1 /* Definitions for symbol file management in GDB.
2 
3    Copyright (C) 1992-2021 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22 
23 #include "hashtab.h"
24 #include "gdb_obstack.h"	/* For obstack internals.  */
25 #include "objfile-flags.h"
26 #include "symfile.h"
27 #include "progspace.h"
28 #include "registry.h"
29 #include "gdb_bfd.h"
30 #include "psymtab.h"
31 #include <atomic>
32 #include <bitset>
33 #include <vector>
34 #include "gdbsupport/next-iterator.h"
35 #include "gdbsupport/safe-iterator.h"
36 #include "bcache.h"
37 #include "gdbarch.h"
38 #include "gdbsupport/refcounted-object.h"
39 #include "jit.h"
40 #include "quick-symbol.h"
41 #include <forward_list>
42 
43 struct htab;
44 struct objfile_data;
45 struct partial_symbol;
46 
47 /* This structure maintains information on a per-objfile basis about the
48    "entry point" of the objfile, and the scope within which the entry point
49    exists.  It is possible that gdb will see more than one objfile that is
50    executable, each with its own entry point.
51 
52    For example, for dynamically linked executables in SVR4, the dynamic linker
53    code is contained within the shared C library, which is actually executable
54    and is run by the kernel first when an exec is done of a user executable
55    that is dynamically linked.  The dynamic linker within the shared C library
56    then maps in the various program segments in the user executable and jumps
57    to the user executable's recorded entry point, as if the call had been made
58    directly by the kernel.
59 
60    The traditional gdb method of using this info was to use the
61    recorded entry point to set the entry-file's lowpc and highpc from
62    the debugging information, where these values are the starting
63    address (inclusive) and ending address (exclusive) of the
64    instruction space in the executable which correspond to the
65    "startup file", i.e. crt0.o in most cases.  This file is assumed to
66    be a startup file and frames with pc's inside it are treated as
67    nonexistent.  Setting these variables is necessary so that
68    backtraces do not fly off the bottom of the stack.
69 
70    NOTE: cagney/2003-09-09: It turns out that this "traditional"
71    method doesn't work.  Corinna writes: ``It turns out that the call
72    to test for "inside entry file" destroys a meaningful backtrace
73    under some conditions.  E.g. the backtrace tests in the asm-source
74    testcase are broken for some targets.  In this test the functions
75    are all implemented as part of one file and the testcase is not
76    necessarily linked with a start file (depending on the target).
77    What happens is, that the first frame is printed normally and
78    following frames are treated as being inside the entry file then.
79    This way, only the #0 frame is printed in the backtrace output.''
80    Ref "frame.c" "NOTE: vinschen/2003-04-01".
81 
82    Gdb also supports an alternate method to avoid running off the bottom
83    of the stack.
84 
85    There are two frames that are "special", the frame for the function
86    containing the process entry point, since it has no predecessor frame,
87    and the frame for the function containing the user code entry point
88    (the main() function), since all the predecessor frames are for the
89    process startup code.  Since we have no guarantee that the linked
90    in startup modules have any debugging information that gdb can use,
91    we need to avoid following frame pointers back into frames that might
92    have been built in the startup code, as we might get hopelessly
93    confused.  However, we almost always have debugging information
94    available for main().
95 
96    These variables are used to save the range of PC values which are
97    valid within the main() function and within the function containing
98    the process entry point.  If we always consider the frame for
99    main() as the outermost frame when debugging user code, and the
100    frame for the process entry point function as the outermost frame
101    when debugging startup code, then all we have to do is have
102    DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
103    current PC is within the range specified by these variables.  In
104    essence, we set "ceilings" in the frame chain beyond which we will
105    not proceed when following the frame chain back up the stack.
