xref: /linux/drivers/ata/libata-sata.c (revision a25a9c85)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  SATA specific part of ATA helper library
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *  Copyright 2006 Tejun Heo <htejun@gmail.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <scsi/scsi_cmnd.h>
13 #include <scsi/scsi_device.h>
14 #include <scsi/scsi_eh.h>
15 #include <linux/libata.h>
16 #include <asm/unaligned.h>
17 
18 #include "libata.h"
19 #include "libata-transport.h"
20 
21 /* debounce timing parameters in msecs { interval, duration, timeout } */
22 const unsigned int sata_deb_timing_normal[]		= {   5,  100, 2000 };
23 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
24 const unsigned int sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
25 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
26 const unsigned int sata_deb_timing_long[]		= { 100, 2000, 5000 };
27 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
28 
29 /**
30  *	sata_scr_valid - test whether SCRs are accessible
31  *	@link: ATA link to test SCR accessibility for
32  *
33  *	Test whether SCRs are accessible for @link.
34  *
35  *	LOCKING:
36  *	None.
37  *
38  *	RETURNS:
39  *	1 if SCRs are accessible, 0 otherwise.
40  */
sata_scr_valid(struct ata_link * link)41 int sata_scr_valid(struct ata_link *link)
42 {
43 	struct ata_port *ap = link->ap;
44 
45 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
46 }
47 EXPORT_SYMBOL_GPL(sata_scr_valid);
48 
49 /**
50  *	sata_scr_read - read SCR register of the specified port
51  *	@link: ATA link to read SCR for
52  *	@reg: SCR to read
53  *	@val: Place to store read value
54  *
55  *	Read SCR register @reg of @link into *@val.  This function is
56  *	guaranteed to succeed if @link is ap->link, the cable type of
57  *	the port is SATA and the port implements ->scr_read.
58  *
59  *	LOCKING:
60  *	None if @link is ap->link.  Kernel thread context otherwise.
61  *
62  *	RETURNS:
63  *	0 on success, negative errno on failure.
64  */
sata_scr_read(struct ata_link * link,int reg,u32 * val)65 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
66 {
67 	if (ata_is_host_link(link)) {
68 		if (sata_scr_valid(link))
69 			return link->ap->ops->scr_read(link, reg, val);
70 		return -EOPNOTSUPP;
71 	}
72 
73 	return sata_pmp_scr_read(link, reg, val);
74 }
75 EXPORT_SYMBOL_GPL(sata_scr_read);
76 
77 /**
78  *	sata_scr_write - write SCR register of the specified port
79  *	@link: ATA link to write SCR for
80  *	@reg: SCR to write
81  *	@val: value to write
82  *
83  *	Write @val to SCR register @reg of @link.  This function is
84  *	guaranteed to succeed if @link is ap->link, the cable type of
85  *	the port is SATA and the port implements ->scr_read.
86  *
87  *	LOCKING:
88  *	None if @link is ap->link.  Kernel thread context otherwise.
89  *
90  *	RETURNS:
91  *	0 on success, negative errno on failure.
92  */
sata_scr_write(struct ata_link * link,int reg,u32 val)93 int sata_scr_write(struct ata_link *link, int reg, u32 val)
94 {
95 	if (ata_is_host_link(link)) {
96 		if (sata_scr_valid(link))
97 			return link->ap->ops->scr_write(link, reg, val);
98 		return -EOPNOTSUPP;
99 	}
100 
101 	return sata_pmp_scr_write(link, reg, val);
102 }
103 EXPORT_SYMBOL_GPL(sata_scr_write);
104 
105 /**
106  *	sata_scr_write_flush - write SCR register of the specified port and flush
107  *	@link: ATA link to write SCR for
108  *	@reg: SCR to write
109  *	@val: value to write
110  *
111  *	This function is identical to sata_scr_write() except that this
112  *	function performs flush after writing to the register.
113  *
114  *	LOCKING:
115  *	None if @link is ap->link.  Kernel thread context otherwise.
116  *
117  *	RETURNS:
118  *	0 on success, negative errno on failure.
119  */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)120 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
121 {
122 	if (ata_is_host_link(link)) {
123 		int rc;
124 
125 		if (sata_scr_valid(link)) {
126 			rc = link->ap->ops->scr_write(link, reg, val);
127 			if (rc == 0)
128 				rc = link->ap->ops->scr_read(link, reg, &val);
129 			return rc;
130 		}
131 		return -EOPNOTSUPP;
132 	}
133 
134 	return sata_pmp_scr_write(link, reg, val);
135 }
136 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
137 
138 /**
139  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
140  *	@tf: Taskfile to convert
141  *	@pmp: Port multiplier port
142  *	@is_cmd: This FIS is for command
143  *	@fis: Buffer into which data will output
144  *
145  *	Converts a standard ATA taskfile to a Serial ATA
146  *	FIS structure (Register - Host to Device).
147  *
148  *	LOCKING:
149  *	Inherited from caller.
150  */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)151 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
152 {
153 	fis[0] = 0x27;			/* Register - Host to Device FIS */
154 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
155 	if (is_cmd)
156 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
157 
158 	fis[2] = tf->command;
159 	fis[3] = tf->feature;
160 
161 	fis[4] = tf->lbal;
162 	fis[5] = tf->lbam;
163 	fis[6] = tf->lbah;
164 	fis[7] = tf->device;
165 
166 	fis[8] = tf->hob_lbal;
167 	fis[9] = tf->hob_lbam;
168 	fis[10] = tf->hob_lbah;
169 	fis[11] = tf->hob_feature;
170 
171 	fis[12] = tf->nsect;
172 	fis[13] = tf->hob_nsect;
173 	fis[14] = 0;
174 	fis[15] = tf->ctl;
175 
176 	fis[16] = tf->auxiliary & 0xff;
177 	fis[17] = (tf->auxiliary >> 8) & 0xff;
178 	fis[18] = (tf->auxiliary >> 16) & 0xff;
179 	fis[19] = (tf->auxiliary >> 24) & 0xff;
180 }
181 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
182 
183 /**
184  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
185  *	@fis: Buffer from which data will be input
186  *	@tf: Taskfile to output
187  *
188  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
189  *
190  *	LOCKING:
191  *	Inherited from caller.
192  */
193 
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)194 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
195 {
196 	tf->status	= fis[2];
197 	tf->error	= fis[3];
198 
199 	tf->lbal	= fis[4];
200 	tf->lbam	= fis[5];
201 	tf->lbah	= fis[6];
202 	tf->device	= fis[7];
203 
204 	tf->hob_lbal	= fis[8];
205 	tf->hob_lbam	= fis[9];
206 	tf->hob_lbah	= fis[10];
207 
208 	tf->nsect	= fis[12];
209 	tf->hob_nsect	= fis[13];
210 }
211 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
212 
213 /**
214  *	sata_link_debounce - debounce SATA phy status
215  *	@link: ATA link to debounce SATA phy status for
216  *	@params: timing parameters { interval, duration, timeout } in msec
217  *	@deadline: deadline jiffies for the operation
218  *
219  *	Make sure SStatus of @link reaches stable state, determined by
220  *	holding the same value where DET is not 1 for @duration polled
221  *	every @interval, before @timeout.  Timeout constraints the
222  *	beginning of the stable state.  Because DET gets stuck at 1 on
223  *	some controllers after hot unplugging, this functions waits
224  *	until timeout then returns 0 if DET is stable at 1.
