1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2022 Marvell.
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/firmware.h>
12 #include <linux/stddef.h>
13 #include <linux/debugfs.h>
14 
15 #include "rvu_struct.h"
16 #include "rvu_reg.h"
17 #include "rvu.h"
18 #include "npc.h"
19 #include "cgx.h"
20 #include "rvu_npc_fs.h"
21 #include "rvu_npc_hash.h"
22 
rvu_npc_wide_extract(const u64 input[],size_t start_bit,size_t width_bits)23 static u64 rvu_npc_wide_extract(const u64 input[], size_t start_bit,
24 				size_t width_bits)
25 {
26 	const u64 mask = ~(u64)((~(__uint128_t)0) << width_bits);
27 	const size_t msb = start_bit + width_bits - 1;
28 	const size_t lword = start_bit >> 6;
29 	const size_t uword = msb >> 6;
30 	size_t lbits;
31 	u64 hi, lo;
32 
33 	if (lword == uword)
34 		return (input[lword] >> (start_bit & 63)) & mask;
35 
36 	lbits = 64 - (start_bit & 63);
37 	hi = input[uword];
38 	lo = (input[lword] >> (start_bit & 63));
39 	return ((hi << lbits) | lo) & mask;
40 }
41 
rvu_npc_lshift_key(u64 * key,size_t key_bit_len)42 static void rvu_npc_lshift_key(u64 *key, size_t key_bit_len)
43 {
44 	u64 prev_orig_word = 0;
45 	u64 cur_orig_word = 0;
46 	size_t extra = key_bit_len % 64;
47 	size_t max_idx = key_bit_len / 64;
48 	size_t i;
49 
50 	if (extra)
51 		max_idx++;
52 
53 	for (i = 0; i < max_idx; i++) {
54 		cur_orig_word = key[i];
55 		key[i] = key[i] << 1;
56 		key[i] |= ((prev_orig_word >> 63) & 0x1);
57 		prev_orig_word = cur_orig_word;
58 	}
59 }
60 
rvu_npc_toeplitz_hash(const u64 * data,u64 * key,size_t data_bit_len,size_t key_bit_len)61 static u32 rvu_npc_toeplitz_hash(const u64 *data, u64 *key, size_t data_bit_len,
62 				 size_t key_bit_len)
63 {
64 	u32 hash_out = 0;
65 	u64 temp_data = 0;
66 	int i;
67 
68 	for (i = data_bit_len - 1; i >= 0; i--) {
69 		temp_data = (data[i / 64]);
70 		temp_data = temp_data >> (i % 64);
71 		temp_data &= 0x1;
72 		if (temp_data)
73 			hash_out ^= (u32)(rvu_npc_wide_extract(key, key_bit_len - 32, 32));
74 
75 		rvu_npc_lshift_key(key, key_bit_len);
76 	}
77 
78 	return hash_out;
79 }
80 
npc_field_hash_calc(u64 * ldata,struct npc_get_field_hash_info_rsp rsp,u8 intf,u8 hash_idx)81 u32 npc_field_hash_calc(u64 *ldata, struct npc_get_field_hash_info_rsp rsp,
82 			u8 intf, u8 hash_idx)
83 {
84 	u64 hash_key[3];
85 	u64 data_padded[2];
86 	u32 field_hash;
87 
88 	hash_key[0] = rsp.secret_key[1] << 31;
89 	hash_key[0] |= rsp.secret_key[2];
90 	hash_key[1] = rsp.secret_key[1] >> 33;
91 	hash_key[1] |= rsp.secret_key[0] << 31;
92 	hash_key[2] = rsp.secret_key[0] >> 33;
93 
94 	data_padded[0] = rsp.hash_mask[intf][hash_idx][0] & ldata[0];
95 	data_padded[1] = rsp.hash_mask[intf][hash_idx][1] & ldata[1];
96 	field_hash = rvu_npc_toeplitz_hash(data_padded, hash_key, 128, 159);
97 
98 	field_hash &= FIELD_GET(GENMASK(63, 32), rsp.hash_ctrl[intf][hash_idx]);
99 	field_hash += FIELD_GET(GENMASK(31, 0), rsp.hash_ctrl[intf][hash_idx]);
100 	return field_hash;
101 }
102 
npc_update_use_hash(struct rvu * rvu,int blkaddr,u8 intf,int lid,int lt,int ld)103 static u64 npc_update_use_hash(struct rvu *rvu, int blkaddr,
104 			       u8 intf, int lid, int lt, int ld)
105 {
106 	u8 hdr, key;
107 	u64 cfg;
108 
109 	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_LIDX_LTX_LDX_CFG(intf, lid, lt, ld));
110 	hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
111 	key = FIELD_GET(NPC_KEY_OFFSET, cfg);
112 
113 	/* Update use_hash(bit-20) to 'true' and
114 	 * bytesm1(bit-16:19) to '0x3' in KEX_LD_CFG
115 	 */
116 	cfg = KEX_LD_CFG_USE_HASH(0x1, 0x03,
117 				  hdr, 0x1, 0x0, key);
118 
119 	return cfg;
120 }
121 
npc_program_mkex_hash_rx(struct rvu * rvu,int blkaddr,u8 intf)122 static void npc_program_mkex_hash_rx(struct rvu *rvu, int blkaddr,
123 				     u8 intf)
124 {
125 	struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
126 	int lid, lt, ld, hash_cnt = 0;
127 
128 	if (is_npc_intf_tx(intf))
129 		return;
130 
131 	/* Program HASH_CFG */
132 	for (lid = 0; lid < NPC_MAX_LID; lid++) {
133 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
134 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
135 				if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) {
136 					u64 cfg;
137 
138 					if (hash_cnt == NPC_MAX_HASH)
139 						return;
140 
141 					cfg = npc_update_use_hash(rvu, blkaddr,
142 								  intf, lid, lt, ld);
143 					/* Set updated KEX configuration */
144 					SET_KEX_LD(intf, lid, lt, ld, cfg);
145 					/* Set HASH configuration */
146 					SET_KEX_LD_HASH(intf, ld,
147 							mkex_hash->hash[intf][ld]);
148 					SET_KEX_LD_HASH_MASK(intf, ld, 0,
149 							     mkex_hash->hash_mask[intf][ld][0]);
150 					SET_KEX_LD_HASH_MASK(intf, ld, 1,
151 							     mkex_hash->hash_mask[intf][ld][1]);
152 					SET_KEX_LD_HASH_CTRL(intf, ld,
153 							     mkex_hash->hash_ctrl[intf][ld]);
154 
155 					hash_cnt++;
156 				}
157 			}
158 		}
159 	}
160 }
161 
npc_program_mkex_hash_tx(struct rvu * rvu,int blkaddr,u8 intf)162 static void npc_program_mkex_hash_tx(struct rvu *rvu, int blkaddr,
163 				     u8 intf)
164 {
165 	struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
166 	int lid, lt, ld, hash_cnt = 0;
167 
168 	if (is_npc_intf_rx(intf))
169 		return;
170 
171 	/* Program HASH_CFG */
172 	for (lid = 0; lid < NPC_MAX_LID; lid++) {
173 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
174 			for (ld = 0; ld < NPC_MAX_LD; ld++)
175 				if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) {
176 					u64 cfg;
177 
178 					if (hash_cnt == NPC_MAX_HASH)
179 						return;
180 
181 					cfg = npc_update_use_hash(rvu, blkaddr,
182 								  intf, lid, lt, ld);
183 					/* Set updated KEX configuration */
184 					SET_KEX_LD(intf, lid, lt, ld, cfg);
185 					/* Set HASH configuration */
186 					SET_KEX_LD_HASH(intf, ld,
187 							mkex_hash->hash[intf][ld]);
188 					SET_KEX_LD_HASH_MASK(intf, ld, 0,
189 							     mkex_hash->hash_mask[intf][ld][0]);
190 					SET_KEX_LD_HASH_MASK(intf, ld, 1,
191 							     mkex_hash->hash_mask[intf][ld][1]);
192 					SET_KEX_LD_HASH_CTRL(intf, ld,
193 							     mkex_hash->hash_ctrl[intf][ld]);
194 					hash_cnt++;
195 				}
196 		}
197 	}
198 }
199 
npc_config_secret_key(struct rvu * rvu,int blkaddr)200 void npc_config_secret_key(struct rvu *rvu, int blkaddr)
201 {
202 	struct hw_cap *hwcap = &rvu->hw->cap;
203 	struct rvu_hwinfo *hw = rvu->hw;
204 	u8 intf;
205 
206 	if (!hwcap->npc_hash_extract)
207 		return;
208 
209 	for (intf = 0; intf < hw->npc_intfs; intf++) {
210 		rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf),
211 			    RVU_NPC_HASH_SECRET_KEY0);
212 		rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf),
213 			    RVU_NPC_HASH_SECRET_KEY1);
214 		rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf),
215 			    RVU_NPC_HASH_SECRET_KEY2);
216 	}
217 }
218 
npc_program_mkex_hash(struct rvu * rvu,int blkaddr)219 void npc_program_mkex_hash(struct rvu *rvu, int blkaddr)
220 {
221 	struct npc_mcam_kex_hash *mh = rvu->kpu.mkex_hash;
222 	struct hw_cap *hwcap = &rvu->hw->cap;
223 	u8 intf, ld, hdr_offset, byte_len;
224 	struct rvu_hwinfo *hw = rvu->hw;
225 	u64 cfg;
226 
227 	/* Check if hardware supports hash extraction */
228 	if (!hwcap->npc_hash_extract)
229 		return;
230 
231 	/* Check if IPv6 source/destination address
232 	 * should be hash enabled.
233 	 * Hashing reduces 128bit SIP/DIP fields to 32bit
234 	 * so that 224 bit X2 key can be used for IPv6 based filters as well,
235 	 * which in turn results in more number of MCAM entries available for
236 	 * use.
237 	 *
238 	 * Hashing of IPV6 SIP/DIP is enabled in below scenarios
239 	 * 1. If the silicon variant supports hashing feature
240 	 * 2. If the number of bytes of IP addr being extracted is 4 bytes ie
241 	 *    32bit. The assumption here is that if user wants 8bytes of LSB of
242 	 *    IP addr or full 16 bytes then his intention is not to use 32bit
243 	 *    hash.
244 	 */
245 	for (intf = 0; intf < hw->npc_intfs; intf++) {
246 		for (ld = 0; ld < NPC_MAX_LD; ld++) {
247 			cfg = rvu_read64(rvu, blkaddr,
248 					 NPC_AF_INTFX_LIDX_LTX_LDX_CFG(intf,
249 								       NPC_LID_LC,
250 								       NPC_LT_LC_IP6,
251 								       ld));
252 			hdr_offset = FIELD_GET(NPC_HDR_OFFSET, cfg);
253 			byte_len = FIELD_GET(NPC_BYTESM, cfg);
254 			/* Hashing of IPv6 source/destination address should be
255 			 * enabled if,
256 			 * hdr_offset == 8 (offset of source IPv6 address) or
257 			 * hdr_offset == 24 (offset of destination IPv6)
258 			 * address) and the number of byte to be
259 			 * extracted is 4. As per hardware configuration
260 			 * byte_len should be == actual byte_len - 1.
