
1742 {
1743 	struct ieee80211com *ic = &sc->sc_ic;
1744 	uint8_t slottime;
1745 	uint32_t tmp;
1746 
1747 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ?
1748 	    IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
1749 
1750 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1751 	tmp = (tmp & ~0xff) | slottime;
1752 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1753 
1754 	DPRINTF(("setting slot time to %uus\n", slottime));
1755 }
1756 
1757 void
rum_set_bssid(struct rum_softc * sc,const uint8_t * bssid)1758 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1759 {
1760 	uint32_t tmp;
1761 
1762 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1763 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1764 
1765 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1766 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1767 }
1768 
1769 void
rum_set_macaddr(struct rum_softc * sc,const uint8_t * addr)1770 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1771 {
1772 	uint32_t tmp;
1773 
1774 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1775 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1776 
1777 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1778 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1779 }
1780 
1781 void
rum_update_promisc(struct rum_softc * sc)1782 rum_update_promisc(struct rum_softc *sc)
1783 {
1784 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1785 	uint32_t tmp;
1786 
1787 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1788 
1789 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1790 	if (!(ifp->if_flags & IFF_PROMISC))
1791 		tmp |= RT2573_DROP_NOT_TO_ME;
1792 
1793 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1794 
1795 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1796 	    "entering" : "leaving"));
1797 }
1798 
1799 const char *
rum_get_rf(int rev)1800 rum_get_rf(int rev)
1801 {
1802 	switch (rev) {
1803 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1804 	case RT2573_RF_2528:	return "RT2528";
1805 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1806 	case RT2573_RF_5226:	return "RT5226";
1807 	default:		return "unknown";
1808 	}
1809 }
1810 
1811 void
rum_read_eeprom(struct rum_softc * sc)1812 rum_read_eeprom(struct rum_softc *sc)
1813 {
1814 	struct ieee80211com *ic = &sc->sc_ic;
1815 	uint16_t val;
1816 #ifdef RUM_DEBUG
1817 	int i;
1818 #endif
1819 
1820 	/* read MAC/BBP type */
1821 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1822 	sc->macbbp_rev = letoh16(val);
1823 
1824 	/* read MAC address */
1825 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1826 
1827 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1828 	val = letoh16(val);
1829 	sc->rf_rev =   (val >> 11) & 0x1f;
1830 	sc->hw_radio = (val >> 10) & 0x1;
1831 	sc->rx_ant =   (val >> 4)  & 0x3;
1832 	sc->tx_ant =   (val >> 2)  & 0x3;
1833 	sc->nb_ant =   val & 0x3;
1834 
1835 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1836 
1837 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1838 	val = letoh16(val);
1839 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1840 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1841 
1842 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1843 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1844 
1845 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1846 	val = letoh16(val);
1847 	if ((val & 0xff) != 0xff)
1848 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1849 
1850 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1851 	val = letoh16(val);
1852 	if ((val & 0xff) != 0xff)
1853 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1854 
1855 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1856 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1857 
1858 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1859 	val = letoh16(val);
1860 	if ((val & 0xff) != 0xff)
1861 		sc->rffreq = val & 0xff;
1862 
1863 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1864 
1865 	/* read Tx power for all a/b/g channels */
1866 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1867 	/* XXX default Tx power for 802.11a channels */
