1package Unicode::UCD; 2 3use strict; 4use warnings; 5no warnings 'surrogate'; # surrogates can be inputs to this 6use charnames (); 7 8our $VERSION = '0.78'; 9 10sub DEBUG () { 0 } 11$|=1 if DEBUG; 12 13require Exporter; 14 15our @ISA = qw(Exporter); 16 17our @EXPORT_OK = qw(charinfo 18 charblock charscript 19 charblocks charscripts 20 charinrange 21 charprop 22 charprops_all 23 general_categories bidi_types 24 compexcl 25 casefold all_casefolds casespec 26 namedseq 27 num 28 prop_aliases 29 prop_value_aliases 30 prop_values 31 prop_invlist 32 prop_invmap 33 search_invlist 34 MAX_CP 35 ); 36 37use Carp; 38 39sub IS_ASCII_PLATFORM { ord("A") == 65 } 40 41=head1 NAME 42 43Unicode::UCD - Unicode character database 44 45=head1 SYNOPSIS 46 47 use Unicode::UCD 'charinfo'; 48 my $charinfo = charinfo($codepoint); 49 50 use Unicode::UCD 'charprop'; 51 my $value = charprop($codepoint, $property); 52 53 use Unicode::UCD 'charprops_all'; 54 my $all_values_hash_ref = charprops_all($codepoint); 55 56 use Unicode::UCD 'casefold'; 57 my $casefold = casefold($codepoint); 58 59 use Unicode::UCD 'all_casefolds'; 60 my $all_casefolds_ref = all_casefolds(); 61 62 use Unicode::UCD 'casespec'; 63 my $casespec = casespec($codepoint); 64 65 use Unicode::UCD 'charblock'; 66 my $charblock = charblock($codepoint); 67 68 use Unicode::UCD 'charscript'; 69 my $charscript = charscript($codepoint); 70 71 use Unicode::UCD 'charblocks'; 72 my $charblocks = charblocks(); 73 74 use Unicode::UCD 'charscripts'; 75 my $charscripts = charscripts(); 76 77 use Unicode::UCD qw(charscript charinrange); 78 my $range = charscript($script); 79 print "looks like $script\n" if charinrange($range, $codepoint); 80 81 use Unicode::UCD qw(general_categories bidi_types); 82 my $categories = general_categories(); 83 my $types = bidi_types(); 84 85 use Unicode::UCD 'prop_aliases'; 86 my @space_names = prop_aliases("space"); 87 88 use Unicode::UCD 'prop_value_aliases'; 89 my @gc_punct_names = prop_value_aliases("Gc", "Punct"); 90 91 use Unicode::UCD 'prop_values'; 92 my @all_EA_short_names = prop_values("East_Asian_Width"); 93 94 use Unicode::UCD 'prop_invlist'; 95 my @puncts = prop_invlist("gc=punctuation"); 96 97 use Unicode::UCD 'prop_invmap'; 98 my ($list_ref, $map_ref, $format, $missing) 99 = prop_invmap("General Category"); 100 101 use Unicode::UCD 'search_invlist'; 102 my $index = search_invlist(\@invlist, $code_point); 103 104 # The following function should be used only internally in 105 # implementations of the Unicode Normalization Algorithm, and there 106 # are better choices than it. 107 use Unicode::UCD 'compexcl'; 108 my $compexcl = compexcl($codepoint); 109 110 use Unicode::UCD 'namedseq'; 111 my $namedseq = namedseq($named_sequence_name); 112 113 my $unicode_version = Unicode::UCD::UnicodeVersion(); 114 115 my $convert_to_numeric = 116 Unicode::UCD::num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}"); 117 118=head1 DESCRIPTION 119 120The Unicode::UCD module offers a series of functions that 121provide a simple interface to the Unicode 122Character Database. 123 124=head2 code point argument 125 126Some of the functions are called with a I<code point argument>, which is either 127a decimal or a hexadecimal scalar designating a code point in the platform's 128native character set (extended to Unicode), or a string containing C<U+> 129followed by hexadecimals 130designating a Unicode code point. A leading 0 will force a hexadecimal 131interpretation, as will a hexadecimal digit that isn't a decimal digit. 132 133Examples: 134 135 223 # Decimal 223 in native character set 136 0223 # Hexadecimal 223, native (= 547 decimal) 137 0xDF # Hexadecimal DF, native (= 223 decimal) 138 '0xDF' # String form of hexadecimal (= 223 decimal) 139 'U+DF' # Hexadecimal DF, in Unicode's character set 140 (= LATIN SMALL LETTER SHARP S) 141 142Note that the largest code point in Unicode is U+10FFFF. 143 144=cut 145 146our %caseless_equivalent; 147our $e_precision; 148our %file_to_swash_name; 149our @inline_definitions; 150our %loose_property_name_of; 151our %loose_property_to_file_of; 152our %loose_to_file_of; 153our $MAX_CP; 154our %nv_floating_to_rational; 155our %prop_aliases; 156our %stricter_to_file_of; 157our %strict_property_to_file_of; 158our %SwashInfo; 159our %why_deprecated; 160 161my $v_unicode_version; # v-string. 162 163sub openunicode { 164 my (@path) = @_; 165 my $rfh; 166 for my $d (@INC) { 167 use File::Spec; 168 my $f = File::Spec->catfile($d, "unicore", @path); 169 return $rfh if open($rfh, '<', $f); 170 } 171 croak __PACKAGE__, ": failed to find ", 172 File::Spec->catfile("unicore", @path), " in @INC"; 173} 174 175sub _dclone ($) { # Use Storable::dclone if available; otherwise emulate it. 176 177 use if defined &DynaLoader::boot_DynaLoader, Storable => qw(dclone); 178 179 return dclone(shift) if defined &dclone; 180 181 my $arg = shift; 182 my $type = ref $arg; 183 return $arg unless $type; # No deep cloning needed for scalars 184 185 if ($type eq 'ARRAY') { 186 my @return; 187 foreach my $element (@$arg) { 188 push @return, &_dclone($element); 189 } 190 return \@return; 191 } 192 elsif ($type eq 'HASH') { 193 my %return; 194 foreach my $key (keys %$arg) { 195 $return{$key} = &_dclone($arg->{$key}); 196 } 197 return \%return; 198 } 199 else { 200 croak "_dclone can't handle " . $type; 201 } 202} 203 204=head2 B<charinfo()> 205 206 use Unicode::UCD 'charinfo'; 207 208 my $charinfo = charinfo(0x41); 209 210This returns information about the input L</code point argument> 211as a reference to a hash of fields as defined by the Unicode 212standard. If the L</code point argument> is not assigned in the standard 213(i.e., has the general category C<Cn> meaning C<Unassigned>) 214or is a non-character (meaning it is guaranteed to never be assigned in 215the standard), 216C<undef> is returned. 217 218Fields that aren't applicable to the particular code point argument exist in the 219returned hash, and are empty. 220 221For results that are less "raw" than this function returns, or to get the values for 222any property, not just the few covered by this function, use the 223L</charprop()> function. 224 225The keys in the hash with the meanings of their values are: 226 227=over 228 229=item B<code> 230 231the input native L</code point argument> expressed in hexadecimal, with 232leading zeros 233added if necessary to make it contain at least four hexdigits 234 235=item B<name> 236 237name of I<code>, all IN UPPER CASE. 238Some control-type code points do not have names. 239This field will be empty for C<Surrogate> and C<Private Use> code points, 240and for the others without a name, 241it will contain a description enclosed in angle brackets, like 242C<E<lt>controlE<gt>>. 243 244 245=item B<category> 246 247The short name of the general category of I<code>. 248This will match one of the keys in the hash returned by L</general_categories()>. 249 250The L</prop_value_aliases()> function can be used to get all the synonyms 251of the category name. 252 253=item B<combining> 254 255the combining class number for I<code> used in the Canonical Ordering Algorithm. 256For Unicode 5.1, this is described in Section 3.11 C<Canonical Ordering Behavior> 257available at 258L<http://www.unicode.org/versions/Unicode5.1.0/> 259 260The L</prop_value_aliases()> function can be used to get all the synonyms 261of the combining class number. 262 263=item B<bidi> 264 265bidirectional type of I<code>. 266This will match one of the keys in the hash returned by L</bidi_types()>. 267 268The L</prop_value_aliases()> function can be used to get all the synonyms 269of the bidi type name. 270 271=item B<decomposition> 272 273is empty if I<code> has no decomposition; or is one or more codes 274(separated by spaces) that, taken in order, represent a decomposition for 275I<code>. Each has at least four hexdigits. 276The codes may be preceded by a word enclosed in angle brackets, then a space, 277like C<E<lt>compatE<gt> >, giving the type of decomposition 278 279This decomposition may be an intermediate one whose components are also 280decomposable. Use L<Unicode::Normalize> to get the final decomposition in one 281step. 282 283=item B<decimal> 284 285if I<code> represents a decimal digit this is its integer numeric value 286 287=item B<digit> 288 289if I<code> represents some other digit-like number, this is its integer 290numeric value 291 292=item B<numeric> 293 294if I<code> represents a whole or rational number, this is its numeric value. 295Rational values are expressed as a string like C<1/4>. 296 297=item B<mirrored> 298 299C<Y> or C<N> designating if I<code> is mirrored in bidirectional text 300 301=item B<unicode10> 302 303name of I<code> in the Unicode 1.0 standard if one 304existed for this code point and is different from the current name 305 306=item B<comment> 307 308As of Unicode 6.0, this is always empty. 309 310=item B<upper> 311 312is, if non-empty, the uppercase mapping for I<code> expressed as at least four 313hexdigits. This indicates that the full uppercase mapping is a single 314character, and is identical to the simple (single-character only) mapping. 315When this field is empty, it means that the simple uppercase mapping is 316I<code> itself; you'll need some other means, (like L</charprop()> or 317L</casespec()> to get the full mapping. 318 319=item B<lower> 320 321is, if non-empty, the lowercase mapping for I<code> expressed as at least four 322hexdigits. This indicates that the full lowercase mapping is a single 323character, and is identical to the simple (single-character only) mapping. 324When this field is empty, it means that the simple lowercase mapping is 325I<code> itself; you'll need some other means, (like L</charprop()> or 326L</casespec()> to get the full mapping. 327 328=item B<title> 329 330is, if non-empty, the titlecase mapping for I<code> expressed as at least four 331hexdigits. This indicates that the full titlecase mapping is a single 332character, and is identical to the simple (single-character only) mapping. 333When this field is empty, it means that the simple titlecase mapping is 334I<code> itself; you'll need some other means, (like L</charprop()> or 335L</casespec()> to get the full mapping. 336 337=item B<block> 338 339the block I<code> belongs to (used in C<\p{Blk=...}>). 340The L</prop_value_aliases()> function can be used to get all the synonyms 341of the block name. 342 343See L</Blocks versus Scripts>. 344 345=item B<script> 346 347the script I<code> belongs to. 348The L</prop_value_aliases()> function can be used to get all the synonyms 349of the script name. Note that this is the older "Script" property value, and 350not the improved "Script_Extensions" value. 351 352See L</Blocks versus Scripts>. 353 354=back 355 356Note that you cannot do (de)composition and casing based solely on the 357I<decomposition>, I<combining>, I<lower>, I<upper>, and I<title> fields; you 358will need also the L</casespec()> function and the C<Composition_Exclusion> 359property. (Or you could just use the L<lc()|perlfunc/lc>, 360L<uc()|perlfunc/uc>, and L<ucfirst()|perlfunc/ucfirst> functions, and the 361L<Unicode::Normalize> module.) 362 363=cut 364 365my %Cache; 366 367# Digits may be separated by a single underscore 368my $digits = qr/ ( [0-9] _? )+ (?!:_) /x; 369 370# A sign can be surrounded by white space 371my $sign = qr/ \s* [+-]? \s* /x; 372 373my $f_float = qr/ $sign $digits+ \. $digits* # e.g., 5.0, 5. 374 | $sign $digits* \. $digits+/x; # 0.7, .7 375 376# A number may be an integer, a rational, or a float with an optional exponent 377# We (shudder) accept a signed denominator 378my $number = qr{ ^ $sign $digits+ $ 379 | ^ $sign $digits+ \/ $sign $digits+ $ 380 | ^ $f_float (?: [Ee] [+-]? $digits )? $}x; 381 382sub loose_name ($) { 383 # Given a lowercase property or property-value name, return its 384 # standardized version that is expected for look-up in the 'loose' hashes 385 # in UCD.pl (hence, this depends on what mktables does). This squeezes 386 # out blanks, underscores and dashes. The complication stems from the 387 # grandfathered-in 'L_', which retains a single trailing underscore. 388 389# integer or float (no exponent) 390my $integer_or_float_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /x; 391 392# Also includes rationals 393my $numeric_re = qr! $integer_or_float_re | ^ -? \d+ / \d+ $ !x; 394 return $_[0] if $_[0] =~ $numeric_re; 395 396 (my $loose = $_[0]) =~ s/[-_ \t]//g; 397 398 return $loose if $loose !~ / ^ (?: is | to )? l $/x; 399 return 'l_' if $_[0] =~ / l .* _ /x; # If original had a trailing '_' 400 return $loose; 401} 402 403## 404## "SWASH" == "SWATCH HASH". A "swatch" is a swatch of the Unicode landscape. 405## It's a data structure that encodes a set of Unicode characters. 406## 407 408{ 409 use re "/aa"; # Nothing here uses above Latin1. 410 411 # If a floating point number is within this distance from the value of a 412 # fraction, it is considered to be that fraction, even if many more digits 413 # are specified that don't exactly match. 414 my $min_floating_slop; 415 416 # To guard against this program calling something that in turn ends up 417 # calling this program with the same inputs, and hence infinitely 418 # recursing, we keep a stack of the properties that are currently in 419 # progress, pushed upon entry, popped upon return. 420 my @recursed; 421 422 sub SWASHNEW { 423 my ($class, $type, $list, $minbits) = @_; 424 my $user_defined = 0; 425 local $^D = 0 if $^D; 426 427 $class = "" unless defined $class; 428 print STDERR __LINE__, ": class=$class, type=$type, list=", 429 (defined $list) ? $list : ':undef:', 430 ", minbits=$minbits\n" if DEBUG; 431 432 ## 433 ## Get the list of codepoints for the type. 434 ## Called from swash_init (see utf8.c) or SWASHNEW itself. 435 ## 436 ## Callers of swash_init: 437 ## prop_invlist 438 ## Unicode::UCD::prop_invmap 439 ## 440 ## Given a $type, our goal is to fill $list with the set of codepoint 441 ## ranges. If $type is false, $list passed is used. 442 ## 443 ## $minbits: 444 ## For binary properties, $minbits must be 1. 445 ## For character mappings (case and transliteration), $minbits must 446 ## be a number except 1. 447 ## 448 ## $list (or that filled according to $type): 449 ## Refer to perlunicode.pod, "User-Defined Character Properties." 450 ## 451 ## For binary properties, only characters with the property value 452 ## of True should be listed. The 3rd column, if any, will be ignored 453 ## 454 ## To make the parsing of $type clear, this code takes the a rather 455 ## unorthodox approach of last'ing out of the block once we have the 456 ## info we need. Were this to be a subroutine, the 'last' would just 457 ## be a 'return'. 458 ## 459 # If a problem is found $type is returned; 460 # Upon success, a new (or cached) blessed object is returned with 461 # keys TYPE, BITS, EXTRAS, LIST, and with values having the 462 # same meanings as the input parameters. 463 # SPECIALS contains a reference to any special-treatment hash in the 464 # property. 465 # INVERT_IT is non-zero if the result should be inverted before use 466 # USER_DEFINED is non-zero if the result came from a user-defined 467 my $file; ## file to load data from, and also part of the %Cache key. 468 469 # Change this to get a different set of Unicode tables 470 my $unicore_dir = 'unicore'; 471 my $invert_it = 0; 472 my $list_is_from_mktables = 0; # Is $list returned from a mktables 473 # generated file? If so, we know it's 474 # well behaved. 475 476 if ($type) 477 { 478 # Verify that this isn't a recursive call for this property. 479 # Can't use croak, as it may try to recurse to here itself. 480 my $class_type = $class . "::$type"; 481 if (grep { $_ eq $class_type } @recursed) { 482 CORE::die "panic: Infinite recursion in SWASHNEW for '$type'\n"; 483 } 484 push @recursed, $class_type; 485 486 $type =~ s/^\s+//; 487 $type =~ s/\s+$//; 488 489 # regcomp.c surrounds the property name with '__" and '_i' if this 490 # is to be caseless matching. 491 my $caseless = $type =~ s/^(.*)__(.*)_i$/$1$2/; 492 493 print STDERR __LINE__, ": type=$type, caseless=$caseless\n" if DEBUG; 494 495 GETFILE: 496 { 497 ## 498 ## It could be a user-defined property. Look in current 499 ## package if no package given 500 ## 501 502 503 my $caller0 = caller(0); 504 my $caller1 = $type =~ s/(.+)::// 505 ? $1 506 : $caller0 eq 'main' 507 ? 'main' 508 : caller(1); 509 510 if (defined $caller1 && $type =~ /^I[ns]\w+$/) { 511 my $prop = "${caller1}::$type"; 512 if (exists &{$prop}) { 513 # stolen from Scalar::Util::PP::tainted() 514 my $tainted; 515 { 516 local($@, $SIG{__DIE__}, $SIG{__WARN__}); 517 local $^W = 0; 518 no warnings; 519 eval { kill 0 * $prop }; 520 $tainted = 1 if $@ =~ /^Insecure/; 521 } 522 die "Insecure user-defined property \\p{$prop}\n" 523 if $tainted; 524 no strict 'refs'; 525 $list = &{$prop}($caseless); 526 $user_defined = 1; 527 last GETFILE; 528 } 529 } 530 531 require "$unicore_dir/UCD.pl"; 532 533 # All property names are matched caselessly 534 my $property_and_table = CORE::lc $type; 535 print STDERR __LINE__, ": $property_and_table\n" if DEBUG; 536 537 # See if is of the compound form 'property=value', where the 538 # value indicates the table we should use. 539 my ($property, $table, @remainder) = 540 split /\s*[:=]\s*/, $property_and_table, -1; 541 if (@remainder) { 542 pop @recursed if @recursed; 543 return $type; 544 } 545 546 my $prefix; 547 if (! defined $table) { 548 549 # Here, is the single form. The property becomes empty, and 550 # the whole value is the table. 551 $table = $property; 552 $prefix = $property = ""; 553 } else { 554 print STDERR __LINE__, ": $property\n" if DEBUG; 555 556 # Here it is the compound property=table form. The property 557 # name is always loosely matched, and always can have an 558 # optional 'is' prefix (which isn't true in the single 559 # form). 560 $property = loose_name($property) =~ s/^is//r; 561 562 # And convert to canonical form. Quit if not valid. 563 $property = $loose_property_name_of{$property}; 564 if (! defined $property) { 565 pop @recursed if @recursed; 566 return $type; 567 } 568 569 $prefix = "$property="; 570 571 # If the rhs looks like it is a number... 572 print STDERR __LINE__, ": table=$table\n" if DEBUG; 573 574 if ($table =~ $number) { 575 print STDERR __LINE__, ": table=$table\n" if DEBUG; 576 577 # Split on slash, in case it is a rational, like \p{1/5} 578 my @parts = split m{ \s* / \s* }x, $table, -1; 579 print __LINE__, ": $type\n" if @parts > 2 && DEBUG; 580 581 foreach my $part (@parts) { 582 print __LINE__, ": part=$part\n" if DEBUG; 583 584 $part =~ s/^\+\s*//; # Remove leading plus 585 $part =~ s/^-\s*/-/; # Remove blanks after unary 586 # minus 587 588 # Remove underscores between digits. 589 $part =~ s/(?<= [0-9] ) _ (?= [0-9] ) //xg; 590 591 # No leading zeros (but don't make a single '0' 592 # into a null string) 593 $part =~ s/ ^ ( -? ) 0+ /$1/x; 594 $part .= '0' if $part eq '-' || $part eq ""; 595 596 # No trailing zeros after a decimal point 597 $part =~ s/ ( \. [0-9]*? ) 0+ $ /$1/x; 598 599 # Begin with a 0 if a leading decimal point 600 $part =~ s/ ^ ( -? ) \. /${1}0./x; 601 602 # Ensure not a trailing decimal point: turn into an 603 # integer 604 $part =~ s/ \. $ //x; 605 606 print STDERR __LINE__, ": part=$part\n" if DEBUG; 607 #return $type if $part eq ""; 608 } 609 610 # If a rational... 611 if (@parts == 2) { 612 613 # If denominator is negative, get rid of it, and ... 614 if ($parts[1] =~ s/^-//) { 615 616 # If numerator is also negative, convert the 617 # whole thing to positive, else move the minus 618 # to the numerator 619 if ($parts[0] !~ s/^-//) { 620 $parts[0] = '-' . $parts[0]; 621 } 622 } 623 $table = join '/', @parts; 624 } 625 elsif ($property ne 'nv' || $parts[0] !~ /\./) { 626 627 # Here is not numeric value, or doesn't have a 628 # decimal point. No further manipulation is 629 # necessary. (Note the hard-coded property name. 630 # This could fail if other properties eventually 631 # had fractions as well; perhaps the cjk ones 632 # could evolve to do that. This hard-coding could 633 # be fixed by mktables generating a list of 634 # properties that could have fractions.) 635 $table = $parts[0]; 636 } else { 637 638 # Here is a floating point numeric_value. Convert 639 # to rational. Get a normalized form, like 640 # 5.00E-01, and look that up in the hash 641 642 my $float = sprintf "%.*e", 643 $e_precision, 644 0 + $parts[0]; 645 646 if (exists $nv_floating_to_rational{$float}) { 647 $table = $nv_floating_to_rational{$float}; 648 } else { 649 pop @recursed if @recursed; 650 return $type; 651 } 652 } 653 print STDERR __LINE__, ": $property=$table\n" if DEBUG; 654 } 655 } 656 657 # Combine lhs (if any) and rhs to get something that matches 658 # the syntax of the lookups. 659 $property_and_table = "$prefix$table"; 660 print STDERR __LINE__, ": $property_and_table\n" if DEBUG; 661 662 # First try stricter matching. 663 $file = $stricter_to_file_of{$property_and_table}; 664 665 # If didn't find it, try again with looser matching by editing 666 # out the applicable characters on the rhs and looking up 667 # again. 668 my $strict_property_and_table; 669 if (! defined $file) { 670 671 # This isn't used unless the name begins with 'to' 672 $strict_property_and_table = $property_and_table =~ s/^to//r; 673 $table = loose_name($table); 674 $property_and_table = "$prefix$table"; 675 print STDERR __LINE__, ": $property_and_table\n" if DEBUG; 676 $file = $loose_to_file_of{$property_and_table}; 677 print STDERR __LINE__, ": $property_and_table\n" if DEBUG; 678 } 679 680 # Add the constant and go fetch it in. 681 if (defined $file) { 682 683 # If the file name contains a !, it means to invert. The 684 # 0+ makes sure result is numeric 685 $invert_it = 0 + $file =~ s/!