1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a class to represent arbitrary precision 11 /// integral constant values and operations on them. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_ADT_APINT_H 16 #define LLVM_ADT_APINT_H 17 18 #include "llvm/Support/Compiler.h" 19 #include "llvm/Support/MathExtras.h" 20 #include <cassert> 21 #include <climits> 22 #include <cstring> 23 #include <utility> 24 25 namespace llvm { 26 class FoldingSetNodeID; 27 class StringRef; 28 class hash_code; 29 class raw_ostream; 30 31 template <typename T> class SmallVectorImpl; 32 template <typename T> class ArrayRef; 33 template <typename T> class Optional; 34 template <typename T> struct DenseMapInfo; 35 36 class APInt; 37 38 inline APInt operator-(APInt); 39 40 //===----------------------------------------------------------------------===// 41 // APInt Class 42 //===----------------------------------------------------------------------===// 43 44 /// Class for arbitrary precision integers. 45 /// 46 /// APInt is a functional replacement for common case unsigned integer type like 47 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width 48 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more 49 /// than 64-bits of precision. APInt provides a variety of arithmetic operators 50 /// and methods to manipulate integer values of any bit-width. It supports both 51 /// the typical integer arithmetic and comparison operations as well as bitwise 52 /// manipulation. 53 /// 54 /// The class has several invariants worth noting: 55 /// * All bit, byte, and word positions are zero-based. 56 /// * Once the bit width is set, it doesn't change except by the Truncate, 57 /// SignExtend, or ZeroExtend operations. 58 /// * All binary operators must be on APInt instances of the same bit width. 59 /// Attempting to use these operators on instances with different bit 60 /// widths will yield an assertion. 61 /// * The value is stored canonically as an unsigned value. For operations 62 /// where it makes a difference, there are both signed and unsigned variants 63 /// of the operation. For example, sdiv and udiv. However, because the bit 64 /// widths must be the same, operations such as Mul and Add produce the same 65 /// results regardless of whether the values are interpreted as signed or 66 /// not. 67 /// * In general, the class tries to follow the style of computation that LLVM 68 /// uses in its IR. This simplifies its use for LLVM. 69 /// * APInt supports zero-bit-width values, but operations that require bits 70 /// are not defined on it (e.g. you cannot ask for the sign of a zero-bit 71 /// integer). This means that operations like zero extension and logical 72 /// shifts are defined, but sign extension and ashr is not. Zero bit values 73 /// compare and hash equal to themselves, and countLeadingZeros returns 0. 74 /// 75 class LLVM_NODISCARD APInt { 76 public: 77 typedef uint64_t WordType; 78 79 /// This enum is used to hold the constants we needed for APInt. 80 enum : unsigned { 81 /// Byte size of a word. 82 APINT_WORD_SIZE = sizeof(WordType), 83 /// Bits in a word. 84 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT 85 }; 86 87 enum class Rounding { 88 DOWN, 89 TOWARD_ZERO, 90 UP, 91 }; 92 93 static constexpr WordType WORDTYPE_MAX = ~WordType(0); 94 95 /// \name Constructors 96 /// @{ 97 98 /// Create a new APInt of numBits width, initialized as val. 99 /// 100 /// If isSigned is true then val is treated as if it were a signed value 101 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width 102 /// will be done. Otherwise, no sign extension occurs (high order bits beyond 103 /// the range of val are zero filled). 104 /// 105 /// \param numBits the bit width of the constructed APInt 106 /// \param val the initial value of the APInt 107 /// \param isSigned how to treat signedness of val 108 APInt(unsigned numBits, uint64_t val, bool isSigned = false) BitWidth(numBits)109 : BitWidth(numBits) { 110 if (isSingleWord()) { 111 U.VAL = val; 112 clearUnusedBits(); 113 } else { 114 initSlowCase(val, isSigned); 115 } 116 } 117 118 /// Construct an APInt of numBits width, initialized as bigVal[]. 119 /// 120 /// Note that bigVal.size() can be smaller or larger than the corresponding 121 /// bit width but any extraneous bits will be dropped. 122 /// 123 /// \param numBits the bit width of the constructed APInt 124 /// \param bigVal a sequence of words to form the initial value of the APInt 125 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); 126 127 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but 128 /// deprecated because this constructor is prone to ambiguity with the 129 /// APInt(unsigned, uint64_t, bool) constructor. 130 /// 131 /// If this overload is ever deleted, care should be taken to prevent calls 132 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) 133 /// constructor. 134 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); 135 136 /// Construct an APInt from a string representation. 137 /// 138 /// This constructor interprets the string \p str in the given radix. The 139 /// interpretation stops when the first character that is not suitable for the 140 /// radix is encountered, or the end of the string. Acceptable radix values 141 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the 142 /// string to require more bits than numBits. 143 /// 144 /// \param numBits the bit width of the constructed APInt 145 /// \param str the string to be interpreted 146 /// \param radix the radix to use for the conversion 147 APInt(unsigned numBits, StringRef str, uint8_t radix); 148 149 /// Default constructor that creates an APInt with a 1-bit zero value. APInt()150 explicit APInt() : BitWidth(1) { U.VAL = 0; } 151 152 /// Copy Constructor. APInt(const APInt & that)153 APInt(const APInt &that) : BitWidth(that.BitWidth) { 154 if (isSingleWord()) 155 U.VAL = that.U.VAL; 156 else 157 initSlowCase(that); 158 } 159 160 /// Move Constructor. APInt(APInt && that)161 APInt(APInt &&that) : BitWidth(that.BitWidth) { 162 memcpy(&U, &that.U, sizeof(U)); 163 that.BitWidth = 0; 164 } 165 166 /// Destructor. ~APInt()167 ~APInt() { 168 if (needsCleanup()) 169 delete[] U.pVal; 170 } 171 172 /// @} 173 /// \name Value Generators 174 /// @{ 175 176 /// Get the '0' value for the specified bit-width. getZero(unsigned numBits)177 static APInt getZero(unsigned numBits) { return APInt(numBits, 0); } 178 179 /// NOTE: This is soft-deprecated. Please use `getZero()` instead. getNullValue(unsigned numBits)180 static APInt getNullValue(unsigned numBits) { return getZero(numBits); } 181 182 /// Return an APInt zero bits wide. getZeroWidth()183 static APInt getZeroWidth() { return getZero(0); } 184 185 /// Gets maximum unsigned value of APInt for specific bit width. getMaxValue(unsigned numBits)186 static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); } 187 188 /// Gets maximum signed value of APInt for a specific bit width. getSignedMaxValue(unsigned numBits)189 static APInt getSignedMaxValue(unsigned numBits) { 190 APInt API = getAllOnes(numBits); 191 API.clearBit(numBits - 1); 192 return API; 193 } 194 195 /// Gets minimum unsigned value of APInt for a specific bit width. getMinValue(unsigned numBits)196 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } 197 198 /// Gets minimum signed value of APInt for a specific bit width. getSignedMinValue(unsigned numBits)199 static APInt getSignedMinValue(unsigned numBits) { 200 APInt API(numBits, 0); 201 API.setBit(numBits - 1); 202 return API; 203 } 204 205 /// Get the SignMask for a specific bit width. 206 /// 207 /// This is just a wrapper function of getSignedMinValue(), and it helps code 208 /// readability when we want to get a SignMask. getSignMask(unsigned BitWidth)209 static APInt getSignMask(unsigned BitWidth) { 210 return getSignedMinValue(BitWidth); 211 } 212 213 /// Return an APInt of a specified width with all bits set. getAllOnes(unsigned numBits)214 static APInt getAllOnes(unsigned numBits) { 215 return APInt(numBits, WORDTYPE_MAX, true); 216 } 217 218 /// NOTE: This is soft-deprecated. Please use `getAllOnes()` instead. getAllOnesValue(unsigned numBits)219 static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); } 220 221 /// Return an APInt with exactly one bit set in the result. getOneBitSet(unsigned numBits,unsigned BitNo)222 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { 223 APInt Res(numBits, 0); 224 Res.setBit(BitNo); 225 return Res; 226 } 227 228 /// Get a value with a block of bits set. 229 /// 230 /// Constructs an APInt value that has a contiguous range of bits set. The 231 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other 232 /// bits will be zero. For example, with parameters(32, 0, 16) you would get 233 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than 234 /// \p hiBit. 235 /// 236 /// \param numBits the intended bit width of the result 237 /// \param loBit the index of the lowest bit set. 238 /// \param hiBit the index of the highest bit set. 239 /// 240 /// \returns An APInt value with the requested bits set. getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)241 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { 242 APInt Res(numBits, 0); 243 Res.setBits(loBit, hiBit); 244 return Res; 245 } 246 247 /// Wrap version of getBitsSet. 248 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. 249 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, 250 /// with parameters (32, 28, 4), you would get 0xF000000F. 251 /// If \p hiBit is equal to \p loBit, you would get a result with all bits 252 /// set. getBitsSetWithWrap(unsigned numBits,unsigned loBit,unsigned hiBit)253 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, 254 unsigned hiBit) { 255 APInt Res(numBits, 0); 256 Res.setBitsWithWrap(loBit, hiBit); 257 return Res; 258 } 259 260 /// Constructs an APInt value that has a contiguous range of bits set. The 261 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other 262 /// bits will be zero. For example, with parameters(32, 12) you would get 263 /// 0xFFFFF000. 