106 
107    A nice side effect is that we can still debug startup code without
108    running off the end of the frame chain, assuming that we have usable
109    debugging information in the startup modules, and if we choose to not
110    use the block at main, or can't find it for some reason, everything
111    still works as before.  And if we have no startup code debugging
112    information but we do have usable information for main(), backtraces
113    from user code don't go wandering off into the startup code.  */
114 
115 struct entry_info
116 {
117   /* The unrelocated value we should use for this objfile entry point.  */
118   CORE_ADDR entry_point;
119 
120   /* The index of the section in which the entry point appears.  */
121   int the_bfd_section_index;
122 
123   /* Set to 1 iff ENTRY_POINT contains a valid value.  */
124   unsigned entry_point_p : 1;
125 
126   /* Set to 1 iff this object was initialized.  */
127   unsigned initialized : 1;
128 };
129 
130 #define ALL_OBJFILE_OSECTIONS(objfile, osect)	\
131   for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
132     if (osect->the_bfd_section == NULL)					\
133       {									\
134 	/* Nothing.  */							\
135       }									\
136     else
137 
138 #define SECT_OFF_DATA(objfile) \
139      ((objfile->sect_index_data == -1) \
140       ? (internal_error (__FILE__, __LINE__, \
141 			 _("sect_index_data not initialized")), -1)	\
142       : objfile->sect_index_data)
143 
144 #define SECT_OFF_RODATA(objfile) \
145      ((objfile->sect_index_rodata == -1) \
146       ? (internal_error (__FILE__, __LINE__, \
147 			 _("sect_index_rodata not initialized")), -1)	\
148       : objfile->sect_index_rodata)
149 
150 #define SECT_OFF_TEXT(objfile) \
151      ((objfile->sect_index_text == -1) \
152       ? (internal_error (__FILE__, __LINE__, \
153 			 _("sect_index_text not initialized")), -1)	\
154       : objfile->sect_index_text)
155 
156 /* Sometimes the .bss section is missing from the objfile, so we don't
157    want to die here.  Let the users of SECT_OFF_BSS deal with an
158    uninitialized section index.  */
159 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
160 
161 /* The "objstats" structure provides a place for gdb to record some
162    interesting information about its internal state at runtime, on a
163    per objfile basis, such as information about the number of symbols
164    read, size of string table (if any), etc.  */
165 
166 struct objstats
167 {
168   /* Number of full symbols read.  */
169   int n_syms = 0;
170 
171   /* Number of ".stabs" read (if applicable).  */
172   int n_stabs = 0;
173 
174   /* Number of types.  */
175   int n_types = 0;
176 
177   /* Size of stringtable, (if applicable).  */
178   int sz_strtab = 0;
179 };
180 
181 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
182 #define OBJSTATS struct objstats stats
183 extern void print_objfile_statistics (void);
184 
185 /* Number of entries in the minimal symbol hash table.  */
186 #define MINIMAL_SYMBOL_HASH_SIZE 2039
187 
188 /* An iterator for minimal symbols.  */
189 
190 struct minimal_symbol_iterator
191 {
192   typedef minimal_symbol_iterator self_type;
193   typedef struct minimal_symbol *value_type;
194   typedef struct minimal_symbol *&reference;
195   typedef struct minimal_symbol **pointer;
196   typedef std::forward_iterator_tag iterator_category;
197   typedef int difference_type;
198 
minimal_symbol_iteratorminimal_symbol_iterator199   explicit minimal_symbol_iterator (struct minimal_symbol *msym)
200     : m_msym (msym)
201   {
202   }
203 
204   value_type operator* () const
205   {
206     return m_msym;
207   }
208 
209   bool operator== (const self_type &other) const
210   {
211     return m_msym == other.m_msym;
212   }
213 
214   bool operator!= (const self_type &other) const
215   {
216     return m_msym != other.m_msym;
217   }
218 
219   self_type &operator++ ()
220   {
221     ++m_msym;
222     return *this;
223   }
224 
225 private:
226   struct minimal_symbol *m_msym;
227 };
228 
229 /* Some objfile data is hung off the BFD.  This enables sharing of the
230    data across all objfiles using the BFD.  The data is stored in an
231    instance of this structure, and associated with the BFD using the
232    registry system.  */
233 
234 struct objfile_per_bfd_storage
235 {
objfile_per_bfd_storageobjfile_per_bfd_storage236   objfile_per_bfd_storage (bfd *bfd)
237     : minsyms_read (false), m_bfd (bfd)
238   {}
239 
240   ~objfile_per_bfd_storage ();
241 
242   /* Intern STRING in this object's string cache and return the unique copy.