//; 686 687 if ($caseless 688 && exists $caseless_equivalent{$property_and_table}) 689 { 690 $file = $caseless_equivalent{$property_and_table}; 691 } 692 693 # The pseudo-directory '#' means that there really isn't a 694 # file to read, the data is in-line as part of the string; 695 # we extract it below. 696 $file = "$unicore_dir/lib/$file.pl" unless $file =~ m!^#/!; 697 last GETFILE; 698 } 699 print STDERR __LINE__, ": didn't find $property_and_table\n" if DEBUG; 700 701 ## 702 ## Last attempt -- see if it's a standard "To" name 703 ## (e.g. "ToLower") ToTitle is used by ucfirst(). 704 ## The user-level way to access ToDigit() and ToFold() 705 ## is to use Unicode::UCD. 706 ## 707 # Only check if caller wants non-binary 708 if ($minbits != 1) { 709 if ($property_and_table =~ s/^to//) { 710 # Look input up in list of properties for which we have 711 # mapping files. First do it with the strict approach 712 if (defined ($file = $strict_property_to_file_of{ 713 $strict_property_and_table})) 714 { 715 $type = $file_to_swash_name{$file}; 716 print STDERR __LINE__, ": type set to $type\n" 717 if DEBUG; 718 $file = "$unicore_dir/$file.pl"; 719 last GETFILE; 720 } 721 elsif (defined ($file = 722 $loose_property_to_file_of{$property_and_table})) 723 { 724 $type = $file_to_swash_name{$file}; 725 print STDERR __LINE__, ": type set to $type\n" 726 if DEBUG; 727 $file = "$unicore_dir/$file.pl"; 728 last GETFILE; 729 } # If that fails see if there is a corresponding binary 730 # property file 731 elsif (defined ($file = 732 $loose_to_file_of{$property_and_table})) 733 { 734 735 # Here, there is no map file for the property we 736 # are trying to get the map of, but this is a 737 # binary property, and there is a file for it that 738 # can easily be translated to a mapping, so use 739 # that, treating this as a binary property. 740 # Setting 'minbits' here causes it to be stored as 741 # such in the cache, so if someone comes along 742 # later looking for just a binary, they get it. 743 $minbits = 1; 744 745 # The 0+ makes sure is numeric 746 $invert_it = 0 + $file =~ s/!//; 747 $file = "$unicore_dir/lib/$file.pl" 748 unless $file =~ m!^#/!; 749 last GETFILE; 750 } 751 } 752 } 753 754 ## 755 ## If we reach this line, it's because we couldn't figure 756 ## out what to do with $type. Ouch. 757 ## 758 759 pop @recursed if @recursed; 760 return $type; 761 } # end of GETFILE block 762 763 if (defined $file) { 764 print STDERR __LINE__, ": found it (file='$file')\n" if DEBUG; 765 766 ## 767 ## If we reach here, it was due to a 'last GETFILE' above 768 ## (exception: user-defined properties and mappings), so we 769 ## have a filename, so now we load it if we haven't already. 770 771 # The pseudo-directory '#' means the result isn't really a 772 # file, but is in-line, with semi-colons to be turned into 773 # new-lines. Since it is in-line there is no advantage to 774 # caching the result 775 if ($file =~ s!^#/!!) { 776 $list = $inline_definitions[$file]; 777 } 778 else { 779 # Here, we have an actual file to read in and load, but it 780 # may already have been read-in and cached. The cache key 781 # is the class and file to load, and whether the results 782 # need to be inverted. 783 my $found = $Cache{$class, $file, $invert_it}; 784 if ($found and ref($found) eq $class) { 785 print STDERR __LINE__, ": Returning cached swash for '$class,$file,$invert_it' for \\p{$type}\n" if DEBUG; 786 pop @recursed if @recursed; 787 return $found; 788 } 789 790 local $@; 791 local $!; 792 $list = do $file; die $@ if $@; 793 } 794 795 $list_is_from_mktables = 1; 796 } 797 } # End of $type is non-null 798 799 # Here, either $type was null, or we found the requested property and 800 # read it into $list 801 802 my $extras = ""; 803 804 my $bits = $minbits; 805 806 # mktables lists don't have extras, like '&prop', so don't need 807 # to separate them; also lists are already sorted, so don't need to do 808 # that. 809 if ($list && ! $list_is_from_mktables) { 810 my $taint = substr($list,0,0); # maintain taint 811 812 # Separate the extras from the code point list, and make sure 813 # user-defined properties are well-behaved for 814 # downstream code. 815 if ($user_defined) { 816 my @tmp = split(/^/m, $list); 817 my %seen; 818 no warnings; 819 820 # The extras are anything that doesn't begin with a hex digit. 821 $extras = join '', $taint, grep /^[^0-9a-fA-F]/, @tmp; 822 823 # Remove the extras, and sort the remaining entries by the 824 # numeric value of their beginning hex digits, removing any 825 # duplicates. 826 $list = join '', $taint, 827 map { $_->[1] } 828 sort { $a->[0] <=> $b->[0] } 829 map { /^([0-9a-fA-F]+)/ && !$seen{$1}++ ? [ CORE::hex($1), $_ ] : () } 830 @tmp; # XXX doesn't do ranges right 831 } 832 else { 833 # mktables has gone to some trouble to make non-user defined 834 # properties well-behaved, so we can skip the effort we do for 835 # user-defined ones. Any extras are at the very beginning of 836 # the string. 837 838 # This regex splits out the first lines of $list into $1 and 839 # strips them off from $list, until we get one that begins 840 # with a hex number, alone on the line, or followed by a tab. 841 # Either portion may be empty. 842 $list =~ s/ \A ( .*? ) 843 (?: \z | (?= ^ [0-9a-fA-F]+ (?: \t | $) ) ) 844 //msx; 845 846 $extras = "$taint$1"; 847 } 848 } 849 850 if ($minbits != 1 && $minbits < 32) { # not binary property 851 my $top = 0; 852 while ($list =~ /^([0-9a-fA-F]+)(?:[\t]([0-9a-fA-F]+)?)(?:[ \t]([0-9a-fA-F]+))?/mg) { 853 my $min = CORE::hex $1; 854 my $max = defined $2 ? CORE::hex $2 : $min; 855 my $val = defined $3 ? CORE::hex $3 : 0; 856 $val += $max - $min if defined $3; 857 $top = $val if $val > $top; 858 } 859 my $topbits = 860 $top > 0xffff ? 32 : 861 $top > 0xff ? 16 : 8; 862 $bits = $topbits if $bits < $topbits; 863 } 864 865 my @extras; 866 if ($extras) { 867 for my $x ($extras) { 868 my $taint = substr($x,0,0); # maintain taint 869 pos $x = 0; 870 while ($x =~ /^([^0-9a-fA-F\n])(.*)/mg) { 871 my $char = "$1$taint"; 872 my $name = "$2$taint"; 873 print STDERR __LINE__, ": char [$char] => name [$name]\n" 874 if DEBUG; 875 if ($char =~ /[-+!&]/) { 876 my ($c,$t) = split(/::/, $name, 2); # bogus use of ::, really 877 my $subobj; 878 if ($c eq 'utf8') { # khw is unsure of this 879 $subobj = SWASHNEW($t, "", $minbits, 0); 880 } 881 elsif (exists &$name) { 882 $subobj = SWASHNEW($name, "", $minbits, 0); 883 } 884 elsif ($c =~ /^([0-9a-fA-F]+)/) { 885 $subobj = SWASHNEW("", $c, $minbits, 0); 886 } 887 print STDERR __LINE__, ": returned from getting sub object for $name\n" if DEBUG; 888 if (! ref $subobj) { 889 pop @recursed if @recursed && $type; 890 return $subobj; 891 } 892 push @extras, $name => $subobj; 893 $bits = $subobj->{BITS} if $bits < $subobj->{BITS}; 894 $user_defined = $subobj->{USER_DEFINED} 895 if $subobj->{USER_DEFINED}; 896 } 897 } 898 } 899 } 900 901 if (DEBUG) { 902 print STDERR __LINE__, ": CLASS = $class, TYPE => $type, BITS => $bits, INVERT_IT => $invert_it, USER_DEFINED => $user_defined"; 903 print STDERR "\nLIST =>\n$list" if defined $list; 904 print STDERR "\nEXTRAS =>\n$extras" if defined $extras; 905 print STDERR "\n"; 906 } 907 908 my $SWASH = bless { 909 TYPE => $type, 910 BITS => $bits, 911 EXTRAS => $extras, 912 LIST => $list, 913 USER_DEFINED => $user_defined, 914 @extras, 915 } => $class; 916 917 if ($file) { 918 $Cache{$class, $file, $invert_it} = $SWASH; 919 if ($type 920 && exists $SwashInfo{$type} 921 && exists $SwashInfo{$type}{'specials_name'}) 922 { 923 my $specials_name = $SwashInfo{$type}{'specials_name'}; 924 no strict "refs"; 925 print STDERR "\nspecials_name => $specials_name\n" if DEBUG; 926 $SWASH->{'SPECIALS'} = \%$specials_name; 927 } 928 $SWASH->{'INVERT_IT'} = $invert_it; 929 } 930 931 pop @recursed if @recursed && $type; 932 933 return $SWASH; 934 } 935} 936 937# NB: This function is nearly duplicated in charnames.pm 938sub _getcode { 939 my $arg = shift; 940 941 if ($arg =~ /^[1-9]\d*$/) { 942 return $arg; 943 } 944 elsif ($arg =~ /^(?:0[xX])?([[:xdigit:]]+)$/) { 945 return CORE::hex($1); 946 } 947 elsif ($arg =~ /^[Uu]\+([[:xdigit:]]+)$/) { # Is of form U+0000, means 948 # wants the Unicode code 949 # point, not the native one 950 my $decimal = CORE::hex($1); 951 return $decimal if IS_ASCII_PLATFORM; 952 return utf8::unicode_to_native($decimal); 953 } 954 955 return; 956} 957 958# Populated by _num. Converts real number back to input rational 959my %real_to_rational; 960 961# To store the contents of files found on disk. 962my @BIDIS; 963my @CATEGORIES; 964my @DECOMPOSITIONS; 965my @NUMERIC_TYPES; 966my %SIMPLE_LOWER; 967my %SIMPLE_TITLE; 968my %SIMPLE_UPPER; 969my %UNICODE_1_NAMES; 970my %ISO_COMMENT; 971 972# Eval'd so can run on versions earlier than the property is available in 973my $Hangul_Syllables_re = eval 'qr/\p{Block=Hangul_Syllables}/'; 974 975sub charinfo { 976 977 # This function has traditionally mimicked what is in UnicodeData.txt, 978 # warts and all. This is a re-write that avoids UnicodeData.txt so that 979 # it can be removed to save disk space. Instead, this assembles 980 # information gotten by other methods that get data from various other 981 # files. It uses charnames to get the character name; and various 982 # mktables tables. 983 984 use feature 'unicode_strings'; 985 986 # Will fail if called under minitest 987 use if defined &DynaLoader::boot_DynaLoader, "Unicode::Normalize" => qw(getCombinClass NFD); 988 989 my $arg = shift; 990 my $code = _getcode($arg); 991 croak __PACKAGE__, "::charinfo: unknown code '$arg'" unless defined $code; 992 993 # Non-unicode implies undef. 994 return if $code > 0x10FFFF; 995 996 my %prop; 997 my $char = chr($code); 998 999 @CATEGORIES =_read_table("To/Gc.pl") unless @CATEGORIES; 1000 $prop{'category'} = _search(\@CATEGORIES, 0, $#CATEGORIES, $code) 1001 // $SwashInfo{'ToGc'}{'missing'}; 1002 # Return undef if category value is 'Unassigned' or one of its synonyms 1003 return if grep { lc $_ eq 'unassigned' } 1004 prop_value_aliases('Gc', $prop{'category'}); 1005 1006 $prop{'code'} = sprintf "%04X", $code; 1007 $prop{'name'} = ($char =~ /\p{Cntrl}/) ? '<control>' 1008 : (charnames::viacode($code) // ""); 1009 1010 $prop{'combining'} = getCombinClass($code); 1011 1012 @BIDIS =_read_table("To/Bc.pl") unless @BIDIS; 1013 $prop{'bidi'} = _search(\@BIDIS, 0, $#BIDIS, $code) 1014 // $SwashInfo{'ToBc'}{'missing'}; 1015 1016 # For most code points, we can just read in "unicore/Decomposition.pl", as 1017 # its contents are exactly what should be output. But that file doesn't 1018 # contain the data for the Hangul syllable decompositions, which can be 1019 # algorithmically computed, and NFD() does that, so we call NFD() for 1020 # those. We can't use NFD() for everything, as it does a complete 1021 # recursive decomposition, and what this function has always done is to 1022 # return what's in UnicodeData.txt which doesn't show that recursiveness. 1023 # Fortunately, the NFD() of the Hanguls doesn't have any recursion 1024 # issues. 1025 # Having no decomposition implies an empty field; otherwise, all but 1026 # "Canonical" imply a compatible decomposition, and the type is prefixed 1027 # to that, as it is in UnicodeData.txt 1028 UnicodeVersion() unless defined $v_unicode_version; 1029 if ($v_unicode_version ge v2.0.0 && $char =~ $Hangul_Syllables_re) { 1030 # The code points of the decomposition are output in standard Unicode 1031 # hex format, separated by blanks. 1032 $prop{'decomposition'} = join " ", map { sprintf("%04X", $_)} 1033 unpack "U*", NFD($char); 1034 } 1035 else { 1036 @DECOMPOSITIONS = _read_table("Decomposition.pl") 1037 unless @DECOMPOSITIONS; 1038 $prop{'decomposition'} = _search(\@DECOMPOSITIONS, 0, $#DECOMPOSITIONS, 1039 $code) // ""; 1040 } 1041 1042 # Can use num() to get the numeric values, if any. 1043 if (! defined (my $value = num($char))) { 1044 $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = ""; 1045 } 1046 else { 1047 if ($char =~ /\d/) { 1048 $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = $value; 1049 } 1050 else { 1051 1052 # For non-decimal-digits, we have to read in the Numeric type 1053 # to distinguish them. It is not just a matter of integer vs. 1054 # rational, as some whole number values are not considered digits, 1055 # e.g., TAMIL NUMBER TEN. 1056 $prop{'decimal'} = ""; 1057 1058 @NUMERIC_TYPES =_read_table("To/Nt.pl") unless @NUMERIC_TYPES; 1059 if ((_search(\@NUMERIC_TYPES, 0, $#NUMERIC_TYPES, $code) // "") 1060 eq 'Digit') 1061 { 1062 $prop{'digit'} = $prop{'numeric'} = $value; 1063 } 1064 else { 1065 $prop{'digit'} = ""; 1066 $prop{'numeric'} = $real_to_rational{$value} // $value; 1067 } 1068 } 1069 } 1070 1071 $prop{'mirrored'} = ($char =~ /\p{Bidi_Mirrored}/) ? 'Y' : 'N'; 1072 1073 %UNICODE_1_NAMES =_read_table("To/Na1.pl", "use_hash") unless %UNICODE_1_NAMES; 1074 $prop{'unicode10'} = $UNICODE_1_NAMES{$code} // ""; 1075 1076 UnicodeVersion() unless defined $v_unicode_version; 1077 if ($v_unicode_version ge v6.0.0) { 1078 $prop{'comment'} = ""; 1079 } 1080 else { 1081 %ISO_COMMENT = _read_table("To/Isc.pl", "use_hash") unless %ISO_COMMENT; 1082 $prop{'comment'} = (defined $ISO_COMMENT{$code}) 1083 ? $ISO_COMMENT{$code} 1084 : ""; 1085 } 1086 1087 %SIMPLE_UPPER = _read_table("To/Uc.pl", "use_hash") unless %SIMPLE_UPPER; 1088 $prop{'upper'} = (defined $SIMPLE_UPPER{$code}) 1089 ? sprintf("%04X", $SIMPLE_UPPER{$code}) 1090 : ""; 1091 1092 %SIMPLE_LOWER = _read_table("To/Lc.pl", "use_hash") unless %SIMPLE_LOWER; 1093 $prop{'lower'} = (defined $SIMPLE_LOWER{$code}) 1094 ? sprintf("%04X", $SIMPLE_LOWER{$code}) 1095 : ""; 1096 1097 %SIMPLE_TITLE = _read_table("To/Tc.pl", "use_hash") unless %SIMPLE_TITLE; 1098 $prop{'title'} = (defined $SIMPLE_TITLE{$code}) 1099 ? sprintf("%04X", $SIMPLE_TITLE{$code}) 1100 : ""; 1101 1102 $prop{block} = charblock($code); 1103 $prop{script} = charscript($code); 1104 return \%prop; 1105} 1106 1107sub _search { # Binary search in a [[lo,hi,prop],[...],...] table. 1108 my ($table, $lo, $hi, $code) = @_; 1109 1110 return if $lo > $hi; 1111 1112 my $mid = int(($lo+$hi) / 2); 1113 1114 if ($table->[$mid]->[0] < $code) { 1115 if ($table->[$mid]->[1] >= $code) { 1116 return $table->[$mid]->[2]; 1117 } else { 1118 _search($table, $mid + 1, $hi, $code); 1119 } 1120 } elsif ($table->[$mid]->[0] > $code) { 1121 _search($table, $lo, $mid - 1, $code); 1122 } else { 1123 return $table->[$mid]->[2]; 1124 } 1125} 1126 1127sub _read_table ($;$) { 1128 1129 # Returns the contents of the mktables generated table file located at $1 1130 # in the form of either an array of arrays or a hash, depending on if the 1131 # optional second parameter is true (for hash return) or not. In the case 1132 # of a hash return, each key is a code point, and its corresponding value 1133 # is what the table gives as the code point's corresponding value. In the 1134 # case of an array return, each outer array denotes a range with [0] the 1135 # start point of that range; [1] the end point; and [2] the value that 1136 # every code point in the range has. The hash return is useful for fast 1137 # lookup when the table contains only single code point ranges. The array 1138 # return takes much less memory when there are large ranges. 1139 # 1140 # This function has the side effect of setting 1141 # $SwashInfo{$property}{'format'} to be the mktables format of the 1142 # table; and 1143 # $SwashInfo{$property}{'missing'} to be the value for all entries 1144 # not listed in the table. 1145 # where $property is the Unicode property name, preceded by 'To' for map 1146 # properties., e.g., 'ToSc'. 1147 # 1148 # Table entries look like one of: 1149 # 0000 0040 Common # [65] 1150 # 00AA Latin 1151 1152 my $table = shift; 1153 my $return_hash = shift; 1154 $return_hash = 0 unless defined $return_hash; 1155 my @return; 1156 my %return; 1157 local $_; 1158 my $list = do "unicore/$table"; 1159 1160 # Look up if this property requires adjustments, which we do below if it 1161 # does. 1162 require "unicore/UCD.pl"; 1163 my $property = $table =~ s/\.pl//r; 1164 $property = $file_to_swash_name{$property}; 1165 my $to_adjust = defined $property 1166 && $SwashInfo{$property}{'format'} =~ / ^ a /x; 1167 1168 for (split /^/m, $list) { 1169 my ($start, $end, $value) = / ^ (.+?) \t (.*?) \t (.+?) 1170 \s* ( \# .* )? # Optional comment 1171 $ /x; 1172 my $decimal_start = hex $start; 1173 my $decimal_end = ($end eq "") ? $decimal_start : hex $end; 1174 $value = hex $value if $to_adjust 1175 && $SwashInfo{$property}{'format'} eq 'ax'; 1176 if ($return_hash) { 1177 foreach my $i ($decimal_start .. $decimal_end) { 1178 $return{$i} = ($to_adjust) 1179 ? $value + $i - $decimal_start 1180 : $value; 1181 } 1182 } 1183 elsif (! $to_adjust 1184 && @return 1185 && $return[-1][1] == $decimal_start - 1 1186 && $return[-1][2] eq $value) 1187 { 1188 # If this is merely extending the previous range, do just that. 1189 $return[-1]->[1] = $decimal_end; 1190 } 1191 else { 1192 push @return, [ $decimal_start, $decimal_end, $value ]; 1193 } 1194 } 1195 return ($return_hash) ? %return : @return; 1196} 1197 1198sub charinrange { 1199 my ($range, $arg) = @_; 1200 my $code = _getcode($arg); 1201 croak __PACKAGE__, "::charinrange: unknown code '$arg'" 1202 unless defined $code; 1203 _search($range, 0, $#$range, $code); 1204} 1205 1206=head2 B<charprop()> 1207 1208 use Unicode::UCD 'charprop'; 1209 1210 print charprop(0x41, "Gc"), "\n"; 1211 print charprop(0x61, "General_Category"), "\n"; 1212 1213 prints 1214 Lu 1215 Ll 1216 1217This returns the value of the Unicode property given by the second parameter 1218for the L</code point argument> given by the first. 1219 1220The passed-in property may be specified as any of the synonyms returned by 1221L</prop_aliases()>. 1222 1223The return value is always a scalar, either a string or a number. For 1224properties where there are synonyms for the values, the synonym returned by 1225this function is the longest, most descriptive form, the one returned by 1226L</prop_value_aliases()> when called in a scalar context. Of course, you can 1227call L</prop_value_aliases()> on the result to get other synonyms. 1228 1229The return values are more "cooked" than the L</charinfo()> ones. For 1230example, the C<"uc"> property value is the actual string containing the full 1231uppercase mapping of the input code point. You have to go to extra trouble 1232with C<charinfo> to get this value from its C<upper> hash element when the 1233full mapping differs from the simple one. 1234 1235Special note should be made of the return values for a few properties: 1236 1237=over 1238 1239=item Block 1240 1241The value returned is the new-style (see L</Old-style versus new-style block 1242names>). 1243 1244=item Decomposition_Mapping 1245 1246Like L</charinfo()>, the result may be an intermediate decomposition whose 1247components are also decomposable. Use L<Unicode::Normalize> to get the final 1248decomposition in one step. 1249 1250Unlike L</charinfo()>, this does not include the decomposition type. Use the 1251C<Decomposition_Type> property to get that. 1252 1253=item Name_Alias 1254 1255If the input code point's name has more than one synonym, they are returned 1256joined into a single comma-separated string. 1257 1258=item Numeric_Value 1259 1260If the result is a fraction, it is converted into a floating point number to 1261the accuracy of your platform. 1262 1263=item Script_Extensions 1264 1265If the result is multiple script names, they are returned joined into a single 1266comma-separated string. 1267 1268=back 1269 1270When called with a property that is a Perl extension that isn't expressible in 1271a compound form, this function currently returns C<undef>, as the only two 1272possible values are I<true> or I<false> (1 or 0 I suppose). This behavior may 1273change in the future, so don't write code that relies on it. C<Present_In> is 1274a Perl extension that is expressible in a bipartite or compound form (for 1275example, C<\p{Present_In=4.0}>), so C<charprop> accepts it. But C<Any> is a 1276Perl extension that isn't expressible that way, so C<charprop> returns 1277C<undef> for it. Also C<charprop> returns C<undef> for all Perl extensions 1278that are internal-only. 1279 1280=cut 1281 1282sub charprop ($$;$) { 1283 my ($input_cp, $prop, $internal_ok) = @_; 1284 1285 my $cp = _getcode($input_cp); 1286 croak __PACKAGE__, "::charprop: unknown code point '$input_cp'" unless defined $cp; 1287 1288 my ($list_ref, $map_ref, $format, $default) 1289 = prop_invmap($prop, $internal_ok); 1290 return undef unless defined $list_ref; 1291 1292 my $i = search_invlist($list_ref, $cp); 1293 croak __PACKAGE__, "::charprop: prop_invmap return is invalid for charprop('$input_cp', '$prop)" unless defined $i; 1294 1295 # $i is the index into both the inversion list and map of $cp. 1296 my $map = $map_ref->[$i]; 1297 1298 # Convert enumeration values to their most complete form. 1299 if (! ref $map) { 1300 my $long_form = prop_value_aliases($prop, $map); 1301 $map = $long_form if defined $long_form; 1302 } 1303 1304 if ($format =~ / ^ s /x) { # Scalars 1305 return join ",", @$map if ref $map; # Convert to scalar with comma 1306 # separated array elements 1307 1308 # Resolve ambiguity as to whether an all digit value is a code point 1309 # that should be converted to a character, or whether it is really 1310 # just a number. To do this, look at the default. If it is a 1311 # non-empty number, we can safely assume the result is also a number. 