1 /* $OpenBSD: if_rum.c,v 1.129 2024/05/23 03:21:08 jsg Exp $ */
2
3 /*-
4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*-
21 * Ralink Technology RT2501USB/RT2601USB chipset driver
22 * http://www.ralinktech.com.tw/
23 */
24
25 #include "bpfilter.h"
26
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/systm.h>
31 #include <sys/timeout.h>
32 #include <sys/device.h>
33 #include <sys/endian.h>
34
35 #include <machine/intr.h>
36
37 #if NBPFILTER > 0
38 #include <net/bpf.h>
39 #endif
40 #include <net/if.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43
44 #include <netinet/in.h>
45 #include <netinet/if_ether.h>
46
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_amrr.h>
49 #include <net80211/ieee80211_radiotap.h>
50
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdevs.h>
54
55 #include <dev/usb/if_rumreg.h>
56 #include <dev/usb/if_rumvar.h>
57
58 #ifdef RUM_DEBUG
59 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
60 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
61 int rum_debug = 0;
62 #else
63 #define DPRINTF(x)
64 #define DPRINTFN(n, x)
65 #endif
66
67 /* various supported device vendors/products */
68 static const struct usb_devno rum_devs[] = {
69 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
70 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
71 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
72 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
73 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
74 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
75 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1 },
76 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2 },
77 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
78 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
79 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
80 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
81 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
82 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
83 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
84 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2573 },
85 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
86 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
87 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
88 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
89 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
90 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
91 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
92 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
93 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
94 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
95 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
96 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
97 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
98 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
99 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
100 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
101 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G },
102 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
103 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
104 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
105 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 },
106 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
107 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
108 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
109 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
110 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
111 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
112 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
113 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
114 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
115 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
116 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
117 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 },
118 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
119 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
120 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
121 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
122 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
123 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
124 };
125
126 void rum_attachhook(struct device *);
127 int rum_alloc_tx_list(struct rum_softc *);
128 void rum_free_tx_list(struct rum_softc *);
129 int rum_alloc_rx_list(struct rum_softc *);
130 void rum_free_rx_list(struct rum_softc *);
131 int rum_media_change(struct ifnet *);
132 void rum_next_scan(void *);
133 void rum_task(void *);
134 int rum_newstate(struct ieee80211com *, enum ieee80211_state, int);
135 void rum_txeof(struct usbd_xfer *, void *, usbd_status);
136 void rum_rxeof(struct usbd_xfer *, void *, usbd_status);
137 #if NBPFILTER > 0
138 uint8_t rum_rxrate(const struct rum_rx_desc *);
139 #endif
140 int rum_ack_rate(struct ieee80211com *, int);
141 uint16_t rum_txtime(int, int, uint32_t);
142 uint8_t rum_plcp_signal(int);
143 void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *,
144 uint32_t, uint16_t, int, int);
145 int rum_tx_data(struct rum_softc *, struct mbuf *,
146 struct ieee80211_node *);
147 void rum_start(struct ifnet *);
148 void rum_watchdog(struct ifnet *);
149 int rum_ioctl(struct ifnet *, u_long, caddr_t);
150 void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int);
151 uint32_t rum_read(struct rum_softc *, uint16_t);
152 void rum_read_multi(struct rum_softc *, uint16_t, void *, int);
153 void rum_write(struct rum_softc *, uint16_t, uint32_t);
154 void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t);
155 void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
156 uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
157 void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
158 void rum_select_antenna(struct rum_softc *);
159 void rum_enable_mrr(struct rum_softc *);
160 void rum_set_txpreamble(struct rum_softc *);
161 void rum_set_basicrates(struct rum_softc *);
162 void rum_select_band(struct rum_softc *,
163 struct ieee80211_channel *);
164 void rum_set_chan(struct rum_softc *, struct ieee80211_channel *);
165 void rum_enable_tsf_sync(struct rum_softc *);
166 void rum_update_slot(struct rum_softc *);
167 void rum_set_bssid(struct rum_softc *, const uint8_t *);
168 void rum_set_macaddr(struct rum_softc *, const uint8_t *);
169 void rum_update_promisc(struct rum_softc *);
170 const char *rum_get_rf(int);
171 void rum_read_eeprom(struct rum_softc *);
172 int rum_bbp_init(struct rum_softc *);
173 int rum_init(struct ifnet *);
174 void rum_stop(struct ifnet *, int);
175 int rum_load_microcode(struct rum_softc *, const u_char *, size_t);
176 #ifndef IEEE80211_STA_ONLY
177 int rum_prepare_beacon(struct rum_softc *);
178 #endif
179 void rum_newassoc(struct ieee80211com *, struct ieee80211_node *,
180 int);
181 void rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
182 void rum_amrr_timeout(void *);
183 void rum_amrr_update(struct usbd_xfer *, void *,
184 usbd_status status);
185
186 static const struct {
187 uint32_t reg;
188 uint32_t val;
189 } rum_def_mac[] = {
190 RT2573_DEF_MAC
191 };
192
193 static const struct {
194 uint8_t reg;
195 uint8_t val;
196 } rum_def_bbp[] = {
197 RT2573_DEF_BBP
198 };
199
200 static const struct rfprog {
201 uint8_t chan;
202 uint32_t r1, r2, r3, r4;
203 } rum_rf5226[] = {
204 RT2573_RF5226
205 }, rum_rf5225[] = {
206 RT2573_RF5225
207 };
208
209 int rum_match(struct device *, void *, void *);
210 void rum_attach(struct device *, struct device *, void *);
211 int rum_detach(struct device *, int);
212
213 struct cfdriver rum_cd = {
214 NULL, "rum", DV_IFNET
215 };
216
217 const struct cfattach rum_ca = {
218 sizeof(struct rum_softc), rum_match, rum_attach, rum_detach
219 };
220
221 int
rum_match(struct device * parent,void * match,void * aux)222 rum_match(struct device *parent, void *match, void *aux)
223 {
224 struct usb_attach_arg *uaa = aux;
225
226 if (uaa->iface == NULL || uaa->configno != 1)
227 return UMATCH_NONE;
228
229 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
230 UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE;
231 }
232
233 void
rum_attachhook(struct device * self)234 rum_attachhook(struct device *self)
235 {
236 struct rum_softc *sc = (struct rum_softc *)self;
237 const char *name = "rum-rt2573";
238 u_char *ucode;
239 size_t size;
240 int error;
241
242 if ((error = loadfirmware(name, &ucode, &size)) != 0) {
243 printf("%s: failed loadfirmware of file %s (error %d)\n",
244 sc->sc_dev.dv_xname, name, error);
245 return;
246 }
247
248 if (rum_load_microcode(sc, ucode, size) != 0) {
249 printf("%s: could not load 8051 microcode\n",
250 sc->sc_dev.dv_xname);
251 }
252
253 free(ucode, M_DEVBUF, size);
254 }
255
256 void
rum_attach(struct device * parent,struct device * self,void * aux)257 rum_attach(struct device *parent, struct device *self, void *aux)
258 {
259 struct rum_softc *sc = (struct rum_softc *)self;
260 struct usb_attach_arg *uaa = aux;
261 struct ieee80211com *ic = &sc->sc_ic;
262 struct ifnet *ifp = &ic->ic_if;
263 usb_interface_descriptor_t *id;
264 usb_endpoint_descriptor_t *ed;
265 int i, ntries;
266 uint32_t tmp;
267
268 sc->sc_udev = uaa->device;
269 sc->sc_iface = uaa->iface;
270
271 /*
272 * Find endpoints.