264 /// 265 /// \param numBits the intended bit width of the result 266 /// \param loBit the index of the lowest bit to set. 267 /// 268 /// \returns An APInt value with the requested bits set. getBitsSetFrom(unsigned numBits,unsigned loBit)269 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { 270 APInt Res(numBits, 0); 271 Res.setBitsFrom(loBit); 272 return Res; 273 } 274 275 /// Constructs an APInt value that has the top hiBitsSet bits set. 276 /// 277 /// \param numBits the bitwidth of the result 278 /// \param hiBitsSet the number of high-order bits set in the result. getHighBitsSet(unsigned numBits,unsigned hiBitsSet)279 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { 280 APInt Res(numBits, 0); 281 Res.setHighBits(hiBitsSet); 282 return Res; 283 } 284 285 /// Constructs an APInt value that has the bottom loBitsSet bits set. 286 /// 287 /// \param numBits the bitwidth of the result 288 /// \param loBitsSet the number of low-order bits set in the result. getLowBitsSet(unsigned numBits,unsigned loBitsSet)289 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { 290 APInt Res(numBits, 0); 291 Res.setLowBits(loBitsSet); 292 return Res; 293 } 294 295 /// Return a value containing V broadcasted over NewLen bits. 296 static APInt getSplat(unsigned NewLen, const APInt &V); 297 298 /// @} 299 /// \name Value Tests 300 /// @{ 301 302 /// Determine if this APInt just has one word to store value. 303 /// 304 /// \returns true if the number of bits <= 64, false otherwise. isSingleWord()305 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } 306 307 /// Determine sign of this APInt. 308 /// 309 /// This tests the high bit of this APInt to determine if it is set. 310 /// 311 /// \returns true if this APInt is negative, false otherwise isNegative()312 bool isNegative() const { return (*this)[BitWidth - 1]; } 313 314 /// Determine if this APInt Value is non-negative (>= 0) 315 /// 316 /// This tests the high bit of the APInt to determine if it is unset. isNonNegative()317 bool isNonNegative() const { return !isNegative(); } 318 319 /// Determine if sign bit of this APInt is set. 320 /// 321 /// This tests the high bit of this APInt to determine if it is set. 322 /// 323 /// \returns true if this APInt has its sign bit set, false otherwise. isSignBitSet()324 bool isSignBitSet() const { return (*this)[BitWidth - 1]; } 325 326 /// Determine if sign bit of this APInt is clear. 327 /// 328 /// This tests the high bit of this APInt to determine if it is clear. 329 /// 330 /// \returns true if this APInt has its sign bit clear, false otherwise. isSignBitClear()331 bool isSignBitClear() const { return !isSignBitSet(); } 332 333 /// Determine if this APInt Value is positive. 334 /// 335 /// This tests if the value of this APInt is positive (> 0). Note 336 /// that 0 is not a positive value. 337 /// 338 /// \returns true if this APInt is positive. isStrictlyPositive()339 bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } 340 341 /// Determine if this APInt Value is non-positive (<= 0). 342 /// 343 /// \returns true if this APInt is non-positive. isNonPositive()344 bool isNonPositive() const { return !isStrictlyPositive(); } 345 346 /// Determine if all bits are set. This is true for zero-width values. isAllOnes()347 bool isAllOnes() const { 348 if (BitWidth == 0) 349 return true; 350 if (isSingleWord()) 351 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); 352 return countTrailingOnesSlowCase() == BitWidth; 353 } 354 355 /// NOTE: This is soft-deprecated. Please use `isAllOnes()` instead. isAllOnesValue()356 bool isAllOnesValue() const { return isAllOnes(); } 357 358 /// Determine if this value is zero, i.e. all bits are clear. isZero()359 bool isZero() const { 360 if (isSingleWord()) 361 return U.VAL == 0; 362 return countLeadingZerosSlowCase() == BitWidth; 363 } 364 365 /// NOTE: This is soft-deprecated. Please use `isZero()` instead. isNullValue()366 bool isNullValue() const { return isZero(); } 367 368 /// Determine if this is a value of 1. 369 /// 370 /// This checks to see if the value of this APInt is one. isOne()371 bool isOne() const { 372 if (isSingleWord()) 373 return U.VAL == 1; 374 return countLeadingZerosSlowCase() == BitWidth - 1; 375 } 376 377 /// NOTE: This is soft-deprecated. Please use `isOne()` instead. isOneValue()378 bool isOneValue() const { return isOne(); } 379 380 /// Determine if this is the largest unsigned value. 381 /// 382 /// This checks to see if the value of this APInt is the maximum unsigned 383 /// value for the APInt's bit width. isMaxValue()384 bool isMaxValue() const { return isAllOnes(); } 385 386 /// Determine if this is the largest signed value. 387 /// 388 /// This checks to see if the value of this APInt is the maximum signed 389 /// value for the APInt's bit width. isMaxSignedValue()390 bool isMaxSignedValue() const { 391 if (isSingleWord()) { 392 assert(BitWidth && "zero width values not allowed"); 393 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); 394 } 395 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; 396 } 397 398 /// Determine if this is the smallest unsigned value. 399 /// 400 /// This checks to see if the value of this APInt is the minimum unsigned 401 /// value for the APInt's bit width. isMinValue()402 bool isMinValue() const { return isZero(); } 403 404 /// Determine if this is the smallest signed value. 405 /// 406 /// This checks to see if the value of this APInt is the minimum signed 407 /// value for the APInt's bit width. isMinSignedValue()408 bool isMinSignedValue() const { 409 if (isSingleWord()) { 410 assert(BitWidth && "zero width values not allowed"); 411 return U.VAL == (WordType(1) << (BitWidth - 1)); 412 } 413 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; 414 } 415 416 /// Check if this APInt has an N-bits unsigned integer value. isIntN(unsigned N)417 bool isIntN(unsigned N) const { return getActiveBits() <= N; } 418 419 /// Check if this APInt has an N-bits signed integer value. isSignedIntN(unsigned N)420 bool isSignedIntN(unsigned N) const { return getMinSignedBits() <= N; } 421 422 /// Check if this APInt's value is a power of two greater than zero. 423 /// 424 /// \returns true if the argument APInt value is a power of two > 0. isPowerOf2()425 bool isPowerOf2() const { 426 if (isSingleWord()) { 427 assert(BitWidth && "zero width values not allowed"); 428 return isPowerOf2_64(U.VAL); 429 } 430 return countPopulationSlowCase() == 1; 431 } 432 433 /// Check if the APInt's value is returned by getSignMask. 434 /// 435 /// \returns true if this is the value returned by getSignMask. isSignMask()436 bool isSignMask() const { return isMinSignedValue(); } 437 438 /// Convert APInt to a boolean value. 439 /// 440 /// This converts the APInt to a boolean value as a test against zero. getBoolValue()441 bool getBoolValue() const { return !isZero(); } 442 443 /// If this value is smaller than the specified limit, return it, otherwise 444 /// return the limit value. This causes the value to saturate to the limit. 445 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { 446 return ugt(Limit) ? Limit : getZExtValue(); 447 } 448 449 /// Check if the APInt consists of a repeated bit pattern. 450 /// 451 /// e.g. 0x01010101 satisfies isSplat(8). 452 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit 453 /// width without remainder. 454 bool isSplat(unsigned SplatSizeInBits) const; 455 456 /// \returns true if this APInt value is a sequence of \param numBits ones 457 /// starting at the least significant bit with the remainder zero. isMask(unsigned numBits)458 bool isMask(unsigned numBits) const { 459 assert(numBits != 0 && "numBits must be non-zero"); 460 assert(numBits <= BitWidth && "numBits out of range"); 461 if (isSingleWord()) 462 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); 463 unsigned Ones = countTrailingOnesSlowCase(); 464 return (numBits == Ones) && 465 ((Ones + countLeadingZerosSlowCase()) == BitWidth); 466 } 467 468 /// \returns true if this APInt is a non-empty sequence of ones starting at 469 /// the least significant bit with the remainder zero. 470 /// Ex. isMask(0x0000FFFFU) == true. isMask()471 bool isMask() const { 472 if (isSingleWord()) 473 return isMask_64(U.VAL); 474 unsigned Ones = countTrailingOnesSlowCase(); 475 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); 476 } 477 478 /// Return true if this APInt value contains a sequence of ones with 479 /// the remainder zero. isShiftedMask()480 bool isShiftedMask() const { 481 if (isSingleWord()) 482 return isShiftedMask_64(U.VAL); 483 unsigned Ones = countPopulationSlowCase(); 484 unsigned LeadZ = countLeadingZerosSlowCase(); 485 return (Ones + LeadZ + countTrailingZeros()) == BitWidth; 486 } 487 488 /// Compute an APInt containing numBits highbits from this APInt. 489 /// 490 /// Get an APInt with the same BitWidth as this APInt, just zero mask the low 491 /// bits and right shift to the least significant bit. 492 /// 493 /// \returns the high "numBits" bits of this APInt. 494 APInt getHiBits(unsigned numBits) const; 495 496 /// Compute an APInt containing numBits lowbits from this APInt. 497 /// 498 /// Get an APInt with the same BitWidth as this APInt, just zero mask the high 499 /// bits. 500 /// 501 /// \returns the low "numBits" bits of this APInt. 