1868 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1869 #ifdef RUM_DEBUG
1870 	for (i = 0; i < 14; i++)
1871 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1872 #endif
1873 
1874 	/* read default values for BBP registers */
1875 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1876 #ifdef RUM_DEBUG
1877 	for (i = 0; i < 14; i++) {
1878 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1879 			continue;
1880 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1881 		    sc->bbp_prom[i].val));
1882 	}
1883 #endif
1884 }
1885 
1886 int
rum_bbp_init(struct rum_softc * sc)1887 rum_bbp_init(struct rum_softc *sc)
1888 {
1889 	int i, ntries;
1890 
1891 	/* wait for BBP to be ready */
1892 	for (ntries = 0; ntries < 100; ntries++) {
1893 		const uint8_t val = rum_bbp_read(sc, 0);
1894 		if (val != 0 && val != 0xff)
1895 			break;
1896 		DELAY(1000);
1897 	}
1898 	if (ntries == 100) {
1899 		printf("%s: timeout waiting for BBP\n",
1900 		    sc->sc_dev.dv_xname);
1901 		return EIO;
1902 	}
1903 
1904 	/* initialize BBP registers to default values */
1905 	for (i = 0; i < nitems(rum_def_bbp); i++)
1906 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1907 
1908 	/* write vendor-specific BBP values (from EEPROM) */
1909 	for (i = 0; i < 16; i++) {
1910 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1911 			continue;
1912 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 int
rum_init(struct ifnet * ifp)1919 rum_init(struct ifnet *ifp)
1920 {
1921 	struct rum_softc *sc = ifp->if_softc;
1922 	struct ieee80211com *ic = &sc->sc_ic;
1923 	uint32_t tmp;
1924 	usbd_status error;
1925 	int i, ntries;
1926 
1927 	rum_stop(ifp, 0);
1928 
1929 	/* initialize MAC registers to default values */
1930 	for (i = 0; i < nitems(rum_def_mac); i++)
1931 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1932 
1933 	/* set host ready */
1934 	rum_write(sc, RT2573_MAC_CSR1, 3);
1935 	rum_write(sc, RT2573_MAC_CSR1, 0);
1936 
1937 	/* wait for BBP/RF to wakeup */
1938 	for (ntries = 0; ntries < 1000; ntries++) {
1939 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1940 			break;
1941 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1942 		DELAY(1000);
1943 	}
1944 	if (ntries == 1000) {
1945 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1946 		    sc->sc_dev.dv_xname);
1947 		error = ENODEV;
1948 		goto fail;
1949 	}
1950 
1951 	if ((error = rum_bbp_init(sc)) != 0)
1952 		goto fail;
1953 
1954 	/* select default channel */
1955 	sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1956 	rum_select_band(sc, sc->sc_curchan);
1957 	rum_select_antenna(sc);
1958 	rum_set_chan(sc, sc->sc_curchan);
1959 
1960 	/* clear STA registers */
1961 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1962 
1963 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1964 	rum_set_macaddr(sc, ic->ic_myaddr);
1965 
1966 	/* initialize ASIC */
1967 	rum_write(sc, RT2573_MAC_CSR1, 4);
1968 
1969 	/*
1970 	 * Allocate xfer for AMRR statistics requests.
1971 	 */
1972 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1973 	if (sc->amrr_xfer == NULL) {
1974 		printf("%s: could not allocate AMRR xfer\n",
1975 		    sc->sc_dev.dv_xname);
1976 		goto fail;
1977 	}
1978 
1979 	/*
1980 	 * Open Tx and Rx USB bulk pipes.
1981 	 */
1982 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1983 	    &sc->sc_tx_pipeh);
1984 	if (error != 0) {
1985 		printf("%s: could not open Tx pipe: %s\n",
1986 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1987 		goto fail;
1988 	}
1989 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1990 	    &sc->sc_rx_pipeh);
1991 	if (error != 0) {
1992 		printf("%s: could not open Rx pipe: %s\n",
1993 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1994 		goto fail;
1995 	}
1996 
1997 	/*
1998 	 * Allocate Tx and Rx xfer queues.
1999 	 */
2000 	error = rum_alloc_tx_list(sc);
2001 	if (error != 0) {
2002 		printf("%s: could not allocate Tx list\n",
2003 		    sc->sc_dev.dv_xname);
2004 		goto fail;
2005 	}
2006 	error = rum_alloc_rx_list(sc);
2007 	if (error != 0) {
2008 		printf("%s: could not allocate Rx list\n",
2009 		    sc->sc_dev.dv_xname);
2010 		goto fail;
2011 	}
2012 
2013 	/*
2014 	 * Start up the receive pipe.