261 			 * Hence byte_len is checked against 3 but nor 4.
262 			 */
263 			if ((hdr_offset == 8 || hdr_offset == 24) && byte_len == 3)
264 				mh->lid_lt_ld_hash_en[intf][NPC_LID_LC][NPC_LT_LC_IP6][ld] = true;
265 		}
266 	}
267 
268 	/* Update hash configuration if the field is hash enabled */
269 	for (intf = 0; intf < hw->npc_intfs; intf++) {
270 		npc_program_mkex_hash_rx(rvu, blkaddr, intf);
271 		npc_program_mkex_hash_tx(rvu, blkaddr, intf);
272 	}
273 }
274 
npc_update_field_hash(struct rvu * rvu,u8 intf,struct mcam_entry * entry,int blkaddr,u64 features,struct flow_msg * pkt,struct flow_msg * mask,struct flow_msg * opkt,struct flow_msg * omask)275 void npc_update_field_hash(struct rvu *rvu, u8 intf,
276 			   struct mcam_entry *entry,
277 			   int blkaddr,
278 			   u64 features,
279 			   struct flow_msg *pkt,
280 			   struct flow_msg *mask,
281 			   struct flow_msg *opkt,
282 			   struct flow_msg *omask)
283 {
284 	struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
285 	struct npc_get_field_hash_info_req req;
286 	struct npc_get_field_hash_info_rsp rsp;
287 	u64 ldata[2], cfg;
288 	u32 field_hash;
289 	u8 hash_idx;
290 
291 	if (!rvu->hw->cap.npc_hash_extract) {
292 		dev_dbg(rvu->dev, "%s: Field hash extract feature is not supported\n", __func__);
293 		return;
294 	}
295 
296 	req.intf = intf;
297 	rvu_mbox_handler_npc_get_field_hash_info(rvu, &req, &rsp);
298 
299 	for (hash_idx = 0; hash_idx < NPC_MAX_HASH; hash_idx++) {
300 		cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_HASHX_CFG(intf, hash_idx));
301 		if ((cfg & BIT_ULL(11)) && (cfg & BIT_ULL(12))) {
302 			u8 lid = (cfg & GENMASK_ULL(10, 8)) >> 8;
303 			u8 ltype = (cfg & GENMASK_ULL(7, 4)) >> 4;
304 			u8 ltype_mask = cfg & GENMASK_ULL(3, 0);
305 
306 			if (mkex_hash->lid_lt_ld_hash_en[intf][lid][ltype][hash_idx]) {
307 				switch (ltype & ltype_mask) {
308 				/* If hash extract enabled is supported for IPv6 then
309 				 * 128 bit IPv6 source and destination addressed
310 				 * is hashed to 32 bit value.
311 				 */
312 				case NPC_LT_LC_IP6:
313 					/* ld[0] == hash_idx[0] == Source IPv6
314 					 * ld[1] == hash_idx[1] == Destination IPv6
315 					 */
316 					if ((features & BIT_ULL(NPC_SIP_IPV6)) && !hash_idx) {
317 						u32 src_ip[IPV6_WORDS];
318 
319 						be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
320 						ldata[1] = (u64)src_ip[0] << 32 | src_ip[1];
321 						ldata[0] = (u64)src_ip[2] << 32 | src_ip[3];
322 						field_hash = npc_field_hash_calc(ldata,
323 										 rsp,
324 										 intf,
325 										 hash_idx);
326 						npc_update_entry(rvu, NPC_SIP_IPV6, entry,
327 								 field_hash, 0,
328 								 GENMASK(31, 0), 0, intf);
329 						memcpy(&opkt->ip6src, &pkt->ip6src,
330 						       sizeof(pkt->ip6src));
331 						memcpy(&omask->ip6src, &mask->ip6src,
332 						       sizeof(mask->ip6src));
333 					} else if ((features & BIT_ULL(NPC_DIP_IPV6)) && hash_idx) {
334 						u32 dst_ip[IPV6_WORDS];
335 
336 						be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
337 						ldata[1] = (u64)dst_ip[0] << 32 | dst_ip[1];
338 						ldata[0] = (u64)dst_ip[2] << 32 | dst_ip[3];
339 						field_hash = npc_field_hash_calc(ldata,
340 										 rsp,
341 										 intf,
342 										 hash_idx);
343 						npc_update_entry(rvu, NPC_DIP_IPV6, entry,
344 								 field_hash, 0,
345 								 GENMASK(31, 0), 0, intf);
346 						memcpy(&opkt->ip6dst, &pkt->ip6dst,
347 						       sizeof(pkt->ip6dst));
348 						memcpy(&omask->ip6dst, &mask->ip6dst,
349 						       sizeof(mask->ip6dst));
350 					}
351 
352 					break;
353 				}
354 			}
355 		}
356 	}
357 }
358 
rvu_mbox_handler_npc_get_field_hash_info(struct rvu * rvu,struct npc_get_field_hash_info_req * req,struct npc_get_field_hash_info_rsp * rsp)359 int rvu_mbox_handler_npc_get_field_hash_info(struct rvu *rvu,
360 					     struct npc_get_field_hash_info_req *req,
361 					     struct npc_get_field_hash_info_rsp *rsp)
362 {
363 	u64 *secret_key = rsp->secret_key;
364 	u8 intf = req->intf;
365 	int i, j, blkaddr;
366 
367 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
368 	if (blkaddr < 0) {
369 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
370 		return -EINVAL;
371 	}
372 
373 	secret_key[0] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf));
374 	secret_key[1] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf));
375 	secret_key[2] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf));
376 
377 	for (i = 0; i < NPC_MAX_HASH; i++) {
378 		for (j = 0; j < NPC_MAX_HASH_MASK; j++) {
379 			rsp->hash_mask[NIX_INTF_RX][i][j] =
380 				GET_KEX_LD_HASH_MASK(NIX_INTF_RX, i, j);
381 			rsp->hash_mask[NIX_INTF_TX][i][j] =
382 				GET_KEX_LD_HASH_MASK(NIX_INTF_TX, i, j);
383 		}
384 	}
385 
386 	for (i = 0; i < NPC_MAX_INTF; i++)
387 		for (j = 0; j < NPC_MAX_HASH; j++)
388 			rsp->hash_ctrl[i][j] = GET_KEX_LD_HASH_CTRL(i, j);
389 
390 	return 0;
391 }
392 
393 /**
394  *	rvu_exact_prepare_mdata - Make mdata for mcam entry
395  *	@mac: MAC address
396  *	@chan: Channel number.
397  *	@ctype: Channel Type.
398  *	@mask: LDATA mask.
399  *	Return: Meta data
400  */
rvu_exact_prepare_mdata(u8 * mac,u16 chan,u16 ctype,u64 mask)401 static u64 rvu_exact_prepare_mdata(u8 *mac, u16 chan, u16 ctype, u64 mask)
402 {
403 	u64 ldata = ether_addr_to_u64(mac);
404 
405 	/* Please note that mask is 48bit which excludes chan and ctype.
406 	 * Increase mask bits if we need to include them as well.
407 	 */
408 	ldata |= ((u64)chan << 48);
409 	ldata |= ((u64)ctype  << 60);
410 	ldata &= mask;
411 	ldata = ldata << 2;
412 
413 	return ldata;
414 }
415 
416 /**
417  *      rvu_exact_calculate_hash - calculate hash index to mem table.
418  *	@rvu: resource virtualization unit.
419  *	@chan: Channel number
420  *	@ctype: Channel type.
421  *	@mac: MAC address
422  *	@mask: HASH mask.
423  *	@table_depth: Depth of table.
424  *	Return: Hash value
425  */
rvu_exact_calculate_hash(struct rvu * rvu,u16 chan,u16 ctype,u8 * mac,u64 mask,u32 table_depth)426 static u32 rvu_exact_calculate_hash(struct rvu *rvu, u16 chan, u16 ctype, u8 *mac,
427 				    u64 mask, u32 table_depth)
428 {
429 	struct npc_exact_table *table = rvu->hw->table;
430 	u64 hash_key[2];
431 	u64 key_in[2];
432 	u64 ldata;
433 	u32 hash;
434 
435 	key_in[0] = RVU_NPC_HASH_SECRET_KEY0;
436 	key_in[1] = RVU_NPC_HASH_SECRET_KEY2;
437 
438 	hash_key[0] = key_in[0] << 31;
439 	hash_key[0] |= key_in[1];
440 	hash_key[1] = key_in[0] >> 33;
441 
442 	ldata = rvu_exact_prepare_mdata(mac, chan, ctype, mask);
443 
444 	dev_dbg(rvu->dev, "%s: ldata=0x%llx hash_key0=0x%llx hash_key2=0x%llx\n", __func__,
445 		ldata, hash_key[1], hash_key[0]);
446 	hash = rvu_npc_toeplitz_hash(&ldata, (u64 *)hash_key, 64, 95);
447 
448 	hash &= table->mem_table.hash_mask;
449 	hash += table->mem_table.hash_offset;
450 	dev_dbg(rvu->dev, "%s: hash=%x\n", __func__,  hash);
451 
452 	return hash;
453 }
454 
455 /**
456  *      rvu_npc_exact_alloc_mem_table_entry - find free entry in 4 way table.
457  *      @rvu: resource virtualization unit.
458  *	@way: Indicate way to table.
459  *	@index: Hash index to 4 way table.
460  *	@hash: Hash value.
461  *
462  *	Searches 4 way table using hash index. Returns 0 on success.
463  *	Return: 0 upon success.
464  */
rvu_npc_exact_alloc_mem_table_entry(struct rvu * rvu,u8 * way,u32 * index,unsigned int hash)465 static int rvu_npc_exact_alloc_mem_table_entry(struct rvu *rvu, u8 *way,
466 					       u32 *index, unsigned int hash)
467 {
468 	struct npc_exact_table *table;
469 	int depth, i;
470 
471 	table = rvu->hw->table;
472 	depth = table->mem_table.depth;
473 
474 	/* Check all the 4 ways for a free slot. */
475 	mutex_lock(&table->lock);
476 	for (i = 0; i <  table->mem_table.ways; i++) {
477 		if (test_bit(hash + i * depth, table->mem_table.bmap))
478 			continue;
479 
480 		set_bit(hash + i * depth, table->mem_table.bmap);
481 		mutex_unlock(&table->lock);
482 
483 		dev_dbg(rvu->dev, "%s: mem table entry alloc success (way=%d index=%d)\n",
484 			__func__, i, hash);
485 
486 		*way = i;
487 		*index = hash;
488 		return 0;
489 	}
490 	mutex_unlock(&table->lock);
491 
492 	dev_dbg(rvu->dev, "%s: No space in 4 way exact way, weight=%u\n", __func__,
493 		bitmap_weight(table->mem_table.bmap, table->mem_table.depth));
494 	return -ENOSPC;
495 }
496 
497 /**
498  *	rvu_npc_exact_free_id - Free seq id from bitmat.