1312 if ($map =~ / ^ \d+ $ /ax && $default !~ / ^ \d+ $ /ax) { 1313 $map = chr $map; 1314 } 1315 elsif ($map =~ / ^ (?: Y | N ) $ /x) { 1316 1317 # prop_invmap() returns these values for properties that are Perl 1318 # extensions. But this is misleading. For now, return undef for 1319 # these, as currently documented. 1320 undef $map unless 1321 exists $prop_aliases{loose_name(lc $prop)}; 1322 } 1323 return $map; 1324 } 1325 elsif ($format eq 'ar') { # numbers, including rationals 1326 my $offset = $cp - $list_ref->[$i]; 1327 return $map if $map =~ /nan/i; 1328 return $map + $offset if $offset != 0; # If needs adjustment 1329 return eval $map; # Convert e.g., 1/2 to 0.5 1330 } 1331 elsif ($format =~ /^a/) { # Some entries need adjusting 1332 1333 # Linearize sequences into a string. 1334 return join "", map { chr $_ } @$map if ref $map; # XXX && $format =~ /^ a [dl] /x; 1335 1336 return "" if $map eq "" && $format =~ /^a.*e/; 1337 1338 # These are all character mappings. Return the chr if no adjustment 1339 # is needed 1340 return chr $cp if $map eq "0"; 1341 1342 # Convert special entry. 1343 if ($map eq '<hangul syllable>' && $format eq 'ad') { 1344 use Unicode::Normalize qw(NFD); 1345 return NFD(chr $cp); 1346 } 1347 1348 # The rest need adjustment from the first entry in the inversion list 1349 # corresponding to this map. 1350 my $offset = $cp - $list_ref->[$i]; 1351 return chr($map + $cp - $list_ref->[$i]); 1352 } 1353 elsif ($format eq 'n') { # The name property 1354 1355 # There are two special cases, handled here. 1356 if ($map =~ / ( .+ ) <code\ point> $ /x) { 1357 $map = sprintf("$1%04X", $cp); 1358 } 1359 elsif ($map eq '<hangul syllable>') { 1360 $map = charnames::viacode($cp); 1361 } 1362 return $map; 1363 } 1364 else { 1365 croak __PACKAGE__, "::charprop: Internal error: unknown format '$format'. Please perlbug this"; 1366 } 1367} 1368 1369=head2 B<charprops_all()> 1370 1371 use Unicode::UCD 'charprops_all'; 1372 1373 my $%properties_of_A_hash_ref = charprops_all("U+41"); 1374 1375This returns a reference to a hash whose keys are all the distinct Unicode (no 1376Perl extension) properties, and whose values are the respective values for 1377those properties for the input L</code point argument>. 1378 1379Each key is the property name in its longest, most descriptive form. The 1380values are what L</charprop()> would return. 1381 1382This function is expensive in time and memory. 1383 1384=cut 1385 1386sub charprops_all($) { 1387 my $input_cp = shift; 1388 1389 my $cp = _getcode($input_cp); 1390 croak __PACKAGE__, "::charprops_all: unknown code point '$input_cp'" unless defined $cp; 1391 1392 my %return; 1393 1394 require "unicore/UCD.pl"; 1395 1396 foreach my $prop (keys %prop_aliases) { 1397 1398 # Don't return a Perl extension. (This is the only one that 1399 # %prop_aliases has in it.) 1400 next if $prop eq 'perldecimaldigit'; 1401 1402 # Use long name for $prop in the hash 1403 $return{scalar prop_aliases($prop)} = charprop($cp, $prop); 1404 } 1405 1406 return \%return; 1407} 1408 1409=head2 B<charblock()> 1410 1411 use Unicode::UCD 'charblock'; 1412 1413 my $charblock = charblock(0x41); 1414 my $charblock = charblock(1234); 1415 my $charblock = charblock(0x263a); 1416 my $charblock = charblock("U+263a"); 1417 1418 my $range = charblock('Armenian'); 1419 1420With a L</code point argument> C<charblock()> returns the I<block> the code point 1421belongs to, e.g. C<Basic Latin>. The old-style block name is returned (see 1422L</Old-style versus new-style block names>). 1423The L</prop_value_aliases()> function can be used to get all the synonyms 1424of the block name. 1425 1426If the code point is unassigned, this returns the block it would belong to if 1427it were assigned. (If the Unicode version being used is so early as to not 1428have blocks, all code points are considered to be in C<No_Block>.) 1429 1430See also L</Blocks versus Scripts>. 1431 1432If supplied with an argument that can't be a code point, C<charblock()> tries to 1433do the opposite and interpret the argument as an old-style block name. On an 1434ASCII platform, the return value is a I<range set> with one range: an 1435anonymous array with a single element that consists of another anonymous array 1436whose first element is the first code point in the block, and whose second 1437element is the final code point in the block. On an EBCDIC 1438platform, the first two Unicode blocks are not contiguous. Their range sets 1439are lists containing I<start-of-range>, I<end-of-range> code point pairs. You 1440can test whether a code point is in a range set using the L</charinrange()> 1441function. (To be precise, each I<range set> contains a third array element, 1442after the range boundary ones: the old_style block name.) 1443 1444If the argument to C<charblock()> is not a known block, C<undef> is 1445returned. 1446 1447=cut 1448 1449my @BLOCKS; 1450my %BLOCKS; 1451 1452sub _charblocks { 1453 1454 # Can't read from the mktables table because it loses the hyphens in the 1455 # original. 1456 unless (@BLOCKS) { 1457 UnicodeVersion() unless defined $v_unicode_version; 1458 if ($v_unicode_version lt v2.0.0) { 1459 my $subrange = [ 0, 0x10FFFF, 'No_Block' ]; 1460 push @BLOCKS, $subrange; 1461 push @{$BLOCKS{'No_Block'}}, $subrange; 1462 } 1463 else { 1464 my $blocksfh = openunicode("Blocks.txt"); 1465 local $_; 1466 local $/ = "\n"; 1467 while (<$blocksfh>) { 1468 1469 # Old versions used a different syntax to mark the range. 1470 $_ =~ s/;\s+/../ if $v_unicode_version lt v3.1.0; 1471 1472 if (/^([0-9A-F]+)\.\.([0-9A-F]+);\s+(.+)/) { 1473 my ($lo, $hi) = (hex($1), hex($2)); 1474 my $subrange = [ $lo, $hi, $3 ]; 1475 push @BLOCKS, $subrange; 1476 push @{$BLOCKS{$3}}, $subrange; 1477 } 1478 } 1479 if (! IS_ASCII_PLATFORM) { 1480 # The first two blocks, through 0xFF, are wrong on EBCDIC 1481 # platforms. 1482 1483 my @new_blocks = _read_table("To/Blk.pl"); 1484 1485 # Get rid of the first two ranges in the Unicode version, and 1486 # replace them with the ones computed by mktables. 1487 shift @BLOCKS; 1488 shift @BLOCKS; 1489 delete $BLOCKS{'Basic Latin'}; 1490 delete $BLOCKS{'Latin-1 Supplement'}; 1491 1492 # But there are multiple entries in the computed versions, and 1493 # we change their names to (which we know) to be the old-style 1494 # ones. 1495 for my $i (0.. @new_blocks - 1) { 1496 if ($new_blocks[$i][2] =~ s/Basic_Latin/Basic Latin/ 1497 or $new_blocks[$i][2] =~ 1498 s/Latin_1_Supplement/Latin-1 Supplement/) 1499 { 1500 push @{$BLOCKS{$new_blocks[$i][2]}}, $new_blocks[$i]; 1501 } 1502 else { 1503 splice @new_blocks, $i; 1504 last; 1505 } 1506 } 1507 unshift @BLOCKS, @new_blocks; 1508 } 1509 } 1510 } 1511} 1512 1513sub charblock { 1514 my $arg = shift; 1515 1516 _charblocks() unless @BLOCKS; 1517 1518 my $code = _getcode($arg); 1519 1520 if (defined $code) { 1521 my $result = _search(\@BLOCKS, 0, $#BLOCKS, $code); 1522 return $result if defined $result; 1523 return 'No_Block'; 1524 } 1525 elsif (exists $BLOCKS{$arg}) { 1526 return _dclone $BLOCKS{$arg}; 1527 } 1528 1529 carp __PACKAGE__, "::charblock: unknown code '$arg'"; 1530 return; 1531} 1532 1533=head2 B<charscript()> 1534 1535 use Unicode::UCD 'charscript'; 1536 1537 my $charscript = charscript(0x41); 1538 my $charscript = charscript(1234); 1539 my $charscript = charscript("U+263a"); 1540 1541 my $range = charscript('Thai'); 1542 1543With a L</code point argument>, C<charscript()> returns the I<script> the 1544code point belongs to, e.g., C<Latin>, C<Greek>, C<Han>. 1545If the code point is unassigned or the Unicode version being used is so early 1546that it doesn't have scripts, this function returns C<"Unknown">. 1547The L</prop_value_aliases()> function can be used to get all the synonyms 1548of the script name. 1549 1550Note that the Script_Extensions property is an improved version of the Script 1551property, and you should probably be using that instead, with the 1552L</charprop()> function. 1553 1554If supplied with an argument that can't be a code point, charscript() tries 1555to do the opposite and interpret the argument as a script name. The 1556return value is a I<range set>: an anonymous array of arrays that contain 1557I<start-of-range>, I<end-of-range> code point pairs. You can test whether a 1558code point is in a range set using the L</charinrange()> function. 1559(To be precise, each I<range set> contains a third array element, 1560after the range boundary ones: the script name.) 1561 1562If the C<charscript()> argument is not a known script, C<undef> is returned. 1563 1564See also L</Blocks versus Scripts>. 1565 1566=cut 1567 1568my @SCRIPTS; 1569my %SCRIPTS; 1570 1571sub _charscripts { 1572 unless (@SCRIPTS) { 1573 UnicodeVersion() unless defined $v_unicode_version; 1574 if ($v_unicode_version lt v3.1.0) { 1575 push @SCRIPTS, [ 0, 0x10FFFF, 'Unknown' ]; 1576 } 1577 else { 1578 @SCRIPTS =_read_table("To/Sc.pl"); 1579 } 1580 } 1581 foreach my $entry (@SCRIPTS) { 1582 $entry->[2] =~ s/(_\w)/\L$1/g; # Preserve old-style casing 1583 push @{$SCRIPTS{$entry->[2]}}, $entry; 1584 } 1585} 1586 1587sub charscript { 1588 my $arg = shift; 1589 1590 _charscripts() unless @SCRIPTS; 1591 1592 my $code = _getcode($arg); 1593 1594 if (defined $code) { 1595 my $result = _search(\@SCRIPTS, 0, $#SCRIPTS, $code); 1596 return $result if defined $result; 1597 return $SwashInfo{'ToSc'}{'missing'}; 1598 } elsif (exists $SCRIPTS{$arg}) { 1599 return _dclone $SCRIPTS{$arg}; 1600 } 1601 1602 carp __PACKAGE__, "::charscript: unknown code '$arg'"; 1603 return; 1604} 1605 1606=head2 B<charblocks()> 1607 1608 use Unicode::UCD 'charblocks'; 1609 1610 my $charblocks = charblocks(); 1611 1612C<charblocks()> returns a reference to a hash with the known block names 1613as the keys, and the code point ranges (see L</charblock()>) as the values. 1614 1615The names are in the old-style (see L</Old-style versus new-style block 1616names>). 1617 1618L<prop_invmap("block")|/prop_invmap()> can be used to get this same data in a 1619different type of data structure. 1620 1621L<prop_values("Block")|/prop_values()> can be used to get all 1622the known new-style block names as a list, without the code point ranges. 1623 1624See also L</Blocks versus Scripts>. 1625 1626=cut 1627 1628sub charblocks { 1629 _charblocks() unless %BLOCKS; 1630 return _dclone \%BLOCKS; 1631} 1632 1633=head2 B<charscripts()> 1634 1635 use Unicode::UCD 'charscripts'; 1636 1637 my $charscripts = charscripts(); 1638 1639C<charscripts()> returns a reference to a hash with the known script 1640names as the keys, and the code point ranges (see L</charscript()>) as 1641the values. 1642 1643L<prop_invmap("script")|/prop_invmap()> can be used to get this same data in a 1644different type of data structure. Since the Script_Extensions property is an 1645improved version of the Script property, you should instead use 1646L<prop_invmap("scx")|/prop_invmap()>. 1647 1648L<C<prop_values("Script")>|/prop_values()> can be used to get all 1649the known script names as a list, without the code point ranges. 1650 1651See also L</Blocks versus Scripts>. 1652 1653=cut 1654 1655sub charscripts { 1656 _charscripts() unless %SCRIPTS; 1657 return _dclone \%SCRIPTS; 1658} 1659 1660=head2 B<charinrange()> 1661 1662In addition to using the C<\p{Blk=...}> and C<\P{Blk=...}> constructs, you 1663can also test whether a code point is in the I<range> as returned by 1664L</charblock()> and L</charscript()> or as the values of the hash returned 1665by L</charblocks()> and L</charscripts()> by using C<charinrange()>: 1666 1667 use Unicode::UCD qw(charscript charinrange); 1668 1669 $range = charscript('Hiragana'); 1670 print "looks like hiragana\n" if charinrange($range, $codepoint); 1671 1672=cut 1673 1674my %GENERAL_CATEGORIES = 1675 ( 1676 'L' => 'Letter', 1677 'LC' => 'CasedLetter', 1678 'Lu' => 'UppercaseLetter', 1679 'Ll' => 'LowercaseLetter', 1680 'Lt' => 'TitlecaseLetter', 1681 'Lm' => 'ModifierLetter', 1682 'Lo' => 'OtherLetter', 1683 'M' => 'Mark', 1684 'Mn' => 'NonspacingMark', 1685 'Mc' => 'SpacingMark', 1686 'Me' => 'EnclosingMark', 1687 'N' => 'Number', 1688 'Nd' => 'DecimalNumber', 1689 'Nl' => 'LetterNumber', 1690 'No' => 'OtherNumber', 1691 'P' => 'Punctuation', 1692 'Pc' => 'ConnectorPunctuation', 1693 'Pd' => 'DashPunctuation', 1694 'Ps' => 'OpenPunctuation', 1695 'Pe' => 'ClosePunctuation', 1696 'Pi' => 'InitialPunctuation', 1697 'Pf' => 'FinalPunctuation', 1698 'Po' => 'OtherPunctuation', 1699 'S' => 'Symbol', 1700 'Sm' => 'MathSymbol', 1701 'Sc' => 'CurrencySymbol', 1702 'Sk' => 'ModifierSymbol', 1703 'So' => 'OtherSymbol', 1704 'Z' => 'Separator', 1705 'Zs' => 'SpaceSeparator', 1706 'Zl' => 'LineSeparator', 1707 'Zp' => 'ParagraphSeparator', 1708 'C' => 'Other', 1709 'Cc' => 'Control', 1710 'Cf' => 'Format', 1711 'Cs' => 'Surrogate', 1712 'Co' => 'PrivateUse', 1713 'Cn' => 'Unassigned', 1714 ); 1715 1716sub general_categories { 1717 return _dclone \%GENERAL_CATEGORIES; 1718} 1719 1720=head2 B<general_categories()> 1721 1722 use Unicode::UCD 'general_categories'; 1723 1724 my $categories = general_categories(); 1725 1726This returns a reference to a hash which has short 1727general category names (such as C<Lu>, C<Nd>, C<Zs>, C<S>) as keys and long 1728names (such as C<UppercaseLetter>, C<DecimalNumber>, C<SpaceSeparator>, 1729C<Symbol>) as values. The hash is reversible in case you need to go 1730from the long names to the short names. The general category is the 1731one returned from 1732L</charinfo()> under the C<category> key. 1733 1734The L</prop_values()> and L</prop_value_aliases()> functions can be used as an 1735alternative to this function; the first returning a simple list of the short 1736category names; and the second gets all the synonyms of a given category name. 1737 1738=cut 1739 1740my %BIDI_TYPES = 1741 ( 1742 'L' => 'Left-to-Right', 1743 'LRE' => 'Left-to-Right Embedding', 1744 'LRO' => 'Left-to-Right Override', 1745 'R' => 'Right-to-Left', 1746 'AL' => 'Right-to-Left Arabic', 1747 'RLE' => 'Right-to-Left Embedding', 1748 'RLO' => 'Right-to-Left Override', 1749 'PDF' => 'Pop Directional Format', 1750 'EN' => 'European Number', 1751 'ES' => 'European Number Separator', 1752 'ET' => 'European Number Terminator', 1753 'AN' => 'Arabic Number', 1754 'CS' => 'Common Number Separator', 1755 'NSM' => 'Non-Spacing Mark', 1756 'BN' => 'Boundary Neutral', 1757 'B' => 'Paragraph Separator', 1758 'S' => 'Segment Separator', 1759 'WS' => 'Whitespace', 1760 'ON' => 'Other Neutrals', 1761 ); 1762 1763=head2 B<bidi_types()> 1764 1765 use Unicode::UCD 'bidi_types'; 1766 1767 my $categories = bidi_types(); 1768 1769This returns a reference to a hash which has the short 1770bidi (bidirectional) type names (such as C<L>, C<R>) as keys and long 1771names (such as C<Left-to-Right>, C<Right-to-Left>) as values. The 1772hash is reversible in case you need to go from the long names to the 1773short names. The bidi type is the one returned from 1774L</charinfo()> 1775under the C<bidi> key. For the exact meaning of the various bidi classes 1776the Unicode TR9 is recommended reading: 1777L<http://www.unicode.org/reports/tr9/> 1778(as of Unicode 5.0.0) 1779 1780The L</prop_values()> and L</prop_value_aliases()> functions can be used as an 1781alternative to this function; the first returning a simple list of the short 1782bidi type names; and the second gets all the synonyms of a given bidi type 1783name. 1784 1785=cut 1786 1787sub bidi_types { 1788 return _dclone \%BIDI_TYPES; 1789} 1790 1791=head2 B<compexcl()> 1792 1793WARNING: Unicode discourages the use of this function or any of the 1794alternative mechanisms listed in this section (the documentation of 1795C<compexcl()>), except internally in implementations of the Unicode 1796Normalization Algorithm. You should be using L<Unicode::Normalize> directly 1797instead of these. Using these will likely lead to half-baked results. 1798 1799 use Unicode::UCD 'compexcl'; 1800 1801 my $compexcl = compexcl(0x09dc); 1802 1803This routine returns C<undef> if the Unicode version being used is so early 1804that it doesn't have this property. 1805 1806C<compexcl()> is included for backwards 1807compatibility, but as of Perl 5.12 and more modern Unicode versions, for 1808most purposes it is probably more convenient to use one of the following 1809instead: 1810 1811 my $compexcl = chr(0x09dc) =~ /\p{Comp_Ex}; 1812 my $compexcl = chr(0x09dc) =~ /\p{Full_Composition_Exclusion}; 1813 1814or even 1815 1816 my $compexcl = chr(0x09dc) =~ /\p{CE}; 1817 my $compexcl = chr(0x09dc) =~ /\p{Composition_Exclusion}; 1818 1819The first two forms return B<true> if the L</code point argument> should not 1820be produced by composition normalization. For the final two forms to return 1821B<true>, it is additionally required that this fact not otherwise be 1822determinable from the Unicode data base. 1823 1824This routine behaves identically to the final two forms. That is, 1825it does not return B<true> if the code point has a decomposition 1826consisting of another single code point, nor if its decomposition starts 1827with a code point whose combining class is non-zero. Code points that meet 1828either of these conditions should also not be produced by composition 1829normalization, which is probably why you should use the 1830C<Full_Composition_Exclusion> property instead, as shown above. 1831 1832The routine returns B<false> otherwise. 1833 1834=cut 1835 1836# Eval'd so can run on versions earlier than the property is available in 1837my $Composition_Exclusion_re = eval 'qr/\p{Composition_Exclusion}/'; 1838 1839sub compexcl { 1840 my $arg = shift; 1841 my $code = _getcode($arg); 1842 croak __PACKAGE__, "::compexcl: unknown code '$arg'" 1843 unless defined $code; 1844 1845 UnicodeVersion() unless defined $v_unicode_version; 1846 return if $v_unicode_version lt v3.0.0; 1847 1848 no warnings "non_unicode"; # So works on non-Unicode code points 1849 return chr($code) =~ $Composition_Exclusion_re 1850} 1851 1852=head2 B<casefold()> 1853 1854 use Unicode::UCD 'casefold'; 1855 1856 my $casefold = casefold(0xDF); 1857 if (defined $casefold) { 1858 my @full_fold_hex = split / /, $casefold->{'full'}; 1859 my $full_fold_string = 1860 join "", map {chr(hex($_))} @full_fold_hex; 1861 my @turkic_fold_hex = 1862 split / /, ($casefold->{'turkic'} ne "") 1863 ? $casefold->{'turkic'} 1864 : $casefold->{'full'}; 1865 my $turkic_fold_string = 1866 join "", map {chr(hex($_))} @turkic_fold_hex; 1867 } 1868 if (defined $casefold && $casefold->{'simple'} ne "") { 1869 my $simple_fold_hex = $casefold->{'simple'}; 1870 my $simple_fold_string = chr(hex($simple_fold_hex)); 1871 } 1872 1873This returns the (almost) locale-independent case folding of the 1874character specified by the L</code point argument>. (Starting in Perl v5.16, 1875the core function C<fc()> returns the C<full> mapping (described below) 1876faster than this does, and for entire strings.) 1877 1878If there is no case folding for the input code point, C<undef> is returned. 1879 1880If there is a case folding for that code point, a reference to a hash 1881with the following fields is returned: 1882 1883=over 1884 1885=item B<code> 1886 1887the input native L</code point argument> expressed in hexadecimal, with 1888leading zeros 1889added if necessary to make it contain at least four hexdigits 1890 1891=item B<full> 1892 1893one or more codes (separated by spaces) that, taken in order, give the 1894code points for the case folding for I<code>. 1895Each has at least four hexdigits. 1896 1897=item B<simple> 1898 1899is empty, or is exactly one code with at least four hexdigits which can be used 1900as an alternative case folding when the calling program cannot cope with the 1901fold being a sequence of multiple code points. If I<full> is just one code 1902point, then I<simple> equals I<full>. If there is no single code point folding 1903defined for I<code>, then I<simple> is the empty string. Otherwise, it is an 1904inferior, but still better-than-nothing alternative folding to I<full>. 1905 1906=item B<mapping> 1907 1908is the same as I<simple> if I<simple> is not empty, and it is the same as I<full> 1909otherwise. It can be considered to be the simplest possible folding for 1910I<code>. It is defined primarily for backwards compatibility. 1911 1912=item B<status> 1913 1914is C<C> (for C<common>) if the best possible fold is a single code point 1915(I<simple> equals I<full> equals I<mapping>). It is C<S> if there are distinct 1916folds, I<simple> and I<full> (I<mapping> equals I<simple>). And it is C<F> if 1917there is only a I<full> fold (I<mapping> equals I<full>; I<simple> is empty). 1918Note that this 1919describes the contents of I<mapping>. It is defined primarily for backwards 1920compatibility. 1921 1922For Unicode versions between 3.1 and 3.1.1 inclusive, I<status> can also be 1923C<I> which is the same as C<C> but is a special case for dotted uppercase I and 1924dotless lowercase i: 1925 1926=over 1927 1928=item Z<>B<*> If you use this C<I> mapping 1929 1930the result is case-insensitive, 1931but dotless and dotted I's are not distinguished 1932 1933=item Z<>B<*> If you exclude this C<I> mapping 1934 1935the result is not fully case-insensitive, but 1936dotless and dotted I's are distinguished 1937 1938=back 1939 1940=item B<turkic> 1941 1942contains any special folding for Turkic languages. For versions of Unicode 1943starting with 3.2, this field is empty unless I<code> has a different folding 1944in Turkic languages, in which case it is one or more codes (separated by 1945spaces) that, taken in order, give the code points for the case folding for 1946I<code> in those languages. 