2015 	 */
2016 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2017 		struct rum_rx_data *data = &sc->rx_data[i];
2018 
2019 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2020 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2021 		error = usbd_transfer(data->xfer);
2022 		if (error != 0 && error != USBD_IN_PROGRESS) {
2023 			printf("%s: could not queue Rx transfer\n",
2024 			    sc->sc_dev.dv_xname);
2025 			goto fail;
2026 		}
2027 	}
2028 
2029 	/* update Rx filter */
2030 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2031 
2032 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2033 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2034 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2035 		       RT2573_DROP_ACKCTS;
2036 #ifndef IEEE80211_STA_ONLY
2037 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2038 #endif
2039 			tmp |= RT2573_DROP_TODS;
2040 		if (!(ifp->if_flags & IFF_PROMISC))
2041 			tmp |= RT2573_DROP_NOT_TO_ME;
2042 	}
2043 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2044 
2045 	ifq_clr_oactive(&ifp->if_snd);
2046 	ifp->if_flags |= IFF_RUNNING;
2047 
2048 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2049 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2050 	else
2051 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2052 
2053 	return 0;
2054 
2055 fail:	rum_stop(ifp, 1);
2056 	return error;
2057 }
2058 
2059 void
rum_stop(struct ifnet * ifp,int disable)2060 rum_stop(struct ifnet *ifp, int disable)
2061 {
2062 	struct rum_softc *sc = ifp->if_softc;
2063 	struct ieee80211com *ic = &sc->sc_ic;
2064 	uint32_t tmp;
2065 
2066 	sc->sc_tx_timer = 0;
2067 	ifp->if_timer = 0;
2068 	ifp->if_flags &= ~IFF_RUNNING;
2069 	ifq_clr_oactive(&ifp->if_snd);
2070 
2071 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2072 
2073 	/* disable Rx */
2074 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2075 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2076 
2077 	/* reset ASIC */
2078 	rum_write(sc, RT2573_MAC_CSR1, 3);
2079 	rum_write(sc, RT2573_MAC_CSR1, 0);
2080 
2081 	if (sc->amrr_xfer != NULL) {
2082 		usbd_free_xfer(sc->amrr_xfer);
2083 		sc->amrr_xfer = NULL;
2084 	}
2085 	if (sc->sc_rx_pipeh != NULL) {
2086 		usbd_close_pipe(sc->sc_rx_pipeh);
2087 		sc->sc_rx_pipeh = NULL;
2088 	}
2089 	if (sc->sc_tx_pipeh != NULL) {
2090 		usbd_close_pipe(sc->sc_tx_pipeh);
2091 		sc->sc_tx_pipeh = NULL;
2092 	}
2093 
2094 	rum_free_rx_list(sc);
2095 	rum_free_tx_list(sc);
2096 }
2097 
2098 int
rum_load_microcode(struct rum_softc * sc,const u_char * ucode,size_t size)2099 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2100 {
2101 	usb_device_request_t req;
2102 	uint16_t reg = RT2573_MCU_CODE_BASE;
2103 	usbd_status error;
2104 
2105 	/* copy firmware image into NIC */
2106 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2107 		rum_write(sc, reg, UGETDW(ucode));
2108 
2109 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2110 	req.bRequest = RT2573_MCU_CNTL;
2111 	USETW(req.wValue, RT2573_MCU_RUN);
2112 	USETW(req.wIndex, 0);
2113 	USETW(req.wLength, 0);
2114 
2115 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2116 	if (error != 0) {
2117 		printf("%s: could not run firmware: %s\n",
2118 		    sc->sc_dev.dv_xname, usbd_errstr(error));
2119 	}
2120 	return error;
2121 }
2122 
2123 #ifndef IEEE80211_STA_ONLY
2124 int
rum_prepare_beacon(struct rum_softc * sc)2125 rum_prepare_beacon(struct rum_softc *sc)
2126 {
2127 	struct ieee80211com *ic = &sc->sc_ic;
2128 	struct rum_tx_desc desc;
