1 /* $OpenBSD: kern_synch.c,v 1.218 2025/01/22 16:14:22 claudio Exp $ */
2 /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */
3
4 /*
5 * Copyright (c) 1982, 1986, 1990, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
38 */
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/sched.h>
46 #include <sys/timeout.h>
47 #include <sys/mount.h>
48 #include <sys/syscallargs.h>
49 #include <sys/refcnt.h>
50 #include <sys/atomic.h>
51 #include <sys/tracepoint.h>
52
53 #include <ddb/db_output.h>
54
55 #include <machine/spinlock.h>
56
57 #ifdef DIAGNOSTIC
58 #include <sys/syslog.h>
59 #endif
60
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64
65 int sleep_signal_check(struct proc *, int);
66
67 extern void proc_stop(struct proc *p, int);
68
69 /*
70 * We're only looking at 7 bits of the address; everything is
71 * aligned to 4, lots of things are aligned to greater powers
72 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
73 */
74 #define TABLESIZE 128
75 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
TAILQ_HEAD(slpque,proc)76 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
77
78 void
79 sleep_queue_init(void)
80 {
81 int i;
82
83 for (i = 0; i < TABLESIZE; i++)
84 TAILQ_INIT(&slpque[i]);
85 }
86
87 /*
88 * Global sleep channel for threads that do not want to
89 * receive wakeup(9) broadcasts.
90 */
91 int nowake;
92
93 /*
94 * During autoconfiguration or after a panic, a sleep will simply
95 * lower the priority briefly to allow interrupts, then return.
96 * The priority to be used (safepri) is machine-dependent, thus this
97 * value is initialized and maintained in the machine-dependent layers.
98 * This priority will typically be 0, or the lowest priority
99 * that is safe for use on the interrupt stack; it can be made
100 * higher to block network software interrupts after panics.
101 */
102 extern int safepri;
103
104 /*
105 * General sleep call. Suspends the current process until a wakeup is
106 * performed on the specified identifier. The process will then be made
107 * runnable with the specified priority. Sleeps at most timo/hz seconds
108 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
109 * before and after sleeping, else signals are not checked. Returns 0 if
110 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
111 * signal needs to be delivered, ERESTART is returned if the current system
112 * call should be restarted if possible, and EINTR is returned if the system
113 * call should be interrupted by the signal (return EINTR).
114 */
115 int
tsleep(const volatile void * ident,int priority,const char * wmesg,int timo)116 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
117 {
118 #ifdef MULTIPROCESSOR
119 int hold_count;
120 #endif
121
122 KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
123 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
124
125 #ifdef MULTIPROCESSOR
126 KASSERT(ident == &nowake || timo || _kernel_lock_held());
127 #endif
128
129 #ifdef DDB
130 if (cold == 2)
131 db_stack_dump();
132 #endif
133 if (cold || panicstr) {
134 int s;
135 /*
136 * After a panic, or during autoconfiguration,
137 * just give interrupts a chance, then just return;
138 * don't run any other procs or panic below,
139 * in case this is the idle process and already asleep.
140 */
141 s = splhigh();
142 splx(safepri);
143 #ifdef MULTIPROCESSOR
144 if (_kernel_lock_held()) {
145 hold_count = __mp_release_all(&kernel_lock);
146 __mp_acquire_count(&kernel_lock, hold_count);
147 }
148 #endif
149 splx(s);
150 return (0);
151 }
152
153 sleep_setup(ident, priority, wmesg);
154 return sleep_finish(timo, 1);
155 }
156
157 int
tsleep_nsec(const volatile void * ident,int priority,const char * wmesg,uint64_t nsecs)158 tsleep_nsec(const volatile void *ident, int priority, const char *wmesg,
159 uint64_t nsecs)
160 {
161 uint64_t to_ticks;
162
163 if (nsecs == INFSLP)
164 return tsleep(ident, priority, wmesg, 0);
165 #ifdef DIAGNOSTIC
166 if (nsecs == 0) {
167 log(LOG_WARNING,
168 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
169 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
170 wmesg);
171 }
172 #endif
173 /*
174 * We want to sleep at least nsecs nanoseconds worth of ticks.