273 */
274 id = usbd_get_interface_descriptor(sc->sc_iface);
275
276 sc->sc_rx_no = sc->sc_tx_no = -1;
277 for (i = 0; i < id->bNumEndpoints; i++) {
278 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
279 if (ed == NULL) {
280 printf("%s: no endpoint descriptor for iface %d\n",
281 sc->sc_dev.dv_xname, i);
282 return;
283 }
284
285 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
286 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
287 sc->sc_rx_no = ed->bEndpointAddress;
288 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
289 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
290 sc->sc_tx_no = ed->bEndpointAddress;
291 }
292 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
293 printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
294 return;
295 }
296
297 usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC);
298 timeout_set(&sc->scan_to, rum_next_scan, sc);
299
300 sc->amrr.amrr_min_success_threshold = 1;
301 sc->amrr.amrr_max_success_threshold = 10;
302 timeout_set(&sc->amrr_to, rum_amrr_timeout, sc);
303
304 /* retrieve RT2573 rev. no */
305 for (ntries = 0; ntries < 1000; ntries++) {
306 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
307 break;
308 DELAY(1000);
309 }
310 if (ntries == 1000) {
311 printf("%s: timeout waiting for chip to settle\n",
312 sc->sc_dev.dv_xname);
313 return;
314 }
315
316 /* retrieve MAC address and various other things from EEPROM */
317 rum_read_eeprom(sc);
318
319 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
320 sc->sc_dev.dv_xname, sc->macbbp_rev, tmp,
321 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
322
323 config_mountroot(self, rum_attachhook);
324
325 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
326 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
327 ic->ic_state = IEEE80211_S_INIT;
328
329 /* set device capabilities */
330 ic->ic_caps =
331 IEEE80211_C_MONITOR | /* monitor mode supported */
332 #ifndef IEEE80211_STA_ONLY
333 IEEE80211_C_IBSS | /* IBSS mode supported */
334 IEEE80211_C_HOSTAP | /* HostAp mode supported */
335 #endif
336 IEEE80211_C_TXPMGT | /* tx power management */
337 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
338 IEEE80211_C_SHSLOT | /* short slot time supported */
339 IEEE80211_C_WEP | /* s/w WEP */
340 IEEE80211_C_RSN; /* WPA/RSN */
341
342 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
343 /* set supported .11a rates */
344 ic->ic_sup_rates[IEEE80211_MODE_11A] =
345 ieee80211_std_rateset_11a;
346
347 /* set supported .11a channels */
348 for (i = 34; i <= 46; i += 4) {
349 ic->ic_channels[i].ic_freq =
350 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
351 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
352 }
353 for (i = 36; i <= 64; i += 4) {
354 ic->ic_channels[i].ic_freq =
355 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
356 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
357 }
358 for (i = 100; i <= 140; i += 4) {
359 ic->ic_channels[i].ic_freq =
360 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
361 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
362 }
363 for (i = 149; i <= 165; i += 4) {
364 ic->ic_channels[i].ic_freq =
365 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
366 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
367 }
368 }
369
370 /* set supported .11b and .11g rates */
371 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
372 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
373
374 /* set supported .11b and .11g channels (1 through 14) */
375 for (i = 1; i <= 14; i++) {
376 ic->ic_channels[i].ic_freq =
377 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
378 ic->ic_channels[i].ic_flags =
379 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
380 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
381 }
382
383 ifp->if_softc = sc;
384 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
385 ifp->if_ioctl = rum_ioctl;
386 ifp->if_start = rum_start;
387 ifp->if_watchdog = rum_watchdog;
388 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
389
390 if_attach(ifp);
391 ieee80211_ifattach(ifp);
392 ic->ic_newassoc = rum_newassoc;
393
394 /* override state transition machine */
395 sc->sc_newstate = ic->ic_newstate;
396 ic->ic_newstate = rum_newstate;
397 ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status);
398
399 #if NBPFILTER > 0
400 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
401 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
402
403 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
404 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
405 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
406
407 sc->sc_txtap_len = sizeof sc->sc_txtapu;
408 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
409 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
410 #endif
411 }
412
413 int
rum_detach(struct device * self,int flags)414 rum_detach(struct device *self, int flags)
415 {
416 struct rum_softc *sc = (struct rum_softc *)self;
417 struct ifnet *ifp = &sc->sc_ic.ic_if;
418 int s;
419
420 s = splusb();
421
422 if (timeout_initialized(&sc->scan_to))
423 timeout_del(&sc->scan_to);
424 if (timeout_initialized(&sc->amrr_to))
425 timeout_del(&sc->amrr_to);
426
427 usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
428
429 usbd_ref_wait(sc->sc_udev);
430
431 if (ifp->if_softc != NULL) {
432 ieee80211_ifdetach(ifp); /* free all nodes */
433 if_detach(ifp);
434 }
435
436 if (sc->amrr_xfer != NULL) {
437 usbd_free_xfer(sc->amrr_xfer);
438 sc->amrr_xfer = NULL;
439 }
440 if (sc->sc_rx_pipeh != NULL)
441 usbd_close_pipe(sc->sc_rx_pipeh);
442 if (sc->sc_tx_pipeh != NULL)
443 usbd_close_pipe(sc->sc_tx_pipeh);
444
445 rum_free_rx_list(sc);
446 rum_free_tx_list(sc);
447
448 splx(s);
449
450 return 0;
451 }
452
453 int
rum_alloc_tx_list(struct rum_softc * sc)454 rum_alloc_tx_list(struct rum_softc *sc)
455 {
456 int i, error;
457
458 sc->tx_cur = sc->tx_queued = 0;
459
460 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
461 struct rum_tx_data *data = &sc->tx_data[i];
462
463 data->sc = sc;
464
465 data->xfer = usbd_alloc_xfer(sc->sc_udev);
466 if (data->xfer == NULL) {
467 printf("%s: could not allocate tx xfer\n",
468 sc->sc_dev.dv_xname);
469 error = ENOMEM;
470 goto fail;
471 }
472 data->buf = usbd_alloc_buffer(data->xfer,
473 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
474 if (data->buf == NULL) {
475 printf("%s: could not allocate tx buffer\n",
476 sc->sc_dev.dv_xname);
477 error = ENOMEM;
478 goto fail;
479 }
480 /* clean Tx descriptor */
481 bzero(data->buf, RT2573_TX_DESC_SIZE);
482 }
483
484 return 0;
485
486 fail: rum_free_tx_list(sc);
487 return error;
488 }
489
490 void
rum_free_tx_list(struct rum_softc * sc)491 rum_free_tx_list(struct rum_softc *sc)
492 {
493 int i;
494
495 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
496 struct rum_tx_data *data = &sc->tx_data[i];
497
498 if (data->xfer != NULL) {
499 usbd_free_xfer(data->xfer);
500 data->xfer = NULL;
501 }
502 /*
503 * The node has already been freed at that point so don't call
504 * ieee80211_release_node() here.
505 */
506 data->ni = NULL;
507 }
508 }
509
510 int
rum_alloc_rx_list(struct rum_softc * sc)511 rum_alloc_rx_list(struct rum_softc *sc)
512 {
513 int i, error;
514
515 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
516 struct rum_rx_data *data = &sc->rx_data[i];
517
518 data->sc = sc;
519
520 data->xfer = usbd_alloc_xfer(sc->sc_udev);
521 if (data->xfer == NULL) {
522 printf("%s: could not allocate rx xfer\n",
523 sc->sc_dev.dv_xname);
524 error = ENOMEM;
525 goto fail;
526 }
527 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
528 printf("%s: could not allocate rx buffer\n",
529 sc->sc_dev.dv_xname);
530 error = ENOMEM;
531 goto fail;
532 }
533
534 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
535 if (data->m == NULL) {
536 printf("%s: could not allocate rx mbuf\n",
537 sc->sc_dev.dv_xname);
538 error = ENOMEM;
539 goto fail;
540 }
541 MCLGET(data->m, M_DONTWAIT);
542 if (!(data->m->m_flags & M_EXT)) {
543 printf("%s: could not allocate rx mbuf cluster\n",
544 sc->sc_dev.dv_xname);
545 error = ENOMEM;
546 goto fail;
547 }
548 data->buf = mtod(data->m, uint8_t *);
549 }
550
551 return 0;
552
553 fail: rum_free_rx_list(sc);
554 return error;
555 }
556
557 void
rum_free_rx_list(struct rum_softc * sc)558 rum_free_rx_list(struct rum_softc *sc)
559 {
560 int i;
561
562 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
563 struct rum_rx_data *data = &sc->rx_data[i];
564
565 if (data->xfer != NULL) {
566 usbd_free_xfer(data->xfer);
567 data->xfer = NULL;
568 }
569 if (data->m != NULL) {
570 m_freem(data->m);
571 data->m = NULL;
572 }
573 }
574 }
575
576 int
rum_media_change(struct ifnet * ifp)577 rum_media_change(struct ifnet *ifp)
578 {
579 int error;
580
581 error = ieee80211_media_change(ifp);
582 if (error != ENETRESET)
583 return error;
584
585 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
586 error = rum_init(ifp);
587
588 return error;
589 }
590
591 /*
592 * This function is called periodically (every 200ms) during scanning to
593 * switch from one channel to another.