225  *
226  *	@timeout is further limited by @deadline.  The sooner of the
227  *	two is used.
228  *
229  *	LOCKING:
230  *	Kernel thread context (may sleep)
231  *
232  *	RETURNS:
233  *	0 on success, -errno on failure.
234  */
sata_link_debounce(struct ata_link * link,const unsigned int * params,unsigned long deadline)235 int sata_link_debounce(struct ata_link *link, const unsigned int *params,
236 		       unsigned long deadline)
237 {
238 	unsigned int interval = params[0];
239 	unsigned int duration = params[1];
240 	unsigned long last_jiffies, t;
241 	u32 last, cur;
242 	int rc;
243 
244 	t = ata_deadline(jiffies, params[2]);
245 	if (time_before(t, deadline))
246 		deadline = t;
247 
248 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
249 		return rc;
250 	cur &= 0xf;
251 
252 	last = cur;
253 	last_jiffies = jiffies;
254 
255 	while (1) {
256 		ata_msleep(link->ap, interval);
257 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
258 			return rc;
259 		cur &= 0xf;
260 
261 		/* DET stable? */
262 		if (cur == last) {
263 			if (cur == 1 && time_before(jiffies, deadline))
264 				continue;
265 			if (time_after(jiffies,
266 				       ata_deadline(last_jiffies, duration)))
267 				return 0;
268 			continue;
269 		}
270 
271 		/* unstable, start over */
272 		last = cur;
273 		last_jiffies = jiffies;
274 
275 		/* Check deadline.  If debouncing failed, return
276 		 * -EPIPE to tell upper layer to lower link speed.
277 		 */
278 		if (time_after(jiffies, deadline))
279 			return -EPIPE;
280 	}
281 }
282 EXPORT_SYMBOL_GPL(sata_link_debounce);
283 
284 /**
285  *	sata_link_resume - resume SATA link
286  *	@link: ATA link to resume SATA
287  *	@params: timing parameters { interval, duration, timeout } in msec
288  *	@deadline: deadline jiffies for the operation
289  *
290  *	Resume SATA phy @link and debounce it.
291  *
292  *	LOCKING:
293  *	Kernel thread context (may sleep)
294  *
295  *	RETURNS:
296  *	0 on success, -errno on failure.
297  */
sata_link_resume(struct ata_link * link,const unsigned int * params,unsigned long deadline)298 int sata_link_resume(struct ata_link *link, const unsigned int *params,
299 		     unsigned long deadline)
300 {
301 	int tries = ATA_LINK_RESUME_TRIES;
302 	u32 scontrol, serror;
303 	int rc;
304 
305 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
306 		return rc;
307 
308 	/*
309 	 * Writes to SControl sometimes get ignored under certain
310 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
311 	 * cleared.
312 	 */
313 	do {
314 		scontrol = (scontrol & 0x0f0) | 0x300;
315 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
316 			return rc;
317 		/*
318 		 * Some PHYs react badly if SStatus is pounded
319 		 * immediately after resuming.  Delay 200ms before
320 		 * debouncing.
321 		 */
322 		if (!(link->flags & ATA_LFLAG_NO_DEBOUNCE_DELAY))
323 			ata_msleep(link->ap, 200);
324 
325 		/* is SControl restored correctly? */
326 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
327 			return rc;
328 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
329 
330 	if ((scontrol & 0xf0f) != 0x300) {
331 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
332 			     scontrol);
333 		return 0;
334 	}
335 
336 	if (tries < ATA_LINK_RESUME_TRIES)
337 		ata_link_warn(link, "link resume succeeded after %d retries\n",
338 			      ATA_LINK_RESUME_TRIES - tries);
339 
340 	if ((rc = sata_link_debounce(link, params, deadline)))
341 		return rc;
342 
343 	/* clear SError, some PHYs require this even for SRST to work */
344 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
345 		rc = sata_scr_write(link, SCR_ERROR, serror);
346 
347 	return rc != -EINVAL ? rc : 0;
348 }
349 EXPORT_SYMBOL_GPL(sata_link_resume);
350 
351 /**
352  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
353  *	@link: ATA link to manipulate SControl for
354  *	@policy: LPM policy to configure
355  *	@spm_wakeup: initiate LPM transition to active state
356  *
357  *	Manipulate the IPM field of the SControl register of @link
358  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
359  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
360  *	the link.  This function also clears PHYRDY_CHG before
361  *	returning.
362  *
363  *	LOCKING:
364  *	EH context.
365  *
366  *	RETURNS:
367  *	0 on success, -errno otherwise.
368  */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)369 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
370 		      bool spm_wakeup)
371 {
372 	struct ata_eh_context *ehc = &link->eh_context;
373 	bool woken_up = false;
374 	u32 scontrol;
375 	int rc;
376 
377 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
378 	if (rc)
379 		return rc;
380 
381 	switch (policy) {
382 	case ATA_LPM_MAX_POWER:
383 		/* disable all LPM transitions */
384 		scontrol |= (0x7 << 8);
385 		/* initiate transition to active state */
386 		if (spm_wakeup) {
387 			scontrol |= (0x4 << 12);
388 			woken_up = true;
389 		}
390 		break;
391 	case ATA_LPM_MED_POWER:
392 		/* allow LPM to PARTIAL */
393 		scontrol &= ~(0x1 << 8);
394 		scontrol |= (0x6 << 8);
395 		break;
396 	case ATA_LPM_MED_POWER_WITH_DIPM:
397 	case ATA_LPM_MIN_POWER_WITH_PARTIAL:
398 	case ATA_LPM_MIN_POWER:
399 		if (ata_link_nr_enabled(link) > 0) {
400 			/* assume no restrictions on LPM transitions */
401 			scontrol &= ~(0x7 << 8);
402 
403 			/*
404 			 * If the controller does not support partial, slumber,
405 			 * or devsleep, then disallow these transitions.
406 			 */
407 			if (link->ap->host->flags & ATA_HOST_NO_PART)
408 				scontrol |= (0x1 << 8);
409 
410 			if (link->ap->host->flags & ATA_HOST_NO_SSC)
411 				scontrol |= (0x2 << 8);
412 
413 			if (link->ap->host->flags & ATA_HOST_NO_DEVSLP)
414 				scontrol |= (0x4 << 8);
415 		} else {
416 			/* empty port, power off */
417 			scontrol &= ~0xf;
418 			scontrol |= (0x1 << 2);
419 		}
420 		break;
421 	default:
422 		WARN_ON(1);
423 	}
424 
425 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
426 	if (rc)
427 		return rc;
428 
429 	/* give the link time to transit out of LPM state */
430 	if (woken_up)
431 		msleep(10);
432 
433 	/* clear PHYRDY_CHG from SError */
434 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
435 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
436 }
437 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
438 
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)439 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
440 {
441 	struct ata_link *host_link = &link->ap->link;
442 	u32 limit, target, spd;
443 
444 	limit = link->sata_spd_limit;
445 
446 	/* Don't configure downstream link faster than upstream link.
447 	 * It doesn't speed up anything and some PMPs choke on such
448 	 * configuration.
449 	 */
450 	if (!ata_is_host_link(link) && host_link->sata_spd)
451 		limit &= (1 << host_link->sata_spd) - 1;
452 
453 	if (limit == UINT_MAX)
454 		target = 0;
455 	else
456 		target = fls(limit);
457 
458 	spd = (*scontrol >> 4) & 0xf;
459 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
460 
461 	return spd != target;
462 }
463 
464 /**
465  *	sata_set_spd_needed - is SATA spd configuration needed
466  *	@link: Link in question
467  *
468  *	Test whether the spd limit in SControl matches
469  *	@link->sata_spd_limit.  This function is used to determine
470  *	whether hardreset is necessary to apply SATA spd
471  *	configuration.