175 *
176 * - Clamp nsecs to prevent arithmetic overflow.
177 *
178 * - Round nsecs up to account for any nanoseconds that do not
179 * divide evenly into tick_nsec, otherwise we'll lose them to
180 * integer division in the next step. We add (tick_nsec - 1)
181 * to keep from introducing a spurious tick if there are no
182 * such nanoseconds, i.e. nsecs % tick_nsec == 0.
183 *
184 * - Divide the rounded value to a count of ticks. We divide
185 * by (tick_nsec + 1) to discard the extra tick introduced if,
186 * before rounding, nsecs % tick_nsec == 1.
187 *
188 * - Finally, add a tick to the result. We need to wait out
189 * the current tick before we can begin counting our interval,
190 * as we do not know how much time has elapsed since the
191 * current tick began.
192 */
193 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
194 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
195 if (to_ticks > INT_MAX)
196 to_ticks = INT_MAX;
197 return tsleep(ident, priority, wmesg, (int)to_ticks);
198 }
199
200 /*
201 * Same as tsleep, but if we have a mutex provided, then once we've
202 * entered the sleep queue we drop the mutex. After sleeping we re-lock.
203 */
204 int
msleep(const volatile void * ident,struct mutex * mtx,int priority,const char * wmesg,int timo)205 msleep(const volatile void *ident, struct mutex *mtx, int priority,
206 const char *wmesg, int timo)
207 {
208 int error, spl;
209 #ifdef MULTIPROCESSOR
210 int hold_count;
211 #endif
212
213 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
214 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
215 KASSERT(mtx != NULL);
216
217 #ifdef DDB
218 if (cold == 2)
219 db_stack_dump();
220 #endif
221 if (cold || panicstr) {
222 /*
223 * After a panic, or during autoconfiguration,
224 * just give interrupts a chance, then just return;
225 * don't run any other procs or panic below,
226 * in case this is the idle process and already asleep.
227 */
228 spl = MUTEX_OLDIPL(mtx);
229 MUTEX_OLDIPL(mtx) = safepri;
230 mtx_leave(mtx);
231 #ifdef MULTIPROCESSOR
232 if (_kernel_lock_held()) {
233 hold_count = __mp_release_all(&kernel_lock);
234 __mp_acquire_count(&kernel_lock, hold_count);
235 }
236 #endif
237 if ((priority & PNORELOCK) == 0) {
238 mtx_enter(mtx);
239 MUTEX_OLDIPL(mtx) = spl;
240 } else
241 splx(spl);
242 return (0);
243 }
244
245 sleep_setup(ident, priority, wmesg);
246
247 mtx_leave(mtx);
248 /* signal may stop the process, release mutex before that */
249 error = sleep_finish(timo, 1);
250
251 if ((priority & PNORELOCK) == 0)
252 mtx_enter(mtx);
253
254 return error;
255 }
256
257 int
msleep_nsec(const volatile void * ident,struct mutex * mtx,int priority,const char * wmesg,uint64_t nsecs)258 msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority,
259 const char *wmesg, uint64_t nsecs)
260 {
261 uint64_t to_ticks;
262
263 if (nsecs == INFSLP)
264 return msleep(ident, mtx, priority, wmesg, 0);
265 #ifdef DIAGNOSTIC
266 if (nsecs == 0) {
267 log(LOG_WARNING,
268 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
269 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
270 wmesg);
271 }
272 #endif
273 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
274 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
275 if (to_ticks > INT_MAX)
276 to_ticks = INT_MAX;
277 return msleep(ident, mtx, priority, wmesg, (int)to_ticks);
278 }
279
280 /*
281 * Same as tsleep, but if we have a rwlock provided, then once we've
282 * entered the sleep queue we drop the it. After sleeping we re-lock.
