xref: /dragonfly/contrib/gdb-7/gdb/infrun.c (revision 74a8b0f5)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63 
64 /* Prototypes for local functions */
65 
66 static void signals_info (char *, int);
67 
68 static void handle_command (char *, int);
69 
70 static void sig_print_info (enum gdb_signal);
71 
72 static void sig_print_header (void);
73 
74 static void resume_cleanups (void *);
75 
76 static int hook_stop_stub (void *);
77 
78 static int restore_selected_frame (void *);
79 
80 static int follow_fork (void);
81 
82 static void set_schedlock_func (char *args, int from_tty,
83 				struct cmd_list_element *c);
84 
85 static int currently_stepping (struct thread_info *tp);
86 
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 						   void *data);
89 
90 static void xdb_handle_command (char *args, int from_tty);
91 
92 static int prepare_to_proceed (int);
93 
94 static void print_exited_reason (int exitstatus);
95 
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97 
98 static void print_no_history_reason (void);
99 
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101 
102 static void print_end_stepping_range_reason (void);
103 
104 void _initialize_infrun (void);
105 
106 void nullify_last_target_wait_ptid (void);
107 
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109 
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111 
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113 
114 /* When set, stop the 'step' command if we enter a function which has
115    no line number information.  The normal behavior is that we step
116    over such function.  */
117 int step_stop_if_no_debug = 0;
118 static void
show_step_stop_if_no_debug(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 			    struct cmd_list_element *c, const char *value)
121 {
122   fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124 
125 /* In asynchronous mode, but simulating synchronous execution.  */
126 
127 int sync_execution = 0;
128 
129 /* wait_for_inferior and normal_stop use this to notify the user
130    when the inferior stopped in a different thread than it had been
131    running in.  */
132 
133 static ptid_t previous_inferior_ptid;
134 
135 /* Default behavior is to detach newly forked processes (legacy).  */
136 int detach_fork = 1;
137 
138 int debug_displaced = 0;
139 static void
show_debug_displaced(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)140 show_debug_displaced (struct ui_file *file, int from_tty,
141 		      struct cmd_list_element *c, const char *value)
142 {
143   fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
144 }
145 
146 unsigned int debug_infrun = 0;
147 static void
show_debug_infrun(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)148 show_debug_infrun (struct ui_file *file, int from_tty,
149 		   struct cmd_list_element *c, const char *value)
150 {
151   fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
152 }
153 
154 
155 /* Support for disabling address space randomization.  */
156 
157 int disable_randomization = 1;
158 
159 static void
show_disable_randomization(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)160 show_disable_randomization (struct ui_file *file, int from_tty,
161 			    struct cmd_list_element *c, const char *value)
162 {
163   if (target_supports_disable_randomization ())
164     fprintf_filtered (file,
165 		      _("Disabling randomization of debuggee's "
166 			"virtual address space is %s.\n"),
167 		      value);
168   else
169     fputs_filtered (_("Disabling randomization of debuggee's "
170 		      "virtual address space is unsupported on\n"
171 		      "this platform.\n"), file);
172 }
173 
174 static void
set_disable_randomization(char * args,int from_tty,struct cmd_list_element * c)175 set_disable_randomization (char *args, int from_tty,
176 			   struct cmd_list_element *c)
177 {
178   if (!target_supports_disable_randomization ())
179     error (_("Disabling randomization of debuggee's "
180 	     "virtual address space is unsupported on\n"
181 	     "this platform."));
182 }
183 
184 
185 /* If the program uses ELF-style shared libraries, then calls to
186    functions in shared libraries go through stubs, which live in a
187    table called the PLT (Procedure Linkage Table).  The first time the
188    function is called, the stub sends control to the dynamic linker,
189    which looks up the function's real address, patches the stub so
190    that future calls will go directly to the function, and then passes
191    control to the function.
192 
193    If we are stepping at the source level, we don't want to see any of
194    this --- we just want to skip over the stub and the dynamic linker.
195    The simple approach is to single-step until control leaves the
196    dynamic linker.
197 
198    However, on some systems (e.g., Red Hat's 5.2 distribution) the
199    dynamic linker calls functions in the shared C library, so you
200    can't tell from the PC alone whether the dynamic linker is still
201    running.  In this case, we use a step-resume breakpoint to get us
202    past the dynamic linker, as if we were using "next" to step over a
203    function call.
204 
205    in_solib_dynsym_resolve_code() says whether we're in the dynamic
206    linker code or not.  Normally, this means we single-step.  However,
207    if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
208    address where we can place a step-resume breakpoint to get past the
209    linker's symbol resolution function.
210 
211    in_solib_dynsym_resolve_code() can generally be implemented in a
212    pretty portable way, by comparing the PC against the address ranges
213    of the dynamic linker's sections.
214 
215    SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
216    it depends on internal details of the dynamic linker.  It's usually
217    not too hard to figure out where to put a breakpoint, but it
218    certainly isn't portable.  SKIP_SOLIB_RESOLVER should do plenty of
219    sanity checking.  If it can't figure things out, returning zero and
220    getting the (possibly confusing) stepping behavior is better than
221    signalling an error, which will obscure the change in the
222    inferior's state.  */
223 
224 /* This function returns TRUE if pc is the address of an instruction
225    that lies within the dynamic linker (such as the event hook, or the
226    dld itself).
227 
228    This function must be used only when a dynamic linker event has
229    been caught, and the inferior is being stepped out of the hook, or
230    undefined results are guaranteed.  */
231 
232 #ifndef SOLIB_IN_DYNAMIC_LINKER
233 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
234 #endif
235 
236 /* "Observer mode" is somewhat like a more extreme version of
237    non-stop, in which all GDB operations that might affect the
238    target's execution have been disabled.  */
239 
240 static int non_stop_1 = 0;
241 
242 int observer_mode = 0;
243 static int observer_mode_1 = 0;
244 
245 static void
set_observer_mode(char * args,int from_tty,struct cmd_list_element * c)246 set_observer_mode (char *args, int from_tty,
247 		   struct cmd_list_element *c)
248 {
249   extern int pagination_enabled;
250 
251   if (target_has_execution)
252     {
253       observer_mode_1 = observer_mode;
254       error (_("Cannot change this setting while the inferior is running."));
255     }
256 
257   observer_mode = observer_mode_1;
258 
259   may_write_registers = !observer_mode;
260   may_write_memory = !observer_mode;
261   may_insert_breakpoints = !observer_mode;
262   may_insert_tracepoints = !observer_mode;
263   /* We can insert fast tracepoints in or out of observer mode,
264      but enable them if we're going into this mode.  */
265   if (observer_mode)
266     may_insert_fast_tracepoints = 1;
267   may_stop = !observer_mode;
268   update_target_permissions ();
269 
270   /* Going *into* observer mode we must force non-stop, then
271      going out we leave it that way.  */
272   if (observer_mode)
273     {
274       target_async_permitted = 1;
275       pagination_enabled = 0;
276       non_stop = non_stop_1 = 1;
277     }
278 
279   if (from_tty)
280     printf_filtered (_("Observer mode is now %s.\n"),
281 		     (observer_mode ? "on" : "off"));
282 }
283 
284 static void
show_observer_mode(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)285 show_observer_mode (struct ui_file *file, int from_tty,
286 		    struct cmd_list_element *c, const char *value)
287 {
288   fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290 
291 /* This updates the value of observer mode based on changes in
292    permissions.  Note that we are deliberately ignoring the values of
293    may-write-registers and may-write-memory, since the user may have
294    reason to enable these during a session, for instance to turn on a
295    debugging-related global.  */
296 
297 void
update_observer_mode(void)298 update_observer_mode (void)
299 {
300   int newval;
301 
302   newval = (!may_insert_breakpoints
303 	    && !may_insert_tracepoints
304 	    && may_insert_fast_tracepoints
305 	    && !may_stop
306 	    && non_stop);
307 
308   /* Let the user know if things change.  */
309   if (newval != observer_mode)
310     printf_filtered (_("Observer mode is now %s.\n"),
311 		     (newval ? "on" : "off"));
312 
313   observer_mode = observer_mode_1 = newval;
314 }
315 
316 /* Tables of how to react to signals; the user sets them.  */
317 
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321 
322 /* Table of signals that are registered with "catch signal".  A
323    non-zero entry indicates that the signal is caught by some "catch
324    signal" command.  This has size GDB_SIGNAL_LAST, to accommodate all
325    signals.  */
326 static unsigned char *signal_catch;
327 
328 /* Table of signals that the target may silently handle.
329    This is automatically determined from the flags above,
330    and simply cached here.  */
331 static unsigned char *signal_pass;
332 
333 #define SET_SIGS(nsigs,sigs,flags) \
334   do { \
335     int signum = (nsigs); \
336     while (signum-- > 0) \
337       if ((sigs)[signum]) \
338 	(flags)[signum] = 1; \
339   } while (0)
340 
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342   do { \
343     int signum = (nsigs); \
344     while (signum-- > 0) \
345       if ((sigs)[signum]) \
346 	(flags)[signum] = 0; \
347   } while (0)
348 
349 /* Update the target's copy of SIGNAL_PROGRAM.  The sole purpose of
350    this function is to avoid exporting `signal_program'.  */
351 
352 void
update_signals_program_target(void)353 update_signals_program_target (void)
354 {
355   target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357 
358 /* Value to pass to target_resume() to cause all threads to resume.  */
359 
360 #define RESUME_ALL minus_one_ptid
361 
362 /* Command list pointer for the "stop" placeholder.  */
363 
364 static struct cmd_list_element *stop_command;
365 
366 /* Function inferior was in as of last step command.  */
367 
368 static struct symbol *step_start_function;
369 
370 /* Nonzero if we want to give control to the user when we're notified
371    of shared library events by the dynamic linker.  */
372 int stop_on_solib_events;
373 static void
show_stop_on_solib_events(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)374 show_stop_on_solib_events (struct ui_file *file, int from_tty,
375 			   struct cmd_list_element *c, const char *value)
376 {
377   fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
378 		    value);
379 }
380 
381 /* Nonzero means expecting a trace trap
382    and should stop the inferior and return silently when it happens.  */
383 
384 int stop_after_trap;
385 
386 /* Save register contents here when executing a "finish" command or are
387    about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
388    Thus this contains the return value from the called function (assuming
389    values are returned in a register).  */
390 
391 struct regcache *stop_registers;
392 
393 /* Nonzero after stop if current stack frame should be printed.  */
394 
395 static int stop_print_frame;
396 
397 /* This is a cached copy of the pid/waitstatus of the last event
398    returned by target_wait()/deprecated_target_wait_hook().  This
399    information is returned by get_last_target_status().  */
400 static ptid_t target_last_wait_ptid;
401 static struct target_waitstatus target_last_waitstatus;
402 
403 static void context_switch (ptid_t ptid);
404 
405 void init_thread_stepping_state (struct thread_info *tss);
406 
407 static void init_infwait_state (void);
408 
409 static const char follow_fork_mode_child[] = "child";
410 static const char follow_fork_mode_parent[] = "parent";
411 
412 static const char *const follow_fork_mode_kind_names[] = {
413   follow_fork_mode_child,
414   follow_fork_mode_parent,
415   NULL
416 };
417 
418 static const char *follow_fork_mode_string = follow_fork_mode_parent;
419 static void
show_follow_fork_mode_string(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)420 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 			      struct cmd_list_element *c, const char *value)
422 {
423   fprintf_filtered (file,
424 		    _("Debugger response to a program "
425 		      "call of fork or vfork is \"%s\".\n"),
426 		    value);
427 }
428 
429 
430 /* Tell the target to follow the fork we're stopped at.  Returns true
431    if the inferior should be resumed; false, if the target for some
432    reason decided it's best not to resume.  */
433 
434 static int
follow_fork(void)435 follow_fork (void)
436 {
437   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
438   int should_resume = 1;
439   struct thread_info *tp;
440 
441   /* Copy user stepping state to the new inferior thread.  FIXME: the
442      followed fork child thread should have a copy of most of the
443      parent thread structure's run control related fields, not just these.
444      Initialized to avoid "may be used uninitialized" warnings from gcc.  */
445   struct breakpoint *step_resume_breakpoint = NULL;
446   struct breakpoint *exception_resume_breakpoint = NULL;
447   CORE_ADDR step_range_start = 0;
448   CORE_ADDR step_range_end = 0;
449   struct frame_id step_frame_id = { 0 };
450 
451   if (!non_stop)
452     {
453       ptid_t wait_ptid;
454       struct target_waitstatus wait_status;
455 
456       /* Get the last target status returned by target_wait().  */
457       get_last_target_status (&wait_ptid, &wait_status);
458 
459       /* If not stopped at a fork event, then there's nothing else to
460 	 do.  */
461       if (wait_status.kind != TARGET_WAITKIND_FORKED
462 	  && wait_status.kind != TARGET_WAITKIND_VFORKED)
463 	return 1;
464 
465       /* Check if we switched over from WAIT_PTID, since the event was
466 	 reported.  */
467       if (!ptid_equal (wait_ptid, minus_one_ptid)
468 	  && !ptid_equal (inferior_ptid, wait_ptid))
469 	{
470 	  /* We did.  Switch back to WAIT_PTID thread, to tell the
471 	     target to follow it (in either direction).  We'll
472 	     afterwards refuse to resume, and inform the user what
473 	     happened.  */
474 	  switch_to_thread (wait_ptid);
475 	  should_resume = 0;
476 	}
477     }
478 
479   tp = inferior_thread ();
480 
481   /* If there were any forks/vforks that were caught and are now to be
482      followed, then do so now.  */
483   switch (tp->pending_follow.kind)
484     {
485     case TARGET_WAITKIND_FORKED:
486     case TARGET_WAITKIND_VFORKED:
487       {
488 	ptid_t parent, child;
489 
490 	/* If the user did a next/step, etc, over a fork call,
491 	   preserve the stepping state in the fork child.  */
492 	if (follow_child && should_resume)
493 	  {
494 	    step_resume_breakpoint = clone_momentary_breakpoint
495 					 (tp->control.step_resume_breakpoint);
496 	    step_range_start = tp->control.step_range_start;
497 	    step_range_end = tp->control.step_range_end;
498 	    step_frame_id = tp->control.step_frame_id;
499 	    exception_resume_breakpoint
500 	      = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
501 
502 	    /* For now, delete the parent's sr breakpoint, otherwise,
503 	       parent/child sr breakpoints are considered duplicates,
504 	       and the child version will not be installed.  Remove
505 	       this when the breakpoints module becomes aware of
506 	       inferiors and address spaces.  */
507 	    delete_step_resume_breakpoint (tp);
508 	    tp->control.step_range_start = 0;
509 	    tp->control.step_range_end = 0;
510 	    tp->control.step_frame_id = null_frame_id;
511 	    delete_exception_resume_breakpoint (tp);
512 	  }
513 
514 	parent = inferior_ptid;
515 	child = tp->pending_follow.value.related_pid;
516 
517 	/* Tell the target to do whatever is necessary to follow
518 	   either parent or child.  */
519 	if (target_follow_fork (follow_child))
520 	  {
521 	    /* Target refused to follow, or there's some other reason
522 	       we shouldn't resume.  */
523 	    should_resume = 0;
524 	  }
525 	else
526 	  {
527 	    /* This pending follow fork event is now handled, one way
528 	       or another.  The previous selected thread may be gone
529 	       from the lists by now, but if it is still around, need
530 	       to clear the pending follow request.  */
531 	    tp = find_thread_ptid (parent);
532 	    if (tp)
533 	      tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
534 
535 	    /* This makes sure we don't try to apply the "Switched
536 	       over from WAIT_PID" logic above.  */
537 	    nullify_last_target_wait_ptid ();
538 
539 	    /* If we followed the child, switch to it...  */
540 	    if (follow_child)
541 	      {
542 		switch_to_thread (child);
543 
544 		/* ... and preserve the stepping state, in case the
545 		   user was stepping over the fork call.  */
546 		if (should_resume)
547 		  {
548 		    tp = inferior_thread ();
549 		    tp->control.step_resume_breakpoint
550 		      = step_resume_breakpoint;
551 		    tp->control.step_range_start = step_range_start;
552 		    tp->control.step_range_end = step_range_end;
553 		    tp->control.step_frame_id = step_frame_id;
554 		    tp->control.exception_resume_breakpoint
555 		      = exception_resume_breakpoint;
556 		  }
557 		else
558 		  {
559 		    /* If we get here, it was because we're trying to
560 		       resume from a fork catchpoint, but, the user
561 		       has switched threads away from the thread that
562 		       forked.  In that case, the resume command
563 		       issued is most likely not applicable to the
564 		       child, so just warn, and refuse to resume.  */
565 		    warning (_("Not resuming: switched threads "
566 			       "before following fork child.\n"));
567 		  }
568 
569 		/* Reset breakpoints in the child as appropriate.  */
570 		follow_inferior_reset_breakpoints ();
571 	      }
572 	    else
573 	      switch_to_thread (parent);
574 	  }
575       }
576       break;
577     case TARGET_WAITKIND_SPURIOUS:
578       /* Nothing to follow.  */
579       break;
580     default:
581       internal_error (__FILE__, __LINE__,
582 		      "Unexpected pending_follow.kind %d\n",
583 		      tp->pending_follow.kind);
584       break;
585     }
586 
587   return should_resume;
588 }
589 
590 void
follow_inferior_reset_breakpoints(void)591 follow_inferior_reset_breakpoints (void)
592 {
593   struct thread_info *tp = inferior_thread ();
594 
595   /* Was there a step_resume breakpoint?  (There was if the user
596      did a "next" at the fork() call.)  If so, explicitly reset its
597      thread number.
598 
599      step_resumes are a form of bp that are made to be per-thread.
600      Since we created the step_resume bp when the parent process
601      was being debugged, and now are switching to the child process,
602      from the breakpoint package's viewpoint, that's a switch of
603      "threads".  We must update the bp's notion of which thread
604      it is for, or it'll be ignored when it triggers.  */
605 
606   if (tp->control.step_resume_breakpoint)
607     breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
608 
609   if (tp->control.exception_resume_breakpoint)
610     breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
611 
612   /* Reinsert all breakpoints in the child.  The user may have set
613      breakpoints after catching the fork, in which case those
614      were never set in the child, but only in the parent.  This makes
615      sure the inserted breakpoints match the breakpoint list.  */
616 
617   breakpoint_re_set ();
618   insert_breakpoints ();
619 }
620 
621 /* The child has exited or execed: resume threads of the parent the
622    user wanted to be executing.  */
623 
624 static int
proceed_after_vfork_done(struct thread_info * thread,void * arg)625 proceed_after_vfork_done (struct thread_info *thread,
626 			  void *arg)
627 {
628   int pid = * (int *) arg;
629 
630   if (ptid_get_pid (thread->ptid) == pid
631       && is_running (thread->ptid)
632       && !is_executing (thread->ptid)
633       && !thread->stop_requested
634       && thread->suspend.stop_signal == GDB_SIGNAL_0)
635     {
636       if (debug_infrun)
637 	fprintf_unfiltered (gdb_stdlog,
638 			    "infrun: resuming vfork parent thread %s\n",
639 			    target_pid_to_str (thread->ptid));
640 
641       switch_to_thread (thread->ptid);
642       clear_proceed_status ();
643       proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
644     }
645 
646   return 0;
647 }
648 
649 /* Called whenever we notice an exec or exit event, to handle
650    detaching or resuming a vfork parent.  */
651 
652 static void
handle_vfork_child_exec_or_exit(int exec)653 handle_vfork_child_exec_or_exit (int exec)
654 {
655   struct inferior *inf = current_inferior ();
656 
657   if (inf->vfork_parent)
658     {
659       int resume_parent = -1;
660 
661       /* This exec or exit marks the end of the shared memory region
662 	 between the parent and the child.  If the user wanted to
663 	 detach from the parent, now is the time.  */
664 
665       if (inf->vfork_parent->pending_detach)
666 	{
667 	  struct thread_info *tp;
668 	  struct cleanup *old_chain;
669 	  struct program_space *pspace;
670 	  struct address_space *aspace;
671 
672 	  /* follow-fork child, detach-on-fork on.  */
673 
674 	  inf->vfork_parent->pending_detach = 0;
675 
676 	  if (!exec)
677 	    {
678 	      /* If we're handling a child exit, then inferior_ptid
679 		 points at the inferior's pid, not to a thread.  */
680 	      old_chain = save_inferior_ptid ();
681 	      save_current_program_space ();
682 	      save_current_inferior ();
683 	    }
684 	  else
685 	    old_chain = save_current_space_and_thread ();
686 
687 	  /* We're letting loose of the parent.  */
688 	  tp = any_live_thread_of_process (inf->vfork_parent->pid);
689 	  switch_to_thread (tp->ptid);
690 
691 	  /* We're about to detach from the parent, which implicitly
692 	     removes breakpoints from its address space.  There's a
693 	     catch here: we want to reuse the spaces for the child,
694 	     but, parent/child are still sharing the pspace at this
695 	     point, although the exec in reality makes the kernel give
696 	     the child a fresh set of new pages.  The problem here is
697 	     that the breakpoints module being unaware of this, would
698 	     likely chose the child process to write to the parent
699 	     address space.  Swapping the child temporarily away from
700 	     the spaces has the desired effect.  Yes, this is "sort
701 	     of" a hack.  */
702 
703 	  pspace = inf->pspace;
704 	  aspace = inf->aspace;
705 	  inf->aspace = NULL;
706 	  inf->pspace = NULL;
707 
708 	  if (debug_infrun || info_verbose)
709 	    {
710 	      target_terminal_ours ();
711 
712 	      if (exec)
713 		fprintf_filtered (gdb_stdlog,
714 				  "Detaching vfork parent process "
715 				  "%d after child exec.\n",
716 				  inf->vfork_parent->pid);
717 	      else
718 		fprintf_filtered (gdb_stdlog,
719 				  "Detaching vfork parent process "
720 				  "%d after child exit.\n",
721 				  inf->vfork_parent->pid);
722 	    }
723 
724 	  target_detach (NULL, 0);
725 
726 	  /* Put it back.  */
727 	  inf->pspace = pspace;
728 	  inf->aspace = aspace;
729 
730 	  do_cleanups (old_chain);
731 	}
732       else if (exec)
733 	{
734 	  /* We're staying attached to the parent, so, really give the
735 	     child a new address space.  */
736 	  inf->pspace = add_program_space (maybe_new_address_space ());
737 	  inf->aspace = inf->pspace->aspace;
738 	  inf->removable = 1;
739 	  set_current_program_space (inf->pspace);
740 
741 	  resume_parent = inf->vfork_parent->pid;
742 
743 	  /* Break the bonds.  */
744 	  inf->vfork_parent->vfork_child = NULL;
745 	}
746       else
747 	{
748 	  struct cleanup *old_chain;
749 	  struct program_space *pspace;
750 
751 	  /* If this is a vfork child exiting, then the pspace and
752 	     aspaces were shared with the parent.  Since we're
753 	     reporting the process exit, we'll be mourning all that is
754 	     found in the address space, and switching to null_ptid,
755 	     preparing to start a new inferior.  But, since we don't
756 	     want to clobber the parent's address/program spaces, we
757 	     go ahead and create a new one for this exiting
758 	     inferior.  */
759 
760 	  /* Switch to null_ptid, so that clone_program_space doesn't want
761 	     to read the selected frame of a dead process.  */
762 	  old_chain = save_inferior_ptid ();
763 	  inferior_ptid = null_ptid;
764 
765 	  /* This inferior is dead, so avoid giving the breakpoints
766 	     module the option to write through to it (cloning a
767 	     program space resets breakpoints).  */
768 	  inf->aspace = NULL;
769 	  inf->pspace = NULL;
770 	  pspace = add_program_space (maybe_new_address_space ());
771 	  set_current_program_space (pspace);
772 	  inf->removable = 1;
773 	  inf->symfile_flags = SYMFILE_NO_READ;
774 	  clone_program_space (pspace, inf->vfork_parent->pspace);
775 	  inf->pspace = pspace;
776 	  inf->aspace = pspace->aspace;
777 
778 	  /* Put back inferior_ptid.  We'll continue mourning this
779 	     inferior.  */
780 	  do_cleanups (old_chain);
781 
782 	  resume_parent = inf->vfork_parent->pid;
783 	  /* Break the bonds.  */
784 	  inf->vfork_parent->vfork_child = NULL;
785 	}
786 
787       inf->vfork_parent = NULL;
788 
789       gdb_assert (current_program_space == inf->pspace);
790 
791       if (non_stop && resume_parent != -1)
792 	{
793 	  /* If the user wanted the parent to be running, let it go
794 	     free now.  */
795 	  struct cleanup *old_chain = make_cleanup_restore_current_thread ();
796 
797 	  if (debug_infrun)
798 	    fprintf_unfiltered (gdb_stdlog,
799 				"infrun: resuming vfork parent process %d\n",
800 				resume_parent);
801 
802 	  iterate_over_threads (proceed_after_vfork_done, &resume_parent);
803 
804 	  do_cleanups (old_chain);
805 	}
806     }
807 }
808 
809 /* Enum strings for "set|show displaced-stepping".  */
810 
811 static const char follow_exec_mode_new[] = "new";
812 static const char follow_exec_mode_same[] = "same";
813 static const char *const follow_exec_mode_names[] =
814 {
815   follow_exec_mode_new,
816   follow_exec_mode_same,
817   NULL,
818 };
819 
820 static const char *follow_exec_mode_string = follow_exec_mode_same;
821 static void
show_follow_exec_mode_string(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)822 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
823 			      struct cmd_list_element *c, const char *value)
824 {
825   fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"),  value);
826 }
827 
828 /* EXECD_PATHNAME is assumed to be non-NULL.  */
829 
830 static void
follow_exec(ptid_t pid,char * execd_pathname)831 follow_exec (ptid_t pid, char *execd_pathname)
832 {
833   struct thread_info *th = inferior_thread ();
834   struct inferior *inf = current_inferior ();
835 
836   /* This is an exec event that we actually wish to pay attention to.
837      Refresh our symbol table to the newly exec'd program, remove any
838      momentary bp's, etc.
839 
840      If there are breakpoints, they aren't really inserted now,
841      since the exec() transformed our inferior into a fresh set
842      of instructions.
843 
844      We want to preserve symbolic breakpoints on the list, since
845      we have hopes that they can be reset after the new a.out's
846      symbol table is read.
847 
848      However, any "raw" breakpoints must be removed from the list
849      (e.g., the solib bp's), since their address is probably invalid
850      now.
851 
852      And, we DON'T want to call delete_breakpoints() here, since
853      that may write the bp's "shadow contents" (the instruction
854      value that was overwritten witha TRAP instruction).  Since
855      we now have a new a.out, those shadow contents aren't valid.  */
856 
857   mark_breakpoints_out ();
858 
859   update_breakpoints_after_exec ();
860 
861   /* If there was one, it's gone now.  We cannot truly step-to-next
862      statement through an exec().  */
863   th->control.step_resume_breakpoint = NULL;
864   th->control.exception_resume_breakpoint = NULL;
865   th->control.step_range_start = 0;
866   th->control.step_range_end = 0;
867 
868   /* The target reports the exec event to the main thread, even if
869      some other thread does the exec, and even if the main thread was
870      already stopped --- if debugging in non-stop mode, it's possible
871      the user had the main thread held stopped in the previous image
872      --- release it now.  This is the same behavior as step-over-exec
873      with scheduler-locking on in all-stop mode.  */
874   th->stop_requested = 0;
875 
876   /* What is this a.out's name?  */
877   printf_unfiltered (_("%s is executing new program: %s\n"),
878 		     target_pid_to_str (inferior_ptid),
879 		     execd_pathname);
880 
881   /* We've followed the inferior through an exec.  Therefore, the
882      inferior has essentially been killed & reborn.  */
883 
884   gdb_flush (gdb_stdout);
885 
886   breakpoint_init_inferior (inf_execd);
887 
888   if (gdb_sysroot && *gdb_sysroot)
889     {
890       char *name = alloca (strlen (gdb_sysroot)
891 			    + strlen (execd_pathname)
892 			    + 1);
893 
894       strcpy (name, gdb_sysroot);
895       strcat (name, execd_pathname);
896       execd_pathname = name;
897     }
898 
899   /* Reset the shared library package.  This ensures that we get a
900      shlib event when the child reaches "_start", at which point the
901      dld will have had a chance to initialize the child.  */
902   /* Also, loading a symbol file below may trigger symbol lookups, and
903      we don't want those to be satisfied by the libraries of the
904      previous incarnation of this process.  */
905   no_shared_libraries (NULL, 0);
906 
907   if (follow_exec_mode_string == follow_exec_mode_new)
908     {
909       struct program_space *pspace;
910 
911       /* The user wants to keep the old inferior and program spaces
912 	 around.  Create a new fresh one, and switch to it.  */
913 
914       inf = add_inferior (current_inferior ()->pid);
915       pspace = add_program_space (maybe_new_address_space ());
916       inf->pspace = pspace;
917       inf->aspace = pspace->aspace;
918 
919       exit_inferior_num_silent (current_inferior ()->num);
920 
921       set_current_inferior (inf);
922       set_current_program_space (pspace);
923     }
924   else
925     {
926       /* The old description may no longer be fit for the new image.
927 	 E.g, a 64-bit process exec'ed a 32-bit process.  Clear the
928 	 old description; we'll read a new one below.  No need to do
929 	 this on "follow-exec-mode new", as the old inferior stays
930 	 around (its description is later cleared/refetched on
931 	 restart).  */
932       target_clear_description ();
933     }
934 
935   gdb_assert (current_program_space == inf->pspace);
936 
937   /* That a.out is now the one to use.  */
938   exec_file_attach (execd_pathname, 0);
939 
940   /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
941      (Position Independent Executable) main symbol file will get applied by
942      solib_create_inferior_hook below.  breakpoint_re_set would fail to insert
943      the breakpoints with the zero displacement.  */
944 
945   symbol_file_add (execd_pathname,
946 		   (inf->symfile_flags
947 		    | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
948 		   NULL, 0);
949 
950   if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
951     set_initial_language ();
952 
953   /* If the target can specify a description, read it.  Must do this
954      after flipping to the new executable (because the target supplied
955      description must be compatible with the executable's
956      architecture, and the old executable may e.g., be 32-bit, while
957      the new one 64-bit), and before anything involving memory or
958      registers.  */
959   target_find_description ();
960 
961 #ifdef SOLIB_CREATE_INFERIOR_HOOK
962   SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
963 #else
964   solib_create_inferior_hook (0);
965 #endif
966 
967   jit_inferior_created_hook ();
968 
969   breakpoint_re_set ();
970 
971   /* Reinsert all breakpoints.  (Those which were symbolic have
972      been reset to the proper address in the new a.out, thanks
973      to symbol_file_command...).  */
974   insert_breakpoints ();
975 
976   /* The next resume of this inferior should bring it to the shlib
977      startup breakpoints.  (If the user had also set bp's on
978      "main" from the old (parent) process, then they'll auto-
979      matically get reset there in the new process.).  */
980 }
981 
982 /* Non-zero if we just simulating a single-step.  This is needed
983    because we cannot remove the breakpoints in the inferior process
984    until after the `wait' in `wait_for_inferior'.  */
985 static int singlestep_breakpoints_inserted_p = 0;
986 
987 /* The thread we inserted single-step breakpoints for.  */
988 static ptid_t singlestep_ptid;
989 
990 /* PC when we started this single-step.  */
991 static CORE_ADDR singlestep_pc;
992 
993 /* If another thread hit the singlestep breakpoint, we save the original
994    thread here so that we can resume single-stepping it later.  */
995 static ptid_t saved_singlestep_ptid;
996 static int stepping_past_singlestep_breakpoint;
997 
998 /* If not equal to null_ptid, this means that after stepping over breakpoint
999    is finished, we need to switch to deferred_step_ptid, and step it.
1000 
1001    The use case is when one thread has hit a breakpoint, and then the user
1002    has switched to another thread and issued 'step'.  We need to step over
1003    breakpoint in the thread which hit the breakpoint, but then continue
1004    stepping the thread user has selected.  */
1005 static ptid_t deferred_step_ptid;
1006 
1007 /* Displaced stepping.  */
1008 
1009 /* In non-stop debugging mode, we must take special care to manage
1010    breakpoints properly; in particular, the traditional strategy for
1011    stepping a thread past a breakpoint it has hit is unsuitable.
1012    'Displaced stepping' is a tactic for stepping one thread past a
1013    breakpoint it has hit while ensuring that other threads running
1014    concurrently will hit the breakpoint as they should.
1015 
1016    The traditional way to step a thread T off a breakpoint in a
1017    multi-threaded program in all-stop mode is as follows:
1018 
1019    a0) Initially, all threads are stopped, and breakpoints are not
1020        inserted.
1021    a1) We single-step T, leaving breakpoints uninserted.
1022    a2) We insert breakpoints, and resume all threads.
1023 
1024    In non-stop debugging, however, this strategy is unsuitable: we
1025    don't want to have to stop all threads in the system in order to
1026    continue or step T past a breakpoint.  Instead, we use displaced
1027    stepping:
1028 
1029    n0) Initially, T is stopped, other threads are running, and
1030        breakpoints are inserted.
1031    n1) We copy the instruction "under" the breakpoint to a separate
1032        location, outside the main code stream, making any adjustments
1033        to the instruction, register, and memory state as directed by
1034        T's architecture.
1035    n2) We single-step T over the instruction at its new location.
1036    n3) We adjust the resulting register and memory state as directed
1037        by T's architecture.  This includes resetting T's PC to point
1038        back into the main instruction stream.