499  *	@rvu: Resource virtualization unit.
500  *	@seq_id: Sequence identifier to be freed.
501  */
rvu_npc_exact_free_id(struct rvu * rvu,u32 seq_id)502 static void rvu_npc_exact_free_id(struct rvu *rvu, u32 seq_id)
503 {
504 	struct npc_exact_table *table;
505 
506 	table = rvu->hw->table;
507 	mutex_lock(&table->lock);
508 	clear_bit(seq_id, table->id_bmap);
509 	mutex_unlock(&table->lock);
510 	dev_dbg(rvu->dev, "%s: freed id %d\n", __func__, seq_id);
511 }
512 
513 /**
514  *	rvu_npc_exact_alloc_id - Alloc seq id from bitmap.
515  *	@rvu: Resource virtualization unit.
516  *	@seq_id: Sequence identifier.
517  *	Return: True or false.
518  */
rvu_npc_exact_alloc_id(struct rvu * rvu,u32 * seq_id)519 static bool rvu_npc_exact_alloc_id(struct rvu *rvu, u32 *seq_id)
520 {
521 	struct npc_exact_table *table;
522 	u32 idx;
523 
524 	table = rvu->hw->table;
525 
526 	mutex_lock(&table->lock);
527 	idx = find_first_zero_bit(table->id_bmap, table->tot_ids);
528 	if (idx == table->tot_ids) {
529 		mutex_unlock(&table->lock);
530 		dev_err(rvu->dev, "%s: No space in id bitmap (%d)\n",
531 			__func__, table->tot_ids);
532 
533 		return false;
534 	}
535 
536 	/* Mark bit map to indicate that slot is used.*/
537 	set_bit(idx, table->id_bmap);
538 	mutex_unlock(&table->lock);
539 
540 	*seq_id = idx;
541 	dev_dbg(rvu->dev, "%s: Allocated id (%d)\n", __func__, *seq_id);
542 
543 	return true;
544 }
545 
546 /**
547  *      rvu_npc_exact_alloc_cam_table_entry - find free slot in fully associative table.
548  *      @rvu: resource virtualization unit.
549  *	@index: Index to exact CAM table.
550  *	Return: 0 upon success; else error number.
551  */
rvu_npc_exact_alloc_cam_table_entry(struct rvu * rvu,int * index)552 static int rvu_npc_exact_alloc_cam_table_entry(struct rvu *rvu, int *index)
553 {
554 	struct npc_exact_table *table;
555 	u32 idx;
556 
557 	table = rvu->hw->table;
558 
559 	mutex_lock(&table->lock);
560 	idx = find_first_zero_bit(table->cam_table.bmap, table->cam_table.depth);
561 	if (idx == table->cam_table.depth) {
562 		mutex_unlock(&table->lock);
563 		dev_info(rvu->dev, "%s: No space in exact cam table, weight=%u\n", __func__,
564 			 bitmap_weight(table->cam_table.bmap, table->cam_table.depth));
565 		return -ENOSPC;
566 	}
567 
568 	/* Mark bit map to indicate that slot is used.*/
569 	set_bit(idx, table->cam_table.bmap);
570 	mutex_unlock(&table->lock);
571 
572 	*index = idx;
573 	dev_dbg(rvu->dev, "%s: cam table entry alloc success (index=%d)\n",
574 		__func__, idx);
575 	return 0;
576 }
577 
578 /**
579  *	rvu_exact_prepare_table_entry - Data for exact match table entry.
580  *	@rvu: Resource virtualization unit.
581  *	@enable: Enable/Disable entry
582  *	@ctype: Software defined channel type. Currently set as 0.
583  *	@chan: Channel number.
584  *	@mac_addr: Destination mac address.
585  *	Return: mdata for exact match table.
586  */
rvu_exact_prepare_table_entry(struct rvu * rvu,bool enable,u8 ctype,u16 chan,u8 * mac_addr)587 static u64 rvu_exact_prepare_table_entry(struct rvu *rvu, bool enable,
588 					 u8 ctype, u16 chan, u8 *mac_addr)
589 
590 {
591 	u64 ldata = ether_addr_to_u64(mac_addr);
592 
593 	/* Enable or disable */
594 	u64 mdata = FIELD_PREP(GENMASK_ULL(63, 63), enable ? 1 : 0);
595 
596 	/* Set Ctype */
597 	mdata |= FIELD_PREP(GENMASK_ULL(61, 60), ctype);
598 
599 	/* Set chan */
600 	mdata |= FIELD_PREP(GENMASK_ULL(59, 48), chan);
601 
602 	/* MAC address */
603 	mdata |= FIELD_PREP(GENMASK_ULL(47, 0), ldata);
604 
605 	return mdata;
606 }
607 
608 /**
609  *	rvu_exact_config_secret_key - Configure secret key.
610  *	@rvu: Resource virtualization unit.
611  */
rvu_exact_config_secret_key(struct rvu * rvu)612 static void rvu_exact_config_secret_key(struct rvu *rvu)
613 {
614 	int blkaddr;
615 
616 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
617 	rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET0(NIX_INTF_RX),
618 		    RVU_NPC_HASH_SECRET_KEY0);
619 
620 	rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET1(NIX_INTF_RX),
621 		    RVU_NPC_HASH_SECRET_KEY1);
622 
623 	rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET2(NIX_INTF_RX),
624 		    RVU_NPC_HASH_SECRET_KEY2);
625 }
626 
627 /**
628  *	rvu_exact_config_search_key - Configure search key
629  *	@rvu: Resource virtualization unit.
630  */
rvu_exact_config_search_key(struct rvu * rvu)631 static void rvu_exact_config_search_key(struct rvu *rvu)
632 {
633 	int blkaddr;
634 	u64 reg_val;
635 
636 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
637 
638 	/* HDR offset */
639 	reg_val = FIELD_PREP(GENMASK_ULL(39, 32), 0);
640 
641 	/* BYTESM1, number of bytes - 1 */
642 	reg_val |= FIELD_PREP(GENMASK_ULL(18, 16), ETH_ALEN - 1);
643 
644 	/* Enable LID and set LID to  NPC_LID_LA */
645 	reg_val |= FIELD_PREP(GENMASK_ULL(11, 11), 1);
646 	reg_val |= FIELD_PREP(GENMASK_ULL(10, 8),  NPC_LID_LA);
647 
648 	/* Clear layer type based extraction */
649 
650 	/* Disable LT_EN */
651 	reg_val |= FIELD_PREP(GENMASK_ULL(12, 12), 0);
652 
653 	/* Set LTYPE_MATCH to 0 */
654 	reg_val |= FIELD_PREP(GENMASK_ULL(7, 4), 0);
655 
656 	/* Set LTYPE_MASK to 0 */
657 	reg_val |= FIELD_PREP(GENMASK_ULL(3, 0), 0);
658 
659 	rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_CFG(NIX_INTF_RX), reg_val);
660 }
661 
662 /**
663  *	rvu_exact_config_result_ctrl - Set exact table hash control
664  *	@rvu: Resource virtualization unit.
665  *	@depth: Depth of Exact match table.
666  *
667  *	Sets mask and offset for hash for mem table.
668  */
rvu_exact_config_result_ctrl(struct rvu * rvu,uint32_t depth)669 static void rvu_exact_config_result_ctrl(struct rvu *rvu, uint32_t depth)
670 {
671 	int blkaddr;
672 	u64 reg = 0;
673 
674 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
675 
676 	/* Set mask. Note that depth is a power of 2 */
677 	rvu->hw->table->mem_table.hash_mask = (depth - 1);
678 	reg |= FIELD_PREP(GENMASK_ULL(42, 32), (depth - 1));
679 
680 	/* Set offset as 0 */
681 	rvu->hw->table->mem_table.hash_offset = 0;
682 	reg |= FIELD_PREP(GENMASK_ULL(10, 0), 0);
683 
684 	/* Set reg for RX */
685 	rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_RESULT_CTL(NIX_INTF_RX), reg);
686 	/* Store hash mask and offset for s/w algorithm */
687 }
688 
689 /**
690  *	rvu_exact_config_table_mask - Set exact table mask.
691  *	@rvu: Resource virtualization unit.
692  */
rvu_exact_config_table_mask(struct rvu * rvu)693 static void rvu_exact_config_table_mask(struct rvu *rvu)
694 {
695 	int blkaddr;
696 	u64 mask = 0;
697 
698 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
699 
700 	/* Don't use Ctype */
701 	mask |= FIELD_PREP(GENMASK_ULL(61, 60), 0);
702 
703 	/* Set chan */
704 	mask |= GENMASK_ULL(59, 48);
705 
706 	/* Full ldata */
707 	mask |= GENMASK_ULL(47, 0);
708 
709 	/* Store mask for s/w hash calcualtion */
710 	rvu->hw->table->mem_table.mask = mask;
711 
712 	/* Set mask for RX.*/
713 	rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_MASK(NIX_INTF_RX), mask);
714 }
715 
716 /**
717  *      rvu_npc_exact_get_max_entries - Get total number of entries in table.
718  *      @rvu: resource virtualization unit.
719  *	Return: Maximum table entries possible.
720  */
rvu_npc_exact_get_max_entries(struct rvu * rvu)721 u32 rvu_npc_exact_get_max_entries(struct rvu *rvu)
722 {
723 	struct npc_exact_table *table;
724 
725 	table = rvu->hw->table;
726 	return table->tot_ids;
727 }
728 
729 /**
730  *      rvu_npc_exact_has_match_table - Checks support for exact match.
731  *      @rvu: resource virtualization unit.
732  *	Return: True if exact match table is supported/enabled.
733  */
rvu_npc_exact_has_match_table(struct rvu * rvu)734 bool rvu_npc_exact_has_match_table(struct rvu *rvu)
735 {
736 	return  rvu->hw->cap.npc_exact_match_enabled;
737 }
738 
739 /**
740  *      __rvu_npc_exact_find_entry_by_seq_id - find entry by id
741  *      @rvu: resource virtualization unit.
742  *	@seq_id: Sequence identifier.
743  *
744  *	Caller should acquire the lock.
745  *	Return: Pointer to table entry.
746  */
747 static struct npc_exact_table_entry *
__rvu_npc_exact_find_entry_by_seq_id(struct rvu * rvu,u32 seq_id)748 __rvu_npc_exact_find_entry_by_seq_id(struct rvu *rvu, u32 seq_id)
749 {
750 	struct npc_exact_table *table = rvu->hw->table;
751 	struct npc_exact_table_entry *entry = NULL;
752 	struct list_head *lhead;
753 
754 	lhead = &table->lhead_gbl;
755 
756 	/* traverse to find the matching entry */
757 	list_for_each_entry(entry, lhead, glist) {
758 		if (entry->seq_id != seq_id)
759 			continue;
760 
761 		return entry;
762 	}
763 
764 	return NULL;
765 }
766 
767 /**
768  *      rvu_npc_exact_add_to_list - Add entry to list
769  *      @rvu: resource virtualization unit.