283 */
284 int
rwsleep(const volatile void * ident,struct rwlock * rwl,int priority,const char * wmesg,int timo)285 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
286 const char *wmesg, int timo)
287 {
288 int error, status;
289
290 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
291 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
292 KASSERT(ident != rwl);
293 rw_assert_anylock(rwl);
294 status = rw_status(rwl);
295
296 sleep_setup(ident, priority, wmesg);
297
298 rw_exit(rwl);
299 /* signal may stop the process, release rwlock before that */
300 error = sleep_finish(timo, 1);
301
302 if ((priority & PNORELOCK) == 0)
303 rw_enter(rwl, status);
304
305 return error;
306 }
307
308 int
rwsleep_nsec(const volatile void * ident,struct rwlock * rwl,int priority,const char * wmesg,uint64_t nsecs)309 rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority,
310 const char *wmesg, uint64_t nsecs)
311 {
312 uint64_t to_ticks;
313
314 if (nsecs == INFSLP)
315 return rwsleep(ident, rwl, priority, wmesg, 0);
316 #ifdef DIAGNOSTIC
317 if (nsecs == 0) {
318 log(LOG_WARNING,
319 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
320 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
321 wmesg);
322 }
323 #endif
324 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
325 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
326 if (to_ticks > INT_MAX)
327 to_ticks = INT_MAX;
328 return rwsleep(ident, rwl, priority, wmesg, (int)to_ticks);
329 }
330
331 void
sleep_setup(const volatile void * ident,int prio,const char * wmesg)332 sleep_setup(const volatile void *ident, int prio, const char *wmesg)
333 {
334 struct proc *p = curproc;
335
336 #ifdef DIAGNOSTIC
337 if (p->p_flag & P_CANTSLEEP)
338 panic("sleep: %s failed insomnia", p->p_p->ps_comm);
339 if (ident == NULL)
340 panic("sleep: no ident");
341 if (p->p_stat != SONPROC)
342 panic("sleep: not SONPROC but %d", p->p_stat);
343 #endif
344 /* exiting processes are not allowed to catch signals */
345 if (p->p_flag & P_WEXIT)
346 CLR(prio, PCATCH);
347
348 SCHED_LOCK();
349
350 TRACEPOINT(sched, sleep, NULL);
351
352 p->p_wchan = ident;
353 p->p_wmesg = wmesg;
354 p->p_slptime = 0;
355 p->p_slppri = prio & PRIMASK;
356 atomic_setbits_int(&p->p_flag, P_WSLEEP);
357 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
358 if (prio & PCATCH)
359 atomic_setbits_int(&p->p_flag, P_SINTR);
360 p->p_stat = SSLEEP;
361
362 SCHED_UNLOCK();
363 }
364
365 int
sleep_finish(int timo,int do_sleep)366 sleep_finish(int timo, int do_sleep)
367 {
368 struct proc *p = curproc;
369 int catch, error = 0, error1 = 0;
370
371 catch = p->p_flag & P_SINTR;
372
373 if (timo != 0) {
374 KASSERT((p->p_flag & P_TIMEOUT) == 0);
375 timeout_add(&p->p_sleep_to, timo);
376 }
377
378 if (catch != 0) {
379 if ((error = sleep_signal_check(p, 0)) != 0) {
380 catch = 0;
381 do_sleep = 0;
382 }
383 }
384
385 SCHED_LOCK();
386 /*
387 * A few checks need to happen before going to sleep:
388 * - If the wakeup happens while going to sleep, p->p_wchan
389 * will be NULL. In that case unwind immediately but still
390 * check for possible signals and timeouts.
391 * - If the sleep is aborted call unsleep and take us of the
392 * sleep queue.
393 * - If requested to stop force a switch even if the sleep
394 * condition got cleared.