1039    n4) We resume T.
1040 
1041    This approach depends on the following gdbarch methods:
1042 
1043    - gdbarch_max_insn_length and gdbarch_displaced_step_location
1044      indicate where to copy the instruction, and how much space must
1045      be reserved there.  We use these in step n1.
1046 
1047    - gdbarch_displaced_step_copy_insn copies a instruction to a new
1048      address, and makes any necessary adjustments to the instruction,
1049      register contents, and memory.  We use this in step n1.
1050 
1051    - gdbarch_displaced_step_fixup adjusts registers and memory after
1052      we have successfuly single-stepped the instruction, to yield the
1053      same effect the instruction would have had if we had executed it
1054      at its original address.  We use this in step n3.
1055 
1056    - gdbarch_displaced_step_free_closure provides cleanup.
1057 
1058    The gdbarch_displaced_step_copy_insn and
1059    gdbarch_displaced_step_fixup functions must be written so that
1060    copying an instruction with gdbarch_displaced_step_copy_insn,
1061    single-stepping across the copied instruction, and then applying
1062    gdbarch_displaced_insn_fixup should have the same effects on the
1063    thread's memory and registers as stepping the instruction in place
1064    would have.  Exactly which responsibilities fall to the copy and
1065    which fall to the fixup is up to the author of those functions.
1066 
1067    See the comments in gdbarch.sh for details.
1068 
1069    Note that displaced stepping and software single-step cannot
1070    currently be used in combination, although with some care I think
1071    they could be made to.  Software single-step works by placing
1072    breakpoints on all possible subsequent instructions; if the
1073    displaced instruction is a PC-relative jump, those breakpoints
1074    could fall in very strange places --- on pages that aren't
1075    executable, or at addresses that are not proper instruction
1076    boundaries.  (We do generally let other threads run while we wait
1077    to hit the software single-step breakpoint, and they might
1078    encounter such a corrupted instruction.)  One way to work around
1079    this would be to have gdbarch_displaced_step_copy_insn fully
1080    simulate the effect of PC-relative instructions (and return NULL)
1081    on architectures that use software single-stepping.
1082 
1083    In non-stop mode, we can have independent and simultaneous step
1084    requests, so more than one thread may need to simultaneously step
1085    over a breakpoint.  The current implementation assumes there is
1086    only one scratch space per process.  In this case, we have to
1087    serialize access to the scratch space.  If thread A wants to step
1088    over a breakpoint, but we are currently waiting for some other
1089    thread to complete a displaced step, we leave thread A stopped and
1090    place it in the displaced_step_request_queue.  Whenever a displaced
1091    step finishes, we pick the next thread in the queue and start a new
1092    displaced step operation on it.  See displaced_step_prepare and
1093    displaced_step_fixup for details.  */
1094 
1095 struct displaced_step_request
1096 {
1097   ptid_t ptid;
1098   struct displaced_step_request *next;
1099 };
1100 
1101 /* Per-inferior displaced stepping state.  */
1102 struct displaced_step_inferior_state
1103 {
1104   /* Pointer to next in linked list.  */
1105   struct displaced_step_inferior_state *next;
1106 
1107   /* The process this displaced step state refers to.  */
1108   int pid;
1109 
1110   /* A queue of pending displaced stepping requests.  One entry per
1111      thread that needs to do a displaced step.  */
1112   struct displaced_step_request *step_request_queue;
1113 
1114   /* If this is not null_ptid, this is the thread carrying out a
1115      displaced single-step in process PID.  This thread's state will
1116      require fixing up once it has completed its step.  */
1117   ptid_t step_ptid;
1118 
1119   /* The architecture the thread had when we stepped it.  */
1120   struct gdbarch *step_gdbarch;
1121 
1122   /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1123      for post-step cleanup.  */
1124   struct displaced_step_closure *step_closure;
1125 
1126   /* The address of the original instruction, and the copy we
1127      made.  */
1128   CORE_ADDR step_original, step_copy;
1129 
1130   /* Saved contents of copy area.  */
1131   gdb_byte *step_saved_copy;
1132 };
1133 
1134 /* The list of states of processes involved in displaced stepping
1135    presently.  */
1136 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1137 
1138 /* Get the displaced stepping state of process PID.  */
1139 
1140 static struct displaced_step_inferior_state *
get_displaced_stepping_state(int pid)1141 get_displaced_stepping_state (int pid)
1142 {
1143   struct displaced_step_inferior_state *state;
1144 
1145   for (state = displaced_step_inferior_states;
1146        state != NULL;
1147        state = state->next)
1148     if (state->pid == pid)
1149       return state;
1150 
1151   return NULL;
1152 }
1153 
1154 /* Add a new displaced stepping state for process PID to the displaced
1155    stepping state list, or return a pointer to an already existing
1156    entry, if it already exists.  Never returns NULL.  */
1157 
1158 static struct displaced_step_inferior_state *
add_displaced_stepping_state(int pid)1159 add_displaced_stepping_state (int pid)
1160 {
1161   struct displaced_step_inferior_state *state;
1162 
1163   for (state = displaced_step_inferior_states;
1164        state != NULL;
1165        state = state->next)
1166     if (state->pid == pid)
1167       return state;
1168 
1169   state = xcalloc (1, sizeof (*state));
1170   state->pid = pid;
1171   state->next = displaced_step_inferior_states;
1172   displaced_step_inferior_states = state;
1173 
1174   return state;
1175 }
1176 
1177 /* If inferior is in displaced stepping, and ADDR equals to starting address
1178    of copy area, return corresponding displaced_step_closure.  Otherwise,
1179    return NULL.  */
1180 
1181 struct displaced_step_closure*
get_displaced_step_closure_by_addr(CORE_ADDR addr)1182 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1183 {
1184   struct displaced_step_inferior_state *displaced
1185     = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1186 
1187   /* If checking the mode of displaced instruction in copy area.  */
1188   if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1189      && (displaced->step_copy == addr))
1190     return displaced->step_closure;
1191 
1192   return NULL;
1193 }
1194 
1195 /* Remove the displaced stepping state of process PID.  */
1196 
1197 static void
remove_displaced_stepping_state(int pid)1198 remove_displaced_stepping_state (int pid)
1199 {
1200   struct displaced_step_inferior_state *it, **prev_next_p;
1201 
1202   gdb_assert (pid != 0);
1203 
1204   it = displaced_step_inferior_states;
1205   prev_next_p = &displaced_step_inferior_states;
1206   while (it)
1207     {
1208       if (it->pid == pid)
1209 	{
1210 	  *prev_next_p = it->next;
1211 	  xfree (it);
1212 	  return;
1213 	}
1214 
1215       prev_next_p = &it->next;
1216       it = *prev_next_p;
1217     }
1218 }
1219 
1220 static void
infrun_inferior_exit(struct inferior * inf)1221 infrun_inferior_exit (struct inferior *inf)
1222 {
1223   remove_displaced_stepping_state (inf->pid);
1224 }
1225 
1226 /* If ON, and the architecture supports it, GDB will use displaced
1227    stepping to step over breakpoints.  If OFF, or if the architecture
1228    doesn't support it, GDB will instead use the traditional
1229    hold-and-step approach.  If AUTO (which is the default), GDB will
1230    decide which technique to use to step over breakpoints depending on
1231    which of all-stop or non-stop mode is active --- displaced stepping
1232    in non-stop mode; hold-and-step in all-stop mode.  */
1233 
1234 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1235 
1236 static void
show_can_use_displaced_stepping(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)1237 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1238 				 struct cmd_list_element *c,
1239 				 const char *value)
1240 {
1241   if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1242     fprintf_filtered (file,
1243 		      _("Debugger's willingness to use displaced stepping "
1244 			"to step over breakpoints is %s (currently %s).\n"),
1245 		      value, non_stop ? "on" : "off");
1246   else
1247     fprintf_filtered (file,
1248 		      _("Debugger's willingness to use displaced stepping "
1249 			"to step over breakpoints is %s.\n"), value);
1250 }
1251 
1252 /* Return non-zero if displaced stepping can/should be used to step
1253    over breakpoints.  */
1254 
1255 static int
use_displaced_stepping(struct gdbarch * gdbarch)1256 use_displaced_stepping (struct gdbarch *gdbarch)
1257 {
1258   return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1259 	   || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1260 	  && gdbarch_displaced_step_copy_insn_p (gdbarch)
1261 	  && !RECORD_IS_USED);
1262 }
1263 
1264 /* Clean out any stray displaced stepping state.  */
1265 static void
displaced_step_clear(struct displaced_step_inferior_state * displaced)1266 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1267 {
1268   /* Indicate that there is no cleanup pending.  */
1269   displaced->step_ptid = null_ptid;
1270 
1271   if (displaced->step_closure)
1272     {
1273       gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1274                                            displaced->step_closure);
1275       displaced->step_closure = NULL;
1276     }
1277 }
1278 
1279 static void
displaced_step_clear_cleanup(void * arg)1280 displaced_step_clear_cleanup (void *arg)
1281 {
1282   struct displaced_step_inferior_state *state = arg;
1283 
1284   displaced_step_clear (state);
1285 }
1286 
1287 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline.  */
1288 void
displaced_step_dump_bytes(struct ui_file * file,const gdb_byte * buf,size_t len)1289 displaced_step_dump_bytes (struct ui_file *file,
1290                            const gdb_byte *buf,
1291                            size_t len)
1292 {
1293   int i;
1294 
1295   for (i = 0; i < len; i++)
1296     fprintf_unfiltered (file, "%02x ", buf[i]);
1297   fputs_unfiltered ("\n", file);
1298 }
1299 
1300 /* Prepare to single-step, using displaced stepping.
1301 
1302    Note that we cannot use displaced stepping when we have a signal to
1303    deliver.  If we have a signal to deliver and an instruction to step
1304    over, then after the step, there will be no indication from the
1305    target whether the thread entered a signal handler or ignored the
1306    signal and stepped over the instruction successfully --- both cases
1307    result in a simple SIGTRAP.  In the first case we mustn't do a
1308    fixup, and in the second case we must --- but we can't tell which.
1309    Comments in the code for 'random signals' in handle_inferior_event
1310    explain how we handle this case instead.
1311 
1312    Returns 1 if preparing was successful -- this thread is going to be
1313    stepped now; or 0 if displaced stepping this thread got queued.  */
1314 static int
displaced_step_prepare(ptid_t ptid)1315 displaced_step_prepare (ptid_t ptid)
1316 {
1317   struct cleanup *old_cleanups, *ignore_cleanups;
1318   struct regcache *regcache = get_thread_regcache (ptid);
1319   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1320   CORE_ADDR original, copy;
1321   ULONGEST len;
1322   struct displaced_step_closure *closure;
1323   struct displaced_step_inferior_state *displaced;
1324   int status;
1325 
1326   /* We should never reach this function if the architecture does not
1327      support displaced stepping.  */
1328   gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1329 
1330   /* We have to displaced step one thread at a time, as we only have
1331      access to a single scratch space per inferior.  */
1332 
1333   displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1334 
1335   if (!ptid_equal (displaced->step_ptid, null_ptid))
1336     {
1337       /* Already waiting for a displaced step to finish.  Defer this
1338 	 request and place in queue.  */
1339       struct displaced_step_request *req, *new_req;
1340 
1341       if (debug_displaced)
1342 	fprintf_unfiltered (gdb_stdlog,
1343 			    "displaced: defering step of %s\n",
1344 			    target_pid_to_str (ptid));
1345 
1346       new_req = xmalloc (sizeof (*new_req));
1347       new_req->ptid = ptid;
1348       new_req->next = NULL;
1349 
1350       if (displaced->step_request_queue)
1351 	{
1352 	  for (req = displaced->step_request_queue;
1353 	       req && req->next;
1354 	       req = req->next)
1355 	    ;
1356 	  req->next = new_req;
1357 	}
1358       else
1359 	displaced->step_request_queue = new_req;
1360 
1361       return 0;
1362     }
1363   else
1364     {
1365       if (debug_displaced)
1366 	fprintf_unfiltered (gdb_stdlog,
1367 			    "displaced: stepping %s now\n",
1368 			    target_pid_to_str (ptid));
1369     }
1370 
1371   displaced_step_clear (displaced);
1372 
1373   old_cleanups = save_inferior_ptid ();
1374   inferior_ptid = ptid;
1375 
1376   original = regcache_read_pc (regcache);
1377 
1378   copy = gdbarch_displaced_step_location (gdbarch);
1379   len = gdbarch_max_insn_length (gdbarch);
1380 
1381   /* Save the original contents of the copy area.  */
1382   displaced->step_saved_copy = xmalloc (len);
1383   ignore_cleanups = make_cleanup (free_current_contents,
1384 				  &displaced->step_saved_copy);
1385   status = target_read_memory (copy, displaced->step_saved_copy, len);
1386   if (status != 0)
1387     throw_error (MEMORY_ERROR,
1388 		 _("Error accessing memory address %s (%s) for "
1389 		   "displaced-stepping scratch space."),
1390 		 paddress (gdbarch, copy), safe_strerror (status));
1391   if (debug_displaced)
1392     {
1393       fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1394 			  paddress (gdbarch, copy));
1395       displaced_step_dump_bytes (gdb_stdlog,
1396 				 displaced->step_saved_copy,
1397 				 len);
1398     };
1399 
1400   closure = gdbarch_displaced_step_copy_insn (gdbarch,
1401 					      original, copy, regcache);
1402 
1403   /* We don't support the fully-simulated case at present.  */
1404   gdb_assert (closure);
1405 
1406   /* Save the information we need to fix things up if the step
1407      succeeds.  */
1408   displaced->step_ptid = ptid;
1409   displaced->step_gdbarch = gdbarch;
1410   displaced->step_closure = closure;
1411   displaced->step_original = original;
1412   displaced->step_copy = copy;
1413 
1414   make_cleanup (displaced_step_clear_cleanup, displaced);
1415 
1416   /* Resume execution at the copy.  */
1417   regcache_write_pc (regcache, copy);
1418 
1419   discard_cleanups (ignore_cleanups);
1420 
1421   do_cleanups (old_cleanups);
1422 
1423   if (debug_displaced)
1424     fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1425 			paddress (gdbarch, copy));
1426 
1427   return 1;
1428 }
1429 
1430 static void
write_memory_ptid(ptid_t ptid,CORE_ADDR memaddr,const gdb_byte * myaddr,int len)1431 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1432 		   const gdb_byte *myaddr, int len)
1433 {
1434   struct cleanup *ptid_cleanup = save_inferior_ptid ();
1435 
1436   inferior_ptid = ptid;
1437   write_memory (memaddr, myaddr, len);
1438   do_cleanups (ptid_cleanup);
1439 }
1440 
1441 /* Restore the contents of the copy area for thread PTID.  */
1442 
1443 static void
displaced_step_restore(struct displaced_step_inferior_state * displaced,ptid_t ptid)1444 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1445 			ptid_t ptid)
1446 {
1447   ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1448 
1449   write_memory_ptid (ptid, displaced->step_copy,
1450 		     displaced->step_saved_copy, len);
1451   if (debug_displaced)
1452     fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1453 			target_pid_to_str (ptid),
1454 			paddress (displaced->step_gdbarch,
1455 				  displaced->step_copy));
1456 }
1457 
1458 static void
displaced_step_fixup(ptid_t event_ptid,enum gdb_signal signal)1459 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1460 {
1461   struct cleanup *old_cleanups;
1462   struct displaced_step_inferior_state *displaced
1463     = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1464 
1465   /* Was any thread of this process doing a displaced step?  */
1466   if (displaced == NULL)
1467     return;
1468 
1469   /* Was this event for the pid we displaced?  */
1470   if (ptid_equal (displaced->step_ptid, null_ptid)
1471       || ! ptid_equal (displaced->step_ptid, event_ptid))
1472     return;
1473 
1474   old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1475 
1476   displaced_step_restore (displaced, displaced->step_ptid);
1477 
1478   /* Did the instruction complete successfully?  */
1479   if (signal == GDB_SIGNAL_TRAP)
1480     {
1481       /* Fix up the resulting state.  */
1482       gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1483                                     displaced->step_closure,
1484                                     displaced->step_original,
1485                                     displaced->step_copy,
1486                                     get_thread_regcache (displaced->step_ptid));
1487     }
1488   else
1489     {
1490       /* Since the instruction didn't complete, all we can do is
1491          relocate the PC.  */
1492       struct regcache *regcache = get_thread_regcache (event_ptid);
1493       CORE_ADDR pc = regcache_read_pc (regcache);
1494 
1495       pc = displaced->step_original + (pc - displaced->step_copy);
1496       regcache_write_pc (regcache, pc);
1497     }
1498 
1499   do_cleanups (old_cleanups);
1500 
1501   displaced->step_ptid = null_ptid;
1502 
1503   /* Are there any pending displaced stepping requests?  If so, run
1504      one now.  Leave the state object around, since we're likely to
1505      need it again soon.  */
1506   while (displaced->step_request_queue)
1507     {
1508       struct displaced_step_request *head;
1509       ptid_t ptid;
1510       struct regcache *regcache;
1511       struct gdbarch *gdbarch;
1512       CORE_ADDR actual_pc;
1513       struct address_space *aspace;
1514 
1515       head = displaced->step_request_queue;
1516       ptid = head->ptid;
1517       displaced->step_request_queue = head->next;
1518       xfree (head);
1519 
1520       context_switch (ptid);
1521 
1522       regcache = get_thread_regcache (ptid);
1523       actual_pc = regcache_read_pc (regcache);
1524       aspace = get_regcache_aspace (regcache);
1525 
1526       if (breakpoint_here_p (aspace, actual_pc))
1527 	{
1528 	  if (debug_displaced)
1529 	    fprintf_unfiltered (gdb_stdlog,
1530 				"displaced: stepping queued %s now\n",
1531 				target_pid_to_str (ptid));
1532 
1533 	  displaced_step_prepare (ptid);
1534 
1535 	  gdbarch = get_regcache_arch (regcache);
1536 
1537 	  if (debug_displaced)
1538 	    {
1539 	      CORE_ADDR actual_pc = regcache_read_pc (regcache);
1540 	      gdb_byte buf[4];
1541 
1542 	      fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1543 				  paddress (gdbarch, actual_pc));
1544 	      read_memory (actual_pc, buf, sizeof (buf));
1545 	      displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1546 	    }
1547 
1548 	  if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1549 						    displaced->step_closure))
1550 	    target_resume (ptid, 1, GDB_SIGNAL_0);
1551 	  else
1552 	    target_resume (ptid, 0, GDB_SIGNAL_0);
1553 
1554 	  /* Done, we're stepping a thread.  */
1555 	  break;
1556 	}
1557       else
1558 	{
1559 	  int step;
1560 	  struct thread_info *tp = inferior_thread ();
1561 
1562 	  /* The breakpoint we were sitting under has since been
1563 	     removed.  */
1564 	  tp->control.trap_expected = 0;
1565 
1566 	  /* Go back to what we were trying to do.  */
1567 	  step = currently_stepping (tp);
1568 
1569 	  if (debug_displaced)
1570 	    fprintf_unfiltered (gdb_stdlog,
1571 				"displaced: breakpoint is gone: %s, step(%d)\n",
1572 				target_pid_to_str (tp->ptid), step);
1573 
1574 	  target_resume (ptid, step, GDB_SIGNAL_0);
1575 	  tp->suspend.stop_signal = GDB_SIGNAL_0;
1576 
1577 	  /* This request was discarded.  See if there's any other
1578 	     thread waiting for its turn.  */
1579 	}
1580     }
1581 }
1582 
1583 /* Update global variables holding ptids to hold NEW_PTID if they were
1584    holding OLD_PTID.  */
1585 static void
infrun_thread_ptid_changed(ptid_t old_ptid,ptid_t new_ptid)1586 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1587 {
1588   struct displaced_step_request *it;
1589   struct displaced_step_inferior_state *displaced;
1590 
1591   if (ptid_equal (inferior_ptid, old_ptid))
1592     inferior_ptid = new_ptid;
1593 
1594   if (ptid_equal (singlestep_ptid, old_ptid))
1595     singlestep_ptid = new_ptid;
1596 
1597   if (ptid_equal (deferred_step_ptid, old_ptid))
1598     deferred_step_ptid = new_ptid;
1599 
1600   for (displaced = displaced_step_inferior_states;
1601        displaced;
1602        displaced = displaced->next)
1603     {
1604       if (ptid_equal (displaced->step_ptid, old_ptid))
1605 	displaced->step_ptid = new_ptid;
1606 
1607       for (it = displaced->step_request_queue; it; it = it->next)
1608 	if (ptid_equal (it->ptid, old_ptid))
1609 	  it->ptid = new_ptid;
1610     }
1611 }
1612 
1613 
1614 /* Resuming.  */
1615 
1616 /* Things to clean up if we QUIT out of resume ().  */
1617 static void
resume_cleanups(void * ignore)1618 resume_cleanups (void *ignore)
1619 {
1620   normal_stop ();
1621 }
1622 
1623 static const char schedlock_off[] = "off";
1624 static const char schedlock_on[] = "on";
1625 static const char schedlock_step[] = "step";
1626 static const char *const scheduler_enums[] = {
1627   schedlock_off,
1628   schedlock_on,
1629   schedlock_step,
1630   NULL
1631 };
1632 static const char *scheduler_mode = schedlock_off;
1633 static void
show_scheduler_mode(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)1634 show_scheduler_mode (struct ui_file *file, int from_tty,
1635 		     struct cmd_list_element *c, const char *value)
1636 {
1637   fprintf_filtered (file,
1638 		    _("Mode for locking scheduler "
1639 		      "during execution is \"%s\".\n"),
1640 		    value);
1641 }
1642 
1643 static void
set_schedlock_func(char * args,int from_tty,struct cmd_list_element * c)1644 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1645 {
1646   if (!target_can_lock_scheduler)
1647     {
1648       scheduler_mode = schedlock_off;
1649       error (_("Target '%s' cannot support this command."), target_shortname);
1650     }
1651 }
1652 
1653 /* True if execution commands resume all threads of all processes by
1654    default; otherwise, resume only threads of the current inferior
1655    process.  */
1656 int sched_multi = 0;
1657 
1658 /* Try to setup for software single stepping over the specified location.
1659    Return 1 if target_resume() should use hardware single step.
1660 
1661    GDBARCH the current gdbarch.
1662    PC the location to step over.  */
1663 
1664 static int
maybe_software_singlestep(struct gdbarch * gdbarch,CORE_ADDR pc)1665 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1666 {
1667   int hw_step = 1;
1668 
1669   if (execution_direction == EXEC_FORWARD
1670       && gdbarch_software_single_step_p (gdbarch)
1671       && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1672     {
1673       hw_step = 0;
1674       /* Do not pull these breakpoints until after a `wait' in
1675 	 `wait_for_inferior'.  */
1676       singlestep_breakpoints_inserted_p = 1;
1677       singlestep_ptid = inferior_ptid;
1678       singlestep_pc = pc;
1679     }
1680   return hw_step;
1681 }
1682 
1683 /* Return a ptid representing the set of threads that we will proceed,
1684    in the perspective of the user/frontend.  We may actually resume
1685    fewer threads at first, e.g., if a thread is stopped at a
1686    breakpoint that needs stepping-off, but that should not be visible
1687    to the user/frontend, and neither should the frontend/user be
1688    allowed to proceed any of the threads that happen to be stopped for
1689    internal run control handling, if a previous command wanted them
1690    resumed.  */
1691 
1692 ptid_t
user_visible_resume_ptid(int step)1693 user_visible_resume_ptid (int step)
1694 {
1695   /* By default, resume all threads of all processes.  */
1696   ptid_t resume_ptid = RESUME_ALL;
1697 
1698   /* Maybe resume only all threads of the current process.  */
1699   if (!sched_multi && target_supports_multi_process ())
1700     {
1701       resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1702     }
1703 
1704   /* Maybe resume a single thread after all.  */
1705   if (non_stop)
1706     {
1707       /* With non-stop mode on, threads are always handled
1708 	 individually.  */
1709       resume_ptid = inferior_ptid;
1710     }
1711   else if ((scheduler_mode == schedlock_on)
1712 	   || (scheduler_mode == schedlock_step
1713 	       && (step || singlestep_breakpoints_inserted_p)))
1714     {
1715       /* User-settable 'scheduler' mode requires solo thread resume.  */
1716       resume_ptid = inferior_ptid;
1717     }
1718 
1719   return resume_ptid;
1720 }
1721 
1722 /* Resume the inferior, but allow a QUIT.  This is useful if the user
1723    wants to interrupt some lengthy single-stepping operation
1724    (for child processes, the SIGINT goes to the inferior, and so
1725    we get a SIGINT random_signal, but for remote debugging and perhaps
1726    other targets, that's not true).
1727 
1728    STEP nonzero if we should step (zero to continue instead).
1729    SIG is the signal to give the inferior (zero for none).  */
1730 void
resume(int step,enum gdb_signal sig)1731 resume (int step, enum gdb_signal sig)
1732 {
1733   int should_resume = 1;
1734   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1735   struct regcache *regcache = get_current_regcache ();
1736   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1737   struct thread_info *tp = inferior_thread ();
1738   CORE_ADDR pc = regcache_read_pc (regcache);
1739   struct address_space *aspace = get_regcache_aspace (regcache);
1740 
1741   QUIT;
1742 
1743   if (current_inferior ()->waiting_for_vfork_done)
1744     {
1745       /* Don't try to single-step a vfork parent that is waiting for
1746 	 the child to get out of the shared memory region (by exec'ing
1747 	 or exiting).  This is particularly important on software
1748 	 single-step archs, as the child process would trip on the
1749 	 software single step breakpoint inserted for the parent
1750 	 process.  Since the parent will not actually execute any
1751 	 instruction until the child is out of the shared region (such
1752 	 are vfork's semantics), it is safe to simply continue it.
1753 	 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1754 	 the parent, and tell it to `keep_going', which automatically
1755 	 re-sets it stepping.  */
1756       if (debug_infrun)
1757 	fprintf_unfiltered (gdb_stdlog,
1758 			    "infrun: resume : clear step\n");
1759       step = 0;
1760     }
1761 
1762   if (debug_infrun)
1763     fprintf_unfiltered (gdb_stdlog,
1764                         "infrun: resume (step=%d, signal=%d), "
1765 			"trap_expected=%d, current thread [%s] at %s\n",
1766  			step, sig, tp->control.trap_expected,
1767 			target_pid_to_str (inferior_ptid),
1768 			paddress (gdbarch, pc));
1769 
1770   /* Normally, by the time we reach `resume', the breakpoints are either
1771      removed or inserted, as appropriate.  The exception is if we're sitting
1772      at a permanent breakpoint; we need to step over it, but permanent
1773      breakpoints can't be removed.  So we have to test for it here.  */
1774   if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1775     {
1776       if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1777 	gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1778       else
1779 	error (_("\
1780 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1781 how to step past a permanent breakpoint on this architecture.  Try using\n\
1782 a command like `return' or `jump' to continue execution."));
1783     }
1784 
1785   /* If enabled, step over breakpoints by executing a copy of the
1786      instruction at a different address.
1787 
1788      We can't use displaced stepping when we have a signal to deliver;
1789      the comments for displaced_step_prepare explain why.  The
1790      comments in the handle_inferior event for dealing with 'random
1791      signals' explain what we do instead.
1792 
1793      We can't use displaced stepping when we are waiting for vfork_done
1794      event, displaced stepping breaks the vfork child similarly as single
1795      step software breakpoint.  */
1796   if (use_displaced_stepping (gdbarch)
1797       && (tp->control.trap_expected
1798 	  || (step && gdbarch_software_single_step_p (gdbarch)))
1799       && sig == GDB_SIGNAL_0
1800       && !current_inferior ()->waiting_for_vfork_done)
1801     {
1802       struct displaced_step_inferior_state *displaced;
1803 
1804       if (!displaced_step_prepare (inferior_ptid))
1805 	{
1806 	  /* Got placed in displaced stepping queue.  Will be resumed
1807 	     later when all the currently queued displaced stepping
1808 	     requests finish.  The thread is not executing at this point,
1809 	     and the call to set_executing will be made later.  But we
1810 	     need to call set_running here, since from frontend point of view,
1811 	     the thread is running.  */
1812 	  set_running (inferior_ptid, 1);
1813 	  discard_cleanups (old_cleanups);
1814 	  return;
1815 	}
1816 
1817       /* Update pc to reflect the new address from which we will execute
1818 	 instructions due to displaced stepping.  */
1819       pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1820 
1821       displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1822       step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1823 						   displaced->step_closure);
1824     }
1825 
1826   /* Do we need to do it the hard way, w/temp breakpoints?  */
1827   else if (step)
1828     step = maybe_software_singlestep (gdbarch, pc);
1829 
1830   /* Currently, our software single-step implementation leads to different
1831      results than hardware single-stepping in one situation: when stepping
1832      into delivering a signal which has an associated signal handler,
1833      hardware single-step will stop at the first instruction of the handler,
1834      while software single-step will simply skip execution of the handler.
1835 
1836      For now, this difference in behavior is accepted since there is no
1837      easy way to actually implement single-stepping into a signal handler
1838      without kernel support.
1839 
1840      However, there is one scenario where this difference leads to follow-on
1841      problems: if we're stepping off a breakpoint by removing all breakpoints
1842      and then single-stepping.  In this case, the software single-step
1843      behavior means that even if there is a *breakpoint* in the signal
1844      handler, GDB still would not stop.
1845 
1846      Fortunately, we can at least fix this particular issue.  We detect
1847      here the case where we are about to deliver a signal while software
1848      single-stepping with breakpoints removed.  In this situation, we
1849      revert the decisions to remove all breakpoints and insert single-
1850      step breakpoints, and instead we install a step-resume breakpoint
1851      at the current address, deliver the signal without stepping, and
1852      once we arrive back at the step-resume breakpoint, actually step
1853      over the breakpoint we originally wanted to step over.  */
1854   if (singlestep_breakpoints_inserted_p
1855       && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1856     {
1857       /* If we have nested signals or a pending signal is delivered
1858 	 immediately after a handler returns, might might already have
1859 	 a step-resume breakpoint set on the earlier handler.  We cannot
1860 	 set another step-resume breakpoint; just continue on until the
1861 	 original breakpoint is hit.  */
1862       if (tp->control.step_resume_breakpoint == NULL)
1863 	{
1864 	  insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1865 	  tp->step_after_step_resume_breakpoint = 1;
1866 	}
1867 
1868       remove_single_step_breakpoints ();
1869       singlestep_breakpoints_inserted_p = 0;
1870 
1871       insert_breakpoints ();
1872       tp->control.trap_expected = 0;
1873     }
1874 
1875   if (should_resume)
1876     {
1877       ptid_t resume_ptid;
1878 
1879       /* If STEP is set, it's a request to use hardware stepping
1880 	 facilities.  But in that case, we should never
1881 	 use singlestep breakpoint.  */
1882       gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1883 
1884       /* Decide the set of threads to ask the target to resume.  Start
1885 	 by assuming everything will be resumed, than narrow the set
1886 	 by applying increasingly restricting conditions.  */
1887       resume_ptid = user_visible_resume_ptid (step);
1888 
1889       /* Maybe resume a single thread after all.  */
1890       if (singlestep_breakpoints_inserted_p
1891 	  && stepping_past_singlestep_breakpoint)
1892 	{
1893 	  /* The situation here is as follows.  In thread T1 we wanted to
1894 	     single-step.  Lacking hardware single-stepping we've
1895 	     set breakpoint at the PC of the next instruction -- call it
1896 	     P.  After resuming, we've hit that breakpoint in thread T2.
1897 	     Now we've removed original breakpoint, inserted breakpoint
1898 	     at P+1, and try to step to advance T2 past breakpoint.
1899 	     We need to step only T2, as if T1 is allowed to freely run,
1900 	     it can run past P, and if other threads are allowed to run,
1901 	     they can hit breakpoint at P+1, and nested hits of single-step
1902 	     breakpoints is not something we'd want -- that's complicated
1903 	     to support, and has no value.  */
1904 	  resume_ptid = inferior_ptid;
1905 	}
1906       else if ((step || singlestep_breakpoints_inserted_p)
1907 	       && tp->control.trap_expected)
1908 	{
1909 	  /* We're allowing a thread to run past a breakpoint it has
1910 	     hit, by single-stepping the thread with the breakpoint
1911 	     removed.  In which case, we need to single-step only this
1912 	     thread, and keep others stopped, as they can miss this
1913 	     breakpoint if allowed to run.