1947Each code has at least four hexdigits. 1948Note that this folding does not maintain canonical equivalence without 1949additional processing. 1950 1951For Unicode versions between 3.1 and 3.1.1 inclusive, this field is empty unless 1952there is a 1953special folding for Turkic languages, in which case I<status> is C<I>, and 1954I<mapping>, I<full>, I<simple>, and I<turkic> are all equal. 1955 1956=back 1957 1958Programs that want complete generality and the best folding results should use 1959the folding contained in the I<full> field. But note that the fold for some 1960code points will be a sequence of multiple code points. 1961 1962Programs that can't cope with the fold mapping being multiple code points can 1963use the folding contained in the I<simple> field, with the loss of some 1964generality. In Unicode 5.1, about 7% of the defined foldings have no single 1965code point folding. 1966 1967The I<mapping> and I<status> fields are provided for backwards compatibility for 1968existing programs. They contain the same values as in previous versions of 1969this function. 1970 1971Locale is not completely independent. The I<turkic> field contains results to 1972use when the locale is a Turkic language. 1973 1974For more information about case mappings see 1975L<http://www.unicode.org/reports/tr21> 1976 1977=cut 1978 1979my %CASEFOLD; 1980 1981sub _casefold { 1982 unless (%CASEFOLD) { # Populate the hash 1983 my ($full_invlist_ref, $full_invmap_ref, undef, $default) 1984 = prop_invmap('Case_Folding'); 1985 1986 # Use the recipe given in the prop_invmap() pod to convert the 1987 # inversion map into the hash. 1988 for my $i (0 .. @$full_invlist_ref - 1 - 1) { 1989 next if $full_invmap_ref->[$i] == $default; 1990 my $adjust = -1; 1991 for my $j ($full_invlist_ref->[$i] .. $full_invlist_ref->[$i+1] -1) { 1992 $adjust++; 1993 if (! ref $full_invmap_ref->[$i]) { 1994 1995 # This is a single character mapping 1996 $CASEFOLD{$j}{'status'} = 'C'; 1997 $CASEFOLD{$j}{'simple'} 1998 = $CASEFOLD{$j}{'full'} 1999 = $CASEFOLD{$j}{'mapping'} 2000 = sprintf("%04X", $full_invmap_ref->[$i] + $adjust); 2001 $CASEFOLD{$j}{'code'} = sprintf("%04X", $j); 2002 $CASEFOLD{$j}{'turkic'} = ""; 2003 } 2004 else { # prop_invmap ensures that $adjust is 0 for a ref 2005 $CASEFOLD{$j}{'status'} = 'F'; 2006 $CASEFOLD{$j}{'full'} 2007 = $CASEFOLD{$j}{'mapping'} 2008 = join " ", map { sprintf "%04X", $_ } 2009 @{$full_invmap_ref->[$i]}; 2010 $CASEFOLD{$j}{'simple'} = ""; 2011 $CASEFOLD{$j}{'code'} = sprintf("%04X", $j); 2012 $CASEFOLD{$j}{'turkic'} = ""; 2013 } 2014 } 2015 } 2016 2017 # We have filled in the full mappings above, assuming there were no 2018 # simple ones for the ones with multi-character maps. Now, we find 2019 # and fix the cases where that assumption was false. 2020 (my ($simple_invlist_ref, $simple_invmap_ref, undef), $default) 2021 = prop_invmap('Simple_Case_Folding'); 2022 for my $i (0 .. @$simple_invlist_ref - 1 - 1) { 2023 next if $simple_invmap_ref->[$i] == $default; 2024 my $adjust = -1; 2025 for my $j ($simple_invlist_ref->[$i] 2026 .. $simple_invlist_ref->[$i+1] -1) 2027 { 2028 $adjust++; 2029 next if $CASEFOLD{$j}{'status'} eq 'C'; 2030 $CASEFOLD{$j}{'status'} = 'S'; 2031 $CASEFOLD{$j}{'simple'} 2032 = $CASEFOLD{$j}{'mapping'} 2033 = sprintf("%04X", $simple_invmap_ref->[$i] + $adjust); 2034 $CASEFOLD{$j}{'code'} = sprintf("%04X", $j); 2035 $CASEFOLD{$j}{'turkic'} = ""; 2036 } 2037 } 2038 2039 # We hard-code in the turkish rules 2040 UnicodeVersion() unless defined $v_unicode_version; 2041 if ($v_unicode_version ge v3.2.0) { 2042 2043 # These two code points should already have regular entries, so 2044 # just fill in the turkish fields 2045 $CASEFOLD{ord('I')}{'turkic'} = '0131'; 2046 $CASEFOLD{0x130}{'turkic'} = sprintf "%04X", ord('i'); 2047 } 2048 elsif ($v_unicode_version ge v3.1.0) { 2049 2050 # These two code points don't have entries otherwise. 2051 $CASEFOLD{0x130}{'code'} = '0130'; 2052 $CASEFOLD{0x131}{'code'} = '0131'; 2053 $CASEFOLD{0x130}{'status'} = $CASEFOLD{0x131}{'status'} = 'I'; 2054 $CASEFOLD{0x130}{'turkic'} 2055 = $CASEFOLD{0x130}{'mapping'} 2056 = $CASEFOLD{0x130}{'full'} 2057 = $CASEFOLD{0x130}{'simple'} 2058 = $CASEFOLD{0x131}{'turkic'} 2059 = $CASEFOLD{0x131}{'mapping'} 2060 = $CASEFOLD{0x131}{'full'} 2061 = $CASEFOLD{0x131}{'simple'} 2062 = sprintf "%04X", ord('i'); 2063 } 2064 } 2065} 2066 2067sub casefold { 2068 my $arg = shift; 2069 my $code = _getcode($arg); 2070 croak __PACKAGE__, "::casefold: unknown code '$arg'" 2071 unless defined $code; 2072 2073 _casefold() unless %CASEFOLD; 2074 2075 return $CASEFOLD{$code}; 2076} 2077 2078=head2 B<all_casefolds()> 2079 2080 2081 use Unicode::UCD 'all_casefolds'; 2082 2083 my $all_folds_ref = all_casefolds(); 2084 foreach my $char_with_casefold (sort { $a <=> $b } 2085 keys %$all_folds_ref) 2086 { 2087 printf "%04X:", $char_with_casefold; 2088 my $casefold = $all_folds_ref->{$char_with_casefold}; 2089 2090 # Get folds for $char_with_casefold 2091 2092 my @full_fold_hex = split / /, $casefold->{'full'}; 2093 my $full_fold_string = 2094 join "", map {chr(hex($_))} @full_fold_hex; 2095 print " full=", join " ", @full_fold_hex; 2096 my @turkic_fold_hex = 2097 split / /, ($casefold->{'turkic'} ne "") 2098 ? $casefold->{'turkic'} 2099 : $casefold->{'full'}; 2100 my $turkic_fold_string = 2101 join "", map {chr(hex($_))} @turkic_fold_hex; 2102 print "; turkic=", join " ", @turkic_fold_hex; 2103 if (defined $casefold && $casefold->{'simple'} ne "") { 2104 my $simple_fold_hex = $casefold->{'simple'}; 2105 my $simple_fold_string = chr(hex($simple_fold_hex)); 2106 print "; simple=$simple_fold_hex"; 2107 } 2108 print "\n"; 2109 } 2110 2111This returns all the case foldings in the current version of Unicode in the 2112form of a reference to a hash. Each key to the hash is the decimal 2113representation of a Unicode character that has a casefold to other than 2114itself. The casefold of a semi-colon is itself, so it isn't in the hash; 2115likewise for a lowercase "a", but there is an entry for a capital "A". The 2116hash value for each key is another hash, identical to what is returned by 2117L</casefold()> if called with that code point as its argument. So the value 2118C<< all_casefolds()->{ord("A")}' >> is equivalent to C<casefold(ord("A"))>; 2119 2120=cut 2121 2122sub all_casefolds () { 2123 _casefold() unless %CASEFOLD; 2124 return _dclone \%CASEFOLD; 2125} 2126 2127=head2 B<casespec()> 2128 2129 use Unicode::UCD 'casespec'; 2130 2131 my $casespec = casespec(0xFB00); 2132 2133This returns the potentially locale-dependent case mappings of the L</code point 2134argument>. The mappings may be longer than a single code point (which the basic 2135Unicode case mappings as returned by L</charinfo()> never are). 2136 2137If there are no case mappings for the L</code point argument>, or if all three 2138possible mappings (I<lower>, I<title> and I<upper>) result in single code 2139points and are locale independent and unconditional, C<undef> is returned 2140(which means that the case mappings, if any, for the code point are those 2141returned by L</charinfo()>). 2142 2143Otherwise, a reference to a hash giving the mappings (or a reference to a hash 2144of such hashes, explained below) is returned with the following keys and their 2145meanings: 2146 2147The keys in the bottom layer hash with the meanings of their values are: 2148 2149=over 2150 2151=item B<code> 2152 2153the input native L</code point argument> expressed in hexadecimal, with 2154leading zeros 2155added if necessary to make it contain at least four hexdigits 2156 2157=item B<lower> 2158 2159one or more codes (separated by spaces) that, taken in order, give the 2160code points for the lower case of I<code>. 2161Each has at least four hexdigits. 2162 2163=item B<title> 2164 2165one or more codes (separated by spaces) that, taken in order, give the 2166code points for the title case of I<code>. 2167Each has at least four hexdigits. 2168 2169=item B<upper> 2170 2171one or more codes (separated by spaces) that, taken in order, give the 2172code points for the upper case of I<code>. 2173Each has at least four hexdigits. 2174 2175=item B<condition> 2176 2177the conditions for the mappings to be valid. 2178If C<undef>, the mappings are always valid. 2179When defined, this field is a list of conditions, 2180all of which must be true for the mappings to be valid. 2181The list consists of one or more 2182I<locales> (see below) 2183and/or I<contexts> (explained in the next paragraph), 2184separated by spaces. 2185(Other than as used to separate elements, spaces are to be ignored.) 2186Case distinctions in the condition list are not significant. 2187Conditions preceded by "NON_" represent the negation of the condition. 2188 2189A I<context> is one of those defined in the Unicode standard. 2190For Unicode 5.1, they are defined in Section 3.13 C<Default Case Operations> 2191available at 2192L<http://www.unicode.org/versions/Unicode5.1.0/>. 2193These are for context-sensitive casing. 2194 2195=back 2196 2197The hash described above is returned for locale-independent casing, where 2198at least one of the mappings has length longer than one. If C<undef> is 2199returned, the code point may have mappings, but if so, all are length one, 2200and are returned by L</charinfo()>. 2201Note that when this function does return a value, it will be for the complete 2202set of mappings for a code point, even those whose length is one. 2203 2204If there are additional casing rules that apply only in certain locales, 2205an additional key for each will be defined in the returned hash. Each such key 2206will be its locale name, defined as a 2-letter ISO 3166 country code, possibly 2207followed by a "_" and a 2-letter ISO language code (possibly followed by a "_" 2208and a variant code). You can find the lists of all possible locales, see 2209L<Locale::Country> and L<Locale::Language>. 2210(In Unicode 6.0, the only locales returned by this function 2211are C<lt>, C<tr>, and C<az>.) 2212 2213Each locale key is a reference to a hash that has the form above, and gives 2214the casing rules for that particular locale, which take precedence over the 2215locale-independent ones when in that locale. 2216 2217If the only casing for a code point is locale-dependent, then the returned 2218hash will not have any of the base keys, like C<code>, C<upper>, etc., but 2219will contain only locale keys. 2220 2221For more information about case mappings see 2222L<http://www.unicode.org/reports/tr21/> 2223 2224=cut 2225 2226my %CASESPEC; 2227 2228sub _casespec { 2229 unless (%CASESPEC) { 2230 UnicodeVersion() unless defined $v_unicode_version; 2231 if ($v_unicode_version ge v2.1.8) { 2232 my $casespecfh = openunicode("SpecialCasing.txt"); 2233 local $_; 2234 local $/ = "\n"; 2235 while (<$casespecfh>) { 2236 if (/^([0-9A-F]+); ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; (\w+(?: \w+)*)?/) { 2237 2238 my ($hexcode, $lower, $title, $upper, $condition) = 2239 ($1, $2, $3, $4, $5); 2240 if (! IS_ASCII_PLATFORM) { # Remap entry to native 2241 foreach my $var_ref (\$hexcode, 2242 \$lower, 2243 \$title, 2244 \$upper) 2245 { 2246 next unless defined $$var_ref; 2247 $$var_ref = join " ", 2248 map { sprintf("%04X", 2249 utf8::unicode_to_native(hex $_)) } 2250 split " ", $$var_ref; 2251 } 2252 } 2253 2254 my $code = hex($hexcode); 2255 2256 # In 2.1.8, there were duplicate entries; ignore all but 2257 # the first one -- there were no conditions in the file 2258 # anyway. 2259 if (exists $CASESPEC{$code} && $v_unicode_version ne v2.1.8) 2260 { 2261 if (exists $CASESPEC{$code}->{code}) { 2262 my ($oldlower, 2263 $oldtitle, 2264 $oldupper, 2265 $oldcondition) = 2266 @{$CASESPEC{$code}}{qw(lower 2267 title 2268 upper 2269 condition)}; 2270 if (defined $oldcondition) { 2271 my ($oldlocale) = 2272 ($oldcondition =~ /^([a-z][a-z](?:_\S+)?)/); 2273 delete $CASESPEC{$code}; 2274 $CASESPEC{$code}->{$oldlocale} = 2275 { code => $hexcode, 2276 lower => $oldlower, 2277 title => $oldtitle, 2278 upper => $oldupper, 2279 condition => $oldcondition }; 2280 } 2281 } 2282 my ($locale) = 2283 ($condition =~ /^([a-z][a-z](?:_\S+)?)/); 2284 $CASESPEC{$code}->{$locale} = 2285 { code => $hexcode, 2286 lower => $lower, 2287 title => $title, 2288 upper => $upper, 2289 condition => $condition }; 2290 } else { 2291 $CASESPEC{$code} = 2292 { code => $hexcode, 2293 lower => $lower, 2294 title => $title, 2295 upper => $upper, 2296 condition => $condition }; 2297 } 2298 } 2299 } 2300 } 2301 } 2302} 2303 2304sub casespec { 2305 my $arg = shift; 2306 my $code = _getcode($arg); 2307 croak __PACKAGE__, "::casespec: unknown code '$arg'" 2308 unless defined $code; 2309 2310 _casespec() unless %CASESPEC; 2311 2312 return ref $CASESPEC{$code} ? _dclone $CASESPEC{$code} : $CASESPEC{$code}; 2313} 2314 2315=head2 B<namedseq()> 2316 2317 use Unicode::UCD 'namedseq'; 2318 2319 my $namedseq = namedseq("KATAKANA LETTER AINU P"); 2320 my @namedseq = namedseq("KATAKANA LETTER AINU P"); 2321 my %namedseq = namedseq(); 2322 2323If used with a single argument in a scalar context, returns the string 2324consisting of the code points of the named sequence, or C<undef> if no 2325named sequence by that name exists. If used with a single argument in 2326a list context, it returns the list of the ordinals of the code points. 2327 2328If used with no 2329arguments in a list context, it returns a hash with the names of all the 2330named sequences as the keys and their sequences as strings as 2331the values. Otherwise, it returns C<undef> or an empty list depending 2332on the context. 2333 2334This function only operates on officially approved (not provisional) named 2335sequences. 2336 2337Note that as of Perl 5.14, C<\N{KATAKANA LETTER AINU P}> will insert the named 2338sequence into double-quoted strings, and C<charnames::string_vianame("KATAKANA 2339LETTER AINU P")> will return the same string this function does, but will also 2340operate on character names that aren't named sequences, without you having to 2341know which are which. See L<charnames>. 2342 2343=cut 2344 2345my %NAMEDSEQ; 2346 2347sub _namedseq { 2348 unless (%NAMEDSEQ) { 2349 my @list = split "\n", do "unicore/Name.pl"; 2350 for (my $i = 0; $i < @list; $i += 3) { 2351 # Each entry is currently three lines. The first contains the code 2352 # points in the sequence separated by spaces. If this entry 2353 # doesn't have spaces, it isn't a named sequence. 2354 next unless $list[$i] =~ /^ [0-9A-F]{4,5} (?: \ [0-9A-F]{4,5} )+ $ /x; 2355 2356 my $sequence = $list[$i]; 2357 chomp $sequence; 2358 2359 # And the second is the name 2360 my $name = $list[$i+1]; 2361 chomp $name; 2362 my @s = map { chr(hex($_)) } split(' ', $sequence); 2363 $NAMEDSEQ{$name} = join("", @s); 2364 2365 # And the third is empty 2366 } 2367 } 2368} 2369 2370sub namedseq { 2371 2372 # Use charnames::string_vianame() which now returns this information, 2373 # unless the caller wants the hash returned, in which case we read it in, 2374 # and thereafter use it instead of calling charnames, as it is faster. 2375 2376 my $wantarray = wantarray(); 2377 if (defined $wantarray) { 2378 if ($wantarray) { 2379 if (@_ == 0) { 2380 _namedseq() unless %NAMEDSEQ; 2381 return %NAMEDSEQ; 2382 } elsif (@_ == 1) { 2383 my $s; 2384 if (%NAMEDSEQ) { 2385 $s = $NAMEDSEQ{ $_[0] }; 2386 } 2387 else { 2388 $s = charnames::string_vianame($_[0]); 2389 } 2390 return defined $s ? map { ord($_) } split('', $s) : (); 2391 } 2392 } elsif (@_ == 1) { 2393 return $NAMEDSEQ{ $_[0] } if %NAMEDSEQ; 2394 return charnames::string_vianame($_[0]); 2395 } 2396 } 2397 return; 2398} 2399 2400my %NUMERIC; 2401 2402sub _numeric { 2403 my @numbers = _read_table("To/Nv.pl"); 2404 foreach my $entry (@numbers) { 2405 my ($start, $end, $value) = @$entry; 2406 2407 # If value contains a slash, convert to decimal, add a reverse hash 2408 # used by charinfo. 2409 if ((my @rational = split /\//, $value) == 2) { 2410 my $real = $rational[0] / $rational[1]; 2411 $real_to_rational{$real} = $value; 2412 $value = $real; 2413 2414 # Should only be single element, but just in case... 2415 for my $i ($start .. $end) { 2416 $NUMERIC{$i} = $value; 2417 } 2418 } 2419 else { 2420 # The values require adjusting, as is in 'a' format 2421 for my $i ($start .. $end) { 2422 $NUMERIC{$i} = $value + $i - $start; 2423 } 2424 } 2425 } 2426 2427 # Decided unsafe to use these that aren't officially part of the Unicode 2428 # standard. 2429 #use Math::Trig; 2430 #my $pi = acos(-1.0); 2431 #$NUMERIC{0x03C0} = $pi; 2432 2433 # Euler's constant, not to be confused with Euler's number 2434 #$NUMERIC{0x2107} = 0.57721566490153286060651209008240243104215933593992; 2435 2436 # Euler's number 2437 #$NUMERIC{0x212F} = 2.7182818284590452353602874713526624977572; 2438 2439 return; 2440} 2441 2442=pod 2443 2444=head2 B<num()> 2445 2446 use Unicode::UCD 'num'; 2447 2448 my $val = num("123"); 2449 my $one_quarter = num("\N{VULGAR FRACTION ONE QUARTER}"); 2450 my $val = num("12a", \$valid_length); # $valid_length contains 2 2451 2452C<num()> returns the numeric value of the input Unicode string; or C<undef> if it 2453doesn't think the entire string has a completely valid, safe numeric value. 2454If called with an optional second parameter, a reference to a scalar, C<num()> 2455will set the scalar to the length of any valid initial substring; or to 0 if none. 2456 2457If the string is just one character in length, the Unicode numeric value 2458is returned if it has one, or C<undef> otherwise. If the optional scalar ref 2459is passed, it would be set to 1 if the return is valid; or 0 if the return is 2460C<undef>. Note that the numeric value returned need not be a whole number. 2461C<num("\N{TIBETAN DIGIT HALF ZERO}")>, for example returns -0.5. 2462 2463=cut 2464 2465#A few characters to which Unicode doesn't officially 2466#assign a numeric value are considered numeric by C<num>. 2467#These are: 2468 2469# EULER CONSTANT 0.5772... (this is NOT Euler's number) 2470# SCRIPT SMALL E 2.71828... (this IS Euler's number) 2471# GREEK SMALL LETTER PI 3.14159... 2472 2473=pod 2474 2475If the string is more than one character, C<undef> is returned unless 2476all its characters are decimal digits (that is, they would match C<\d+>), 2477from the same script. For example if you have an ASCII '0' and a Bengali 2478'3', mixed together, they aren't considered a valid number, and C<undef> 2479is returned. A further restriction is that the digits all have to be of 2480the same form. A half-width digit mixed with a full-width one will 2481return C<undef>. The Arabic script has two sets of digits; C<num> will 2482return C<undef> unless all the digits in the string come from the same 2483set. In all cases, the optional scalar ref parameter is set to how 2484long any valid initial substring of digits is; hence it will be set to the 2485entire string length if the main return value is not C<undef>. 2486 2487C<num> errs on the side of safety, and there may be valid strings of 2488decimal digits that it doesn't recognize. Note that Unicode defines 2489a number of "digit" characters that aren't "decimal digit" characters. 2490"Decimal digits" have the property that they have a positional value, i.e., 2491there is a units position, a 10's position, a 100's, etc, AND they are 2492arranged in Unicode in blocks of 10 contiguous code points. The Chinese 2493digits, for example, are not in such a contiguous block, and so Unicode 2494doesn't view them as decimal digits, but merely digits, and so C<\d> will not 2495match them. A single-character string containing one of these digits will 2496have its decimal value returned by C<num>, but any longer string containing 2497only these digits will return C<undef>. 2498 2499Strings of multiple sub- and superscripts are not recognized as numbers. You 2500can use either of the compatibility decompositions in Unicode::Normalize to 2501change these into digits, and then call C<num> on the result. 2502 2503=cut 2504 2505# To handle sub, superscripts, this could if called in list context, 2506# consider those, and return the <decomposition> type in the second 2507# array element. 2508 2509sub num ($;$) { 2510 my ($string, $retlen_ref) = @_; 2511 2512 use feature 'unicode_strings'; 2513 2514 _numeric unless %NUMERIC; 2515 $$retlen_ref = 0 if $retlen_ref; # Assume will fail 2516 2517 my $length = length $string; 2518 return if $length == 0; 2519 2520 my $first_ord = ord(substr($string, 0, 1)); 2521 return if ! exists $NUMERIC{$first_ord} 2522 || ! defined $NUMERIC{$first_ord}; 2523 2524 # Here, we know the first character is numeric 2525 my $value = $NUMERIC{$first_ord}; 2526 $$retlen_ref = 1 if $retlen_ref; # Assume only this one is numeric 2527 2528 return $value if $length == 1; 2529 2530 # Here, the input is longer than a single character. To be valid, it must 2531 # be entirely decimal digits, which means it must start with one. 2532 return if $string =~ / ^ \D /x; 2533 2534 # To be a valid decimal number, it should be in a block of 10 consecutive 2535 # characters, whose values are 0, 1, 2, ... 