770  *	@opc_type: OPCODE to select MEM/CAM table.
771  *	@ways: MEM table ways.
772  *	@index: Index in MEM/CAM table.
773  *	@cgx_id: CGX identifier.
774  *	@lmac_id: LMAC identifier.
775  *	@mac_addr: MAC address.
776  *	@chan: Channel number.
777  *	@ctype: Channel Type.
778  *	@seq_id: Sequence identifier
779  *	@cmd: True if function is called by ethtool cmd
780  *	@mcam_idx: NPC mcam index of DMAC entry in NPC mcam.
781  *	@pcifunc: pci function
782  *	Return: 0 upon success.
783  */
rvu_npc_exact_add_to_list(struct rvu * rvu,enum npc_exact_opc_type opc_type,u8 ways,u32 index,u8 cgx_id,u8 lmac_id,u8 * mac_addr,u16 chan,u8 ctype,u32 * seq_id,bool cmd,u32 mcam_idx,u16 pcifunc)784 static int rvu_npc_exact_add_to_list(struct rvu *rvu, enum npc_exact_opc_type opc_type, u8 ways,
785 				     u32 index, u8 cgx_id, u8 lmac_id, u8 *mac_addr, u16 chan,
786 				     u8 ctype, u32 *seq_id, bool cmd, u32 mcam_idx, u16 pcifunc)
787 {
788 	struct npc_exact_table_entry *entry, *tmp, *iter;
789 	struct npc_exact_table *table = rvu->hw->table;
790 	struct list_head *lhead, *pprev;
791 
792 	WARN_ON(ways >= NPC_EXACT_TBL_MAX_WAYS);
793 
794 	if (!rvu_npc_exact_alloc_id(rvu, seq_id)) {
795 		dev_err(rvu->dev, "%s: Generate seq id failed\n", __func__);
796 		return -EFAULT;
797 	}
798 
799 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
800 	if (!entry) {
801 		rvu_npc_exact_free_id(rvu, *seq_id);
802 		dev_err(rvu->dev, "%s: Memory allocation failed\n", __func__);
803 		return -ENOMEM;
804 	}
805 
806 	mutex_lock(&table->lock);
807 	switch (opc_type) {
808 	case NPC_EXACT_OPC_CAM:
809 		lhead = &table->lhead_cam_tbl_entry;
810 		table->cam_tbl_entry_cnt++;
811 		break;
812 
813 	case NPC_EXACT_OPC_MEM:
814 		lhead = &table->lhead_mem_tbl_entry[ways];
815 		table->mem_tbl_entry_cnt++;
816 		break;
817 
818 	default:
819 		mutex_unlock(&table->lock);
820 		kfree(entry);
821 		rvu_npc_exact_free_id(rvu, *seq_id);
822 
823 		dev_err(rvu->dev, "%s: Unknown opc type%d\n", __func__, opc_type);
824 		return  -EINVAL;
825 	}
826 
827 	/* Add to global list */
828 	INIT_LIST_HEAD(&entry->glist);
829 	list_add_tail(&entry->glist, &table->lhead_gbl);
830 	INIT_LIST_HEAD(&entry->list);
831 	entry->index = index;
832 	entry->ways = ways;
833 	entry->opc_type = opc_type;
834 
835 	entry->pcifunc = pcifunc;
836 
837 	ether_addr_copy(entry->mac, mac_addr);
838 	entry->chan = chan;
839 	entry->ctype = ctype;
840 	entry->cgx_id = cgx_id;
841 	entry->lmac_id = lmac_id;
842 
843 	entry->seq_id = *seq_id;
844 
845 	entry->mcam_idx = mcam_idx;
846 	entry->cmd = cmd;
847 
848 	pprev = lhead;
849 
850 	/* Insert entry in ascending order of index */
851 	list_for_each_entry_safe(iter, tmp, lhead, list) {
852 		if (index < iter->index)
853 			break;
854 
855 		pprev = &iter->list;
856 	}
857 
858 	/* Add to each table list */
859 	list_add(&entry->list, pprev);
860 	mutex_unlock(&table->lock);
861 	return 0;
862 }
863 
864 /**
865  *	rvu_npc_exact_mem_table_write - Wrapper for register write
866  *	@rvu: resource virtualization unit.
867  *	@blkaddr: Block address
868  *	@ways: ways for MEM table.
869  *	@index: Index in MEM
870  *	@mdata: Meta data to be written to register.
871  */
rvu_npc_exact_mem_table_write(struct rvu * rvu,int blkaddr,u8 ways,u32 index,u64 mdata)872 static void rvu_npc_exact_mem_table_write(struct rvu *rvu, int blkaddr, u8 ways,
873 					  u32 index, u64 mdata)
874 {
875 	rvu_write64(rvu, blkaddr, NPC_AF_EXACT_MEM_ENTRY(ways, index), mdata);
876 }
877 
878 /**
879  *	rvu_npc_exact_cam_table_write - Wrapper for register write
880  *	@rvu: resource virtualization unit.
881  *	@blkaddr: Block address
882  *	@index: Index in MEM
883  *	@mdata: Meta data to be written to register.
884  */
rvu_npc_exact_cam_table_write(struct rvu * rvu,int blkaddr,u32 index,u64 mdata)885 static void rvu_npc_exact_cam_table_write(struct rvu *rvu, int blkaddr,
886 					  u32 index, u64 mdata)
887 {
888 	rvu_write64(rvu, blkaddr, NPC_AF_EXACT_CAM_ENTRY(index), mdata);
889 }
890 
891 /**
892  *      rvu_npc_exact_dealloc_table_entry - dealloc table entry
893  *      @rvu: resource virtualization unit.
894  *	@opc_type: OPCODE for selection of table(MEM or CAM)
895  *	@ways: ways if opc_type is MEM table.
896  *	@index: Index of MEM or CAM table.
897  *	Return: 0 upon success.
898  */
rvu_npc_exact_dealloc_table_entry(struct rvu * rvu,enum npc_exact_opc_type opc_type,u8 ways,u32 index)899 static int rvu_npc_exact_dealloc_table_entry(struct rvu *rvu, enum npc_exact_opc_type opc_type,
900 					     u8 ways, u32 index)
901 {
902 	int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
903 	struct npc_exact_table *table;
904 	u8 null_dmac[6] = { 0 };
905 	int depth;
906 
907 	/* Prepare entry with all fields set to zero */
908 	u64 null_mdata = rvu_exact_prepare_table_entry(rvu, false, 0, 0, null_dmac);
909 
910 	table = rvu->hw->table;
911 	depth = table->mem_table.depth;
912 
913 	mutex_lock(&table->lock);
914 
915 	switch (opc_type) {
916 	case NPC_EXACT_OPC_CAM:
917 
918 		/* Check whether entry is used already */
919 		if (!test_bit(index, table->cam_table.bmap)) {
920 			mutex_unlock(&table->lock);
921 			dev_err(rvu->dev, "%s: Trying to free an unused entry ways=%d index=%d\n",
922 				__func__, ways, index);
923 			return -EINVAL;
924 		}
925 
926 		rvu_npc_exact_cam_table_write(rvu, blkaddr, index, null_mdata);
927 		clear_bit(index, table->cam_table.bmap);
928 		break;
929 
930 	case NPC_EXACT_OPC_MEM:
931 
932 		/* Check whether entry is used already */
933 		if (!test_bit(index + ways * depth, table->mem_table.bmap)) {
934 			mutex_unlock(&table->lock);
935 			dev_err(rvu->dev, "%s: Trying to free an unused entry index=%d\n",
936 				__func__, index);
937 			return -EINVAL;
938 		}
939 
940 		rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, null_mdata);
941 		clear_bit(index + ways * depth, table->mem_table.bmap);
942 		break;
943 
944 	default:
945 		mutex_unlock(&table->lock);
946 		dev_err(rvu->dev, "%s: invalid opc type %d", __func__, opc_type);
947 		return -ENOSPC;
948 	}
949 
950 	mutex_unlock(&table->lock);
951 
952 	dev_dbg(rvu->dev, "%s: Successfully deleted entry (index=%d, ways=%d opc_type=%d\n",
953 		__func__, index,  ways, opc_type);
954 
955 	return 0;
956 }
957 
958 /**
959  *	rvu_npc_exact_alloc_table_entry - Allociate an entry
960  *      @rvu: resource virtualization unit.
961  *	@mac: MAC address.
962  *	@chan: Channel number.
963  *	@ctype: Channel Type.
964  *	@index: Index of MEM table or CAM table.
965  *	@ways: Ways. Only valid for MEM table.
966  *	@opc_type: OPCODE to select table (MEM or CAM)
967  *
968  *	Try allocating a slot from MEM table. If all 4 ways
969  *	slot are full for a hash index, check availability in
970  *	32-entry CAM table for allocation.
971  *	Return: 0 upon success.
972  */
rvu_npc_exact_alloc_table_entry(struct rvu * rvu,char * mac,u16 chan,u8 ctype,u32 * index,u8 * ways,enum npc_exact_opc_type * opc_type)973 static int rvu_npc_exact_alloc_table_entry(struct rvu *rvu,  char *mac, u16 chan, u8 ctype,
974 					   u32 *index, u8 *ways, enum npc_exact_opc_type *opc_type)
975 {
976 	struct npc_exact_table *table;
977 	unsigned int hash;
978 	int err;
979 
980 	table = rvu->hw->table;
981 
982 	/* Check in 4-ways mem entry for free slote */
983 	hash =  rvu_exact_calculate_hash(rvu, chan, ctype, mac, table->mem_table.mask,
984 					 table->mem_table.depth);
985 	err = rvu_npc_exact_alloc_mem_table_entry(rvu, ways, index, hash);
986 	if (!err) {
987 		*opc_type = NPC_EXACT_OPC_MEM;
988 		dev_dbg(rvu->dev, "%s: inserted in 4 ways hash table ways=%d, index=%d\n",
989 			__func__, *ways, *index);
990 		return 0;
991 	}
992 
993 	dev_dbg(rvu->dev, "%s: failed to insert in 4 ways hash table\n", __func__);
994 
995 	/* wayss is 0 for cam table */
996 	*ways = 0;
997 	err = rvu_npc_exact_alloc_cam_table_entry(rvu, index);
998 	if (!err) {
999 		*opc_type = NPC_EXACT_OPC_CAM;
1000 		dev_dbg(rvu->dev, "%s: inserted in fully associative hash table index=%u\n",
1001 			__func__, *index);
1002 		return 0;
1003 	}
1004 
1005 	dev_err(rvu->dev, "%s: failed to insert in fully associative hash table\n", __func__);
1006 	return -ENOSPC;
1007 }
1008 
1009 /**
1010  *	rvu_npc_exact_save_drop_rule_chan_and_mask - Save drop rules info in data base.
1011  *      @rvu: resource virtualization unit.
1012  *	@drop_mcam_idx: Drop rule index in NPC mcam.
1013  *	@chan_val: Channel value.
1014  *	@chan_mask: Channel Mask.
1015  *	@pcifunc: pcifunc of interface.
1016  *	Return: True upon success.