1914 
1915 	     The current code actually removes all breakpoints when
1916 	     doing this, not just the one being stepped over, so if we
1917 	     let other threads run, we can actually miss any
1918 	     breakpoint, not just the one at PC.  */
1919 	  resume_ptid = inferior_ptid;
1920 	}
1921 
1922       if (gdbarch_cannot_step_breakpoint (gdbarch))
1923 	{
1924 	  /* Most targets can step a breakpoint instruction, thus
1925 	     executing it normally.  But if this one cannot, just
1926 	     continue and we will hit it anyway.  */
1927 	  if (step && breakpoint_inserted_here_p (aspace, pc))
1928 	    step = 0;
1929 	}
1930 
1931       if (debug_displaced
1932           && use_displaced_stepping (gdbarch)
1933           && tp->control.trap_expected)
1934         {
1935 	  struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1936 	  struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1937           CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1938           gdb_byte buf[4];
1939 
1940           fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1941                               paddress (resume_gdbarch, actual_pc));
1942           read_memory (actual_pc, buf, sizeof (buf));
1943           displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1944         }
1945 
1946       /* Install inferior's terminal modes.  */
1947       target_terminal_inferior ();
1948 
1949       /* Avoid confusing the next resume, if the next stop/resume
1950 	 happens to apply to another thread.  */
1951       tp->suspend.stop_signal = GDB_SIGNAL_0;
1952 
1953       /* Advise target which signals may be handled silently.  If we have
1954 	 removed breakpoints because we are stepping over one (which can
1955 	 happen only if we are not using displaced stepping), we need to
1956 	 receive all signals to avoid accidentally skipping a breakpoint
1957 	 during execution of a signal handler.  */
1958       if ((step || singlestep_breakpoints_inserted_p)
1959 	  && tp->control.trap_expected
1960 	  && !use_displaced_stepping (gdbarch))
1961 	target_pass_signals (0, NULL);
1962       else
1963 	target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1964 
1965       target_resume (resume_ptid, step, sig);
1966     }
1967 
1968   discard_cleanups (old_cleanups);
1969 }
1970 
1971 /* Proceeding.  */
1972 
1973 /* Clear out all variables saying what to do when inferior is continued.
1974    First do this, then set the ones you want, then call `proceed'.  */
1975 
1976 static void
clear_proceed_status_thread(struct thread_info * tp)1977 clear_proceed_status_thread (struct thread_info *tp)
1978 {
1979   if (debug_infrun)
1980     fprintf_unfiltered (gdb_stdlog,
1981 			"infrun: clear_proceed_status_thread (%s)\n",
1982 			target_pid_to_str (tp->ptid));
1983 
1984   tp->control.trap_expected = 0;
1985   tp->control.step_range_start = 0;
1986   tp->control.step_range_end = 0;
1987   tp->control.step_frame_id = null_frame_id;
1988   tp->control.step_stack_frame_id = null_frame_id;
1989   tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1990   tp->stop_requested = 0;
1991 
1992   tp->control.stop_step = 0;
1993 
1994   tp->control.proceed_to_finish = 0;
1995 
1996   /* Discard any remaining commands or status from previous stop.  */
1997   bpstat_clear (&tp->control.stop_bpstat);
1998 }
1999 
2000 static int
clear_proceed_status_callback(struct thread_info * tp,void * data)2001 clear_proceed_status_callback (struct thread_info *tp, void *data)
2002 {
2003   if (is_exited (tp->ptid))
2004     return 0;
2005 
2006   clear_proceed_status_thread (tp);
2007   return 0;
2008 }
2009 
2010 void
clear_proceed_status(void)2011 clear_proceed_status (void)
2012 {
2013   if (!non_stop)
2014     {
2015       /* In all-stop mode, delete the per-thread status of all
2016 	 threads, even if inferior_ptid is null_ptid, there may be
2017 	 threads on the list.  E.g., we may be launching a new
2018 	 process, while selecting the executable.  */
2019       iterate_over_threads (clear_proceed_status_callback, NULL);
2020     }
2021 
2022   if (!ptid_equal (inferior_ptid, null_ptid))
2023     {
2024       struct inferior *inferior;
2025 
2026       if (non_stop)
2027 	{
2028 	  /* If in non-stop mode, only delete the per-thread status of
2029 	     the current thread.  */
2030 	  clear_proceed_status_thread (inferior_thread ());
2031 	}
2032 
2033       inferior = current_inferior ();
2034       inferior->control.stop_soon = NO_STOP_QUIETLY;
2035     }
2036 
2037   stop_after_trap = 0;
2038 
2039   observer_notify_about_to_proceed ();
2040 
2041   if (stop_registers)
2042     {
2043       regcache_xfree (stop_registers);
2044       stop_registers = NULL;
2045     }
2046 }
2047 
2048 /* Check the current thread against the thread that reported the most recent
2049    event.  If a step-over is required return TRUE and set the current thread
2050    to the old thread.  Otherwise return FALSE.
2051 
2052    This should be suitable for any targets that support threads.  */
2053 
2054 static int
prepare_to_proceed(int step)2055 prepare_to_proceed (int step)
2056 {
2057   ptid_t wait_ptid;
2058   struct target_waitstatus wait_status;
2059   int schedlock_enabled;
2060 
2061   /* With non-stop mode on, threads are always handled individually.  */
2062   gdb_assert (! non_stop);
2063 
2064   /* Get the last target status returned by target_wait().  */
2065   get_last_target_status (&wait_ptid, &wait_status);
2066 
2067   /* Make sure we were stopped at a breakpoint.  */
2068   if (wait_status.kind != TARGET_WAITKIND_STOPPED
2069       || (wait_status.value.sig != GDB_SIGNAL_TRAP
2070 	  && wait_status.value.sig != GDB_SIGNAL_ILL
2071 	  && wait_status.value.sig != GDB_SIGNAL_SEGV
2072 	  && wait_status.value.sig != GDB_SIGNAL_EMT))
2073     {
2074       return 0;
2075     }
2076 
2077   schedlock_enabled = (scheduler_mode == schedlock_on
2078 		       || (scheduler_mode == schedlock_step
2079 			   && step));
2080 
2081   /* Don't switch over to WAIT_PTID if scheduler locking is on.  */
2082   if (schedlock_enabled)
2083     return 0;
2084 
2085   /* Don't switch over if we're about to resume some other process
2086      other than WAIT_PTID's, and schedule-multiple is off.  */
2087   if (!sched_multi
2088       && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2089     return 0;
2090 
2091   /* Switched over from WAIT_PID.  */
2092   if (!ptid_equal (wait_ptid, minus_one_ptid)
2093       && !ptid_equal (inferior_ptid, wait_ptid))
2094     {
2095       struct regcache *regcache = get_thread_regcache (wait_ptid);
2096 
2097       if (breakpoint_here_p (get_regcache_aspace (regcache),
2098 			     regcache_read_pc (regcache)))
2099 	{
2100 	  /* If stepping, remember current thread to switch back to.  */
2101 	  if (step)
2102 	    deferred_step_ptid = inferior_ptid;
2103 
2104 	  /* Switch back to WAIT_PID thread.  */
2105 	  switch_to_thread (wait_ptid);
2106 
2107 	  if (debug_infrun)
2108 	    fprintf_unfiltered (gdb_stdlog,
2109 				"infrun: prepare_to_proceed (step=%d), "
2110 				"switched to [%s]\n",
2111 				step, target_pid_to_str (inferior_ptid));
2112 
2113 	  /* We return 1 to indicate that there is a breakpoint here,
2114 	     so we need to step over it before continuing to avoid
2115 	     hitting it straight away.  */
2116 	  return 1;
2117 	}
2118     }
2119 
2120   return 0;
2121 }
2122 
2123 /* Basic routine for continuing the program in various fashions.
2124 
2125    ADDR is the address to resume at, or -1 for resume where stopped.
2126    SIGGNAL is the signal to give it, or 0 for none,
2127    or -1 for act according to how it stopped.
2128    STEP is nonzero if should trap after one instruction.
2129    -1 means return after that and print nothing.
2130    You should probably set various step_... variables
2131    before calling here, if you are stepping.
2132 
2133    You should call clear_proceed_status before calling proceed.  */
2134 
2135 void
proceed(CORE_ADDR addr,enum gdb_signal siggnal,int step)2136 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2137 {
2138   struct regcache *regcache;
2139   struct gdbarch *gdbarch;
2140   struct thread_info *tp;
2141   CORE_ADDR pc;
2142   struct address_space *aspace;
2143   /* GDB may force the inferior to step due to various reasons.  */
2144   int force_step = 0;
2145 
2146   /* If we're stopped at a fork/vfork, follow the branch set by the
2147      "set follow-fork-mode" command; otherwise, we'll just proceed
2148      resuming the current thread.  */
2149   if (!follow_fork ())
2150     {
2151       /* The target for some reason decided not to resume.  */
2152       normal_stop ();
2153       if (target_can_async_p ())
2154 	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2155       return;
2156     }
2157 
2158   /* We'll update this if & when we switch to a new thread.  */
2159   previous_inferior_ptid = inferior_ptid;
2160 
2161   regcache = get_current_regcache ();
2162   gdbarch = get_regcache_arch (regcache);
2163   aspace = get_regcache_aspace (regcache);
2164   pc = regcache_read_pc (regcache);
2165 
2166   if (step > 0)
2167     step_start_function = find_pc_function (pc);
2168   if (step < 0)
2169     stop_after_trap = 1;
2170 
2171   if (addr == (CORE_ADDR) -1)
2172     {
2173       if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2174 	  && execution_direction != EXEC_REVERSE)
2175 	/* There is a breakpoint at the address we will resume at,
2176 	   step one instruction before inserting breakpoints so that
2177 	   we do not stop right away (and report a second hit at this
2178 	   breakpoint).
2179 
2180 	   Note, we don't do this in reverse, because we won't
2181 	   actually be executing the breakpoint insn anyway.
2182 	   We'll be (un-)executing the previous instruction.  */
2183 
2184 	force_step = 1;
2185       else if (gdbarch_single_step_through_delay_p (gdbarch)
2186 	       && gdbarch_single_step_through_delay (gdbarch,
2187 						     get_current_frame ()))
2188 	/* We stepped onto an instruction that needs to be stepped
2189 	   again before re-inserting the breakpoint, do so.  */
2190 	force_step = 1;
2191     }
2192   else
2193     {
2194       regcache_write_pc (regcache, addr);
2195     }
2196 
2197   if (debug_infrun)
2198     fprintf_unfiltered (gdb_stdlog,
2199 			"infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2200 			paddress (gdbarch, addr), siggnal, step);
2201 
2202   if (non_stop)
2203     /* In non-stop, each thread is handled individually.  The context
2204        must already be set to the right thread here.  */
2205     ;
2206   else
2207     {
2208       /* In a multi-threaded task we may select another thread and
2209 	 then continue or step.
2210 
2211 	 But if the old thread was stopped at a breakpoint, it will
2212 	 immediately cause another breakpoint stop without any
2213 	 execution (i.e. it will report a breakpoint hit incorrectly).
2214 	 So we must step over it first.
2215 
2216 	 prepare_to_proceed checks the current thread against the
2217 	 thread that reported the most recent event.  If a step-over
2218 	 is required it returns TRUE and sets the current thread to
2219 	 the old thread.  */
2220       if (prepare_to_proceed (step))
2221 	force_step = 1;
2222     }
2223 
2224   /* prepare_to_proceed may change the current thread.  */
2225   tp = inferior_thread ();
2226 
2227   if (force_step)
2228     {
2229       tp->control.trap_expected = 1;
2230       /* If displaced stepping is enabled, we can step over the
2231 	 breakpoint without hitting it, so leave all breakpoints
2232 	 inserted.  Otherwise we need to disable all breakpoints, step
2233 	 one instruction, and then re-add them when that step is
2234 	 finished.  */
2235       if (!use_displaced_stepping (gdbarch))
2236 	remove_breakpoints ();
2237     }
2238 
2239   /* We can insert breakpoints if we're not trying to step over one,
2240      or if we are stepping over one but we're using displaced stepping
2241      to do so.  */
2242   if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2243     insert_breakpoints ();
2244 
2245   if (!non_stop)
2246     {
2247       /* Pass the last stop signal to the thread we're resuming,
2248 	 irrespective of whether the current thread is the thread that
2249 	 got the last event or not.  This was historically GDB's
2250 	 behaviour before keeping a stop_signal per thread.  */
2251 
2252       struct thread_info *last_thread;
2253       ptid_t last_ptid;
2254       struct target_waitstatus last_status;
2255 
2256       get_last_target_status (&last_ptid, &last_status);
2257       if (!ptid_equal (inferior_ptid, last_ptid)
2258 	  && !ptid_equal (last_ptid, null_ptid)
2259 	  && !ptid_equal (last_ptid, minus_one_ptid))
2260 	{
2261 	  last_thread = find_thread_ptid (last_ptid);
2262 	  if (last_thread)
2263 	    {
2264 	      tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2265 	      last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2266 	    }
2267 	}
2268     }
2269 
2270   if (siggnal != GDB_SIGNAL_DEFAULT)
2271     tp->suspend.stop_signal = siggnal;
2272   /* If this signal should not be seen by program,
2273      give it zero.  Used for debugging signals.  */
2274   else if (!signal_program[tp->suspend.stop_signal])
2275     tp->suspend.stop_signal = GDB_SIGNAL_0;
2276 
2277   annotate_starting ();
2278 
2279   /* Make sure that output from GDB appears before output from the
2280      inferior.  */
2281   gdb_flush (gdb_stdout);
2282 
2283   /* Refresh prev_pc value just prior to resuming.  This used to be
2284      done in stop_stepping, however, setting prev_pc there did not handle
2285      scenarios such as inferior function calls or returning from
2286      a function via the return command.  In those cases, the prev_pc
2287      value was not set properly for subsequent commands.  The prev_pc value
2288      is used to initialize the starting line number in the ecs.  With an
2289      invalid value, the gdb next command ends up stopping at the position
2290      represented by the next line table entry past our start position.
2291      On platforms that generate one line table entry per line, this
2292      is not a problem.  However, on the ia64, the compiler generates
2293      extraneous line table entries that do not increase the line number.
2294      When we issue the gdb next command on the ia64 after an inferior call
2295      or a return command, we often end up a few instructions forward, still
2296      within the original line we started.
2297 
2298      An attempt was made to refresh the prev_pc at the same time the
2299      execution_control_state is initialized (for instance, just before
2300      waiting for an inferior event).  But this approach did not work
2301      because of platforms that use ptrace, where the pc register cannot
2302      be read unless the inferior is stopped.  At that point, we are not
2303      guaranteed the inferior is stopped and so the regcache_read_pc() call
2304      can fail.  Setting the prev_pc value here ensures the value is updated
2305      correctly when the inferior is stopped.  */
2306   tp->prev_pc = regcache_read_pc (get_current_regcache ());
2307 
2308   /* Fill in with reasonable starting values.  */
2309   init_thread_stepping_state (tp);
2310 
2311   /* Reset to normal state.  */
2312   init_infwait_state ();
2313 
2314   /* Resume inferior.  */
2315   resume (force_step || step || bpstat_should_step (),
2316 	  tp->suspend.stop_signal);
2317 
2318   /* Wait for it to stop (if not standalone)
2319      and in any case decode why it stopped, and act accordingly.  */
2320   /* Do this only if we are not using the event loop, or if the target
2321      does not support asynchronous execution.  */
2322   if (!target_can_async_p ())
2323     {
2324       wait_for_inferior ();
2325       normal_stop ();
2326     }
2327 }
2328 
2329 
2330 /* Start remote-debugging of a machine over a serial link.  */
2331 
2332 void
start_remote(int from_tty)2333 start_remote (int from_tty)
2334 {
2335   struct inferior *inferior;
2336 
2337   inferior = current_inferior ();
2338   inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2339 
2340   /* Always go on waiting for the target, regardless of the mode.  */
2341   /* FIXME: cagney/1999-09-23: At present it isn't possible to
2342      indicate to wait_for_inferior that a target should timeout if
2343      nothing is returned (instead of just blocking).  Because of this,
2344      targets expecting an immediate response need to, internally, set
2345      things up so that the target_wait() is forced to eventually
2346      timeout.  */
2347   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2348      differentiate to its caller what the state of the target is after
2349      the initial open has been performed.  Here we're assuming that
2350      the target has stopped.  It should be possible to eventually have
2351      target_open() return to the caller an indication that the target
2352      is currently running and GDB state should be set to the same as
2353      for an async run.  */
2354   wait_for_inferior ();
2355 
2356   /* Now that the inferior has stopped, do any bookkeeping like
2357      loading shared libraries.  We want to do this before normal_stop,
2358      so that the displayed frame is up to date.  */
2359   post_create_inferior (&current_target, from_tty);
2360 
2361   normal_stop ();
2362 }
2363 
2364 /* Initialize static vars when a new inferior begins.  */
2365 
2366 void
init_wait_for_inferior(void)2367 init_wait_for_inferior (void)
2368 {
2369   /* These are meaningless until the first time through wait_for_inferior.  */
2370 
2371   breakpoint_init_inferior (inf_starting);
2372 
2373   clear_proceed_status ();
2374 
2375   stepping_past_singlestep_breakpoint = 0;
2376   deferred_step_ptid = null_ptid;
2377 
2378   target_last_wait_ptid = minus_one_ptid;
2379 
2380   previous_inferior_ptid = inferior_ptid;
2381   init_infwait_state ();
2382 
2383   /* Discard any skipped inlined frames.  */
2384   clear_inline_frame_state (minus_one_ptid);
2385 }
2386 
2387 
2388 /* This enum encodes possible reasons for doing a target_wait, so that
2389    wfi can call target_wait in one place.  (Ultimately the call will be
2390    moved out of the infinite loop entirely.) */
2391 
2392 enum infwait_states
2393 {
2394   infwait_normal_state,
2395   infwait_thread_hop_state,
2396   infwait_step_watch_state,
2397   infwait_nonstep_watch_state
2398 };
2399 
2400 /* The PTID we'll do a target_wait on.*/
2401 ptid_t waiton_ptid;
2402 
2403 /* Current inferior wait state.  */
2404 static enum infwait_states infwait_state;
2405 
2406 /* Data to be passed around while handling an event.  This data is
2407    discarded between events.  */
2408 struct execution_control_state
2409 {
2410   ptid_t ptid;
2411   /* The thread that got the event, if this was a thread event; NULL
2412      otherwise.  */
2413   struct thread_info *event_thread;
2414 
2415   struct target_waitstatus ws;
2416   int random_signal;
2417   int stop_func_filled_in;
2418   CORE_ADDR stop_func_start;
2419   CORE_ADDR stop_func_end;
2420   const char *stop_func_name;
2421   int wait_some_more;
2422 };
2423 
2424 static void handle_inferior_event (struct execution_control_state *ecs);
2425 
2426 static void handle_step_into_function (struct gdbarch *gdbarch,
2427 				       struct execution_control_state *ecs);
2428 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2429 						struct execution_control_state *ecs);
2430 static void check_exception_resume (struct execution_control_state *,
2431 				    struct frame_info *);
2432 
2433 static void stop_stepping (struct execution_control_state *ecs);
2434 static void prepare_to_wait (struct execution_control_state *ecs);
2435 static void keep_going (struct execution_control_state *ecs);
2436 
2437 /* Callback for iterate over threads.  If the thread is stopped, but
2438    the user/frontend doesn't know about that yet, go through
2439    normal_stop, as if the thread had just stopped now.  ARG points at
2440    a ptid.  If PTID is MINUS_ONE_PTID, applies to all threads.  If
2441    ptid_is_pid(PTID) is true, applies to all threads of the process
2442    pointed at by PTID.  Otherwise, apply only to the thread pointed by
2443    PTID.  */
2444 
2445 static int
infrun_thread_stop_requested_callback(struct thread_info * info,void * arg)2446 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2447 {
2448   ptid_t ptid = * (ptid_t *) arg;
2449 
2450   if ((ptid_equal (info->ptid, ptid)
2451        || ptid_equal (minus_one_ptid, ptid)
2452        || (ptid_is_pid (ptid)
2453 	   && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2454       && is_running (info->ptid)
2455       && !is_executing (info->ptid))
2456     {
2457       struct cleanup *old_chain;
2458       struct execution_control_state ecss;
2459       struct execution_control_state *ecs = &ecss;
2460 
2461       memset (ecs, 0, sizeof (*ecs));
2462 
2463       old_chain = make_cleanup_restore_current_thread ();
2464 
2465       /* Go through handle_inferior_event/normal_stop, so we always
2466 	 have consistent output as if the stop event had been
2467 	 reported.  */
2468       ecs->ptid = info->ptid;
2469       ecs->event_thread = find_thread_ptid (info->ptid);
2470       ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2471       ecs->ws.value.sig = GDB_SIGNAL_0;
2472 
2473       handle_inferior_event (ecs);
2474 
2475       if (!ecs->wait_some_more)
2476 	{
2477 	  struct thread_info *tp;
2478 
2479 	  normal_stop ();
2480 
2481 	  /* Finish off the continuations.  */
2482 	  tp = inferior_thread ();
2483 	  do_all_intermediate_continuations_thread (tp, 1);
2484 	  do_all_continuations_thread (tp, 1);
2485 	}
2486 
2487       do_cleanups (old_chain);
2488     }
2489 
2490   return 0;
2491 }
2492 
2493 /* This function is attached as a "thread_stop_requested" observer.
2494    Cleanup local state that assumed the PTID was to be resumed, and
2495    report the stop to the frontend.  */
2496 
2497 static void
infrun_thread_stop_requested(ptid_t ptid)2498 infrun_thread_stop_requested (ptid_t ptid)
2499 {
2500   struct displaced_step_inferior_state *displaced;
2501 
2502   /* PTID was requested to stop.  Remove it from the displaced
2503      stepping queue, so we don't try to resume it automatically.  */
2504 
2505   for (displaced = displaced_step_inferior_states;
2506        displaced;
2507        displaced = displaced->next)
2508     {
2509       struct displaced_step_request *it, **prev_next_p;
2510 
2511       it = displaced->step_request_queue;
2512       prev_next_p = &displaced->step_request_queue;
2513       while (it)
2514 	{
2515 	  if (ptid_match (it->ptid, ptid))
2516 	    {
2517 	      *prev_next_p = it->next;
2518 	      it->next = NULL;
2519 	      xfree (it);
2520 	    }
2521 	  else
2522 	    {
2523 	      prev_next_p = &it->next;
2524 	    }
2525 
2526 	  it = *prev_next_p;
2527 	}
2528     }
2529 
2530   iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2531 }
2532 
2533 static void
infrun_thread_thread_exit(struct thread_info * tp,int silent)2534 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2535 {
2536   if (ptid_equal (target_last_wait_ptid, tp->ptid))
2537     nullify_last_target_wait_ptid ();
2538 }
2539 
2540 /* Callback for iterate_over_threads.  */
2541 
2542 static int
delete_step_resume_breakpoint_callback(struct thread_info * info,void * data)2543 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2544 {
2545   if (is_exited (info->ptid))
2546     return 0;
2547 
2548   delete_step_resume_breakpoint (info);
2549   delete_exception_resume_breakpoint (info);
2550   return 0;
2551 }
2552 
2553 /* In all-stop, delete the step resume breakpoint of any thread that
2554    had one.  In non-stop, delete the step resume breakpoint of the
2555    thread that just stopped.  */
2556 
2557 static void
delete_step_thread_step_resume_breakpoint(void)2558 delete_step_thread_step_resume_breakpoint (void)
2559 {
2560   if (!target_has_execution
2561       || ptid_equal (inferior_ptid, null_ptid))
2562     /* If the inferior has exited, we have already deleted the step
2563        resume breakpoints out of GDB's lists.  */
2564     return;
2565 
2566   if (non_stop)
2567     {
2568       /* If in non-stop mode, only delete the step-resume or
2569 	 longjmp-resume breakpoint of the thread that just stopped
2570 	 stepping.  */
2571       struct thread_info *tp = inferior_thread ();
2572 
2573       delete_step_resume_breakpoint (tp);
2574       delete_exception_resume_breakpoint (tp);
2575     }
2576   else
2577     /* In all-stop mode, delete all step-resume and longjmp-resume
2578        breakpoints of any thread that had them.  */
2579     iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2580 }
2581 
2582 /* A cleanup wrapper.  */
2583 
2584 static void
delete_step_thread_step_resume_breakpoint_cleanup(void * arg)2585 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2586 {
2587   delete_step_thread_step_resume_breakpoint ();
2588 }
2589 
2590 /* Pretty print the results of target_wait, for debugging purposes.  */
2591 
2592 static void
print_target_wait_results(ptid_t waiton_ptid,ptid_t result_ptid,const struct target_waitstatus * ws)2593 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2594 			   const struct target_waitstatus *ws)
2595 {
2596   char *status_string = target_waitstatus_to_string (ws);
2597   struct ui_file *tmp_stream = mem_fileopen ();
2598   char *text;
2599 
2600   /* The text is split over several lines because it was getting too long.
2601      Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2602      output as a unit; we want only one timestamp printed if debug_timestamp
2603      is set.  */
2604 
2605   fprintf_unfiltered (tmp_stream,
2606 		      "infrun: target_wait (%d", PIDGET (waiton_ptid));
2607   if (PIDGET (waiton_ptid) != -1)
2608     fprintf_unfiltered (tmp_stream,
2609 			" [%s]", target_pid_to_str (waiton_ptid));
2610   fprintf_unfiltered (tmp_stream, ", status) =\n");
2611   fprintf_unfiltered (tmp_stream,
2612 		      "infrun:   %d [%s],\n",
2613 		      PIDGET (result_ptid), target_pid_to_str (result_ptid));
2614   fprintf_unfiltered (tmp_stream,
2615 		      "infrun:   %s\n",
2616 		      status_string);
2617 
2618   text = ui_file_xstrdup (tmp_stream, NULL);
2619 
2620   /* This uses %s in part to handle %'s in the text, but also to avoid
2621      a gcc error: the format attribute requires a string literal.  */
2622   fprintf_unfiltered (gdb_stdlog, "%s", text);
2623 
2624   xfree (status_string);
2625   xfree (text);
2626   ui_file_delete (tmp_stream);
2627 }
2628 
2629 /* Prepare and stabilize the inferior for detaching it.  E.g.,
2630    detaching while a thread is displaced stepping is a recipe for
2631    crashing it, as nothing would readjust the PC out of the scratch
2632    pad.  */
2633 
2634 void
prepare_for_detach(void)2635 prepare_for_detach (void)
2636 {
2637   struct inferior *inf = current_inferior ();
2638   ptid_t pid_ptid = pid_to_ptid (inf->pid);
2639   struct cleanup *old_chain_1;
2640   struct displaced_step_inferior_state *displaced;
2641 
2642   displaced = get_displaced_stepping_state (inf->pid);
2643 
2644   /* Is any thread of this process displaced stepping?  If not,
2645      there's nothing else to do.  */
2646   if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2647     return;
2648 
2649   if (debug_infrun)
2650     fprintf_unfiltered (gdb_stdlog,
2651 			"displaced-stepping in-process while detaching");
2652 
2653   old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2654   inf->detaching = 1;
2655 
2656   while (!ptid_equal (displaced->step_ptid, null_ptid))
2657     {
2658       struct cleanup *old_chain_2;
2659       struct execution_control_state ecss;
2660       struct execution_control_state *ecs;
2661 
2662       ecs = &ecss;
2663       memset (ecs, 0, sizeof (*ecs));
2664 
2665       overlay_cache_invalid = 1;
2666 
2667       if (deprecated_target_wait_hook)
2668 	ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2669       else
2670 	ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2671 
2672       if (debug_infrun)
2673 	print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2674 
2675       /* If an error happens while handling the event, propagate GDB's
2676 	 knowledge of the executing state to the frontend/user running
2677 	 state.  */
2678       old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2679 				  &minus_one_ptid);
2680 
2681       /* Now figure out what to do with the result of the result.  */
2682       handle_inferior_event (ecs);
2683 
2684       /* No error, don't finish the state yet.  */
2685       discard_cleanups (old_chain_2);
2686 
2687       /* Breakpoints and watchpoints are not installed on the target
2688 	 at this point, and signals are passed directly to the
2689 	 inferior, so this must mean the process is gone.  */
2690       if (!ecs->wait_some_more)
2691 	{
2692 	  discard_cleanups (old_chain_1);
2693 	  error (_("Program exited while detaching"));
2694 	}
2695     }
2696 
2697   discard_cleanups (old_chain_1);
2698 }
2699 
2700 /* Wait for control to return from inferior to debugger.
2701 
2702    If inferior gets a signal, we may decide to start it up again
2703    instead of returning.  That is why there is a loop in this function.
2704    When this function actually returns it means the inferior
2705    should be left stopped and GDB should read more commands.  */
2706 
2707 void
wait_for_inferior(void)2708 wait_for_inferior (void)
2709 {
2710   struct cleanup *old_cleanups;
2711 
2712   if (debug_infrun)
2713     fprintf_unfiltered
2714       (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2715 
2716   old_cleanups =
2717     make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2718 
2719   while (1)
2720     {
2721       struct execution_control_state ecss;
2722       struct execution_control_state *ecs = &ecss;
2723       struct cleanup *old_chain;
2724 
2725       memset (ecs, 0, sizeof (*ecs));
2726 
2727       overlay_cache_invalid = 1;
2728 
2729       if (deprecated_target_wait_hook)
2730 	ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2731       else
2732 	ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2733 
2734       if (debug_infrun)
2735 	print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2736 
2737       /* If an error happens while handling the event, propagate GDB's
2738 	 knowledge of the executing state to the frontend/user running
2739 	 state.  */
2740       old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2741 
2742       /* Now figure out what to do with the result of the result.  */
2743       handle_inferior_event (ecs);
2744 
2745       /* No error, don't finish the state yet.  */
2746       discard_cleanups (old_chain);
2747 
2748       if (!ecs->wait_some_more)
2749 	break;
2750     }
2751 
2752   do_cleanups (old_cleanups);
2753 }
2754 
2755 /* Asynchronous version of wait_for_inferior.  It is called by the
2756    event loop whenever a change of state is detected on the file
2757    descriptor corresponding to the target.  It can be called more than
2758    once to complete a single execution command.  In such cases we need
2759    to keep the state in a global variable ECSS.  If it is the last time
2760    that this function is called for a single execution command, then
2761    report to the user that the inferior has stopped, and do the
2762    necessary cleanups.  */
2763 
2764 void
fetch_inferior_event(void * client_data)2765 fetch_inferior_event (void *client_data)
2766 {
2767   struct execution_control_state ecss;
2768   struct execution_control_state *ecs = &ecss;
2769   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2770   struct cleanup *ts_old_chain;
2771   int was_sync = sync_execution;
2772   int cmd_done = 0;
2773 
2774   memset (ecs, 0, sizeof (*ecs));
2775 
2776   /* We're handling a live event, so make sure we're doing live
2777      debugging.  If we're looking at traceframes while the target is
2778      running, we're going to need to get back to that mode after
2779      handling the event.  */
2780   if (non_stop)
2781     {
2782       make_cleanup_restore_current_traceframe ();
2783       set_current_traceframe (-1);
2784     }
2785 
2786   if (non_stop)
2787     /* In non-stop mode, the user/frontend should not notice a thread
2788        switch due to internal events.  Make sure we reverse to the
2789        user selected thread and frame after handling the event and
2790        running any breakpoint commands.  */
2791     make_cleanup_restore_current_thread ();
2792 
2793   overlay_cache_invalid = 1;
2794 
2795   make_cleanup_restore_integer (&execution_direction);
2796   execution_direction = target_execution_direction ();
2797 
2798   if (deprecated_target_wait_hook)
2799     ecs->ptid =
2800       deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2801   else
2802     ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2803 
2804   if (debug_infrun)
2805     print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2806 
2807   /* If an error happens while handling the event, propagate GDB's
2808      knowledge of the executing state to the frontend/user running
2809      state.  */
2810   if (!non_stop)
2811     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2812   else
2813     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2814 
2815   /* Get executed before make_cleanup_restore_current_thread above to apply
2816      still for the thread which has thrown the exception.  */
2817   make_bpstat_clear_actions_cleanup ();
2818 
2819   /* Now figure out what to do with the result of the result.  */
2820   handle_inferior_event (ecs);
2821 
2822   if (!ecs->wait_some_more)
2823     {
2824       struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2825 
2826       delete_step_thread_step_resume_breakpoint ();
2827 
2828       /* We may not find an inferior if this was a process exit.  */
2829       if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2830 	normal_stop ();
2831 
2832       if (target_has_execution
2833 	  && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2834 	  && ecs->ws.kind != TARGET_WAITKIND_EXITED
2835 	  && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2836 	  && ecs->event_thread->step_multi
2837 	  && ecs->event_thread->control.stop_step)
2838 	inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2839       else
2840 	{
2841 	  inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2842 	  cmd_done = 1;
2843 	}
2844     }
2845 
2846   /* No error, don't finish the thread states yet.  */
2847   discard_cleanups (ts_old_chain);
2848 
2849   /* Revert thread and frame.  */
2850   do_cleanups (old_chain);
2851 
2852   /* If the inferior was in sync execution mode, and now isn't,
2853      restore the prompt (a synchronous execution command has finished,
2854      and we're ready for input).  */
2855   if (interpreter_async && was_sync && !sync_execution)
2856     display_gdb_prompt (0);
2857 
2858   if (cmd_done
2859       && !was_sync
2860       && exec_done_display_p
2861       && (ptid_equal (inferior_ptid, null_ptid)
2862 	  || !is_running (inferior_ptid)))
2863     printf_unfiltered (_("completed.\n"));
2864 }
2865 
2866 /* Record the frame and location we're currently stepping through.  */
2867 void
set_step_info(struct frame_info * frame,struct symtab_and_line sal)2868 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2869 {
2870   struct thread_info *tp = inferior_thread ();
2871 
2872   tp->control.step_frame_id = get_frame_id (frame);
2873   tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2874 
2875   tp->current_symtab = sal.symtab;
2876   tp->current_line = sal.line;
2877 }
2878 
2879 /* Clear context switchable stepping state.  */
2880 
2881 void
init_thread_stepping_state(struct thread_info * tss)2882 init_thread_stepping_state (struct thread_info *tss)
2883 {
2884   tss->stepping_over_breakpoint = 0;
2885   tss->step_after_step_resume_breakpoint = 0;
2886 }
2887 
2888 /* Return the cached copy of the last pid/waitstatus returned by
2889    target_wait()/deprecated_target_wait_hook().  The data is actually
2890    cached by handle_inferior_event(), which gets called immediately
2891    after target_wait()/deprecated_target_wait_hook().  */
2892 
2893 void
get_last_target_status(ptid_t * ptidp,struct target_waitstatus * status)2894 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2895 {
2896   *ptidp = target_last_wait_ptid;
2897   *status = target_last_waitstatus;
2898 }
2899 
2900 void
nullify_last_target_wait_ptid(void)2901 nullify_last_target_wait_ptid (void)
2902 {
2903   target_last_wait_ptid = minus_one_ptid;
2904 }
2905 
2906 /* Switch thread contexts.  */
2907 
2908 static void
context_switch(ptid_t ptid)2909 context_switch (ptid_t ptid)
2910 {
2911   if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2912     {
2913       fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2914 			  target_pid_to_str (inferior_ptid));
2915       fprintf_unfiltered (gdb_stdlog, "to %s\n",
2916 			  target_pid_to_str (ptid));
2917     }
2918 
2919   switch_to_thread (ptid);
2920 }
2921 
2922 static void
adjust_pc_after_break(struct execution_control_state * ecs)2923 adjust_pc_after_break (struct execution_control_state *ecs)
2924 {
2925   struct regcache *regcache;
2926   struct gdbarch *gdbarch;
2927   struct address_space *aspace;
2928   CORE_ADDR breakpoint_pc;
2929 
2930   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
2931      we aren't, just return.