502 APInt getLoBits(unsigned numBits) const; 503 504 /// Determine if two APInts have the same value, after zero-extending 505 /// one of them (if needed!) to ensure that the bit-widths match. isSameValue(const APInt & I1,const APInt & I2)506 static bool isSameValue(const APInt &I1, const APInt &I2) { 507 if (I1.getBitWidth() == I2.getBitWidth()) 508 return I1 == I2; 509 510 if (I1.getBitWidth() > I2.getBitWidth()) 511 return I1 == I2.zext(I1.getBitWidth()); 512 513 return I1.zext(I2.getBitWidth()) == I2; 514 } 515 516 /// Overload to compute a hash_code for an APInt value. 517 friend hash_code hash_value(const APInt &Arg); 518 519 /// This function returns a pointer to the internal storage of the APInt. 520 /// This is useful for writing out the APInt in binary form without any 521 /// conversions. getRawData()522 const uint64_t *getRawData() const { 523 if (isSingleWord()) 524 return &U.VAL; 525 return &U.pVal[0]; 526 } 527 528 /// @} 529 /// \name Unary Operators 530 /// @{ 531 532 /// Postfix increment operator. Increment *this by 1. 533 /// 534 /// \returns a new APInt value representing the original value of *this. 535 APInt operator++(int) { 536 APInt API(*this); 537 ++(*this); 538 return API; 539 } 540 541 /// Prefix increment operator. 542 /// 543 /// \returns *this incremented by one 544 APInt &operator++(); 545 546 /// Postfix decrement operator. Decrement *this by 1. 547 /// 548 /// \returns a new APInt value representing the original value of *this. 549 APInt operator--(int) { 550 APInt API(*this); 551 --(*this); 552 return API; 553 } 554 555 /// Prefix decrement operator. 556 /// 557 /// \returns *this decremented by one. 558 APInt &operator--(); 559 560 /// Logical negation operation on this APInt returns true if zero, like normal 561 /// integers. 562 bool operator!() const { return isZero(); } 563 564 /// @} 565 /// \name Assignment Operators 566 /// @{ 567 568 /// Copy assignment operator. 569 /// 570 /// \returns *this after assignment of RHS. 571 APInt &operator=(const APInt &RHS) { 572 // The common case (both source or dest being inline) doesn't require 573 // allocation or deallocation. 574 if (isSingleWord() && RHS.isSingleWord()) { 575 U.VAL = RHS.U.VAL; 576 BitWidth = RHS.BitWidth; 577 return *this; 578 } 579 580 assignSlowCase(RHS); 581 return *this; 582 } 583 584 /// Move assignment operator. 585 APInt &operator=(APInt &&that) { 586 #ifdef EXPENSIVE_CHECKS 587 // Some std::shuffle implementations still do self-assignment. 588 if (this == &that) 589 return *this; 590 #endif 591 assert(this != &that && "Self-move not supported"); 592 if (!isSingleWord()) 593 delete[] U.pVal; 594 595 // Use memcpy so that type based alias analysis sees both VAL and pVal 596 // as modified. 597 memcpy(&U, &that.U, sizeof(U)); 598 599 BitWidth = that.BitWidth; 600 that.BitWidth = 0; 601 return *this; 602 } 603 604 /// Assignment operator. 605 /// 606 /// The RHS value is assigned to *this. If the significant bits in RHS exceed 607 /// the bit width, the excess bits are truncated. If the bit width is larger 608 /// than 64, the value is zero filled in the unspecified high order bits. 609 /// 610 /// \returns *this after assignment of RHS value. 611 APInt &operator=(uint64_t RHS) { 612 if (isSingleWord()) { 613 U.VAL = RHS; 614 return clearUnusedBits(); 615 } 616 U.pVal[0] = RHS; 617 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 618 return *this; 619 } 620 621 /// Bitwise AND assignment operator. 622 /// 623 /// Performs a bitwise AND operation on this APInt and RHS. The result is 624 /// assigned to *this. 625 /// 626 /// \returns *this after ANDing with RHS. 627 APInt &operator&=(const APInt &RHS) { 628 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 629 if (isSingleWord()) 630 U.VAL &= RHS.U.VAL; 631 else 632 andAssignSlowCase(RHS); 633 return *this; 634 } 635 636 /// Bitwise AND assignment operator. 637 /// 638 /// Performs a bitwise AND operation on this APInt and RHS. RHS is 639 /// logically zero-extended or truncated to match the bit-width of 640 /// the LHS. 641 APInt &operator&=(uint64_t RHS) { 642 if (isSingleWord()) { 643 U.VAL &= RHS; 644 return *this; 645 } 646 U.pVal[0] &= RHS; 647 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 648 return *this; 649 } 650 651 /// Bitwise OR assignment operator. 652 /// 653 /// Performs a bitwise OR operation on this APInt and RHS. The result is 654 /// assigned *this; 655 /// 656 /// \returns *this after ORing with RHS. 657 APInt &operator|=(const APInt &RHS) { 658 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 659 if (isSingleWord()) 660 U.VAL |= RHS.U.VAL; 661 else 662 orAssignSlowCase(RHS); 663 return *this; 664 } 665 666 /// Bitwise OR assignment operator. 667 /// 668 /// Performs a bitwise OR operation on this APInt and RHS. RHS is 669 /// logically zero-extended or truncated to match the bit-width of 670 /// the LHS. 671 APInt &operator|=(uint64_t RHS) { 672 if (isSingleWord()) { 673 U.VAL |= RHS; 674 return clearUnusedBits(); 675 } 676 U.pVal[0] |= RHS; 677 return *this; 678 } 679 680 /// Bitwise XOR assignment operator. 681 /// 682 /// Performs a bitwise XOR operation on this APInt and RHS. The result is 683 /// assigned to *this. 684 /// 685 /// \returns *this after XORing with RHS. 686 APInt &operator^=(const APInt &RHS) { 687 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 688 if (isSingleWord()) 689 U.VAL ^= RHS.U.VAL; 690 else 691 xorAssignSlowCase(RHS); 692 return *this; 693 } 694 695 /// Bitwise XOR assignment operator. 696 /// 697 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is 698 /// logically zero-extended or truncated to match the bit-width of 699 /// the LHS. 700 APInt &operator^=(uint64_t RHS) { 701 if (isSingleWord()) { 702 U.VAL ^= RHS; 703 return clearUnusedBits(); 704 } 705 U.pVal[0] ^= RHS; 706 return *this; 707 } 708 709 /// Multiplication assignment operator. 710 /// 711 /// Multiplies this APInt by RHS and assigns the result to *this. 712 /// 713 /// \returns *this 714 APInt &operator*=(const APInt &RHS); 715 APInt &operator*=(uint64_t RHS); 716 717 /// Addition assignment operator. 718 /// 719 /// Adds RHS to *this and assigns the result to *this. 720 /// 721 /// \returns *this 722 APInt &operator+=(const APInt &RHS); 723 APInt &operator+=(uint64_t RHS); 724 725 /// Subtraction assignment operator. 726 /// 727 /// Subtracts RHS from *this and assigns the result to *this. 728 /// 729 /// \returns *this 730 APInt &operator-=(const APInt &RHS); 731 APInt &operator-=(uint64_t RHS); 732 733 /// Left-shift assignment function. 734 /// 735 /// Shifts *this left by shiftAmt and assigns the result to *this. 736 /// 737 /// \returns *this after shifting left by ShiftAmt 738 APInt &operator<<=(unsigned ShiftAmt) { 739 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 740 if (isSingleWord()) { 741 if (ShiftAmt == BitWidth) 742 U.VAL = 0; 743 else 744 U.VAL <<= ShiftAmt; 745 return clearUnusedBits(); 746 } 747 shlSlowCase(ShiftAmt); 748 return *this; 749 } 750 751 /// Left-shift assignment function. 752 /// 753 /// Shifts *this left by shiftAmt and assigns the result to *this. 754 /// 755 /// \returns *this after shifting left by ShiftAmt 756 APInt &operator<<=(const APInt &ShiftAmt); 757 758 /// @} 759 /// \name Binary Operators 760 /// @{ 761 762 /// Multiplication operator. 763 /// 764 /// Multiplies this APInt by RHS and returns the result. 765 APInt operator*(const APInt &RHS) const; 766 767 /// Left logical shift operator. 768 /// 769 /// Shifts this APInt left by \p Bits and returns the result. 770 APInt operator<<(unsigned Bits) const { return shl(Bits); } 771 772 /// Left logical shift operator. 773 /// 774 /// Shifts this APInt left by \p Bits and returns the result. 775 APInt operator<<(const APInt &Bits) const { return shl(Bits); } 776 777 /// Arithmetic right-shift function. 778 /// 779 /// Arithmetic right-shift this APInt by shiftAmt. ashr(unsigned ShiftAmt)780 APInt ashr(unsigned ShiftAmt) const { 781 APInt R(*this); 782 R.ashrInPlace(ShiftAmt); 783 return R; 784 } 785 786 /// Arithmetic right-shift this APInt by ShiftAmt in place. ashrInPlace(unsigned ShiftAmt)787 void ashrInPlace(unsigned ShiftAmt) { 788 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 789 if (isSingleWord()) { 790 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); 791 if (ShiftAmt == BitWidth) 792 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. 793 else 794 U.VAL = SExtVAL >> ShiftAmt; 795 clearUnusedBits(); 796 return; 797 } 798 ashrSlowCase(ShiftAmt); 799 } 800 801 /// Logical right-shift function. 802 /// 803 /// Logical right-shift this APInt by shiftAmt. lshr(unsigned shiftAmt)804 APInt lshr(unsigned shiftAmt) const { 805 APInt R(*this); 806 R.lshrInPlace(shiftAmt); 807 return R; 808 } 809 810 /// Logical right-shift this APInt by ShiftAmt in place. lshrInPlace(unsigned ShiftAmt)811 void lshrInPlace(unsigned ShiftAmt) { 812 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 813 if (isSingleWord()) { 814 if (ShiftAmt == BitWidth) 815 U.VAL = 0; 816 else 817 U.VAL >>= ShiftAmt; 818 return; 819 } 820 lshrSlowCase(ShiftAmt); 821 } 822 823 /// Left-shift function. 824 /// 825 /// Left-shift this APInt by shiftAmt. shl(unsigned shiftAmt)826 APInt shl(unsigned shiftAmt) const { 827 APInt R(*this); 828 R <<= shiftAmt; 829 return R; 830 } 831 832 /// Rotate left by rotateAmt. 833 APInt rotl(unsigned rotateAmt) const; 834 835 /// Rotate right by rotateAmt. 836 APInt rotr(unsigned rotateAmt) const; 837 838 /// Arithmetic right-shift function. 839 /// 840 /// Arithmetic right-shift this APInt by shiftAmt. ashr(const APInt & ShiftAmt)841 APInt ashr(const APInt &ShiftAmt) const { 842 APInt R(*this); 843 R.ashrInPlace(ShiftAmt); 844 return R; 845 } 846 847 /// Arithmetic right-shift this APInt by shiftAmt in place. 