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  *
476  *	RETURNS:
477  *	1 if SATA spd configuration is needed, 0 otherwise.
478  */
sata_set_spd_needed(struct ata_link * link)479 static int sata_set_spd_needed(struct ata_link *link)
480 {
481 	u32 scontrol;
482 
483 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
484 		return 1;
485 
486 	return __sata_set_spd_needed(link, &scontrol);
487 }
488 
489 /**
490  *	sata_set_spd - set SATA spd according to spd limit
491  *	@link: Link to set SATA spd for
492  *
493  *	Set SATA spd of @link according to sata_spd_limit.
494  *
495  *	LOCKING:
496  *	Inherited from caller.
497  *
498  *	RETURNS:
499  *	0 if spd doesn't need to be changed, 1 if spd has been
500  *	changed.  Negative errno if SCR registers are inaccessible.
501  */
sata_set_spd(struct ata_link * link)502 int sata_set_spd(struct ata_link *link)
503 {
504 	u32 scontrol;
505 	int rc;
506 
507 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
508 		return rc;
509 
510 	if (!__sata_set_spd_needed(link, &scontrol))
511 		return 0;
512 
513 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
514 		return rc;
515 
516 	return 1;
517 }
518 EXPORT_SYMBOL_GPL(sata_set_spd);
519 
520 /**
521  *	sata_link_hardreset - reset link via SATA phy reset
522  *	@link: link to reset
523  *	@timing: timing parameters { interval, duration, timeout } in msec
524  *	@deadline: deadline jiffies for the operation
525  *	@online: optional out parameter indicating link onlineness
526  *	@check_ready: optional callback to check link readiness
527  *
528  *	SATA phy-reset @link using DET bits of SControl register.
529  *	After hardreset, link readiness is waited upon using
530  *	ata_wait_ready() if @check_ready is specified.  LLDs are
531  *	allowed to not specify @check_ready and wait itself after this
532  *	function returns.  Device classification is LLD's
533  *	responsibility.
534  *
535  *	*@online is set to one iff reset succeeded and @link is online
536  *	after reset.
537  *
538  *	LOCKING:
539  *	Kernel thread context (may sleep)
540  *
541  *	RETURNS:
542  *	0 on success, -errno otherwise.
543  */
sata_link_hardreset(struct ata_link * link,const unsigned int * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))544 int sata_link_hardreset(struct ata_link *link, const unsigned int *timing,
545 			unsigned long deadline,
546 			bool *online, int (*check_ready)(struct ata_link *))
547 {
548 	u32 scontrol;
549 	int rc;
550 
551 	if (online)
552 		*online = false;
553 
554 	if (sata_set_spd_needed(link)) {
555 		/* SATA spec says nothing about how to reconfigure
556 		 * spd.  To be on the safe side, turn off phy during
557 		 * reconfiguration.  This works for at least ICH7 AHCI
558 		 * and Sil3124.
559 		 */
560 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
561 			goto out;
562 
563 		scontrol = (scontrol & 0x0f0) | 0x304;
564 
565 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
566 			goto out;
567 
568 		sata_set_spd(link);
569 	}
570 
571 	/* issue phy wake/reset */
572 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
573 		goto out;
574 
575 	scontrol = (scontrol & 0x0f0) | 0x301;
576 
577 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
578 		goto out;
579 
580 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
581 	 * 10.4.2 says at least 1 ms.
582 	 */
583 	ata_msleep(link->ap, 1);
584 
585 	/* bring link back */
586 	rc = sata_link_resume(link, timing, deadline);
587 	if (rc)
588 		goto out;
589 	/* if link is offline nothing more to do */
590 	if (ata_phys_link_offline(link))
591 		goto out;
592 
593 	/* Link is online.  From this point, -ENODEV too is an error. */
594 	if (online)
595 		*online = true;
596 
597 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
598 		/* If PMP is supported, we have to do follow-up SRST.
599 		 * Some PMPs don't send D2H Reg FIS after hardreset if
600 		 * the first port is empty.  Wait only for
601 		 * ATA_TMOUT_PMP_SRST_WAIT.
602 		 */
603 		if (check_ready) {
604 			unsigned long pmp_deadline;
605 
606 			pmp_deadline = ata_deadline(jiffies,
607 						    ATA_TMOUT_PMP_SRST_WAIT);
608 			if (time_after(pmp_deadline, deadline))
609 				pmp_deadline = deadline;
610 			ata_wait_ready(link, pmp_deadline, check_ready);
611 		}
612 		rc = -EAGAIN;
613 		goto out;
614 	}
615 
616 	rc = 0;
617 	if (check_ready)
618 		rc = ata_wait_ready(link, deadline, check_ready);
619  out:
620 	if (rc && rc != -EAGAIN) {
621 		/* online is set iff link is online && reset succeeded */
622 		if (online)
623 			*online = false;
624 	}
625 	return rc;
626 }
627 EXPORT_SYMBOL_GPL(sata_link_hardreset);
628 
629 /**
630  *	ata_qc_complete_multiple - Complete multiple qcs successfully
631  *	@ap: port in question
632  *	@qc_active: new qc_active mask
633  *
634  *	Complete in-flight commands.  This functions is meant to be
635  *	called from low-level driver's interrupt routine to complete
636  *	requests normally.  ap->qc_active and @qc_active is compared
637  *	and commands are completed accordingly.
638  *
639  *	Always use this function when completing multiple NCQ commands
640  *	from IRQ handlers instead of calling ata_qc_complete()
641  *	multiple times to keep IRQ expect status properly in sync.
642  *
643  *	LOCKING:
644  *	spin_lock_irqsave(host lock)
645  *
646  *	RETURNS:
647  *	Number of completed commands on success, -errno otherwise.
648  */
ata_qc_complete_multiple(struct ata_port * ap,u64 qc_active)649 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
650 {
651 	u64 done_mask, ap_qc_active = ap->qc_active;
652 	int nr_done = 0;
653 
654 	/*
655 	 * If the internal tag is set on ap->qc_active, then we care about
656 	 * bit0 on the passed in qc_active mask. Move that bit up to match
657 	 * the internal tag.
658 	 */
659 	if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
660 		qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
661 		qc_active ^= qc_active & 0x01;
662 	}
663 
664 	done_mask = ap_qc_active ^ qc_active;
665 
666 	if (unlikely(done_mask & qc_active)) {
667 		ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
668 			     ap->qc_active, qc_active);
669 		return -EINVAL;
670 	}
671 
672 	if (ap->ops->qc_ncq_fill_rtf)
673 		ap->ops->qc_ncq_fill_rtf(ap, done_mask);
674 
675 	while (done_mask) {
676 		struct ata_queued_cmd *qc;
677 		unsigned int tag = __ffs64(done_mask);
678 
679 		qc = ata_qc_from_tag(ap, tag);
680 		if (qc) {
681 			ata_qc_complete(qc);
682 			nr_done++;
683 		}
684 		done_mask &= ~(1ULL << tag);
685 	}
686 
687 	return nr_done;
688 }
689 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
690 
691 /**
692  *	ata_slave_link_init - initialize slave link
693  *	@ap: port to initialize slave link for
694  *
695  *	Create and initialize slave link for @ap.  This enables slave
696  *	link handling on the port.