395 */
396 if (p->p_wchan == NULL)
397 do_sleep = 0;
398 if (do_sleep == 0)
399 unsleep(p);
400 if (p->p_stat == SSTOP)
401 do_sleep = 1;
402 atomic_clearbits_int(&p->p_flag, P_WSLEEP);
403
404 if (do_sleep) {
405 KASSERT(p->p_stat == SSLEEP || p->p_stat == SSTOP);
406 p->p_ru.ru_nvcsw++;
407 mi_switch();
408 } else {
409 KASSERT(p->p_stat == SONPROC || p->p_stat == SSLEEP);
410 p->p_stat = SONPROC;
411 }
412
413 #ifdef DIAGNOSTIC
414 if (p->p_stat != SONPROC)
415 panic("sleep_finish !SONPROC");
416 #endif
417
418 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
419 SCHED_UNLOCK();
420
421 /*
422 * Even though this belongs to the signal handling part of sleep,
423 * we need to clear it before the ktrace.
424 */
425 atomic_clearbits_int(&p->p_flag, P_SINTR);
426
427 if (timo != 0) {
428 if (p->p_flag & P_TIMEOUT) {
429 error1 = EWOULDBLOCK;
430 } else {
431 /* This can sleep. It must not use timeouts. */
432 timeout_del_barrier(&p->p_sleep_to);
433 }
434 atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
435 }
436
437 /*
438 * Check if thread was woken up because of a unwind or signal
439 * but ignore any pending stop condition.
440 */
441 if (catch != 0)
442 error = sleep_signal_check(p, 1);
443
444 /* Signal errors are higher priority than timeouts. */
445 if (error == 0 && error1 != 0)
446 error = error1;
447
448 return error;
449 }
450
451 /*
452 * Check and handle signals and suspensions around a sleep cycle.
453 * The 2nd call in sleep_finish() sets after_sleep = 1. In this case
454 * any pending suspend event came in after the wakeup / unsleep and
455 * can therefor be ignored. Once the process hits userret the event
456 * will be picked up again.
457 */
458 int
sleep_signal_check(struct proc * p,int after_sleep)459 sleep_signal_check(struct proc *p, int after_sleep)
460 {
461 struct sigctx ctx;
462 int err, sig;
463
464 if ((err = single_thread_check(p, 1)) != 0) {
465 if (err != EWOULDBLOCK)
466 return err;
467
468 /* requested to stop */
469 if (!after_sleep) {
470 mtx_enter(&p->p_p->ps_mtx);
471 if (--p->p_p->ps_singlecnt == 0)
472 wakeup(&p->p_p->ps_singlecnt);
473 mtx_leave(&p->p_p->ps_mtx);
474
475 SCHED_LOCK();
476 p->p_stat = SSTOP;
477 SCHED_UNLOCK();
478 }
479 }
480
481 if ((sig = cursig(p, &ctx, 1)) != 0) {
482 if (ctx.sig_stop) {
483 if (!after_sleep) {
484 p->p_p->ps_xsig = sig;
485 SCHED_LOCK();
486 proc_stop(p, 0);
487 SCHED_UNLOCK();
488 }
489 } else if (ctx.sig_intr && !ctx.sig_ignore)
490 return EINTR;
491 else
492 return ERESTART;
493 }
494
495 return 0;
496 }
497
498 int
wakeup_proc(struct proc * p,int flags)499 wakeup_proc(struct proc *p, int flags)
500 {
501 int awakened = 0;
502
503 SCHED_ASSERT_LOCKED();
504
505 if (p->p_wchan != NULL) {
506 awakened = 1;
507 if (flags)
508 atomic_setbits_int(&p->p_flag, flags);
509 #ifdef DIAGNOSTIC
510 if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
511 panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
512 #endif
513 unsleep(p);
514 if (p->p_stat == SSLEEP)
515 setrunnable(p);
516 }
517
518 return awakened;
519 }
520
521
522 /*
523 * Implement timeout for tsleep.