848 void ashrInPlace(const APInt &shiftAmt); 849 850 /// Logical right-shift function. 851 /// 852 /// Logical right-shift this APInt by shiftAmt. lshr(const APInt & ShiftAmt)853 APInt lshr(const APInt &ShiftAmt) const { 854 APInt R(*this); 855 R.lshrInPlace(ShiftAmt); 856 return R; 857 } 858 859 /// Logical right-shift this APInt by ShiftAmt in place. 860 void lshrInPlace(const APInt &ShiftAmt); 861 862 /// Left-shift function. 863 /// 864 /// Left-shift this APInt by shiftAmt. shl(const APInt & ShiftAmt)865 APInt shl(const APInt &ShiftAmt) const { 866 APInt R(*this); 867 R <<= ShiftAmt; 868 return R; 869 } 870 871 /// Rotate left by rotateAmt. 872 APInt rotl(const APInt &rotateAmt) const; 873 874 /// Rotate right by rotateAmt. 875 APInt rotr(const APInt &rotateAmt) const; 876 877 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is 878 /// equivalent to: 879 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) concat(const APInt & NewLSB)880 APInt concat(const APInt &NewLSB) const { 881 /// If the result will be small, then both the merged values are small. 882 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); 883 if (NewWidth <= APINT_BITS_PER_WORD) 884 return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL); 885 return concatSlowCase(NewLSB); 886 } 887 888 /// Unsigned division operation. 889 /// 890 /// Perform an unsigned divide operation on this APInt by RHS. Both this and 891 /// RHS are treated as unsigned quantities for purposes of this division. 892 /// 893 /// \returns a new APInt value containing the division result, rounded towards 894 /// zero. 895 APInt udiv(const APInt &RHS) const; 896 APInt udiv(uint64_t RHS) const; 897 898 /// Signed division function for APInt. 899 /// 900 /// Signed divide this APInt by APInt RHS. 901 /// 902 /// The result is rounded towards zero. 903 APInt sdiv(const APInt &RHS) const; 904 APInt sdiv(int64_t RHS) const; 905 906 /// Unsigned remainder operation. 907 /// 908 /// Perform an unsigned remainder operation on this APInt with RHS being the 909 /// divisor. Both this and RHS are treated as unsigned quantities for purposes 910 /// of this operation. Note that this is a true remainder operation and not a 911 /// modulo operation because the sign follows the sign of the dividend which 912 /// is *this. 913 /// 914 /// \returns a new APInt value containing the remainder result 915 APInt urem(const APInt &RHS) const; 916 uint64_t urem(uint64_t RHS) const; 917 918 /// Function for signed remainder operation. 919 /// 920 /// Signed remainder operation on APInt. 921 APInt srem(const APInt &RHS) const; 922 int64_t srem(int64_t RHS) const; 923 924 /// Dual division/remainder interface. 925 /// 926 /// Sometimes it is convenient to divide two APInt values and obtain both the 927 /// quotient and remainder. This function does both operations in the same 928 /// computation making it a little more efficient. The pair of input arguments 929 /// may overlap with the pair of output arguments. It is safe to call 930 /// udivrem(X, Y, X, Y), for example. 931 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 932 APInt &Remainder); 933 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 934 uint64_t &Remainder); 935 936 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 937 APInt &Remainder); 938 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, 939 int64_t &Remainder); 940 941 // Operations that return overflow indicators. 942 APInt sadd_ov(const APInt &RHS, bool &Overflow) const; 943 APInt uadd_ov(const APInt &RHS, bool &Overflow) const; 944 APInt ssub_ov(const APInt &RHS, bool &Overflow) const; 945 APInt usub_ov(const APInt &RHS, bool &Overflow) const; 946 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; 947 APInt smul_ov(const APInt &RHS, bool &Overflow) const; 948 APInt umul_ov(const APInt &RHS, bool &Overflow) const; 949 APInt sshl_ov(const APInt &Amt, bool &Overflow) const; 950 APInt ushl_ov(const APInt &Amt, bool &Overflow) const; 951 952 // Operations that saturate 953 APInt sadd_sat(const APInt &RHS) const; 954 APInt uadd_sat(const APInt &RHS) const; 955 APInt ssub_sat(const APInt &RHS) const; 956 APInt usub_sat(const APInt &RHS) const; 957 APInt smul_sat(const APInt &RHS) const; 958 APInt umul_sat(const APInt &RHS) const; 959 APInt sshl_sat(const APInt &RHS) const; 960 APInt ushl_sat(const APInt &RHS) const; 961 962 /// Array-indexing support. 963 /// 964 /// \returns the bit value at bitPosition 965 bool operator[](unsigned bitPosition) const { 966 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 967 return (maskBit(bitPosition) & getWord(bitPosition)) != 0; 968 } 969 970 /// @} 971 /// \name Comparison Operators 972 /// @{ 973 974 /// Equality operator. 975 /// 976 /// Compares this APInt with RHS for the validity of the equality 977 /// relationship. 978 bool operator==(const APInt &RHS) const { 979 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); 980 if (isSingleWord()) 981 return U.VAL == RHS.U.VAL; 982 return equalSlowCase(RHS); 983 } 984 985 /// Equality operator. 986 /// 987 /// Compares this APInt with a uint64_t for the validity of the equality 988 /// relationship. 989 /// 990 /// \returns true if *this == Val 991 bool operator==(uint64_t Val) const { 992 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; 993 } 994 995 /// Equality comparison. 996 /// 997 /// Compares this APInt with RHS for the validity of the equality 998 /// relationship. 999 /// 1000 /// \returns true if *this == Val eq(const APInt & RHS)1001 bool eq(const APInt &RHS) const { return (*this) == RHS; } 1002 1003 /// Inequality operator. 1004 /// 1005 /// Compares this APInt with RHS for the validity of the inequality 1006 /// relationship. 1007 /// 1008 /// \returns true if *this != Val 1009 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } 1010 1011 /// Inequality operator. 1012 /// 1013 /// Compares this APInt with a uint64_t for the validity of the inequality 1014 /// relationship. 1015 /// 1016 /// \returns true if *this != Val 1017 bool operator!=(uint64_t Val) const { return !((*this) == Val); } 1018 1019 /// Inequality comparison 1020 /// 1021 /// Compares this APInt with RHS for the validity of the inequality 1022 /// relationship. 1023 /// 1024 /// \returns true if *this != Val ne(const APInt & RHS)1025 bool ne(const APInt &RHS) const { return !((*this) == RHS); } 1026 1027 /// Unsigned less than comparison 1028 /// 1029 /// Regards both *this and RHS as unsigned quantities and compares them for 1030 /// the validity of the less-than relationship. 1031 /// 1032 /// \returns true if *this < RHS when both are considered unsigned. ult(const APInt & RHS)1033 bool ult(const APInt &RHS) const { return compare(RHS) < 0; } 1034 1035 /// Unsigned less than comparison 1036 /// 1037 /// Regards both *this as an unsigned quantity and compares it with RHS for 1038 /// the validity of the less-than relationship. 1039 /// 1040 /// \returns true if *this < RHS when considered unsigned. ult(uint64_t RHS)1041 bool ult(uint64_t RHS) const { 1042 // Only need to check active bits if not a single word. 1043 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; 1044 } 1045 1046 /// Signed less than comparison 1047 /// 1048 /// Regards both *this and RHS as signed quantities and compares them for 1049 /// validity of the less-than relationship. 1050 /// 1051 /// \returns true if *this < RHS when both are considered signed. slt(const APInt & RHS)1052 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } 1053 1054 /// Signed less than comparison 1055 /// 1056 /// Regards both *this as a signed quantity and compares it with RHS for 1057 /// the validity of the less-than relationship. 1058 /// 1059 /// \returns true if *this < RHS when considered signed. slt(int64_t RHS)1060 bool slt(int64_t RHS) const { 1061 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() 1062 : getSExtValue() < RHS; 1063 } 1064 1065 /// Unsigned less or equal comparison 1066 /// 1067 /// Regards both *this and RHS as unsigned quantities and compares them for 1068 /// validity of the less-or-equal relationship. 1069 /// 1070 /// \returns true if *this <= RHS when both are considered unsigned. ule(const APInt & RHS)1071 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } 1072 1073 /// Unsigned less or equal comparison 1074 /// 1075 /// Regards both *this as an unsigned quantity and compares it with RHS for 1076 /// the validity of the less-or-equal relationship. 1077 /// 1078 /// \returns true if *this <= RHS when considered unsigned. ule(uint64_t RHS)1079 bool ule(uint64_t RHS) const { return !ugt(RHS); } 1080 1081 /// Signed less or equal comparison 1082 /// 1083 /// Regards both *this and RHS as signed quantities and compares them for 1084 /// validity of the less-or-equal relationship. 1085 /// 1086 /// \returns true if *this <= RHS when both are considered signed. sle(const APInt & RHS)1087 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } 1088 1089 /// Signed less or equal comparison 1090 /// 1091 /// Regards both *this as a signed quantity and compares it with RHS for the 1092 /// validity of the less-or-equal relationship. 1093 /// 1094 /// \returns true if *this <= RHS when considered signed. sle(uint64_t RHS)1095 bool sle(uint64_t RHS) const { return !sgt(RHS); } 1096 1097 /// Unsigned greater than comparison 1098 /// 1099 /// Regards both *this and RHS as unsigned quantities and compares them for 1100 /// the validity of the greater-than relationship. 1101 /// 1102 /// \returns true if *this > RHS when both are considered unsigned. ugt(const APInt & RHS)1103 bool ugt(const APInt &RHS) const { return !ule(RHS); } 1104 1105 /// Unsigned greater than comparison 1106 /// 1107 /// Regards both *this as an unsigned quantity and compares it with RHS for 1108 /// the validity of the greater-than relationship. 