697  *
698  *	In libata, a port contains links and a link contains devices.
699  *	There is single host link but if a PMP is attached to it,
700  *	there can be multiple fan-out links.  On SATA, there's usually
701  *	a single device connected to a link but PATA and SATA
702  *	controllers emulating TF based interface can have two - master
703  *	and slave.
704  *
705  *	However, there are a few controllers which don't fit into this
706  *	abstraction too well - SATA controllers which emulate TF
707  *	interface with both master and slave devices but also have
708  *	separate SCR register sets for each device.  These controllers
709  *	need separate links for physical link handling
710  *	(e.g. onlineness, link speed) but should be treated like a
711  *	traditional M/S controller for everything else (e.g. command
712  *	issue, softreset).
713  *
714  *	slave_link is libata's way of handling this class of
715  *	controllers without impacting core layer too much.  For
716  *	anything other than physical link handling, the default host
717  *	link is used for both master and slave.  For physical link
718  *	handling, separate @ap->slave_link is used.  All dirty details
719  *	are implemented inside libata core layer.  From LLD's POV, the
720  *	only difference is that prereset, hardreset and postreset are
721  *	called once more for the slave link, so the reset sequence
722  *	looks like the following.
723  *
724  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
725  *	softreset(M) -> postreset(M) -> postreset(S)
726  *
727  *	Note that softreset is called only for the master.  Softreset
728  *	resets both M/S by definition, so SRST on master should handle
729  *	both (the standard method will work just fine).
730  *
731  *	LOCKING:
732  *	Should be called before host is registered.
733  *
734  *	RETURNS:
735  *	0 on success, -errno on failure.
736  */
ata_slave_link_init(struct ata_port * ap)737 int ata_slave_link_init(struct ata_port *ap)
738 {
739 	struct ata_link *link;
740 
741 	WARN_ON(ap->slave_link);
742 	WARN_ON(ap->flags & ATA_FLAG_PMP);
743 
744 	link = kzalloc(sizeof(*link), GFP_KERNEL);
745 	if (!link)
746 		return -ENOMEM;
747 
748 	ata_link_init(ap, link, 1);
749 	ap->slave_link = link;
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(ata_slave_link_init);
753 
754 /**
755  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
756  *	@link: Link receiving the event
757  *
758  *	Test whether the received PHY event has to be ignored or not.
759  *
760  *	LOCKING:
761  *	None:
762  *
763  *	RETURNS:
764  *	True if the event has to be ignored.
765  */
sata_lpm_ignore_phy_events(struct ata_link * link)766 bool sata_lpm_ignore_phy_events(struct ata_link *link)
767 {
768 	unsigned long lpm_timeout = link->last_lpm_change +
769 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
770 
771 	/* if LPM is enabled, PHYRDY doesn't mean anything */
772 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
773 		return true;
774 
775 	/* ignore the first PHY event after the LPM policy changed
776 	 * as it is might be spurious
777 	 */
778 	if ((link->flags & ATA_LFLAG_CHANGED) &&
779 	    time_before(jiffies, lpm_timeout))
780 		return true;
781 
782 	return false;
783 }
784 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
785 
786 static const char *ata_lpm_policy_names[] = {
787 	[ATA_LPM_UNKNOWN]		= "keep_firmware_settings",
788 	[ATA_LPM_MAX_POWER]		= "max_performance",
789 	[ATA_LPM_MED_POWER]		= "medium_power",
790 	[ATA_LPM_MED_POWER_WITH_DIPM]	= "med_power_with_dipm",
791 	[ATA_LPM_MIN_POWER_WITH_PARTIAL] = "min_power_with_partial",
792 	[ATA_LPM_MIN_POWER]		= "min_power",
793 };
794 
ata_scsi_lpm_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)795 static ssize_t ata_scsi_lpm_store(struct device *device,
796 				  struct device_attribute *attr,
797 				  const char *buf, size_t count)
798 {
799 	struct Scsi_Host *shost = class_to_shost(device);
800 	struct ata_port *ap = ata_shost_to_port(shost);
801 	struct ata_link *link;
802 	struct ata_device *dev;
803 	enum ata_lpm_policy policy;
804 	unsigned long flags;
805 
806 	/* UNKNOWN is internal state, iterate from MAX_POWER */
807 	for (policy = ATA_LPM_MAX_POWER;
808 	     policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) {
809 		const char *name = ata_lpm_policy_names[policy];
810 
811 		if (strncmp(name, buf, strlen(name)) == 0)
812 			break;
813 	}
814 	if (policy == ARRAY_SIZE(ata_lpm_policy_names))
815 		return -EINVAL;
816 
817 	spin_lock_irqsave(ap->lock, flags);
818 
819 	ata_for_each_link(link, ap, EDGE) {
820 		ata_for_each_dev(dev, &ap->link, ENABLED) {
821 			if (dev->horkage & ATA_HORKAGE_NOLPM) {
822 				count = -EOPNOTSUPP;
823 				goto out_unlock;
824 			}
825 		}
826 	}
827 
828 	ap->target_lpm_policy = policy;
829 	ata_port_schedule_eh(ap);
830 out_unlock:
831 	spin_unlock_irqrestore(ap->lock, flags);
832 	return count;
833 }
834 
ata_scsi_lpm_show(struct device * dev,struct device_attribute * attr,char * buf)835 static ssize_t ata_scsi_lpm_show(struct device *dev,
836 				 struct device_attribute *attr, char *buf)
837 {
838 	struct Scsi_Host *shost = class_to_shost(dev);
839 	struct ata_port *ap = ata_shost_to_port(shost);
840 
841 	if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names))
842 		return -EINVAL;
843 
844 	return sysfs_emit(buf, "%s\n",
845 			ata_lpm_policy_names[ap->target_lpm_policy]);
846 }
847 DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR,
848 	    ata_scsi_lpm_show, ata_scsi_lpm_store);
849 EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy);
850 
851 /**
852  *	ata_ncq_prio_supported - Check if device supports NCQ Priority
853  *	@ap: ATA port of the target device
854  *	@sdev: SCSI device
855  *	@supported: Address of a boolean to store the result
856  *
857  *	Helper to check if device supports NCQ Priority feature.
858  *
859  *	Context: Any context. Takes and releases @ap->lock.
860  *
861  *	Return:
862  *	* %0		- OK. Status is stored into @supported
863  *	* %-ENODEV	- Failed to find the ATA device
864  */
ata_ncq_prio_supported(struct ata_port * ap,struct scsi_device * sdev,bool * supported)865 int ata_ncq_prio_supported(struct ata_port *ap, struct scsi_device *sdev,
866 			   bool *supported)
867 {
868 	struct ata_device *dev;
869 	unsigned long flags;
870 	int rc = 0;
871 
872 	spin_lock_irqsave(ap->lock, flags);
873 	dev = ata_scsi_find_dev(ap, sdev);
874 	if (!dev)
875 		rc = -ENODEV;
876 	else
877 		*supported = dev->flags & ATA_DFLAG_NCQ_PRIO;
878 	spin_unlock_irqrestore(ap->lock, flags);
879 
880 	return rc;
881 }
882 EXPORT_SYMBOL_GPL(ata_ncq_prio_supported);
883 
ata_ncq_prio_supported_show(struct device * device,struct device_attribute * attr,char * buf)884 static ssize_t ata_ncq_prio_supported_show(struct device *device,
885 					   struct device_attribute *attr,
886 					   char *buf)
887 {
888 	struct scsi_device *sdev = to_scsi_device(device);
889 	struct ata_port *ap = ata_shost_to_port(sdev->host);
890 	bool supported;
891 	int rc;
892 
893 	rc = ata_ncq_prio_supported(ap, sdev, &supported);
894 	if (rc)
895 		return rc;
896 
897 	return sysfs_emit(buf, "%d\n", supported);
898 }
899 
900 DEVICE_ATTR(ncq_prio_supported, S_IRUGO, ata_ncq_prio_supported_show, NULL);
901 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_supported);
902 
903 /**
904  *	ata_ncq_prio_enabled - Check if NCQ Priority is enabled
905  *	@ap: ATA port of the target device
906  *	@sdev: SCSI device
907  *	@enabled: Address of a boolean to store the result
908  *
909  *	Helper to check if NCQ Priority feature is enabled.