2932 
2933      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2934      affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
2935      implemented by software breakpoints should be handled through the normal
2936      breakpoint layer.
2937 
2938      NOTE drow/2004-01-31: On some targets, breakpoints may generate
2939      different signals (SIGILL or SIGEMT for instance), but it is less
2940      clear where the PC is pointing afterwards.  It may not match
2941      gdbarch_decr_pc_after_break.  I don't know any specific target that
2942      generates these signals at breakpoints (the code has been in GDB since at
2943      least 1992) so I can not guess how to handle them here.
2944 
2945      In earlier versions of GDB, a target with
2946      gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2947      watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
2948      target with both of these set in GDB history, and it seems unlikely to be
2949      correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
2950 
2951   if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2952     return;
2953 
2954   if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2955     return;
2956 
2957   /* In reverse execution, when a breakpoint is hit, the instruction
2958      under it has already been de-executed.  The reported PC always
2959      points at the breakpoint address, so adjusting it further would
2960      be wrong.  E.g., consider this case on a decr_pc_after_break == 1
2961      architecture:
2962 
2963        B1         0x08000000 :   INSN1
2964        B2         0x08000001 :   INSN2
2965 		  0x08000002 :   INSN3
2966 	    PC -> 0x08000003 :   INSN4
2967 
2968      Say you're stopped at 0x08000003 as above.  Reverse continuing
2969      from that point should hit B2 as below.  Reading the PC when the
2970      SIGTRAP is reported should read 0x08000001 and INSN2 should have
2971      been de-executed already.
2972 
2973        B1         0x08000000 :   INSN1
2974        B2   PC -> 0x08000001 :   INSN2
2975 		  0x08000002 :   INSN3
2976 		  0x08000003 :   INSN4
2977 
2978      We can't apply the same logic as for forward execution, because
2979      we would wrongly adjust the PC to 0x08000000, since there's a
2980      breakpoint at PC - 1.  We'd then report a hit on B1, although
2981      INSN1 hadn't been de-executed yet.  Doing nothing is the correct
2982      behaviour.  */
2983   if (execution_direction == EXEC_REVERSE)
2984     return;
2985 
2986   /* If this target does not decrement the PC after breakpoints, then
2987      we have nothing to do.  */
2988   regcache = get_thread_regcache (ecs->ptid);
2989   gdbarch = get_regcache_arch (regcache);
2990   if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2991     return;
2992 
2993   aspace = get_regcache_aspace (regcache);
2994 
2995   /* Find the location where (if we've hit a breakpoint) the
2996      breakpoint would be.  */
2997   breakpoint_pc = regcache_read_pc (regcache)
2998 		  - gdbarch_decr_pc_after_break (gdbarch);
2999 
3000   /* Check whether there actually is a software breakpoint inserted at
3001      that location.
3002 
3003      If in non-stop mode, a race condition is possible where we've
3004      removed a breakpoint, but stop events for that breakpoint were
3005      already queued and arrive later.  To suppress those spurious
3006      SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3007      and retire them after a number of stop events are reported.  */
3008   if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3009       || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3010     {
3011       struct cleanup *old_cleanups = NULL;
3012 
3013       if (RECORD_IS_USED)
3014 	old_cleanups = record_full_gdb_operation_disable_set ();
3015 
3016       /* When using hardware single-step, a SIGTRAP is reported for both
3017 	 a completed single-step and a software breakpoint.  Need to
3018 	 differentiate between the two, as the latter needs adjusting
3019 	 but the former does not.
3020 
3021 	 The SIGTRAP can be due to a completed hardware single-step only if
3022 	  - we didn't insert software single-step breakpoints
3023 	  - the thread to be examined is still the current thread
3024 	  - this thread is currently being stepped
3025 
3026 	 If any of these events did not occur, we must have stopped due
3027 	 to hitting a software breakpoint, and have to back up to the
3028 	 breakpoint address.
3029 
3030 	 As a special case, we could have hardware single-stepped a
3031 	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
3032 	 we also need to back up to the breakpoint address.  */
3033 
3034       if (singlestep_breakpoints_inserted_p
3035 	  || !ptid_equal (ecs->ptid, inferior_ptid)
3036 	  || !currently_stepping (ecs->event_thread)
3037 	  || ecs->event_thread->prev_pc == breakpoint_pc)
3038 	regcache_write_pc (regcache, breakpoint_pc);
3039 
3040       if (RECORD_IS_USED)
3041 	do_cleanups (old_cleanups);
3042     }
3043 }
3044 
3045 static void
init_infwait_state(void)3046 init_infwait_state (void)
3047 {
3048   waiton_ptid = pid_to_ptid (-1);
3049   infwait_state = infwait_normal_state;
3050 }
3051 
3052 static int
stepped_in_from(struct frame_info * frame,struct frame_id step_frame_id)3053 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3054 {
3055   for (frame = get_prev_frame (frame);
3056        frame != NULL;
3057        frame = get_prev_frame (frame))
3058     {
3059       if (frame_id_eq (get_frame_id (frame), step_frame_id))
3060 	return 1;
3061       if (get_frame_type (frame) != INLINE_FRAME)
3062 	break;
3063     }
3064 
3065   return 0;
3066 }
3067 
3068 /* Auxiliary function that handles syscall entry/return events.
3069    It returns 1 if the inferior should keep going (and GDB
3070    should ignore the event), or 0 if the event deserves to be
3071    processed.  */
3072 
3073 static int
handle_syscall_event(struct execution_control_state * ecs)3074 handle_syscall_event (struct execution_control_state *ecs)
3075 {
3076   struct regcache *regcache;
3077   int syscall_number;
3078 
3079   if (!ptid_equal (ecs->ptid, inferior_ptid))
3080     context_switch (ecs->ptid);
3081 
3082   regcache = get_thread_regcache (ecs->ptid);
3083   syscall_number = ecs->ws.value.syscall_number;
3084   stop_pc = regcache_read_pc (regcache);
3085 
3086   if (catch_syscall_enabled () > 0
3087       && catching_syscall_number (syscall_number) > 0)
3088     {
3089       enum bpstat_signal_value sval;
3090 
3091       if (debug_infrun)
3092         fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3093                             syscall_number);
3094 
3095       ecs->event_thread->control.stop_bpstat
3096 	= bpstat_stop_status (get_regcache_aspace (regcache),
3097 			      stop_pc, ecs->ptid, &ecs->ws);
3098 
3099       sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3100 				     GDB_SIGNAL_TRAP);
3101       ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3102 
3103       if (!ecs->random_signal)
3104 	{
3105 	  /* Catchpoint hit.  */
3106 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3107 	  return 0;
3108 	}
3109     }
3110 
3111   /* If no catchpoint triggered for this, then keep going.  */
3112   ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3113   keep_going (ecs);
3114   return 1;
3115 }
3116 
3117 /* Clear the supplied execution_control_state's stop_func_* fields.  */
3118 
3119 static void
clear_stop_func(struct execution_control_state * ecs)3120 clear_stop_func (struct execution_control_state *ecs)
3121 {
3122   ecs->stop_func_filled_in = 0;
3123   ecs->stop_func_start = 0;
3124   ecs->stop_func_end = 0;
3125   ecs->stop_func_name = NULL;
3126 }
3127 
3128 /* Lazily fill in the execution_control_state's stop_func_* fields.  */
3129 
3130 static void
fill_in_stop_func(struct gdbarch * gdbarch,struct execution_control_state * ecs)3131 fill_in_stop_func (struct gdbarch *gdbarch,
3132 		   struct execution_control_state *ecs)
3133 {
3134   if (!ecs->stop_func_filled_in)
3135     {
3136       /* Don't care about return value; stop_func_start and stop_func_name
3137 	 will both be 0 if it doesn't work.  */
3138       find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3139 				&ecs->stop_func_start, &ecs->stop_func_end);
3140       ecs->stop_func_start
3141 	+= gdbarch_deprecated_function_start_offset (gdbarch);
3142 
3143       ecs->stop_func_filled_in = 1;
3144     }
3145 }
3146 
3147 /* Given an execution control state that has been freshly filled in
3148    by an event from the inferior, figure out what it means and take
3149    appropriate action.  */
3150 
3151 static void
handle_inferior_event(struct execution_control_state * ecs)3152 handle_inferior_event (struct execution_control_state *ecs)
3153 {
3154   struct frame_info *frame;
3155   struct gdbarch *gdbarch;
3156   int stopped_by_watchpoint;
3157   int stepped_after_stopped_by_watchpoint = 0;
3158   struct symtab_and_line stop_pc_sal;
3159   enum stop_kind stop_soon;
3160 
3161   if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3162     {
3163       /* We had an event in the inferior, but we are not interested in
3164 	 handling it at this level.  The lower layers have already
3165 	 done what needs to be done, if anything.
3166 
3167 	 One of the possible circumstances for this is when the
3168 	 inferior produces output for the console.  The inferior has
3169 	 not stopped, and we are ignoring the event.  Another possible
3170 	 circumstance is any event which the lower level knows will be
3171 	 reported multiple times without an intervening resume.  */
3172       if (debug_infrun)
3173 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3174       prepare_to_wait (ecs);
3175       return;
3176     }
3177 
3178   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3179       && target_can_async_p () && !sync_execution)
3180     {
3181       /* There were no unwaited-for children left in the target, but,
3182 	 we're not synchronously waiting for events either.  Just
3183 	 ignore.  Otherwise, if we were running a synchronous
3184 	 execution command, we need to cancel it and give the user
3185 	 back the terminal.  */
3186       if (debug_infrun)
3187 	fprintf_unfiltered (gdb_stdlog,
3188 			    "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3189       prepare_to_wait (ecs);
3190       return;
3191     }
3192 
3193   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3194       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3195       && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3196     {
3197       struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3198 
3199       gdb_assert (inf);
3200       stop_soon = inf->control.stop_soon;
3201     }
3202   else
3203     stop_soon = NO_STOP_QUIETLY;
3204 
3205   /* Cache the last pid/waitstatus.  */
3206   target_last_wait_ptid = ecs->ptid;
3207   target_last_waitstatus = ecs->ws;
3208 
3209   /* Always clear state belonging to the previous time we stopped.  */
3210   stop_stack_dummy = STOP_NONE;
3211 
3212   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3213     {
3214       /* No unwaited-for children left.  IOW, all resumed children
3215 	 have exited.  */
3216       if (debug_infrun)
3217 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3218 
3219       stop_print_frame = 0;
3220       stop_stepping (ecs);
3221       return;
3222     }
3223 
3224   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3225       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3226     {
3227       ecs->event_thread = find_thread_ptid (ecs->ptid);
3228       /* If it's a new thread, add it to the thread database.  */
3229       if (ecs->event_thread == NULL)
3230 	ecs->event_thread = add_thread (ecs->ptid);
3231     }
3232 
3233   /* Dependent on valid ECS->EVENT_THREAD.  */
3234   adjust_pc_after_break (ecs);
3235 
3236   /* Dependent on the current PC value modified by adjust_pc_after_break.  */
3237   reinit_frame_cache ();
3238 
3239   breakpoint_retire_moribund ();
3240 
3241   /* First, distinguish signals caused by the debugger from signals
3242      that have to do with the program's own actions.  Note that
3243      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3244      on the operating system version.  Here we detect when a SIGILL or
3245      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
3246      something similar for SIGSEGV, since a SIGSEGV will be generated
3247      when we're trying to execute a breakpoint instruction on a
3248      non-executable stack.  This happens for call dummy breakpoints
3249      for architectures like SPARC that place call dummies on the
3250      stack.  */
3251   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3252       && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3253 	  || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3254 	  || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3255     {
3256       struct regcache *regcache = get_thread_regcache (ecs->ptid);
3257 
3258       if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3259 				      regcache_read_pc (regcache)))
3260 	{
3261 	  if (debug_infrun)
3262 	    fprintf_unfiltered (gdb_stdlog,
3263 				"infrun: Treating signal as SIGTRAP\n");
3264 	  ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3265 	}
3266     }
3267 
3268   /* Mark the non-executing threads accordingly.  In all-stop, all
3269      threads of all processes are stopped when we get any event
3270      reported.  In non-stop mode, only the event thread stops.  If
3271      we're handling a process exit in non-stop mode, there's nothing
3272      to do, as threads of the dead process are gone, and threads of
3273      any other process were left running.  */
3274   if (!non_stop)
3275     set_executing (minus_one_ptid, 0);
3276   else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3277 	   && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3278     set_executing (ecs->ptid, 0);
3279 
3280   switch (infwait_state)
3281     {
3282     case infwait_thread_hop_state:
3283       if (debug_infrun)
3284         fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3285       break;
3286 
3287     case infwait_normal_state:
3288       if (debug_infrun)
3289         fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3290       break;
3291 
3292     case infwait_step_watch_state:
3293       if (debug_infrun)
3294         fprintf_unfiltered (gdb_stdlog,
3295 			    "infrun: infwait_step_watch_state\n");
3296 
3297       stepped_after_stopped_by_watchpoint = 1;
3298       break;
3299 
3300     case infwait_nonstep_watch_state:
3301       if (debug_infrun)
3302         fprintf_unfiltered (gdb_stdlog,
3303 			    "infrun: infwait_nonstep_watch_state\n");
3304       insert_breakpoints ();
3305 
3306       /* FIXME-maybe: is this cleaner than setting a flag?  Does it
3307          handle things like signals arriving and other things happening
3308          in combination correctly?  */
3309       stepped_after_stopped_by_watchpoint = 1;
3310       break;
3311 
3312     default:
3313       internal_error (__FILE__, __LINE__, _("bad switch"));
3314     }
3315 
3316   infwait_state = infwait_normal_state;
3317   waiton_ptid = pid_to_ptid (-1);
3318 
3319   switch (ecs->ws.kind)
3320     {
3321     case TARGET_WAITKIND_LOADED:
3322       if (debug_infrun)
3323         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3324       /* Ignore gracefully during startup of the inferior, as it might
3325          be the shell which has just loaded some objects, otherwise
3326          add the symbols for the newly loaded objects.  Also ignore at
3327          the beginning of an attach or remote session; we will query
3328          the full list of libraries once the connection is
3329          established.  */
3330       if (stop_soon == NO_STOP_QUIETLY)
3331 	{
3332 	  struct regcache *regcache;
3333 	  enum bpstat_signal_value sval;
3334 
3335 	  if (!ptid_equal (ecs->ptid, inferior_ptid))
3336 	    context_switch (ecs->ptid);
3337 	  regcache = get_thread_regcache (ecs->ptid);
3338 
3339 	  handle_solib_event ();
3340 
3341 	  ecs->event_thread->control.stop_bpstat
3342 	    = bpstat_stop_status (get_regcache_aspace (regcache),
3343 				  stop_pc, ecs->ptid, &ecs->ws);
3344 
3345 	  sval
3346 	    = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3347 				      GDB_SIGNAL_TRAP);
3348 	  ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3349 
3350 	  if (!ecs->random_signal)
3351 	    {
3352 	      /* A catchpoint triggered.  */
3353 	      ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3354 	      goto process_event_stop_test;
3355 	    }
3356 
3357 	  /* If requested, stop when the dynamic linker notifies
3358 	     gdb of events.  This allows the user to get control
3359 	     and place breakpoints in initializer routines for
3360 	     dynamically loaded objects (among other things).  */
3361 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3362 	  if (stop_on_solib_events)
3363 	    {
3364 	      /* Make sure we print "Stopped due to solib-event" in
3365 		 normal_stop.  */
3366 	      stop_print_frame = 1;
3367 
3368 	      stop_stepping (ecs);
3369 	      return;
3370 	    }
3371 	}
3372 
3373       /* If we are skipping through a shell, or through shared library
3374 	 loading that we aren't interested in, resume the program.  If
3375 	 we're running the program normally, also resume.  But stop if
3376 	 we're attaching or setting up a remote connection.  */
3377       if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3378 	{
3379 	  if (!ptid_equal (ecs->ptid, inferior_ptid))
3380 	    context_switch (ecs->ptid);
3381 
3382 	  /* Loading of shared libraries might have changed breakpoint
3383 	     addresses.  Make sure new breakpoints are inserted.  */
3384 	  if (stop_soon == NO_STOP_QUIETLY
3385 	      && !breakpoints_always_inserted_mode ())
3386 	    insert_breakpoints ();
3387 	  resume (0, GDB_SIGNAL_0);
3388 	  prepare_to_wait (ecs);
3389 	  return;
3390 	}
3391 
3392       break;
3393 
3394     case TARGET_WAITKIND_SPURIOUS:
3395       if (debug_infrun)
3396         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3397       if (!ptid_equal (ecs->ptid, inferior_ptid))
3398 	context_switch (ecs->ptid);
3399       resume (0, GDB_SIGNAL_0);
3400       prepare_to_wait (ecs);
3401       return;
3402 
3403     case TARGET_WAITKIND_EXITED:
3404     case TARGET_WAITKIND_SIGNALLED:
3405       if (debug_infrun)
3406 	{
3407 	  if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3408 	    fprintf_unfiltered (gdb_stdlog,
3409 				"infrun: TARGET_WAITKIND_EXITED\n");
3410 	  else
3411 	    fprintf_unfiltered (gdb_stdlog,
3412 				"infrun: TARGET_WAITKIND_SIGNALLED\n");
3413 	}
3414 
3415       inferior_ptid = ecs->ptid;
3416       set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3417       set_current_program_space (current_inferior ()->pspace);
3418       handle_vfork_child_exec_or_exit (0);
3419       target_terminal_ours ();	/* Must do this before mourn anyway.  */
3420 
3421       if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3422 	{
3423 	  /* Record the exit code in the convenience variable $_exitcode, so
3424 	     that the user can inspect this again later.  */
3425 	  set_internalvar_integer (lookup_internalvar ("_exitcode"),
3426 				   (LONGEST) ecs->ws.value.integer);
3427 
3428 	  /* Also record this in the inferior itself.  */
3429 	  current_inferior ()->has_exit_code = 1;
3430 	  current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3431 
3432 	  print_exited_reason (ecs->ws.value.integer);
3433 	}
3434       else
3435 	print_signal_exited_reason (ecs->ws.value.sig);
3436 
3437       gdb_flush (gdb_stdout);
3438       target_mourn_inferior ();
3439       singlestep_breakpoints_inserted_p = 0;
3440       cancel_single_step_breakpoints ();
3441       stop_print_frame = 0;
3442       stop_stepping (ecs);
3443       return;
3444 
3445       /* The following are the only cases in which we keep going;
3446          the above cases end in a continue or goto.  */
3447     case TARGET_WAITKIND_FORKED:
3448     case TARGET_WAITKIND_VFORKED:
3449       if (debug_infrun)
3450 	{
3451 	  if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3452 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3453 	  else
3454 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3455 	}
3456 
3457       /* Check whether the inferior is displaced stepping.  */
3458       {
3459 	struct regcache *regcache = get_thread_regcache (ecs->ptid);
3460 	struct gdbarch *gdbarch = get_regcache_arch (regcache);
3461 	struct displaced_step_inferior_state *displaced
3462 	  = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3463 
3464 	/* If checking displaced stepping is supported, and thread
3465 	   ecs->ptid is displaced stepping.  */
3466 	if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3467 	  {
3468 	    struct inferior *parent_inf
3469 	      = find_inferior_pid (ptid_get_pid (ecs->ptid));
3470 	    struct regcache *child_regcache;
3471 	    CORE_ADDR parent_pc;
3472 
3473 	    /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3474 	       indicating that the displaced stepping of syscall instruction
3475 	       has been done.  Perform cleanup for parent process here.  Note
3476 	       that this operation also cleans up the child process for vfork,
3477 	       because their pages are shared.  */
3478 	    displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3479 
3480 	    if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3481 	      {
3482 		/* Restore scratch pad for child process.  */
3483 		displaced_step_restore (displaced, ecs->ws.value.related_pid);
3484 	      }
3485 
3486 	    /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3487 	       the child's PC is also within the scratchpad.  Set the child's PC
3488 	       to the parent's PC value, which has already been fixed up.
3489 	       FIXME: we use the parent's aspace here, although we're touching
3490 	       the child, because the child hasn't been added to the inferior
3491 	       list yet at this point.  */
3492 
3493 	    child_regcache
3494 	      = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3495 						 gdbarch,
3496 						 parent_inf->aspace);
3497 	    /* Read PC value of parent process.  */
3498 	    parent_pc = regcache_read_pc (regcache);
3499 
3500 	    if (debug_displaced)
3501 	      fprintf_unfiltered (gdb_stdlog,
3502 				  "displaced: write child pc from %s to %s\n",
3503 				  paddress (gdbarch,
3504 					    regcache_read_pc (child_regcache)),
3505 				  paddress (gdbarch, parent_pc));
3506 
3507 	    regcache_write_pc (child_regcache, parent_pc);
3508 	  }
3509       }
3510 
3511       if (!ptid_equal (ecs->ptid, inferior_ptid))
3512 	context_switch (ecs->ptid);
3513 
3514       /* Immediately detach breakpoints from the child before there's
3515 	 any chance of letting the user delete breakpoints from the
3516 	 breakpoint lists.  If we don't do this early, it's easy to
3517 	 leave left over traps in the child, vis: "break foo; catch
3518 	 fork; c; <fork>; del; c; <child calls foo>".  We only follow
3519 	 the fork on the last `continue', and by that time the
3520 	 breakpoint at "foo" is long gone from the breakpoint table.
3521 	 If we vforked, then we don't need to unpatch here, since both
3522 	 parent and child are sharing the same memory pages; we'll
3523 	 need to unpatch at follow/detach time instead to be certain
3524 	 that new breakpoints added between catchpoint hit time and
3525 	 vfork follow are detached.  */
3526       if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3527 	{
3528 	  /* This won't actually modify the breakpoint list, but will
3529 	     physically remove the breakpoints from the child.  */
3530 	  detach_breakpoints (ecs->ws.value.related_pid);
3531 	}
3532 
3533       if (singlestep_breakpoints_inserted_p)
3534 	{
3535 	  /* Pull the single step breakpoints out of the target.  */
3536 	  remove_single_step_breakpoints ();
3537 	  singlestep_breakpoints_inserted_p = 0;
3538 	}
3539 
3540       /* In case the event is caught by a catchpoint, remember that
3541 	 the event is to be followed at the next resume of the thread,
3542 	 and not immediately.  */
3543       ecs->event_thread->pending_follow = ecs->ws;
3544 
3545       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3546 
3547       ecs->event_thread->control.stop_bpstat
3548 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3549 			      stop_pc, ecs->ptid, &ecs->ws);
3550 
3551       /* Note that we're interested in knowing the bpstat actually
3552 	 causes a stop, not just if it may explain the signal.
3553 	 Software watchpoints, for example, always appear in the
3554 	 bpstat.  */
3555       ecs->random_signal
3556 	= !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3557 
3558       /* If no catchpoint triggered for this, then keep going.  */
3559       if (ecs->random_signal)
3560 	{
3561 	  ptid_t parent;
3562 	  ptid_t child;
3563 	  int should_resume;
3564 	  int follow_child
3565 	    = (follow_fork_mode_string == follow_fork_mode_child);
3566 
3567 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3568 
3569 	  should_resume = follow_fork ();
3570 
3571 	  parent = ecs->ptid;
3572 	  child = ecs->ws.value.related_pid;
3573 
3574 	  /* In non-stop mode, also resume the other branch.  */
3575 	  if (non_stop && !detach_fork)
3576 	    {
3577 	      if (follow_child)
3578 		switch_to_thread (parent);
3579 	      else
3580 		switch_to_thread (child);
3581 
3582 	      ecs->event_thread = inferior_thread ();
3583 	      ecs->ptid = inferior_ptid;
3584 	      keep_going (ecs);
3585 	    }
3586 
3587 	  if (follow_child)
3588 	    switch_to_thread (child);
3589 	  else
3590 	    switch_to_thread (parent);
3591 
3592 	  ecs->event_thread = inferior_thread ();
3593 	  ecs->ptid = inferior_ptid;
3594 
3595 	  if (should_resume)
3596 	    keep_going (ecs);
3597 	  else
3598 	    stop_stepping (ecs);
3599 	  return;
3600 	}
3601       ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3602       goto process_event_stop_test;
3603 
3604     case TARGET_WAITKIND_VFORK_DONE:
3605       /* Done with the shared memory region.  Re-insert breakpoints in
3606 	 the parent, and keep going.  */
3607 
3608       if (debug_infrun)
3609 	fprintf_unfiltered (gdb_stdlog,
3610 			    "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3611 
3612       if (!ptid_equal (ecs->ptid, inferior_ptid))
3613 	context_switch (ecs->ptid);
3614 
3615       current_inferior ()->waiting_for_vfork_done = 0;
3616       current_inferior ()->pspace->breakpoints_not_allowed = 0;
3617       /* This also takes care of reinserting breakpoints in the
3618 	 previously locked inferior.  */
3619       keep_going (ecs);
3620       return;
3621 
3622     case TARGET_WAITKIND_EXECD:
3623       if (debug_infrun)
3624         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3625 
3626       if (!ptid_equal (ecs->ptid, inferior_ptid))
3627 	context_switch (ecs->ptid);
3628 
3629       singlestep_breakpoints_inserted_p = 0;
3630       cancel_single_step_breakpoints ();
3631 
3632       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3633 
3634       /* Do whatever is necessary to the parent branch of the vfork.  */
3635       handle_vfork_child_exec_or_exit (1);
3636 
3637       /* This causes the eventpoints and symbol table to be reset.
3638          Must do this now, before trying to determine whether to
3639          stop.  */
3640       follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3641 
3642       ecs->event_thread->control.stop_bpstat
3643 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3644 			      stop_pc, ecs->ptid, &ecs->ws);
3645       ecs->random_signal
3646 	= (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3647 				   GDB_SIGNAL_TRAP)
3648 	   == BPSTAT_SIGNAL_NO);
3649 
3650       /* Note that this may be referenced from inside
3651 	 bpstat_stop_status above, through inferior_has_execd.  */
3652       xfree (ecs->ws.value.execd_pathname);
3653       ecs->ws.value.execd_pathname = NULL;
3654 
3655       /* If no catchpoint triggered for this, then keep going.  */
3656       if (ecs->random_signal)
3657 	{
3658 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3659 	  keep_going (ecs);
3660 	  return;
3661 	}
3662       ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3663       goto process_event_stop_test;
3664 
3665       /* Be careful not to try to gather much state about a thread
3666          that's in a syscall.  It's frequently a losing proposition.  */
3667     case TARGET_WAITKIND_SYSCALL_ENTRY:
3668       if (debug_infrun)
3669         fprintf_unfiltered (gdb_stdlog,
3670 			    "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3671       /* Getting the current syscall number.  */
3672       if (handle_syscall_event (ecs) != 0)
3673         return;
3674       goto process_event_stop_test;
3675 
3676       /* Before examining the threads further, step this thread to
3677          get it entirely out of the syscall.  (We get notice of the
3678          event when the thread is just on the verge of exiting a
3679          syscall.  Stepping one instruction seems to get it back
3680          into user code.)  */
3681     case TARGET_WAITKIND_SYSCALL_RETURN:
3682       if (debug_infrun)
3683         fprintf_unfiltered (gdb_stdlog,
3684 			    "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3685       if (handle_syscall_event (ecs) != 0)
3686         return;
3687       goto process_event_stop_test;
3688 
3689     case TARGET_WAITKIND_STOPPED:
3690       if (debug_infrun)
3691         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3692       ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3693       break;
3694 
3695     case TARGET_WAITKIND_NO_HISTORY:
3696       if (debug_infrun)
3697         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3698       /* Reverse execution: target ran out of history info.  */
3699 
3700       /* Pull the single step breakpoints out of the target.  */
3701       if (singlestep_breakpoints_inserted_p)
3702 	{
3703 	  if (!ptid_equal (ecs->ptid, inferior_ptid))
3704 	    context_switch (ecs->ptid);
3705 	  remove_single_step_breakpoints ();
3706 	  singlestep_breakpoints_inserted_p = 0;
3707 	}
3708       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3709       print_no_history_reason ();
3710       stop_stepping (ecs);
3711       return;
3712     }
3713 
3714   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3715     {
3716       /* Do we need to clean up the state of a thread that has
3717 	 completed a displaced single-step?  (Doing so usually affects
3718 	 the PC, so do it here, before we set stop_pc.)  */
3719       displaced_step_fixup (ecs->ptid,
3720 			    ecs->event_thread->suspend.stop_signal);
3721 
3722       /* If we either finished a single-step or hit a breakpoint, but
3723 	 the user wanted this thread to be stopped, pretend we got a
3724 	 SIG0 (generic unsignaled stop).  */
3725 
3726       if (ecs->event_thread->stop_requested
3727 	  && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3728 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3729     }
3730 
3731   stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3732 
3733   if (debug_infrun)
3734     {
3735       struct regcache *regcache = get_thread_regcache (ecs->ptid);
3736       struct gdbarch *gdbarch = get_regcache_arch (regcache);
3737       struct cleanup *old_chain = save_inferior_ptid ();
3738 
3739       inferior_ptid = ecs->ptid;
3740 
3741       fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3742                           paddress (gdbarch, stop_pc));
3743       if (target_stopped_by_watchpoint ())
3744 	{
3745           CORE_ADDR addr;
3746 
3747 	  fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3748 
3749           if (target_stopped_data_address (&current_target, &addr))
3750             fprintf_unfiltered (gdb_stdlog,
3751                                 "infrun: stopped data address = %s\n",
3752                                 paddress (gdbarch, addr));
3753           else
3754             fprintf_unfiltered (gdb_stdlog,
3755                                 "infrun: (no data address available)\n");
3756 	}
3757 
3758       do_cleanups (old_chain);
3759     }
3760 
3761   if (stepping_past_singlestep_breakpoint)
3762     {
3763       gdb_assert (singlestep_breakpoints_inserted_p);
3764       gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3765       gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3766 
3767       stepping_past_singlestep_breakpoint = 0;
3768 
3769       /* We've either finished single-stepping past the single-step
3770          breakpoint, or stopped for some other reason.  It would be nice if
3771          we could tell, but we can't reliably.  */
3772       if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3773 	{
3774 	  if (debug_infrun)
3775 	    fprintf_unfiltered (gdb_stdlog,
3776 				"infrun: stepping_past_"
3777 				"singlestep_breakpoint\n");
3778 	  /* Pull the single step breakpoints out of the target.  */
3779 	  if (!ptid_equal (ecs->ptid, inferior_ptid))
3780 	    context_switch (ecs->ptid);
3781 	  remove_single_step_breakpoints ();
3782 	  singlestep_breakpoints_inserted_p = 0;
3783 
3784 	  ecs->random_signal = 0;
3785 	  ecs->event_thread->control.trap_expected = 0;
3786 
3787 	  context_switch (saved_singlestep_ptid);
3788 	  if (deprecated_context_hook)
3789 	    deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3790 
3791 	  resume (1, GDB_SIGNAL_0);
3792 	  prepare_to_wait (ecs);
3793 	  return;
3794 	}
3795     }
3796 
3797   if (!ptid_equal (deferred_step_ptid, null_ptid))
3798     {
3799       /* In non-stop mode, there's never a deferred_step_ptid set.  */
3800       gdb_assert (!non_stop);
3801 
3802       /* If we stopped for some other reason than single-stepping, ignore
3803 	 the fact that we were supposed to switch back.  */
3804       if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3805 	{
3806 	  if (debug_infrun)
3807 	    fprintf_unfiltered (gdb_stdlog,
3808 				"infrun: handling deferred step\n");
3809 
3810 	  /* Pull the single step breakpoints out of the target.  */
3811 	  if (singlestep_breakpoints_inserted_p)
3812 	    {
3813 	      if (!ptid_equal (ecs->ptid, inferior_ptid))
3814 		context_switch (ecs->ptid);
3815 	      remove_single_step_breakpoints ();
3816 	      singlestep_breakpoints_inserted_p = 0;
3817 	    }
3818 
3819 	  ecs->event_thread->control.trap_expected = 0;
3820 
3821 	  context_switch (deferred_step_ptid);
3822 	  deferred_step_ptid = null_ptid;
3823 	  /* Suppress spurious "Switching to ..." message.  */
3824 	  previous_inferior_ptid = inferior_ptid;
3825 
3826 	  resume (1, GDB_SIGNAL_0);
3827 	  prepare_to_wait (ecs);
3828 	  return;
3829 	}
3830 
3831       deferred_step_ptid = null_ptid;
3832     }
3833 
3834   /* See if a thread hit a thread-specific breakpoint that was meant for
3835      another thread.  If so, then step that thread past the breakpoint,
3836      and continue it.  */
3837 
3838   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3839     {
3840       int thread_hop_needed = 0;
3841       struct address_space *aspace =
3842 	get_regcache_aspace (get_thread_regcache (ecs->ptid));
3843 
3844       /* Check if a regular breakpoint has been hit before checking
3845          for a potential single step breakpoint.  Otherwise, GDB will
3846          not see this breakpoint hit when stepping onto breakpoints.  */
3847       if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3848 	{
3849 	  ecs->random_signal = 0;
3850 	  if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3851 	    thread_hop_needed = 1;
3852 	}
3853       else if (singlestep_breakpoints_inserted_p)
3854 	{
3855 	  /* We have not context switched yet, so this should be true
3856 	     no matter which thread hit the singlestep breakpoint.  */
3857 	  gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3858 	  if (debug_infrun)
3859 	    fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3860 				"trap for %s\n",
3861 				target_pid_to_str (ecs->ptid));
3862 
3863 	  ecs->random_signal = 0;
3864 	  /* The call to in_thread_list is necessary because PTIDs sometimes
3865 	     change when we go from single-threaded to multi-threaded.  If
3866 	     the singlestep_ptid is still in the list, assume that it is
3867 	     really different from ecs->ptid.  */
3868 	  if (!ptid_equal (singlestep_ptid, ecs->ptid)
3869 	      && in_thread_list (singlestep_ptid))
3870 	    {
3871 	      /* If the PC of the thread we were trying to single-step
3872 		 has changed, discard this event (which we were going
3873 		 to ignore anyway), and pretend we saw that thread
3874 		 trap.  This prevents us continuously moving the
3875 		 single-step breakpoint forward, one instruction at a
3876 		 time.  If the PC has changed, then the thread we were
3877 		 trying to single-step has trapped or been signalled,
3878 		 but the event has not been reported to GDB yet.