9. Therefore this digit's 2536 # value is its offset in that block from the character that means zero. 2537 my $zero_ord = $first_ord - $value; 2538 2539 # Unicode 6.0 instituted the rule that only digits in a consecutive 2540 # block of 10 would be considered decimal digits. If this is an earlier 2541 # release, we verify that this first character is a member of such a 2542 # block. That is, that the block of characters surrounding this one 2543 # consists of all \d characters whose numeric values are the expected 2544 # ones. If not, then this single character is numeric, but the string as 2545 # a whole is not considered to be. 2546 UnicodeVersion() unless defined $v_unicode_version; 2547 if ($v_unicode_version lt v6.0.0) { 2548 for my $i (0 .. 9) { 2549 my $ord = $zero_ord + $i; 2550 return unless chr($ord) =~ /\d/; 2551 my $numeric = $NUMERIC{$ord}; 2552 return unless defined $numeric; 2553 return unless $numeric == $i; 2554 } 2555 } 2556 2557 for my $i (1 .. $length -1) { 2558 2559 # Here we know either by verifying, or by fact of the first character 2560 # being a \d in Unicode 6.0 or later, that any character between the 2561 # character that means 0, and 9 positions above it must be \d, and 2562 # must have its value correspond to its offset from the zero. Any 2563 # characters outside these 10 do not form a legal number for this 2564 # function. 2565 my $ord = ord(substr($string, $i, 1)); 2566 my $digit = $ord - $zero_ord; 2567 if ($digit < 0 || $digit > 9) { 2568 $$retlen_ref = $i if $retlen_ref; 2569 return; 2570 } 2571 $value = $value * 10 + $digit; 2572 } 2573 2574 $$retlen_ref = $length if $retlen_ref; 2575 return $value; 2576} 2577 2578=pod 2579 2580=head2 B<prop_aliases()> 2581 2582 use Unicode::UCD 'prop_aliases'; 2583 2584 my ($short_name, $full_name, @other_names) = prop_aliases("space"); 2585 my $same_full_name = prop_aliases("Space"); # Scalar context 2586 my ($same_short_name) = prop_aliases("Space"); # gets 0th element 2587 print "The full name is $full_name\n"; 2588 print "The short name is $short_name\n"; 2589 print "The other aliases are: ", join(", ", @other_names), "\n"; 2590 2591 prints: 2592 The full name is White_Space 2593 The short name is WSpace 2594 The other aliases are: Space 2595 2596Most Unicode properties have several synonymous names. Typically, there is at 2597least a short name, convenient to type, and a long name that more fully 2598describes the property, and hence is more easily understood. 2599 2600If you know one name for a Unicode property, you can use C<prop_aliases> to find 2601either the long name (when called in scalar context), or a list of all of the 2602names, somewhat ordered so that the short name is in the 0th element, the long 2603name in the next element, and any other synonyms are in the remaining 2604elements, in no particular order. 2605 2606The long name is returned in a form nicely capitalized, suitable for printing. 2607 2608The input parameter name is loosely matched, which means that white space, 2609hyphens, and underscores are ignored (except for the trailing underscore in 2610the old_form grandfathered-in C<"L_">, which is better written as C<"LC">, and 2611both of which mean C<General_Category=Cased Letter>). 2612 2613If the name is unknown, C<undef> is returned (or an empty list in list 2614context). Note that Perl typically recognizes property names in regular 2615expressions with an optional C<"Is_>" (with or without the underscore) 2616prefixed to them, such as C<\p{isgc=punct}>. This function does not recognize 2617those in the input, returning C<undef>. Nor are they included in the output 2618as possible synonyms. 2619 2620C<prop_aliases> does know about the Perl extensions to Unicode properties, 2621such as C<Any> and C<XPosixAlpha>, and the single form equivalents to Unicode 2622properties such as C<XDigit>, C<Greek>, C<In_Greek>, and C<Is_Greek>. The 2623final example demonstrates that the C<"Is_"> prefix is recognized for these 2624extensions; it is needed to resolve ambiguities. For example, 2625C<prop_aliases('lc')> returns the list C<(lc, Lowercase_Mapping)>, but 2626C<prop_aliases('islc')> returns C<(Is_LC, Cased_Letter)>. This is 2627because C<islc> is a Perl extension which is short for 2628C<General_Category=Cased Letter>. The lists returned for the Perl extensions 2629will not include the C<"Is_"> prefix (whether or not the input had it) unless 2630needed to resolve ambiguities, as shown in the C<"islc"> example, where the 2631returned list had one element containing C<"Is_">, and the other without. 2632 2633It is also possible for the reverse to happen: C<prop_aliases('isc')> returns 2634the list C<(isc, ISO_Comment)>; whereas C<prop_aliases('c')> returns 2635C<(C, Other)> (the latter being a Perl extension meaning 2636C<General_Category=Other>. 2637L<perluniprops/Properties accessible through Unicode::UCD> lists the available 2638forms, including which ones are discouraged from use. 2639 2640Those discouraged forms are accepted as input to C<prop_aliases>, but are not 2641returned in the lists. C<prop_aliases('isL&')> and C<prop_aliases('isL_')>, 2642which are old synonyms for C<"Is_LC"> and should not be used in new code, are 2643examples of this. These both return C<(Is_LC, Cased_Letter)>. Thus this 2644function allows you to take a discouraged form, and find its acceptable 2645alternatives. The same goes with single-form Block property equivalences. 2646Only the forms that begin with C<"In_"> are not discouraged; if you pass 2647C<prop_aliases> a discouraged form, you will get back the equivalent ones that 2648begin with C<"In_">. It will otherwise look like a new-style block name (see. 2649L</Old-style versus new-style block names>). 2650 2651C<prop_aliases> does not know about any user-defined properties, and will 2652return C<undef> if called with one of those. Likewise for Perl internal 2653properties, with the exception of "Perl_Decimal_Digit" which it does know 2654about (and which is documented below in L</prop_invmap()>). 2655 2656=cut 2657 2658# It may be that there are use cases where the discouraged forms should be 2659# returned. If that comes up, an optional boolean second parameter to the 2660# function could be created, for example. 2661 2662# These are created by mktables for this routine and stored in unicore/UCD.pl 2663# where their structures are described. 2664our %string_property_loose_to_name; 2665our %ambiguous_names; 2666our %loose_perlprop_to_name; 2667 2668sub prop_aliases ($) { 2669 my $prop = $_[0]; 2670 return unless defined $prop; 2671 2672 require "unicore/UCD.pl"; 2673 2674 # The property name may be loosely or strictly matched; we don't know yet. 2675 # But both types use lower-case. 2676 $prop = lc $prop; 2677 2678 # It is loosely matched if its lower case isn't known to be strict. 2679 my $list_ref; 2680 if (! exists $stricter_to_file_of{$prop}) { 2681 my $loose = loose_name($prop); 2682 2683 # There is a hash that converts from any loose name to its standard 2684 # form, mapping all synonyms for a name to one name that can be used 2685 # as a key into another hash. The whole concept is for memory 2686 # savings, as the second hash doesn't have to have all the 2687 # combinations. Actually, there are two hashes that do the 2688 # conversion. One is stored in UCD.pl) for looking up properties 2689 # matchable in regexes. This function needs to access string 2690 # properties, which aren't available in regexes, so a second 2691 # conversion hash is made for them (stored in UCD.pl). Look in the 2692 # string one now, as the rest can have an optional 'is' prefix, which 2693 # these don't. 2694 if (exists $string_property_loose_to_name{$loose}) { 2695 2696 # Convert to its standard loose name. 2697 $prop = $string_property_loose_to_name{$loose}; 2698 } 2699 else { 2700 my $retrying = 0; # bool. ? Has an initial 'is' been stripped 2701 RETRY: 2702 if (exists $loose_property_name_of{$loose} 2703 && (! $retrying 2704 || ! exists $ambiguous_names{$loose})) 2705 { 2706 # Found an entry giving the standard form. We don't get here 2707 # (in the test above) when we've stripped off an 2708 # 'is' and the result is an ambiguous name. That is because 2709 # these are official Unicode properties (though Perl can have 2710 # an optional 'is' prefix meaning the official property), and 2711 # all ambiguous cases involve a Perl single-form extension 2712 # for the gc, script, or block properties, and the stripped 2713 # 'is' means that they mean one of those, and not one of 2714 # these 2715 $prop = $loose_property_name_of{$loose}; 2716 } 2717 elsif (exists $loose_perlprop_to_name{$loose}) { 2718 2719 # This hash is specifically for this function to list Perl 2720 # extensions that aren't in the earlier hashes. If there is 2721 # only one element, the short and long names are identical. 2722 # Otherwise the form is already in the same form as 2723 # %prop_aliases, which is handled at the end of the function. 2724 $list_ref = $loose_perlprop_to_name{$loose}; 2725 if (@$list_ref == 1) { 2726 my @list = ($list_ref->[0], $list_ref->[0]); 2727 $list_ref = \@list; 2728 } 2729 } 2730 elsif (! exists $loose_to_file_of{$loose}) { 2731 2732 # loose_to_file_of is a complete list of loose names. If not 2733 # there, the input is unknown. 2734 return; 2735 } 2736 elsif ($loose =~ / [:=] /x) { 2737 2738 # Here we found the name but not its aliases, so it has to 2739 # exist. Exclude property-value combinations. (This shows up 2740 # for something like ccc=vr which matches loosely, but is a 2741 # synonym for ccc=9 which matches only strictly. 2742 return; 2743 } 2744 else { 2745 2746 # Here it has to exist, and isn't a property-value 2747 # combination. This means it must be one of the Perl 2748 # single-form extensions. First see if it is for a 2749 # property-value combination in one of the following 2750 # properties. 2751 my @list; 2752 foreach my $property ("gc", "script") { 2753 @list = prop_value_aliases($property, $loose); 2754 last if @list; 2755 } 2756 if (@list) { 2757 2758 # Here, it is one of those property-value combination 2759 # single-form synonyms. There are ambiguities with some 2760 # of these. Check against the list for these, and adjust 2761 # if necessary. 2762 for my $i (0 .. @list -1) { 2763 if (exists $ambiguous_names 2764 {loose_name(lc $list[$i])}) 2765 { 2766 # The ambiguity is resolved by toggling whether or 2767 # not it has an 'is' prefix 2768 $list[$i] =~ s/^Is_// or $list[$i] =~ s/^/Is_/; 2769 } 2770 } 2771 return @list; 2772 } 2773 2774 # Here, it wasn't one of the gc or script single-form 2775 # extensions. It could be a block property single-form 2776 # extension. An 'in' prefix definitely means that, and should 2777 # be looked up without the prefix. However, starting in 2778 # Unicode 6.1, we have to special case 'indic...', as there 2779 # is a property that begins with that name. We shouldn't 2780 # strip the 'in' from that. I'm (khw) generalizing this to 2781 # 'indic' instead of the single property, because I suspect 2782 # that others of this class may come along in the future. 2783 # However, this could backfire and a block created whose name 2784 # begins with 'dic...', and we would want to strip the 'in'. 2785 # At which point this would have to be tweaked. 2786 my $began_with_in = $loose =~ s/^in(?!dic)//; 2787 @list = prop_value_aliases("block", $loose); 2788 if (@list) { 2789 map { $_ =~ s/^/In_/ } @list; 2790 return @list; 2791 } 2792 2793 # Here still haven't found it. The last opportunity for it 2794 # being valid is only if it began with 'is'. We retry without 2795 # the 'is', setting a flag to that effect so that we don't 2796 # accept things that begin with 'isis...' 2797 if (! $retrying && ! $began_with_in && $loose =~ s/^is//) { 2798 $retrying = 1; 2799 goto RETRY; 2800 } 2801 2802 # Here, didn't find it. Since it was in %loose_to_file_of, we 2803 # should have been able to find it. 2804 carp __PACKAGE__, "::prop_aliases: Unexpectedly could not find '$prop'. Send bug report to perlbug\@perl.org"; 2805 return; 2806 } 2807 } 2808 } 2809 2810 if (! $list_ref) { 2811 # Here, we have set $prop to a standard form name of the input. Look 2812 # it up in the structure created by mktables for this purpose, which 2813 # contains both strict and loosely matched properties. Avoid 2814 # autovivifying. 2815 $list_ref = $prop_aliases{$prop} if exists $prop_aliases{$prop}; 2816 return unless $list_ref; 2817 } 2818 2819 # The full name is in element 1. 2820 return $list_ref->[1] unless wantarray; 2821 2822 return @{_dclone $list_ref}; 2823} 2824 2825=pod 2826 2827=head2 B<prop_values()> 2828 2829 use Unicode::UCD 'prop_values'; 2830 2831 print "AHex values are: ", join(", ", prop_values("AHex")), 2832 "\n"; 2833 prints: 2834 AHex values are: N, Y 2835 2836Some Unicode properties have a restricted set of legal values. For example, 2837all binary properties are restricted to just C<true> or C<false>; and there 2838are only a few dozen possible General Categories. Use C<prop_values> 2839to find out if a given property is one such, and if so, to get a list of the 2840values: 2841 2842 print join ", ", prop_values("NFC_Quick_Check"); 2843 prints: 2844 M, N, Y 2845 2846If the property doesn't have such a restricted set, C<undef> is returned. 2847 2848There are usually several synonyms for each possible value. Use 2849L</prop_value_aliases()> to access those. 2850 2851Case, white space, hyphens, and underscores are ignored in the input property 2852name (except for the trailing underscore in the old-form grandfathered-in 2853general category property value C<"L_">, which is better written as C<"LC">). 2854 2855If the property name is unknown, C<undef> is returned. Note that Perl typically 2856recognizes property names in regular expressions with an optional C<"Is_>" 2857(with or without the underscore) prefixed to them, such as C<\p{isgc=punct}>. 2858This function does not recognize those in the property parameter, returning 2859C<undef>. 2860 2861For the block property, new-style block names are returned (see 2862L</Old-style versus new-style block names>). 2863 2864C<prop_values> does not know about any user-defined properties, and 2865will return C<undef> if called with one of those. 2866 2867=cut 2868 2869# These are created by mktables for this module and stored in unicore/UCD.pl 2870# where their structures are described. 2871our %loose_to_standard_value; 2872our %prop_value_aliases; 2873 2874sub prop_values ($) { 2875 my $prop = shift; 2876 return undef unless defined $prop; 2877 2878 require "unicore/UCD.pl"; 2879 2880 # Find the property name synonym that's used as the key in other hashes, 2881 # which is element 0 in the returned list. 2882 ($prop) = prop_aliases($prop); 2883 return undef if ! $prop; 2884 $prop = loose_name(lc $prop); 2885 2886 # Here is a legal property. 2887 return undef unless exists $prop_value_aliases{$prop}; 2888 my @return; 2889 foreach my $value_key (sort { lc $a cmp lc $b } 2890 keys %{$prop_value_aliases{$prop}}) 2891 { 2892 push @return, $prop_value_aliases{$prop}{$value_key}[0]; 2893 } 2894 return @return; 2895} 2896 2897=pod 2898 2899=head2 B<prop_value_aliases()> 2900 2901 use Unicode::UCD 'prop_value_aliases'; 2902 2903 my ($short_name, $full_name, @other_names) 2904 = prop_value_aliases("Gc", "Punct"); 2905 my $same_full_name = prop_value_aliases("Gc", "P"); # Scalar cntxt 2906 my ($same_short_name) = prop_value_aliases("Gc", "P"); # gets 0th 2907 # element 2908 print "The full name is $full_name\n"; 2909 print "The short name is $short_name\n"; 2910 print "The other aliases are: ", join(", ", @other_names), "\n"; 2911 2912 prints: 2913 The full name is Punctuation 2914 The short name is P 2915 The other aliases are: Punct 2916 2917Some Unicode properties have a restricted set of legal values. For example, 2918all binary properties are restricted to just C<true> or C<false>; and there 2919are only a few dozen possible General Categories. 2920 2921You can use L</prop_values()> to find out if a given property is one which has 2922a restricted set of values, and if so, what those values are. But usually 2923each value actually has several synonyms. For example, in Unicode binary 2924properties, I<truth> can be represented by any of the strings "Y", "Yes", "T", 2925or "True"; and the General Category "Punctuation" by that string, or "Punct", 2926or simply "P". 2927 2928Like property names, there is typically at least a short name for each such 2929property-value, and a long name. If you know any name of the property-value 2930(which you can get by L</prop_values()>, you can use C<prop_value_aliases>() 2931to get the long name (when called in scalar context), or a list of all the 2932names, with the short name in the 0th element, the long name in the next 2933element, and any other synonyms in the remaining elements, in no particular 2934order, except that any all-numeric synonyms will be last. 2935 2936The long name is returned in a form nicely capitalized, suitable for printing. 2937 2938Case, white space, hyphens, and underscores are ignored in the input parameters 2939(except for the trailing underscore in the old-form grandfathered-in general 2940category property value C<"L_">, which is better written as C<"LC">). 2941 2942If either name is unknown, C<undef> is returned. Note that Perl typically 2943recognizes property names in regular expressions with an optional C<"Is_>" 2944(with or without the underscore) prefixed to them, such as C<\p{isgc=punct}>. 2945This function does not recognize those in the property parameter, returning 2946C<undef>. 2947 2948If called with a property that doesn't have synonyms for its values, it 2949returns the input value, possibly normalized with capitalization and 2950underscores, but not necessarily checking that the input value is valid. 2951 2952For the block property, new-style block names are returned (see 2953L</Old-style versus new-style block names>). 2954 2955To find the synonyms for single-forms, such as C<\p{Any}>, use 2956L</prop_aliases()> instead. 2957 2958C<prop_value_aliases> does not know about any user-defined properties, and 2959will return C<undef> if called with one of those. 2960 2961=cut 2962 2963sub prop_value_aliases ($$) { 2964 my ($prop, $value) = @_; 2965 return unless defined $prop && defined $value; 2966 2967 require "unicore/UCD.pl"; 2968 2969 # Find the property name synonym that's used as the key in other hashes, 2970 # which is element 0 in the returned list. 2971 ($prop) = prop_aliases($prop); 2972 return if ! $prop; 2973 $prop = loose_name(lc $prop); 2974 2975 # Here is a legal property, but the hash below (created by mktables for 2976 # this purpose) only knows about the properties that have a very finite 2977 # number of potential values, that is not ones whose value could be 2978 # anything, like most (if not all) string properties. These don't have 2979 # synonyms anyway. Simply return the input. For example, there is no 2980 # synonym for ('Uppercase_Mapping', A'). 2981 if (! exists $prop_value_aliases{$prop}) { 2982 2983 # Here, we have a legal property, but an unknown value. Since the 2984 # property is legal, if it isn't in the prop_aliases hash, it must be 2985 # a Perl-extension All perl extensions are binary, hence are 2986 # enumerateds, which means that we know that the input unknown value 2987 # is illegal. 2988 return if ! exists $prop_aliases{$prop}; 2989 2990 # Otherwise, we assume it's valid, as documented. 2991 return $value; 2992 } 2993 2994 # The value name may be loosely or strictly matched; we don't know yet. 2995 # But both types use lower-case. 2996 $value = lc $value; 2997 2998 # If the name isn't found under loose matching, it certainly won't be 2999 # found under strict 3000 my $loose_value = loose_name($value); 3001 return unless exists $loose_to_standard_value{"$prop=$loose_value"}; 3002 3003 # Similarly if the combination under loose matching doesn't exist, it 3004 # won't exist under strict. 3005 my $standard_value = $loose_to_standard_value{"$prop=$loose_value"}; 3006 return unless exists $prop_value_aliases{$prop}{$standard_value}; 3007 3008 # Here we did find a combination under loose matching rules. But it could 3009 # be that is a strict property match that shouldn't have matched. 3010 # %prop_value_aliases is set up so that the strict matches will appear as 3011 # if they were in loose form. Thus, if the non-loose version is legal, 3012 # we're ok, can skip the further check. 3013 if (! exists $stricter_to_file_of{"$prop=$value"} 3014 3015 # We're also ok and skip the further check if value loosely matches. 3016 # mktables has verified that no strict name under loose rules maps to 3017 # an existing loose name. This code relies on the very limited 3018 # circumstances that strict names can be here. Strict name matching 3019 # happens under two conditions: 3020 # 1) when the name begins with an underscore. But this function 3021 # doesn't accept those, and %prop_value_aliases doesn't have 3022 # them. 3023 # 2) When the values are numeric, in which case we need to look 3024 # further, but their squeezed-out loose values will be in 3025 # %stricter_to_file_of 3026 && exists $stricter_to_file_of{"$prop=$loose_value"}) 3027 { 3028 # The only thing that's legal loosely under strict is that can have an 3029 # underscore between digit pairs XXX 3030 while ($value =~ s/(\d)_(\d)/$1$2/g) {} 3031 return unless exists $stricter_to_file_of{"$prop=$value"}; 3032 } 3033 3034 # Here, we know that the combination exists. Return it. 3035 my $list_ref = $prop_value_aliases{$prop}{$standard_value}; 3036 if (@$list_ref > 1) { 3037 # The full name is in element 1. 