594 */
595 void
rum_next_scan(void * arg)596 rum_next_scan(void *arg)
597 {
598 struct rum_softc *sc = arg;
599 struct ieee80211com *ic = &sc->sc_ic;
600 struct ifnet *ifp = &ic->ic_if;
601
602 if (usbd_is_dying(sc->sc_udev))
603 return;
604
605 usbd_ref_incr(sc->sc_udev);
606
607 if (ic->ic_state == IEEE80211_S_SCAN)
608 ieee80211_next_scan(ifp);
609
610 usbd_ref_decr(sc->sc_udev);
611 }
612
613 void
rum_task(void * arg)614 rum_task(void *arg)
615 {
616 struct rum_softc *sc = arg;
617 struct ieee80211com *ic = &sc->sc_ic;
618 enum ieee80211_state ostate;
619 struct ieee80211_node *ni;
620 uint32_t tmp;
621
622 if (usbd_is_dying(sc->sc_udev))
623 return;
624
625 ostate = ic->ic_state;
626
627 switch (sc->sc_state) {
628 case IEEE80211_S_INIT:
629 if (ostate == IEEE80211_S_RUN) {
630 /* abort TSF synchronization */
631 tmp = rum_read(sc, RT2573_TXRX_CSR9);
632 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
633 }
634 break;
635
636 case IEEE80211_S_SCAN:
637 rum_set_chan(sc, ic->ic_bss->ni_chan);
638 if (!usbd_is_dying(sc->sc_udev))
639 timeout_add_msec(&sc->scan_to, 200);
640 break;
641
642 case IEEE80211_S_AUTH:
643 rum_set_chan(sc, ic->ic_bss->ni_chan);
644 break;
645
646 case IEEE80211_S_ASSOC:
647 rum_set_chan(sc, ic->ic_bss->ni_chan);
648 break;
649
650 case IEEE80211_S_RUN:
651 rum_set_chan(sc, ic->ic_bss->ni_chan);
652
653 ni = ic->ic_bss;
654
655 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
656 rum_update_slot(sc);
657 rum_enable_mrr(sc);
658 rum_set_txpreamble(sc);
659 rum_set_basicrates(sc);
660 rum_set_bssid(sc, ni->ni_bssid);
661 }
662
663 #ifndef IEEE80211_STA_ONLY
664 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
665 ic->ic_opmode == IEEE80211_M_IBSS)
666 rum_prepare_beacon(sc);
667 #endif
668
669 if (ic->ic_opmode != IEEE80211_M_MONITOR)
670 rum_enable_tsf_sync(sc);
671
672 if (ic->ic_opmode == IEEE80211_M_STA) {
673 /* fake a join to init the tx rate */
674 rum_newassoc(ic, ic->ic_bss, 1);
675
676 /* enable automatic rate control in STA mode */
677 if (ic->ic_fixed_rate == -1)
678 rum_amrr_start(sc, ni);
679 }
680 break;
681 }
682
683 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
684 }
685
686 int
rum_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)687 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
688 {
689 struct rum_softc *sc = ic->ic_if.if_softc;
690
691 usb_rem_task(sc->sc_udev, &sc->sc_task);
692 timeout_del(&sc->scan_to);
693 timeout_del(&sc->amrr_to);
694
695 /* do it in a process context */
696 sc->sc_state = nstate;
697 sc->sc_arg = arg;
698 usb_add_task(sc->sc_udev, &sc->sc_task);
699 return 0;
700 }
701
702 /* quickly determine if a given rate is CCK or OFDM */
703 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
704
705 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
706 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
707
708 void
rum_txeof(struct usbd_xfer * xfer,void * priv,usbd_status status)709 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
710 {
711 struct rum_tx_data *data = priv;
712 struct rum_softc *sc = data->sc;
713 struct ieee80211com *ic = &sc->sc_ic;
714 struct ifnet *ifp = &ic->ic_if;
715 int s;
716
717 if (status != USBD_NORMAL_COMPLETION) {
718 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
719 return;
720
721 printf("%s: could not transmit buffer: %s\n",
722 sc->sc_dev.dv_xname, usbd_errstr(status));
723
724 if (status == USBD_STALLED)
725 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
726
727 ifp->if_oerrors++;
728 return;
729 }
730
731 s = splnet();
732
733 ieee80211_release_node(ic, data->ni);
734 data->ni = NULL;
735
736 sc->tx_queued--;
737
738 DPRINTFN(10, ("tx done\n"));
739
740 sc->sc_tx_timer = 0;
741 ifq_clr_oactive(&ifp->if_snd);
742 rum_start(ifp);
743
744 splx(s);
745 }
746
747 void
rum_rxeof(struct usbd_xfer * xfer,void * priv,usbd_status status)748 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
749 {
750 struct rum_rx_data *data = priv;
751 struct rum_softc *sc = data->sc;
752 struct ieee80211com *ic = &sc->sc_ic;
753 struct ifnet *ifp = &ic->ic_if;
754 const struct rum_rx_desc *desc;
755 struct ieee80211_frame *wh;
756 struct ieee80211_rxinfo rxi;
757 struct ieee80211_node *ni;
758 struct mbuf *mnew, *m;
759 int s, len;
760
761 if (status != USBD_NORMAL_COMPLETION) {
762 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
763 return;
764
765 if (status == USBD_STALLED)
766 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
767 goto skip;
768 }
769
770 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
771
772 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
773 DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname,
774 len));
775 ifp->if_ierrors++;
776 goto skip;
777 }
778
779 desc = (const struct rum_rx_desc *)data->buf;
780
781 if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) {
782 /*
783 * This should not happen since we did not request to receive
784 * those frames when we filled RT2573_TXRX_CSR0.
785 */
786 DPRINTFN(5, ("CRC error\n"));
787 ifp->if_ierrors++;
788 goto skip;
789 }
790
791 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
792 if (mnew == NULL) {
793 printf("%s: could not allocate rx mbuf\n",
794 sc->sc_dev.dv_xname);
795 ifp->if_ierrors++;
796 goto skip;
797 }
798 MCLGET(mnew, M_DONTWAIT);
799 if (!(mnew->m_flags & M_EXT)) {
800 printf("%s: could not allocate rx mbuf cluster\n",
801 sc->sc_dev.dv_xname);
802 m_freem(mnew);
803 ifp->if_ierrors++;
804 goto skip;
805 }
806 m = data->m;
807 data->m = mnew;
808 data->buf = mtod(data->m, uint8_t *);
809
810 /* finalize mbuf */
811 m->m_data = (caddr_t)(desc + 1);
812 m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff;
813
814 s = splnet();
815
816 #if NBPFILTER > 0
817 if (sc->sc_drvbpf != NULL) {
818 struct mbuf mb;
819 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
820
821 tap->wr_flags = 0;
822 tap->wr_rate = rum_rxrate(desc);
823 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
824 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
825 tap->wr_antenna = sc->rx_ant;
826 tap->wr_antsignal = desc->rssi;
827
828 mb.m_data = (caddr_t)tap;
829 mb.m_len = sc->sc_rxtap_len;
830 mb.m_next = m;
831 mb.m_nextpkt = NULL;
832 mb.m_type = 0;
833 mb.m_flags = 0;
834 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
835 }
836 #endif
837
838 wh = mtod(m, struct ieee80211_frame *);
839 ni = ieee80211_find_rxnode(ic, wh);
840
841 /* send the frame to the 802.11 layer */
842 memset(&rxi, 0, sizeof(rxi));
843 rxi.rxi_rssi = desc->rssi;
844 ieee80211_input(ifp, m, ni, &rxi);
845
846 /* node is no longer needed */
847 ieee80211_release_node(ic, ni);
848
849 splx(s);
850
851 DPRINTFN(15, ("rx done\n"));
852
853 skip: /* setup a new transfer */
854 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
855 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
856 (void)usbd_transfer(xfer);
857 }
858
859 /*
860 * This function is only used by the Rx radiotap code. It returns the rate at
861 * which a given frame was received.