910  *
911  *	Context: Any context. Takes and releases @ap->lock.
912  *
913  *	Return:
914  *	* %0		- OK. Status is stored into @enabled
915  *	* %-ENODEV	- Failed to find the ATA device
916  */
ata_ncq_prio_enabled(struct ata_port * ap,struct scsi_device * sdev,bool * enabled)917 int ata_ncq_prio_enabled(struct ata_port *ap, struct scsi_device *sdev,
918 			 bool *enabled)
919 {
920 	struct ata_device *dev;
921 	unsigned long flags;
922 	int rc = 0;
923 
924 	spin_lock_irqsave(ap->lock, flags);
925 	dev = ata_scsi_find_dev(ap, sdev);
926 	if (!dev)
927 		rc = -ENODEV;
928 	else
929 		*enabled = dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED;
930 	spin_unlock_irqrestore(ap->lock, flags);
931 
932 	return rc;
933 }
934 EXPORT_SYMBOL_GPL(ata_ncq_prio_enabled);
935 
ata_ncq_prio_enable_show(struct device * device,struct device_attribute * attr,char * buf)936 static ssize_t ata_ncq_prio_enable_show(struct device *device,
937 					struct device_attribute *attr,
938 					char *buf)
939 {
940 	struct scsi_device *sdev = to_scsi_device(device);
941 	struct ata_port *ap = ata_shost_to_port(sdev->host);
942 	bool enabled;
943 	int rc;
944 
945 	rc = ata_ncq_prio_enabled(ap, sdev, &enabled);
946 	if (rc)
947 		return rc;
948 
949 	return sysfs_emit(buf, "%d\n", enabled);
950 }
951 
952 /**
953  *	ata_ncq_prio_enable - Enable/disable NCQ Priority
954  *	@ap: ATA port of the target device
955  *	@sdev: SCSI device
956  *	@enable: true - enable NCQ Priority, false - disable NCQ Priority
957  *
958  *	Helper to enable/disable NCQ Priority feature.
959  *
960  *	Context: Any context. Takes and releases @ap->lock.
961  *
962  *	Return:
963  *	* %0		- OK. Status is stored into @enabled
964  *	* %-ENODEV	- Failed to find the ATA device
965  *	* %-EINVAL	- NCQ Priority is not supported or CDL is enabled
966  */
ata_ncq_prio_enable(struct ata_port * ap,struct scsi_device * sdev,bool enable)967 int ata_ncq_prio_enable(struct ata_port *ap, struct scsi_device *sdev,
968 			bool enable)
969 {
970 	struct ata_device *dev;
971 	unsigned long flags;
972 	int rc = 0;
973 
974 	spin_lock_irqsave(ap->lock, flags);
975 
976 	dev = ata_scsi_find_dev(ap, sdev);
977 	if (!dev) {
978 		rc = -ENODEV;
979 		goto unlock;
980 	}
981 
982 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO)) {
983 		rc = -EINVAL;
984 		goto unlock;
985 	}
986 
987 	if (enable) {
988 		if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
989 			ata_dev_err(dev,
990 				"CDL must be disabled to enable NCQ priority\n");
991 			rc = -EINVAL;
992 			goto unlock;
993 		}
994 		dev->flags |= ATA_DFLAG_NCQ_PRIO_ENABLED;
995 	} else {
996 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
997 	}
998 
999 unlock:
1000 	spin_unlock_irqrestore(ap->lock, flags);
1001 
1002 	return rc;
1003 }
1004 EXPORT_SYMBOL_GPL(ata_ncq_prio_enable);
1005 
ata_ncq_prio_enable_store(struct device * device,struct device_attribute * attr,const char * buf,size_t len)1006 static ssize_t ata_ncq_prio_enable_store(struct device *device,
1007 					 struct device_attribute *attr,
1008 					 const char *buf, size_t len)
1009 {
1010 	struct scsi_device *sdev = to_scsi_device(device);
1011 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1012 	bool enable;
1013 	int rc;
1014 
1015 	rc = kstrtobool(buf, &enable);
1016 	if (rc)
1017 		return rc;
1018 
1019 	rc = ata_ncq_prio_enable(ap, sdev, enable);
1020 	if (rc)
1021 		return rc;
1022 
1023 	return len;
1024 }
1025 
1026 DEVICE_ATTR(ncq_prio_enable, S_IRUGO | S_IWUSR,
1027 	    ata_ncq_prio_enable_show, ata_ncq_prio_enable_store);
1028 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_enable);
1029 
1030 static struct attribute *ata_ncq_sdev_attrs[] = {
1031 	&dev_attr_unload_heads.attr,
1032 	&dev_attr_ncq_prio_enable.attr,
1033 	&dev_attr_ncq_prio_supported.attr,
1034 	NULL
1035 };
1036 
1037 static const struct attribute_group ata_ncq_sdev_attr_group = {
1038 	.attrs = ata_ncq_sdev_attrs
1039 };
1040 
1041 const struct attribute_group *ata_ncq_sdev_groups[] = {
1042 	&ata_ncq_sdev_attr_group,
1043 	NULL
1044 };
1045 EXPORT_SYMBOL_GPL(ata_ncq_sdev_groups);
1046 
1047 static ssize_t
ata_scsi_em_message_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1048 ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr,
1049 			  const char *buf, size_t count)
1050 {
1051 	struct Scsi_Host *shost = class_to_shost(dev);
1052 	struct ata_port *ap = ata_shost_to_port(shost);
1053 	if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM))
1054 		return ap->ops->em_store(ap, buf, count);
1055 	return -EINVAL;
1056 }
1057 
1058 static ssize_t
ata_scsi_em_message_show(struct device * dev,struct device_attribute * attr,char * buf)1059 ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr,
1060 			 char *buf)
1061 {
1062 	struct Scsi_Host *shost = class_to_shost(dev);
1063 	struct ata_port *ap = ata_shost_to_port(shost);
1064 
1065 	if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM))
1066 		return ap->ops->em_show(ap, buf);
1067 	return -EINVAL;
1068 }
1069 DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR,
1070 		ata_scsi_em_message_show, ata_scsi_em_message_store);
1071 EXPORT_SYMBOL_GPL(dev_attr_em_message);
1072 
1073 static ssize_t
ata_scsi_em_message_type_show(struct device * dev,struct device_attribute * attr,char * buf)1074 ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr,
1075 			      char *buf)
1076 {
1077 	struct Scsi_Host *shost = class_to_shost(dev);
1078 	struct ata_port *ap = ata_shost_to_port(shost);
1079 
1080 	return sysfs_emit(buf, "%d\n", ap->em_message_type);
1081 }
1082 DEVICE_ATTR(em_message_type, S_IRUGO,
1083 		  ata_scsi_em_message_type_show, NULL);
1084 EXPORT_SYMBOL_GPL(dev_attr_em_message_type);
1085 
1086 static ssize_t
ata_scsi_activity_show(struct device * dev,struct device_attribute * attr,char * buf)1087 ata_scsi_activity_show(struct device *dev, struct device_attribute *attr,
1088 		char *buf)