524 * If process hasn't been awakened (wchan non-zero),
525 * set timeout flag and undo the sleep. If proc
526 * is stopped, just unsleep so it will remain stopped.
527 */
528 void
endtsleep(void * arg)529 endtsleep(void *arg)
530 {
531 struct proc *p = arg;
532
533 SCHED_LOCK();
534 wakeup_proc(p, P_TIMEOUT);
535 SCHED_UNLOCK();
536 }
537
538 /*
539 * Remove a process from its wait queue
540 */
541 void
unsleep(struct proc * p)542 unsleep(struct proc *p)
543 {
544 SCHED_ASSERT_LOCKED();
545
546 if (p->p_wchan != NULL) {
547 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
548 p->p_wchan = NULL;
549 p->p_wmesg = NULL;
550 TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
551 p->p_p->ps_pid);
552 }
553 }
554
555 /*
556 * Make a number of processes sleeping on the specified identifier runnable.
557 */
558 void
wakeup_n(const volatile void * ident,int n)559 wakeup_n(const volatile void *ident, int n)
560 {
561 struct slpque *qp, wakeq;
562 struct proc *p;
563 struct proc *pnext;
564
565 TAILQ_INIT(&wakeq);
566
567 SCHED_LOCK();
568 qp = &slpque[LOOKUP(ident)];
569 for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
570 pnext = TAILQ_NEXT(p, p_runq);
571 #ifdef DIAGNOSTIC
572 if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
573 panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
574 #endif
575 KASSERT(p->p_wchan != NULL);
576 if (p->p_wchan == ident) {
577 TAILQ_REMOVE(qp, p, p_runq);
578 p->p_wchan = NULL;
579 p->p_wmesg = NULL;
580 TAILQ_INSERT_TAIL(&wakeq, p, p_runq);
581 --n;
582 }
583 }
584 while ((p = TAILQ_FIRST(&wakeq))) {
585 TAILQ_REMOVE(&wakeq, p, p_runq);
586 TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
587 p->p_p->ps_pid);
588 if (p->p_stat == SSLEEP)
589 setrunnable(p);
590 }
591 SCHED_UNLOCK();
592 }
593
594 /*
595 * Make all processes sleeping on the specified identifier runnable.
596 */
597 void
wakeup(const volatile void * chan)598 wakeup(const volatile void *chan)
599 {
600 wakeup_n(chan, -1);
601 }
602
603 int
sys_sched_yield(struct proc * p,void * v,register_t * retval)604 sys_sched_yield(struct proc *p, void *v, register_t *retval)
605 {
606 struct proc *q;
607 uint8_t newprio;
608
609 /*
610 * If one of the threads of a multi-threaded process called
611 * sched_yield(2), drop its priority to ensure its siblings
612 * can make some progress.