862 */
863 #if NBPFILTER > 0
864 uint8_t
rum_rxrate(const struct rum_rx_desc * desc)865 rum_rxrate(const struct rum_rx_desc *desc)
866 {
867 if (letoh32(desc->flags) & RT2573_RX_OFDM) {
868 /* reverse function of rum_plcp_signal */
869 switch (desc->rate) {
870 case 0xb: return 12;
871 case 0xf: return 18;
872 case 0xa: return 24;
873 case 0xe: return 36;
874 case 0x9: return 48;
875 case 0xd: return 72;
876 case 0x8: return 96;
877 case 0xc: return 108;
878 }
879 } else {
880 if (desc->rate == 10)
881 return 2;
882 if (desc->rate == 20)
883 return 4;
884 if (desc->rate == 55)
885 return 11;
886 if (desc->rate == 110)
887 return 22;
888 }
889 return 2; /* should not get there */
890 }
891 #endif
892
893 /*
894 * Return the expected ack rate for a frame transmitted at rate `rate'.
895 */
896 int
rum_ack_rate(struct ieee80211com * ic,int rate)897 rum_ack_rate(struct ieee80211com *ic, int rate)
898 {
899 switch (rate) {
900 /* CCK rates */
901 case 2:
902 return 2;
903 case 4:
904 case 11:
905 case 22:
906 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
907
908 /* OFDM rates */
909 case 12:
910 case 18:
911 return 12;
912 case 24:
913 case 36:
914 return 24;
915 case 48:
916 case 72:
917 case 96:
918 case 108:
919 return 48;
920 }
921
922 /* default to 1Mbps */
923 return 2;
924 }
925
926 /*
927 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
928 * The function automatically determines the operating mode depending on the
929 * given rate. `flags' indicates whether short preamble is in use or not.
930 */
931 uint16_t
rum_txtime(int len,int rate,uint32_t flags)932 rum_txtime(int len, int rate, uint32_t flags)
933 {
934 uint16_t txtime;
935
936 if (RUM_RATE_IS_OFDM(rate)) {
937 /* IEEE Std 802.11a-1999, pp. 37 */
938 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
939 txtime = 16 + 4 + 4 * txtime + 6;
940 } else {
941 /* IEEE Std 802.11b-1999, pp. 28 */
942 txtime = (16 * len + rate - 1) / rate;
943 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
944 txtime += 72 + 24;
945 else
946 txtime += 144 + 48;
947 }
948 return txtime;
949 }
950
951 uint8_t
rum_plcp_signal(int rate)952 rum_plcp_signal(int rate)
953 {
954 switch (rate) {
955 /* CCK rates (returned values are device-dependent) */
956 case 2: return 0x0;
957 case 4: return 0x1;
958 case 11: return 0x2;
959 case 22: return 0x3;
960
961 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
962 case 12: return 0xb;
963 case 18: return 0xf;
964 case 24: return 0xa;
965 case 36: return 0xe;
966 case 48: return 0x9;
967 case 72: return 0xd;
968 case 96: return 0x8;
969 case 108: return 0xc;
970
971 /* unsupported rates (should not get there) */
972 default: return 0xff;
973 }
974 }
975
976 void
rum_setup_tx_desc(struct rum_softc * sc,struct rum_tx_desc * desc,uint32_t flags,uint16_t xflags,int len,int rate)977 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
978 uint32_t flags, uint16_t xflags, int len, int rate)
979 {
980 struct ieee80211com *ic = &sc->sc_ic;
981 uint16_t plcp_length;
982 int remainder;
983
984 desc->flags = htole32(flags);
985 desc->flags |= htole32(RT2573_TX_VALID);
986 desc->flags |= htole32(len << 16);
987
988 desc->xflags = htole16(xflags);
989
990 desc->wme = htole16(
991 RT2573_QID(0) |
992 RT2573_AIFSN(2) |
993 RT2573_LOGCWMIN(4) |
994 RT2573_LOGCWMAX(10));
995
996 /* setup PLCP fields */
997 desc->plcp_signal = rum_plcp_signal(rate);
998 desc->plcp_service = 4;
999
1000 len += IEEE80211_CRC_LEN;
1001 if (RUM_RATE_IS_OFDM(rate)) {
1002 desc->flags |= htole32(RT2573_TX_OFDM);
1003
1004 plcp_length = len & 0xfff;
1005 desc->plcp_length_hi = plcp_length >> 6;
1006 desc->plcp_length_lo = plcp_length & 0x3f;
1007 } else {
1008 plcp_length = (16 * len + rate - 1) / rate;
1009 if (rate == 22) {
1010 remainder = (16 * len) % 22;
1011 if (remainder != 0 && remainder < 7)
1012 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1013 }
1014 desc->plcp_length_hi = plcp_length >> 8;
1015 desc->plcp_length_lo = plcp_length & 0xff;
1016
1017 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1018 desc->plcp_signal |= 0x08;
1019 }
1020 }
1021
1022 #define RUM_TX_TIMEOUT 5000
1023
1024 int
rum_tx_data(struct rum_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1025 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1026 {
1027 struct ieee80211com *ic = &sc->sc_ic;
1028 struct rum_tx_desc *desc;
1029 struct rum_tx_data *data;
1030 struct ieee80211_frame *wh;
1031 struct ieee80211_key *k;
1032 uint32_t flags = 0;
1033 uint16_t dur;
1034 usbd_status error;
1035 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1036
1037 wh = mtod(m0, struct ieee80211_frame *);
1038
1039 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1040 k = ieee80211_get_txkey(ic, wh, ni);
1041
1042 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1043 return ENOBUFS;
1044
1045 /* packet header may have moved, reset our local pointer */
1046 wh = mtod(m0, struct ieee80211_frame *);
1047 }
1048
1049 /* compute actual packet length (including CRC and crypto overhead) */
1050 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1051
1052 /* pickup a rate */
1053 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1054 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1055 IEEE80211_FC0_TYPE_MGT)) {
1056 /* mgmt/multicast frames are sent at the lowest avail. rate */
1057 rate = ni->ni_rates.rs_rates[0];
1058 } else if (ic->ic_fixed_rate != -1) {
1059 rate = ic->ic_sup_rates[ic->ic_curmode].
1060 rs_rates[ic->ic_fixed_rate];
1061 } else
1062 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1063 if (rate == 0)
1064 rate = 2; /* XXX should not happen */
1065 rate &= IEEE80211_RATE_VAL;
1066
1067 /* check if RTS/CTS or CTS-to-self protection must be used */
1068 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1069 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1070 if (pktlen > ic->ic_rtsthreshold) {
1071 needrts = 1; /* RTS/CTS based on frame length */
1072 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1073 RUM_RATE_IS_OFDM(rate)) {
1074 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1075 needcts = 1; /* CTS-to-self */
1076 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1077 needrts = 1; /* RTS/CTS */
1078 }
1079 }
1080 if (needrts || needcts) {
1081 struct mbuf *mprot;
1082 int protrate, ackrate;
1083 uint16_t dur;
1084
1085 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1086 ackrate = rum_ack_rate(ic, rate);
1087
1088 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1089 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1090 2 * sc->sifs;
1091 if (needrts) {
1092 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1093 protrate), ic->ic_flags) + sc->sifs;
1094 mprot = ieee80211_get_rts(ic, wh, dur);
1095 } else {
1096 mprot = ieee80211_get_cts_to_self(ic, dur);
1097 }
1098 if (mprot == NULL) {
1099 printf("%s: could not allocate protection frame\n",
1100 sc->sc_dev.dv_xname);
1101 m_freem(m0);
1102 return ENOBUFS;
1103 }
1104
1105 data = &sc->tx_data[sc->tx_cur];
1106 desc = (struct rum_tx_desc *)data->buf;
1107
1108 /* avoid multiple free() of the same node for each fragment */
1109 data->ni = ieee80211_ref_node(ni);
1110
1111 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1112 data->buf + RT2573_TX_DESC_SIZE);
1113 rum_setup_tx_desc(sc, desc,
1114 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1115 0, mprot->m_pkthdr.len, protrate);
1116
1117 /* no roundup necessary here */
1118 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1119
1120 /* XXX may want to pass the protection frame to BPF */
1121
1122 /* mbuf is no longer needed */
1123 m_freem(mprot);
1124
1125 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1126 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1127 RUM_TX_TIMEOUT, rum_txeof);
1128 error = usbd_transfer(data->xfer);
1129 if (error != 0 && error != USBD_IN_PROGRESS) {
1130 m_freem(m0);
1131 return error;
1132 }
1133
1134 sc->tx_queued++;
1135 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1136
1137 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1138 }
1139
1140 data = &sc->tx_data[sc->tx_cur];
1141 desc = (struct rum_tx_desc *)data->buf;
1142
1143 data->ni = ni;
1144
1145 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1146 flags |= RT2573_TX_NEED_ACK;
1147
1148 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1149 ic->ic_flags) + sc->sifs;
1150 *(uint16_t *)wh->i_dur = htole16(dur);
1151
1152 #ifndef IEEE80211_STA_ONLY
1153 /* tell hardware to set timestamp in probe responses */
1154 if ((wh->i_fc[0] &
1155 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1156 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1157 flags |= RT2573_TX_TIMESTAMP;
1158 #endif
1159 }
1160
1161 #if NBPFILTER > 0
1162 if (sc->sc_drvbpf != NULL) {
1163 struct mbuf mb;
1164 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1165
1166 tap->wt_flags = 0;
1167 tap->wt_rate = rate;
1168 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1169 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1170 tap->wt_antenna = sc->tx_ant;
1171
1172 mb.m_data = (caddr_t)tap;
1173 mb.m_len = sc->sc_txtap_len;
1174 mb.m_next = m0;
1175 mb.m_nextpkt = NULL;
1176 mb.m_type = 0;
1177 mb.m_flags = 0;
1178 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1179 }
1180 #endif
1181
1182 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1183 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1184
1185 /* align end on a 4-bytes boundary */
1186 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1187
1188 /*
1189 * No space left in the last URB to store the extra 4 bytes, force
1190 * sending of another URB.