1089 {
1090 	struct scsi_device *sdev = to_scsi_device(dev);
1091 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1092 	struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
1093 
1094 	if (atadev && ap->ops->sw_activity_show &&
1095 	    (ap->flags & ATA_FLAG_SW_ACTIVITY))
1096 		return ap->ops->sw_activity_show(atadev, buf);
1097 	return -EINVAL;
1098 }
1099 
1100 static ssize_t
ata_scsi_activity_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1101 ata_scsi_activity_store(struct device *dev, struct device_attribute *attr,
1102 	const char *buf, size_t count)
1103 {
1104 	struct scsi_device *sdev = to_scsi_device(dev);
1105 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1106 	struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
1107 	enum sw_activity val;
1108 	int rc;
1109 
1110 	if (atadev && ap->ops->sw_activity_store &&
1111 	    (ap->flags & ATA_FLAG_SW_ACTIVITY)) {
1112 		val = simple_strtoul(buf, NULL, 0);
1113 		switch (val) {
1114 		case OFF: case BLINK_ON: case BLINK_OFF:
1115 			rc = ap->ops->sw_activity_store(atadev, val);
1116 			if (!rc)
1117 				return count;
1118 			else
1119 				return rc;
1120 		}
1121 	}
1122 	return -EINVAL;
1123 }
1124 DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show,
1125 			ata_scsi_activity_store);
1126 EXPORT_SYMBOL_GPL(dev_attr_sw_activity);
1127 
1128 /**
1129  *	ata_change_queue_depth - Set a device maximum queue depth
1130  *	@ap: ATA port of the target device
1131  *	@sdev: SCSI device to configure queue depth for
1132  *	@queue_depth: new queue depth
1133  *
1134  *	Helper to set a device maximum queue depth, usable with both libsas
1135  *	and libata.
1136  *
1137  */
ata_change_queue_depth(struct ata_port * ap,struct scsi_device * sdev,int queue_depth)1138 int ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev,
1139 			   int queue_depth)
1140 {
1141 	struct ata_device *dev;
1142 	unsigned long flags;
1143 	int max_queue_depth;
1144 
1145 	spin_lock_irqsave(ap->lock, flags);
1146 
1147 	dev = ata_scsi_find_dev(ap, sdev);
1148 	if (!dev || queue_depth < 1 || queue_depth == sdev->queue_depth) {
1149 		spin_unlock_irqrestore(ap->lock, flags);
1150 		return sdev->queue_depth;
1151 	}
1152 
1153 	/*
1154 	 * Make sure that the queue depth requested does not exceed the device
1155 	 * capabilities.
1156 	 */
1157 	max_queue_depth = min(ATA_MAX_QUEUE, sdev->host->can_queue);
1158 	max_queue_depth = min(max_queue_depth, ata_id_queue_depth(dev->id));
1159 	if (queue_depth > max_queue_depth) {
1160 		spin_unlock_irqrestore(ap->lock, flags);
1161 		return -EINVAL;
1162 	}
1163 
1164 	/*
1165 	 * If NCQ is not supported by the device or if the target queue depth
1166 	 * is 1 (to disable drive side command queueing), turn off NCQ.
1167 	 */
1168 	if (queue_depth == 1 || !ata_ncq_supported(dev)) {
1169 		dev->flags |= ATA_DFLAG_NCQ_OFF;
1170 		queue_depth = 1;
1171 	} else {
1172 		dev->flags &= ~ATA_DFLAG_NCQ_OFF;
1173 	}
1174 
1175 	spin_unlock_irqrestore(ap->lock, flags);
1176 
1177 	if (queue_depth == sdev->queue_depth)
1178 		return sdev->queue_depth;
1179 
1180 	return scsi_change_queue_depth(sdev, queue_depth);
1181 }
1182 EXPORT_SYMBOL_GPL(ata_change_queue_depth);
1183 
1184 /**
1185  *	ata_scsi_change_queue_depth - SCSI callback for queue depth config
1186  *	@sdev: SCSI device to configure queue depth for
1187  *	@queue_depth: new queue depth
1188  *
1189  *	This is libata standard hostt->change_queue_depth callback.
1190  *	SCSI will call into this callback when user tries to set queue
1191  *	depth via sysfs.
1192  *
1193  *	LOCKING:
1194  *	SCSI layer (we don't care)
1195  *
1196  *	RETURNS:
1197  *	Newly configured queue depth.
1198  */
ata_scsi_change_queue_depth(struct scsi_device * sdev,int queue_depth)1199 int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth)
1200 {
1201 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1202 
1203 	return ata_change_queue_depth(ap, sdev, queue_depth);
1204 }
1205 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1206 
1207 /**
1208  *	ata_sas_port_alloc - Allocate port for a SAS attached SATA device
1209  *	@host: ATA host container for all SAS ports
1210  *	@port_info: Information from low-level host driver
1211  *	@shost: SCSI host that the scsi device is attached to
1212  *
1213  *	LOCKING:
1214  *	PCI/etc. bus probe sem.
1215  *
1216  *	RETURNS:
1217  *	ata_port pointer on success / NULL on failure.
1218  */
1219 
ata_sas_port_alloc(struct ata_host * host,struct ata_port_info * port_info,struct Scsi_Host * shost)1220 struct ata_port *ata_sas_port_alloc(struct ata_host *host,
1221 				    struct ata_port_info *port_info,
1222 				    struct Scsi_Host *shost)
1223 {
1224 	struct ata_port *ap;
1225 
1226 	ap = ata_port_alloc(host);
1227 	if (!ap)
1228 		return NULL;
1229 
1230 	ap->port_no = 0;
1231 	ap->lock = &host->lock;
1232 	ap->pio_mask = port_info->pio_mask;
1233 	ap->mwdma_mask = port_info->mwdma_mask;
1234 	ap->udma_mask = port_info->udma_mask;
1235 	ap->flags |= port_info->flags;
1236 	ap->ops = port_info->port_ops;
1237 	ap->cbl = ATA_CBL_SATA;
1238 	ap->print_id = atomic_inc_return(&ata_print_id);
1239 
1240 	return ap;
1241 }
1242 EXPORT_SYMBOL_GPL(ata_sas_port_alloc);
1243 
ata_sas_tport_add(struct device * parent,struct ata_port * ap)1244 int ata_sas_tport_add(struct device *parent, struct ata_port *ap)
1245 {
1246 	return ata_tport_add(parent, ap);
1247 }
1248 EXPORT_SYMBOL_GPL(ata_sas_tport_add);
1249 
ata_sas_tport_delete(struct ata_port * ap)1250 void ata_sas_tport_delete(struct ata_port *ap)
1251 {
1252 	ata_tport_delete(ap);
1253 }
1254 EXPORT_SYMBOL_GPL(ata_sas_tport_delete);
1255 
1256 /**
1257  *	ata_sas_device_configure - Default device_configure routine for libata
1258  *				   devices
1259  *	@sdev: SCSI device to configure
1260  *	@lim: queue limits
1261  *	@ap: ATA port to which SCSI device is attached
1262  *
1263  *	RETURNS:
1264  *	Zero.