243      The copy has the same lifetime as this object.
244 
245      STRING must be null-terminated.  */
246 
internobjfile_per_bfd_storage247   const char *intern (const char *str)
248   {
249     return (const char *) string_cache.insert (str, strlen (str) + 1);
250   }
251 
252   /* Same as the above, but for an std::string.  */
253 
internobjfile_per_bfd_storage254   const char *intern (const std::string &str)
255   {
256     return (const char *) string_cache.insert (str.c_str (), str.size () + 1);
257   }
258 
259   /* Get the BFD this object is associated to.  */
260 
get_bfdobjfile_per_bfd_storage261   bfd *get_bfd () const
262   {
263     return m_bfd;
264   }
265 
266   /* The storage has an obstack of its own.  */
267 
268   auto_obstack storage_obstack;
269 
270   /* String cache.  */
271 
272   gdb::bcache string_cache;
273 
274   /* The gdbarch associated with the BFD.  Note that this gdbarch is
275      determined solely from BFD information, without looking at target
276      information.  The gdbarch determined from a running target may
277      differ from this e.g. with respect to register types and names.  */
278 
279   struct gdbarch *gdbarch = NULL;
280 
281   /* Hash table for mapping symbol names to demangled names.  Each
282      entry in the hash table is a demangled_name_entry struct, storing the
283      language and two consecutive strings, both null-terminated; the first one
284      is a mangled or linkage name, and the second is the demangled name or just
285      a zero byte if the name doesn't demangle.  */
286 
287   htab_up demangled_names_hash;
288 
289   /* The per-objfile information about the entry point, the scope (file/func)
290      containing the entry point, and the scope of the user's main() func.  */
291 
292   entry_info ei {};
293 
294   /* The name and language of any "main" found in this objfile.  The
295      name can be NULL, which means that the information was not
296      recorded.  */
297 
298   const char *name_of_main = NULL;
299   enum language language_of_main = language_unknown;
300 
301   /* Each file contains a pointer to an array of minimal symbols for all
302      global symbols that are defined within the file.  The array is
303      terminated by a "null symbol", one that has a NULL pointer for the
304      name and a zero value for the address.  This makes it easy to walk
305      through the array when passed a pointer to somewhere in the middle
306      of it.  There is also a count of the number of symbols, which does
307      not include the terminating null symbol.  */
308 
309   gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
310   int minimal_symbol_count = 0;
311 
312   /* The number of minimal symbols read, before any minimal symbol
313      de-duplication is applied.  Note in particular that this has only
314      a passing relationship with the actual size of the table above;
315      use minimal_symbol_count if you need the true size.  */
316 
317   int n_minsyms = 0;
318 
319   /* This is true if minimal symbols have already been read.  Symbol
320      readers can use this to bypass minimal symbol reading.  Also, the
321      minimal symbol table management code in minsyms.c uses this to
322      suppress new minimal symbols.  You might think that MSYMBOLS or
323      MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
324      for multiple readers to install minimal symbols into a given
325      per-BFD.  */
326 
327   bool minsyms_read : 1;
328 
329   /* This is a hash table used to index the minimal symbols by (mangled)
330      name.  */
331 
332   minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
333 
334   /* This hash table is used to index the minimal symbols by their
335      demangled names.  Uses a language-specific hash function via
336      search_name_hash.  */
337 
338   minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
339 
340   /* All the different languages of symbols found in the demangled
341      hash table.  */
342   std::bitset<nr_languages> demangled_hash_languages;
343 
344 private:
345   /* The BFD this object is associated to.  */
346 
347   bfd *m_bfd;
348 };
349 
350 /* An iterator that first returns a parent objfile, and then each
351    separate debug objfile.  */
352 
353 class separate_debug_iterator
354 {
355 public:
356 
separate_debug_iterator(struct objfile * objfile)357   explicit separate_debug_iterator (struct objfile *objfile)
358     : m_objfile (objfile),
359       m_parent (objfile)
360   {
361   }
362 
363   bool operator!= (const separate_debug_iterator &other)
364   {
365     return m_objfile != other.m_objfile;
366   }
367 
368   separate_debug_iterator &operator++ ();
369 
370   struct objfile *operator* ()
371   {
372     return m_objfile;
373   }
374 
375 private:
376 
377   struct objfile *m_objfile;
378   struct objfile *m_parent;
379 };
380 
381 /* A range adapter wrapping separate_debug_iterator.  */
382 
383 class separate_debug_range
384 {
385 public:
386 
separate_debug_range(struct objfile * objfile)387   explicit separate_debug_range (struct objfile *objfile)
388     : m_objfile (objfile)
389   {
390   }
391 
begin()392   separate_debug_iterator begin ()
393   {
394     return separate_debug_iterator (m_objfile);
395   }
396 
end()397   separate_debug_iterator end ()
398   {
399     return separate_debug_iterator (nullptr);
400   }
401 
402 private:
403 
404   struct objfile *m_objfile;
405 };
406 
407 /* Master structure for keeping track of each file from which
408    gdb reads symbols.  There are several ways these get allocated: 1.