613 */
614 mtx_enter(&p->p_p->ps_mtx);
615 newprio = p->p_usrpri;
616 TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
617 newprio = max(newprio, q->p_runpri);
618 mtx_leave(&p->p_p->ps_mtx);
619
620 SCHED_LOCK();
621 setrunqueue(p->p_cpu, p, newprio);
622 p->p_ru.ru_nvcsw++;
623 mi_switch();
624 SCHED_UNLOCK();
625
626 return (0);
627 }
628
629 static inline int
thrsleep_unlock(_atomic_lock_t * atomiclock)630 thrsleep_unlock(_atomic_lock_t *atomiclock)
631 {
632 static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
633
634 if (atomiclock == NULL)
635 return 0;
636
637 return copyout(&unlocked, atomiclock, sizeof(unlocked));
638 }
639
640 struct tslpentry {
641 TAILQ_ENTRY(tslpentry) tslp_link;
642 struct process *tslp_ps;
643 long tslp_ident;
644 struct proc *volatile tslp_p;
645 };
646
647 struct tslp_bucket {
648 struct tslpqueue tsb_list;
649 struct mutex tsb_lock;
650 } __aligned(64);
651
652 /* thrsleep queue shared between processes */
653 static struct tslp_bucket tsb_shared;
654
655 #define TSLP_BUCKET_BITS 6
656 #define TSLP_BUCKET_SIZE (1UL << TSLP_BUCKET_BITS)
657 #define TSLP_BUCKET_MASK (TSLP_BUCKET_SIZE - 1)
658
659 static struct tslp_bucket tsb_buckets[TSLP_BUCKET_SIZE];
660
661 void
tslp_init(void)662 tslp_init(void)
663 {
664 struct tslp_bucket *tsb;
665 size_t i;
666
667 TAILQ_INIT(&tsb_shared.tsb_list);
668 mtx_init(&tsb_shared.tsb_lock, IPL_MPFLOOR);
669
670 for (i = 0; i < nitems(tsb_buckets); i++) {
671 tsb = &tsb_buckets[i];
672
673 TAILQ_INIT(&tsb->tsb_list);
674 mtx_init(&tsb->tsb_lock, IPL_MPFLOOR);
675 }
676 }
677
678 static struct tslp_bucket *
thrsleep_bucket(long ident)679 thrsleep_bucket(long ident)
680 {
681 ident >>= 3;
682 ident ^= ident >> TSLP_BUCKET_BITS;
683 ident &= TSLP_BUCKET_MASK;
684
685 return &tsb_buckets[ident];
686 }
687
688 static int
thrsleep(struct proc * p,struct sys___thrsleep_args * v)689 thrsleep(struct proc *p, struct sys___thrsleep_args *v)
690 {
691 struct sys___thrsleep_args /* {
692 syscallarg(const volatile void *) ident;
693 syscallarg(clockid_t) clock_id;
694 syscallarg(const struct timespec *) tp;
695 syscallarg(void *) lock;
696 syscallarg(const int *) abort;
697 } */ *uap = v;
698 long ident = (long)SCARG(uap, ident);
699 struct tslpentry entry;
700 struct tslp_bucket *tsb;
701 struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
702 void *lock = SCARG(uap, lock);
703 const uint32_t *abortp = SCARG(uap, abort);
704 clockid_t clock_id = SCARG(uap, clock_id);
705 uint64_t to_ticks = 0;
706 int error = 0;
707
708 if (ident == 0)
709 return (EINVAL);
710 if (tsp != NULL) {
711 struct timespec now;
712 uint64_t nsecs;
713
714 if ((error = clock_gettime(p, clock_id, &now)))
715 return (error);
716 #ifdef KTRACE
717 if (KTRPOINT(p, KTR_STRUCT))
718 ktrabstimespec(p, tsp);
719 #endif
720
721 if (timespeccmp(tsp, &now, <=)) {
722 /* already passed: still do the unlock */
723 if ((error = thrsleep_unlock(lock)))
724 return (error);
725 return (EWOULDBLOCK);
726 }
727
728 timespecsub(tsp, &now, tsp);
729 nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
730 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