1109 /// 1110 /// \returns true if *this > RHS when considered unsigned. ugt(uint64_t RHS)1111 bool ugt(uint64_t RHS) const { 1112 // Only need to check active bits if not a single word. 1113 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; 1114 } 1115 1116 /// Signed greater than comparison 1117 /// 1118 /// Regards both *this and RHS as signed quantities and compares them for the 1119 /// validity of the greater-than relationship. 1120 /// 1121 /// \returns true if *this > RHS when both are considered signed. sgt(const APInt & RHS)1122 bool sgt(const APInt &RHS) const { return !sle(RHS); } 1123 1124 /// Signed greater than comparison 1125 /// 1126 /// Regards both *this as a signed quantity and compares it with RHS for 1127 /// the validity of the greater-than relationship. 1128 /// 1129 /// \returns true if *this > RHS when considered signed. sgt(int64_t RHS)1130 bool sgt(int64_t RHS) const { 1131 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() 1132 : getSExtValue() > RHS; 1133 } 1134 1135 /// Unsigned greater or equal comparison 1136 /// 1137 /// Regards both *this and RHS as unsigned quantities and compares them for 1138 /// validity of the greater-or-equal relationship. 1139 /// 1140 /// \returns true if *this >= RHS when both are considered unsigned. uge(const APInt & RHS)1141 bool uge(const APInt &RHS) const { return !ult(RHS); } 1142 1143 /// Unsigned greater or equal comparison 1144 /// 1145 /// Regards both *this as an unsigned quantity and compares it with RHS for 1146 /// the validity of the greater-or-equal relationship. 1147 /// 1148 /// \returns true if *this >= RHS when considered unsigned. uge(uint64_t RHS)1149 bool uge(uint64_t RHS) const { return !ult(RHS); } 1150 1151 /// Signed greater or equal comparison 1152 /// 1153 /// Regards both *this and RHS as signed quantities and compares them for 1154 /// validity of the greater-or-equal relationship. 1155 /// 1156 /// \returns true if *this >= RHS when both are considered signed. sge(const APInt & RHS)1157 bool sge(const APInt &RHS) const { return !slt(RHS); } 1158 1159 /// Signed greater or equal comparison 1160 /// 1161 /// Regards both *this as a signed quantity and compares it with RHS for 1162 /// the validity of the greater-or-equal relationship. 1163 /// 1164 /// \returns true if *this >= RHS when considered signed. sge(int64_t RHS)1165 bool sge(int64_t RHS) const { return !slt(RHS); } 1166 1167 /// This operation tests if there are any pairs of corresponding bits 1168 /// between this APInt and RHS that are both set. intersects(const APInt & RHS)1169 bool intersects(const APInt &RHS) const { 1170 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1171 if (isSingleWord()) 1172 return (U.VAL & RHS.U.VAL) != 0; 1173 return intersectsSlowCase(RHS); 1174 } 1175 1176 /// This operation checks that all bits set in this APInt are also set in RHS. isSubsetOf(const APInt & RHS)1177 bool isSubsetOf(const APInt &RHS) const { 1178 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1179 if (isSingleWord()) 1180 return (U.VAL & ~RHS.U.VAL) == 0; 1181 return isSubsetOfSlowCase(RHS); 1182 } 1183 1184 /// @} 1185 /// \name Resizing Operators 1186 /// @{ 1187 1188 /// Truncate to new width. 1189 /// 1190 /// Truncate the APInt to a specified width. It is an error to specify a width 1191 /// that is greater than or equal to the current width. 1192 APInt trunc(unsigned width) const; 1193 1194 /// Truncate to new width with unsigned saturation. 1195 /// 1196 /// If the APInt, treated as unsigned integer, can be losslessly truncated to 1197 /// the new bitwidth, then return truncated APInt. Else, return max value. 1198 APInt truncUSat(unsigned width) const; 1199 1200 /// Truncate to new width with signed saturation. 1201 /// 1202 /// If this APInt, treated as signed integer, can be losslessly truncated to 1203 /// the new bitwidth, then return truncated APInt. Else, return either 1204 /// signed min value if the APInt was negative, or signed max value. 1205 APInt truncSSat(unsigned width) const; 1206 1207 /// Sign extend to a new width. 1208 /// 1209 /// This operation sign extends the APInt to a new width. If the high order 1210 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. 1211 /// It is an error to specify a width that is less than or equal to the 1212 /// current width. 1213 APInt sext(unsigned width) const; 1214 1215 /// Zero extend to a new width. 1216 /// 1217 /// This operation zero extends the APInt to a new width. The high order bits 1218 /// are filled with 0 bits. It is an error to specify a width that is less 1219 /// than or equal to the current width. 1220 APInt zext(unsigned width) const; 1221 1222 /// Sign extend or truncate to width 1223 /// 1224 /// Make this APInt have the bit width given by \p width. The value is sign 1225 /// extended, truncated, or left alone to make it that width. 1226 APInt sextOrTrunc(unsigned width) const; 1227 1228 /// Zero extend or truncate to width 1229 /// 1230 /// Make this APInt have the bit width given by \p width. The value is zero 1231 /// extended, truncated, or left alone to make it that width. 1232 APInt zextOrTrunc(unsigned width) const; 1233 1234 /// Truncate to width 1235 /// 1236 /// Make this APInt have the bit width given by \p width. The value is 1237 /// truncated or left alone to make it that width. 1238 APInt truncOrSelf(unsigned width) const; 1239 1240 /// Sign extend or truncate to width 1241 /// 1242 /// Make this APInt have the bit width given by \p width. The value is sign 1243 /// extended, or left alone to make it that width. 1244 APInt sextOrSelf(unsigned width) const; 1245 1246 /// Zero extend or truncate to width 1247 /// 1248 /// Make this APInt have the bit width given by \p width. The value is zero 1249 /// extended, or left alone to make it that width. 1250 APInt zextOrSelf(unsigned width) const; 1251 1252 /// @} 1253 /// \name Bit Manipulation Operators 1254 /// @{ 1255 1256 /// Set every bit to 1. setAllBits()1257 void setAllBits() { 1258 if (isSingleWord()) 1259 U.VAL = WORDTYPE_MAX; 1260 else 1261 // Set all the bits in all the words. 1262 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); 1263 // Clear the unused ones 1264 clearUnusedBits(); 1265 } 1266 1267 /// Set the given bit to 1 whose position is given as "bitPosition". setBit(unsigned BitPosition)1268 void setBit(unsigned BitPosition) { 1269 assert(BitPosition < BitWidth && "BitPosition out of range"); 1270 WordType Mask = maskBit(BitPosition); 1271 if (isSingleWord()) 1272 U.VAL |= Mask; 1273 else 1274 U.pVal[whichWord(BitPosition)] |= Mask; 1275 } 1276 1277 /// Set the sign bit to 1. setSignBit()1278 void setSignBit() { setBit(BitWidth - 1); } 1279 1280 /// Set a given bit to a given value. setBitVal(unsigned BitPosition,bool BitValue)1281 void setBitVal(unsigned BitPosition, bool BitValue) { 1282 if (BitValue) 1283 setBit(BitPosition); 1284 else 1285 clearBit(BitPosition); 1286 } 1287 1288 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. 1289 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls 1290 /// setBits when \p loBit < \p hiBit. 1291 /// For \p loBit == \p hiBit wrap case, set every bit to 1. setBitsWithWrap(unsigned loBit,unsigned hiBit)1292 void setBitsWithWrap(unsigned loBit, unsigned hiBit) { 1293 assert(hiBit <= BitWidth && "hiBit out of range"); 1294 assert(loBit <= BitWidth && "loBit out of range"); 1295 if (loBit < hiBit) { 1296 setBits(loBit, hiBit); 1297 return; 1298 } 1299 setLowBits(hiBit); 1300 setHighBits(BitWidth - loBit); 1301 } 1302 1303 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. 1304 /// This function handles case when \p loBit <= \p hiBit. setBits(unsigned loBit,unsigned hiBit)1305 void setBits(unsigned loBit, unsigned hiBit) { 1306 assert(hiBit <= BitWidth && "hiBit out of range"); 1307 assert(loBit <= BitWidth && "loBit out of range"); 1308 assert(loBit <= hiBit && "loBit greater than hiBit"); 1309 if (loBit == hiBit) 1310 return; 1311 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { 1312 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); 1313 mask <<= loBit; 1314 if (isSingleWord()) 1315 U.VAL |= mask; 1316 else 1317 U.pVal[0] |= mask; 1318 } else { 1319 setBitsSlowCase(loBit, hiBit); 1320 } 1321 } 1322 1323 /// Set the top bits starting from loBit. setBitsFrom(unsigned loBit)1324 void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); } 1325 1326 /// Set the bottom loBits bits. setLowBits(unsigned loBits)1327 void setLowBits(unsigned loBits) { return setBits(0, loBits); } 1328 1329 /// Set the top hiBits bits. setHighBits(unsigned hiBits)1330 void setHighBits(unsigned hiBits) { 1331 return setBits(BitWidth - hiBits, BitWidth); 1332 } 1333 1334 /// Set every bit to 0. clearAllBits()1335 void clearAllBits() { 1336 if (isSingleWord()) 1337 U.VAL = 0; 1338 else 1339 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); 1340 } 1341 1342 /// Set a given bit to 0. 1343 /// 1344 /// Set the given bit to 0 whose position is given as "bitPosition". clearBit(unsigned BitPosition)1345 void clearBit(unsigned BitPosition) { 1346 assert(BitPosition < BitWidth && "BitPosition out of range"); 1347 WordType Mask = ~maskBit(BitPosition); 1348 if (isSingleWord()) 1349 U.VAL &= Mask; 1350 else 1351 U.pVal[whichWord(BitPosition)] &= Mask; 1352 } 1353 1354 /// Set bottom loBits bits to 0. clearLowBits(unsigned loBits)1355 void clearLowBits(unsigned loBits) { 1356 assert(loBits <= BitWidth && "More bits than bitwidth"); 1357 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); 1358 *this &= Keep; 1359 } 1360 1361 /// Set the sign bit to 0. clearSignBit()1362 void clearSignBit() { clearBit(BitWidth - 1); } 1363 1364 /// Toggle every bit to its opposite value. flipAllBits()1365 void flipAllBits() { 1366 if (isSingleWord()) { 1367 U.VAL ^= WORDTYPE_MAX; 1368 clearUnusedBits(); 1369 } else { 1370 flipAllBitsSlowCase(); 1371 } 1372 } 1373 1374 /// Toggles a given bit to its opposite value. 