409    The main symbol file, symfile_objfile, set by the symbol-file command,
410    2.  Additional symbol files added by the add-symbol-file command,
411    3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
412    for modules that were loaded when GDB attached to a remote system
413    (see remote-vx.c).
414 
415    GDB typically reads symbols twice -- first an initial scan which just
416    reads "partial symbols"; these are partial information for the
417    static/global symbols in a symbol file.  When later looking up
418    symbols, lookup_symbol is used to check if we only have a partial
419    symbol and if so, read and expand the full compunit.  */
420 
421 struct objfile
422 {
423 private:
424 
425   /* The only way to create an objfile is to call objfile::make.  */
426   objfile (bfd *, const char *, objfile_flags);
427 
428 public:
429 
430   /* Normally you should not call delete.  Instead, call 'unlink' to
431      remove it from the program space's list.  In some cases, you may
432      need to hold a reference to an objfile that is independent of its
433      existence on the program space's list; for this case, the
434      destructor must be public so that shared_ptr can reference
435      it.  */
436   ~objfile ();
437 
438   /* Create an objfile.  */
439   static objfile *make (bfd *bfd_, const char *name_, objfile_flags flags_,
440 			objfile *parent = nullptr);
441 
442   /* Remove an objfile from the current program space, and free
443      it.  */
444   void unlink ();
445 
446   DISABLE_COPY_AND_ASSIGN (objfile);
447 
448   typedef next_adapter<struct compunit_symtab> compunits_range;
449 
450   /* A range adapter that makes it possible to iterate over all
451      compunits in one objfile.  */
452 
compunitsobjfile453   compunits_range compunits ()
454   {
455     return compunits_range (compunit_symtabs);
456   }
457 
458   /* A range adapter that makes it possible to iterate over all
459      minimal symbols of an objfile.  */
460 
461   class msymbols_range
462   {
463   public:
464 
msymbols_rangeobjfile465     explicit msymbols_range (struct objfile *objfile)
466       : m_objfile (objfile)
467     {
468     }
469 
beginobjfile470     minimal_symbol_iterator begin () const
471     {
472       return minimal_symbol_iterator (m_objfile->per_bfd->msymbols.get ());
473     }
474 
endobjfile475     minimal_symbol_iterator end () const
476     {
477       return minimal_symbol_iterator
478 	(m_objfile->per_bfd->msymbols.get ()
479 	 + m_objfile->per_bfd->minimal_symbol_count);
480     }
481 
482   private:
483 
484     struct objfile *m_objfile;
485   };
486 
487   /* Return a range adapter for iterating over all minimal
488      symbols.  */
489 
msymbolsobjfile490   msymbols_range msymbols ()
491   {
492     return msymbols_range (this);
493   }
494 
495   /* Return a range adapter for iterating over all the separate debug
496      objfiles of this objfile.  */
497 
separate_debug_objfilesobjfile498   separate_debug_range separate_debug_objfiles ()
499   {
500     return separate_debug_range (this);
501   }
502 
text_section_offsetobjfile503   CORE_ADDR text_section_offset () const
504   {
505     return section_offsets[SECT_OFF_TEXT (this)];
506   }
507 
data_section_offsetobjfile508   CORE_ADDR data_section_offset () const
509   {
510     return section_offsets[SECT_OFF_DATA (this)];
511   }
512 
513   /* Intern STRING and return the unique copy.  The copy has the same
514      lifetime as the per-BFD object.  */
internobjfile515   const char *intern (const char *str)
516   {
517     return per_bfd->intern (str);
518   }
519 
520   /* Intern STRING and return the unique copy.  The copy has the same
521      lifetime as the per-BFD object.  */
internobjfile522   const char *intern (const std::string &str)
523   {
524     return per_bfd->intern (str);
525   }
526 
527   /* Retrieve the gdbarch associated with this objfile.  */
archobjfile528   struct gdbarch *arch () const
529   {
530     return per_bfd->gdbarch;
531   }
532 
533   /* Return true if OBJFILE has partial symbols.  */
534 
535   bool has_partial_symbols ();
536 
537   /* Return true if this objfile has any unexpanded symbols.  A return
538      value of false indicates either, that this objfile has all its
539      symbols fully expanded (i.e. fully read in), or that this objfile has
540      no symbols at all (i.e. no debug information).  */
541   bool has_unexpanded_symtabs ();
542 
543   /* See quick_symbol_functions.  */
544   struct symtab *find_last_source_symtab ();
545 
546   /* See quick_symbol_functions.  */
547   void forget_cached_source_info ();
548 
549   /* Expand and iterate over each "partial" symbol table in OBJFILE
550      where the source file is named NAME.