731 if (to_ticks > INT_MAX)
732 to_ticks = INT_MAX;
733 }
734
735 tsb = (ident == -1) ? &tsb_shared : thrsleep_bucket(ident);
736
737 /* Interlock with wakeup. */
738 entry.tslp_ps = p->p_p;
739 entry.tslp_ident = ident;
740 entry.tslp_p = p;
741
742 mtx_enter(&tsb->tsb_lock);
743 TAILQ_INSERT_TAIL(&tsb->tsb_list, &entry, tslp_link);
744 mtx_leave(&tsb->tsb_lock);
745
746 error = thrsleep_unlock(lock);
747 if (error != 0)
748 goto leave;
749
750 if (abortp != NULL) {
751 uint32_t abort;
752 error = copyin32(abortp, &abort);
753 if (error != 0)
754 goto leave;
755 if (abort) {
756 error = EINTR;
757 goto leave;
758 }
759 }
760
761 sleep_setup(&entry, PWAIT|PCATCH, "thrsleep");
762 error = sleep_finish(to_ticks, entry.tslp_p != NULL);
763 if (error != 0 || entry.tslp_p != NULL) {
764 mtx_enter(&tsb->tsb_lock);
765 if (entry.tslp_p != NULL)
766 TAILQ_REMOVE(&tsb->tsb_list, &entry, tslp_link);
767 else
768 error = 0;
769 mtx_leave(&tsb->tsb_lock);
770
771 if (error == ERESTART)
772 error = ECANCELED;
773 }
774
775 return (error);
776
777 leave:
778 if (entry.tslp_p != NULL) {
779 mtx_enter(&tsb->tsb_lock);
780 if (entry.tslp_p != NULL)
781 TAILQ_REMOVE(&tsb->tsb_list, &entry, tslp_link);
782 mtx_leave(&tsb->tsb_lock);
783 }
784
785 return (error);
786 }
787
788 int
sys___thrsleep(struct proc * p,void * v,register_t * retval)789 sys___thrsleep(struct proc *p, void *v, register_t *retval)
790 {
791 struct sys___thrsleep_args /* {
792 syscallarg(const volatile void *) ident;
793 syscallarg(clockid_t) clock_id;
794 syscallarg(struct timespec *) tp;
795 syscallarg(void *) lock;
796 syscallarg(const int *) abort;
797 } */ *uap = v;
798 struct timespec ts;
799 int error;
800
801 if (SCARG(uap, tp) != NULL) {
802 if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
803 *retval = error;
804 return 0;
805 }
806 if (!timespecisvalid(&ts)) {
807 *retval = EINVAL;
808 return 0;
809 }
810 SCARG(uap, tp) = &ts;
811 }
812
813 *retval = thrsleep(p, uap);
814 return 0;
815 }
816
817 static void
tslp_wakeups(struct tslpqueue * tslpq)818 tslp_wakeups(struct tslpqueue *tslpq)
819 {
820 struct tslpentry *entry, *nentry;
821 struct proc *p;
822
823 SCHED_LOCK();
824 TAILQ_FOREACH_SAFE(entry, tslpq, tslp_link, nentry) {
825 p = entry->tslp_p;
826 entry->tslp_p = NULL;
827 wakeup_proc(p, 0);
828 }
829 SCHED_UNLOCK();
830 }
831
832 int
sys___thrwakeup(struct proc * p,void * v,register_t * retval)833 sys___thrwakeup(struct proc *p, void *v, register_t *retval)
834 {
835 struct sys___thrwakeup_args /* {
836 syscallarg(const volatile void *) ident;
837 syscallarg(int) n;
838 } */ *uap = v;
839 struct tslpentry *entry, *nentry;
840 struct tslp_bucket *tsb;
841 long ident = (long)SCARG(uap, ident);
842 int n = SCARG(uap, n);
843 int found = 0;
844 struct tslpqueue wq = TAILQ_HEAD_INITIALIZER(wq);
845
846 if (ident == 0) {
847 *retval = EINVAL;
848 return (0);
849 }
850
851 if (ident == -1) {
852 /*
853 * Wake up all waiters with ident -1. This is needed
854 * because ident -1 can be shared by multiple userspace
855 * lock state machines concurrently. The implementation
856 * has no way to direct the wakeup to a particular
857 * state machine.