3879 
3880 		 There might be some cases where this loses signal
3881 		 information, if a signal has arrived at exactly the
3882 		 same time that the PC changed, but this is the best
3883 		 we can do with the information available.  Perhaps we
3884 		 should arrange to report all events for all threads
3885 		 when they stop, or to re-poll the remote looking for
3886 		 this particular thread (i.e. temporarily enable
3887 		 schedlock).  */
3888 
3889 	     CORE_ADDR new_singlestep_pc
3890 	       = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3891 
3892 	     if (new_singlestep_pc != singlestep_pc)
3893 	       {
3894 		 enum gdb_signal stop_signal;
3895 
3896 		 if (debug_infrun)
3897 		   fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3898 				       " but expected thread advanced also\n");
3899 
3900 		 /* The current context still belongs to
3901 		    singlestep_ptid.  Don't swap here, since that's
3902 		    the context we want to use.  Just fudge our
3903 		    state and continue.  */
3904                  stop_signal = ecs->event_thread->suspend.stop_signal;
3905                  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3906                  ecs->ptid = singlestep_ptid;
3907                  ecs->event_thread = find_thread_ptid (ecs->ptid);
3908                  ecs->event_thread->suspend.stop_signal = stop_signal;
3909                  stop_pc = new_singlestep_pc;
3910                }
3911              else
3912 	       {
3913 		 if (debug_infrun)
3914 		   fprintf_unfiltered (gdb_stdlog,
3915 				       "infrun: unexpected thread\n");
3916 
3917 		 thread_hop_needed = 1;
3918 		 stepping_past_singlestep_breakpoint = 1;
3919 		 saved_singlestep_ptid = singlestep_ptid;
3920 	       }
3921 	    }
3922 	}
3923 
3924       if (thread_hop_needed)
3925 	{
3926 	  struct regcache *thread_regcache;
3927 	  int remove_status = 0;
3928 
3929 	  if (debug_infrun)
3930 	    fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3931 
3932 	  /* Switch context before touching inferior memory, the
3933 	     previous thread may have exited.  */
3934 	  if (!ptid_equal (inferior_ptid, ecs->ptid))
3935 	    context_switch (ecs->ptid);
3936 
3937 	  /* Saw a breakpoint, but it was hit by the wrong thread.
3938 	     Just continue.  */
3939 
3940 	  if (singlestep_breakpoints_inserted_p)
3941 	    {
3942 	      /* Pull the single step breakpoints out of the target.  */
3943 	      remove_single_step_breakpoints ();
3944 	      singlestep_breakpoints_inserted_p = 0;
3945 	    }
3946 
3947 	  /* If the arch can displace step, don't remove the
3948 	     breakpoints.  */
3949 	  thread_regcache = get_thread_regcache (ecs->ptid);
3950 	  if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3951 	    remove_status = remove_breakpoints ();
3952 
3953 	  /* Did we fail to remove breakpoints?  If so, try
3954 	     to set the PC past the bp.  (There's at least
3955 	     one situation in which we can fail to remove
3956 	     the bp's: On HP-UX's that use ttrace, we can't
3957 	     change the address space of a vforking child
3958 	     process until the child exits (well, okay, not
3959 	     then either :-) or execs.  */
3960 	  if (remove_status != 0)
3961 	    error (_("Cannot step over breakpoint hit in wrong thread"));
3962 	  else
3963 	    {			/* Single step */
3964 	      if (!non_stop)
3965 		{
3966 		  /* Only need to require the next event from this
3967 		     thread in all-stop mode.  */
3968 		  waiton_ptid = ecs->ptid;
3969 		  infwait_state = infwait_thread_hop_state;
3970 		}
3971 
3972 	      ecs->event_thread->stepping_over_breakpoint = 1;
3973 	      keep_going (ecs);
3974 	      return;
3975 	    }
3976 	}
3977       else if (singlestep_breakpoints_inserted_p)
3978 	{
3979 	  ecs->random_signal = 0;
3980 	}
3981     }
3982   else
3983     ecs->random_signal = 1;
3984 
3985   /* See if something interesting happened to the non-current thread.  If
3986      so, then switch to that thread.  */
3987   if (!ptid_equal (ecs->ptid, inferior_ptid))
3988     {
3989       if (debug_infrun)
3990 	fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3991 
3992       context_switch (ecs->ptid);
3993 
3994       if (deprecated_context_hook)
3995 	deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3996     }
3997 
3998   /* At this point, get hold of the now-current thread's frame.  */
3999   frame = get_current_frame ();
4000   gdbarch = get_frame_arch (frame);
4001 
4002   if (singlestep_breakpoints_inserted_p)
4003     {
4004       /* Pull the single step breakpoints out of the target.  */
4005       remove_single_step_breakpoints ();
4006       singlestep_breakpoints_inserted_p = 0;
4007     }
4008 
4009   if (stepped_after_stopped_by_watchpoint)
4010     stopped_by_watchpoint = 0;
4011   else
4012     stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4013 
4014   /* If necessary, step over this watchpoint.  We'll be back to display
4015      it in a moment.  */
4016   if (stopped_by_watchpoint
4017       && (target_have_steppable_watchpoint
4018 	  || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4019     {
4020       /* At this point, we are stopped at an instruction which has
4021          attempted to write to a piece of memory under control of
4022          a watchpoint.  The instruction hasn't actually executed
4023          yet.  If we were to evaluate the watchpoint expression
4024          now, we would get the old value, and therefore no change
4025          would seem to have occurred.
4026 
4027          In order to make watchpoints work `right', we really need
4028          to complete the memory write, and then evaluate the
4029          watchpoint expression.  We do this by single-stepping the
4030 	 target.
4031 
4032 	 It may not be necessary to disable the watchpoint to stop over
4033 	 it.  For example, the PA can (with some kernel cooperation)
4034 	 single step over a watchpoint without disabling the watchpoint.
4035 
4036 	 It is far more common to need to disable a watchpoint to step
4037 	 the inferior over it.  If we have non-steppable watchpoints,
4038 	 we must disable the current watchpoint; it's simplest to
4039 	 disable all watchpoints and breakpoints.  */
4040       int hw_step = 1;
4041 
4042       if (!target_have_steppable_watchpoint)
4043 	{
4044 	  remove_breakpoints ();
4045 	  /* See comment in resume why we need to stop bypassing signals
4046 	     while breakpoints have been removed.  */
4047 	  target_pass_signals (0, NULL);
4048 	}
4049 	/* Single step */
4050       hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4051       target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4052       waiton_ptid = ecs->ptid;
4053       if (target_have_steppable_watchpoint)
4054 	infwait_state = infwait_step_watch_state;
4055       else
4056 	infwait_state = infwait_nonstep_watch_state;
4057       prepare_to_wait (ecs);
4058       return;
4059     }
4060 
4061   clear_stop_func (ecs);
4062   ecs->event_thread->stepping_over_breakpoint = 0;
4063   bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4064   ecs->event_thread->control.stop_step = 0;
4065   stop_print_frame = 1;
4066   ecs->random_signal = 0;
4067   stopped_by_random_signal = 0;
4068 
4069   /* Hide inlined functions starting here, unless we just performed stepi or
4070      nexti.  After stepi and nexti, always show the innermost frame (not any
4071      inline function call sites).  */
4072   if (ecs->event_thread->control.step_range_end != 1)
4073     {
4074       struct address_space *aspace =
4075 	get_regcache_aspace (get_thread_regcache (ecs->ptid));
4076 
4077       /* skip_inline_frames is expensive, so we avoid it if we can
4078 	 determine that the address is one where functions cannot have
4079 	 been inlined.  This improves performance with inferiors that
4080 	 load a lot of shared libraries, because the solib event
4081 	 breakpoint is defined as the address of a function (i.e. not
4082 	 inline).  Note that we have to check the previous PC as well
4083 	 as the current one to catch cases when we have just
4084 	 single-stepped off a breakpoint prior to reinstating it.
4085 	 Note that we're assuming that the code we single-step to is
4086 	 not inline, but that's not definitive: there's nothing
4087 	 preventing the event breakpoint function from containing
4088 	 inlined code, and the single-step ending up there.  If the
4089 	 user had set a breakpoint on that inlined code, the missing
4090 	 skip_inline_frames call would break things.  Fortunately
4091 	 that's an extremely unlikely scenario.  */
4092       if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4093 	  && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4094 	       && ecs->event_thread->control.trap_expected
4095 	       && pc_at_non_inline_function (aspace,
4096 					     ecs->event_thread->prev_pc,
4097 					     &ecs->ws)))
4098 	{
4099 	  skip_inline_frames (ecs->ptid);
4100 
4101 	  /* Re-fetch current thread's frame in case that invalidated
4102 	     the frame cache.  */
4103 	  frame = get_current_frame ();
4104 	  gdbarch = get_frame_arch (frame);
4105 	}
4106     }
4107 
4108   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4109       && ecs->event_thread->control.trap_expected
4110       && gdbarch_single_step_through_delay_p (gdbarch)
4111       && currently_stepping (ecs->event_thread))
4112     {
4113       /* We're trying to step off a breakpoint.  Turns out that we're
4114 	 also on an instruction that needs to be stepped multiple
4115 	 times before it's been fully executing.  E.g., architectures
4116 	 with a delay slot.  It needs to be stepped twice, once for
4117 	 the instruction and once for the delay slot.  */
4118       int step_through_delay
4119 	= gdbarch_single_step_through_delay (gdbarch, frame);
4120 
4121       if (debug_infrun && step_through_delay)
4122 	fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4123       if (ecs->event_thread->control.step_range_end == 0
4124 	  && step_through_delay)
4125 	{
4126 	  /* The user issued a continue when stopped at a breakpoint.
4127 	     Set up for another trap and get out of here.  */
4128          ecs->event_thread->stepping_over_breakpoint = 1;
4129          keep_going (ecs);
4130          return;
4131 	}
4132       else if (step_through_delay)
4133 	{
4134 	  /* The user issued a step when stopped at a breakpoint.
4135 	     Maybe we should stop, maybe we should not - the delay
4136 	     slot *might* correspond to a line of source.  In any
4137 	     case, don't decide that here, just set
4138 	     ecs->stepping_over_breakpoint, making sure we
4139 	     single-step again before breakpoints are re-inserted.  */
4140 	  ecs->event_thread->stepping_over_breakpoint = 1;
4141 	}
4142     }
4143 
4144   /* Look at the cause of the stop, and decide what to do.
4145      The alternatives are:
4146      1) stop_stepping and return; to really stop and return to the debugger,
4147      2) keep_going and return to start up again
4148      (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4149      3) set ecs->random_signal to 1, and the decision between 1 and 2
4150      will be made according to the signal handling tables.  */
4151 
4152   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4153       && stop_after_trap)
4154     {
4155       if (debug_infrun)
4156 	fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4157       stop_print_frame = 0;
4158       stop_stepping (ecs);
4159       return;
4160     }
4161 
4162   /* This is originated from start_remote(), start_inferior() and
4163      shared libraries hook functions.  */
4164   if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4165     {
4166       if (debug_infrun)
4167 	fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4168       stop_stepping (ecs);
4169       return;
4170     }
4171 
4172   /* This originates from attach_command().  We need to overwrite
4173      the stop_signal here, because some kernels don't ignore a
4174      SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4175      See more comments in inferior.h.  On the other hand, if we
4176      get a non-SIGSTOP, report it to the user - assume the backend
4177      will handle the SIGSTOP if it should show up later.
4178 
4179      Also consider that the attach is complete when we see a
4180      SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
4181      target extended-remote report it instead of a SIGSTOP
4182      (e.g. gdbserver).  We already rely on SIGTRAP being our
4183      signal, so this is no exception.
4184 
4185      Also consider that the attach is complete when we see a
4186      GDB_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
4187      the target to stop all threads of the inferior, in case the
4188      low level attach operation doesn't stop them implicitly.  If
4189      they weren't stopped implicitly, then the stub will report a
4190      GDB_SIGNAL_0, meaning: stopped for no particular reason
4191      other than GDB's request.  */
4192   if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4193       && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4194 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4195 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4196     {
4197       stop_stepping (ecs);
4198       ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4199       return;
4200     }
4201 
4202   /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4203      handles this event.  */
4204   ecs->event_thread->control.stop_bpstat
4205     = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4206 			  stop_pc, ecs->ptid, &ecs->ws);
4207 
4208   /* Following in case break condition called a
4209      function.  */
4210   stop_print_frame = 1;
4211 
4212   /* This is where we handle "moribund" watchpoints.  Unlike
4213      software breakpoints traps, hardware watchpoint traps are
4214      always distinguishable from random traps.  If no high-level
4215      watchpoint is associated with the reported stop data address
4216      anymore, then the bpstat does not explain the signal ---
4217      simply make sure to ignore it if `stopped_by_watchpoint' is
4218      set.  */
4219 
4220   if (debug_infrun
4221       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4222       && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4223 				  GDB_SIGNAL_TRAP)
4224 	  == BPSTAT_SIGNAL_NO)
4225       && stopped_by_watchpoint)
4226     fprintf_unfiltered (gdb_stdlog,
4227 			"infrun: no user watchpoint explains "
4228 			"watchpoint SIGTRAP, ignoring\n");
4229 
4230   /* NOTE: cagney/2003-03-29: These two checks for a random signal
4231      at one stage in the past included checks for an inferior
4232      function call's call dummy's return breakpoint.  The original
4233      comment, that went with the test, read:
4234 
4235      ``End of a stack dummy.  Some systems (e.g. Sony news) give
4236      another signal besides SIGTRAP, so check here as well as
4237      above.''
4238 
4239      If someone ever tries to get call dummys on a
4240      non-executable stack to work (where the target would stop
4241      with something like a SIGSEGV), then those tests might need
4242      to be re-instated.  Given, however, that the tests were only
4243      enabled when momentary breakpoints were not being used, I
4244      suspect that it won't be the case.
4245 
4246      NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4247      be necessary for call dummies on a non-executable stack on
4248      SPARC.  */
4249 
4250   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4251     ecs->random_signal
4252       = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4253 				   GDB_SIGNAL_TRAP)
4254 	   != BPSTAT_SIGNAL_NO)
4255 	  || stopped_by_watchpoint
4256 	  || ecs->event_thread->control.trap_expected
4257 	  || (ecs->event_thread->control.step_range_end
4258 	      && (ecs->event_thread->control.step_resume_breakpoint
4259 		  == NULL)));
4260   else
4261     {
4262       enum bpstat_signal_value sval;
4263 
4264       sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4265 				     ecs->event_thread->suspend.stop_signal);
4266       ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4267 
4268       if (sval == BPSTAT_SIGNAL_HIDE)
4269 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4270     }
4271 
4272 process_event_stop_test:
4273 
4274   /* Re-fetch current thread's frame in case we did a
4275      "goto process_event_stop_test" above.  */
4276   frame = get_current_frame ();
4277   gdbarch = get_frame_arch (frame);
4278 
4279   /* For the program's own signals, act according to
4280      the signal handling tables.  */
4281 
4282   if (ecs->random_signal)
4283     {
4284       /* Signal not for debugging purposes.  */
4285       int printed = 0;
4286       struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4287 
4288       if (debug_infrun)
4289 	 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4290 			     ecs->event_thread->suspend.stop_signal);
4291 
4292       stopped_by_random_signal = 1;
4293 
4294       if (signal_print[ecs->event_thread->suspend.stop_signal])
4295 	{
4296 	  printed = 1;
4297 	  target_terminal_ours_for_output ();
4298 	  print_signal_received_reason
4299 				     (ecs->event_thread->suspend.stop_signal);
4300 	}
4301       /* Always stop on signals if we're either just gaining control
4302 	 of the program, or the user explicitly requested this thread
4303 	 to remain stopped.  */
4304       if (stop_soon != NO_STOP_QUIETLY
4305 	  || ecs->event_thread->stop_requested
4306 	  || (!inf->detaching
4307 	      && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4308 	{
4309 	  stop_stepping (ecs);
4310 	  return;
4311 	}
4312       /* If not going to stop, give terminal back
4313          if we took it away.  */
4314       else if (printed)
4315 	target_terminal_inferior ();
4316 
4317       /* Clear the signal if it should not be passed.  */
4318       if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4319 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4320 
4321       if (ecs->event_thread->prev_pc == stop_pc
4322 	  && ecs->event_thread->control.trap_expected
4323 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
4324 	{
4325 	  /* We were just starting a new sequence, attempting to
4326 	     single-step off of a breakpoint and expecting a SIGTRAP.
4327 	     Instead this signal arrives.  This signal will take us out
4328 	     of the stepping range so GDB needs to remember to, when
4329 	     the signal handler returns, resume stepping off that
4330 	     breakpoint.  */
4331 	  /* To simplify things, "continue" is forced to use the same
4332 	     code paths as single-step - set a breakpoint at the
4333 	     signal return address and then, once hit, step off that
4334 	     breakpoint.  */
4335           if (debug_infrun)
4336             fprintf_unfiltered (gdb_stdlog,
4337                                 "infrun: signal arrived while stepping over "
4338                                 "breakpoint\n");
4339 
4340 	  insert_hp_step_resume_breakpoint_at_frame (frame);
4341 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
4342 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
4343 	  ecs->event_thread->control.trap_expected = 0;
4344 	  keep_going (ecs);
4345 	  return;
4346 	}
4347 
4348       if (ecs->event_thread->control.step_range_end != 0
4349 	  && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4350 	  && (ecs->event_thread->control.step_range_start <= stop_pc
4351 	      && stop_pc < ecs->event_thread->control.step_range_end)
4352 	  && frame_id_eq (get_stack_frame_id (frame),
4353 			  ecs->event_thread->control.step_stack_frame_id)
4354 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
4355 	{
4356 	  /* The inferior is about to take a signal that will take it
4357 	     out of the single step range.  Set a breakpoint at the
4358 	     current PC (which is presumably where the signal handler
4359 	     will eventually return) and then allow the inferior to
4360 	     run free.
4361 
4362 	     Note that this is only needed for a signal delivered
4363 	     while in the single-step range.  Nested signals aren't a
4364 	     problem as they eventually all return.  */
4365           if (debug_infrun)
4366             fprintf_unfiltered (gdb_stdlog,
4367                                 "infrun: signal may take us out of "
4368                                 "single-step range\n");
4369 
4370 	  insert_hp_step_resume_breakpoint_at_frame (frame);
4371 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
4372 	  ecs->event_thread->control.trap_expected = 0;
4373 	  keep_going (ecs);
4374 	  return;
4375 	}
4376 
4377       /* Note: step_resume_breakpoint may be non-NULL.  This occures
4378 	 when either there's a nested signal, or when there's a
4379 	 pending signal enabled just as the signal handler returns
4380 	 (leaving the inferior at the step-resume-breakpoint without
4381 	 actually executing it).  Either way continue until the
4382 	 breakpoint is really hit.  */
4383     }
4384   else
4385     {
4386       /* Handle cases caused by hitting a breakpoint.  */
4387 
4388       CORE_ADDR jmp_buf_pc;
4389       struct bpstat_what what;
4390 
4391       what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4392 
4393       if (what.call_dummy)
4394 	{
4395 	  stop_stack_dummy = what.call_dummy;
4396 	}
4397 
4398       /* If we hit an internal event that triggers symbol changes, the
4399 	 current frame will be invalidated within bpstat_what (e.g.,
4400 	 if we hit an internal solib event).  Re-fetch it.  */
4401       frame = get_current_frame ();
4402       gdbarch = get_frame_arch (frame);
4403 
4404       switch (what.main_action)
4405 	{
4406 	case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4407 	  /* If we hit the breakpoint at longjmp while stepping, we
4408 	     install a momentary breakpoint at the target of the
4409 	     jmp_buf.  */
4410 
4411 	  if (debug_infrun)
4412 	    fprintf_unfiltered (gdb_stdlog,
4413 				"infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4414 
4415 	  ecs->event_thread->stepping_over_breakpoint = 1;
4416 
4417 	  if (what.is_longjmp)
4418 	    {
4419 	      struct value *arg_value;
4420 
4421 	      /* If we set the longjmp breakpoint via a SystemTap
4422 		 probe, then use it to extract the arguments.  The
4423 		 destination PC is the third argument to the
4424 		 probe.  */
4425 	      arg_value = probe_safe_evaluate_at_pc (frame, 2);
4426 	      if (arg_value)
4427 		jmp_buf_pc = value_as_address (arg_value);
4428 	      else if (!gdbarch_get_longjmp_target_p (gdbarch)
4429 		       || !gdbarch_get_longjmp_target (gdbarch,
4430 						       frame, &jmp_buf_pc))
4431 		{
4432 		  if (debug_infrun)
4433 		    fprintf_unfiltered (gdb_stdlog,
4434 					"infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4435 					"(!gdbarch_get_longjmp_target)\n");
4436 		  keep_going (ecs);
4437 		  return;
4438 		}
4439 
4440 	      /* Insert a breakpoint at resume address.  */
4441 	      insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4442 	    }
4443 	  else
4444 	    check_exception_resume (ecs, frame);
4445 	  keep_going (ecs);
4446 	  return;
4447 
4448 	case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4449 	  {
4450 	    struct frame_info *init_frame;
4451 
4452 	    /* There are several cases to consider.
4453 
4454 	       1. The initiating frame no longer exists.  In this case
4455 	       we must stop, because the exception or longjmp has gone
4456 	       too far.
4457 
4458 	       2. The initiating frame exists, and is the same as the
4459 	       current frame.  We stop, because the exception or
4460 	       longjmp has been caught.
4461 
4462 	       3. The initiating frame exists and is different from
4463 	       the current frame.  This means the exception or longjmp
4464 	       has been caught beneath the initiating frame, so keep
4465 	       going.
4466 
4467 	       4. longjmp breakpoint has been placed just to protect
4468 	       against stale dummy frames and user is not interested
4469 	       in stopping around longjmps.  */
4470 
4471 	    if (debug_infrun)
4472 	      fprintf_unfiltered (gdb_stdlog,
4473 				  "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4474 
4475 	    gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4476 			!= NULL);
4477 	    delete_exception_resume_breakpoint (ecs->event_thread);
4478 
4479 	    if (what.is_longjmp)
4480 	      {
4481 		check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4482 
4483 		if (!frame_id_p (ecs->event_thread->initiating_frame))
4484 		  {
4485 		    /* Case 4.  */
4486 		    keep_going (ecs);
4487 		    return;
4488 		  }
4489 	      }
4490 
4491 	    init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4492 
4493 	    if (init_frame)
4494 	      {
4495 		struct frame_id current_id
4496 		  = get_frame_id (get_current_frame ());
4497 		if (frame_id_eq (current_id,
4498 				 ecs->event_thread->initiating_frame))
4499 		  {
4500 		    /* Case 2.  Fall through.  */
4501 		  }
4502 		else
4503 		  {
4504 		    /* Case 3.  */
4505 		    keep_going (ecs);
4506 		    return;
4507 		  }
4508 	      }
4509 
4510 	    /* For Cases 1 and 2, remove the step-resume breakpoint,
4511 	       if it exists.  */
4512 	    delete_step_resume_breakpoint (ecs->event_thread);
4513 
4514 	    ecs->event_thread->control.stop_step = 1;
4515 	    print_end_stepping_range_reason ();
4516 	    stop_stepping (ecs);
4517 	  }
4518 	  return;
4519 
4520 	case BPSTAT_WHAT_SINGLE:
4521 	  if (debug_infrun)
4522 	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4523 	  ecs->event_thread->stepping_over_breakpoint = 1;
4524 	  /* Still need to check other stuff, at least the case where
4525 	     we are stepping and step out of the right range.  */
4526 	  break;
4527 
4528 	case BPSTAT_WHAT_STEP_RESUME:
4529 	  if (debug_infrun)
4530 	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4531 
4532 	  delete_step_resume_breakpoint (ecs->event_thread);
4533 	  if (ecs->event_thread->control.proceed_to_finish
4534 	      && execution_direction == EXEC_REVERSE)
4535 	    {
4536 	      struct thread_info *tp = ecs->event_thread;
4537 
4538 	      /* We are finishing a function in reverse, and just hit
4539 		 the step-resume breakpoint at the start address of
4540 		 the function, and we're almost there -- just need to
4541 		 back up by one more single-step, which should take us
4542 		 back to the function call.  */
4543 	      tp->control.step_range_start = tp->control.step_range_end = 1;
4544 	      keep_going (ecs);
4545 	      return;
4546 	    }
4547 	  fill_in_stop_func (gdbarch, ecs);
4548 	  if (stop_pc == ecs->stop_func_start
4549 	      && execution_direction == EXEC_REVERSE)
4550 	    {
4551 	      /* We are stepping over a function call in reverse, and
4552 		 just hit the step-resume breakpoint at the start
4553 		 address of the function.  Go back to single-stepping,
4554 		 which should take us back to the function call.  */
4555 	      ecs->event_thread->stepping_over_breakpoint = 1;
4556 	      keep_going (ecs);
4557 	      return;
4558 	    }
4559 	  break;
4560 
4561 	case BPSTAT_WHAT_STOP_NOISY:
4562 	  if (debug_infrun)
4563 	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4564 	  stop_print_frame = 1;
4565 
4566 	  /* We are about to nuke the step_resume_breakpointt via the
4567 	     cleanup chain, so no need to worry about it here.  */
4568 
4569 	  stop_stepping (ecs);
4570 	  return;
4571 
4572 	case BPSTAT_WHAT_STOP_SILENT:
4573 	  if (debug_infrun)
4574 	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4575 	  stop_print_frame = 0;
4576 
4577 	  /* We are about to nuke the step_resume_breakpoin via the
4578 	     cleanup chain, so no need to worry about it here.  */
4579 
4580 	  stop_stepping (ecs);
4581 	  return;
4582 
4583 	case BPSTAT_WHAT_HP_STEP_RESUME:
4584 	  if (debug_infrun)
4585 	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4586 
4587 	  delete_step_resume_breakpoint (ecs->event_thread);
4588 	  if (ecs->event_thread->step_after_step_resume_breakpoint)
4589 	    {
4590 	      /* Back when the step-resume breakpoint was inserted, we
4591 		 were trying to single-step off a breakpoint.  Go back
4592 		 to doing that.  */
4593 	      ecs->event_thread->step_after_step_resume_breakpoint = 0;
4594 	      ecs->event_thread->stepping_over_breakpoint = 1;
4595 	      keep_going (ecs);
4596 	      return;
4597 	    }
4598 	  break;
4599 
4600 	case BPSTAT_WHAT_KEEP_CHECKING:
4601 	  break;
4602 	}
4603     }
4604 
4605   /* We come here if we hit a breakpoint but should not
4606      stop for it.  Possibly we also were stepping
4607      and should stop for that.  So fall through and
4608      test for stepping.  But, if not stepping,
4609      do not stop.  */
4610 
4611   /* In all-stop mode, if we're currently stepping but have stopped in
4612      some other thread, we need to switch back to the stepped thread.  */
4613   if (!non_stop)
4614     {
4615       struct thread_info *tp;
4616 
4617       tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4618 				 ecs->event_thread);
4619       if (tp)
4620 	{
4621 	  /* However, if the current thread is blocked on some internal
4622 	     breakpoint, and we simply need to step over that breakpoint
4623 	     to get it going again, do that first.  */
4624 	  if ((ecs->event_thread->control.trap_expected
4625 	       && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4626 	      || ecs->event_thread->stepping_over_breakpoint)
4627 	    {
4628 	      keep_going (ecs);
4629 	      return;
4630 	    }
4631 
4632 	  /* If the stepping thread exited, then don't try to switch
4633 	     back and resume it, which could fail in several different
4634 	     ways depending on the target.  Instead, just keep going.
4635 
4636 	     We can find a stepping dead thread in the thread list in
4637 	     two cases:
4638 
4639 	     - The target supports thread exit events, and when the
4640 	     target tries to delete the thread from the thread list,
4641 	     inferior_ptid pointed at the exiting thread.  In such
4642 	     case, calling delete_thread does not really remove the
4643 	     thread from the list; instead, the thread is left listed,
4644 	     with 'exited' state.
4645 
4646 	     - The target's debug interface does not support thread
4647 	     exit events, and so we have no idea whatsoever if the
4648 	     previously stepping thread is still alive.  For that
4649 	     reason, we need to synchronously query the target
4650 	     now.  */
4651 	  if (is_exited (tp->ptid)
4652 	      || !target_thread_alive (tp->ptid))
4653 	    {
4654 	      if (debug_infrun)
4655 		fprintf_unfiltered (gdb_stdlog,
4656 				    "infrun: not switching back to "
4657 				    "stepped thread, it has vanished\n");
4658 
4659 	      delete_thread (tp->ptid);
4660 	      keep_going (ecs);
4661 	      return;
4662 	    }
4663 
4664 	  /* Otherwise, we no longer expect a trap in the current thread.
4665 	     Clear the trap_expected flag before switching back -- this is
4666 	     what keep_going would do as well, if we called it.  */
4667 	  ecs->event_thread->control.trap_expected = 0;
4668 
4669 	  if (debug_infrun)
4670 	    fprintf_unfiltered (gdb_stdlog,
4671 				"infrun: switching back to stepped thread\n");
4672 
4673 	  ecs->event_thread = tp;
4674 	  ecs->ptid = tp->ptid;
4675 	  context_switch (ecs->ptid);
4676 	  keep_going (ecs);
4677 	  return;
4678 	}
4679     }
4680 
4681   if (ecs->event_thread->control.step_resume_breakpoint)
4682     {
4683       if (debug_infrun)
4684 	 fprintf_unfiltered (gdb_stdlog,
4685 			     "infrun: step-resume breakpoint is inserted\n");
4686 
4687       /* Having a step-resume breakpoint overrides anything
4688          else having to do with stepping commands until
4689          that breakpoint is reached.  */
4690       keep_going (ecs);
4691       return;
4692     }
4693 
4694   if (ecs->event_thread->control.step_range_end == 0)
4695     {
4696       if (debug_infrun)
4697 	 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4698       /* Likewise if we aren't even stepping.  */
4699       keep_going (ecs);
4700       return;
4701     }
4702 
4703   /* Re-fetch current thread's frame in case the code above caused
4704      the frame cache to be re-initialized, making our FRAME variable
4705      a dangling pointer.  */
4706   frame = get_current_frame ();
4707   gdbarch = get_frame_arch (frame);
4708   fill_in_stop_func (gdbarch, ecs);
4709 
4710   /* If stepping through a line, keep going if still within it.
4711 
4712      Note that step_range_end is the address of the first instruction
4713      beyond the step range, and NOT the address of the last instruction
4714      within it!