1265  */
1266 
ata_sas_device_configure(struct scsi_device * sdev,struct queue_limits * lim,struct ata_port * ap)1267 int ata_sas_device_configure(struct scsi_device *sdev, struct queue_limits *lim,
1268 		struct ata_port *ap)
1269 {
1270 	ata_scsi_sdev_config(sdev);
1271 
1272 	return ata_scsi_dev_config(sdev, lim, ap->link.device);
1273 }
1274 EXPORT_SYMBOL_GPL(ata_sas_device_configure);
1275 
1276 /**
1277  *	ata_sas_queuecmd - Issue SCSI cdb to libata-managed device
1278  *	@cmd: SCSI command to be sent
1279  *	@ap:	ATA port to which the command is being sent
1280  *
1281  *	RETURNS:
1282  *	Return value from __ata_scsi_queuecmd() if @cmd can be queued,
1283  *	0 otherwise.
1284  */
1285 
ata_sas_queuecmd(struct scsi_cmnd * cmd,struct ata_port * ap)1286 int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap)
1287 {
1288 	int rc = 0;
1289 
1290 	if (likely(ata_dev_enabled(ap->link.device)))
1291 		rc = __ata_scsi_queuecmd(cmd, ap->link.device);
1292 	else {
1293 		cmd->result = (DID_BAD_TARGET << 16);
1294 		scsi_done(cmd);
1295 	}
1296 	return rc;
1297 }
1298 EXPORT_SYMBOL_GPL(ata_sas_queuecmd);
1299 
1300 /**
1301  *	sata_async_notification - SATA async notification handler
1302  *	@ap: ATA port where async notification is received
1303  *
1304  *	Handler to be called when async notification via SDB FIS is
1305  *	received.  This function schedules EH if necessary.
1306  *
1307  *	LOCKING:
1308  *	spin_lock_irqsave(host lock)
1309  *
1310  *	RETURNS:
1311  *	1 if EH is scheduled, 0 otherwise.
1312  */
sata_async_notification(struct ata_port * ap)1313 int sata_async_notification(struct ata_port *ap)
1314 {
1315 	u32 sntf;
1316 	int rc;
1317 
1318 	if (!(ap->flags & ATA_FLAG_AN))
1319 		return 0;
1320 
1321 	rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf);
1322 	if (rc == 0)
1323 		sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf);
1324 
1325 	if (!sata_pmp_attached(ap) || rc) {
1326 		/* PMP is not attached or SNTF is not available */
1327 		if (!sata_pmp_attached(ap)) {
1328 			/* PMP is not attached.  Check whether ATAPI
1329 			 * AN is configured.  If so, notify media
1330 			 * change.
1331 			 */
1332 			struct ata_device *dev = ap->link.device;
1333 
1334 			if ((dev->class == ATA_DEV_ATAPI) &&
1335 			    (dev->flags & ATA_DFLAG_AN))
1336 				ata_scsi_media_change_notify(dev);
1337 			return 0;
1338 		} else {
1339 			/* PMP is attached but SNTF is not available.
1340 			 * ATAPI async media change notification is
1341 			 * not used.  The PMP must be reporting PHY
1342 			 * status change, schedule EH.
1343 			 */
1344 			ata_port_schedule_eh(ap);
1345 			return 1;
1346 		}
1347 	} else {
1348 		/* PMP is attached and SNTF is available */
1349 		struct ata_link *link;
1350 
1351 		/* check and notify ATAPI AN */
1352 		ata_for_each_link(link, ap, EDGE) {
1353 			if (!(sntf & (1 << link->pmp)))
1354 				continue;
1355 
1356 			if ((link->device->class == ATA_DEV_ATAPI) &&
1357 			    (link->device->flags & ATA_DFLAG_AN))
1358 				ata_scsi_media_change_notify(link->device);
1359 		}
1360 
1361 		/* If PMP is reporting that PHY status of some
1362 		 * downstream ports has changed, schedule EH.
1363 		 */
1364 		if (sntf & (1 << SATA_PMP_CTRL_PORT)) {
1365 			ata_port_schedule_eh(ap);
1366 			return 1;
1367 		}
1368 
1369 		return 0;
1370 	}
1371 }
1372 EXPORT_SYMBOL_GPL(sata_async_notification);
1373 
1374 /**
1375  *	ata_eh_read_log_10h - Read log page 10h for NCQ error details
1376  *	@dev: Device to read log page 10h from
1377  *	@tag: Resulting tag of the failed command
1378  *	@tf: Resulting taskfile registers of the failed command
1379  *
1380  *	Read log page 10h to obtain NCQ error details and clear error
1381  *	condition.
1382  *
1383  *	LOCKING:
1384  *	Kernel thread context (may sleep).
1385  *
1386  *	RETURNS:
1387  *	0 on success, -errno otherwise.
1388  */
ata_eh_read_log_10h(struct ata_device * dev,int * tag,struct ata_taskfile * tf)1389 static int ata_eh_read_log_10h(struct ata_device *dev,
1390 			       int *tag, struct ata_taskfile *tf)
1391 {
1392 	u8 *buf = dev->link->ap->sector_buf;
1393 	unsigned int err_mask;
1394 	u8 csum;
1395 	int i;
1396 
1397 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1);
1398 	if (err_mask)
1399 		return -EIO;
1400 
1401 	csum = 0;
1402 	for (i = 0; i < ATA_SECT_SIZE; i++)
1403 		csum += buf[i];
1404 	if (csum)
1405 		ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n",
1406 			     csum);
1407 
1408 	if (buf[0] & 0x80)
1409 		return -ENOENT;
1410 
1411 	*tag = buf[0] & 0x1f;
1412 
1413 	tf->status = buf[2];
1414 	tf->error = buf[3];
1415 	tf->lbal = buf[4];
1416 	tf->lbam = buf[5];
1417 	tf->lbah = buf[6];
1418 	tf->device = buf[7];
1419 	tf->hob_lbal = buf[8];
1420 	tf->hob_lbam = buf[9];
1421 	tf->hob_lbah = buf[10];
1422 	tf->nsect = buf[12];
1423 	tf->hob_nsect = buf[13];
1424 	if (ata_id_has_ncq_autosense(dev->id) && (tf->status & ATA_SENSE))
1425 		tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16];
1426 
1427 	return 0;
1428 }
1429 
1430 /**
1431  *	ata_eh_read_sense_success_ncq_log - Read the sense data for successful
1432  *					    NCQ commands log
1433  *	@link: ATA link to get sense data for
1434  *
1435  *	Read the sense data for successful NCQ commands log page to obtain
1436  *	sense data for all NCQ commands that completed successfully with
1437  *	the sense data available bit set.
1438  *
1439  *	LOCKING:
1440  *	Kernel thread context (may sleep).
1441  *
1442  *	RETURNS:
1443  *	0 on success, -errno otherwise.