1017  */
rvu_npc_exact_save_drop_rule_chan_and_mask(struct rvu * rvu,int drop_mcam_idx,u64 chan_val,u64 chan_mask,u16 pcifunc)1018 static bool rvu_npc_exact_save_drop_rule_chan_and_mask(struct rvu *rvu, int drop_mcam_idx,
1019 						       u64 chan_val, u64 chan_mask, u16 pcifunc)
1020 {
1021 	struct npc_exact_table *table;
1022 	int i;
1023 
1024 	table = rvu->hw->table;
1025 
1026 	for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
1027 		if (!table->drop_rule_map[i].valid)
1028 			break;
1029 
1030 		if (table->drop_rule_map[i].chan_val != (u16)chan_val)
1031 			continue;
1032 
1033 		if (table->drop_rule_map[i].chan_mask != (u16)chan_mask)
1034 			continue;
1035 
1036 		return false;
1037 	}
1038 
1039 	if (i == NPC_MCAM_DROP_RULE_MAX)
1040 		return false;
1041 
1042 	table->drop_rule_map[i].drop_rule_idx = drop_mcam_idx;
1043 	table->drop_rule_map[i].chan_val = (u16)chan_val;
1044 	table->drop_rule_map[i].chan_mask = (u16)chan_mask;
1045 	table->drop_rule_map[i].pcifunc = pcifunc;
1046 	table->drop_rule_map[i].valid = true;
1047 	return true;
1048 }
1049 
1050 /**
1051  *	rvu_npc_exact_calc_drop_rule_chan_and_mask - Calculate Channel number and mask.
1052  *      @rvu: resource virtualization unit.
1053  *	@intf_type: Interface type (SDK, LBK or CGX)
1054  *	@cgx_id: CGX identifier.
1055  *	@lmac_id: LAMC identifier.
1056  *	@val: Channel number.
1057  *	@mask: Channel mask.
1058  *	Return: True upon success.
1059  */
rvu_npc_exact_calc_drop_rule_chan_and_mask(struct rvu * rvu,u8 intf_type,u8 cgx_id,u8 lmac_id,u64 * val,u64 * mask)1060 static bool rvu_npc_exact_calc_drop_rule_chan_and_mask(struct rvu *rvu, u8 intf_type,
1061 						       u8 cgx_id, u8 lmac_id,
1062 						       u64 *val, u64 *mask)
1063 {
1064 	u16 chan_val, chan_mask;
1065 
1066 	/* No support for SDP and LBK */
1067 	if (intf_type != NIX_INTF_TYPE_CGX)
1068 		return false;
1069 
1070 	chan_val = rvu_nix_chan_cgx(rvu, cgx_id, lmac_id, 0);
1071 	chan_mask = 0xfff;
1072 
1073 	if (val)
1074 		*val = chan_val;
1075 
1076 	if (mask)
1077 		*mask = chan_mask;
1078 
1079 	return true;
1080 }
1081 
1082 /**
1083  *	rvu_npc_exact_drop_rule_to_pcifunc - Retrieve pcifunc
1084  *      @rvu: resource virtualization unit.
1085  *	@drop_rule_idx: Drop rule index in NPC mcam.
1086  *
1087  *	Debugfs (exact_drop_cnt) entry displays pcifunc for interface
1088  *	by retrieving the pcifunc value from data base.
1089  *	Return: Drop rule index.
1090  */
rvu_npc_exact_drop_rule_to_pcifunc(struct rvu * rvu,u32 drop_rule_idx)1091 u16 rvu_npc_exact_drop_rule_to_pcifunc(struct rvu *rvu, u32 drop_rule_idx)
1092 {
1093 	struct npc_exact_table *table;
1094 	int i;
1095 
1096 	table = rvu->hw->table;
1097 
1098 	for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
1099 		if (!table->drop_rule_map[i].valid)
1100 			break;
1101 
1102 		if (table->drop_rule_map[i].drop_rule_idx != drop_rule_idx)
1103 			continue;
1104 
1105 		return table->drop_rule_map[i].pcifunc;
1106 	}
1107 
1108 	dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n",
1109 		__func__, drop_rule_idx);
1110 	return -1;
1111 }
1112 
1113 /**
1114  *	rvu_npc_exact_get_drop_rule_info - Get drop rule information.
1115  *      @rvu: resource virtualization unit.
1116  *	@intf_type: Interface type (CGX, SDP or LBK)
1117  *	@cgx_id: CGX identifier.
1118  *	@lmac_id: LMAC identifier.
1119  *	@drop_mcam_idx: NPC mcam drop rule index.
1120  *	@val: Channel value.
1121  *	@mask: Channel mask.
1122  *	@pcifunc: pcifunc of interface corresponding to the drop rule.
1123  *	Return: True upon success.
1124  */
rvu_npc_exact_get_drop_rule_info(struct rvu * rvu,u8 intf_type,u8 cgx_id,u8 lmac_id,u32 * drop_mcam_idx,u64 * val,u64 * mask,u16 * pcifunc)1125 static bool rvu_npc_exact_get_drop_rule_info(struct rvu *rvu, u8 intf_type, u8 cgx_id,
1126 					     u8 lmac_id, u32 *drop_mcam_idx, u64 *val,
1127 					     u64 *mask, u16 *pcifunc)
1128 {
1129 	struct npc_exact_table *table;
1130 	u64 chan_val, chan_mask;
1131 	bool rc;
1132 	int i;
1133 
1134 	table = rvu->hw->table;
1135 
1136 	if (intf_type != NIX_INTF_TYPE_CGX) {
1137 		dev_err(rvu->dev, "%s: No drop rule for LBK/SDP mode\n", __func__);
1138 		return false;
1139 	}
1140 
1141 	rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, intf_type, cgx_id,
1142 							lmac_id, &chan_val, &chan_mask);
1143 	if (!rc)
1144 		return false;
1145 
1146 	for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
1147 		if (!table->drop_rule_map[i].valid)
1148 			break;
1149 
1150 		if (table->drop_rule_map[i].chan_val != (u16)chan_val)
1151 			continue;
1152 
1153 		if (val)
1154 			*val = table->drop_rule_map[i].chan_val;
1155 		if (mask)
1156 			*mask = table->drop_rule_map[i].chan_mask;
1157 		if (pcifunc)
1158 			*pcifunc = table->drop_rule_map[i].pcifunc;
1159 
1160 		*drop_mcam_idx = i;
1161 		return true;
1162 	}
1163 
1164 	if (i == NPC_MCAM_DROP_RULE_MAX) {
1165 		dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n",
1166 			__func__, *drop_mcam_idx);
1167 		return false;
1168 	}
1169 
1170 	dev_err(rvu->dev, "%s: Could not retrieve for cgx=%d, lmac=%d\n",
1171 		__func__, cgx_id, lmac_id);
1172 	return false;
1173 }
1174 
1175 /**
1176  *	__rvu_npc_exact_cmd_rules_cnt_update - Update number dmac rules against a drop rule.
1177  *      @rvu: resource virtualization unit.
1178  *	@drop_mcam_idx: NPC mcam drop rule index.
1179  *	@val: +1 or -1.
1180  *	@enable_or_disable_cam: If no exact match rules against a drop rule, disable it.
1181  *
1182  *	when first exact match entry against a drop rule is added, enable_or_disable_cam
1183  *	is set to true. When last exact match entry against a drop rule is deleted,
1184  *	enable_or_disable_cam is set to true.
1185  *	Return: Number of rules
1186  */
__rvu_npc_exact_cmd_rules_cnt_update(struct rvu * rvu,int drop_mcam_idx,int val,bool * enable_or_disable_cam)1187 static u16 __rvu_npc_exact_cmd_rules_cnt_update(struct rvu *rvu, int drop_mcam_idx,
1188 						int val, bool *enable_or_disable_cam)
1189 {
1190 	struct npc_exact_table *table;
1191 	u16 *cnt, old_cnt;
1192 	bool promisc;
1193 
1194 	table = rvu->hw->table;
1195 	promisc = table->promisc_mode[drop_mcam_idx];
1196 
1197 	cnt = &table->cnt_cmd_rules[drop_mcam_idx];
1198 	old_cnt = *cnt;
1199 
1200 	*cnt += val;
1201 
1202 	if (!enable_or_disable_cam)
1203 		goto done;
1204 
1205 	*enable_or_disable_cam = false;
1206 
1207 	if (promisc)
1208 		goto done;
1209 
1210 	/* If all rules are deleted and not already in promisc mode;
1211 	 * disable cam
1212 	 */
1213 	if (!*cnt && val < 0) {
1214 		*enable_or_disable_cam = true;
1215 		goto done;
1216 	}
1217 
1218 	/* If rule got added and not already in promisc mode; enable cam */
1219 	if (!old_cnt && val > 0) {
1220 		*enable_or_disable_cam = true;
1221 		goto done;
1222 	}
1223 
1224 done:
1225 	return *cnt;
1226 }
1227 
1228 /**
1229  *      rvu_npc_exact_del_table_entry_by_id - Delete and free table entry.
1230  *      @rvu: resource virtualization unit.
1231  *	@seq_id: Sequence identifier of the entry.
1232  *
1233  *	Deletes entry from linked lists and free up slot in HW MEM or CAM
1234  *	table.
1235  *	Return: 0 upon success.
1236  */
rvu_npc_exact_del_table_entry_by_id(struct rvu * rvu,u32 seq_id)1237 static int rvu_npc_exact_del_table_entry_by_id(struct rvu *rvu, u32 seq_id)
1238 {
1239 	struct npc_exact_table_entry *entry = NULL;
1240 	struct npc_exact_table *table;
1241 	bool disable_cam = false;
1242 	u32 drop_mcam_idx = -1;
1243 	int *cnt;
1244 	bool rc;
1245 
1246 	table = rvu->hw->table;
1247 
1248 	mutex_lock(&table->lock);
1249 
1250 	/* Lookup for entry which needs to be updated */
1251 	entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, seq_id);
1252 	if (!entry) {
1253 		dev_dbg(rvu->dev, "%s: failed to find entry for id=%d\n", __func__, seq_id);
1254 		mutex_unlock(&table->lock);
1255 		return -ENODATA;
1256 	}
1257 
1258 	cnt = (entry->opc_type == NPC_EXACT_OPC_CAM) ? &table->cam_tbl_entry_cnt :
1259 				&table->mem_tbl_entry_cnt;
1260 
1261 	/* delete from lists */
1262 	list_del_init(&entry->list);
1263 	list_del_init(&entry->glist);
1264 
1265 	(*cnt)--;
1266 
1267 	rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, entry->cgx_id,
1268 					      entry->lmac_id, &drop_mcam_idx, NULL, NULL, NULL);
1269 	if (!rc) {
1270 		dev_dbg(rvu->dev, "%s: failed to retrieve drop info for id=0x%x\n",
1271 			__func__, seq_id);
1272 		mutex_unlock(&table->lock);
1273 		return -ENODATA;
1274 	}
1275 
1276 	if (entry->cmd)
1277 		__rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, -1, &disable_cam);
1278 
1279 	/* No dmac filter rules; disable drop on hit rule */
1280 	if (disable_cam) {
1281 		rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false);
1282 		dev_dbg(rvu->dev, "%s: Disabling mcam idx %d\n",
1283 			__func__, drop_mcam_idx);
1284 	}
1285 
1286 	mutex_unlock(&table->lock);
1287 
1288 	rvu_npc_exact_dealloc_table_entry(rvu, entry->opc_type, entry->ways, entry->index);
1289 
1290 	rvu_npc_exact_free_id(rvu, seq_id);
1291 
1292 	dev_dbg(rvu->dev, "%s: delete entry success for id=0x%x, mca=%pM\n",
1293 		__func__, seq_id, entry->mac);
1294 	kfree(entry);
1295 
1296 	return 0;
1297 }
1298 
1299 /**
1300  *      rvu_npc_exact_add_table_entry - Adds a table entry
1301  *      @rvu: resource virtualization unit.