2129 	struct mbuf *m0;
2130 	int rate;
2131 
2132 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss);
2133 	if (m0 == NULL) {
2134 		printf("%s: could not allocate beacon frame\n",
2135 		    sc->sc_dev.dv_xname);
2136 		return ENOBUFS;
2137 	}
2138 
2139 	/* send beacons at the lowest available rate */
2140 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2141 
2142 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2143 	    m0->m_pkthdr.len, rate);
2144 
2145 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2146 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2147 
2148 	/* copy beacon header and payload into NIC memory */
2149 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2150 	    m0->m_pkthdr.len);
2151 
2152 	m_freem(m0);
2153 
2154 	return 0;
2155 }
2156 #endif
2157 
2158 void
rum_newassoc(struct ieee80211com * ic,struct ieee80211_node * ni,int isnew)2159 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2160 {
2161 	/* start with lowest Tx rate */
2162 	ni->ni_txrate = 0;
2163 }
2164 
2165 void
rum_amrr_start(struct rum_softc * sc,struct ieee80211_node * ni)2166 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2167 {
2168 	int i;
2169 
2170 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2171 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2172 
2173 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2174 
2175 	/* set rate to some reasonable initial value */
2176 	for (i = ni->ni_rates.rs_nrates - 1;
2177 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2178 	     i--);
2179 	ni->ni_txrate = i;
2180 
2181 	if (!usbd_is_dying(sc->sc_udev))
2182 		timeout_add_sec(&sc->amrr_to, 1);
2183 }
2184 
2185 void
rum_amrr_timeout(void * arg)2186 rum_amrr_timeout(void *arg)
2187 {
2188 	struct rum_softc *sc = arg;
2189 	usb_device_request_t req;
2190 
2191 	if (usbd_is_dying(sc->sc_udev))
2192 		return;
2193 
2194 	/*
2195 	 * Asynchronously read statistic registers (cleared by read).
2196 	 */
2197 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2198 	req.bRequest = RT2573_READ_MULTI_MAC;
2199 	USETW(req.wValue, 0);
2200 	USETW(req.wIndex, RT2573_STA_CSR0);
2201 	USETW(req.wLength, sizeof sc->sta);
2202 
2203 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2204 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2205 	    rum_amrr_update);
2206 	(void)usbd_transfer(sc->amrr_xfer);
2207 }
2208 
2209 void
rum_amrr_update(struct usbd_xfer * xfer,void * priv,usbd_status status)2210 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2211     usbd_status status)
2212 {
2213 	struct rum_softc *sc = (struct rum_softc *)priv;
2214 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2215 
2216 	if (status != USBD_NORMAL_COMPLETION) {
2217 		printf("%s: could not retrieve Tx statistics - cancelling "
2218 		    "automatic rate control\n", sc->sc_dev.dv_xname);
2219 		return;
2220 	}
2221 
2222 	/* count TX retry-fail as Tx errors */
2223 	ifp->if_oerrors += letoh32(sc->sta[5]) >> 16;
2224 
2225 	sc->amn.amn_retrycnt =
2226 	    (letoh32(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2227 	    (letoh32(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2228 	    (letoh32(sc->sta[5]) >> 16);	/* TX retry-fail count */
2229 
2230 	sc->amn.amn_txcnt =
2231 	    sc->amn.amn_retrycnt +
2232 	    (letoh32(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2233 
2234 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2235 
2236 	if (!usbd_is_dying(sc->sc_udev))
2237 		timeout_add_sec(&sc->amrr_to, 1);
2238 }
2239