1191 */
1192 if ((xferlen % 64) == 0)
1193 xferlen += 4;
1194
1195 DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1196 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1197
1198 /* mbuf is no longer needed */
1199 m_freem(m0);
1200
1201 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1202 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1203 error = usbd_transfer(data->xfer);
1204 if (error != 0 && error != USBD_IN_PROGRESS)
1205 return error;
1206
1207 sc->tx_queued++;
1208 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1209
1210 return 0;
1211 }
1212
1213 void
rum_start(struct ifnet * ifp)1214 rum_start(struct ifnet *ifp)
1215 {
1216 struct rum_softc *sc = ifp->if_softc;
1217 struct ieee80211com *ic = &sc->sc_ic;
1218 struct ieee80211_node *ni;
1219 struct mbuf *m0;
1220
1221 /*
1222 * net80211 may still try to send management frames even if the
1223 * IFF_RUNNING flag is not set...
1224 */
1225 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1226 return;
1227
1228 for (;;) {
1229 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1230 ifq_set_oactive(&ifp->if_snd);
1231 break;
1232 }
1233
1234 m0 = mq_dequeue(&ic->ic_mgtq);
1235 if (m0 != NULL) {
1236 ni = m0->m_pkthdr.ph_cookie;
1237 #if NBPFILTER > 0
1238 if (ic->ic_rawbpf != NULL)
1239 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1240 #endif
1241 if (rum_tx_data(sc, m0, ni) != 0)
1242 break;
1243
1244 } else {
1245 if (ic->ic_state != IEEE80211_S_RUN)
1246 break;
1247
1248 m0 = ifq_dequeue(&ifp->if_snd);
1249 if (m0 == NULL)
1250 break;
1251 #if NBPFILTER > 0
1252 if (ifp->if_bpf != NULL)
1253 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1254 #endif
1255 m0 = ieee80211_encap(ifp, m0, &ni);
1256 if (m0 == NULL)
1257 continue;
1258 #if NBPFILTER > 0
1259 if (ic->ic_rawbpf != NULL)
1260 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1261 #endif
1262 if (rum_tx_data(sc, m0, ni) != 0) {
1263 if (ni != NULL)
1264 ieee80211_release_node(ic, ni);
1265 ifp->if_oerrors++;
1266 break;
1267 }
1268 }
1269
1270 sc->sc_tx_timer = 5;
1271 ifp->if_timer = 1;
1272 }
1273 }
1274
1275 void
rum_watchdog(struct ifnet * ifp)1276 rum_watchdog(struct ifnet *ifp)
1277 {
1278 struct rum_softc *sc = ifp->if_softc;
1279
1280 ifp->if_timer = 0;
1281
1282 if (sc->sc_tx_timer > 0) {
1283 if (--sc->sc_tx_timer == 0) {
1284 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1285 /*rum_init(ifp); XXX needs a process context! */
1286 ifp->if_oerrors++;
1287 return;
1288 }
1289 ifp->if_timer = 1;
1290 }
1291
1292 ieee80211_watchdog(ifp);
1293 }
1294
1295 int
rum_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)1296 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1297 {
1298 struct rum_softc *sc = ifp->if_softc;
1299 struct ieee80211com *ic = &sc->sc_ic;
1300 int s, error = 0;
1301
1302 if (usbd_is_dying(sc->sc_udev))
1303 return ENXIO;
1304
1305 usbd_ref_incr(sc->sc_udev);
1306
1307 s = splnet();
1308
1309 switch (cmd) {
1310 case SIOCSIFADDR:
1311 ifp->if_flags |= IFF_UP;
1312 /* FALLTHROUGH */
1313 case SIOCSIFFLAGS:
1314 if (ifp->if_flags & IFF_UP) {
1315 if (ifp->if_flags & IFF_RUNNING)
1316 rum_update_promisc(sc);
1317 else
1318 rum_init(ifp);
1319 } else {
1320 if (ifp->if_flags & IFF_RUNNING)
1321 rum_stop(ifp, 1);
1322 }
1323 break;
1324
1325 case SIOCS80211CHANNEL:
1326 /*
1327 * This allows for fast channel switching in monitor mode
1328 * (used by kismet). In IBSS mode, we must explicitly reset
1329 * the interface to generate a new beacon frame.