1375 /// 1376 /// Toggle a given bit to its opposite value whose position is given 1377 /// as "bitPosition". 1378 void flipBit(unsigned bitPosition); 1379 1380 /// Negate this APInt in place. negate()1381 void negate() { 1382 flipAllBits(); 1383 ++(*this); 1384 } 1385 1386 /// Insert the bits from a smaller APInt starting at bitPosition. 1387 void insertBits(const APInt &SubBits, unsigned bitPosition); 1388 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); 1389 1390 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). 1391 APInt extractBits(unsigned numBits, unsigned bitPosition) const; 1392 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; 1393 1394 /// @} 1395 /// \name Value Characterization Functions 1396 /// @{ 1397 1398 /// Return the number of bits in the APInt. getBitWidth()1399 unsigned getBitWidth() const { return BitWidth; } 1400 1401 /// Get the number of words. 1402 /// 1403 /// Here one word's bitwidth equals to that of uint64_t. 1404 /// 1405 /// \returns the number of words to hold the integer value of this APInt. getNumWords()1406 unsigned getNumWords() const { return getNumWords(BitWidth); } 1407 1408 /// Get the number of words. 1409 /// 1410 /// *NOTE* Here one word's bitwidth equals to that of uint64_t. 1411 /// 1412 /// \returns the number of words to hold the integer value with a given bit 1413 /// width. getNumWords(unsigned BitWidth)1414 static unsigned getNumWords(unsigned BitWidth) { 1415 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 1416 } 1417 1418 /// Compute the number of active bits in the value 1419 /// 1420 /// This function returns the number of active bits which is defined as the 1421 /// bit width minus the number of leading zeros. This is used in several 1422 /// computations to see how "wide" the value is. getActiveBits()1423 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } 1424 1425 /// Compute the number of active words in the value of this APInt. 1426 /// 1427 /// This is used in conjunction with getActiveData to extract the raw value of 1428 /// the APInt. getActiveWords()1429 unsigned getActiveWords() const { 1430 unsigned numActiveBits = getActiveBits(); 1431 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; 1432 } 1433 1434 /// Get the minimum bit size for this signed APInt 1435 /// 1436 /// Computes the minimum bit width for this APInt while considering it to be a 1437 /// signed (and probably negative) value. If the value is not negative, this 1438 /// function returns the same value as getActiveBits()+1. Otherwise, it 1439 /// returns the smallest bit width that will retain the negative value. For 1440 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so 1441 /// for -1, this function will always return 1. getMinSignedBits()1442 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; } 1443 1444 /// Get zero extended value 1445 /// 1446 /// This method attempts to return the value of this APInt as a zero extended 1447 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a 1448 /// uint64_t. Otherwise an assertion will result. getZExtValue()1449 uint64_t getZExtValue() const { 1450 if (isSingleWord()) { 1451 assert(BitWidth && "zero width values not allowed"); 1452 return U.VAL; 1453 } 1454 assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); 1455 return U.pVal[0]; 1456 } 1457 1458 /// Get sign extended value 1459 /// 1460 /// This method attempts to return the value of this APInt as a sign extended 1461 /// int64_t. The bit width must be <= 64 or the value must fit within an 1462 /// int64_t. Otherwise an assertion will result. getSExtValue()1463 int64_t getSExtValue() const { 1464 if (isSingleWord()) 1465 return SignExtend64(U.VAL, BitWidth); 1466 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); 1467 return int64_t(U.pVal[0]); 1468 } 1469 1470 /// Get bits required for string value. 1471 /// 1472 /// This method determines how many bits are required to hold the APInt 1473 /// equivalent of the string given by \p str. 1474 static unsigned getBitsNeeded(StringRef str, uint8_t radix); 1475 1476 /// The APInt version of the countLeadingZeros functions in 1477 /// MathExtras.h. 1478 /// 1479 /// It counts the number of zeros from the most significant bit to the first 1480 /// one bit. 1481 /// 1482 /// \returns BitWidth if the value is zero, otherwise returns the number of 1483 /// zeros from the most significant bit to the first one bits. countLeadingZeros()1484 unsigned countLeadingZeros() const { 1485 if (isSingleWord()) { 1486 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; 1487 return llvm::countLeadingZeros(U.VAL) - unusedBits; 1488 } 1489 return countLeadingZerosSlowCase(); 1490 } 1491 1492 /// Count the number of leading one bits. 1493 /// 1494 /// This function is an APInt version of the countLeadingOnes 1495 /// functions in MathExtras.h. It counts the number of ones from the most 1496 /// significant bit to the first zero bit. 1497 /// 1498 /// \returns 0 if the high order bit is not set, otherwise returns the number 1499 /// of 1 bits from the most significant to the least countLeadingOnes()1500 unsigned countLeadingOnes() const { 1501 if (isSingleWord()) { 1502 if (LLVM_UNLIKELY(BitWidth == 0)) 1503 return 0; 1504 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); 1505 } 1506 return countLeadingOnesSlowCase(); 1507 } 1508 1509 /// Computes the number of leading bits of this APInt that are equal to its 1510 /// sign bit. getNumSignBits()1511 unsigned getNumSignBits() const { 1512 return isNegative() ? countLeadingOnes() : countLeadingZeros(); 1513 } 1514 1515 /// Count the number of trailing zero bits. 1516 /// 1517 /// This function is an APInt version of the countTrailingZeros 1518 /// functions in MathExtras.h. It counts the number of zeros from the least 1519 /// significant bit to the first set bit. 1520 /// 1521 /// \returns BitWidth if the value is zero, otherwise returns the number of 1522 /// zeros from the least significant bit to the first one bit. countTrailingZeros()1523 unsigned countTrailingZeros() const { 1524 if (isSingleWord()) { 1525 unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL); 1526 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); 1527 } 1528 return countTrailingZerosSlowCase(); 1529 } 1530 1531 /// Count the number of trailing one bits. 1532 /// 1533 /// This function is an APInt version of the countTrailingOnes 1534 /// functions in MathExtras.h. It counts the number of ones from the least 1535 /// significant bit to the first zero bit. 1536 /// 1537 /// \returns BitWidth if the value is all ones, otherwise returns the number 1538 /// of ones from the least significant bit to the first zero bit. countTrailingOnes()1539 unsigned countTrailingOnes() const { 1540 if (isSingleWord()) 1541 return llvm::countTrailingOnes(U.VAL); 1542 return countTrailingOnesSlowCase(); 1543 } 1544 1545 /// Count the number of bits set. 1546 /// 1547 /// This function is an APInt version of the countPopulation functions 1548 /// in MathExtras.h. It counts the number of 1 bits in the APInt value. 1549 /// 1550 /// \returns 0 if the value is zero, otherwise returns the number of set bits. countPopulation()1551 unsigned countPopulation() const { 1552 if (isSingleWord()) 1553 return llvm::countPopulation(U.VAL); 1554 return countPopulationSlowCase(); 1555 } 1556 1557 /// @} 1558 /// \name Conversion Functions 1559 /// @{ 1560 void print(raw_ostream &OS, bool isSigned) const; 1561 1562 /// Converts an APInt to a string and append it to Str. Str is commonly a 1563 /// SmallString. 1564 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, 1565 bool formatAsCLiteral = false) const; 1566 1567 /// Considers the APInt to be unsigned and converts it into a string in the 1568 /// radix given. The radix can be 2, 8, 10 16, or 36. 1569 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1570 toString(Str, Radix, false, false); 1571 } 1572 1573 /// Considers the APInt to be signed and converts it into a string in the 1574 /// radix given. The radix can be 2, 8, 10, 16, or 36. 1575 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1576 toString(Str, Radix, true, false); 1577 } 1578 1579 /// \returns a byte-swapped representation of this APInt Value. 1580 APInt byteSwap() const; 1581 1582 /// \returns the value with the bit representation reversed of this APInt 1583 /// Value. 1584 APInt reverseBits() const; 1585 1586 /// Converts this APInt to a double value. 