551 
552      If NAME is not absolute, a match after a '/' in the symbol table's
553      file name will also work, REAL_PATH is NULL then.  If NAME is
554      absolute then REAL_PATH is non-NULL absolute file name as resolved
555      via gdb_realpath from NAME.
556 
557      If a match is found, the "partial" symbol table is expanded.
558      Then, this calls iterate_over_some_symtabs (or equivalent) over
559      all newly-created symbol tables, passing CALLBACK to it.
560      The result of this call is returned.  */
561   bool map_symtabs_matching_filename
562     (const char *name, const char *real_path,
563      gdb::function_view<bool (symtab *)> callback);
564 
565   /* Check to see if the symbol is defined in a "partial" symbol table
566      of this objfile.  BLOCK_INDEX should be either GLOBAL_BLOCK or
567      STATIC_BLOCK, depending on whether we want to search global
568      symbols or static symbols.  NAME is the name of the symbol to
569      look for.  DOMAIN indicates what sort of symbol to search for.
570 
571      Returns the newly-expanded compunit in which the symbol is
572      defined, or NULL if no such symbol table exists.  If OBJFILE
573      contains !TYPE_OPAQUE symbol prefer its compunit.  If it contains
574      only TYPE_OPAQUE symbol(s), return at least that compunit.  */
575   struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
576 					 domain_enum domain);
577 
578   /* See quick_symbol_functions.  */
579   void print_stats (bool print_bcache);
580 
581   /* See quick_symbol_functions.  */
582   void dump ();
583 
584   /* Find all the symbols in OBJFILE named FUNC_NAME, and ensure that
585      the corresponding symbol tables are loaded.  */
586   void expand_symtabs_for_function (const char *func_name);
587 
588   /* See quick_symbol_functions.  */
589   void expand_all_symtabs ();
590 
591   /* Read all symbol tables associated with OBJFILE which have
592      symtab_to_fullname equal to FULLNAME.
593      This is for the purposes of examining code only, e.g., expand_line_sal.
594      The routine may ignore debug info that is known to not be useful with
595      code, e.g., DW_TAG_type_unit for dwarf debug info.  */
596   void expand_symtabs_with_fullname (const char *fullname);
597 
598   /* See quick_symbol_functions.  */
599   void expand_matching_symbols
600     (const lookup_name_info &name, domain_enum domain,
601      int global,
602      symbol_compare_ftype *ordered_compare);
603 
604   /* See quick_symbol_functions.  */
605   bool expand_symtabs_matching
606     (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
607      const lookup_name_info *lookup_name,
608      gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
609      gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
610      block_search_flags search_flags,
611      domain_enum domain,
612      enum search_domain kind);
613 
614   /* See quick_symbol_functions.  */
615   struct compunit_symtab *find_pc_sect_compunit_symtab
616     (struct bound_minimal_symbol msymbol,
617      CORE_ADDR pc,
618      struct obj_section *section,
619      int warn_if_readin);
620 
621   /* See quick_symbol_functions.  */
622   void map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
623 			     bool need_fullname);
624 
625   /* See quick_symbol_functions.  */
626   struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
627 
628   /* See quick_symbol_functions.  */
629   enum language lookup_global_symbol_language (const char *name,
630 					       domain_enum domain,
631 					       bool *symbol_found_p);
632 
633   /* See quick_symbol_functions.  */
634   void require_partial_symbols (bool verbose);
635 
636   /* Return the relocation offset applied to SECTION.  */
section_offsetobjfile637   CORE_ADDR section_offset (bfd_section *section) const
638   {
639     /* The section's owner can be nullptr if it is one of the _bfd_std_section
640        section.  */
641     gdb_assert (section->owner == nullptr || section->owner == this->obfd);
642 
643     int idx = gdb_bfd_section_index (this->obfd, section);
644     return this->section_offsets[idx];
645   }
646 
647   /* Set the relocation offset applied to SECTION.  */
set_section_offsetobjfile648   void set_section_offset (bfd_section *section, CORE_ADDR offset)
649   {
650     /* The section's owner can be nullptr if it is one of the _bfd_std_section
651        section.  */
652     gdb_assert (section->owner == nullptr || section->owner == this->obfd);
653 
654     int idx = gdb_bfd_section_index (this->obfd, section);
655     this->section_offsets[idx] = offset;
656   }
657 
658   /* The object file's original name as specified by the user,
659      made absolute, and tilde-expanded.  However, it is not canonicalized
660      (i.e., it has not been passed through gdb_realpath).