3038 return $list_ref->[1] unless wantarray; 3039 3040 return @{_dclone $list_ref}; 3041 } 3042 3043 return $list_ref->[0] unless wantarray; 3044 3045 # Only 1 element means that it repeats 3046 return ( $list_ref->[0], $list_ref->[0] ); 3047} 3048 3049# All 1 bits but the top one is the largest possible IV. 3050$MAX_CP = (~0) >> 1; 3051 3052=pod 3053 3054=head2 B<prop_invlist()> 3055 3056C<prop_invlist> returns an inversion list (described below) that defines all the 3057code points for the binary Unicode property (or "property=value" pair) given 3058by the input parameter string: 3059 3060 use feature 'say'; 3061 use Unicode::UCD 'prop_invlist'; 3062 say join ", ", prop_invlist("Any"); 3063 3064 prints: 3065 0, 1114112 3066 3067If the input is unknown C<undef> is returned in scalar context; an empty-list 3068in list context. If the input is known, the number of elements in 3069the list is returned if called in scalar context. 3070 3071L<perluniprops|perluniprops/Properties accessible through \p{} and \P{}> gives 3072the list of properties that this function accepts, as well as all the possible 3073forms for them (including with the optional "Is_" prefixes). (Except this 3074function doesn't accept any Perl-internal properties, some of which are listed 3075there.) This function uses the same loose or tighter matching rules for 3076resolving the input property's name as is done for regular expressions. These 3077are also specified in L<perluniprops|perluniprops/Properties accessible 3078through \p{} and \P{}>. Examples of using the "property=value" form are: 3079 3080 say join ", ", prop_invlist("Script_Extensions=Shavian"); 3081 3082 prints: 3083 66640, 66688 3084 3085 say join ", ", prop_invlist("ASCII_Hex_Digit=No"); 3086 3087 prints: 3088 0, 48, 58, 65, 71, 97, 103 3089 3090 say join ", ", prop_invlist("ASCII_Hex_Digit=Yes"); 3091 3092 prints: 3093 48, 58, 65, 71, 97, 103 3094 3095Inversion lists are a compact way of specifying Unicode property-value 3096definitions. The 0th item in the list is the lowest code point that has the 3097property-value. The next item (item [1]) is the lowest code point beyond that 3098one that does NOT have the property-value. And the next item beyond that 3099([2]) is the lowest code point beyond that one that does have the 3100property-value, and so on. Put another way, each element in the list gives 3101the beginning of a range that has the property-value (for even numbered 3102elements), or doesn't have the property-value (for odd numbered elements). 3103The name for this data structure stems from the fact that each element in the 3104list toggles (or inverts) whether the corresponding range is or isn't on the 3105list. 3106 3107In the final example above, the first ASCII Hex digit is code point 48, the 3108character "0", and all code points from it through 57 (a "9") are ASCII hex 3109digits. Code points 58 through 64 aren't, but 65 (an "A") through 70 (an "F") 3110are, as are 97 ("a") through 102 ("f"). 103 starts a range of code points 3111that aren't ASCII hex digits. That range extends to infinity, which on your 3112computer can be found in the variable C<$Unicode::UCD::MAX_CP>. (This 3113variable is as close to infinity as Perl can get on your platform, and may be 3114too high for some operations to work; you may wish to use a smaller number for 3115your purposes.) 3116 3117Note that the inversion lists returned by this function can possibly include 3118non-Unicode code points, that is anything above 0x10FFFF. Unicode properties 3119are not defined on such code points. You might wish to change the output to 3120not include these. Simply add 0x110000 at the end of the non-empty returned 3121list if it isn't already that value; and pop that value if it is; like: 3122 3123 my @list = prop_invlist("foo"); 3124 if (@list) { 3125 if ($list[-1] == 0x110000) { 3126 pop @list; # Defeat the turning on for above Unicode 3127 } 3128 else { 3129 push @list, 0x110000; # Turn off for above Unicode 3130 } 3131 } 3132 3133It is a simple matter to expand out an inversion list to a full list of all 3134code points that have the property-value: 3135 3136 my @invlist = prop_invlist($property_name); 3137 die "empty" unless @invlist; 3138 my @full_list; 3139 for (my $i = 0; $i < @invlist; $i += 2) { 3140 my $upper = ($i + 1) < @invlist 3141 ? $invlist[$i+1] - 1 # In range 3142 : $Unicode::UCD::MAX_CP; # To infinity. 3143 for my $j ($invlist[$i] .. $upper) { 3144 push @full_list, $j; 3145 } 3146 } 3147 3148C<prop_invlist> does not know about any user-defined nor Perl internal-only 3149properties, and will return C<undef> if called with one of those. 3150 3151The L</search_invlist()> function is provided for finding a code point within 3152an inversion list. 3153 3154=cut 3155 3156# User-defined properties could be handled with some changes to SWASHNEW; 3157# and implementing here of dealing with EXTRAS. If done, consideration should 3158# be given to the fact that the user subroutine could return different results 3159# with each call; security issues need to be thought about. 3160 3161# These are created by mktables for this routine and stored in unicore/UCD.pl 3162# where their structures are described. 3163our %loose_defaults; 3164our $MAX_UNICODE_CODEPOINT; 3165 3166sub prop_invlist ($;$) { 3167 my $prop = $_[0]; 3168 3169 # Undocumented way to get at Perl internal properties; it may be changed 3170 # or removed without notice at any time. 3171 my $internal_ok = defined $_[1] && $_[1] eq '_perl_core_internal_ok'; 3172 3173 return if ! defined $prop; 3174 3175 # Warnings for these are only for regexes, so not applicable to us 3176 no warnings 'deprecated'; 3177 3178 # Get the swash definition of the property-value. 3179 my $swash = SWASHNEW(__PACKAGE__, $prop, undef, 1, 0); 3180 3181 # Fail if not found, or isn't a boolean property-value, or is a 3182 # user-defined property, or is internal-only. 3183 return if ! $swash 3184 || ref $swash eq "" 3185 || $swash->{'BITS'} != 1 3186 || $swash->{'USER_DEFINED'} 3187 || (! $internal_ok && $prop =~ /^\s*_/); 3188 3189 if ($swash->{'EXTRAS'}) { 3190 carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has EXTRAS magic"; 3191 return; 3192 } 3193 if ($swash->{'SPECIALS'}) { 3194 carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has SPECIALS magic"; 3195 return; 3196 } 3197 3198 my @invlist; 3199 3200 if ($swash->{'LIST'} =~ /^V/) { 3201 3202 # A 'V' as the first character marks the input as already an inversion 3203 # list, in which case, all we need to do is put the remaining lines 3204 # into our array. 3205 @invlist = split "\n", $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr; 3206 shift @invlist; 3207 } 3208 else { 3209 # The input lines look like: 3210 # 0041\t005A # [26] 3211 # 005F 3212 3213 # Split into lines, stripped of trailing comments 3214 foreach my $range (split "\n", 3215 $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr) 3216 { 3217 # And find the beginning and end of the range on the line 3218 my ($hex_begin, $hex_end) = split "\t", $range; 3219 my $begin = hex $hex_begin; 3220 3221 # If the new range merely extends the old, we remove the marker 3222 # created the last time through the loop for the old's end, which 3223 # causes the new one's end to be used instead. 3224 if (@invlist && $begin == $invlist[-1]) { 3225 pop @invlist; 3226 } 3227 else { 3228 # Add the beginning of the range 3229 push @invlist, $begin; 3230 } 3231 3232 if (defined $hex_end) { # The next item starts with the code point 1 3233 # beyond the end of the range. 3234 no warnings 'portable'; 3235 my $end = hex $hex_end; 3236 last if $end == $MAX_CP; 3237 push @invlist, $end + 1; 3238 } 3239 else { # No end of range, is a single code point. 3240 push @invlist, $begin + 1; 3241 } 3242 } 3243 } 3244 3245 # Could need to be inverted: add or subtract a 0 at the beginning of the 3246 # list. 3247 if ($swash->{'INVERT_IT'}) { 3248 if (@invlist && $invlist[0] == 0) { 3249 shift @invlist; 3250 } 3251 else { 3252 unshift @invlist, 0; 3253 } 3254 } 3255 3256 return @invlist; 3257} 3258 3259=pod 3260 3261=head2 B<prop_invmap()> 3262 3263 use Unicode::UCD 'prop_invmap'; 3264 my ($list_ref, $map_ref, $format, $default) 3265 = prop_invmap("General Category"); 3266 3267C<prop_invmap> is used to get the complete mapping definition for a property, 3268in the form of an inversion map. An inversion map consists of two parallel 3269arrays. One is an ordered list of code points that mark range beginnings, and 3270the other gives the value (or mapping) that all code points in the 3271corresponding range have. 3272 3273C<prop_invmap> is called with the name of the desired property. The name is 3274loosely matched, meaning that differences in case, white-space, hyphens, and 3275underscores are not meaningful (except for the trailing underscore in the 3276old-form grandfathered-in property C<"L_">, which is better written as C<"LC">, 3277or even better, C<"Gc=LC">). 3278 3279Many Unicode properties have more than one name (or alias). C<prop_invmap> 3280understands all of these, including Perl extensions to them. Ambiguities are 3281resolved as described above for L</prop_aliases()> (except if a property has 3282both a complete mapping, and a binary C<Y>/C<N> mapping, then specifying the 3283property name prefixed by C<"is"> causes the binary one to be returned). The 3284Perl internal property "Perl_Decimal_Digit, described below, is also accepted. 3285An empty list is returned if the property name is unknown. 3286See L<perluniprops/Properties accessible through Unicode::UCD> for the 3287properties acceptable as inputs to this function. 3288 3289It is a fatal error to call this function except in list context. 3290 3291In addition to the two arrays that form the inversion map, C<prop_invmap> 3292returns two other values; one is a scalar that gives some details as to the 3293format of the entries of the map array; the other is a default value, useful 3294in maps whose format name begins with the letter C<"a">, as described 3295L<below in its subsection|/a>; and for specialized purposes, such as 3296converting to another data structure, described at the end of this main 3297section. 3298 3299This means that C<prop_invmap> returns a 4 element list. For example, 3300 3301 my ($blocks_ranges_ref, $blocks_maps_ref, $format, $default) 3302 = prop_invmap("Block"); 3303 3304In this call, the two arrays will be populated as shown below (for Unicode 33056.0): 3306 3307 Index @blocks_ranges @blocks_maps 3308 0 0x0000 Basic Latin 3309 1 0x0080 Latin-1 Supplement 3310 2 0x0100 Latin Extended-A 3311 3 0x0180 Latin Extended-B 3312 4 0x0250 IPA Extensions 3313 5 0x02B0 Spacing Modifier Letters 3314 6 0x0300 Combining Diacritical Marks 3315 7 0x0370 Greek and Coptic 3316 8 0x0400 Cyrillic 3317 ... 3318 233 0x2B820 No_Block 3319 234 0x2F800 CJK Compatibility Ideographs Supplement 3320 235 0x2FA20 No_Block 3321 236 0xE0000 Tags 3322 237 0xE0080 No_Block 3323 238 0xE0100 Variation Selectors Supplement 3324 239 0xE01F0 No_Block 3325 240 0xF0000 Supplementary Private Use Area-A 3326 241 0x100000 Supplementary Private Use Area-B 3327 242 0x110000 No_Block 3328 3329The first line (with Index [0]) means that the value for code point 0 is "Basic 3330Latin". The entry "0x0080" in the @blocks_ranges column in the second line 3331means that the value from the first line, "Basic Latin", extends to all code 3332points in the range from 0 up to but not including 0x0080, that is, through 3333127. In other words, the code points from 0 to 127 are all in the "Basic 3334Latin" block. Similarly, all code points in the range from 0x0080 up to (but 3335not including) 0x0100 are in the block named "Latin-1 Supplement", etc. 3336(Notice that the return is the old-style block names; see L</Old-style versus 3337new-style block names>). 3338 3339The final line (with Index [242]) means that the value for all code points above 3340the legal Unicode maximum code point have the value "No_Block", which is the 3341term Unicode uses for a non-existing block. 3342 3343The arrays completely specify the mappings for all possible code points. 3344The final element in an inversion map returned by this function will always be 3345for the range that consists of all the code points that aren't legal Unicode, 3346but that are expressible on the platform. (That is, it starts with code point 33470x110000, the first code point above the legal Unicode maximum, and extends to 3348infinity.) The value for that range will be the same that any typical 3349unassigned code point has for the specified property. (Certain unassigned 3350code points are not "typical"; for example the non-character code points, or 3351those in blocks that are to be written right-to-left. The above-Unicode 3352range's value is not based on these atypical code points.) It could be argued 3353that, instead of treating these as unassigned Unicode code points, the value 3354for this range should be C<undef>. If you wish, you can change the returned 3355arrays accordingly. 3356 3357The maps for almost all properties are simple scalars that should be 3358interpreted as-is. 3359These values are those given in the Unicode-supplied data files, which may be 3360inconsistent as to capitalization and as to which synonym for a property-value 3361is given. The results may be normalized by using the L</prop_value_aliases()> 3362function. 3363 3364There are exceptions to the simple scalar maps. Some properties have some 3365elements in their map list that are themselves lists of scalars; and some 3366special strings are returned that are not to be interpreted as-is. Element 3367[2] (placed into C<$format> in the example above) of the returned four element 3368list tells you if the map has any of these special elements or not, as follows: 3369 3370=over 3371 3372=item B<C<s>> 3373 3374means all the elements of the map array are simple scalars, with no special 3375elements. Almost all properties are like this, like the C<block> example 3376above. 3377 3378=item B<C<sl>> 3379 3380means that some of the map array elements have the form given by C<"s">, and 3381the rest are lists of scalars. For example, here is a portion of the output 3382of calling C<prop_invmap>() with the "Script Extensions" property: 3383 3384 @scripts_ranges @scripts_maps 3385 ... 3386 0x0953 Devanagari 3387 0x0964 [ Bengali, Devanagari, Gurumukhi, Oriya ] 3388 0x0966 Devanagari 3389 0x0970 Common 3390 3391Here, the code points 0x964 and 0x965 are both used in Bengali, 3392Devanagari, Gurmukhi, and Oriya, but no other scripts. 3393 3394The Name_Alias property is also of this form. But each scalar consists of two 3395components: 1) the name, and 2) the type of alias this is. They are 3396separated by a colon and a space. In Unicode 6.1, there are several alias types: 3397 3398=over 3399 3400=item C<correction> 3401 3402indicates that the name is a corrected form for the 3403original name (which remains valid) for the same code point. 3404 3405=item C<control> 3406 3407adds a new name for a control character. 3408 3409=item C<alternate> 3410 3411is an alternate name for a character 3412 3413=item C<figment> 3414 3415is a name for a character that has been documented but was never in any 3416actual standard. 3417 3418=item C<abbreviation> 3419 3420is a common abbreviation for a character 3421 3422=back 3423 3424The lists are ordered (roughly) so the most preferred names come before less 3425preferred ones. 3426 3427For example, 3428 3429 @aliases_ranges @alias_maps 3430 ... 3431 0x009E [ 'PRIVACY MESSAGE: control', 'PM: abbreviation' ] 3432 0x009F [ 'APPLICATION PROGRAM COMMAND: control', 3433 'APC: abbreviation' 3434 ] 3435 0x00A0 'NBSP: abbreviation' 3436 0x00A1 "" 3437 0x00AD 'SHY: abbreviation' 3438 0x00AE "" 3439 0x01A2 'LATIN CAPITAL LETTER GHA: correction' 3440 0x01A3 'LATIN SMALL LETTER GHA: correction' 3441 0x01A4 "" 3442 ... 3443 3444A map to the empty string means that there is no alias defined for the code 3445point. 3446 3447=item B<C<a>> 3448 3449is like C<"s"> in that all the map array elements are scalars, but here they are 3450restricted to all being integers, and some have to be adjusted (hence the name 3451C<"a">) to get the correct result. For example, in: 3452 3453 my ($uppers_ranges_ref, $uppers_maps_ref, $format, $default) 3454 = prop_invmap("Simple_Uppercase_Mapping"); 3455 3456the returned arrays look like this: 3457 3458 @$uppers_ranges_ref @$uppers_maps_ref Note 3459 0 0 3460 97 65 'a' maps to 'A', b => B ... 3461 123 0 3462 181 924 MICRO SIGN => Greek Cap MU 3463 182 0 3464 ... 3465 3466and C<$default> is 0. 3467 3468Let's start with the second line. It says that the uppercase of code point 97 3469is 65; or C<uc("a")> == "A". But the line is for the entire range of code 3470points 97 through 122. To get the mapping for any code point in this range, 3471you take the offset it has from the beginning code point of the range, and add 3472that to the mapping for that first code point. So, the mapping for 122 ("z") 3473is derived by taking the offset of 122 from 97 (=25) and adding that to 65, 3474yielding 90 ("Z"). Likewise for everything in between. 3475 3476Requiring this simple adjustment allows the returned arrays to be 3477significantly smaller than otherwise, up to a factor of 10, speeding up 3478searching through them. 3479 3480Ranges that map to C<$default>, C<"0">, behave somewhat differently. For 3481these, each code point maps to itself. So, in the first line in the example, 3482S<C<ord(uc(chr(0)))>> is 0, S<C<ord(uc(chr(1)))>> is 1, .. 3483S<C<ord(uc(chr(96)))>> is 96. 3484 3485=item B<C<al>> 3486 3487means that some of the map array elements have the form given by C<"a">, and 3488the rest are ordered lists of code points. 3489For example, in: 3490 3491 my ($uppers_ranges_ref, $uppers_maps_ref, $format, $default) 3492 = prop_invmap("Uppercase_Mapping"); 3493 3494the returned arrays look like this: 3495 3496 @$uppers_ranges_ref @$uppers_maps_ref 3497 0 0 3498 97 65 3499 123 0 3500 181 924 3501 182 0 3502 ... 3503 0x0149 [ 0x02BC 0x004E ] 3504 0x014A 0 3505 0x014B 330 3506 ... 3507 3508This is the full Uppercase_Mapping property (as opposed to the 3509Simple_Uppercase_Mapping given in the example for format C<"a">). The only 3510difference between the two in the ranges shown is that the code point at 35110x0149 (LATIN SMALL LETTER N PRECEDED BY APOSTROPHE) maps to a string of two 3512characters, 0x02BC (MODIFIER LETTER APOSTROPHE) followed by 0x004E (LATIN 3513CAPITAL LETTER N). 3514 3515No adjustments are needed to entries that are references to arrays; each such 3516entry will have exactly one element in its range, so the offset is always 0. 3517 3518The fourth (index [3]) element (C<$default>) in the list returned for this 3519format is 0. 3520 3521=item B<C<ae>> 3522 3523This is like C<"a">, but some elements are the empty string, and should not be 3524adjusted. 3525The one internal Perl property accessible by C<prop_invmap> is of this type: 3526"Perl_Decimal_Digit" returns an inversion map which gives the numeric values 3527that are represented by the Unicode decimal digit characters. Characters that 3528don't represent decimal digits map to the empty string, like so: 3529 3530 @digits @values 3531 0x0000 "" 3532 0x0030 0 3533 0x003A: "" 3534 0x0660: 0 3535 0x066A: "" 3536 0x06F0: 0 3537 0x06FA: "" 3538 0x07C0: 0 3539 0x07CA: "" 3540 0x0966: 0 3541 ... 3542 3543This means that the code points from 0 to 0x2F do not represent decimal digits; 3544the code point 0x30 (DIGIT ZERO) represents 0; code point 0x31, (DIGIT ONE), 3545represents 0+1-0 = 1; ... code point 0x39, (DIGIT NINE), represents 0+9-0 = 9; 3546... code points 0x3A through 0x65F do not represent decimal digits; 0x660 3547(ARABIC-INDIC DIGIT ZERO), represents 0; ... 0x07C1 (NKO DIGIT ONE), 3548represents 0+1-0 = 1 ... 3549 3550The fourth (index [3]) element (C<$default>) in the list returned for this 3551format is the empty string. 3552 3553=item B<C<ale>> 3554 3555is a combination of the C<"al"> type and the C<"ae"> type. Some of 3556the map array elements have the forms given by C<"al">, and 3557the rest are the empty string. The property C<NFKC_Casefold> has this form. 3558An example slice is: 3559 3560 @$ranges_ref @$maps_ref Note 3561 ... 3562 0x00AA 97 FEMININE ORDINAL INDICATOR => 'a' 3563 0x00AB 0 3564 0x00AD SOFT HYPHEN => "" 3565 0x00AE 0 3566 0x00AF [ 0x0020, 0x0304 ] MACRON => SPACE . COMBINING MACRON 3567 0x00B0 0 3568 ... 3569 3570The fourth (index [3]) element (C<$default>) in the list returned for this 3571format is 0. 3572 3573=item B<C<ar>> 3574 3575means that all the elements of the map array are either rational numbers or 3576the string C<"NaN">, meaning "Not a Number". A rational number is either an 3577integer, or two integers separated by a solidus (C<"/">). The second integer 3578represents the denominator of the division implied by the solidus, and is 3579actually always positive, so it is guaranteed not to be 0 and to not be 3580signed. When the element is a plain integer (without the 3581solidus), it may need to be adjusted to get the correct value by adding the 3582offset, just as other C<"a"> properties. No adjustment is needed for 3583fractions, as the range is guaranteed to have just a single element, and so 3584the offset is always 0. 3585 3586If you want to convert the returned map to entirely scalar numbers, you 3587can use something like this: 3588 3589 my ($invlist_ref, $invmap_ref, $format) = prop_invmap($property); 3590 if ($format && $format eq "ar") { 3591 map { $_ = eval $_ if $_ ne 'NaN' } @$map_ref; 3592 } 3593 3594Here's some entries from the output of the property "Nv", which has format 3595C<"ar">. 