1302  *	@cgx_id: cgx identifier.
1303  *	@lmac_id: lmac identifier.
1304  *	@mac: MAC address.
1305  *	@chan: Channel number.
1306  *	@ctype: Channel Type.
1307  *	@seq_id: Sequence number.
1308  *	@cmd: Whether it is invoked by ethtool cmd.
1309  *	@mcam_idx: NPC mcam index corresponding to MAC
1310  *	@pcifunc: PCI func.
1311  *
1312  *	Creates a new exact match table entry in either CAM or
1313  *	MEM table.
1314  *	Return: 0 upon success.
1315  */
rvu_npc_exact_add_table_entry(struct rvu * rvu,u8 cgx_id,u8 lmac_id,u8 * mac,u16 chan,u8 ctype,u32 * seq_id,bool cmd,u32 mcam_idx,u16 pcifunc)1316 static int rvu_npc_exact_add_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id, u8 *mac,
1317 					 u16 chan, u8 ctype, u32 *seq_id, bool cmd,
1318 					 u32 mcam_idx, u16 pcifunc)
1319 {
1320 	int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1321 	enum npc_exact_opc_type opc_type;
1322 	bool enable_cam = false;
1323 	u32 drop_mcam_idx;
1324 	u32 index;
1325 	u64 mdata;
1326 	bool rc;
1327 	int err;
1328 	u8 ways;
1329 
1330 	ctype = 0;
1331 
1332 	err = rvu_npc_exact_alloc_table_entry(rvu, mac, chan, ctype, &index, &ways, &opc_type);
1333 	if (err) {
1334 		dev_err(rvu->dev, "%s: Could not alloc in exact match table\n", __func__);
1335 		return err;
1336 	}
1337 
1338 	/* Write mdata to table */
1339 	mdata = rvu_exact_prepare_table_entry(rvu, true, ctype, chan, mac);
1340 
1341 	if (opc_type == NPC_EXACT_OPC_CAM)
1342 		rvu_npc_exact_cam_table_write(rvu, blkaddr, index, mdata);
1343 	else
1344 		rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index,  mdata);
1345 
1346 	/* Insert entry to linked list */
1347 	err = rvu_npc_exact_add_to_list(rvu, opc_type, ways, index, cgx_id, lmac_id,
1348 					mac, chan, ctype, seq_id, cmd, mcam_idx, pcifunc);
1349 	if (err) {
1350 		rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index);
1351 		dev_err(rvu->dev, "%s: could not add to exact match table\n", __func__);
1352 		return err;
1353 	}
1354 
1355 	rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
1356 					      &drop_mcam_idx, NULL, NULL, NULL);
1357 	if (!rc) {
1358 		rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index);
1359 		dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
1360 			__func__, cgx_id, lmac_id);
1361 		return -EINVAL;
1362 	}
1363 
1364 	if (cmd)
1365 		__rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 1, &enable_cam);
1366 
1367 	/* First command rule; enable drop on hit rule */
1368 	if (enable_cam) {
1369 		rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, true);
1370 		dev_dbg(rvu->dev, "%s: Enabling mcam idx %d\n",
1371 			__func__, drop_mcam_idx);
1372 	}
1373 
1374 	dev_dbg(rvu->dev,
1375 		"%s: Successfully added entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n",
1376 		__func__, index, mac, ways, opc_type);
1377 
1378 	return 0;
1379 }
1380 
1381 /**
1382  *      rvu_npc_exact_update_table_entry - Update exact match table.
1383  *      @rvu: resource virtualization unit.
1384  *	@cgx_id: CGX identifier.
1385  *	@lmac_id: LMAC identifier.
1386  *	@old_mac: Existing MAC address entry.
1387  *	@new_mac: New MAC address entry.
1388  *	@seq_id: Sequence identifier of the entry.
1389  *
1390  *	Updates MAC address of an entry. If entry is in MEM table, new
1391  *	hash value may not match with old one.
1392  *	Return: 0 upon success.
1393  */
rvu_npc_exact_update_table_entry(struct rvu * rvu,u8 cgx_id,u8 lmac_id,u8 * old_mac,u8 * new_mac,u32 * seq_id)1394 static int rvu_npc_exact_update_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id,
1395 					    u8 *old_mac, u8 *new_mac, u32 *seq_id)
1396 {
1397 	int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1398 	struct npc_exact_table_entry *entry;
1399 	struct npc_exact_table *table;
1400 	u32 hash_index;
1401 	u64 mdata;
1402 
1403 	table = rvu->hw->table;
1404 
1405 	mutex_lock(&table->lock);
1406 
1407 	/* Lookup for entry which needs to be updated */
1408 	entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, *seq_id);
1409 	if (!entry) {
1410 		mutex_unlock(&table->lock);
1411 		dev_dbg(rvu->dev,
1412 			"%s: failed to find entry for cgx_id=%d lmac_id=%d old_mac=%pM\n",
1413 			__func__, cgx_id, lmac_id, old_mac);
1414 		return -ENODATA;
1415 	}
1416 
1417 	/* If entry is in mem table and new hash index is different than old
1418 	 * hash index, we cannot update the entry. Fail in these scenarios.
1419 	 */
1420 	if (entry->opc_type == NPC_EXACT_OPC_MEM) {
1421 		hash_index =  rvu_exact_calculate_hash(rvu, entry->chan, entry->ctype,
1422 						       new_mac, table->mem_table.mask,
1423 						       table->mem_table.depth);
1424 		if (hash_index != entry->index) {
1425 			dev_dbg(rvu->dev,
1426 				"%s: Update failed due to index mismatch(new=0x%x, old=%x)\n",
1427 				__func__, hash_index, entry->index);
1428 			mutex_unlock(&table->lock);
1429 			return -EINVAL;
1430 		}
1431 	}
1432 
1433 	mdata = rvu_exact_prepare_table_entry(rvu, true, entry->ctype, entry->chan, new_mac);
1434 
1435 	if (entry->opc_type == NPC_EXACT_OPC_MEM)
1436 		rvu_npc_exact_mem_table_write(rvu, blkaddr, entry->ways, entry->index, mdata);
1437 	else
1438 		rvu_npc_exact_cam_table_write(rvu, blkaddr, entry->index, mdata);
1439 
1440 	/* Update entry fields */
1441 	ether_addr_copy(entry->mac, new_mac);
1442 	*seq_id = entry->seq_id;
1443 
1444 	dev_dbg(rvu->dev,
1445 		"%s: Successfully updated entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n",
1446 		__func__, entry->index, entry->mac, entry->ways, entry->opc_type);
1447 
1448 	dev_dbg(rvu->dev, "%s: Successfully updated entry (old mac=%pM new_mac=%pM\n",
1449 		__func__, old_mac, new_mac);
1450 
1451 	mutex_unlock(&table->lock);
1452 	return 0;
1453 }
1454 
1455 /**
1456  *	rvu_npc_exact_promisc_disable - Disable promiscuous mode.
1457  *      @rvu: resource virtualization unit.
1458  *	@pcifunc: pcifunc
1459  *
1460  *	Drop rule is against each PF. We dont support DMAC filter for
1461  *	VF.
1462  *	Return: 0 upon success
1463  */
1464 
rvu_npc_exact_promisc_disable(struct rvu * rvu,u16 pcifunc)1465 int rvu_npc_exact_promisc_disable(struct rvu *rvu, u16 pcifunc)
1466 {
1467 	struct npc_exact_table *table;
1468 	int pf = rvu_get_pf(pcifunc);
1469 	u8 cgx_id, lmac_id;
1470 	u32 drop_mcam_idx;
1471 	bool *promisc;
1472 	bool rc;
1473 
1474 	table = rvu->hw->table;
1475 
1476 	rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1477 	rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
1478 					      &drop_mcam_idx, NULL, NULL, NULL);
1479 	if (!rc) {
1480 		dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
1481 			__func__, cgx_id, lmac_id);
1482 		return -EINVAL;
1483 	}
1484 
1485 	mutex_lock(&table->lock);
1486 	promisc = &table->promisc_mode[drop_mcam_idx];
1487 
1488 	if (!*promisc) {
1489 		mutex_unlock(&table->lock);
1490 		dev_dbg(rvu->dev, "%s: Err Already promisc mode disabled (cgx=%d lmac=%d)\n",
1491 			__func__, cgx_id, lmac_id);
1492 		return LMAC_AF_ERR_INVALID_PARAM;
1493 	}
1494 	*promisc = false;
1495 	mutex_unlock(&table->lock);
1496 
1497 	/* Enable drop rule */
1498 	rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX,
1499 					   true);
1500 
1501 	dev_dbg(rvu->dev, "%s: disabled  promisc mode (cgx=%d lmac=%d)\n",
1502 		__func__, cgx_id, lmac_id);
1503 	return 0;
1504 }
1505 
1506 /**
1507  *	rvu_npc_exact_promisc_enable - Enable promiscuous mode.
1508  *      @rvu: resource virtualization unit.
1509  *	@pcifunc: pcifunc.
1510  *	Return: 0 upon success
1511  */
rvu_npc_exact_promisc_enable(struct rvu * rvu,u16 pcifunc)1512 int rvu_npc_exact_promisc_enable(struct rvu *rvu, u16 pcifunc)
1513 {
1514 	struct npc_exact_table *table;
1515 	int pf = rvu_get_pf(pcifunc);
1516 	u8 cgx_id, lmac_id;
1517 	u32 drop_mcam_idx;
1518 	bool *promisc;
1519 	bool rc;
1520 
1521 	table = rvu->hw->table;
1522 
1523 	rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1524 	rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
1525 					      &drop_mcam_idx, NULL, NULL, NULL);
1526 	if (!rc) {
1527 		dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
1528 			__func__, cgx_id, lmac_id);
1529 		return -EINVAL;
1530 	}
1531 
1532 	mutex_lock(&table->lock);
1533 	promisc = &table->promisc_mode[drop_mcam_idx];
1534 
1535 	if (*promisc) {
1536 		mutex_unlock(&table->lock);
1537 		dev_dbg(rvu->dev, "%s: Already in promisc mode (cgx=%d lmac=%d)\n",
1538 			__func__, cgx_id, lmac_id);
1539 		return LMAC_AF_ERR_INVALID_PARAM;
1540 	}
1541 	*promisc = true;
1542 	mutex_unlock(&table->lock);
1543 
1544 	/*  disable drop rule */
1545 	rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX,
1546 					   false);
1547 
1548 	dev_dbg(rvu->dev, "%s: Enabled promisc mode (cgx=%d lmac=%d)\n",
1549 		__func__, cgx_id, lmac_id);
1550 	return 0;
1551 }
1552 
1553 /**
1554  *	rvu_npc_exact_mac_addr_reset - Delete PF mac address.