661      This pointer is never NULL.  This does not have to be freed; it is
662      guaranteed to have a lifetime at least as long as the objfile.  */
663 
664   const char *original_name = nullptr;
665 
666   CORE_ADDR addr_low = 0;
667 
668   /* Some flag bits for this objfile.  */
669 
670   objfile_flags flags;
671 
672   /* The program space associated with this objfile.  */
673 
674   struct program_space *pspace;
675 
676   /* List of compunits.
677      These are used to do symbol lookups and file/line-number lookups.  */
678 
679   struct compunit_symtab *compunit_symtabs = nullptr;
680 
681   /* The object file's BFD.  Can be null if the objfile contains only
682      minimal symbols, e.g. the run time common symbols for SunOS4.  */
683 
684   bfd *obfd;
685 
686   /* The per-BFD data.  Note that this is treated specially if OBFD
687      is NULL.  */
688 
689   struct objfile_per_bfd_storage *per_bfd = nullptr;
690 
691   /* The modification timestamp of the object file, as of the last time
692      we read its symbols.  */
693 
694   long mtime = 0;
695 
696   /* Obstack to hold objects that should be freed when we load a new symbol
697      table from this object file.  */
698 
699   struct obstack objfile_obstack {};
700 
701   /* Structure which keeps track of functions that manipulate objfile's
702      of the same type as this objfile.  I.e. the function to read partial
703      symbols for example.  Note that this structure is in statically
704      allocated memory, and is shared by all objfiles that use the
705      object module reader of this type.  */
706 
707   const struct sym_fns *sf = nullptr;
708 
709   /* The "quick" (aka partial) symbol functions for this symbol
710      reader.  */
711   std::forward_list<quick_symbol_functions_up> qf;
712 
713   /* Per objfile data-pointers required by other GDB modules.  */
714 
715   REGISTRY_FIELDS {};
716 
717   /* Set of relocation offsets to apply to each section.
718      The table is indexed by the_bfd_section->index, thus it is generally
719      as large as the number of sections in the binary.
720 
721      These offsets indicate that all symbols (including partial and
722      minimal symbols) which have been read have been relocated by this
723      much.  Symbols which are yet to be read need to be relocated by it.  */
724 
725   ::section_offsets section_offsets;
726 
727   /* Indexes in the section_offsets array.  These are initialized by the
728      *_symfile_offsets() family of functions (som_symfile_offsets,
729      xcoff_symfile_offsets, default_symfile_offsets).  In theory they
730      should correspond to the section indexes used by bfd for the
731      current objfile.  The exception to this for the time being is the
732      SOM version.
733 
734      These are initialized to -1 so that we can later detect if they
735      are used w/o being properly assigned to.  */
736 
737   int sect_index_text = -1;
738   int sect_index_data = -1;
739   int sect_index_bss = -1;
740   int sect_index_rodata = -1;
741 
742   /* These pointers are used to locate the section table, which
743      among other things, is used to map pc addresses into sections.
744      SECTIONS points to the first entry in the table, and
745      SECTIONS_END points to the first location past the last entry
746      in the table.  The table is stored on the objfile_obstack.  The
747      sections are indexed by the BFD section index; but the
748      structure data is only valid for certain sections
749      (e.g. non-empty, SEC_ALLOC).  */
750 
751   struct obj_section *sections = nullptr;
752   struct obj_section *sections_end = nullptr;
753 
754   /* GDB allows to have debug symbols in separate object files.  This is
755      used by .gnu_debuglink, ELF build id note and Mach-O OSO.