1444  */
ata_eh_read_sense_success_ncq_log(struct ata_link * link)1445 int ata_eh_read_sense_success_ncq_log(struct ata_link *link)
1446 {
1447 	struct ata_device *dev = link->device;
1448 	struct ata_port *ap = dev->link->ap;
1449 	u8 *buf = ap->ncq_sense_buf;
1450 	struct ata_queued_cmd *qc;
1451 	unsigned int err_mask, tag;
1452 	u8 *sense, sk = 0, asc = 0, ascq = 0;
1453 	u64 sense_valid, val;
1454 	int ret = 0;
1455 
1456 	err_mask = ata_read_log_page(dev, ATA_LOG_SENSE_NCQ, 0, buf, 2);
1457 	if (err_mask) {
1458 		ata_dev_err(dev,
1459 			"Failed to read Sense Data for Successful NCQ Commands log\n");
1460 		return -EIO;
1461 	}
1462 
1463 	/* Check the log header */
1464 	val = get_unaligned_le64(&buf[0]);
1465 	if ((val & 0xffff) != 1 || ((val >> 16) & 0xff) != 0x0f) {
1466 		ata_dev_err(dev,
1467 			"Invalid Sense Data for Successful NCQ Commands log\n");
1468 		return -EIO;
1469 	}
1470 
1471 	sense_valid = (u64)buf[8] | ((u64)buf[9] << 8) |
1472 		((u64)buf[10] << 16) | ((u64)buf[11] << 24);
1473 
1474 	ata_qc_for_each_raw(ap, qc, tag) {
1475 		if (!(qc->flags & ATA_QCFLAG_EH) ||
1476 		    !(qc->flags & ATA_QCFLAG_EH_SUCCESS_CMD) ||
1477 		    qc->err_mask ||
1478 		    ata_dev_phys_link(qc->dev) != link)
1479 			continue;
1480 
1481 		/*
1482 		 * If the command does not have any sense data, clear ATA_SENSE.
1483 		 * Keep ATA_QCFLAG_EH_SUCCESS_CMD so that command is finished.
1484 		 */
1485 		if (!(sense_valid & (1ULL << tag))) {
1486 			qc->result_tf.status &= ~ATA_SENSE;
1487 			continue;
1488 		}
1489 
1490 		sense = &buf[32 + 24 * tag];
1491 		sk = sense[0];
1492 		asc = sense[1];
1493 		ascq = sense[2];
1494 
1495 		if (!ata_scsi_sense_is_valid(sk, asc, ascq)) {
1496 			ret = -EIO;
1497 			continue;
1498 		}
1499 
1500 		/* Set sense without also setting scsicmd->result */
1501 		scsi_build_sense_buffer(dev->flags & ATA_DFLAG_D_SENSE,
1502 					qc->scsicmd->sense_buffer, sk,
1503 					asc, ascq);
1504 		qc->flags |= ATA_QCFLAG_SENSE_VALID;
1505 
1506 		/*
1507 		 * If we have sense data, call scsi_check_sense() in order to
1508 		 * set the correct SCSI ML byte (if any). No point in checking
1509 		 * the return value, since the command has already completed
1510 		 * successfully.
1511 		 */
1512 		scsi_check_sense(qc->scsicmd);
1513 	}
1514 
1515 	return ret;
1516 }
1517 EXPORT_SYMBOL_GPL(ata_eh_read_sense_success_ncq_log);
1518 
1519 /**
1520  *	ata_eh_analyze_ncq_error - analyze NCQ error
1521  *	@link: ATA link to analyze NCQ error for
1522  *
1523  *	Read log page 10h, determine the offending qc and acquire
1524  *	error status TF.  For NCQ device errors, all LLDDs have to do
1525  *	is setting AC_ERR_DEV in ehi->err_mask.  This function takes
1526  *	care of the rest.
1527  *
1528  *	LOCKING:
1529  *	Kernel thread context (may sleep).
1530  */
ata_eh_analyze_ncq_error(struct ata_link * link)1531 void ata_eh_analyze_ncq_error(struct ata_link *link)
1532 {
1533 	struct ata_port *ap = link->ap;
1534 	struct ata_eh_context *ehc = &link->eh_context;
1535 	struct ata_device *dev = link->device;
1536 	struct ata_queued_cmd *qc;
1537 	struct ata_taskfile tf;
1538 	int tag, rc;
1539 
1540 	/* if frozen, we can't do much */
1541 	if (ata_port_is_frozen(ap))
1542 		return;
1543 
1544 	/* is it NCQ device error? */
1545 	if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV))
1546 		return;
1547 
1548 	/* has LLDD analyzed already? */
1549 	ata_qc_for_each_raw(ap, qc, tag) {
1550 		if (!(qc->flags & ATA_QCFLAG_EH))
1551 			continue;
1552 
1553 		if (qc->err_mask)
1554 			return;
1555 	}
1556 
1557 	/* okay, this error is ours */
1558 	memset(&tf, 0, sizeof(tf));
1559 	rc = ata_eh_read_log_10h(dev, &tag, &tf);
1560 	if (rc) {
1561 		ata_link_err(link, "failed to read log page 10h (errno=%d)\n",
1562 			     rc);
1563 		return;
1564 	}
1565 
1566 	if (!(link->sactive & (1 << tag))) {
1567 		ata_link_err(link, "log page 10h reported inactive tag %d\n",
1568 			     tag);
1569 		return;
1570 	}
1571 
1572 	/* we've got the perpetrator, condemn it */
1573 	qc = __ata_qc_from_tag(ap, tag);
1574 	memcpy(&qc->result_tf, &tf, sizeof(tf));
1575 	qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
1576 	qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ;
1577 
1578 	/*
1579 	 * If the device supports NCQ autosense, ata_eh_read_log_10h() will have
1580 	 * stored the sense data in qc->result_tf.auxiliary.
1581 	 */
1582 	if (qc->result_tf.auxiliary) {
1583 		char sense_key, asc, ascq;
1584 
1585 		sense_key = (qc->result_tf.auxiliary >> 16) & 0xff;
1586 		asc = (qc->result_tf.auxiliary >> 8) & 0xff;
1587 		ascq = qc->result_tf.auxiliary & 0xff;
1588 		if (ata_scsi_sense_is_valid(sense_key, asc, ascq)) {
1589 			ata_scsi_set_sense(dev, qc->scsicmd, sense_key, asc,
1590 					   ascq);
1591 			ata_scsi_set_sense_information(dev, qc->scsicmd,
1592 						       &qc->result_tf);
1593 			qc->flags |= ATA_QCFLAG_SENSE_VALID;
1594 		}
1595 	}
1596 
1597 	ata_qc_for_each_raw(ap, qc, tag) {
1598 		if (!(qc->flags & ATA_QCFLAG_EH) ||
1599 		    qc->flags & ATA_QCFLAG_EH_SUCCESS_CMD ||
1600 		    ata_dev_phys_link(qc->dev) != link)
1601 			continue;
1602 
1603 		/* Skip the single QC which caused the NCQ error. */
1604 		if (qc->err_mask)
1605 			continue;
1606 
1607 		/*
1608 		 * For SATA, the STATUS and ERROR fields are shared for all NCQ
1609 		 * commands that were completed with the same SDB FIS.
1610 		 * Therefore, we have to clear the ATA_ERR bit for all QCs
1611 		 * except the one that caused the NCQ error.
1612 		 */
1613 		qc->result_tf.status &= ~ATA_ERR;
1614 		qc->result_tf.error = 0;
1615 
1616 		/*
1617 		 * If we get a NCQ error, that means that a single command was
1618 		 * aborted. All other failed commands for our link should be
1619 		 * retried and has no business of going though further scrutiny
1620 		 * by ata_eh_link_autopsy().
1621 		 */
1622 		qc->flags |= ATA_QCFLAG_RETRY;
1623 	}
1624 
1625 	ehc->i.err_mask &= ~AC_ERR_DEV;
1626 }
1627 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
1628