1330 */
1331 error = ieee80211_ioctl(ifp, cmd, data);
1332 if (error == ENETRESET &&
1333 ic->ic_opmode == IEEE80211_M_MONITOR) {
1334 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1335 (IFF_UP | IFF_RUNNING))
1336 rum_set_chan(sc, ic->ic_ibss_chan);
1337 error = 0;
1338 }
1339 break;
1340
1341 default:
1342 error = ieee80211_ioctl(ifp, cmd, data);
1343 }
1344
1345 if (error == ENETRESET) {
1346 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1347 (IFF_UP | IFF_RUNNING))
1348 rum_init(ifp);
1349 error = 0;
1350 }
1351
1352 splx(s);
1353
1354 usbd_ref_decr(sc->sc_udev);
1355
1356 return error;
1357 }
1358
1359 void
rum_eeprom_read(struct rum_softc * sc,uint16_t addr,void * buf,int len)1360 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1361 {
1362 usb_device_request_t req;
1363 usbd_status error;
1364
1365 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1366 req.bRequest = RT2573_READ_EEPROM;
1367 USETW(req.wValue, 0);
1368 USETW(req.wIndex, addr);
1369 USETW(req.wLength, len);
1370
1371 error = usbd_do_request(sc->sc_udev, &req, buf);
1372 if (error != 0) {
1373 printf("%s: could not read EEPROM: %s\n",
1374 sc->sc_dev.dv_xname, usbd_errstr(error));
1375 }
1376 }
1377
1378 uint32_t
rum_read(struct rum_softc * sc,uint16_t reg)1379 rum_read(struct rum_softc *sc, uint16_t reg)
1380 {
1381 uint32_t val;
1382
1383 rum_read_multi(sc, reg, &val, sizeof val);
1384
1385 return letoh32(val);
1386 }
1387
1388 void
rum_read_multi(struct rum_softc * sc,uint16_t reg,void * buf,int len)1389 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1390 {
1391 usb_device_request_t req;
1392 usbd_status error;
1393
1394 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1395 req.bRequest = RT2573_READ_MULTI_MAC;
1396 USETW(req.wValue, 0);
1397 USETW(req.wIndex, reg);
1398 USETW(req.wLength, len);
1399
1400 error = usbd_do_request(sc->sc_udev, &req, buf);
1401 if (error != 0) {
1402 printf("%s: could not multi read MAC register: %s\n",
1403 sc->sc_dev.dv_xname, usbd_errstr(error));
1404 }
1405 }
1406
1407 void
rum_write(struct rum_softc * sc,uint16_t reg,uint32_t val)1408 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1409 {
1410 uint32_t tmp = htole32(val);
1411
1412 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1413 }
1414
1415 void
rum_write_multi(struct rum_softc * sc,uint16_t reg,void * buf,size_t len)1416 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1417 {
1418 usb_device_request_t req;
1419 usbd_status error;
1420 int offset;
1421
1422 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1423 req.bRequest = RT2573_WRITE_MULTI_MAC;
1424 USETW(req.wValue, 0);
1425
1426 /* write at most 64 bytes at a time */
1427 for (offset = 0; offset < len; offset += 64) {
1428 USETW(req.wIndex, reg + offset);
1429 USETW(req.wLength, MIN(len - offset, 64));
1430
1431 error = usbd_do_request(sc->sc_udev, &req, buf + offset);
1432 if (error != 0) {
1433 printf("%s: could not multi write MAC register: %s\n",
1434 sc->sc_dev.dv_xname, usbd_errstr(error));
1435 }
1436 }
1437 }
1438
1439 void
rum_bbp_write(struct rum_softc * sc,uint8_t reg,uint8_t val)1440 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1441 {
1442 uint32_t tmp;
1443 int ntries;
1444
1445 for (ntries = 0; ntries < 5; ntries++) {
1446 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1447 break;
1448 }
1449 if (ntries == 5) {
1450 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
1451 return;
1452 }
1453
1454 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1455 rum_write(sc, RT2573_PHY_CSR3, tmp);
1456 }
1457
1458 uint8_t
rum_bbp_read(struct rum_softc * sc,uint8_t reg)1459 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1460 {
1461 uint32_t val;
1462 int ntries;
1463
1464 for (ntries = 0; ntries < 5; ntries++) {
1465 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1466 break;
1467 }
1468 if (ntries == 5) {
1469 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1470 return 0;
1471 }
1472
1473 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1474 rum_write(sc, RT2573_PHY_CSR3, val);
1475
1476 for (ntries = 0; ntries < 100; ntries++) {
1477 val = rum_read(sc, RT2573_PHY_CSR3);
1478 if (!(val & RT2573_BBP_BUSY))
1479 return val & 0xff;
1480 DELAY(1);
1481 }
1482
1483 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1484 return 0;
1485 }
1486
1487 void
rum_rf_write(struct rum_softc * sc,uint8_t reg,uint32_t val)1488 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1489 {
1490 uint32_t tmp;
1491 int ntries;
1492
1493 for (ntries = 0; ntries < 5; ntries++) {
1494 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1495 break;
1496 }
1497 if (ntries == 5) {
1498 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
1499 return;
1500 }
1501
1502 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1503 (reg & 3);
1504 rum_write(sc, RT2573_PHY_CSR4, tmp);
1505
1506 /* remember last written value in sc */
1507 sc->rf_regs[reg] = val;
1508
1509 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1510 }
1511
1512 void
rum_select_antenna(struct rum_softc * sc)1513 rum_select_antenna(struct rum_softc *sc)
1514 {
1515 uint8_t bbp4, bbp77;
1516 uint32_t tmp;
1517
1518 bbp4 = rum_bbp_read(sc, 4);
1519 bbp77 = rum_bbp_read(sc, 77);
1520
1521 /* TBD */
1522
1523 /* make sure Rx is disabled before switching antenna */
1524 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1525 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1526
1527 rum_bbp_write(sc, 4, bbp4);
1528 rum_bbp_write(sc, 77, bbp77);
1529
1530 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1531 }
1532
1533 /*
1534 * Enable multi-rate retries for frames sent at OFDM rates.
1535 * In 802.11b/g mode, allow fallback to CCK rates.
1536 */
1537 void
rum_enable_mrr(struct rum_softc * sc)1538 rum_enable_mrr(struct rum_softc *sc)
1539 {
1540 struct ieee80211com *ic = &sc->sc_ic;
1541 uint32_t tmp;
1542
1543 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1544
1545 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1546 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
1547 tmp |= RT2573_MRR_CCK_FALLBACK;
1548 tmp |= RT2573_MRR_ENABLED;
1549
1550 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1551 }
1552
1553 void
rum_set_txpreamble(struct rum_softc * sc)1554 rum_set_txpreamble(struct rum_softc *sc)
1555 {
1556 uint32_t tmp;
1557
1558 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1559
1560 tmp &= ~RT2573_SHORT_PREAMBLE;
1561 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1562 tmp |= RT2573_SHORT_PREAMBLE;
1563
1564 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1565 }
1566
1567 void
rum_set_basicrates(struct rum_softc * sc)1568 rum_set_basicrates(struct rum_softc *sc)
1569 {
1570 struct ieee80211com *ic = &sc->sc_ic;
1571
1572 /* update basic rate set */
1573 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1574 /* 11b basic rates: 1, 2Mbps */
1575 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1576 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1577 /* 11a basic rates: 6, 12, 24Mbps */
1578 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1579 } else {
1580 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1581 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1582 }
1583 }
1584
1585 /*
1586 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1587 * driver.
1588 */
1589 void
rum_select_band(struct rum_softc * sc,struct ieee80211_channel * c)1590 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1591 {
1592 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1593 uint32_t tmp;
1594
1595 /* update all BBP registers that depend on the band */
1596 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1597 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1598 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1599 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1600 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1601 }
1602 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1603 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1604 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1605 }
1606
1607 sc->bbp17 = bbp17;
1608 rum_bbp_write(sc, 17, bbp17);
1609 rum_bbp_write(sc, 96, bbp96);
1610 rum_bbp_write(sc, 104, bbp104);
1611
1612 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1613 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1614 rum_bbp_write(sc, 75, 0x80);
1615 rum_bbp_write(sc, 86, 0x80);
1616 rum_bbp_write(sc, 88, 0x80);
1617 }
1618
1619 rum_bbp_write(sc, 35, bbp35);
1620 rum_bbp_write(sc, 97, bbp97);
1621 rum_bbp_write(sc, 98, bbp98);
1622
1623 tmp = rum_read(sc, RT2573_PHY_CSR0);
1624 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1625 if (IEEE80211_IS_CHAN_2GHZ(c))
1626 tmp |= RT2573_PA_PE_2GHZ;
1627 else
1628 tmp |= RT2573_PA_PE_5GHZ;
1629 rum_write(sc, RT2573_PHY_CSR0, tmp);
1630
1631 /* 802.11a uses a 16 microseconds short interframe space */
1632 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1633 }
1634
1635 void
rum_set_chan(struct rum_softc * sc,struct ieee80211_channel * c)1636 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1637 {
1638 struct ieee80211com *ic = &sc->sc_ic;
1639 const struct rfprog *rfprog;
1640 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1641 int8_t power;
1642 u_int i, chan;
1643
1644 chan = ieee80211_chan2ieee(ic, c);
1645 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1646 return;
1647
1648 /* select the appropriate RF settings based on what EEPROM says */
1649 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1650 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1651
1652 /* find the settings for this channel (we know it exists) */
1653 for (i = 0; rfprog[i].chan != chan; i++)
1654 ;
1655
1656 power = sc->txpow[i];
1657 if (power < 0) {
1658 bbp94 += power;
1659 power = 0;
1660 } else if (power > 31) {
1661 bbp94 += power - 31;
1662 power = 31;
1663 }
1664
1665 /*
1666 * If we are switching from the 2GHz band to the 5GHz band or
1667 * vice-versa, BBP registers need to be reprogrammed.
1668 */
1669 if (c->ic_flags != sc->sc_curchan->ic_flags) {
1670 rum_select_band(sc, c);
1671 rum_select_antenna(sc);
1672 }
1673 sc->sc_curchan = c;
1674
1675 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1676 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1677 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1678 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1679
1680 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1681 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1682 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1683 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1684
1685 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1686 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1687 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1688 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1689
1690 DELAY(10);
1691
1692 /* enable smart mode for MIMO-capable RFs */
1693 bbp3 = rum_bbp_read(sc, 3);
1694
1695 bbp3 &= ~RT2573_SMART_MODE;
1696 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1697 bbp3 |= RT2573_SMART_MODE;
1698
1699 rum_bbp_write(sc, 3, bbp3);
1700
1701 if (bbp94 != RT2573_BBPR94_DEFAULT)
1702 rum_bbp_write(sc, 94, bbp94);
1703 }
1704
1705 /*
1706 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1707 * and HostAP operating modes.