756      Although this is a tree structure, GDB only support one level
757      (ie a separate debug for a separate debug is not supported).  Note that
758      separate debug object are in the main chain and therefore will be
759      visited by objfiles & co iterators.  Separate debug objfile always
760      has a non-nul separate_debug_objfile_backlink.  */
761 
762   /* Link to the first separate debug object, if any.  */
763 
764   struct objfile *separate_debug_objfile = nullptr;
765 
766   /* If this is a separate debug object, this is used as a link to the
767      actual executable objfile.  */
768 
769   struct objfile *separate_debug_objfile_backlink = nullptr;
770 
771   /* If this is a separate debug object, this is a link to the next one
772      for the same executable objfile.  */
773 
774   struct objfile *separate_debug_objfile_link = nullptr;
775 
776   /* Place to stash various statistics about this objfile.  */
777 
778   OBJSTATS;
779 
780   /* A linked list of symbols created when reading template types or
781      function templates.  These symbols are not stored in any symbol
782      table, so we have to keep them here to relocate them
783      properly.  */
784 
785   struct symbol *template_symbols = nullptr;
786 
787   /* Associate a static link (struct dynamic_prop *) to all blocks (struct
788      block *) that have one.
789 
790      In the context of nested functions (available in Pascal, Ada and GNU C,
791      for instance), a static link (as in DWARF's DW_AT_static_link attribute)
792      for a function is a way to get the frame corresponding to the enclosing
793      function.
794 
795      Very few blocks have a static link, so it's more memory efficient to
796      store these here rather than in struct block.  Static links must be
797      allocated on the objfile's obstack.  */
798   htab_up static_links;
799 
800   /* JIT-related data for this objfile, if the objfile is a JITer;
801      that is, it produces JITed objfiles.  */
802   std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
803 
804   /* JIT-related data for this objfile, if the objfile is JITed;
805      that is, it was produced by a JITer.  */
806   std::unique_ptr<jited_objfile_data> jited_data = nullptr;
807 
808   /* A flag that is set to true if the JIT interface symbols are not
809      found in this objfile, so that we can skip the symbol lookup the
810      next time.  If an objfile does not have the symbols, it will
811      never have them.  */
812   bool skip_jit_symbol_lookup = false;
813 };
814 
815 /* A deleter for objfile.  */
816 
817 struct objfile_deleter
818 {
operatorobjfile_deleter819   void operator() (objfile *ptr) const
820   {
821     ptr->unlink ();
822   }
823 };
824 
825 /* A unique pointer that holds an objfile.  */
826 
827 typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
828 
829 
830 /* Sections in an objfile.  The section offsets are stored in the
831    OBJFILE.  */
832 
833 struct obj_section
834 {
835   /* Relocation offset applied to the section.  */
offsetobj_section836   CORE_ADDR offset () const
837   {
838     return this->objfile->section_offset (this->the_bfd_section);
839   }
840 
841   /* Set the relocation offset applied to the section.  */
set_offsetobj_section842   void set_offset (CORE_ADDR offset)
843   {
844     this->objfile->set_section_offset (this->the_bfd_section, offset);
845   }
846 
847   /* The memory address of the section (vma + offset).  */
addrobj_section848   CORE_ADDR addr () const
849   {
850     return bfd_section_vma (this->the_bfd_section) + this->offset ();
851   }
852 
853   /* The one-passed-the-end memory address of the section
854      (vma + size + offset).  */
endaddrobj_section855   CORE_ADDR endaddr () const
856   {
857     return this->addr () + bfd_section_size (this->the_bfd_section);
858   }
859 
860   /* BFD section pointer */
861   struct bfd_section *the_bfd_section;
862 
863   /* Objfile this section is part of.  */
864   struct objfile *objfile;
865 
866   /* True if this "overlay section" is mapped into an "overlay region".  */
867   int ovly_mapped;
868 };
869 
870 /* Declarations for functions defined in objfiles.c */
871 
872 extern int entry_point_address_query (CORE_ADDR *entry_p);
873 
874 extern CORE_ADDR entry_point_address (void);
875 
876 extern void build_objfile_section_table (struct objfile *);