1555  *      @rvu: resource virtualization unit.
1556  *	@req: Reset request
1557  *	@rsp: Reset response.
1558  *	Return: 0 upon success
1559  */
rvu_npc_exact_mac_addr_reset(struct rvu * rvu,struct cgx_mac_addr_reset_req * req,struct msg_rsp * rsp)1560 int rvu_npc_exact_mac_addr_reset(struct rvu *rvu, struct cgx_mac_addr_reset_req *req,
1561 				 struct msg_rsp *rsp)
1562 {
1563 	int pf = rvu_get_pf(req->hdr.pcifunc);
1564 	u32 seq_id = req->index;
1565 	struct rvu_pfvf *pfvf;
1566 	u8 cgx_id, lmac_id;
1567 	int rc;
1568 
1569 	rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1570 
1571 	pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
1572 
1573 	rc = rvu_npc_exact_del_table_entry_by_id(rvu, seq_id);
1574 	if (rc) {
1575 		/* TODO: how to handle this error case ? */
1576 		dev_err(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__, pfvf->mac_addr, pf);
1577 		return 0;
1578 	}
1579 
1580 	dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d success (seq_id=%u)\n",
1581 		__func__, pfvf->mac_addr, pf, seq_id);
1582 	return 0;
1583 }
1584 
1585 /**
1586  *	rvu_npc_exact_mac_addr_update - Update mac address field with new value.
1587  *      @rvu: resource virtualization unit.
1588  *	@req: Update request.
1589  *	@rsp: Update response.
1590  *	Return: 0 upon success
1591  */
rvu_npc_exact_mac_addr_update(struct rvu * rvu,struct cgx_mac_addr_update_req * req,struct cgx_mac_addr_update_rsp * rsp)1592 int rvu_npc_exact_mac_addr_update(struct rvu *rvu,
1593 				  struct cgx_mac_addr_update_req *req,
1594 				  struct cgx_mac_addr_update_rsp *rsp)
1595 {
1596 	int pf = rvu_get_pf(req->hdr.pcifunc);
1597 	struct npc_exact_table_entry *entry;
1598 	struct npc_exact_table *table;
1599 	struct rvu_pfvf *pfvf;
1600 	u32 seq_id, mcam_idx;
1601 	u8 old_mac[ETH_ALEN];
1602 	u8 cgx_id, lmac_id;
1603 	int rc;
1604 
1605 	if (!is_cgx_config_permitted(rvu, req->hdr.pcifunc))
1606 		return LMAC_AF_ERR_PERM_DENIED;
1607 
1608 	dev_dbg(rvu->dev, "%s: Update request for seq_id=%d, mac=%pM\n",
1609 		__func__, req->index, req->mac_addr);
1610 
1611 	rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1612 
1613 	pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
1614 
1615 	table = rvu->hw->table;
1616 
1617 	mutex_lock(&table->lock);
1618 
1619 	/* Lookup for entry which needs to be updated */
1620 	entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, req->index);
1621 	if (!entry) {
1622 		dev_err(rvu->dev, "%s: failed to find entry for id=0x%x\n", __func__, req->index);
1623 		mutex_unlock(&table->lock);
1624 		return LMAC_AF_ERR_EXACT_MATCH_TBL_LOOK_UP_FAILED;
1625 	}
1626 	ether_addr_copy(old_mac, entry->mac);
1627 	seq_id = entry->seq_id;
1628 	mcam_idx = entry->mcam_idx;
1629 	mutex_unlock(&table->lock);
1630 
1631 	rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id,  old_mac,
1632 					      req->mac_addr, &seq_id);
1633 	if (!rc) {
1634 		rsp->index = seq_id;
1635 		dev_dbg(rvu->dev, "%s  mac:%pM (pfvf:%pM default:%pM) update to PF=%d success\n",
1636 			__func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf);
1637 		ether_addr_copy(pfvf->mac_addr, req->mac_addr);
1638 		return 0;
1639 	}
1640 
1641 	/* Try deleting and adding it again */
1642 	rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
1643 	if (rc) {
1644 		/* This could be a new entry */
1645 		dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__,
1646 			pfvf->mac_addr, pf);
1647 	}
1648 
1649 	rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
1650 					   pfvf->rx_chan_base, 0, &seq_id, true,
1651 					   mcam_idx, req->hdr.pcifunc);
1652 	if (rc) {
1653 		dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n", __func__,
1654 			req->mac_addr, pf);
1655 		return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
1656 	}
1657 
1658 	rsp->index = seq_id;
1659 	dev_dbg(rvu->dev,
1660 		"%s MAC (new:%pM, old=%pM default:%pM) del and add to PF=%d success (seq_id=%u)\n",
1661 		__func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf, seq_id);
1662 
1663 	ether_addr_copy(pfvf->mac_addr, req->mac_addr);
1664 	return 0;
1665 }
1666 
1667 /**
1668  *	rvu_npc_exact_mac_addr_add - Adds MAC address to exact match table.
1669  *      @rvu: resource virtualization unit.
1670  *	@req: Add request.
1671  *	@rsp: Add response.
1672  *	Return: 0 upon success
1673  */
rvu_npc_exact_mac_addr_add(struct rvu * rvu,struct cgx_mac_addr_add_req * req,struct cgx_mac_addr_add_rsp * rsp)1674 int rvu_npc_exact_mac_addr_add(struct rvu *rvu,
1675 			       struct cgx_mac_addr_add_req *req,
1676 			       struct cgx_mac_addr_add_rsp *rsp)
1677 {
1678 	int pf = rvu_get_pf(req->hdr.pcifunc);
1679 	struct rvu_pfvf *pfvf;
1680 	u8 cgx_id, lmac_id;
1681 	int rc = 0;
1682 	u32 seq_id;
1683 
1684 	rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1685 	pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
1686 
1687 	rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
1688 					   pfvf->rx_chan_base, 0, &seq_id,
1689 					   true, -1, req->hdr.pcifunc);
1690 
1691 	if (!rc) {
1692 		rsp->index = seq_id;
1693 		dev_dbg(rvu->dev, "%s MAC (%pM) add to PF=%d success (seq_id=%u)\n",
1694 			__func__, req->mac_addr, pf, seq_id);
1695 		return 0;
1696 	}
1697 
1698 	dev_err(rvu->dev, "%s MAC (%pM) add to PF=%d failed\n", __func__,
1699 		req->mac_addr, pf);
1700 	return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
1701 }
1702 
1703 /**
1704  *	rvu_npc_exact_mac_addr_del - Delete DMAC filter
1705  *      @rvu: resource virtualization unit.
1706  *	@req: Delete request.
1707  *	@rsp: Delete response.
1708  *	Return: 0 upon success
1709  */
rvu_npc_exact_mac_addr_del(struct rvu * rvu,struct cgx_mac_addr_del_req * req,struct msg_rsp * rsp)1710 int rvu_npc_exact_mac_addr_del(struct rvu *rvu,
1711 			       struct cgx_mac_addr_del_req *req,
1712 			       struct msg_rsp *rsp)
1713 {
1714 	int pf = rvu_get_pf(req->hdr.pcifunc);
1715 	int rc;
1716 
1717 	rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
1718 	if (!rc) {
1719 		dev_dbg(rvu->dev, "%s del to PF=%d success (seq_id=%u)\n",
1720 			__func__, pf, req->index);
1721 		return 0;
1722 	}
1723 
1724 	dev_err(rvu->dev, "%s del to PF=%d failed (seq_id=%u)\n",
1725 		__func__,  pf, req->index);
1726 	return LMAC_AF_ERR_EXACT_MATCH_TBL_DEL_FAILED;
1727 }
1728 
1729 /**
1730  *	rvu_npc_exact_mac_addr_set - Add PF mac address to dmac filter.
1731  *      @rvu: resource virtualization unit.
1732  *	@req: Set request.
1733  *	@rsp: Set response.
1734  *	Return: 0 upon success
1735  */
rvu_npc_exact_mac_addr_set(struct rvu * rvu,struct cgx_mac_addr_set_or_get * req,struct cgx_mac_addr_set_or_get * rsp)1736 int rvu_npc_exact_mac_addr_set(struct rvu *rvu, struct cgx_mac_addr_set_or_get *req,
1737 			       struct cgx_mac_addr_set_or_get *rsp)
1738 {
1739 	int pf = rvu_get_pf(req->hdr.pcifunc);
1740 	u32 seq_id = req->index;
1741 	struct rvu_pfvf *pfvf;
1742 	u8 cgx_id, lmac_id;
1743 	u32 mcam_idx = -1;
1744 	int rc, nixlf;
1745 
1746 	rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1747 
1748 	pfvf = &rvu->pf[pf];
1749 
1750 	/* If table does not have an entry; both update entry and del table entry API
1751 	 * below fails. Those are not failure conditions.
1752 	 */
1753 	rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, pfvf->mac_addr,
1754 					      req->mac_addr, &seq_id);
1755 	if (!rc) {
1756 		rsp->index = seq_id;
1757 		ether_addr_copy(pfvf->mac_addr, req->mac_addr);
1758 		ether_addr_copy(rsp->mac_addr, req->mac_addr);
1759 		dev_dbg(rvu->dev, "%s MAC (%pM) update to PF=%d success\n",
1760 			__func__, req->mac_addr, pf);
1761 		return 0;
1762 	}
1763 
1764 	/* Try deleting and adding it again */
1765 	rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
1766 	if (rc) {
1767 		dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n",
1768 			__func__, pfvf->mac_addr, pf);
1769 	}
1770 
1771 	/* find mcam entry if exist */
1772 	rc = nix_get_nixlf(rvu, req->hdr.pcifunc, &nixlf, NULL);
1773 	if (!rc) {
1774 		mcam_idx = npc_get_nixlf_mcam_index(&rvu->hw->mcam, req->hdr.pcifunc,
1775 						    nixlf, NIXLF_UCAST_ENTRY);
1776 	}
1777 
1778 	rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
1779 					   pfvf->rx_chan_base, 0, &seq_id,
1780 					   true, mcam_idx, req->hdr.pcifunc);
1781 	if (rc) {
1782 		dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n",
1783 			__func__, req->mac_addr, pf);
1784 		return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
1785 	}
1786 
1787 	rsp->index = seq_id;
1788 	ether_addr_copy(rsp->mac_addr, req->mac_addr);
1789 	ether_addr_copy(pfvf->mac_addr, req->mac_addr);
1790 	dev_dbg(rvu->dev,
1791 		"%s MAC (%pM) del and add to PF=%d success (seq_id=%u)\n",
1792 		__func__, req->mac_addr, pf, seq_id);
1793 	return 0;
1794 }
1795 
1796 /**
1797  *	rvu_npc_exact_can_disable_feature - Check if feature can be disabled.