1708 */
1709 void
rum_enable_tsf_sync(struct rum_softc * sc)1710 rum_enable_tsf_sync(struct rum_softc *sc)
1711 {
1712 struct ieee80211com *ic = &sc->sc_ic;
1713 uint32_t tmp;
1714
1715 #ifndef IEEE80211_STA_ONLY
1716 if (ic->ic_opmode != IEEE80211_M_STA) {
1717 /*
1718 * Change default 16ms TBTT adjustment to 8ms.
1719 * Must be done before enabling beacon generation.
1720 */
1721 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1722 }
1723 #endif
1724
1725 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1726
1727 /* set beacon interval (in 1/16ms unit) */
1728 tmp |= ic->ic_bss->ni_intval * 16;
1729
1730 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1731 if (ic->ic_opmode == IEEE80211_M_STA)
1732 tmp |= RT2573_TSF_MODE(1);
1733 #ifndef IEEE80211_STA_ONLY
1734 else
1735 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1736 #endif
1737 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1738 }
1739
1740 void
rum_update_slot(struct rum_softc * sc)1741 rum_update_slot(struct rum_softc *sc)
1742 {
1743 struct ieee80211com *ic = &sc->sc_ic;
1744 uint8_t slottime;
1745 uint32_t tmp;
1746
1747 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ?
1748 IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
1749
1750 tmp = rum_read(sc, RT2573_MAC_CSR9);
1751 tmp = (tmp & ~0xff) | slottime;
1752 rum_write(sc, RT2573_MAC_CSR9, tmp);
1753
1754 DPRINTF(("setting slot time to %uus\n", slottime));
1755 }
1756
1757 void
rum_set_bssid(struct rum_softc * sc,const uint8_t * bssid)1758 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1759 {
1760 uint32_t tmp;
1761
1762 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1763 rum_write(sc, RT2573_MAC_CSR4, tmp);
1764
1765 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1766 rum_write(sc, RT2573_MAC_CSR5, tmp);
1767 }
1768
1769 void
rum_set_macaddr(struct rum_softc * sc,const uint8_t * addr)1770 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1771 {
1772 uint32_t tmp;
1773
1774 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1775 rum_write(sc, RT2573_MAC_CSR2, tmp);
1776
1777 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1778 rum_write(sc, RT2573_MAC_CSR3, tmp);
1779 }
1780
1781 void
rum_update_promisc(struct rum_softc * sc)1782 rum_update_promisc(struct rum_softc *sc)
1783 {
1784 struct ifnet *ifp = &sc->sc_ic.ic_if;
1785 uint32_t tmp;
1786
1787 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1788
1789 tmp &= ~RT2573_DROP_NOT_TO_ME;
1790 if (!(ifp->if_flags & IFF_PROMISC))
1791 tmp |= RT2573_DROP_NOT_TO_ME;
1792
1793 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1794
1795 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1796 "entering" : "leaving"));
1797 }
1798
1799 const char *
rum_get_rf(int rev)1800 rum_get_rf(int rev)
1801 {
1802 switch (rev) {
1803 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1804 case RT2573_RF_2528: return "RT2528";
1805 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1806 case RT2573_RF_5226: return "RT5226";
1807 default: return "unknown";
1808 }
1809 }
1810
1811 void
rum_read_eeprom(struct rum_softc * sc)1812 rum_read_eeprom(struct rum_softc *sc)
1813 {
1814 struct ieee80211com *ic = &sc->sc_ic;
1815 uint16_t val;
1816 #ifdef RUM_DEBUG
1817 int i;
1818 #endif
1819
1820 /* read MAC/BBP type */
1821 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1822 sc->macbbp_rev = letoh16(val);
1823
1824 /* read MAC address */
1825 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1826
1827 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1828 val = letoh16(val);
1829 sc->rf_rev = (val >> 11) & 0x1f;
1830 sc->hw_radio = (val >> 10) & 0x1;
1831 sc->rx_ant = (val >> 4) & 0x3;
1832 sc->tx_ant = (val >> 2) & 0x3;
1833 sc->nb_ant = val & 0x3;
1834
1835 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1836
1837 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1838 val = letoh16(val);
1839 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1840 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1841
1842 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1843 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1844
1845 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1846 val = letoh16(val);
1847 if ((val & 0xff) != 0xff)
1848 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1849
1850 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1851 val = letoh16(val);
1852 if ((val & 0xff) != 0xff)
1853 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1854
1855 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1856 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1857
1858 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1859 val = letoh16(val);
1860 if ((val & 0xff) != 0xff)
1861 sc->rffreq = val & 0xff;
1862
1863 DPRINTF(("RF freq=%d\n", sc->rffreq));
1864
1865 /* read Tx power for all a/b/g channels */
1866 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1867 /* XXX default Tx power for 802.11a channels */
1868 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1869 #ifdef RUM_DEBUG
1870 for (i = 0; i < 14; i++)
1871 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1872 #endif
1873
1874 /* read default values for BBP registers */
1875 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1876 #ifdef RUM_DEBUG
1877 for (i = 0; i < 14; i++) {
1878 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1879 continue;
1880 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1881 sc->bbp_prom[i].val));
1882 }
1883 #endif
1884 }
1885
1886 int
rum_bbp_init(struct rum_softc * sc)1887 rum_bbp_init(struct rum_softc *sc)
1888 {
1889 int i, ntries;
1890
1891 /* wait for BBP to be ready */
1892 for (ntries = 0; ntries < 100; ntries++) {
1893 const uint8_t val = rum_bbp_read(sc, 0);
1894 if (val != 0 && val != 0xff)
1895 break;
1896 DELAY(1000);
1897 }
1898 if (ntries == 100) {
1899 printf("%s: timeout waiting for BBP\n",
1900 sc->sc_dev.dv_xname);
1901 return EIO;
1902 }
1903
1904 /* initialize BBP registers to default values */
1905 for (i = 0; i < nitems(rum_def_bbp); i++)
1906 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1907
1908 /* write vendor-specific BBP values (from EEPROM) */
1909 for (i = 0; i < 16; i++) {
1910 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1911 continue;
1912 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1913 }
1914
1915 return 0;
1916 }
1917
1918 int
rum_init(struct ifnet * ifp)1919 rum_init(struct ifnet *ifp)
1920 {
1921 struct rum_softc *sc = ifp->if_softc;
1922 struct ieee80211com *ic = &sc->sc_ic;
1923 uint32_t tmp;
1924 usbd_status error;
1925 int i, ntries;
1926
1927 rum_stop(ifp, 0);
1928
1929 /* initialize MAC registers to default values */
1930 for (i = 0; i < nitems(rum_def_mac); i++)
1931 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1932
1933 /* set host ready */
1934 rum_write(sc, RT2573_MAC_CSR1, 3);
1935 rum_write(sc, RT2573_MAC_CSR1, 0);
1936
1937 /* wait for BBP/RF to wakeup */
1938 for (ntries = 0; ntries < 1000; ntries++) {
1939 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1940 break;
1941 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1942 DELAY(1000);
1943 }
1944 if (ntries == 1000) {
1945 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1946 sc->sc_dev.dv_xname);
1947 error = ENODEV;
1948 goto fail;
1949 }
1950
1951 if ((error = rum_bbp_init(sc)) != 0)
1952 goto fail;
1953
1954 /* select default channel */
1955 sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1956 rum_select_band(sc, sc->sc_curchan);
1957 rum_select_antenna(sc);
1958 rum_set_chan(sc, sc->sc_curchan);
1959
1960 /* clear STA registers */
1961 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1962
1963 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1964 rum_set_macaddr(sc, ic->ic_myaddr);
1965
1966 /* initialize ASIC */
1967 rum_write(sc, RT2573_MAC_CSR1, 4);
1968
1969 /*
1970 * Allocate xfer for AMRR statistics requests.
1971 */
1972 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1973 if (sc->amrr_xfer == NULL) {
1974 printf("%s: could not allocate AMRR xfer\n",
1975 sc->sc_dev.dv_xname);
1976 goto fail;
1977 }
1978
1979 /*
1980 * Open Tx and Rx USB bulk pipes.