3596 3597 @numerics_ranges @numerics_maps Note 3598 0x00 "NaN" 3599 0x30 0 DIGIT 0 .. DIGIT 9 3600 0x3A "NaN" 3601 0xB2 2 SUPERSCRIPTs 2 and 3 3602 0xB4 "NaN" 3603 0xB9 1 SUPERSCRIPT 1 3604 0xBA "NaN" 3605 0xBC 1/4 VULGAR FRACTION 1/4 3606 0xBD 1/2 VULGAR FRACTION 1/2 3607 0xBE 3/4 VULGAR FRACTION 3/4 3608 0xBF "NaN" 3609 0x660 0 ARABIC-INDIC DIGIT ZERO .. NINE 3610 0x66A "NaN" 3611 3612The fourth (index [3]) element (C<$default>) in the list returned for this 3613format is C<"NaN">. 3614 3615=item B<C<n>> 3616 3617means the Name property. All the elements of the map array are simple 3618scalars, but some of them contain special strings that require more work to 3619get the actual name. 3620 3621Entries such as: 3622 3623 CJK UNIFIED IDEOGRAPH-<code point> 3624 3625mean that the name for the code point is "CJK UNIFIED IDEOGRAPH-" 3626with the code point (expressed in hexadecimal) appended to it, like "CJK 3627UNIFIED IDEOGRAPH-3403" (similarly for S<C<CJK COMPATIBILITY IDEOGRAPH-E<lt>code 3628pointE<gt>>>). 3629 3630Also, entries like 3631 3632 <hangul syllable> 3633 3634means that the name is algorithmically calculated. This is easily done by 3635the function L<charnames/charnames::viacode(code)>. 3636 3637Note that for control characters (C<Gc=cc>), Unicode's data files have the 3638string "C<E<lt>controlE<gt>>", but the real name of each of these characters is the empty 3639string. This function returns that real name, the empty string. (There are 3640names for these characters, but they are considered aliases, not the Name 3641property name, and are contained in the C<Name_Alias> property.) 3642 3643=item B<C<ad>> 3644 3645means the Decomposition_Mapping property. This property is like C<"al"> 3646properties, except that one of the scalar elements is of the form: 3647 3648 <hangul syllable> 3649 3650This signifies that this entry should be replaced by the decompositions for 3651all the code points whose decomposition is algorithmically calculated. (All 3652of them are currently in one range and no others outside the range are likely 3653to ever be added to Unicode; the C<"n"> format 3654has this same entry.) These can be generated via the function 3655L<Unicode::Normalize::NFD()|Unicode::Normalize>. 3656 3657Note that the mapping is the one that is specified in the Unicode data files, 3658and to get the final decomposition, it may need to be applied recursively. 3659Unicode in fact discourages use of this property except internally in 3660implementations of the Unicode Normalization Algorithm. 3661 3662The fourth (index [3]) element (C<$default>) in the list returned for this 3663format is 0. 3664 3665=back 3666 3667Note that a format begins with the letter "a" if and only the property it is 3668for requires adjustments by adding the offsets in multi-element ranges. For 3669all these properties, an entry should be adjusted only if the map is a scalar 3670which is an integer. That is, it must match the regular expression: 3671 3672 / ^ -? \d+ $ /xa 3673 3674Further, the first element in a range never needs adjustment, as the 3675adjustment would be just adding 0. 3676 3677A binary search such as that provided by L</search_invlist()>, can be used to 3678quickly find a code point in the inversion list, and hence its corresponding 3679mapping. 3680 3681The final, fourth element (index [3], assigned to C<$default> in the "block" 3682example) in the four element list returned by this function is used with the 3683C<"a"> format types; it may also be useful for applications 3684that wish to convert the returned inversion map data structure into some 3685other, such as a hash. It gives the mapping that most code points map to 3686under the property. If you establish the convention that any code point not 3687explicitly listed in your data structure maps to this value, you can 3688potentially make your data structure much smaller. As you construct your data 3689structure from the one returned by this function, simply ignore those ranges 3690that map to this value. For example, to 3691convert to the data structure searchable by L</charinrange()>, you can follow 3692this recipe for properties that don't require adjustments: 3693 3694 my ($list_ref, $map_ref, $format, $default) = prop_invmap($property); 3695 my @range_list; 3696 3697 # Look at each element in the list, but the -2 is needed because we 3698 # look at $i+1 in the loop, and the final element is guaranteed to map 3699 # to $default by prop_invmap(), so we would skip it anyway. 3700 for my $i (0 .. @$list_ref - 2) { 3701 next if $map_ref->[$i] eq $default; 3702 push @range_list, [ $list_ref->[$i], 3703 $list_ref->[$i+1], 3704 $map_ref->[$i] 3705 ]; 3706 } 3707 3708 print charinrange(\@range_list, $code_point), "\n"; 3709 3710With this, C<charinrange()> will return C<undef> if its input code point maps 3711to C<$default>. You can avoid this by omitting the C<next> statement, and adding 3712a line after the loop to handle the final element of the inversion map. 3713 3714Similarly, this recipe can be used for properties that do require adjustments: 3715 3716 for my $i (0 .. @$list_ref - 2) { 3717 next if $map_ref->[$i] eq $default; 3718 3719 # prop_invmap() guarantees that if the mapping is to an array, the 3720 # range has just one element, so no need to worry about adjustments. 3721 if (ref $map_ref->[$i]) { 3722 push @range_list, 3723 [ $list_ref->[$i], $list_ref->[$i], $map_ref->[$i] ]; 3724 } 3725 else { # Otherwise each element is actually mapped to a separate 3726 # value, so the range has to be split into single code point 3727 # ranges. 3728 3729 my $adjustment = 0; 3730 3731 # For each code point that gets mapped to something... 3732 for my $j ($list_ref->[$i] .. $list_ref->[$i+1] -1 ) { 3733 3734 # ... add a range consisting of just it mapping to the 3735 # original plus the adjustment, which is incremented for the 3736 # next time through the loop, as the offset increases by 1 3737 # for each element in the range 3738 push @range_list, 3739 [ $j, $j, $map_ref->[$i] + $adjustment++ ]; 3740 } 3741 } 3742 } 3743 3744Note that the inversion maps returned for the C<Case_Folding> and 3745C<Simple_Case_Folding> properties do not include the Turkic-locale mappings. 3746Use L</casefold()> for these. 3747 3748C<prop_invmap> does not know about any user-defined properties, and will 3749return C<undef> if called with one of those. 3750 3751The returned values for the Perl extension properties, such as C<Any> and 3752C<Greek> are somewhat misleading. The values are either C<"Y"> or C<"N>". 3753All Unicode properties are bipartite, so you can actually use the C<"Y"> or 3754C<"N>" in a Perl regular expression for these, like C<qr/\p{ID_Start=Y/}> or 3755C<qr/\p{Upper=N/}>. But the Perl extensions aren't specified this way, only 3756like C</qr/\p{Any}>, I<etc>. You can't actually use the C<"Y"> and C<"N>" in 3757them. 3758 3759=head3 Getting every available name 3760 3761Instead of reading the Unicode Database directly from files, as you were able 3762to do for a long time, you are encouraged to use the supplied functions. So, 3763instead of reading C<Name.pl> directly, which changed formats in 5.32, and may 3764do so again without notice in the future or even disappear, you ought to use 3765L</prop_invmap()> like this: 3766 3767 my (%name, %cp, %cps, $n); 3768 # All codepoints 3769 foreach my $cat (qw( Name Name_Alias )) { 3770 my ($codepoints, $names, $format, $default) = prop_invmap($cat); 3771 # $format => "n", $default => "" 3772 foreach my $i (0 .. @$codepoints - 2) { 3773 my ($cp, $n) = ($codepoints->[$i], $names->[$i]); 3774 # If $n is a ref, the same codepoint has multiple names 3775 foreach my $name (ref $n ? @$n : $n) { 3776 $name{$cp} //= $name; 3777 $cp{$name} //= $cp; 3778 } 3779 } 3780 } 3781 # Named sequences 3782 { my %ns = namedseq(); 3783 foreach my $name (sort { $ns{$a} cmp $ns{$b} } keys %ns) { 3784 $cp{$name} //= [ map { ord } split "" => $ns{$name} ]; 3785 } 3786 } 3787 3788=cut 3789 3790# User-defined properties could be handled with some changes to SWASHNEW; 3791# if done, consideration should be given to the fact that the user subroutine 3792# could return different results with each call, which could lead to some 3793# security issues. 3794 3795# One could store things in memory so they don't have to be recalculated, but 3796# it is unlikely this will be called often, and some properties would take up 3797# significant memory. 3798 3799# These are created by mktables for this routine and stored in unicore/UCD.pl 3800# where their structures are described. 3801our @algorithmic_named_code_points; 3802our $HANGUL_BEGIN; 3803our $HANGUL_COUNT; 3804 3805sub prop_invmap ($;$) { 3806 3807 croak __PACKAGE__, "::prop_invmap: must be called in list context" unless wantarray; 3808 3809 my $prop = $_[0]; 3810 return unless defined $prop; 3811 3812 # Undocumented way to get at Perl internal properties; it may be changed 3813 # or removed without notice at any time. It currently also changes the 3814 # output to use the format specified in the file rather than the one we 3815 # normally compute and return 3816 my $internal_ok = defined $_[1] && $_[1] eq '_perl_core_internal_ok'; 3817 3818 # Fail internal properties 3819 return if $prop =~ /^_/ && ! $internal_ok; 3820 3821 # The values returned by this function. 3822 my (@invlist, @invmap, $format, $missing); 3823 3824 # The swash has two components we look at, the base list, and a hash, 3825 # named 'SPECIALS', containing any additional members whose mappings don't 3826 # fit into the base list scheme of things. These generally 'override' 3827 # any value in the base list for the same code point. 3828 my $overrides; 3829 3830 require "unicore/UCD.pl"; 3831 3832RETRY: 3833 3834 # If there are multiple entries for a single code point 3835 my $has_multiples = 0; 3836 3837 # Try to get the map swash for the property. They have 'To' prepended to 3838 # the property name, and 32 means we will accept 32 bit return values. 3839 # The 0 means we aren't calling this from tr///. 3840 my $swash = SWASHNEW(__PACKAGE__, "To$prop", undef, 32, 0); 3841 3842 # If didn't find it, could be because needs a proxy. And if was the 3843 # 'Block' or 'Name' property, use a proxy even if did find it. Finding it 3844 # in these cases would be the result of the installation changing mktables 3845 # to output the Block or Name tables. The Block table gives block names 3846 # in the new-style, and this routine is supposed to return old-style block 3847 # names. The Name table is valid, but we need to execute the special code 3848 # below to add in the algorithmic-defined name entries. 3849 # And NFKCCF needs conversion, so handle that here too. 3850 if (ref $swash eq "" 3851 || $swash->{'TYPE'} =~ / ^ To (?: Blk | Na | NFKCCF ) $ /x) 3852 { 3853 3854 # Get the short name of the input property, in standard form 3855 my ($second_try) = prop_aliases($prop); 3856 return unless $second_try; 3857 $second_try = loose_name(lc $second_try); 3858 3859 if ($second_try eq "in") { 3860 3861 # This property is identical to age for inversion map purposes 3862 $prop = "age"; 3863 goto RETRY; 3864 } 3865 elsif ($second_try =~ / ^ s ( cf | fc | [ltu] c ) $ /x) { 3866 3867 # These properties use just the LIST part of the full mapping, 3868 # which includes the simple maps that are otherwise overridden by 3869 # the SPECIALS. So all we need do is to not look at the SPECIALS; 3870 # set $overrides to indicate that 3871 $overrides = -1; 3872 3873 # The full name is the simple name stripped of its initial 's' 3874 $prop = $1; 3875 3876 # .. except for this case 3877 $prop = 'cf' if $prop eq 'fc'; 3878 3879 goto RETRY; 3880 } 3881 elsif ($second_try eq "blk") { 3882 3883 # We use the old block names. Just create a fake swash from its 3884 # data. 3885 _charblocks(); 3886 my %blocks; 3887 $blocks{'LIST'} = ""; 3888 $blocks{'TYPE'} = "ToBlk"; 3889 $SwashInfo{ToBlk}{'missing'} = "No_Block"; 3890 $SwashInfo{ToBlk}{'format'} = "s"; 3891 3892 foreach my $block (@BLOCKS) { 3893 $blocks{'LIST'} .= sprintf "%x\t%x\t%s\n", 3894 $block->[0], 3895 $block->[1], 3896 $block->[2]; 3897 } 3898 $swash = \%blocks; 3899 } 3900 elsif ($second_try eq "na") { 3901 3902 # Use the combo file that has all the Name-type properties in it, 3903 # extracting just the ones that are for the actual 'Name' 3904 # property. And create a fake swash from it. 3905 my %names; 3906 $names{'LIST'} = ""; 3907 my $original = do "unicore/Name.pl"; 3908 3909 # Change the double \n format of the file back to single lines 3910 # with a tab 3911 $original =~ s/\n\n/\e/g; # Use a control that shouldn't occur 3912 #in the file 3913 $original =~ s/\n/\t/g; 3914 $original =~ s/\e/\n/g; 3915 3916 my $algorithm_names = \@algorithmic_named_code_points; 3917 3918 # We need to remove the names from it that are aliases. For that 3919 # we need to also read in that table. Create a hash with the keys 3920 # being the code points, and the values being a list of the 3921 # aliases for the code point key. 3922 my ($aliases_code_points, $aliases_maps, undef, undef) 3923 = &prop_invmap("_Perl_Name_Alias", '_perl_core_internal_ok'); 3924 my %aliases; 3925 for (my $i = 0; $i < @$aliases_code_points; $i++) { 3926 my $code_point = $aliases_code_points->[$i]; 3927 $aliases{$code_point} = $aliases_maps->[$i]; 3928 3929 # If not already a list, make it into one, so that later we 3930 # can treat things uniformly 3931 if (! ref $aliases{$code_point}) { 3932 $aliases{$code_point} = [ $aliases{$code_point} ]; 3933 } 3934 3935 # Remove the alias type from the entry, retaining just the 3936 # name. 3937 map { s/:.*// } @{$aliases{$code_point}}; 3938 } 3939 3940 my $i = 0; 3941 foreach my $line (split "\n", $original) { 3942 my ($hex_code_point, $name) = split "\t", $line; 3943 3944 # Weeds out any comments, blank lines, and named sequences 3945 next if $hex_code_point =~ /[^[:xdigit:]]/a; 3946 3947 my $code_point = hex $hex_code_point; 3948 3949 # The name of all controls is the default: the empty string. 3950 # The set of controls is immutable 3951 next if chr($code_point) =~ /[[:cntrl:]]/u; 3952 3953 # If this is a name_alias, it isn't a name 3954 next if grep { $_ eq $name } @{$aliases{$code_point}}; 3955 3956 # If we are beyond where one of the special lines needs to 3957 # be inserted ... 3958 while ($i < @$algorithm_names 3959 && $code_point > $algorithm_names->[$i]->{'low'}) 3960 { 3961 3962 # ... then insert it, ahead of what we were about to 3963 # output 3964 $names{'LIST'} .= sprintf "%x\t%x\t%s\n", 3965 $algorithm_names->[$i]->{'low'}, 3966 $algorithm_names->[$i]->{'high'}, 3967 $algorithm_names->[$i]->{'name'}; 3968 3969 # Done with this range. 3970 $i++; 3971 3972 # We loop until all special lines that precede the next 3973 # regular one are output. 3974 } 3975 3976 # Here, is a normal name. 3977 $names{'LIST'} .= sprintf "%x\t\t%s\n", $code_point, $name; 3978 } # End of loop through all the names 3979 3980 $names{'TYPE'} = "ToNa"; 3981 $SwashInfo{ToNa}{'missing'} = ""; 3982 $SwashInfo{ToNa}{'format'} = "n"; 3983 $swash = \%names; 3984 } 3985 elsif ($second_try =~ / ^ ( d [mt] ) $ /x) { 3986 3987 # The file is a combination of dt and dm properties. Create a 3988 # fake swash from the portion that we want. 3989 my $original = do "unicore/Decomposition.pl"; 3990 my %decomps; 3991 3992 if ($second_try eq 'dt') { 3993 $decomps{'TYPE'} = "ToDt"; 3994 $SwashInfo{'ToDt'}{'missing'} = "None"; 3995 $SwashInfo{'ToDt'}{'format'} = "s"; 3996 } # 'dm' is handled below, with 'nfkccf' 3997 3998 $decomps{'LIST'} = ""; 3999 4000 # This property has one special range not in the file: for the 4001 # hangul syllables. But not in Unicode version 1. 4002 UnicodeVersion() unless defined $v_unicode_version; 4003 my $done_hangul = ($v_unicode_version lt v2.0.0) 4004 ? 1 4005 : 0; # Have we done the hangul range ? 4006 foreach my $line (split "\n", $original) { 4007 my ($hex_lower, $hex_upper, $type_and_map) = split "\t", $line; 4008 my $code_point = hex $hex_lower; 4009 my $value; 4010 my $redo = 0; 4011 4012 # The type, enclosed in <...>, precedes the mapping separated 4013 # by blanks 4014 if ($type_and_map =~ / ^ < ( .* ) > \s+ (.*) $ /x) { 4015 $value = ($second_try eq 'dt') ? $1 : $2 4016 } 4017 else { # If there is no type specified, it's canonical 4018 $value = ($second_try eq 'dt') 4019 ? "Canonical" : 4020 $type_and_map; 4021 } 4022 4023 # Insert the hangul range at the appropriate spot. 4024 if (! $done_hangul && $code_point > $HANGUL_BEGIN) { 4025 $done_hangul = 1; 4026 $decomps{'LIST'} .= 4027 sprintf "%x\t%x\t%s\n", 4028 $HANGUL_BEGIN, 4029 $HANGUL_BEGIN + $HANGUL_COUNT - 1, 4030 ($second_try eq 'dt') 4031 ? "Canonical" 4032 : "<hangul syllable>"; 4033 } 4034 4035 if ($value =~ / / && $hex_upper ne "" && $hex_upper ne $hex_lower) { 4036 $line = sprintf("%04X\t%s\t%s", hex($hex_lower) + 1, $hex_upper, $value); 4037 $hex_upper = ""; 4038 $redo = 1; 4039 } 4040 4041 # And append this to our constructed LIST. 4042 $decomps{'LIST'} .= "$hex_lower\t$hex_upper\t$value\n"; 4043 4044 redo if $redo; 4045 } 4046 $swash = \%decomps; 4047 } 4048 elsif ($second_try ne 'nfkccf') { # Don't know this property. Fail. 4049 return; 4050 } 4051 4052 if ($second_try eq 'nfkccf' || $second_try eq 'dm') { 4053 4054 # The 'nfkccf' property is stored in the old format for backwards 4055 # compatibility for any applications that has read its file 4056 # directly before prop_invmap() existed. 4057 # And the code above has extracted the 'dm' property from its file 4058 # yielding the same format. So here we convert them to adjusted 4059 # format for compatibility with the other properties similar to 4060 # them. 4061 my %revised_swash; 4062 4063 # We construct a new converted list. 4064 my $list = ""; 4065 4066 my @ranges = split "\n", $swash->{'LIST'}; 4067 for (my $i = 0; $i < @ranges; $i++) { 4068 my ($hex_begin, $hex_end, $map) = split "\t", $ranges[$i]; 4069 4070 # The dm property has maps that are space separated sequences 4071 # of code points, as well as the special entry "<hangul 4072 # syllable>, which also contains a blank. 4073 my @map = split " ", $map; 4074 if (@map > 1) { 4075 4076 # If it's just the special entry, append as-is. 4077 if ($map eq '<hangul syllable>') { 4078 $list .= "$ranges[$i]\n"; 4079 } 4080 else { 4081 4082 # These should all be single-element ranges. 4083 croak __PACKAGE__, "::prop_invmap: Not expecting a mapping with multiple code points in a multi-element range, $ranges[$i]" if $hex_end ne "" && $hex_end ne $hex_begin; 4084 4085 # Convert them to decimal, as that's what's expected. 4086 $list .= "$hex_begin\t\t" 4087 . join(" ", map { hex } @map) 4088 . "\n"; 4089 } 4090 next; 4091 } 4092 4093 # Here, the mapping doesn't have a blank, is for a single code 4094 # point. 4095 my $begin = hex $hex_begin; 4096 my $end = (defined $hex_end && $hex_end ne "") 4097 ? hex $hex_end 4098 : $begin; 4099 4100 # Again, the output is to be in decimal. 4101 my $decimal_map = hex $map; 4102 4103 # We know that multi-element ranges with the same mapping 4104 # should not be adjusted, as after the adjustment 4105 # multi-element ranges are for consecutive increasing code 4106 # points. Further, the final element in the list won't be 4107 # adjusted, as there is nothing after it to include in the 4108 # adjustment 4109 if ($begin != $end || $i == @ranges -1) { 4110 4111 # So just convert these to single-element ranges 4112 foreach my $code_point ($begin .. $end) { 4113 $list .= sprintf("%04X\t\t%d\n", 4114 $code_point, $decimal_map); 4115 } 4116 } 4117 else { 4118 4119 # Here, we have a candidate for adjusting. What we do is 4120 # look through the subsequent adjacent elements in the 4121 # input. If the map to the next one differs by 1 from the 4122 # one before, then we combine into a larger range with the 4123 # initial map. Loop doing this until we find one that 4124 # can't be combined. 4125 4126 my $offset = 0; # How far away are we from the initial 4127 # map 4128 my $squished = 0; # ? Did we squish at least two 4129 # elements together into one range 4130 for ( ; $i < @ranges; $i++) { 4131 my ($next_hex_begin, $next_hex_end, $next_map) 4132 = split "\t", $ranges[$i+1]; 4133 4134 # In the case of 'dm', the map may be a sequence of 4135 # multiple code points, which are never combined with 4136 # another range 4137 last if $next_map =~ / /; 4138 4139 $offset++; 4140 my $next_decimal_map = hex $next_map; 4141 4142 # If the next map is not next in sequence, it 4143 # shouldn't be combined. 4144 last if $next_decimal_map != $decimal_map + $offset; 4145 4146 my $next_begin = hex $next_hex_begin; 4147 4148 # Likewise, if the next element isn't adjacent to the 4149 # previous one, it shouldn't be combined. 4150 last if $next_begin != $begin + $offset; 4151 4152 my $next_end = (defined $next_hex_end 4153 && $next_hex_end ne "") 4154 ? hex $next_hex_end 4155 : $next_begin; 4156 4157 # And finally, if the next element is a multi-element 4158 # range, it shouldn't be combined. 4159 last if $next_end != $next_begin; 4160 4161 # Here, we will combine. Loop to see if we should 4162 # combine the next element too. 4163 $squished = 1; 4164 } 4165 4166 if ($squished) { 4167 4168 # Here, 'i' is the element number of the last element to 4169 # be combined, and the range is single-element, or we 4170 # wouldn't be combining. Get it's code point. 