1587 double roundToDouble(bool isSigned) const; 1588 1589 /// Converts this unsigned APInt to a double value. roundToDouble()1590 double roundToDouble() const { return roundToDouble(false); } 1591 1592 /// Converts this signed APInt to a double value. signedRoundToDouble()1593 double signedRoundToDouble() const { return roundToDouble(true); } 1594 1595 /// Converts APInt bits to a double 1596 /// 1597 /// The conversion does not do a translation from integer to double, it just 1598 /// re-interprets the bits as a double. Note that it is valid to do this on 1599 /// any bit width. Exactly 64 bits will be translated. bitsToDouble()1600 double bitsToDouble() const { return BitsToDouble(getWord(0)); } 1601 1602 /// Converts APInt bits to a float 1603 /// 1604 /// The conversion does not do a translation from integer to float, it just 1605 /// re-interprets the bits as a float. Note that it is valid to do this on 1606 /// any bit width. Exactly 32 bits will be translated. bitsToFloat()1607 float bitsToFloat() const { 1608 return BitsToFloat(static_cast<uint32_t>(getWord(0))); 1609 } 1610 1611 /// Converts a double to APInt bits. 1612 /// 1613 /// The conversion does not do a translation from double to integer, it just 1614 /// re-interprets the bits of the double. doubleToBits(double V)1615 static APInt doubleToBits(double V) { 1616 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); 1617 } 1618 1619 /// Converts a float to APInt bits. 1620 /// 1621 /// The conversion does not do a translation from float to integer, it just 1622 /// re-interprets the bits of the float. floatToBits(float V)1623 static APInt floatToBits(float V) { 1624 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); 1625 } 1626 1627 /// @} 1628 /// \name Mathematics Operations 1629 /// @{ 1630 1631 /// \returns the floor log base 2 of this APInt. logBase2()1632 unsigned logBase2() const { return getActiveBits() - 1; } 1633 1634 /// \returns the ceil log base 2 of this APInt. ceilLogBase2()1635 unsigned ceilLogBase2() const { 1636 APInt temp(*this); 1637 --temp; 1638 return temp.getActiveBits(); 1639 } 1640 1641 /// \returns the nearest log base 2 of this APInt. Ties round up. 1642 /// 1643 /// NOTE: When we have a BitWidth of 1, we define: 1644 /// 1645 /// log2(0) = UINT32_MAX 1646 /// log2(1) = 0 1647 /// 1648 /// to get around any mathematical concerns resulting from 1649 /// referencing 2 in a space where 2 does no exist. 1650 unsigned nearestLogBase2() const; 1651 1652 /// \returns the log base 2 of this APInt if its an exact power of two, -1 1653 /// otherwise exactLogBase2()1654 int32_t exactLogBase2() const { 1655 if (!isPowerOf2()) 1656 return -1; 1657 return logBase2(); 1658 } 1659 1660 /// Compute the square root. 1661 APInt sqrt() const; 1662 1663 /// Get the absolute value. If *this is < 0 then return -(*this), otherwise 1664 /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit 1665 /// wide APInt) is unchanged due to how negation works. abs()1666 APInt abs() const { 1667 if (isNegative()) 1668 return -(*this); 1669 return *this; 1670 } 1671 1672 /// \returns the multiplicative inverse for a given modulo. 1673 APInt multiplicativeInverse(const APInt &modulo) const; 1674 1675 /// @} 1676 /// \name Building-block Operations for APInt and APFloat 1677 /// @{ 1678 1679 // These building block operations operate on a representation of arbitrary 1680 // precision, two's-complement, bignum integer values. They should be 1681 // sufficient to implement APInt and APFloat bignum requirements. Inputs are 1682 // generally a pointer to the base of an array of integer parts, representing 1683 // an unsigned bignum, and a count of how many parts there are. 1684 1685 /// Sets the least significant part of a bignum to the input value, and zeroes 1686 /// out higher parts. 1687 static void tcSet(WordType *, WordType, unsigned); 1688 1689 /// Assign one bignum to another. 1690 static void tcAssign(WordType *, const WordType *, unsigned); 1691 1692 /// Returns true if a bignum is zero, false otherwise. 1693 static bool tcIsZero(const WordType *, unsigned); 1694 1695 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. 1696 static int tcExtractBit(const WordType *, unsigned bit); 1697 1698 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 1699 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 1700 /// significant bit of DST. All high bits above srcBITS in DST are 1701 /// zero-filled. 1702 static void tcExtract(WordType *, unsigned dstCount, const WordType *, 1703 unsigned srcBits, unsigned srcLSB); 1704 1705 /// Set the given bit of a bignum. Zero-based. 1706 static void tcSetBit(WordType *, unsigned bit); 1707 1708 /// Clear the given bit of a bignum. Zero-based. 1709 static void tcClearBit(WordType *, unsigned bit); 1710 1711 /// Returns the bit number of the least or most significant set bit of a 1712 /// number. If the input number has no bits set -1U is returned. 1713 static unsigned tcLSB(const WordType *, unsigned n); 1714 static unsigned tcMSB(const WordType *parts, unsigned n); 1715 1716 /// Negate a bignum in-place. 1717 static void tcNegate(WordType *, unsigned); 1718 1719 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1720 static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned); 1721 /// DST += RHS. Returns the carry flag. 1722 static WordType tcAddPart(WordType *, WordType, unsigned); 1723 1724 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1725 static WordType tcSubtract(WordType *, const WordType *, WordType carry, 1726 unsigned); 1727 /// DST -= RHS. Returns the carry flag. 1728 static WordType tcSubtractPart(WordType *, WordType, unsigned); 1729 1730 /// DST += SRC * MULTIPLIER + PART if add is true 1731 /// DST = SRC * MULTIPLIER + PART if add is false 1732 /// 1733 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must 1734 /// start at the same point, i.e. DST == SRC. 1735 /// 1736 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. 1737 /// Otherwise DST is filled with the least significant DSTPARTS parts of the 1738 /// result, and if all of the omitted higher parts were zero return zero, 1739 /// otherwise overflow occurred and return one. 1740 static int tcMultiplyPart(WordType *dst, const WordType *src, 1741 WordType multiplier, WordType carry, 1742 unsigned srcParts, unsigned dstParts, bool add); 1743 1744 /// DST = LHS * RHS, where DST has the same width as the operands and is 1745 /// filled with the least significant parts of the result. Returns one if 1746 /// overflow occurred, otherwise zero. DST must be disjoint from both 1747 /// operands. 1748 static int tcMultiply(WordType *, const WordType *, const WordType *, 1749 unsigned); 1750 1751 /// DST = LHS * RHS, where DST has width the sum of the widths of the 1752 /// operands. No overflow occurs. DST must be disjoint from both operands. 1753 static void tcFullMultiply(WordType *, const WordType *, const WordType *, 1754 unsigned, unsigned); 1755 1756 /// If RHS is zero LHS and REMAINDER are left unchanged, return one. 1757 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set 1758 /// REMAINDER to the remainder, return zero. i.e. 1759 /// 1760 /// OLD_LHS = RHS * LHS + REMAINDER 1761 /// 1762 /// SCRATCH is a bignum of the same size as the operands and result for use by 1763 /// the routine; its contents need not be initialized and are destroyed. LHS, 1764 /// REMAINDER and SCRATCH must be distinct. 1765 static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder, 1766 WordType *scratch, unsigned parts); 1767 1768 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no 1769 /// restrictions on Count. 1770 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); 1771 1772 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no 1773 /// restrictions on Count. 1774 static void tcShiftRight(WordType *, unsigned Words, unsigned Count); 1775 1776 /// Comparison (unsigned) of two bignums. 1777 static int tcCompare(const WordType *, const WordType *, unsigned); 1778 1779 /// Increment a bignum in-place. Return the carry flag. tcIncrement(WordType * dst,unsigned parts)1780 static WordType tcIncrement(WordType *dst, unsigned parts) { 1781 return tcAddPart(dst, 1, parts); 1782 } 1783 1784 /// Decrement a bignum in-place. Return the borrow flag. tcDecrement(WordType * dst,unsigned parts)1785 static WordType tcDecrement(WordType *dst, unsigned parts) { 1786 return tcSubtractPart(dst, 1, parts); 1787 } 1788 1789 /// Used to insert APInt objects, or objects that contain APInt objects, into 1790 /// FoldingSets. 1791 void Profile(FoldingSetNodeID &id) const; 1792 1793 /// debug method 1794 void dump() const; 1795 1796 /// Returns whether this instance allocated memory. needsCleanup()1797 bool needsCleanup() const { return !isSingleWord(); } 1798 1799 private: 1800 /// This union is used to store the integer value. When the 1801 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. 1802 union { 1803 uint64_t VAL; ///< Used to store the <= 64 bits integer value. 1804 uint64_t *pVal; ///< Used to store the >64 bits integer value. 1805 } U; 1806 1807 unsigned BitWidth; ///< The number of bits in this APInt. 1808 1809 friend struct DenseMapInfo<APInt>; 1810 friend class APSInt; 1811 1812 /// This constructor is used only internally for speed of construction of 1813 /// temporaries. It is unsafe since it takes ownership of the pointer, so it 1814 /// is not public. 1815 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; } 1816 1817 /// Determine which word a bit is in. 1818 /// 1819 /// \returns the word position for the specified bit position. 1820 static unsigned whichWord(unsigned bitPosition) { 1821 return bitPosition / APINT_BITS_PER_WORD; 1822 } 1823 1824 /// Determine which bit in a word the specified bit position is in. 1825 static unsigned whichBit(unsigned bitPosition) { 1826 return bitPosition % APINT_BITS_PER_WORD; 1827 } 1828 1829 /// Get a single bit mask. 1830 /// 1831 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set 1832 /// This method generates and returns a uint64_t (word) mask for a single 1833 /// bit at a specific bit position. This is used to mask the bit in the 1834 /// corresponding word. 1835 static uint64_t maskBit(unsigned bitPosition) { 1836 return 1ULL << whichBit(bitPosition); 1837 } 1838 1839 /// Clear unused high order bits 1840 /// 1841 /// This method is used internally to clear the top "N" bits in the high order 1842 /// word that are not used by the APInt. This is needed after the most 1843 /// significant word is assigned a value to ensure that those bits are 1844 /// zero'd out. 1845 APInt &clearUnusedBits() { 1846 // Compute how many bits are used in the final word. 1847 unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1; 1848 1849 // Mask out the high bits. 1850 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); 1851 if (LLVM_UNLIKELY(BitWidth == 0)) 1852 mask = 0; 1853 1854 if (isSingleWord()) 1855 U.VAL &= mask; 1856 else 1857 U.pVal[getNumWords() - 1] &= mask; 1858 return *this; 1859 } 1860 1861 /// Get the word corresponding to a bit position 1862 /// \returns the corresponding word for the specified bit position. 