4715 
4716      Note also that during reverse execution, we may be stepping
4717      through a function epilogue and therefore must detect when
4718      the current-frame changes in the middle of a line.  */
4719 
4720   if (stop_pc >= ecs->event_thread->control.step_range_start
4721       && stop_pc < ecs->event_thread->control.step_range_end
4722       && (execution_direction != EXEC_REVERSE
4723 	  || frame_id_eq (get_frame_id (frame),
4724 			  ecs->event_thread->control.step_frame_id)))
4725     {
4726       if (debug_infrun)
4727 	fprintf_unfiltered
4728 	  (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4729 	   paddress (gdbarch, ecs->event_thread->control.step_range_start),
4730 	   paddress (gdbarch, ecs->event_thread->control.step_range_end));
4731 
4732       /* When stepping backward, stop at beginning of line range
4733 	 (unless it's the function entry point, in which case
4734 	 keep going back to the call point).  */
4735       if (stop_pc == ecs->event_thread->control.step_range_start
4736 	  && stop_pc != ecs->stop_func_start
4737 	  && execution_direction == EXEC_REVERSE)
4738 	{
4739 	  ecs->event_thread->control.stop_step = 1;
4740 	  print_end_stepping_range_reason ();
4741 	  stop_stepping (ecs);
4742 	}
4743       else
4744 	keep_going (ecs);
4745 
4746       return;
4747     }
4748 
4749   /* We stepped out of the stepping range.  */
4750 
4751   /* If we are stepping at the source level and entered the runtime
4752      loader dynamic symbol resolution code...
4753 
4754      EXEC_FORWARD: we keep on single stepping until we exit the run
4755      time loader code and reach the callee's address.
4756 
4757      EXEC_REVERSE: we've already executed the callee (backward), and
4758      the runtime loader code is handled just like any other
4759      undebuggable function call.  Now we need only keep stepping
4760      backward through the trampoline code, and that's handled further
4761      down, so there is nothing for us to do here.  */
4762 
4763   if (execution_direction != EXEC_REVERSE
4764       && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4765       && in_solib_dynsym_resolve_code (stop_pc))
4766     {
4767       CORE_ADDR pc_after_resolver =
4768 	gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4769 
4770       if (debug_infrun)
4771 	 fprintf_unfiltered (gdb_stdlog,
4772 			     "infrun: stepped into dynsym resolve code\n");
4773 
4774       if (pc_after_resolver)
4775 	{
4776 	  /* Set up a step-resume breakpoint at the address
4777 	     indicated by SKIP_SOLIB_RESOLVER.  */
4778 	  struct symtab_and_line sr_sal;
4779 
4780 	  init_sal (&sr_sal);
4781 	  sr_sal.pc = pc_after_resolver;
4782 	  sr_sal.pspace = get_frame_program_space (frame);
4783 
4784 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4785 						sr_sal, null_frame_id);
4786 	}
4787 
4788       keep_going (ecs);
4789       return;
4790     }
4791 
4792   if (ecs->event_thread->control.step_range_end != 1
4793       && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4794 	  || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4795       && get_frame_type (frame) == SIGTRAMP_FRAME)
4796     {
4797       if (debug_infrun)
4798 	 fprintf_unfiltered (gdb_stdlog,
4799 			     "infrun: stepped into signal trampoline\n");
4800       /* The inferior, while doing a "step" or "next", has ended up in
4801          a signal trampoline (either by a signal being delivered or by
4802          the signal handler returning).  Just single-step until the
4803          inferior leaves the trampoline (either by calling the handler
4804          or returning).  */
4805       keep_going (ecs);
4806       return;
4807     }
4808 
4809   /* If we're in the return path from a shared library trampoline,
4810      we want to proceed through the trampoline when stepping.  */
4811   /* macro/2012-04-25: This needs to come before the subroutine
4812      call check below as on some targets return trampolines look
4813      like subroutine calls (MIPS16 return thunks).  */
4814   if (gdbarch_in_solib_return_trampoline (gdbarch,
4815 					  stop_pc, ecs->stop_func_name)
4816       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4817     {
4818       /* Determine where this trampoline returns.  */
4819       CORE_ADDR real_stop_pc;
4820 
4821       real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4822 
4823       if (debug_infrun)
4824 	 fprintf_unfiltered (gdb_stdlog,
4825 			     "infrun: stepped into solib return tramp\n");
4826 
4827       /* Only proceed through if we know where it's going.  */
4828       if (real_stop_pc)
4829 	{
4830 	  /* And put the step-breakpoint there and go until there.  */
4831 	  struct symtab_and_line sr_sal;
4832 
4833 	  init_sal (&sr_sal);	/* initialize to zeroes */
4834 	  sr_sal.pc = real_stop_pc;
4835 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
4836 	  sr_sal.pspace = get_frame_program_space (frame);
4837 
4838 	  /* Do not specify what the fp should be when we stop since
4839 	     on some machines the prologue is where the new fp value
4840 	     is established.  */
4841 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4842 						sr_sal, null_frame_id);
4843 
4844 	  /* Restart without fiddling with the step ranges or
4845 	     other state.  */
4846 	  keep_going (ecs);
4847 	  return;
4848 	}
4849     }
4850 
4851   /* Check for subroutine calls.  The check for the current frame
4852      equalling the step ID is not necessary - the check of the
4853      previous frame's ID is sufficient - but it is a common case and
4854      cheaper than checking the previous frame's ID.
4855 
4856      NOTE: frame_id_eq will never report two invalid frame IDs as
4857      being equal, so to get into this block, both the current and
4858      previous frame must have valid frame IDs.  */
4859   /* The outer_frame_id check is a heuristic to detect stepping
4860      through startup code.  If we step over an instruction which
4861      sets the stack pointer from an invalid value to a valid value,
4862      we may detect that as a subroutine call from the mythical
4863      "outermost" function.  This could be fixed by marking
4864      outermost frames as !stack_p,code_p,special_p.  Then the
4865      initial outermost frame, before sp was valid, would
4866      have code_addr == &_start.  See the comment in frame_id_eq
4867      for more.  */
4868   if (!frame_id_eq (get_stack_frame_id (frame),
4869 		    ecs->event_thread->control.step_stack_frame_id)
4870       && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4871 		       ecs->event_thread->control.step_stack_frame_id)
4872 	  && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4873 			    outer_frame_id)
4874 	      || step_start_function != find_pc_function (stop_pc))))
4875     {
4876       CORE_ADDR real_stop_pc;
4877 
4878       if (debug_infrun)
4879 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4880 
4881       if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4882 	  || ((ecs->event_thread->control.step_range_end == 1)
4883 	      && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4884 			      ecs->stop_func_start)))
4885 	{
4886 	  /* I presume that step_over_calls is only 0 when we're
4887 	     supposed to be stepping at the assembly language level
4888 	     ("stepi").  Just stop.  */
4889 	  /* Also, maybe we just did a "nexti" inside a prolog, so we
4890 	     thought it was a subroutine call but it was not.  Stop as
4891 	     well.  FENN */
4892 	  /* And this works the same backward as frontward.  MVS */
4893 	  ecs->event_thread->control.stop_step = 1;
4894 	  print_end_stepping_range_reason ();
4895 	  stop_stepping (ecs);
4896 	  return;
4897 	}
4898 
4899       /* Reverse stepping through solib trampolines.  */
4900 
4901       if (execution_direction == EXEC_REVERSE
4902 	  && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4903 	  && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4904 	      || (ecs->stop_func_start == 0
4905 		  && in_solib_dynsym_resolve_code (stop_pc))))
4906 	{
4907 	  /* Any solib trampoline code can be handled in reverse
4908 	     by simply continuing to single-step.  We have already
4909 	     executed the solib function (backwards), and a few
4910 	     steps will take us back through the trampoline to the
4911 	     caller.  */
4912 	  keep_going (ecs);
4913 	  return;
4914 	}
4915 
4916       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4917 	{
4918 	  /* We're doing a "next".
4919 
4920 	     Normal (forward) execution: set a breakpoint at the
4921 	     callee's return address (the address at which the caller
4922 	     will resume).
4923 
4924 	     Reverse (backward) execution.  set the step-resume
4925 	     breakpoint at the start of the function that we just
4926 	     stepped into (backwards), and continue to there.  When we
4927 	     get there, we'll need to single-step back to the caller.  */
4928 
4929 	  if (execution_direction == EXEC_REVERSE)
4930 	    {
4931 	      /* If we're already at the start of the function, we've either
4932 		 just stepped backward into a single instruction function,
4933 		 or stepped back out of a signal handler to the first instruction
4934 		 of the function.  Just keep going, which will single-step back
4935 		 to the caller.  */
4936 	      if (ecs->stop_func_start != stop_pc)
4937 		{
4938 		  struct symtab_and_line sr_sal;
4939 
4940 		  /* Normal function call return (static or dynamic).  */
4941 		  init_sal (&sr_sal);
4942 		  sr_sal.pc = ecs->stop_func_start;
4943 		  sr_sal.pspace = get_frame_program_space (frame);
4944 		  insert_step_resume_breakpoint_at_sal (gdbarch,
4945 							sr_sal, null_frame_id);
4946 		}
4947 	    }
4948 	  else
4949 	    insert_step_resume_breakpoint_at_caller (frame);
4950 
4951 	  keep_going (ecs);
4952 	  return;
4953 	}
4954 
4955       /* If we are in a function call trampoline (a stub between the
4956          calling routine and the real function), locate the real
4957          function.  That's what tells us (a) whether we want to step
4958          into it at all, and (b) what prologue we want to run to the
4959          end of, if we do step into it.  */
4960       real_stop_pc = skip_language_trampoline (frame, stop_pc);
4961       if (real_stop_pc == 0)
4962 	real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4963       if (real_stop_pc != 0)
4964 	ecs->stop_func_start = real_stop_pc;
4965 
4966       if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4967 	{
4968 	  struct symtab_and_line sr_sal;
4969 
4970 	  init_sal (&sr_sal);
4971 	  sr_sal.pc = ecs->stop_func_start;
4972 	  sr_sal.pspace = get_frame_program_space (frame);
4973 
4974 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4975 						sr_sal, null_frame_id);
4976 	  keep_going (ecs);
4977 	  return;
4978 	}
4979 
4980       /* If we have line number information for the function we are
4981 	 thinking of stepping into and the function isn't on the skip
4982 	 list, step into it.
4983 
4984          If there are several symtabs at that PC (e.g. with include
4985          files), just want to know whether *any* of them have line
4986          numbers.  find_pc_line handles this.  */
4987       {
4988 	struct symtab_and_line tmp_sal;
4989 
4990 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4991 	if (tmp_sal.line != 0
4992 	    && !function_name_is_marked_for_skip (ecs->stop_func_name,
4993 						  &tmp_sal))
4994 	  {
4995 	    if (execution_direction == EXEC_REVERSE)
4996 	      handle_step_into_function_backward (gdbarch, ecs);
4997 	    else
4998 	      handle_step_into_function (gdbarch, ecs);
4999 	    return;
5000 	  }
5001       }
5002 
5003       /* If we have no line number and the step-stop-if-no-debug is
5004          set, we stop the step so that the user has a chance to switch
5005          in assembly mode.  */
5006       if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5007 	  && step_stop_if_no_debug)
5008 	{
5009 	  ecs->event_thread->control.stop_step = 1;
5010 	  print_end_stepping_range_reason ();
5011 	  stop_stepping (ecs);
5012 	  return;
5013 	}
5014 
5015       if (execution_direction == EXEC_REVERSE)
5016 	{
5017 	  /* If we're already at the start of the function, we've either just
5018 	     stepped backward into a single instruction function without line
5019 	     number info, or stepped back out of a signal handler to the first
5020 	     instruction of the function without line number info.  Just keep
5021 	     going, which will single-step back to the caller.  */
5022 	  if (ecs->stop_func_start != stop_pc)
5023 	    {
5024 	      /* Set a breakpoint at callee's start address.
5025 		 From there we can step once and be back in the caller.  */
5026 	      struct symtab_and_line sr_sal;
5027 
5028 	      init_sal (&sr_sal);
5029 	      sr_sal.pc = ecs->stop_func_start;
5030 	      sr_sal.pspace = get_frame_program_space (frame);
5031 	      insert_step_resume_breakpoint_at_sal (gdbarch,
5032 						    sr_sal, null_frame_id);
5033 	    }
5034 	}
5035       else
5036 	/* Set a breakpoint at callee's return address (the address
5037 	   at which the caller will resume).  */
5038 	insert_step_resume_breakpoint_at_caller (frame);
5039 
5040       keep_going (ecs);
5041       return;
5042     }
5043 
5044   /* Reverse stepping through solib trampolines.  */
5045 
5046   if (execution_direction == EXEC_REVERSE
5047       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5048     {
5049       if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5050 	  || (ecs->stop_func_start == 0
5051 	      && in_solib_dynsym_resolve_code (stop_pc)))
5052 	{
5053 	  /* Any solib trampoline code can be handled in reverse
5054 	     by simply continuing to single-step.  We have already
5055 	     executed the solib function (backwards), and a few
5056 	     steps will take us back through the trampoline to the
5057 	     caller.  */
5058 	  keep_going (ecs);
5059 	  return;
5060 	}
5061       else if (in_solib_dynsym_resolve_code (stop_pc))
5062 	{
5063 	  /* Stepped backward into the solib dynsym resolver.
5064 	     Set a breakpoint at its start and continue, then
5065 	     one more step will take us out.  */
5066 	  struct symtab_and_line sr_sal;
5067 
5068 	  init_sal (&sr_sal);
5069 	  sr_sal.pc = ecs->stop_func_start;
5070 	  sr_sal.pspace = get_frame_program_space (frame);
5071 	  insert_step_resume_breakpoint_at_sal (gdbarch,
5072 						sr_sal, null_frame_id);
5073 	  keep_going (ecs);
5074 	  return;
5075 	}
5076     }
5077 
5078   stop_pc_sal = find_pc_line (stop_pc, 0);
5079 
5080   /* NOTE: tausq/2004-05-24: This if block used to be done before all
5081      the trampoline processing logic, however, there are some trampolines
5082      that have no names, so we should do trampoline handling first.  */
5083   if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5084       && ecs->stop_func_name == NULL
5085       && stop_pc_sal.line == 0)
5086     {
5087       if (debug_infrun)
5088 	 fprintf_unfiltered (gdb_stdlog,
5089 			     "infrun: stepped into undebuggable function\n");
5090 
5091       /* The inferior just stepped into, or returned to, an
5092          undebuggable function (where there is no debugging information
5093          and no line number corresponding to the address where the
5094          inferior stopped).  Since we want to skip this kind of code,
5095          we keep going until the inferior returns from this
5096          function - unless the user has asked us not to (via
5097          set step-mode) or we no longer know how to get back
5098          to the call site.  */
5099       if (step_stop_if_no_debug
5100 	  || !frame_id_p (frame_unwind_caller_id (frame)))
5101 	{
5102 	  /* If we have no line number and the step-stop-if-no-debug
5103 	     is set, we stop the step so that the user has a chance to
5104 	     switch in assembly mode.  */
5105 	  ecs->event_thread->control.stop_step = 1;
5106 	  print_end_stepping_range_reason ();
5107 	  stop_stepping (ecs);
5108 	  return;
5109 	}
5110       else
5111 	{
5112 	  /* Set a breakpoint at callee's return address (the address
5113 	     at which the caller will resume).  */
5114 	  insert_step_resume_breakpoint_at_caller (frame);
5115 	  keep_going (ecs);
5116 	  return;
5117 	}
5118     }
5119 
5120   if (ecs->event_thread->control.step_range_end == 1)
5121     {
5122       /* It is stepi or nexti.  We always want to stop stepping after
5123          one instruction.  */
5124       if (debug_infrun)
5125 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5126       ecs->event_thread->control.stop_step = 1;
5127       print_end_stepping_range_reason ();
5128       stop_stepping (ecs);
5129       return;
5130     }
5131 
5132   if (stop_pc_sal.line == 0)
5133     {
5134       /* We have no line number information.  That means to stop
5135          stepping (does this always happen right after one instruction,
5136          when we do "s" in a function with no line numbers,
5137          or can this happen as a result of a return or longjmp?).  */
5138       if (debug_infrun)
5139 	 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5140       ecs->event_thread->control.stop_step = 1;
5141       print_end_stepping_range_reason ();
5142       stop_stepping (ecs);
5143       return;
5144     }
5145 
5146   /* Look for "calls" to inlined functions, part one.  If the inline
5147      frame machinery detected some skipped call sites, we have entered
5148      a new inline function.  */
5149 
5150   if (frame_id_eq (get_frame_id (get_current_frame ()),
5151 		   ecs->event_thread->control.step_frame_id)
5152       && inline_skipped_frames (ecs->ptid))
5153     {
5154       struct symtab_and_line call_sal;
5155 
5156       if (debug_infrun)
5157 	fprintf_unfiltered (gdb_stdlog,
5158 			    "infrun: stepped into inlined function\n");
5159 
5160       find_frame_sal (get_current_frame (), &call_sal);
5161 
5162       if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5163 	{
5164 	  /* For "step", we're going to stop.  But if the call site
5165 	     for this inlined function is on the same source line as
5166 	     we were previously stepping, go down into the function
5167 	     first.  Otherwise stop at the call site.  */
5168 
5169 	  if (call_sal.line == ecs->event_thread->current_line
5170 	      && call_sal.symtab == ecs->event_thread->current_symtab)
5171 	    step_into_inline_frame (ecs->ptid);
5172 
5173 	  ecs->event_thread->control.stop_step = 1;
5174 	  print_end_stepping_range_reason ();
5175 	  stop_stepping (ecs);
5176 	  return;
5177 	}
5178       else
5179 	{
5180 	  /* For "next", we should stop at the call site if it is on a
5181 	     different source line.  Otherwise continue through the
5182 	     inlined function.  */
5183 	  if (call_sal.line == ecs->event_thread->current_line
5184 	      && call_sal.symtab == ecs->event_thread->current_symtab)
5185 	    keep_going (ecs);
5186 	  else
5187 	    {
5188 	      ecs->event_thread->control.stop_step = 1;
5189 	      print_end_stepping_range_reason ();
5190 	      stop_stepping (ecs);
5191 	    }
5192 	  return;
5193 	}
5194     }
5195 
5196   /* Look for "calls" to inlined functions, part two.  If we are still
5197      in the same real function we were stepping through, but we have
5198      to go further up to find the exact frame ID, we are stepping
5199      through a more inlined call beyond its call site.  */
5200 
5201   if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5202       && !frame_id_eq (get_frame_id (get_current_frame ()),
5203 		       ecs->event_thread->control.step_frame_id)
5204       && stepped_in_from (get_current_frame (),
5205 			  ecs->event_thread->control.step_frame_id))
5206     {
5207       if (debug_infrun)
5208 	fprintf_unfiltered (gdb_stdlog,
5209 			    "infrun: stepping through inlined function\n");
5210 
5211       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5212 	keep_going (ecs);
5213       else
5214 	{
5215 	  ecs->event_thread->control.stop_step = 1;
5216 	  print_end_stepping_range_reason ();
5217 	  stop_stepping (ecs);
5218 	}
5219       return;
5220     }
5221 
5222   if ((stop_pc == stop_pc_sal.pc)
5223       && (ecs->event_thread->current_line != stop_pc_sal.line
5224  	  || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5225     {
5226       /* We are at the start of a different line.  So stop.  Note that
5227          we don't stop if we step into the middle of a different line.
5228          That is said to make things like for (;;) statements work
5229          better.  */
5230       if (debug_infrun)
5231 	 fprintf_unfiltered (gdb_stdlog,
5232 			     "infrun: stepped to a different line\n");
5233       ecs->event_thread->control.stop_step = 1;
5234       print_end_stepping_range_reason ();
5235       stop_stepping (ecs);
5236       return;
5237     }
5238 
5239   /* We aren't done stepping.
5240 
5241      Optimize by setting the stepping range to the line.
5242      (We might not be in the original line, but if we entered a
5243      new line in mid-statement, we continue stepping.  This makes
5244      things like for(;;) statements work better.)  */
5245 
5246   ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5247   ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5248   set_step_info (frame, stop_pc_sal);
5249 
5250   if (debug_infrun)
5251      fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5252   keep_going (ecs);
5253 }
5254 
5255 /* Is thread TP in the middle of single-stepping?  */
5256 
5257 static int
currently_stepping(struct thread_info * tp)5258 currently_stepping (struct thread_info *tp)
5259 {
5260   return ((tp->control.step_range_end
5261 	   && tp->control.step_resume_breakpoint == NULL)
5262 	  || tp->control.trap_expected
5263 	  || bpstat_should_step ());
5264 }
5265 
5266 /* Returns true if any thread *but* the one passed in "data" is in the
5267    middle of stepping or of handling a "next".  */
5268 
5269 static int
currently_stepping_or_nexting_callback(struct thread_info * tp,void * data)5270 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5271 {
5272   if (tp == data)
5273     return 0;
5274 
5275   return (tp->control.step_range_end
5276  	  || tp->control.trap_expected);
5277 }
5278 
5279 /* Inferior has stepped into a subroutine call with source code that
5280    we should not step over.  Do step to the first line of code in
5281    it.  */
5282 
5283 static void
handle_step_into_function(struct gdbarch * gdbarch,struct execution_control_state * ecs)5284 handle_step_into_function (struct gdbarch *gdbarch,
5285 			   struct execution_control_state *ecs)
5286 {
5287   struct symtab *s;
5288   struct symtab_and_line stop_func_sal, sr_sal;
5289 
5290   fill_in_stop_func (gdbarch, ecs);
5291 
5292   s = find_pc_symtab (stop_pc);
5293   if (s && s->language != language_asm)
5294     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5295 						  ecs->stop_func_start);
5296 
5297   stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5298   /* Use the step_resume_break to step until the end of the prologue,
5299      even if that involves jumps (as it seems to on the vax under
5300      4.2).  */
5301   /* If the prologue ends in the middle of a source line, continue to
5302      the end of that source line (if it is still within the function).
5303      Otherwise, just go to end of prologue.  */
5304   if (stop_func_sal.end
5305       && stop_func_sal.pc != ecs->stop_func_start
5306       && stop_func_sal.end < ecs->stop_func_end)
5307     ecs->stop_func_start = stop_func_sal.end;
5308 
5309   /* Architectures which require breakpoint adjustment might not be able
5310      to place a breakpoint at the computed address.  If so, the test
5311      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
5312      ecs->stop_func_start to an address at which a breakpoint may be
5313      legitimately placed.
5314 
5315      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
5316      made, GDB will enter an infinite loop when stepping through
5317      optimized code consisting of VLIW instructions which contain
5318      subinstructions corresponding to different source lines.  On
5319      FR-V, it's not permitted to place a breakpoint on any but the
5320      first subinstruction of a VLIW instruction.  When a breakpoint is
5321      set, GDB will adjust the breakpoint address to the beginning of
5322      the VLIW instruction.  Thus, we need to make the corresponding
5323      adjustment here when computing the stop address.  */
5324 
5325   if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5326     {
5327       ecs->stop_func_start
5328 	= gdbarch_adjust_breakpoint_address (gdbarch,
5329 					     ecs->stop_func_start);
5330     }
5331 
5332   if (ecs->stop_func_start == stop_pc)
5333     {
5334       /* We are already there: stop now.  */
5335       ecs->event_thread->control.stop_step = 1;
5336       print_end_stepping_range_reason ();
5337       stop_stepping (ecs);
5338       return;
5339     }
5340   else
5341     {
5342       /* Put the step-breakpoint there and go until there.  */
5343       init_sal (&sr_sal);	/* initialize to zeroes */
5344       sr_sal.pc = ecs->stop_func_start;
5345       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5346       sr_sal.pspace = get_frame_program_space (get_current_frame ());
5347 
5348       /* Do not specify what the fp should be when we stop since on
5349          some machines the prologue is where the new fp value is
5350          established.  */
5351       insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5352 
5353       /* And make sure stepping stops right away then.  */
5354       ecs->event_thread->control.step_range_end
5355         = ecs->event_thread->control.step_range_start;
5356     }
5357   keep_going (ecs);
5358 }
5359 
5360 /* Inferior has stepped backward into a subroutine call with source
5361    code that we should not step over.  Do step to the beginning of the
5362    last line of code in it.  */
5363 
5364 static void
handle_step_into_function_backward(struct gdbarch * gdbarch,struct execution_control_state * ecs)5365 handle_step_into_function_backward (struct gdbarch *gdbarch,
5366 				    struct execution_control_state *ecs)
5367 {
5368   struct symtab *s;
5369   struct symtab_and_line stop_func_sal;
5370 
5371   fill_in_stop_func (gdbarch, ecs);
5372 
5373   s = find_pc_symtab (stop_pc);
5374   if (s && s->language != language_asm)
5375     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5376 						  ecs->stop_func_start);
5377 
5378   stop_func_sal = find_pc_line (stop_pc, 0);
5379 
5380   /* OK, we're just going to keep stepping here.  */
5381   if (stop_func_sal.pc == stop_pc)
5382     {
5383       /* We're there already.  Just stop stepping now.  */
5384       ecs->event_thread->control.stop_step = 1;
5385       print_end_stepping_range_reason ();
5386       stop_stepping (ecs);
5387     }
5388   else
5389     {
5390       /* Else just reset the step range and keep going.
5391 	 No step-resume breakpoint, they don't work for
5392 	 epilogues, which can have multiple entry paths.  */
5393       ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5394       ecs->event_thread->control.step_range_end = stop_func_sal.end;
5395       keep_going (ecs);
5396     }
5397   return;
5398 }
5399 
5400 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5401    This is used to both functions and to skip over code.  */
5402 
5403 static void
insert_step_resume_breakpoint_at_sal_1(struct gdbarch * gdbarch,struct symtab_and_line sr_sal,struct frame_id sr_id,enum bptype sr_type)5404 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5405 					struct symtab_and_line sr_sal,
5406 					struct frame_id sr_id,
5407 					enum bptype sr_type)
5408 {
5409   /* There should never be more than one step-resume or longjmp-resume
5410      breakpoint per thread, so we should never be setting a new
5411      step_resume_breakpoint when one is already active.  */
5412   gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5413   gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5414 
5415   if (debug_infrun)
5416     fprintf_unfiltered (gdb_stdlog,
5417 			"infrun: inserting step-resume breakpoint at %s\n",
5418 			paddress (gdbarch, sr_sal.pc));
5419 
5420   inferior_thread ()->control.step_resume_breakpoint
5421     = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5422 }
5423 
5424 void
insert_step_resume_breakpoint_at_sal(struct gdbarch * gdbarch,struct symtab_and_line sr_sal,struct frame_id sr_id)5425 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5426 				      struct symtab_and_line sr_sal,
5427 				      struct frame_id sr_id)
5428 {
5429   insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5430 					  sr_sal, sr_id,
5431 					  bp_step_resume);
5432 }
5433 
5434 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5435    This is used to skip a potential signal handler.
5436 
5437    This is called with the interrupted function's frame.  The signal
5438    handler, when it returns, will resume the interrupted function at
5439    RETURN_FRAME.pc.  */
5440 
5441 static void
insert_hp_step_resume_breakpoint_at_frame(struct frame_info * return_frame)5442 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5443 {
5444   struct symtab_and_line sr_sal;
5445   struct gdbarch *gdbarch;
5446 
5447   gdb_assert (return_frame != NULL);
5448   init_sal (&sr_sal);		/* initialize to zeros */
5449 
5450   gdbarch = get_frame_arch (return_frame);
5451   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5452   sr_sal.section = find_pc_overlay (sr_sal.pc);
5453   sr_sal.pspace = get_frame_program_space (return_frame);
5454 
5455   insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5456 					  get_stack_frame_id (return_frame),
5457 					  bp_hp_step_resume);
5458 }
5459 
5460 /* Insert a "step-resume breakpoint" at the previous frame's PC.  This
5461    is used to skip a function after stepping into it (for "next" or if
5462    the called function has no debugging information).
5463 
5464    The current function has almost always been reached by single
5465    stepping a call or return instruction.  NEXT_FRAME belongs to the
5466    current function, and the breakpoint will be set at the caller's
5467    resume address.
5468 
5469    This is a separate function rather than reusing
5470    insert_hp_step_resume_breakpoint_at_frame in order to avoid
5471    get_prev_frame, which may stop prematurely (see the implementation
5472    of frame_unwind_caller_id for an example).  */
5473 
5474 static void
insert_step_resume_breakpoint_at_caller(struct frame_info * next_frame)5475 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5476 {
5477   struct symtab_and_line sr_sal;
5478   struct gdbarch *gdbarch;
5479 
5480   /* We shouldn't have gotten here if we don't know where the call site
5481      is.  */
5482   gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5483 
5484   init_sal (&sr_sal);		/* initialize to zeros */
5485 
5486   gdbarch = frame_unwind_caller_arch (next_frame);
5487   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5488 					frame_unwind_caller_pc (next_frame));
5489   sr_sal.section = find_pc_overlay (sr_sal.pc);
5490   sr_sal.pspace = frame_unwind_program_space (next_frame);
5491 
5492   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5493 					frame_unwind_caller_id (next_frame));
5494 }
5495 
5496 /* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
5497    new breakpoint at the target of a jmp_buf.  The handling of
5498    longjmp-resume uses the same mechanisms used for handling
5499    "step-resume" breakpoints.  */
5500 
5501 static void
insert_longjmp_resume_breakpoint(struct gdbarch * gdbarch,CORE_ADDR pc)5502 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5503 {
5504   /* There should never be more than one longjmp-resume breakpoint per
5505      thread, so we should never be setting a new
5506      longjmp_resume_breakpoint when one is already active.  */
5507   gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5508 
5509   if (debug_infrun)
5510     fprintf_unfiltered (gdb_stdlog,
5511 			"infrun: inserting longjmp-resume breakpoint at %s\n",
5512 			paddress (gdbarch, pc));
5513 
5514   inferior_thread ()->control.exception_resume_breakpoint =
5515     set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5516 }
5517 
5518 /* Insert an exception resume breakpoint.  TP is the thread throwing
5519    the exception.  The block B is the block of the unwinder debug hook
5520    function.  FRAME is the frame corresponding to the call to this
5521    function.  SYM is the symbol of the function argument holding the
5522    target PC of the exception.  */
5523 
5524 static void
insert_exception_resume_breakpoint(struct thread_info * tp,struct block * b,struct frame_info * frame,struct symbol * sym)5525 insert_exception_resume_breakpoint (struct thread_info *tp,
5526 				    struct block *b,
5527 				    struct frame_info *frame,
5528 				    struct symbol *sym)
5529 {
5530   volatile struct gdb_exception e;
5531 
5532   /* We want to ignore errors here.  */
5533   TRY_CATCH (e, RETURN_MASK_ERROR)
5534     {
5535       struct symbol *vsym;
5536       struct value *value;
5537       CORE_ADDR handler;
5538       struct breakpoint *bp;
5539 
5540       vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5541       value = read_var_value (vsym, frame);
5542       /* If the value was optimized out, revert to the old behavior.  */
5543       if (! value_optimized_out (value))
5544 	{
5545 	  handler = value_as_address (value);
5546 
5547 	  if (debug_infrun)
5548 	    fprintf_unfiltered (gdb_stdlog,
5549 				"infrun: exception resume at %lx\n",
5550 				(unsigned long) handler);
5551 
5552 	  bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5553 					       handler, bp_exception_resume);
5554 
5555 	  /* set_momentary_breakpoint_at_pc invalidates FRAME.  */
5556 	  frame = NULL;
5557 
5558 	  bp->thread = tp->num;
5559 	  inferior_thread ()->control.exception_resume_breakpoint = bp;
5560 	}
5561     }
5562 }
5563 
5564 /* A helper for check_exception_resume that sets an
5565    exception-breakpoint based on a SystemTap probe.  */
5566 
5567 static void
insert_exception_resume_from_probe(struct thread_info * tp,const struct probe * probe,struct frame_info * frame)5568 insert_exception_resume_from_probe (struct thread_info *tp,
5569 				    const struct probe *probe,
5570 				    struct frame_info *frame)
5571 {
5572   struct value *arg_value;
5573   CORE_ADDR handler;
5574   struct breakpoint *bp;
5575 
5576   arg_value = probe_safe_evaluate_at_pc (frame, 1);
5577   if (!arg_value)
5578     return;
5579 
5580   handler = value_as_address (arg_value);
5581 
5582   if (debug_infrun)
5583     fprintf_unfiltered (gdb_stdlog,
5584 			"infrun: exception resume at %s\n",
5585 			paddress (get_objfile_arch (probe->objfile),
5586 				  handler));
5587 
5588   bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5589 				       handler, bp_exception_resume);
5590   bp->thread = tp->num;
5591   inferior_thread ()->control.exception_resume_breakpoint = bp;
5592 }
5593 
5594 /* This is called when an exception has been intercepted.  Check to
5595    see whether the exception's destination is of interest, and if so,
5596    set an exception resume breakpoint there.  */
5597 
5598 static void
check_exception_resume(struct execution_control_state * ecs,struct frame_info * frame)5599 check_exception_resume (struct execution_control_state *ecs,
5600 			struct frame_info *frame)
5601 {
5602   volatile struct gdb_exception e;
5603   const struct probe *probe;
5604   struct symbol *func;
5605 
5606   /* First see if this exception unwinding breakpoint was set via a
5607      SystemTap probe point.  If so, the probe has two arguments: the
5608      CFA and the HANDLER.  We ignore the CFA, extract the handler, and
5609      set a breakpoint there.  */
5610   probe = find_probe_by_pc (get_frame_pc (frame));
5611   if (probe)
5612     {
5613       insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5614       return;
5615     }
5616 
5617   func = get_frame_function (frame);
5618   if (!func)
5619     return;
5620 
5621   TRY_CATCH (e, RETURN_MASK_ERROR)
5622     {
5623       struct block *b;
5624       struct block_iterator iter;
5625       struct symbol *sym;
5626       int argno = 0;
5627 
5628       /* The exception breakpoint is a thread-specific breakpoint on
5629 	 the unwinder's debug hook, declared as:
5630 
5631 	 void _Unwind_DebugHook (void *cfa, void *handler);
5632 
5633 	 The CFA argument indicates the frame to which control is
5634 	 about to be transferred.  HANDLER is the destination PC.