4171 my ($hex_end, undef, undef) = split "\t", $ranges[$i]; 4172 $list .= "$hex_begin\t$hex_end\t$decimal_map\n"; 4173 } else { 4174 4175 # Here, no combining done. Just append the initial 4176 # (and current) values. 4177 $list .= "$hex_begin\t\t$decimal_map\n"; 4178 } 4179 } 4180 } # End of loop constructing the converted list 4181 4182 # Finish up the data structure for our converted swash 4183 my $type = ($second_try eq 'nfkccf') ? 'ToNFKCCF' : 'ToDm'; 4184 $revised_swash{'LIST'} = $list; 4185 $revised_swash{'TYPE'} = $type; 4186 $revised_swash{'SPECIALS'} = $swash->{'SPECIALS'}; 4187 $swash = \%revised_swash; 4188 4189 $SwashInfo{$type}{'missing'} = 0; 4190 $SwashInfo{$type}{'format'} = 'a'; 4191 } 4192 } 4193 4194 if ($swash->{'EXTRAS'}) { 4195 carp __PACKAGE__, "::prop_invmap: swash returned for $prop unexpectedly has EXTRAS magic"; 4196 return; 4197 } 4198 4199 # Here, have a valid swash return. Examine it. 4200 my $returned_prop = $swash->{'TYPE'}; 4201 4202 # All properties but binary ones should have 'missing' and 'format' 4203 # entries 4204 $missing = $SwashInfo{$returned_prop}{'missing'}; 4205 $missing = 'N' unless defined $missing; 4206 4207 $format = $SwashInfo{$returned_prop}{'format'}; 4208 $format = 'b' unless defined $format; 4209 4210 my $requires_adjustment = $format =~ /^a/; 4211 4212 if ($swash->{'LIST'} =~ /^V/) { 4213 @invlist = split "\n", $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr; 4214 4215 shift @invlist; # Get rid of 'V'; 4216 4217 # Could need to be inverted: add or subtract a 0 at the beginning of 4218 # the list. 4219 if ($swash->{'INVERT_IT'}) { 4220 if (@invlist && $invlist[0] == 0) { 4221 shift @invlist; 4222 } 4223 else { 4224 unshift @invlist, 0; 4225 } 4226 } 4227 4228 if (@invlist) { 4229 foreach my $i (0 .. @invlist - 1) { 4230 $invmap[$i] = ($i % 2 == 0) ? 'Y' : 'N' 4231 } 4232 4233 # The map includes lines for all code points; add one for the range 4234 # from 0 to the first Y. 4235 if ($invlist[0] != 0) { 4236 unshift @invlist, 0; 4237 unshift @invmap, 'N'; 4238 } 4239 } 4240 } 4241 else { 4242 if ($swash->{'INVERT_IT'}) { 4243 croak __PACKAGE__, ":prop_invmap: Don't know how to deal with inverted"; 4244 } 4245 4246 # The LIST input lines look like: 4247 # ... 4248 # 0374\t\tCommon 4249 # 0375\t0377\tGreek # [3] 4250 # 037A\t037D\tGreek # [4] 4251 # 037E\t\tCommon 4252 # 0384\t\tGreek 4253 # ... 4254 # 4255 # Convert them to like 4256 # 0374 => Common 4257 # 0375 => Greek 4258 # 0378 => $missing 4259 # 037A => Greek 4260 # 037E => Common 4261 # 037F => $missing 4262 # 0384 => Greek 4263 # 4264 # For binary properties, the final non-comment column is absent, and 4265 # assumed to be 'Y'. 4266 4267 foreach my $range (split "\n", $swash->{'LIST'}) { 4268 $range =~ s/ \s* (?: \# .* )? $ //xg; # rmv trailing space, comments 4269 4270 # Find the beginning and end of the range on the line 4271 my ($hex_begin, $hex_end, $map) = split "\t", $range; 4272 my $begin = hex $hex_begin; 4273 no warnings 'portable'; 4274 my $end = (defined $hex_end && $hex_end ne "") 4275 ? hex $hex_end 4276 : $begin; 4277 4278 # Each time through the loop (after the first): 4279 # $invlist[-2] contains the beginning of the previous range processed 4280 # $invlist[-1] contains the end+1 of the previous range processed 4281 # $invmap[-2] contains the value of the previous range processed 4282 # $invmap[-1] contains the default value for missing ranges 4283 # ($missing) 4284 # 4285 # Thus, things are set up for the typical case of a new 4286 # non-adjacent range of non-missings to be added. But, if the new 4287 # range is adjacent, it needs to replace the [-1] element; and if 4288 # the new range is a multiple value of the previous one, it needs 4289 # to be added to the [-2] map element. 4290 4291 # The first time through, everything will be empty. If the 4292 # property doesn't have a range that begins at 0, add one that 4293 # maps to $missing 4294 if (! @invlist) { 4295 if ($begin != 0) { 4296 push @invlist, 0; 4297 push @invmap, $missing; 4298 } 4299 } 4300 elsif (@invlist > 1 && $invlist[-2] == $begin) { 4301 4302 # Here we handle the case where the input has multiple entries 4303 # for each code point. mktables should have made sure that 4304 # each such range contains only one code point. At this 4305 # point, $invlist[-1] is the $missing that was added at the 4306 # end of the last loop iteration, and [-2] is the last real 4307 # input code point, and that code point is the same as the one 4308 # we are adding now, making the new one a multiple entry. Add 4309 # it to the existing entry, either by pushing it to the 4310 # existing list of multiple entries, or converting the single 4311 # current entry into a list with both on it. This is all we 4312 # need do for this iteration. 4313 4314 if ($end != $begin) { 4315 croak __PACKAGE__, ":prop_invmap: Multiple maps per code point in '$prop' require single-element ranges: begin=$begin, end=$end, map=$map"; 4316 } 4317 if (! ref $invmap[-2]) { 4318 $invmap[-2] = [ $invmap[-2], $map ]; 4319 } 4320 else { 4321 push @{$invmap[-2]}, $map; 4322 } 4323 $has_multiples = 1; 4324 next; 4325 } 4326 elsif ($invlist[-1] == $begin) { 4327 4328 # If the input isn't in the most compact form, so that there 4329 # are two adjacent ranges that map to the same thing, they 4330 # should be combined (EXCEPT where the arrays require 4331 # adjustments, in which case everything is already set up 4332 # correctly). This happens in our constructed dt mapping, as 4333 # Element [-2] is the map for the latest range so far 4334 # processed. Just set the beginning point of the map to 4335 # $missing (in invlist[-1]) to 1 beyond where this range ends. 4336 # For example, in 4337 # 12\t13\tXYZ 4338 # 14\t17\tXYZ 4339 # we have set it up so that it looks like 4340 # 12 => XYZ 4341 # 14 => $missing 4342 # 4343 # We now see that it should be 4344 # 12 => XYZ 4345 # 18 => $missing 4346 if (! $requires_adjustment && @invlist > 1 && ( (defined $map) 4347 ? $invmap[-2] eq $map 4348 : $invmap[-2] eq 'Y')) 4349 { 4350 $invlist[-1] = $end + 1; 4351 next; 4352 } 4353 4354 # Here, the range started in the previous iteration that maps 4355 # to $missing starts at the same code point as this range. 4356 # That means there is no gap to fill that that range was 4357 # intended for, so we just pop it off the parallel arrays. 4358 pop @invlist; 4359 pop @invmap; 4360 } 4361 4362 # Add the range beginning, and the range's map. 4363 push @invlist, $begin; 4364 if ($returned_prop eq 'ToDm') { 4365 4366 # The decomposition maps are either a line like <hangul 4367 # syllable> which are to be taken as is; or a sequence of code 4368 # points in hex and separated by blanks. Convert them to 4369 # decimal, and if there is more than one, use an anonymous 4370 # array as the map. 4371 if ($map =~ /^ < /x) { 4372 push @invmap, $map; 4373 } 4374 else { 4375 my @map = split " ", $map; 4376 if (@map == 1) { 4377 push @invmap, $map[0]; 4378 } 4379 else { 4380 push @invmap, \@map; 4381 } 4382 } 4383 } 4384 else { 4385 4386 # Otherwise, convert hex formatted list entries to decimal; 4387 # add a 'Y' map for the missing value in binary properties, or 4388 # otherwise, use the input map unchanged. 4389 $map = ($format eq 'x' || $format eq 'ax') 4390 ? hex $map 4391 : $format eq 'b' 4392 ? 'Y' 4393 : $map; 4394 push @invmap, $map; 4395 } 4396 4397 # We just started a range. It ends with $end. The gap between it 4398 # and the next element in the list must be filled with a range 4399 # that maps to the default value. If there is no gap, the next 4400 # iteration will pop this, unless there is no next iteration, and 4401 # we have filled all of the Unicode code space, so check for that 4402 # and skip. 4403 if ($end < $MAX_CP) { 4404 push @invlist, $end + 1; 4405 push @invmap, $missing; 4406 } 4407 } 4408 } 4409 4410 # If the property is empty, make all code points use the value for missing 4411 # ones. 4412 if (! @invlist) { 4413 push @invlist, 0; 4414 push @invmap, $missing; 4415 } 4416 4417 # The final element is always for just the above-Unicode code points. If 4418 # not already there, add it. It merely splits the current final range 4419 # that extends to infinity into two elements, each with the same map. 4420 # (This is to conform with the API that says the final element is for 4421 # $MAX_UNICODE_CODEPOINT + 1 .. INFINITY.) 4422 if ($invlist[-1] != $MAX_UNICODE_CODEPOINT + 1) { 4423 push @invmap, $invmap[-1]; 4424 push @invlist, $MAX_UNICODE_CODEPOINT + 1; 4425 } 4426 4427 # The second component of the map are those values that require 4428 # non-standard specification, stored in SPECIALS. These override any 4429 # duplicate code points in LIST. If we are using a proxy, we may have 4430 # already set $overrides based on the proxy. 4431 $overrides = $swash->{'SPECIALS'} unless defined $overrides; 4432 if ($overrides) { 4433 4434 # A negative $overrides implies that the SPECIALS should be ignored, 4435 # and a simple 'a' list is the value. 4436 if ($overrides < 0) { 4437 $format = 'a'; 4438 } 4439 else { 4440 4441 # Currently, all overrides are for properties that normally map to 4442 # single code points, but now some will map to lists of code 4443 # points (but there is an exception case handled below). 4444 $format = 'al'; 4445 4446 # Look through the overrides. 4447 foreach my $cp_maybe_utf8 (keys %$overrides) { 4448 my $cp; 4449 my @map; 4450 4451 # If the overrides came from SPECIALS, the code point keys are 4452 # packed UTF-8. 4453 if ($overrides == $swash->{'SPECIALS'}) { 4454 $cp = $cp_maybe_utf8; 4455 if (! utf8::decode($cp)) { 4456 croak __PACKAGE__, "::prop_invmap: Malformed UTF-8: ", 4457 map { sprintf("\\x{%02X}", unpack("C", $_)) } 4458 split "", $cp; 4459 } 4460 4461 $cp = unpack("W", $cp); 4462 @map = unpack "W*", $swash->{'SPECIALS'}{$cp_maybe_utf8}; 4463 4464 # The empty string will show up unpacked as an empty 4465 # array. 4466 $format = 'ale' if @map == 0; 4467 } 4468 else { 4469 4470 # But if we generated the overrides, we didn't bother to 4471 # pack them, and we, so far, do this only for properties 4472 # that are 'a' ones. 4473 $cp = $cp_maybe_utf8; 4474 @map = hex $overrides->{$cp}; 4475 $format = 'a'; 4476 } 4477 4478 # Find the range that the override applies to. 4479 my $i = search_invlist(\@invlist, $cp); 4480 if ($cp < $invlist[$i] || $cp >= $invlist[$i + 1]) { 4481 croak __PACKAGE__, "::prop_invmap: wrong_range, cp=$cp; i=$i, current=$invlist[$i]; next=$invlist[$i + 1]" 4482 } 4483 4484 # And what that range currently maps to 4485 my $cur_map = $invmap[$i]; 4486 4487 # If there is a gap between the next range and the code point 4488 # we are overriding, we have to add elements to both arrays to 4489 # fill that gap, using the map that applies to it, which is 4490 # $cur_map, since it is part of the current range. 4491 if ($invlist[$i + 1] > $cp + 1) { 4492 #use feature 'say'; 4493 #say "Before splice:"; 4494 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2; 4495 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1; 4496 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]); 4497 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1; 4498 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2; 4499 4500 splice @invlist, $i + 1, 0, $cp + 1; 4501 splice @invmap, $i + 1, 0, $cur_map; 4502 4503 #say "After splice:"; 4504 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2; 4505 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1; 4506 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]); 4507 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1; 4508 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2; 4509 } 4510 4511 # If the remaining portion of the range is multiple code 4512 # points (ending with the one we are replacing, guaranteed by 4513 # the earlier splice). We must split it into two 4514 if ($invlist[$i] < $cp) { 4515 $i++; # Compensate for the new element 4516 4517 #use feature 'say'; 4518 #say "Before splice:"; 4519 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2; 4520 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1; 4521 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]); 4522 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1; 4523 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2; 4524 4525 splice @invlist, $i, 0, $cp; 4526 splice @invmap, $i, 0, 'dummy'; 4527 4528 #say "After splice:"; 4529 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2; 4530 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1; 4531 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]); 4532 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1; 4533 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2; 4534 } 4535 4536 # Here, the range we are overriding contains a single code 4537 # point. The result could be the empty string, a single 4538 # value, or a list. If the last case, we use an anonymous 4539 # array. 4540 $invmap[$i] = (scalar @map == 0) 4541 ? "" 4542 : (scalar @map > 1) 4543 ? \@map 4544 : $map[0]; 4545 } 4546 } 4547 } 4548 elsif ($format eq 'x') { 4549 4550 # All hex-valued properties are really to code points, and have been 4551 # converted to decimal. 4552 $format = 's'; 4553 } 4554 elsif ($returned_prop eq 'ToDm') { 4555 $format = 'ad'; 4556 } 4557 elsif ($format eq 'sw') { # blank-separated elements to form a list. 4558 map { $_ = [ split " ", $_ ] if $_ =~ / / } @invmap; 4559 $format = 'sl'; 4560 } 4561 elsif ($returned_prop =~ / To ( _Perl )? NameAlias/x) { 4562 4563 # This property currently doesn't have any lists, but theoretically 4564 # could 4565 $format = 'sl'; 4566 } 4567 elsif ($returned_prop eq 'ToPerlDecimalDigit') { 4568 $format = 'ae'; 4569 } 4570 elsif ($returned_prop eq 'ToNv') { 4571 4572 # The one property that has this format is stored as a delta, so needs 4573 # to indicate that need to add code point to it. 4574 $format = 'ar'; 4575 } 4576 elsif ($format eq 'ax') { 4577 4578 # Normally 'ax' properties have overrides, and will have been handled 4579 # above, but if not, they still need adjustment, and the hex values 4580 # have already been converted to decimal 4581 $format = 'a'; 4582 } 4583 elsif ($format ne 'n' && $format !~ / ^ a /x) { 4584 4585 # All others are simple scalars 4586 $format = 's'; 4587 } 4588 if ($has_multiples && $format !~ /l/) { 4589 croak __PACKAGE__, "::prop_invmap: Wrong format '$format' for prop_invmap('$prop'); should indicate has lists"; 4590 } 4591 4592 return (\@invlist, \@invmap, $format, $missing); 4593} 4594 4595sub search_invlist { 4596 4597=pod 4598 4599=head2 B<search_invlist()> 4600 4601 use Unicode::UCD qw(prop_invmap prop_invlist); 4602 use Unicode::UCD 'search_invlist'; 4603 4604 my @invlist = prop_invlist($property_name); 4605 print $code_point, ((search_invlist(\@invlist, $code_point) // -1) % 2) 4606 ? " isn't" 4607 : " is", 4608 " in $property_name\n"; 4609 4610 my ($blocks_ranges_ref, $blocks_map_ref) = prop_invmap("Block"); 4611 my $index = search_invlist($blocks_ranges_ref, $code_point); 4612 print "$code_point is in block ", $blocks_map_ref->[$index], "\n"; 4613 4614C<search_invlist> is used to search an inversion list returned by 4615C<prop_invlist> or C<prop_invmap> for a particular L</code point argument>. 4616C<undef> is returned if the code point is not found in the inversion list 4617(this happens only when it is not a legal L</code point argument>, or is less 4618than the list's first element). A warning is raised in the first instance. 4619 4620Otherwise, it returns the index into the list of the range that contains the 4621code point.; that is, find C<i> such that 4622 4623 list[i]<= code_point < list[i+1]. 4624 4625As explained in L</prop_invlist()>, whether a code point is in the list or not 4626depends on if the index is even (in) or odd (not in). And as explained in 4627L</prop_invmap()>, the index is used with the returned parallel array to find 4628the mapping. 4629 4630=cut 4631 4632 4633 my $list_ref = shift; 4634 my $input_code_point = shift; 4635 my $code_point = _getcode($input_code_point); 4636 4637 if (! defined $code_point) { 4638 carp __PACKAGE__, "::search_invlist: unknown code '$input_code_point'"; 4639 return; 4640 } 4641 4642 my $max_element = @$list_ref - 1; 4643 4644 # Return undef if list is empty or requested item is before the first element. 4645 return if $max_element < 0; 4646 return if $code_point < $list_ref->[0]; 4647 4648 # Short cut something at the far-end of the table. This also allows us to 4649 # refer to element [$i+1] without fear of being out-of-bounds in the loop 4650 # below. 4651 return $max_element if $code_point >= $list_ref->[$max_element]; 4652 4653 use integer; # want integer division 4654 4655 my $i = $max_element / 2; 4656 4657 my $lower = 0; 4658 my $upper = $max_element; 4659 while (1) { 4660 4661 if ($code_point >= $list_ref->[$i]) { 4662 4663 # Here we have met the lower constraint. We can quit if we 4664 # also meet the upper one. 4665 last if $code_point < $list_ref->[$i+1]; 4666 4667 $lower = $i; # Still too low. 4668 4669 } 4670 else { 4671 4672 # Here, $code_point < $list_ref[$i], so look lower down. 4673 $upper = $i; 4674 } 4675 4676 # Split search domain in half to try again. 4677 my $temp = ($upper + $lower) / 2; 4678 4679 # No point in continuing unless $i changes for next time 4680 # in the loop. 4681 return $i if $temp == $i; 4682 $i = $temp; 4683 } # End of while loop 4684 4685 # Here we have found the offset 4686 return $i; 4687} 4688 4689=head2 Unicode::UCD::UnicodeVersion 4690 4691This returns the version of the Unicode Character Database, in other words, the 4692version of the Unicode standard the database implements. The version is a 4693string of numbers delimited by dots (C<'.'>). 4694 4695=cut 4696 4697my $UNICODEVERSION; 4698 4699sub UnicodeVersion { 4700 unless (defined $UNICODEVERSION) { 4701 my $versionfh = openunicode("version"); 4702 local $/ = "\n"; 4703 chomp($UNICODEVERSION = <$versionfh>); 4704 croak __PACKAGE__, "::VERSION: strange version '$UNICODEVERSION'" 4705 unless $UNICODEVERSION =~ /^\d+(?:\.\d+)+$/; 4706 } 4707 $v_unicode_version = pack "C*", split /\./, $UNICODEVERSION; 4708 return $UNICODEVERSION; 4709} 4710 4711=head2 B<Blocks versus Scripts> 4712 4713The difference between a block and a script is that scripts are closer 4714to the linguistic notion of a set of code points required to represent 4715languages, while block is more of an artifact of the Unicode code point 4716numbering and separation into blocks of consecutive code points (so far the 4717size of a block is some multiple of 16, like 128 or 256). 4718 4719For example the Latin B<script> is spread over several B<blocks>, such 4720as C<Basic Latin>, C<Latin 1 Supplement>, C<Latin Extended-A>, and 4721C<Latin Extended-B>. On the other hand, the Latin script does not 4722contain all the characters of the C<Basic Latin> block (also known as 4723ASCII): it includes only the letters, and not, for example, the digits 4724nor the punctuation. 4725 4726For blocks see L<http://www.unicode.org/Public/UNIDATA/Blocks.txt> 4727 4728For scripts see UTR #24: L<http://www.unicode.org/reports/tr24/> 4729 4730=head2 B<Matching Scripts and Blocks> 4731 4732Scripts are matched with the regular-expression construct 4733C<\p{...}> (e.g. C<\p{Tibetan}> matches characters of the Tibetan script), 4734while C<\p{Blk=...}> is used for blocks (e.g. C<\p{Blk=Tibetan}> matches 4735any of the 256 code points in the Tibetan block). 4736 4737=head2 Old-style versus new-style block names 4738 4739Unicode publishes the names of blocks in two different styles, though the two 4740are equivalent under Unicode's loose matching rules. 4741 4742The original style uses blanks and hyphens in the block names (except for 4743C<No_Block>), like so: 4744 4745 Miscellaneous Mathematical Symbols-B 4746 4747The newer style replaces these with underscores, like this: 4748 4749 Miscellaneous_Mathematical_Symbols_B 4750 4751This newer style is consistent with the values of other Unicode properties. 4752To preserve backward compatibility, all the functions in Unicode::UCD that 4753return block names (except as noted) return the old-style ones. 4754L</prop_value_aliases()> returns the new-style and can be used to convert from 4755old-style to new-style: 4756 4757 my $new_style = prop_values_aliases("block", $old_style); 4758 4759Perl also has single-form extensions that refer to blocks, C<In_Cyrillic>, 4760meaning C<Block=Cyrillic>. These have always been written in the new style. 4761 4762To convert from new-style to old-style, follow this recipe: 4763 4764 $old_style = charblock((prop_invlist("block=$new_style"))[0]); 4765 4766(which finds the range of code points in the block using C<prop_invlist>, 4767gets the lower end of the range (0th element) and then looks up the old name 4768for its block using C<charblock>). 4769 4770Note that starting in Unicode 6.1, many of the block names have shorter 4771synonyms. These are always given in the new style. 4772 4773=head2 Use with older Unicode versions 4774 4775The functions in this module work as well as can be expected when 4776used on earlier Unicode versions. But, obviously, they use the available data 4777from that Unicode version. For example, if the Unicode version predates the 4778definition of the script property (Unicode 3.1), then any function that deals 4779with scripts is going to return C<undef> for the script portion of the return 4780value. 4781 4782=head1 AUTHOR 4783 4784Jarkko Hietaniemi. Now maintained by perl5 porters. 4785 4786=cut 4787 47881; 4789