1981 */
1982 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1983 &sc->sc_tx_pipeh);
1984 if (error != 0) {
1985 printf("%s: could not open Tx pipe: %s\n",
1986 sc->sc_dev.dv_xname, usbd_errstr(error));
1987 goto fail;
1988 }
1989 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1990 &sc->sc_rx_pipeh);
1991 if (error != 0) {
1992 printf("%s: could not open Rx pipe: %s\n",
1993 sc->sc_dev.dv_xname, usbd_errstr(error));
1994 goto fail;
1995 }
1996
1997 /*
1998 * Allocate Tx and Rx xfer queues.
1999 */
2000 error = rum_alloc_tx_list(sc);
2001 if (error != 0) {
2002 printf("%s: could not allocate Tx list\n",
2003 sc->sc_dev.dv_xname);
2004 goto fail;
2005 }
2006 error = rum_alloc_rx_list(sc);
2007 if (error != 0) {
2008 printf("%s: could not allocate Rx list\n",
2009 sc->sc_dev.dv_xname);
2010 goto fail;
2011 }
2012
2013 /*
2014 * Start up the receive pipe.
2015 */
2016 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2017 struct rum_rx_data *data = &sc->rx_data[i];
2018
2019 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2020 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2021 error = usbd_transfer(data->xfer);
2022 if (error != 0 && error != USBD_IN_PROGRESS) {
2023 printf("%s: could not queue Rx transfer\n",
2024 sc->sc_dev.dv_xname);
2025 goto fail;
2026 }
2027 }
2028
2029 /* update Rx filter */
2030 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2031
2032 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2033 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2034 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2035 RT2573_DROP_ACKCTS;
2036 #ifndef IEEE80211_STA_ONLY
2037 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2038 #endif
2039 tmp |= RT2573_DROP_TODS;
2040 if (!(ifp->if_flags & IFF_PROMISC))
2041 tmp |= RT2573_DROP_NOT_TO_ME;
2042 }
2043 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2044
2045 ifq_clr_oactive(&ifp->if_snd);
2046 ifp->if_flags |= IFF_RUNNING;
2047
2048 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2049 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2050 else
2051 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2052
2053 return 0;
2054
2055 fail: rum_stop(ifp, 1);
2056 return error;
2057 }
2058
2059 void
rum_stop(struct ifnet * ifp,int disable)2060 rum_stop(struct ifnet *ifp, int disable)
2061 {
2062 struct rum_softc *sc = ifp->if_softc;
2063 struct ieee80211com *ic = &sc->sc_ic;
2064 uint32_t tmp;
2065
2066 sc->sc_tx_timer = 0;
2067 ifp->if_timer = 0;
2068 ifp->if_flags &= ~IFF_RUNNING;
2069 ifq_clr_oactive(&ifp->if_snd);
2070
2071 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2072
2073 /* disable Rx */
2074 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2075 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2076
2077 /* reset ASIC */
2078 rum_write(sc, RT2573_MAC_CSR1, 3);
2079 rum_write(sc, RT2573_MAC_CSR1, 0);
2080
2081 if (sc->amrr_xfer != NULL) {
2082 usbd_free_xfer(sc->amrr_xfer);
2083 sc->amrr_xfer = NULL;
2084 }
2085 if (sc->sc_rx_pipeh != NULL) {
2086 usbd_close_pipe(sc->sc_rx_pipeh);
2087 sc->sc_rx_pipeh = NULL;
2088 }
2089 if (sc->sc_tx_pipeh != NULL) {
2090 usbd_close_pipe(sc->sc_tx_pipeh);
2091 sc->sc_tx_pipeh = NULL;
2092 }
2093
2094 rum_free_rx_list(sc);
2095 rum_free_tx_list(sc);
2096 }
2097
2098 int
rum_load_microcode(struct rum_softc * sc,const u_char * ucode,size_t size)2099 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2100 {
2101 usb_device_request_t req;
2102 uint16_t reg = RT2573_MCU_CODE_BASE;
2103 usbd_status error;
2104
2105 /* copy firmware image into NIC */
2106 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2107 rum_write(sc, reg, UGETDW(ucode));
2108
2109 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2110 req.bRequest = RT2573_MCU_CNTL;
2111 USETW(req.wValue, RT2573_MCU_RUN);
2112 USETW(req.wIndex, 0);
2113 USETW(req.wLength, 0);
2114
2115 error = usbd_do_request(sc->sc_udev, &req, NULL);
2116 if (error != 0) {
2117 printf("%s: could not run firmware: %s\n",
2118 sc->sc_dev.dv_xname, usbd_errstr(error));
2119 }
2120 return error;
2121 }
2122
2123 #ifndef IEEE80211_STA_ONLY
2124 int
rum_prepare_beacon(struct rum_softc * sc)2125 rum_prepare_beacon(struct rum_softc *sc)
2126 {
2127 struct ieee80211com *ic = &sc->sc_ic;
2128 struct rum_tx_desc desc;
2129 struct mbuf *m0;
2130 int rate;
2131
2132 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss);
2133 if (m0 == NULL) {
2134 printf("%s: could not allocate beacon frame\n",
2135 sc->sc_dev.dv_xname);
2136 return ENOBUFS;
2137 }
2138
2139 /* send beacons at the lowest available rate */
2140 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2141
2142 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2143 m0->m_pkthdr.len, rate);
2144
2145 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2146 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2147
2148 /* copy beacon header and payload into NIC memory */
2149 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2150 m0->m_pkthdr.len);
2151
2152 m_freem(m0);
2153
2154 return 0;
2155 }
2156 #endif
2157
2158 void
rum_newassoc(struct ieee80211com * ic,struct ieee80211_node * ni,int isnew)2159 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2160 {
2161 /* start with lowest Tx rate */
2162 ni->ni_txrate = 0;
2163 }
2164
2165 void
rum_amrr_start(struct rum_softc * sc,struct ieee80211_node * ni)2166 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2167 {
2168 int i;
2169
2170 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2171 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2172
2173 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2174
2175 /* set rate to some reasonable initial value */
2176 for (i = ni->ni_rates.rs_nrates - 1;
2177 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2178 i--);
2179 ni->ni_txrate = i;
2180
2181 if (!usbd_is_dying(sc->sc_udev))
2182 timeout_add_sec(&sc->amrr_to, 1);
2183 }
2184
2185 void
rum_amrr_timeout(void * arg)2186 rum_amrr_timeout(void *arg)
2187 {
2188 struct rum_softc *sc = arg;
2189 usb_device_request_t req;
2190
2191 if (usbd_is_dying(sc->sc_udev))
2192 return;
2193
2194 /*
2195 * Asynchronously read statistic registers (cleared by read).
2196 */
2197 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2198 req.bRequest = RT2573_READ_MULTI_MAC;
2199 USETW(req.wValue, 0);
2200 USETW(req.wIndex, RT2573_STA_CSR0);
2201 USETW(req.wLength, sizeof sc->sta);
2202
2203 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2204 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2205 rum_amrr_update);
2206 (void)usbd_transfer(sc->amrr_xfer);
2207 }
2208
2209 void
rum_amrr_update(struct usbd_xfer * xfer,void * priv,usbd_status status)2210 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2211 usbd_status status)
2212 {
2213 struct rum_softc *sc = (struct rum_softc *)priv;
2214 struct ifnet *ifp = &sc->sc_ic.ic_if;
2215
2216 if (status != USBD_NORMAL_COMPLETION) {
2217 printf("%s: could not retrieve Tx statistics - cancelling "
2218 "automatic rate control\n", sc->sc_dev.dv_xname);
2219 return;
2220 }
2221
2222 /* count TX retry-fail as Tx errors */
2223 ifp->if_oerrors += letoh32(sc->sta[5]) >> 16;
2224
2225 sc->amn.amn_retrycnt =
2226 (letoh32(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2227 (letoh32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2228 (letoh32(sc->sta[5]) >> 16); /* TX retry-fail count */
2229
2230 sc->amn.amn_txcnt =
2231 sc->amn.amn_retrycnt +
2232 (letoh32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2233
2234 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2235
2236 if (!usbd_is_dying(sc->sc_udev))
2237 timeout_add_sec(&sc->amrr_to, 1);
2238 }
2239