5635 
5636 	 We ignore the CFA and set a temporary breakpoint at HANDLER.
5637 	 This is not extremely efficient but it avoids issues in gdb
5638 	 with computing the DWARF CFA, and it also works even in weird
5639 	 cases such as throwing an exception from inside a signal
5640 	 handler.  */
5641 
5642       b = SYMBOL_BLOCK_VALUE (func);
5643       ALL_BLOCK_SYMBOLS (b, iter, sym)
5644 	{
5645 	  if (!SYMBOL_IS_ARGUMENT (sym))
5646 	    continue;
5647 
5648 	  if (argno == 0)
5649 	    ++argno;
5650 	  else
5651 	    {
5652 	      insert_exception_resume_breakpoint (ecs->event_thread,
5653 						  b, frame, sym);
5654 	      break;
5655 	    }
5656 	}
5657     }
5658 }
5659 
5660 static void
stop_stepping(struct execution_control_state * ecs)5661 stop_stepping (struct execution_control_state *ecs)
5662 {
5663   if (debug_infrun)
5664     fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5665 
5666   /* Let callers know we don't want to wait for the inferior anymore.  */
5667   ecs->wait_some_more = 0;
5668 }
5669 
5670 /* This function handles various cases where we need to continue
5671    waiting for the inferior.  */
5672 /* (Used to be the keep_going: label in the old wait_for_inferior).  */
5673 
5674 static void
keep_going(struct execution_control_state * ecs)5675 keep_going (struct execution_control_state *ecs)
5676 {
5677   /* Make sure normal_stop is called if we get a QUIT handled before
5678      reaching resume.  */
5679   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5680 
5681   /* Save the pc before execution, to compare with pc after stop.  */
5682   ecs->event_thread->prev_pc
5683     = regcache_read_pc (get_thread_regcache (ecs->ptid));
5684 
5685   /* If we did not do break;, it means we should keep running the
5686      inferior and not return to debugger.  */
5687 
5688   if (ecs->event_thread->control.trap_expected
5689       && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5690     {
5691       /* We took a signal (which we are supposed to pass through to
5692 	 the inferior, else we'd not get here) and we haven't yet
5693 	 gotten our trap.  Simply continue.  */
5694 
5695       discard_cleanups (old_cleanups);
5696       resume (currently_stepping (ecs->event_thread),
5697 	      ecs->event_thread->suspend.stop_signal);
5698     }
5699   else
5700     {
5701       /* Either the trap was not expected, but we are continuing
5702          anyway (the user asked that this signal be passed to the
5703          child)
5704          -- or --
5705          The signal was SIGTRAP, e.g. it was our signal, but we
5706          decided we should resume from it.
5707 
5708          We're going to run this baby now!
5709 
5710 	 Note that insert_breakpoints won't try to re-insert
5711 	 already inserted breakpoints.  Therefore, we don't
5712 	 care if breakpoints were already inserted, or not.  */
5713 
5714       if (ecs->event_thread->stepping_over_breakpoint)
5715 	{
5716 	  struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5717 
5718 	  if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5719 	    /* Since we can't do a displaced step, we have to remove
5720 	       the breakpoint while we step it.  To keep things
5721 	       simple, we remove them all.  */
5722 	    remove_breakpoints ();
5723 	}
5724       else
5725 	{
5726 	  volatile struct gdb_exception e;
5727 
5728 	  /* Stop stepping when inserting breakpoints
5729 	     has failed.  */
5730 	  TRY_CATCH (e, RETURN_MASK_ERROR)
5731 	    {
5732 	      insert_breakpoints ();
5733 	    }
5734 	  if (e.reason < 0)
5735 	    {
5736 	      exception_print (gdb_stderr, e);
5737 	      stop_stepping (ecs);
5738 	      return;
5739 	    }
5740 	}
5741 
5742       ecs->event_thread->control.trap_expected
5743 	= ecs->event_thread->stepping_over_breakpoint;
5744 
5745       /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5746          specifies that such a signal should be delivered to the
5747          target program).
5748 
5749          Typically, this would occure when a user is debugging a
5750          target monitor on a simulator: the target monitor sets a
5751          breakpoint; the simulator encounters this break-point and
5752          halts the simulation handing control to GDB; GDB, noteing
5753          that the break-point isn't valid, returns control back to the
5754          simulator; the simulator then delivers the hardware
5755          equivalent of a SIGNAL_TRAP to the program being debugged.  */
5756 
5757       if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5758 	  && !signal_program[ecs->event_thread->suspend.stop_signal])
5759 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5760 
5761       discard_cleanups (old_cleanups);
5762       resume (currently_stepping (ecs->event_thread),
5763 	      ecs->event_thread->suspend.stop_signal);
5764     }
5765 
5766   prepare_to_wait (ecs);
5767 }
5768 
5769 /* This function normally comes after a resume, before
5770    handle_inferior_event exits.  It takes care of any last bits of
5771    housekeeping, and sets the all-important wait_some_more flag.  */
5772 
5773 static void
prepare_to_wait(struct execution_control_state * ecs)5774 prepare_to_wait (struct execution_control_state *ecs)
5775 {
5776   if (debug_infrun)
5777     fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5778 
5779   /* This is the old end of the while loop.  Let everybody know we
5780      want to wait for the inferior some more and get called again
5781      soon.  */
5782   ecs->wait_some_more = 1;
5783 }
5784 
5785 /* Several print_*_reason functions to print why the inferior has stopped.
5786    We always print something when the inferior exits, or receives a signal.
5787    The rest of the cases are dealt with later on in normal_stop and
5788    print_it_typical.  Ideally there should be a call to one of these
5789    print_*_reason functions functions from handle_inferior_event each time
5790    stop_stepping is called.  */
5791 
5792 /* Print why the inferior has stopped.
5793    We are done with a step/next/si/ni command, print why the inferior has
5794    stopped.  For now print nothing.  Print a message only if not in the middle
5795    of doing a "step n" operation for n > 1.  */
5796 
5797 static void
print_end_stepping_range_reason(void)5798 print_end_stepping_range_reason (void)
5799 {
5800   if ((!inferior_thread ()->step_multi
5801        || !inferior_thread ()->control.stop_step)
5802       && ui_out_is_mi_like_p (current_uiout))
5803     ui_out_field_string (current_uiout, "reason",
5804                          async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5805 }
5806 
5807 /* The inferior was terminated by a signal, print why it stopped.  */
5808 
5809 static void
print_signal_exited_reason(enum gdb_signal siggnal)5810 print_signal_exited_reason (enum gdb_signal siggnal)
5811 {
5812   struct ui_out *uiout = current_uiout;
5813 
5814   annotate_signalled ();
5815   if (ui_out_is_mi_like_p (uiout))
5816     ui_out_field_string
5817       (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5818   ui_out_text (uiout, "\nProgram terminated with signal ");
5819   annotate_signal_name ();
5820   ui_out_field_string (uiout, "signal-name",
5821 		       gdb_signal_to_name (siggnal));
5822   annotate_signal_name_end ();
5823   ui_out_text (uiout, ", ");
5824   annotate_signal_string ();
5825   ui_out_field_string (uiout, "signal-meaning",
5826 		       gdb_signal_to_string (siggnal));
5827   annotate_signal_string_end ();
5828   ui_out_text (uiout, ".\n");
5829   ui_out_text (uiout, "The program no longer exists.\n");
5830 }
5831 
5832 /* The inferior program is finished, print why it stopped.  */
5833 
5834 static void
print_exited_reason(int exitstatus)5835 print_exited_reason (int exitstatus)
5836 {
5837   struct inferior *inf = current_inferior ();
5838   const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5839   struct ui_out *uiout = current_uiout;
5840 
5841   annotate_exited (exitstatus);
5842   if (exitstatus)
5843     {
5844       if (ui_out_is_mi_like_p (uiout))
5845 	ui_out_field_string (uiout, "reason",
5846 			     async_reason_lookup (EXEC_ASYNC_EXITED));
5847       ui_out_text (uiout, "[Inferior ");
5848       ui_out_text (uiout, plongest (inf->num));
5849       ui_out_text (uiout, " (");
5850       ui_out_text (uiout, pidstr);
5851       ui_out_text (uiout, ") exited with code ");
5852       ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5853       ui_out_text (uiout, "]\n");
5854     }
5855   else
5856     {
5857       if (ui_out_is_mi_like_p (uiout))
5858 	ui_out_field_string
5859 	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5860       ui_out_text (uiout, "[Inferior ");
5861       ui_out_text (uiout, plongest (inf->num));
5862       ui_out_text (uiout, " (");
5863       ui_out_text (uiout, pidstr);
5864       ui_out_text (uiout, ") exited normally]\n");
5865     }
5866   /* Support the --return-child-result option.  */
5867   return_child_result_value = exitstatus;
5868 }
5869 
5870 /* Signal received, print why the inferior has stopped.  The signal table
5871    tells us to print about it.  */
5872 
5873 static void
print_signal_received_reason(enum gdb_signal siggnal)5874 print_signal_received_reason (enum gdb_signal siggnal)
5875 {
5876   struct ui_out *uiout = current_uiout;
5877 
5878   annotate_signal ();
5879 
5880   if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5881     {
5882       struct thread_info *t = inferior_thread ();
5883 
5884       ui_out_text (uiout, "\n[");
5885       ui_out_field_string (uiout, "thread-name",
5886 			   target_pid_to_str (t->ptid));
5887       ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5888       ui_out_text (uiout, " stopped");
5889     }
5890   else
5891     {
5892       ui_out_text (uiout, "\nProgram received signal ");
5893       annotate_signal_name ();
5894       if (ui_out_is_mi_like_p (uiout))
5895 	ui_out_field_string
5896 	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5897       ui_out_field_string (uiout, "signal-name",
5898 			   gdb_signal_to_name (siggnal));
5899       annotate_signal_name_end ();
5900       ui_out_text (uiout, ", ");
5901       annotate_signal_string ();
5902       ui_out_field_string (uiout, "signal-meaning",
5903 			   gdb_signal_to_string (siggnal));
5904       annotate_signal_string_end ();
5905     }
5906   ui_out_text (uiout, ".\n");
5907 }
5908 
5909 /* Reverse execution: target ran out of history info, print why the inferior
5910    has stopped.  */
5911 
5912 static void
print_no_history_reason(void)5913 print_no_history_reason (void)
5914 {
5915   ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5916 }
5917 
5918 /* Here to return control to GDB when the inferior stops for real.
5919    Print appropriate messages, remove breakpoints, give terminal our modes.
5920 
5921    STOP_PRINT_FRAME nonzero means print the executing frame
5922    (pc, function, args, file, line number and line text).
5923    BREAKPOINTS_FAILED nonzero means stop was due to error
5924    attempting to insert breakpoints.  */
5925 
5926 void
normal_stop(void)5927 normal_stop (void)
5928 {
5929   struct target_waitstatus last;
5930   ptid_t last_ptid;
5931   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5932 
5933   get_last_target_status (&last_ptid, &last);
5934 
5935   /* If an exception is thrown from this point on, make sure to
5936      propagate GDB's knowledge of the executing state to the
5937      frontend/user running state.  A QUIT is an easy exception to see
5938      here, so do this before any filtered output.  */
5939   if (!non_stop)
5940     make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5941   else if (last.kind != TARGET_WAITKIND_SIGNALLED
5942 	   && last.kind != TARGET_WAITKIND_EXITED
5943 	   && last.kind != TARGET_WAITKIND_NO_RESUMED)
5944     make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5945 
5946   /* In non-stop mode, we don't want GDB to switch threads behind the
5947      user's back, to avoid races where the user is typing a command to
5948      apply to thread x, but GDB switches to thread y before the user
5949      finishes entering the command.  */
5950 
5951   /* As with the notification of thread events, we want to delay
5952      notifying the user that we've switched thread context until
5953      the inferior actually stops.
5954 
5955      There's no point in saying anything if the inferior has exited.
5956      Note that SIGNALLED here means "exited with a signal", not
5957      "received a signal".  */
5958   if (!non_stop
5959       && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5960       && target_has_execution
5961       && last.kind != TARGET_WAITKIND_SIGNALLED
5962       && last.kind != TARGET_WAITKIND_EXITED
5963       && last.kind != TARGET_WAITKIND_NO_RESUMED)
5964     {
5965       target_terminal_ours_for_output ();
5966       printf_filtered (_("[Switching to %s]\n"),
5967 		       target_pid_to_str (inferior_ptid));
5968       annotate_thread_changed ();
5969       previous_inferior_ptid = inferior_ptid;
5970     }
5971 
5972   if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5973     {
5974       gdb_assert (sync_execution || !target_can_async_p ());
5975 
5976       target_terminal_ours_for_output ();
5977       printf_filtered (_("No unwaited-for children left.\n"));
5978     }
5979 
5980   if (!breakpoints_always_inserted_mode () && target_has_execution)
5981     {
5982       if (remove_breakpoints ())
5983 	{
5984 	  target_terminal_ours_for_output ();
5985 	  printf_filtered (_("Cannot remove breakpoints because "
5986 			     "program is no longer writable.\nFurther "
5987 			     "execution is probably impossible.\n"));
5988 	}
5989     }
5990 
5991   /* If an auto-display called a function and that got a signal,
5992      delete that auto-display to avoid an infinite recursion.  */
5993 
5994   if (stopped_by_random_signal)
5995     disable_current_display ();
5996 
5997   /* Don't print a message if in the middle of doing a "step n"
5998      operation for n > 1 */
5999   if (target_has_execution
6000       && last.kind != TARGET_WAITKIND_SIGNALLED
6001       && last.kind != TARGET_WAITKIND_EXITED
6002       && inferior_thread ()->step_multi
6003       && inferior_thread ()->control.stop_step)
6004     goto done;
6005 
6006   target_terminal_ours ();
6007   async_enable_stdin ();
6008 
6009   /* Set the current source location.  This will also happen if we
6010      display the frame below, but the current SAL will be incorrect
6011      during a user hook-stop function.  */
6012   if (has_stack_frames () && !stop_stack_dummy)
6013     set_current_sal_from_frame (get_current_frame (), 1);
6014 
6015   /* Let the user/frontend see the threads as stopped.  */
6016   do_cleanups (old_chain);
6017 
6018   /* Look up the hook_stop and run it (CLI internally handles problem
6019      of stop_command's pre-hook not existing).  */
6020   if (stop_command)
6021     catch_errors (hook_stop_stub, stop_command,
6022 		  "Error while running hook_stop:\n", RETURN_MASK_ALL);
6023 
6024   if (!has_stack_frames ())
6025     goto done;
6026 
6027   if (last.kind == TARGET_WAITKIND_SIGNALLED
6028       || last.kind == TARGET_WAITKIND_EXITED)
6029     goto done;
6030 
6031   /* Select innermost stack frame - i.e., current frame is frame 0,
6032      and current location is based on that.
6033      Don't do this on return from a stack dummy routine,
6034      or if the program has exited.  */
6035 
6036   if (!stop_stack_dummy)
6037     {
6038       select_frame (get_current_frame ());
6039 
6040       /* Print current location without a level number, if
6041          we have changed functions or hit a breakpoint.
6042          Print source line if we have one.
6043          bpstat_print() contains the logic deciding in detail
6044          what to print, based on the event(s) that just occurred.  */
6045 
6046       /* If --batch-silent is enabled then there's no need to print the current
6047 	 source location, and to try risks causing an error message about
6048 	 missing source files.  */
6049       if (stop_print_frame && !batch_silent)
6050 	{
6051 	  int bpstat_ret;
6052 	  int source_flag;
6053 	  int do_frame_printing = 1;
6054 	  struct thread_info *tp = inferior_thread ();
6055 
6056 	  bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6057 	  switch (bpstat_ret)
6058 	    {
6059 	    case PRINT_UNKNOWN:
6060 	      /* FIXME: cagney/2002-12-01: Given that a frame ID does
6061 	         (or should) carry around the function and does (or
6062 	         should) use that when doing a frame comparison.  */
6063 	      if (tp->control.stop_step
6064 		  && frame_id_eq (tp->control.step_frame_id,
6065 				  get_frame_id (get_current_frame ()))
6066 		  && step_start_function == find_pc_function (stop_pc))
6067 		source_flag = SRC_LINE;		/* Finished step, just
6068 						   print source line.  */
6069 	      else
6070 		source_flag = SRC_AND_LOC;	/* Print location and
6071 						   source line.  */
6072 	      break;
6073 	    case PRINT_SRC_AND_LOC:
6074 	      source_flag = SRC_AND_LOC;	/* Print location and
6075 						   source line.  */
6076 	      break;
6077 	    case PRINT_SRC_ONLY:
6078 	      source_flag = SRC_LINE;
6079 	      break;
6080 	    case PRINT_NOTHING:
6081 	      source_flag = SRC_LINE;	/* something bogus */
6082 	      do_frame_printing = 0;
6083 	      break;
6084 	    default:
6085 	      internal_error (__FILE__, __LINE__, _("Unknown value."));
6086 	    }
6087 
6088 	  /* The behavior of this routine with respect to the source
6089 	     flag is:
6090 	     SRC_LINE: Print only source line
6091 	     LOCATION: Print only location
6092 	     SRC_AND_LOC: Print location and source line.  */
6093 	  if (do_frame_printing)
6094 	    print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6095 
6096 	  /* Display the auto-display expressions.  */
6097 	  do_displays ();
6098 	}
6099     }
6100 
6101   /* Save the function value return registers, if we care.
6102      We might be about to restore their previous contents.  */
6103   if (inferior_thread ()->control.proceed_to_finish
6104       && execution_direction != EXEC_REVERSE)
6105     {
6106       /* This should not be necessary.  */
6107       if (stop_registers)
6108 	regcache_xfree (stop_registers);
6109 
6110       /* NB: The copy goes through to the target picking up the value of
6111 	 all the registers.  */
6112       stop_registers = regcache_dup (get_current_regcache ());
6113     }
6114 
6115   if (stop_stack_dummy == STOP_STACK_DUMMY)
6116     {
6117       /* Pop the empty frame that contains the stack dummy.
6118 	 This also restores inferior state prior to the call
6119 	 (struct infcall_suspend_state).  */
6120       struct frame_info *frame = get_current_frame ();
6121 
6122       gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6123       frame_pop (frame);
6124       /* frame_pop() calls reinit_frame_cache as the last thing it
6125 	 does which means there's currently no selected frame.  We
6126 	 don't need to re-establish a selected frame if the dummy call
6127 	 returns normally, that will be done by
6128 	 restore_infcall_control_state.  However, we do have to handle
6129 	 the case where the dummy call is returning after being
6130 	 stopped (e.g. the dummy call previously hit a breakpoint).
6131 	 We can't know which case we have so just always re-establish
6132 	 a selected frame here.  */
6133       select_frame (get_current_frame ());
6134     }
6135 
6136 done:
6137   annotate_stopped ();
6138 
6139   /* Suppress the stop observer if we're in the middle of:
6140 
6141      - a step n (n > 1), as there still more steps to be done.
6142 
6143      - a "finish" command, as the observer will be called in
6144        finish_command_continuation, so it can include the inferior
6145        function's return value.
6146 
6147      - calling an inferior function, as we pretend we inferior didn't
6148        run at all.  The return value of the call is handled by the
6149        expression evaluator, through call_function_by_hand.  */
6150 
6151   if (!target_has_execution
6152       || last.kind == TARGET_WAITKIND_SIGNALLED
6153       || last.kind == TARGET_WAITKIND_EXITED
6154       || last.kind == TARGET_WAITKIND_NO_RESUMED
6155       || (!(inferior_thread ()->step_multi
6156 	    && inferior_thread ()->control.stop_step)
6157 	  && !(inferior_thread ()->control.stop_bpstat
6158 	       && inferior_thread ()->control.proceed_to_finish)
6159 	  && !inferior_thread ()->control.in_infcall))
6160     {
6161       if (!ptid_equal (inferior_ptid, null_ptid))
6162 	observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6163 				     stop_print_frame);
6164       else
6165 	observer_notify_normal_stop (NULL, stop_print_frame);
6166     }
6167 
6168   if (target_has_execution)
6169     {
6170       if (last.kind != TARGET_WAITKIND_SIGNALLED
6171 	  && last.kind != TARGET_WAITKIND_EXITED)
6172 	/* Delete the breakpoint we stopped at, if it wants to be deleted.
6173 	   Delete any breakpoint that is to be deleted at the next stop.  */
6174 	breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6175     }
6176 
6177   /* Try to get rid of automatically added inferiors that are no
6178      longer needed.  Keeping those around slows down things linearly.
6179      Note that this never removes the current inferior.  */
6180   prune_inferiors ();
6181 }
6182 
6183 static int
hook_stop_stub(void * cmd)6184 hook_stop_stub (void *cmd)
6185 {
6186   execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6187   return (0);
6188 }
6189 
6190 int
signal_stop_state(int signo)6191 signal_stop_state (int signo)
6192 {
6193   return signal_stop[signo];
6194 }
6195 
6196 int
signal_print_state(int signo)6197 signal_print_state (int signo)
6198 {
6199   return signal_print[signo];
6200 }
6201 
6202 int
signal_pass_state(int signo)6203 signal_pass_state (int signo)
6204 {
6205   return signal_program[signo];
6206 }
6207 
6208 static void
signal_cache_update(int signo)6209 signal_cache_update (int signo)
6210 {
6211   if (signo == -1)
6212     {
6213       for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6214 	signal_cache_update (signo);
6215 
6216       return;
6217     }
6218 
6219   signal_pass[signo] = (signal_stop[signo] == 0
6220 			&& signal_print[signo] == 0
6221 			&& signal_program[signo] == 1
6222 			&& signal_catch[signo] == 0);
6223 }
6224 
6225 int
signal_stop_update(int signo,int state)6226 signal_stop_update (int signo, int state)
6227 {
6228   int ret = signal_stop[signo];
6229 
6230   signal_stop[signo] = state;
6231   signal_cache_update (signo);
6232   return ret;
6233 }
6234 
6235 int
signal_print_update(int signo,int state)6236 signal_print_update (int signo, int state)
6237 {
6238   int ret = signal_print[signo];
6239 
6240   signal_print[signo] = state;
6241   signal_cache_update (signo);
6242   return ret;
6243 }
6244 
6245 int
signal_pass_update(int signo,int state)6246 signal_pass_update (int signo, int state)
6247 {
6248   int ret = signal_program[signo];
6249 
6250   signal_program[signo] = state;
6251   signal_cache_update (signo);
6252   return ret;
6253 }
6254 
6255 /* Update the global 'signal_catch' from INFO and notify the
6256    target.  */
6257 
6258 void
signal_catch_update(const unsigned int * info)6259 signal_catch_update (const unsigned int *info)
6260 {
6261   int i;
6262 
6263   for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6264     signal_catch[i] = info[i] > 0;
6265   signal_cache_update (-1);
6266   target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6267 }
6268 
6269 static void
sig_print_header(void)6270 sig_print_header (void)
6271 {
6272   printf_filtered (_("Signal        Stop\tPrint\tPass "
6273 		     "to program\tDescription\n"));
6274 }
6275 
6276 static void
sig_print_info(enum gdb_signal oursig)6277 sig_print_info (enum gdb_signal oursig)
6278 {
6279   const char *name = gdb_signal_to_name (oursig);
6280   int name_padding = 13 - strlen (name);
6281 
6282   if (name_padding <= 0)
6283     name_padding = 0;
6284 
6285   printf_filtered ("%s", name);
6286   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
6287   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6288   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6289   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6290   printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6291 }
6292 
6293 /* Specify how various signals in the inferior should be handled.  */
6294 
6295 static void
handle_command(char * args,int from_tty)6296 handle_command (char *args, int from_tty)
6297 {
6298   char **argv;
6299   int digits, wordlen;
6300   int sigfirst, signum, siglast;
6301   enum gdb_signal oursig;
6302   int allsigs;
6303   int nsigs;
6304   unsigned char *sigs;
6305   struct cleanup *old_chain;
6306 
6307   if (args == NULL)
6308     {
6309       error_no_arg (_("signal to handle"));
6310     }
6311 
6312   /* Allocate and zero an array of flags for which signals to handle.  */
6313 
6314   nsigs = (int) GDB_SIGNAL_LAST;
6315   sigs = (unsigned char *) alloca (nsigs);
6316   memset (sigs, 0, nsigs);
6317 
6318   /* Break the command line up into args.  */
6319 
6320   argv = gdb_buildargv (args);
6321   old_chain = make_cleanup_freeargv (argv);
6322 
6323   /* Walk through the args, looking for signal oursigs, signal names, and
6324      actions.  Signal numbers and signal names may be interspersed with
6325      actions, with the actions being performed for all signals cumulatively
6326      specified.  Signal ranges can be specified as <LOW>-<HIGH>.  */
6327 
6328   while (*argv != NULL)
6329     {
6330       wordlen = strlen (*argv);
6331       for (digits = 0; isdigit ((*argv)[digits]); digits++)
6332 	{;
6333 	}
6334       allsigs = 0;
6335       sigfirst = siglast = -1;
6336 
6337       if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6338 	{
6339 	  /* Apply action to all signals except those used by the
6340 	     debugger.  Silently skip those.  */
6341 	  allsigs = 1;
6342 	  sigfirst = 0;
6343 	  siglast = nsigs - 1;
6344 	}
6345       else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6346 	{
6347 	  SET_SIGS (nsigs, sigs, signal_stop);
6348 	  SET_SIGS (nsigs, sigs, signal_print);
6349 	}
6350       else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6351 	{
6352 	  UNSET_SIGS (nsigs, sigs, signal_program);
6353 	}
6354       else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6355 	{
6356 	  SET_SIGS (nsigs, sigs, signal_print);
6357 	}
6358       else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6359 	{
6360 	  SET_SIGS (nsigs, sigs, signal_program);
6361 	}
6362       else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6363 	{
6364 	  UNSET_SIGS (nsigs, sigs, signal_stop);
6365 	}
6366       else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6367 	{
6368 	  SET_SIGS (nsigs, sigs, signal_program);
6369 	}
6370       else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6371 	{
6372 	  UNSET_SIGS (nsigs, sigs, signal_print);
6373 	  UNSET_SIGS (nsigs, sigs, signal_stop);
6374 	}
6375       else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6376 	{
6377 	  UNSET_SIGS (nsigs, sigs, signal_program);
6378 	}
6379       else if (digits > 0)
6380 	{
6381 	  /* It is numeric.  The numeric signal refers to our own
6382 	     internal signal numbering from target.h, not to host/target
6383 	     signal  number.  This is a feature; users really should be
6384 	     using symbolic names anyway, and the common ones like
6385 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
6386 
6387 	  sigfirst = siglast = (int)
6388 	    gdb_signal_from_command (atoi (*argv));
6389 	  if ((*argv)[digits] == '-')
6390 	    {
6391 	      siglast = (int)
6392 		gdb_signal_from_command (atoi ((*argv) + digits + 1));
6393 	    }
6394 	  if (sigfirst > siglast)
6395 	    {
6396 	      /* Bet he didn't figure we'd think of this case...  */
6397 	      signum = sigfirst;
6398 	      sigfirst = siglast;
6399 	      siglast = signum;
6400 	    }
6401 	}
6402       else
6403 	{
6404 	  oursig = gdb_signal_from_name (*argv);
6405 	  if (oursig != GDB_SIGNAL_UNKNOWN)
6406 	    {
6407 	      sigfirst = siglast = (int) oursig;
6408 	    }
6409 	  else
6410 	    {
6411 	      /* Not a number and not a recognized flag word => complain.  */
6412 	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6413 	    }
6414 	}
6415 
6416       /* If any signal numbers or symbol names were found, set flags for
6417          which signals to apply actions to.  */
6418 
6419       for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6420 	{
6421 	  switch ((enum gdb_signal) signum)
6422 	    {
6423 	    case GDB_SIGNAL_TRAP:
6424 	    case GDB_SIGNAL_INT:
6425 	      if (!allsigs && !sigs[signum])
6426 		{
6427 		  if (query (_("%s is used by the debugger.\n\
6428 Are you sure you want to change it? "),
6429 			     gdb_signal_to_name ((enum gdb_signal) signum)))
6430 		    {
6431 		      sigs[signum] = 1;
6432 		    }
6433 		  else
6434 		    {
6435 		      printf_unfiltered (_("Not confirmed, unchanged.\n"));
6436 		      gdb_flush (gdb_stdout);
6437 		    }
6438 		}
6439 	      break;
6440 	    case GDB_SIGNAL_0:
6441 	    case GDB_SIGNAL_DEFAULT:
6442 	    case GDB_SIGNAL_UNKNOWN:
6443 	      /* Make sure that "all" doesn't print these.  */
6444 	      break;
6445 	    default:
6446 	      sigs[signum] = 1;
6447 	      break;
6448 	    }
6449 	}
6450 
6451       argv++;
6452     }
6453 
6454   for (signum = 0; signum < nsigs; signum++)
6455     if (sigs[signum])
6456       {
6457 	signal_cache_update (-1);
6458 	target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6459 	target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6460 
6461 	if (from_tty)
6462 	  {
6463 	    /* Show the results.  */
6464 	    sig_print_header ();
6465 	    for (; signum < nsigs; signum++)
6466 	      if (sigs[signum])
6467 		sig_print_info (signum);
6468 	  }
6469 
6470 	break;
6471       }
6472 
6473   do_cleanups (old_chain);
6474 }
6475 
6476 /* Complete the "handle" command.  */
6477 
VEC(char_ptr)6478 static VEC (char_ptr) *
6479 handle_completer (struct cmd_list_element *ignore,
6480 		  char *text, char *word)
6481 {
6482   VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6483   static const char * const keywords[] =
6484     {
6485       "all",
6486       "stop",
6487       "ignore",
6488       "print",
6489       "pass",
6490       "nostop",
6491       "noignore",
6492       "noprint",
6493       "nopass",
6494       NULL,
6495     };
6496 
6497   vec_signals = signal_completer (ignore, text, word);
6498   vec_keywords = complete_on_enum (keywords, word, word);
6499 
6500   return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6501   VEC_free (char_ptr, vec_signals);
6502   VEC_free (char_ptr, vec_keywords);
6503   return return_val;
6504 }
6505 
6506 static void
xdb_handle_command(char * args,int from_tty)6507 xdb_handle_command (char *args, int from_tty)
6508 {
6509   char **argv;
6510   struct cleanup *old_chain;
6511 
6512   if (args == NULL)
6513     error_no_arg (_("xdb command"));
6514 
6515   /* Break the command line up into args.  */
6516 
6517   argv = gdb_buildargv (args);
6518   old_chain = make_cleanup_freeargv (argv);
6519   if (argv[1] != (char *) NULL)
6520     {
6521       char *argBuf;
6522       int bufLen;
6523 
6524       bufLen = strlen (argv[0]) + 20;
6525       argBuf = (char *) xmalloc (bufLen);
6526       if (argBuf)
6527 	{
6528 	  int validFlag = 1;
6529 	  enum gdb_signal oursig;
6530 
6531 	  oursig = gdb_signal_from_name (argv[0]);
6532 	  memset (argBuf, 0, bufLen);
6533 	  if (strcmp (argv[1], "Q") == 0)
6534 	    sprintf (argBuf, "%s %s", argv[0], "noprint");
6535 	  else
6536 	    {
6537 	      if (strcmp (argv[1], "s") == 0)
6538 		{
6539 		  if (!signal_stop[oursig])
6540 		    sprintf (argBuf, "%s %s", argv[0], "stop");
6541 		  else
6542 		    sprintf (argBuf, "%s %s", argv[0], "nostop");
6543 		}
6544 	      else if (strcmp (argv[1], "i") == 0)
6545 		{
6546 		  if (!signal_program[oursig])
6547 		    sprintf (argBuf, "%s %s", argv[0], "pass");
6548 		  else
6549 		    sprintf (argBuf, "%s %s", argv[0], "nopass");
6550 		}
6551 	      else if (strcmp (argv[1], "r") == 0)
6552 		{
6553 		  if (!signal_print[oursig])
6554 		    sprintf (argBuf, "%s %s", argv[0], "print");
6555 		  else
6556 		    sprintf (argBuf, "%s %s", argv[0], "noprint");
6557 		}
6558 	      else
6559 		validFlag = 0;
6560 	    }
6561 	  if (validFlag)
6562 	    handle_command (argBuf, from_tty);
6563 	  else
6564 	    printf_filtered (_("Invalid signal handling flag.\n"));
6565 	  if (argBuf)
6566 	    xfree (argBuf);
6567 	}
6568     }
6569   do_cleanups (old_chain);
6570 }
6571 
6572 enum gdb_signal
gdb_signal_from_command(int num)6573 gdb_signal_from_command (int num)
6574 {
6575   if (num >= 1 && num <= 15)
6576     return (enum gdb_signal) num;
6577   error (_("Only signals 1-15 are valid as numeric signals.\n\
6578 Use \"info signals\" for a list of symbolic signals."));
6579 }
6580 
6581 /* Print current contents of the tables set by the handle command.