1798  *      @rvu: resource virtualization unit.
1799  *	Return: True if exact match feature is supported.
1800  */
rvu_npc_exact_can_disable_feature(struct rvu * rvu)1801 bool rvu_npc_exact_can_disable_feature(struct rvu *rvu)
1802 {
1803 	struct npc_exact_table *table = rvu->hw->table;
1804 	bool empty;
1805 
1806 	if (!rvu->hw->cap.npc_exact_match_enabled)
1807 		return false;
1808 
1809 	mutex_lock(&table->lock);
1810 	empty = list_empty(&table->lhead_gbl);
1811 	mutex_unlock(&table->lock);
1812 
1813 	return empty;
1814 }
1815 
1816 /**
1817  *	rvu_npc_exact_disable_feature - Disable feature.
1818  *      @rvu: resource virtualization unit.
1819  */
rvu_npc_exact_disable_feature(struct rvu * rvu)1820 void rvu_npc_exact_disable_feature(struct rvu *rvu)
1821 {
1822 	rvu->hw->cap.npc_exact_match_enabled = false;
1823 }
1824 
1825 /**
1826  *	rvu_npc_exact_reset - Delete and free all entry which match pcifunc.
1827  *      @rvu: resource virtualization unit.
1828  *	@pcifunc: PCI func to match.
1829  */
rvu_npc_exact_reset(struct rvu * rvu,u16 pcifunc)1830 void rvu_npc_exact_reset(struct rvu *rvu, u16 pcifunc)
1831 {
1832 	struct npc_exact_table *table = rvu->hw->table;
1833 	struct npc_exact_table_entry *tmp, *iter;
1834 	u32 seq_id;
1835 
1836 	mutex_lock(&table->lock);
1837 	list_for_each_entry_safe(iter, tmp, &table->lhead_gbl, glist) {
1838 		if (pcifunc != iter->pcifunc)
1839 			continue;
1840 
1841 		seq_id = iter->seq_id;
1842 		dev_dbg(rvu->dev, "%s: resetting pcifun=%d seq_id=%u\n", __func__,
1843 			pcifunc, seq_id);
1844 
1845 		mutex_unlock(&table->lock);
1846 		rvu_npc_exact_del_table_entry_by_id(rvu, seq_id);
1847 		mutex_lock(&table->lock);
1848 	}
1849 	mutex_unlock(&table->lock);
1850 }
1851 
1852 /**
1853  *      rvu_npc_exact_init - initialize exact match table
1854  *      @rvu: resource virtualization unit.
1855  *
1856  *	Initialize HW and SW resources to manage 4way-2K table and fully
1857  *	associative 32-entry mcam table.
1858  *	Return: 0 upon success.
1859  */
rvu_npc_exact_init(struct rvu * rvu)1860 int rvu_npc_exact_init(struct rvu *rvu)
1861 {
1862 	u64 bcast_mcast_val, bcast_mcast_mask;
1863 	struct npc_exact_table *table;
1864 	u64 exact_val, exact_mask;
1865 	u64 chan_val, chan_mask;
1866 	u8 cgx_id, lmac_id;
1867 	u32 *drop_mcam_idx;
1868 	u16 max_lmac_cnt;
1869 	u64 npc_const3;
1870 	int table_size;
1871 	int blkaddr;
1872 	u16 pcifunc;
1873 	int err, i;
1874 	u64 cfg;
1875 	bool rc;
1876 
1877 	/* Read NPC_AF_CONST3 and check for have exact
1878 	 * match functionality is present
1879 	 */
1880 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1881 	if (blkaddr < 0) {
1882 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1883 		return -EINVAL;
1884 	}
1885 
1886 	/* Check exact match feature is supported */
1887 	npc_const3 = rvu_read64(rvu, blkaddr, NPC_AF_CONST3);
1888 	if (!(npc_const3 & BIT_ULL(62)))
1889 		return 0;
1890 
1891 	/* Check if kex profile has enabled EXACT match nibble */
1892 	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(NIX_INTF_RX));
1893 	if (!(cfg & NPC_EXACT_NIBBLE_HIT))
1894 		return 0;
1895 
1896 	/* Set capability to true */
1897 	rvu->hw->cap.npc_exact_match_enabled = true;
1898 
1899 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1900 	if (!table)
1901 		return -ENOMEM;
1902 
1903 	dev_dbg(rvu->dev, "%s: Memory allocation for table success\n", __func__);
1904 	rvu->hw->table = table;
1905 
1906 	/* Read table size, ways and depth */
1907 	table->mem_table.ways = FIELD_GET(GENMASK_ULL(19, 16), npc_const3);
1908 	table->mem_table.depth = FIELD_GET(GENMASK_ULL(15, 0), npc_const3);
1909 	table->cam_table.depth = FIELD_GET(GENMASK_ULL(31, 24), npc_const3);
1910 
1911 	dev_dbg(rvu->dev, "%s: NPC exact match 4way_2k table(ways=%d, depth=%d)\n",
1912 		__func__,  table->mem_table.ways, table->cam_table.depth);
1913 
1914 	/* Check if depth of table is not a sequre of 2
1915 	 * TODO: why _builtin_popcount() is not working ?
1916 	 */
1917 	if ((table->mem_table.depth & (table->mem_table.depth - 1)) != 0) {
1918 		dev_err(rvu->dev,
1919 			"%s: NPC exact match 4way_2k table depth(%d) is not square of 2\n",
1920 			__func__,  table->mem_table.depth);
1921 		return -EINVAL;
1922 	}
1923 
1924 	table_size = table->mem_table.depth * table->mem_table.ways;
1925 
1926 	/* Allocate bitmap for 4way 2K table */
1927 	table->mem_table.bmap = devm_bitmap_zalloc(rvu->dev, table_size,
1928 						   GFP_KERNEL);
1929 	if (!table->mem_table.bmap)
1930 		return -ENOMEM;
1931 
1932 	dev_dbg(rvu->dev, "%s: Allocated bitmap for 4way 2K entry table\n", __func__);
1933 
1934 	/* Allocate bitmap for 32 entry mcam */
1935 	table->cam_table.bmap = devm_bitmap_zalloc(rvu->dev, 32, GFP_KERNEL);
1936 
1937 	if (!table->cam_table.bmap)
1938 		return -ENOMEM;
1939 
1940 	dev_dbg(rvu->dev, "%s: Allocated bitmap for 32 entry cam\n", __func__);
1941 
1942 	table->tot_ids = table_size + table->cam_table.depth;
1943 	table->id_bmap = devm_bitmap_zalloc(rvu->dev, table->tot_ids,
1944 					    GFP_KERNEL);
1945 
1946 	if (!table->id_bmap)
1947 		return -ENOMEM;
1948 
1949 	dev_dbg(rvu->dev, "%s: Allocated bitmap for id map (total=%d)\n",
1950 		__func__, table->tot_ids);
1951 
1952 	/* Initialize list heads for npc_exact_table entries.
1953 	 * This entry is used by debugfs to show entries in
1954 	 * exact match table.
1955 	 */
1956 	for (i = 0; i < NPC_EXACT_TBL_MAX_WAYS; i++)
1957 		INIT_LIST_HEAD(&table->lhead_mem_tbl_entry[i]);
1958 
1959 	INIT_LIST_HEAD(&table->lhead_cam_tbl_entry);
1960 	INIT_LIST_HEAD(&table->lhead_gbl);
1961 
1962 	mutex_init(&table->lock);
1963 
1964 	rvu_exact_config_secret_key(rvu);
1965 	rvu_exact_config_search_key(rvu);
1966 
1967 	rvu_exact_config_table_mask(rvu);
1968 	rvu_exact_config_result_ctrl(rvu, table->mem_table.depth);
1969 
1970 	/* - No drop rule for LBK
1971 	 * - Drop rules for SDP and each LMAC.
1972 	 */
1973 	exact_val = !NPC_EXACT_RESULT_HIT;
1974 	exact_mask = NPC_EXACT_RESULT_HIT;
1975 
1976 	/* nibble - 3	2  1   0
1977 	 *	   L3B L3M L2B L2M
1978 	 */
1979 	bcast_mcast_val = 0b0000;
1980 	bcast_mcast_mask = 0b0011;
1981 
1982 	/* Install SDP drop rule */
1983 	drop_mcam_idx = &table->num_drop_rules;
1984 
1985 	max_lmac_cnt = rvu->cgx_cnt_max * rvu->hw->lmac_per_cgx +
1986 		       PF_CGXMAP_BASE;
1987 
1988 	for (i = PF_CGXMAP_BASE; i < max_lmac_cnt; i++) {
1989 		if (rvu->pf2cgxlmac_map[i] == 0xFF)
1990 			continue;
1991 
1992 		rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[i], &cgx_id, &lmac_id);
1993 
1994 		rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, NIX_INTF_TYPE_CGX, cgx_id,
1995 								lmac_id, &chan_val, &chan_mask);
1996 		if (!rc) {
1997 			dev_err(rvu->dev,
1998 				"%s: failed, info chan_val=0x%llx chan_mask=0x%llx rule_id=%d\n",
1999 				__func__, chan_val, chan_mask, *drop_mcam_idx);
2000 			return -EINVAL;
2001 		}
2002 
2003 		/* Filter rules are only for PF */
2004 		pcifunc = RVU_PFFUNC(i, 0);
2005 
2006 		dev_dbg(rvu->dev,
2007 			"%s:Drop rule cgx=%d lmac=%d chan(val=0x%llx, mask=0x%llx\n",
2008 			__func__, cgx_id, lmac_id, chan_val, chan_mask);
2009 
2010 		rc = rvu_npc_exact_save_drop_rule_chan_and_mask(rvu, table->num_drop_rules,
2011 								chan_val, chan_mask, pcifunc);
2012 		if (!rc) {
2013 			dev_err(rvu->dev,
2014 				"%s: failed to set drop info for cgx=%d, lmac=%d, chan=%llx\n",
2015 				__func__, cgx_id, lmac_id, chan_val);
2016 			return -EINVAL;
2017 		}
2018 
2019 		err = npc_install_mcam_drop_rule(rvu, *drop_mcam_idx,
2020 						 &table->counter_idx[*drop_mcam_idx],
2021 						 chan_val, chan_mask,
2022 						 exact_val, exact_mask,
2023 						 bcast_mcast_val, bcast_mcast_mask);
2024 		if (err) {
2025 			dev_err(rvu->dev,
2026 				"failed to configure drop rule (cgx=%d lmac=%d)\n",
2027 				cgx_id, lmac_id);
2028 			return err;
2029 		}
2030 
2031 		(*drop_mcam_idx)++;
2032 	}
2033 
2034 	dev_info(rvu->dev, "initialized exact match table successfully\n");
2035 	return 0;
2036 }
2037