858 */
859 mtx_enter(&tsb_shared.tsb_lock);
860 tslp_wakeups(&tsb_shared.tsb_list);
861 TAILQ_INIT(&tsb_shared.tsb_list);
862 mtx_leave(&tsb_shared.tsb_lock);
863
864 *retval = 0;
865 return (0);
866 }
867
868 tsb = thrsleep_bucket(ident);
869
870 mtx_enter(&tsb->tsb_lock);
871 TAILQ_FOREACH_SAFE(entry, &tsb->tsb_list, tslp_link, nentry) {
872 if (entry->tslp_ident == ident && entry->tslp_ps == p->p_p) {
873 TAILQ_REMOVE(&tsb->tsb_list, entry, tslp_link);
874 TAILQ_INSERT_TAIL(&wq, entry, tslp_link);
875
876 if (++found == n)
877 break;
878 }
879 }
880
881 if (found)
882 tslp_wakeups(&wq);
883 mtx_leave(&tsb->tsb_lock);
884
885 *retval = found ? 0 : ESRCH;
886 return (0);
887 }
888
889 void
refcnt_init(struct refcnt * r)890 refcnt_init(struct refcnt *r)
891 {
892 refcnt_init_trace(r, 0);
893 }
894
895 void
refcnt_init_trace(struct refcnt * r,int idx)896 refcnt_init_trace(struct refcnt *r, int idx)
897 {
898 r->r_traceidx = idx;
899 atomic_store_int(&r->r_refs, 1);
900 TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1);
901 }
902
903 void
refcnt_take(struct refcnt * r)904 refcnt_take(struct refcnt *r)
905 {
906 u_int refs;
907
908 refs = atomic_inc_int_nv(&r->r_refs);
909 KASSERT(refs != 0);
910 TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1);
911 (void)refs;
912 }
913
914 int
refcnt_rele(struct refcnt * r)915 refcnt_rele(struct refcnt *r)
916 {
917 u_int refs;
918
919 membar_exit_before_atomic();
920 refs = atomic_dec_int_nv(&r->r_refs);
921 KASSERT(refs != ~0);
922 TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
923 if (refs == 0) {
924 membar_enter_after_atomic();
925 return (1);
926 }
927 return (0);
928 }
929
930 void
refcnt_rele_wake(struct refcnt * r)931 refcnt_rele_wake(struct refcnt *r)
932 {
933 if (refcnt_rele(r))
934 wakeup_one(r);
935 }
936
937 void
refcnt_finalize(struct refcnt * r,const char * wmesg)938 refcnt_finalize(struct refcnt *r, const char *wmesg)
939 {
940 u_int refs;
941
942 membar_exit_before_atomic();
943 refs = atomic_dec_int_nv(&r->r_refs);
944 KASSERT(refs != ~0);
945 TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
946 while (refs) {
947 sleep_setup(r, PWAIT, wmesg);
948 refs = atomic_load_int(&r->r_refs);
949 sleep_finish(0, refs);
950 }
951 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
952 /* Order subsequent loads and stores after refs == 0 load. */
953 membar_sync();
954 }
955
956 int
refcnt_shared(struct refcnt * r)957 refcnt_shared(struct refcnt *r)
958 {
959 u_int refs;
960
961 refs = atomic_load_int(&r->r_refs);
962 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
963 return (refs > 1);
964 }
965
966 unsigned int
refcnt_read(struct refcnt * r)967 refcnt_read(struct refcnt *r)
968 {
969 u_int refs;
970
971 refs = atomic_load_int(&r->r_refs);
972 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
973 return (refs);
974 }
975
976 void
cond_init(struct cond * c)977 cond_init(struct cond *c)
978 {
979 atomic_store_int(&c->c_wait, 1);
980 }
981
982 void
cond_signal(struct cond * c)983 cond_signal(struct cond *c)
984 {
985 atomic_store_int(&c->c_wait, 0);
986
987 wakeup_one(c);
988 }
989
990 void
cond_wait(struct cond * c,const char * wmesg)991 cond_wait(struct cond *c, const char *wmesg)
992 {
993 unsigned int wait;
994
995 wait = atomic_load_int(&c->c_wait);
996 while (wait) {
997 sleep_setup(c, PWAIT, wmesg);
998 wait = atomic_load_int(&c->c_wait);
999 sleep_finish(0, wait);
1000 }
1001 }
1002