6582    It is possible we should just be printing signals actually used
6583    by the current target (but for things to work right when switching
6584    targets, all signals should be in the signal tables).  */
6585 
6586 static void
signals_info(char * signum_exp,int from_tty)6587 signals_info (char *signum_exp, int from_tty)
6588 {
6589   enum gdb_signal oursig;
6590 
6591   sig_print_header ();
6592 
6593   if (signum_exp)
6594     {
6595       /* First see if this is a symbol name.  */
6596       oursig = gdb_signal_from_name (signum_exp);
6597       if (oursig == GDB_SIGNAL_UNKNOWN)
6598 	{
6599 	  /* No, try numeric.  */
6600 	  oursig =
6601 	    gdb_signal_from_command (parse_and_eval_long (signum_exp));
6602 	}
6603       sig_print_info (oursig);
6604       return;
6605     }
6606 
6607   printf_filtered ("\n");
6608   /* These ugly casts brought to you by the native VAX compiler.  */
6609   for (oursig = GDB_SIGNAL_FIRST;
6610        (int) oursig < (int) GDB_SIGNAL_LAST;
6611        oursig = (enum gdb_signal) ((int) oursig + 1))
6612     {
6613       QUIT;
6614 
6615       if (oursig != GDB_SIGNAL_UNKNOWN
6616 	  && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6617 	sig_print_info (oursig);
6618     }
6619 
6620   printf_filtered (_("\nUse the \"handle\" command "
6621 		     "to change these tables.\n"));
6622 }
6623 
6624 /* Check if it makes sense to read $_siginfo from the current thread
6625    at this point.  If not, throw an error.  */
6626 
6627 static void
validate_siginfo_access(void)6628 validate_siginfo_access (void)
6629 {
6630   /* No current inferior, no siginfo.  */
6631   if (ptid_equal (inferior_ptid, null_ptid))
6632     error (_("No thread selected."));
6633 
6634   /* Don't try to read from a dead thread.  */
6635   if (is_exited (inferior_ptid))
6636     error (_("The current thread has terminated"));
6637 
6638   /* ... or from a spinning thread.  */
6639   if (is_running (inferior_ptid))
6640     error (_("Selected thread is running."));
6641 }
6642 
6643 /* The $_siginfo convenience variable is a bit special.  We don't know
6644    for sure the type of the value until we actually have a chance to
6645    fetch the data.  The type can change depending on gdbarch, so it is
6646    also dependent on which thread you have selected.
6647 
6648      1. making $_siginfo be an internalvar that creates a new value on
6649      access.
6650 
6651      2. making the value of $_siginfo be an lval_computed value.  */
6652 
6653 /* This function implements the lval_computed support for reading a
6654    $_siginfo value.  */
6655 
6656 static void
siginfo_value_read(struct value * v)6657 siginfo_value_read (struct value *v)
6658 {
6659   LONGEST transferred;
6660 
6661   validate_siginfo_access ();
6662 
6663   transferred =
6664     target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6665 		 NULL,
6666 		 value_contents_all_raw (v),
6667 		 value_offset (v),
6668 		 TYPE_LENGTH (value_type (v)));
6669 
6670   if (transferred != TYPE_LENGTH (value_type (v)))
6671     error (_("Unable to read siginfo"));
6672 }
6673 
6674 /* This function implements the lval_computed support for writing a
6675    $_siginfo value.  */
6676 
6677 static void
siginfo_value_write(struct value * v,struct value * fromval)6678 siginfo_value_write (struct value *v, struct value *fromval)
6679 {
6680   LONGEST transferred;
6681 
6682   validate_siginfo_access ();
6683 
6684   transferred = target_write (&current_target,
6685 			      TARGET_OBJECT_SIGNAL_INFO,
6686 			      NULL,
6687 			      value_contents_all_raw (fromval),
6688 			      value_offset (v),
6689 			      TYPE_LENGTH (value_type (fromval)));
6690 
6691   if (transferred != TYPE_LENGTH (value_type (fromval)))
6692     error (_("Unable to write siginfo"));
6693 }
6694 
6695 static const struct lval_funcs siginfo_value_funcs =
6696   {
6697     siginfo_value_read,
6698     siginfo_value_write
6699   };
6700 
6701 /* Return a new value with the correct type for the siginfo object of
6702    the current thread using architecture GDBARCH.  Return a void value
6703    if there's no object available.  */
6704 
6705 static struct value *
siginfo_make_value(struct gdbarch * gdbarch,struct internalvar * var,void * ignore)6706 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6707 		    void *ignore)
6708 {
6709   if (target_has_stack
6710       && !ptid_equal (inferior_ptid, null_ptid)
6711       && gdbarch_get_siginfo_type_p (gdbarch))
6712     {
6713       struct type *type = gdbarch_get_siginfo_type (gdbarch);
6714 
6715       return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6716     }
6717 
6718   return allocate_value (builtin_type (gdbarch)->builtin_void);
6719 }
6720 
6721 
6722 /* infcall_suspend_state contains state about the program itself like its
6723    registers and any signal it received when it last stopped.
6724    This state must be restored regardless of how the inferior function call
6725    ends (either successfully, or after it hits a breakpoint or signal)
6726    if the program is to properly continue where it left off.  */
6727 
6728 struct infcall_suspend_state
6729 {
6730   struct thread_suspend_state thread_suspend;
6731 #if 0 /* Currently unused and empty structures are not valid C.  */
6732   struct inferior_suspend_state inferior_suspend;
6733 #endif
6734 
6735   /* Other fields:  */
6736   CORE_ADDR stop_pc;
6737   struct regcache *registers;
6738 
6739   /* Format of SIGINFO_DATA or NULL if it is not present.  */
6740   struct gdbarch *siginfo_gdbarch;
6741 
6742   /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6743      TYPE_LENGTH (gdbarch_get_siginfo_type ()).  For different gdbarch the
6744      content would be invalid.  */
6745   gdb_byte *siginfo_data;
6746 };
6747 
6748 struct infcall_suspend_state *
save_infcall_suspend_state(void)6749 save_infcall_suspend_state (void)
6750 {
6751   struct infcall_suspend_state *inf_state;
6752   struct thread_info *tp = inferior_thread ();
6753 #if 0
6754   struct inferior *inf = current_inferior ();
6755 #endif
6756   struct regcache *regcache = get_current_regcache ();
6757   struct gdbarch *gdbarch = get_regcache_arch (regcache);
6758   gdb_byte *siginfo_data = NULL;
6759 
6760   if (gdbarch_get_siginfo_type_p (gdbarch))
6761     {
6762       struct type *type = gdbarch_get_siginfo_type (gdbarch);
6763       size_t len = TYPE_LENGTH (type);
6764       struct cleanup *back_to;
6765 
6766       siginfo_data = xmalloc (len);
6767       back_to = make_cleanup (xfree, siginfo_data);
6768 
6769       if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6770 		       siginfo_data, 0, len) == len)
6771 	discard_cleanups (back_to);
6772       else
6773 	{
6774 	  /* Errors ignored.  */
6775 	  do_cleanups (back_to);
6776 	  siginfo_data = NULL;
6777 	}
6778     }
6779 
6780   inf_state = XZALLOC (struct infcall_suspend_state);
6781 
6782   if (siginfo_data)
6783     {
6784       inf_state->siginfo_gdbarch = gdbarch;
6785       inf_state->siginfo_data = siginfo_data;
6786     }
6787 
6788   inf_state->thread_suspend = tp->suspend;
6789 #if 0 /* Currently unused and empty structures are not valid C.  */
6790   inf_state->inferior_suspend = inf->suspend;
6791 #endif
6792 
6793   /* run_inferior_call will not use the signal due to its `proceed' call with
6794      GDB_SIGNAL_0 anyway.  */
6795   tp->suspend.stop_signal = GDB_SIGNAL_0;
6796 
6797   inf_state->stop_pc = stop_pc;
6798 
6799   inf_state->registers = regcache_dup (regcache);
6800 
6801   return inf_state;
6802 }
6803 
6804 /* Restore inferior session state to INF_STATE.  */
6805 
6806 void
restore_infcall_suspend_state(struct infcall_suspend_state * inf_state)6807 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6808 {
6809   struct thread_info *tp = inferior_thread ();
6810 #if 0
6811   struct inferior *inf = current_inferior ();
6812 #endif
6813   struct regcache *regcache = get_current_regcache ();
6814   struct gdbarch *gdbarch = get_regcache_arch (regcache);
6815 
6816   tp->suspend = inf_state->thread_suspend;
6817 #if 0 /* Currently unused and empty structures are not valid C.  */
6818   inf->suspend = inf_state->inferior_suspend;
6819 #endif
6820 
6821   stop_pc = inf_state->stop_pc;
6822 
6823   if (inf_state->siginfo_gdbarch == gdbarch)
6824     {
6825       struct type *type = gdbarch_get_siginfo_type (gdbarch);
6826 
6827       /* Errors ignored.  */
6828       target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6829 		    inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6830     }
6831 
6832   /* The inferior can be gone if the user types "print exit(0)"
6833      (and perhaps other times).  */
6834   if (target_has_execution)
6835     /* NB: The register write goes through to the target.  */
6836     regcache_cpy (regcache, inf_state->registers);
6837 
6838   discard_infcall_suspend_state (inf_state);
6839 }
6840 
6841 static void
do_restore_infcall_suspend_state_cleanup(void * state)6842 do_restore_infcall_suspend_state_cleanup (void *state)
6843 {
6844   restore_infcall_suspend_state (state);
6845 }
6846 
6847 struct cleanup *
make_cleanup_restore_infcall_suspend_state(struct infcall_suspend_state * inf_state)6848 make_cleanup_restore_infcall_suspend_state
6849   (struct infcall_suspend_state *inf_state)
6850 {
6851   return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6852 }
6853 
6854 void
discard_infcall_suspend_state(struct infcall_suspend_state * inf_state)6855 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6856 {
6857   regcache_xfree (inf_state->registers);
6858   xfree (inf_state->siginfo_data);
6859   xfree (inf_state);
6860 }
6861 
6862 struct regcache *
get_infcall_suspend_state_regcache(struct infcall_suspend_state * inf_state)6863 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6864 {
6865   return inf_state->registers;
6866 }
6867 
6868 /* infcall_control_state contains state regarding gdb's control of the
6869    inferior itself like stepping control.  It also contains session state like
6870    the user's currently selected frame.  */
6871 
6872 struct infcall_control_state
6873 {
6874   struct thread_control_state thread_control;
6875   struct inferior_control_state inferior_control;
6876 
6877   /* Other fields:  */
6878   enum stop_stack_kind stop_stack_dummy;
6879   int stopped_by_random_signal;
6880   int stop_after_trap;
6881 
6882   /* ID if the selected frame when the inferior function call was made.  */
6883   struct frame_id selected_frame_id;
6884 };
6885 
6886 /* Save all of the information associated with the inferior<==>gdb
6887    connection.  */
6888 
6889 struct infcall_control_state *
save_infcall_control_state(void)6890 save_infcall_control_state (void)
6891 {
6892   struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6893   struct thread_info *tp = inferior_thread ();
6894   struct inferior *inf = current_inferior ();
6895 
6896   inf_status->thread_control = tp->control;
6897   inf_status->inferior_control = inf->control;
6898 
6899   tp->control.step_resume_breakpoint = NULL;
6900   tp->control.exception_resume_breakpoint = NULL;
6901 
6902   /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6903      chain.  If caller's caller is walking the chain, they'll be happier if we
6904      hand them back the original chain when restore_infcall_control_state is
6905      called.  */
6906   tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6907 
6908   /* Other fields:  */
6909   inf_status->stop_stack_dummy = stop_stack_dummy;
6910   inf_status->stopped_by_random_signal = stopped_by_random_signal;
6911   inf_status->stop_after_trap = stop_after_trap;
6912 
6913   inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6914 
6915   return inf_status;
6916 }
6917 
6918 static int
restore_selected_frame(void * args)6919 restore_selected_frame (void *args)
6920 {
6921   struct frame_id *fid = (struct frame_id *) args;
6922   struct frame_info *frame;
6923 
6924   frame = frame_find_by_id (*fid);
6925 
6926   /* If inf_status->selected_frame_id is NULL, there was no previously
6927      selected frame.  */
6928   if (frame == NULL)
6929     {
6930       warning (_("Unable to restore previously selected frame."));
6931       return 0;
6932     }
6933 
6934   select_frame (frame);
6935 
6936   return (1);
6937 }
6938 
6939 /* Restore inferior session state to INF_STATUS.  */
6940 
6941 void
restore_infcall_control_state(struct infcall_control_state * inf_status)6942 restore_infcall_control_state (struct infcall_control_state *inf_status)
6943 {
6944   struct thread_info *tp = inferior_thread ();
6945   struct inferior *inf = current_inferior ();
6946 
6947   if (tp->control.step_resume_breakpoint)
6948     tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6949 
6950   if (tp->control.exception_resume_breakpoint)
6951     tp->control.exception_resume_breakpoint->disposition
6952       = disp_del_at_next_stop;
6953 
6954   /* Handle the bpstat_copy of the chain.  */
6955   bpstat_clear (&tp->control.stop_bpstat);
6956 
6957   tp->control = inf_status->thread_control;
6958   inf->control = inf_status->inferior_control;
6959 
6960   /* Other fields:  */
6961   stop_stack_dummy = inf_status->stop_stack_dummy;
6962   stopped_by_random_signal = inf_status->stopped_by_random_signal;
6963   stop_after_trap = inf_status->stop_after_trap;
6964 
6965   if (target_has_stack)
6966     {
6967       /* The point of catch_errors is that if the stack is clobbered,
6968          walking the stack might encounter a garbage pointer and
6969          error() trying to dereference it.  */
6970       if (catch_errors
6971 	  (restore_selected_frame, &inf_status->selected_frame_id,
6972 	   "Unable to restore previously selected frame:\n",
6973 	   RETURN_MASK_ERROR) == 0)
6974 	/* Error in restoring the selected frame.  Select the innermost
6975 	   frame.  */
6976 	select_frame (get_current_frame ());
6977     }
6978 
6979   xfree (inf_status);
6980 }
6981 
6982 static void
do_restore_infcall_control_state_cleanup(void * sts)6983 do_restore_infcall_control_state_cleanup (void *sts)
6984 {
6985   restore_infcall_control_state (sts);
6986 }
6987 
6988 struct cleanup *
make_cleanup_restore_infcall_control_state(struct infcall_control_state * inf_status)6989 make_cleanup_restore_infcall_control_state
6990   (struct infcall_control_state *inf_status)
6991 {
6992   return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6993 }
6994 
6995 void
discard_infcall_control_state(struct infcall_control_state * inf_status)6996 discard_infcall_control_state (struct infcall_control_state *inf_status)
6997 {
6998   if (inf_status->thread_control.step_resume_breakpoint)
6999     inf_status->thread_control.step_resume_breakpoint->disposition
7000       = disp_del_at_next_stop;
7001 
7002   if (inf_status->thread_control.exception_resume_breakpoint)
7003     inf_status->thread_control.exception_resume_breakpoint->disposition
7004       = disp_del_at_next_stop;
7005 
7006   /* See save_infcall_control_state for info on stop_bpstat.  */
7007   bpstat_clear (&inf_status->thread_control.stop_bpstat);
7008 
7009   xfree (inf_status);
7010 }
7011 
7012 int
ptid_match(ptid_t ptid,ptid_t filter)7013 ptid_match (ptid_t ptid, ptid_t filter)
7014 {
7015   if (ptid_equal (filter, minus_one_ptid))
7016     return 1;
7017   if (ptid_is_pid (filter)
7018       && ptid_get_pid (ptid) == ptid_get_pid (filter))
7019     return 1;
7020   else if (ptid_equal (ptid, filter))
7021     return 1;
7022 
7023   return 0;
7024 }
7025 
7026 /* restore_inferior_ptid() will be used by the cleanup machinery
7027    to restore the inferior_ptid value saved in a call to
7028    save_inferior_ptid().  */
7029 
7030 static void
restore_inferior_ptid(void * arg)7031 restore_inferior_ptid (void *arg)
7032 {
7033   ptid_t *saved_ptid_ptr = arg;
7034 
7035   inferior_ptid = *saved_ptid_ptr;
7036   xfree (arg);
7037 }
7038 
7039 /* Save the value of inferior_ptid so that it may be restored by a
7040    later call to do_cleanups().  Returns the struct cleanup pointer
7041    needed for later doing the cleanup.  */
7042 
7043 struct cleanup *
save_inferior_ptid(void)7044 save_inferior_ptid (void)
7045 {
7046   ptid_t *saved_ptid_ptr;
7047 
7048   saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7049   *saved_ptid_ptr = inferior_ptid;
7050   return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7051 }
7052 
7053 
7054 /* User interface for reverse debugging:
7055    Set exec-direction / show exec-direction commands
7056    (returns error unless target implements to_set_exec_direction method).  */
7057 
7058 int execution_direction = EXEC_FORWARD;
7059 static const char exec_forward[] = "forward";
7060 static const char exec_reverse[] = "reverse";
7061 static const char *exec_direction = exec_forward;
7062 static const char *const exec_direction_names[] = {
7063   exec_forward,
7064   exec_reverse,
7065   NULL
7066 };
7067 
7068 static void
set_exec_direction_func(char * args,int from_tty,struct cmd_list_element * cmd)7069 set_exec_direction_func (char *args, int from_tty,
7070 			 struct cmd_list_element *cmd)
7071 {
7072   if (target_can_execute_reverse)
7073     {
7074       if (!strcmp (exec_direction, exec_forward))
7075 	execution_direction = EXEC_FORWARD;
7076       else if (!strcmp (exec_direction, exec_reverse))
7077 	execution_direction = EXEC_REVERSE;
7078     }
7079   else
7080     {
7081       exec_direction = exec_forward;
7082       error (_("Target does not support this operation."));
7083     }
7084 }
7085 
7086 static void
show_exec_direction_func(struct ui_file * out,int from_tty,struct cmd_list_element * cmd,const char * value)7087 show_exec_direction_func (struct ui_file *out, int from_tty,
7088 			  struct cmd_list_element *cmd, const char *value)
7089 {
7090   switch (execution_direction) {
7091   case EXEC_FORWARD:
7092     fprintf_filtered (out, _("Forward.\n"));
7093     break;
7094   case EXEC_REVERSE:
7095     fprintf_filtered (out, _("Reverse.\n"));
7096     break;
7097   default:
7098     internal_error (__FILE__, __LINE__,
7099 		    _("bogus execution_direction value: %d"),
7100 		    (int) execution_direction);
7101   }
7102 }
7103 
7104 /* User interface for non-stop mode.  */
7105 
7106 int non_stop = 0;
7107 
7108 static void
set_non_stop(char * args,int from_tty,struct cmd_list_element * c)7109 set_non_stop (char *args, int from_tty,
7110 	      struct cmd_list_element *c)
7111 {
7112   if (target_has_execution)
7113     {
7114       non_stop_1 = non_stop;
7115       error (_("Cannot change this setting while the inferior is running."));
7116     }
7117 
7118   non_stop = non_stop_1;
7119 }
7120 
7121 static void
show_non_stop(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)7122 show_non_stop (struct ui_file *file, int from_tty,
7123 	       struct cmd_list_element *c, const char *value)
7124 {
7125   fprintf_filtered (file,
7126 		    _("Controlling the inferior in non-stop mode is %s.\n"),
7127 		    value);
7128 }
7129 
7130 static void
show_schedule_multiple(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)7131 show_schedule_multiple (struct ui_file *file, int from_tty,
7132 			struct cmd_list_element *c, const char *value)
7133 {
7134   fprintf_filtered (file, _("Resuming the execution of threads "
7135 			    "of all processes is %s.\n"), value);
7136 }
7137 
7138 /* Implementation of `siginfo' variable.  */
7139 
7140 static const struct internalvar_funcs siginfo_funcs =
7141 {
7142   siginfo_make_value,
7143   NULL,
7144   NULL
7145 };
7146 
7147 void
_initialize_infrun(void)7148 _initialize_infrun (void)
7149 {
7150   int i;
7151   int numsigs;
7152   struct cmd_list_element *c;
7153 
7154   add_info ("signals", signals_info, _("\
7155 What debugger does when program gets various signals.\n\
7156 Specify a signal as argument to print info on that signal only."));
7157   add_info_alias ("handle", "signals", 0);
7158 
7159   c = add_com ("handle", class_run, handle_command, _("\
7160 Specify how to handle signals.\n\
7161 Usage: handle SIGNAL [ACTIONS]\n\
7162 Args are signals and actions to apply to those signals.\n\
7163 If no actions are specified, the current settings for the specified signals\n\
7164 will be displayed instead.\n\
7165 \n\
7166 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7167 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7168 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7169 The special arg \"all\" is recognized to mean all signals except those\n\
7170 used by the debugger, typically SIGTRAP and SIGINT.\n\
7171 \n\
7172 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7173 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7174 Stop means reenter debugger if this signal happens (implies print).\n\
7175 Print means print a message if this signal happens.\n\
7176 Pass means let program see this signal; otherwise program doesn't know.\n\
7177 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7178 Pass and Stop may be combined.\n\
7179 \n\
7180 Multiple signals may be specified.  Signal numbers and signal names\n\
7181 may be interspersed with actions, with the actions being performed for\n\
7182 all signals cumulatively specified."));
7183   set_cmd_completer (c, handle_completer);
7184 
7185   if (xdb_commands)
7186     {
7187       add_com ("lz", class_info, signals_info, _("\
7188 What debugger does when program gets various signals.\n\
7189 Specify a signal as argument to print info on that signal only."));
7190       add_com ("z", class_run, xdb_handle_command, _("\
7191 Specify how to handle a signal.\n\
7192 Args are signals and actions to apply to those signals.\n\
7193 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7194 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7195 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7196 The special arg \"all\" is recognized to mean all signals except those\n\
7197 used by the debugger, typically SIGTRAP and SIGINT.\n\
7198 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7199 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7200 nopass), \"Q\" (noprint)\n\
7201 Stop means reenter debugger if this signal happens (implies print).\n\
7202 Print means print a message if this signal happens.\n\
7203 Pass means let program see this signal; otherwise program doesn't know.\n\
7204 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7205 Pass and Stop may be combined."));
7206     }
7207 
7208   if (!dbx_commands)
7209     stop_command = add_cmd ("stop", class_obscure,
7210 			    not_just_help_class_command, _("\
7211 There is no `stop' command, but you can set a hook on `stop'.\n\
7212 This allows you to set a list of commands to be run each time execution\n\
7213 of the program stops."), &cmdlist);
7214 
7215   add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7216 Set inferior debugging."), _("\
7217 Show inferior debugging."), _("\
7218 When non-zero, inferior specific debugging is enabled."),
7219 			     NULL,
7220 			     show_debug_infrun,
7221 			     &setdebuglist, &showdebuglist);
7222 
7223   add_setshow_boolean_cmd ("displaced", class_maintenance,
7224 			   &debug_displaced, _("\
7225 Set displaced stepping debugging."), _("\
7226 Show displaced stepping debugging."), _("\
7227 When non-zero, displaced stepping specific debugging is enabled."),
7228 			    NULL,
7229 			    show_debug_displaced,
7230 			    &setdebuglist, &showdebuglist);
7231 
7232   add_setshow_boolean_cmd ("non-stop", no_class,
7233 			   &non_stop_1, _("\
7234 Set whether gdb controls the inferior in non-stop mode."), _("\
7235 Show whether gdb controls the inferior in non-stop mode."), _("\
7236 When debugging a multi-threaded program and this setting is\n\
7237 off (the default, also called all-stop mode), when one thread stops\n\
7238 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7239 all other threads in the program while you interact with the thread of\n\
7240 interest.  When you continue or step a thread, you can allow the other\n\
7241 threads to run, or have them remain stopped, but while you inspect any\n\
7242 thread's state, all threads stop.\n\
7243 \n\
7244 In non-stop mode, when one thread stops, other threads can continue\n\
7245 to run freely.  You'll be able to step each thread independently,\n\
7246 leave it stopped or free to run as needed."),
7247 			   set_non_stop,
7248 			   show_non_stop,
7249 			   &setlist,
7250 			   &showlist);
7251 
7252   numsigs = (int) GDB_SIGNAL_LAST;
7253   signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7254   signal_print = (unsigned char *)
7255     xmalloc (sizeof (signal_print[0]) * numsigs);
7256   signal_program = (unsigned char *)
7257     xmalloc (sizeof (signal_program[0]) * numsigs);
7258   signal_catch = (unsigned char *)
7259     xmalloc (sizeof (signal_catch[0]) * numsigs);
7260   signal_pass = (unsigned char *)
7261     xmalloc (sizeof (signal_program[0]) * numsigs);
7262   for (i = 0; i < numsigs; i++)
7263     {
7264       signal_stop[i] = 1;
7265       signal_print[i] = 1;
7266       signal_program[i] = 1;
7267       signal_catch[i] = 0;
7268     }
7269 
7270   /* Signals caused by debugger's own actions
7271      should not be given to the program afterwards.  */
7272   signal_program[GDB_SIGNAL_TRAP] = 0;
7273   signal_program[GDB_SIGNAL_INT] = 0;
7274 
7275   /* Signals that are not errors should not normally enter the debugger.  */
7276   signal_stop[GDB_SIGNAL_ALRM] = 0;
7277   signal_print[GDB_SIGNAL_ALRM] = 0;
7278   signal_stop[GDB_SIGNAL_VTALRM] = 0;
7279   signal_print[GDB_SIGNAL_VTALRM] = 0;
7280   signal_stop[GDB_SIGNAL_PROF] = 0;
7281   signal_print[GDB_SIGNAL_PROF] = 0;
7282   signal_stop[GDB_SIGNAL_CHLD] = 0;
7283   signal_print[GDB_SIGNAL_CHLD] = 0;
7284   signal_stop[GDB_SIGNAL_IO] = 0;
7285   signal_print[GDB_SIGNAL_IO] = 0;
7286   signal_stop[GDB_SIGNAL_POLL] = 0;
7287   signal_print[GDB_SIGNAL_POLL] = 0;
7288   signal_stop[GDB_SIGNAL_URG] = 0;
7289   signal_print[GDB_SIGNAL_URG] = 0;
7290   signal_stop[GDB_SIGNAL_WINCH] = 0;
7291   signal_print[GDB_SIGNAL_WINCH] = 0;
7292   signal_stop[GDB_SIGNAL_PRIO] = 0;
7293   signal_print[GDB_SIGNAL_PRIO] = 0;
7294 
7295   /* These signals are used internally by user-level thread
7296      implementations.  (See signal(5) on Solaris.)  Like the above
7297      signals, a healthy program receives and handles them as part of
7298      its normal operation.  */
7299   signal_stop[GDB_SIGNAL_LWP] = 0;
7300   signal_print[GDB_SIGNAL_LWP] = 0;
7301   signal_stop[GDB_SIGNAL_WAITING] = 0;
7302   signal_print[GDB_SIGNAL_WAITING] = 0;
7303   signal_stop[GDB_SIGNAL_CANCEL] = 0;
7304   signal_print[GDB_SIGNAL_CANCEL] = 0;
7305 
7306   /* Update cached state.  */
7307   signal_cache_update (-1);
7308 
7309   add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7310 			    &stop_on_solib_events, _("\
7311 Set stopping for shared library events."), _("\
7312 Show stopping for shared library events."), _("\
7313 If nonzero, gdb will give control to the user when the dynamic linker\n\
7314 notifies gdb of shared library events.  The most common event of interest\n\
7315 to the user would be loading/unloading of a new library."),
7316 			    NULL,
7317 			    show_stop_on_solib_events,
7318 			    &setlist, &showlist);
7319 
7320   add_setshow_enum_cmd ("follow-fork-mode", class_run,
7321 			follow_fork_mode_kind_names,
7322 			&follow_fork_mode_string, _("\
7323 Set debugger response to a program call of fork or vfork."), _("\
7324 Show debugger response to a program call of fork or vfork."), _("\
7325 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
7326   parent  - the original process is debugged after a fork\n\
7327   child   - the new process is debugged after a fork\n\
7328 The unfollowed process will continue to run.\n\
7329 By default, the debugger will follow the parent process."),
7330 			NULL,
7331 			show_follow_fork_mode_string,
7332 			&setlist, &showlist);
7333 
7334   add_setshow_enum_cmd ("follow-exec-mode", class_run,
7335 			follow_exec_mode_names,
7336 			&follow_exec_mode_string, _("\
7337 Set debugger response to a program call of exec."), _("\
7338 Show debugger response to a program call of exec."), _("\
7339 An exec call replaces the program image of a process.\n\
7340 \n\
7341 follow-exec-mode can be:\n\
7342 \n\
7343   new - the debugger creates a new inferior and rebinds the process\n\
7344 to this new inferior.  The program the process was running before\n\
7345 the exec call can be restarted afterwards by restarting the original\n\
7346 inferior.\n\
7347 \n\
7348   same - the debugger keeps the process bound to the same inferior.\n\
7349 The new executable image replaces the previous executable loaded in\n\
7350 the inferior.  Restarting the inferior after the exec call restarts\n\
7351 the executable the process was running after the exec call.\n\
7352 \n\
7353 By default, the debugger will use the same inferior."),
7354 			NULL,
7355 			show_follow_exec_mode_string,
7356 			&setlist, &showlist);
7357 
7358   add_setshow_enum_cmd ("scheduler-locking", class_run,
7359 			scheduler_enums, &scheduler_mode, _("\
7360 Set mode for locking scheduler during execution."), _("\
7361 Show mode for locking scheduler during execution."), _("\
7362 off  == no locking (threads may preempt at any time)\n\
7363 on   == full locking (no thread except the current thread may run)\n\
7364 step == scheduler locked during every single-step operation.\n\
7365 	In this mode, no other thread may run during a step command.\n\
7366 	Other threads may run while stepping over a function call ('next')."),
7367 			set_schedlock_func,	/* traps on target vector */
7368 			show_scheduler_mode,
7369 			&setlist, &showlist);
7370 
7371   add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7372 Set mode for resuming threads of all processes."), _("\
7373 Show mode for resuming threads of all processes."), _("\
7374 When on, execution commands (such as 'continue' or 'next') resume all\n\
7375 threads of all processes.  When off (which is the default), execution\n\
7376 commands only resume the threads of the current process.  The set of\n\
7377 threads that are resumed is further refined by the scheduler-locking\n\
7378 mode (see help set scheduler-locking)."),
7379 			   NULL,
7380 			   show_schedule_multiple,
7381 			   &setlist, &showlist);
7382 
7383   add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7384 Set mode of the step operation."), _("\
7385 Show mode of the step operation."), _("\
7386 When set, doing a step over a function without debug line information\n\
7387 will stop at the first instruction of that function. Otherwise, the\n\
7388 function is skipped and the step command stops at a different source line."),
7389 			   NULL,
7390 			   show_step_stop_if_no_debug,
7391 			   &setlist, &showlist);
7392 
7393   add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7394 				&can_use_displaced_stepping, _("\
7395 Set debugger's willingness to use displaced stepping."), _("\
7396 Show debugger's willingness to use displaced stepping."), _("\
7397 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7398 supported by the target architecture.  If off, gdb will not use displaced\n\
7399 stepping to step over breakpoints, even if such is supported by the target\n\
7400 architecture.  If auto (which is the default), gdb will use displaced stepping\n\
7401 if the target architecture supports it and non-stop mode is active, but will not\n\
7402 use it in all-stop mode (see help set non-stop)."),
7403 				NULL,
7404 				show_can_use_displaced_stepping,
7405 				&setlist, &showlist);
7406 
7407   add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7408 			&exec_direction, _("Set direction of execution.\n\
7409 Options are 'forward' or 'reverse'."),
7410 			_("Show direction of execution (forward/reverse)."),
7411 			_("Tells gdb whether to execute forward or backward."),
7412 			set_exec_direction_func, show_exec_direction_func,
7413 			&setlist, &showlist);
7414 
7415   /* Set/show detach-on-fork: user-settable mode.  */
7416 
7417   add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7418 Set whether gdb will detach the child of a fork."), _("\
7419 Show whether gdb will detach the child of a fork."), _("\
7420 Tells gdb whether to detach the child of a fork."),
7421 			   NULL, NULL, &setlist, &showlist);
7422 
7423   /* Set/show disable address space randomization mode.  */
7424 
7425   add_setshow_boolean_cmd ("disable-randomization", class_support,
7426 			   &disable_randomization, _("\
7427 Set disabling of debuggee's virtual address space randomization."), _("\
7428 Show disabling of debuggee's virtual address space randomization."), _("\
7429 When this mode is on (which is the default), randomization of the virtual\n\
7430 address space is disabled.  Standalone programs run with the randomization\n\
7431 enabled by default on some platforms."),
7432 			   &set_disable_randomization,
7433 			   &show_disable_randomization,
7434 			   &setlist, &showlist);
7435 
7436   /* ptid initializations */
7437   inferior_ptid = null_ptid;
7438   target_last_wait_ptid = minus_one_ptid;
7439 
7440   observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7441   observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7442   observer_attach_thread_exit (infrun_thread_thread_exit);
7443   observer_attach_inferior_exit (infrun_inferior_exit);
7444 
7445   /* Explicitly create without lookup, since that tries to create a
7446      value with a void typed value, and when we get here, gdbarch
7447      isn't initialized yet.  At this point, we're quite sure there
7448      isn't another convenience variable of the same name.  */
7449   create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7450 
7451   add_setshow_boolean_cmd ("observer", no_class,
7452 			   &observer_mode_1, _("\
7453 Set whether gdb controls the inferior in observer mode."), _("\
7454 Show whether gdb controls the inferior in observer mode."), _("\
7455 In observer mode, GDB can get data from the inferior, but not\n\
7456 affect its execution.  Registers and memory may not be changed,\n\
7457 breakpoints may not be set, and the program cannot be interrupted\n\
7458 or signalled."),
7459 			   set_observer_mode,
7460 			   show_observer_mode,
7461 			   &setlist,
7462 			   &showlist);
7463 }
7464