877 
878 extern void free_objfile_separate_debug (struct objfile *);
879 
880 extern void objfile_relocate (struct objfile *, const section_offsets &);
881 extern void objfile_rebase (struct objfile *, CORE_ADDR);
882 
883 extern int objfile_has_full_symbols (struct objfile *objfile);
884 
885 extern int objfile_has_symbols (struct objfile *objfile);
886 
887 extern int have_partial_symbols (void);
888 
889 extern int have_full_symbols (void);
890 
891 extern void objfile_set_sym_fns (struct objfile *objfile,
892 				 const struct sym_fns *sf);
893 
894 extern void objfiles_changed (void);
895 
896 /* Return true if ADDR maps into one of the sections of OBJFILE and false
897    otherwise.  */
898 
899 extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
900 
901 /* Return true if ADDRESS maps into one of the sections of a
902    OBJF_SHARED objfile of PSPACE and false otherwise.  */
903 
904 extern bool shared_objfile_contains_address_p (struct program_space *pspace,
905 					       CORE_ADDR address);
906 
907 /* This operation deletes all objfile entries that represent solibs that
908    weren't explicitly loaded by the user, via e.g., the add-symbol-file
909    command.  */
910 
911 extern void objfile_purge_solibs (void);
912 
913 /* Functions for dealing with the minimal symbol table, really a misc
914    address<->symbol mapping for things we don't have debug symbols for.  */
915 
916 extern int have_minimal_symbols (void);
917 
918 extern struct obj_section *find_pc_section (CORE_ADDR pc);
919 
920 /* Return non-zero if PC is in a section called NAME.  */
921 extern int pc_in_section (CORE_ADDR, const char *);
922 
923 /* Return non-zero if PC is in a SVR4-style procedure linkage table
924    section.  */
925 
926 static inline int
in_plt_section(CORE_ADDR pc)927 in_plt_section (CORE_ADDR pc)
928 {
929   return (pc_in_section (pc, ".plt")
930 	  || pc_in_section (pc, ".plt.sec"));
931 }
932 
933 /* Keep a registry of per-objfile data-pointers required by other GDB
934    modules.  */
935 DECLARE_REGISTRY(objfile);
936 
937 /* In normal use, the section map will be rebuilt by find_pc_section
938    if objfiles have been added, removed or relocated since it was last
939    called.  Calling inhibit_section_map_updates will inhibit this
940    behavior until the returned scoped_restore object is destroyed.  If
941    you call inhibit_section_map_updates you must ensure that every
942    call to find_pc_section in the inhibited region relates to a
943    section that is already in the section map and has not since been
944    removed or relocated.  */
945 extern scoped_restore_tmpl<int> inhibit_section_map_updates
946     (struct program_space *pspace);
947 
948 extern void default_iterate_over_objfiles_in_search_order
949   (struct gdbarch *gdbarch,
950    iterate_over_objfiles_in_search_order_cb_ftype *cb,
951    void *cb_data, struct objfile *current_objfile);
952 
953 /* Reset the per-BFD storage area on OBJ.  */
954 
955 void set_objfile_per_bfd (struct objfile *obj);
956 
957 /* Return canonical name for OBJFILE.
958    This is the real file name if the file has been opened.
959    Otherwise it is the original name supplied by the user.  */
960 
961 const char *objfile_name (const struct objfile *objfile);
962 
963 /* Return the (real) file name of OBJFILE if the file has been opened,
964    otherwise return NULL.  */
965 
966 const char *objfile_filename (const struct objfile *objfile);
967 
968 /* Return the name to print for OBJFILE in debugging messages.  */
969 
970 extern const char *objfile_debug_name (const struct objfile *objfile);
971 
972 /* Return the name of the file format of OBJFILE if the file has been opened,
973    otherwise return NULL.  */
974 
975 const char *objfile_flavour_name (struct objfile *objfile);
976 
977 /* Set the objfile's notion of the "main" name and language.  */
978 
979 extern void set_objfile_main_name (struct objfile *objfile,
980 				   const char *name, enum language lang);
981 
982 extern void objfile_register_static_link
983   (struct objfile *objfile,
984    const struct block *block,
985    const struct dynamic_prop *static_link);
986 
987 extern const struct dynamic_prop *objfile_lookup_static_link
988   (struct objfile *objfile, const struct block *block);
989 
990 #endif /* !defined (OBJFILES_H) */
991