1863 uint64_t getWord(unsigned bitPosition) const { 1864 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; 1865 } 1866 1867 /// Utility method to change the bit width of this APInt to new bit width, 1868 /// allocating and/or deallocating as necessary. There is no guarantee on the 1869 /// value of any bits upon return. Caller should populate the bits after. 1870 void reallocate(unsigned NewBitWidth); 1871 1872 /// Convert a char array into an APInt 1873 /// 1874 /// \param radix 2, 8, 10, 16, or 36 1875 /// Converts a string into a number. The string must be non-empty 1876 /// and well-formed as a number of the given base. The bit-width 1877 /// must be sufficient to hold the result. 1878 /// 1879 /// This is used by the constructors that take string arguments. 1880 /// 1881 /// StringRef::getAsInteger is superficially similar but (1) does 1882 /// not assume that the string is well-formed and (2) grows the 1883 /// result to hold the input. 1884 void fromString(unsigned numBits, StringRef str, uint8_t radix); 1885 1886 /// An internal division function for dividing APInts. 1887 /// 1888 /// This is used by the toString method to divide by the radix. It simply 1889 /// provides a more convenient form of divide for internal use since KnuthDiv 1890 /// has specific constraints on its inputs. If those constraints are not met 1891 /// then it provides a simpler form of divide. 1892 static void divide(const WordType *LHS, unsigned lhsWords, 1893 const WordType *RHS, unsigned rhsWords, WordType *Quotient, 1894 WordType *Remainder); 1895 1896 /// out-of-line slow case for inline constructor 1897 void initSlowCase(uint64_t val, bool isSigned); 1898 1899 /// shared code between two array constructors 1900 void initFromArray(ArrayRef<uint64_t> array); 1901 1902 /// out-of-line slow case for inline copy constructor 1903 void initSlowCase(const APInt &that); 1904 1905 /// out-of-line slow case for shl 1906 void shlSlowCase(unsigned ShiftAmt); 1907 1908 /// out-of-line slow case for lshr. 1909 void lshrSlowCase(unsigned ShiftAmt); 1910 1911 /// out-of-line slow case for ashr. 1912 void ashrSlowCase(unsigned ShiftAmt); 1913 1914 /// out-of-line slow case for operator= 1915 void assignSlowCase(const APInt &RHS); 1916 1917 /// out-of-line slow case for operator== 1918 bool equalSlowCase(const APInt &RHS) const LLVM_READONLY; 1919 1920 /// out-of-line slow case for countLeadingZeros 1921 unsigned countLeadingZerosSlowCase() const LLVM_READONLY; 1922 1923 /// out-of-line slow case for countLeadingOnes. 1924 unsigned countLeadingOnesSlowCase() const LLVM_READONLY; 1925 1926 /// out-of-line slow case for countTrailingZeros. 1927 unsigned countTrailingZerosSlowCase() const LLVM_READONLY; 1928 1929 /// out-of-line slow case for countTrailingOnes 1930 unsigned countTrailingOnesSlowCase() const LLVM_READONLY; 1931 1932 /// out-of-line slow case for countPopulation 1933 unsigned countPopulationSlowCase() const LLVM_READONLY; 1934 1935 /// out-of-line slow case for intersects. 1936 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; 1937 1938 /// out-of-line slow case for isSubsetOf. 1939 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; 1940 1941 /// out-of-line slow case for setBits. 1942 void setBitsSlowCase(unsigned loBit, unsigned hiBit); 1943 1944 /// out-of-line slow case for flipAllBits. 1945 void flipAllBitsSlowCase(); 1946 1947 /// out-of-line slow case for concat. 1948 APInt concatSlowCase(const APInt &NewLSB) const; 1949 1950 /// out-of-line slow case for operator&=. 1951 void andAssignSlowCase(const APInt &RHS); 1952 1953 /// out-of-line slow case for operator|=. 1954 void orAssignSlowCase(const APInt &RHS); 1955 1956 /// out-of-line slow case for operator^=. 1957 void xorAssignSlowCase(const APInt &RHS); 1958 1959 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal 1960 /// to, or greater than RHS. 1961 int compare(const APInt &RHS) const LLVM_READONLY; 1962 1963 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal 1964 /// to, or greater than RHS. 1965 int compareSigned(const APInt &RHS) const LLVM_READONLY; 1966 1967 /// @} 1968 }; 1969 1970 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } 1971 1972 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } 1973 1974 /// Unary bitwise complement operator. 1975 /// 1976 /// \returns an APInt that is the bitwise complement of \p v. 1977 inline APInt operator~(APInt v) { 1978 v.flipAllBits(); 1979 return v; 1980 } 1981 1982 inline APInt operator&(APInt a, const APInt &b) { 1983 a &= b; 1984 return a; 1985 } 1986 1987 inline APInt operator&(const APInt &a, APInt &&b) { 1988 b &= a; 1989 return std::move(b); 1990 } 1991 1992 inline APInt operator&(APInt a, uint64_t RHS) { 1993 a &= RHS; 1994 return a; 1995 } 1996 1997 inline APInt operator&(uint64_t LHS, APInt b) { 1998 b &= LHS; 1999 return b; 2000 } 2001 2002 inline APInt operator|(APInt a, const APInt &b) { 2003 a |= b; 2004 return a; 2005 } 2006 2007 inline APInt operator|(const APInt &a, APInt &&b) { 2008 b |= a; 2009 return std::move(b); 2010 } 2011 2012 inline APInt operator|(APInt a, uint64_t RHS) { 2013 a |= RHS; 2014 return a; 2015 } 2016 2017 inline APInt operator|(uint64_t LHS, APInt b) { 2018 b |= LHS; 2019 return b; 2020 } 2021 2022 inline APInt operator^(APInt a, const APInt &b) { 2023 a ^= b; 2024 return a; 2025 } 2026 2027 inline APInt operator^(const APInt &a, APInt &&b) { 2028 b ^= a; 2029 return std::move(b); 2030 } 2031 2032 inline APInt operator^(APInt a, uint64_t RHS) { 2033 a ^= RHS; 2034 return a; 2035 } 2036 2037 inline APInt operator^(uint64_t LHS, APInt b) { 2038 b ^= LHS; 2039 return b; 2040 } 2041 2042 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { 2043 I.print(OS, true); 2044 return OS; 2045 } 2046 2047 inline APInt operator-(APInt v) { 2048 v.negate(); 2049 return v; 2050 } 2051 2052 inline APInt operator+(APInt a, const APInt &b) { 2053 a += b; 2054 return a; 2055 } 2056 2057 inline APInt operator+(const APInt &a, APInt &&b) { 2058 b += a; 2059 return std::move(b); 2060 } 2061 2062 inline APInt operator+(APInt a, uint64_t RHS) { 2063 a += RHS; 2064 return a; 2065 } 2066 2067 inline APInt operator+(uint64_t LHS, APInt b) { 2068 b += LHS; 2069 return b; 2070 } 2071 2072 inline APInt operator-(APInt a, const APInt &b) { 2073 a -= b; 2074 return a; 2075 } 2076 2077 inline APInt operator-(const APInt &a, APInt &&b) { 2078 b.negate(); 2079 b += a; 2080 return std::move(b); 2081 } 2082 2083 inline APInt operator-(APInt a, uint64_t RHS) { 2084 a -= RHS; 2085 return a; 2086 } 2087 2088 inline APInt operator-(uint64_t LHS, APInt b) { 2089 b.negate(); 2090 b += LHS; 2091 return b; 2092 } 2093 2094 inline APInt operator*(APInt a, uint64_t RHS) { 2095 a *= RHS; 2096 return a; 2097 } 2098 2099 inline APInt operator*(uint64_t LHS, APInt b) { 2100 b *= LHS; 2101 return b; 2102 } 2103 2104 namespace APIntOps { 2105 2106 /// Determine the smaller of two APInts considered to be signed. 2107 inline const APInt &smin(const APInt &A, const APInt &B) { 2108 return A.slt(B) ? A : B; 2109 } 2110 2111 /// Determine the larger of two APInts considered to be signed. 2112 inline const APInt &smax(const APInt &A, const APInt &B) { 2113 return A.sgt(B) ? A : B; 2114 } 2115 2116 /// Determine the smaller of two APInts considered to be unsigned. 2117 inline const APInt &umin(const APInt &A, const APInt &B) { 2118 return A.ult(B) ? A : B; 2119 } 2120 2121 /// Determine the larger of two APInts considered to be unsigned. 2122 inline const APInt &umax(const APInt &A, const APInt &B) { 2123 return A.ugt(B) ? A : B; 2124 } 2125 2126 /// Compute GCD of two unsigned APInt values. 2127 /// 2128 /// This function returns the greatest common divisor of the two APInt values 2129 /// using Stein's algorithm. 2130 /// 2131 /// \returns the greatest common divisor of A and B. 2132 APInt GreatestCommonDivisor(APInt A, APInt B); 2133 2134 /// Converts the given APInt to a double value. 2135 /// 2136 /// Treats the APInt as an unsigned value for conversion purposes. 2137 inline double RoundAPIntToDouble(const APInt &APIVal) { 2138 return APIVal.roundToDouble(); 2139 } 2140 2141 /// Converts the given APInt to a double value. 2142 /// 2143 /// Treats the APInt as a signed value for conversion purposes. 2144 inline double RoundSignedAPIntToDouble(const APInt &APIVal) { 2145 return APIVal.signedRoundToDouble(); 2146 } 2147 2148 /// Converts the given APInt to a float value. 2149 inline float RoundAPIntToFloat(const APInt &APIVal) { 2150 return float(RoundAPIntToDouble(APIVal)); 2151 } 2152 2153 /// Converts the given APInt to a float value. 2154 /// 2155 /// Treats the APInt as a signed value for conversion purposes. 2156 inline float RoundSignedAPIntToFloat(const APInt &APIVal) { 2157 return float(APIVal.signedRoundToDouble()); 2158 } 2159 2160 /// Converts the given double value into a APInt. 2161 /// 2162 /// This function convert a double value to an APInt value. 2163 APInt RoundDoubleToAPInt(double Double, unsigned width); 2164 2165 /// Converts a float value into a APInt. 2166 /// 2167 /// Converts a float value into an APInt value. 2168 inline APInt RoundFloatToAPInt(float Float, unsigned width) { 2169 return RoundDoubleToAPInt(double(Float), width); 2170 } 2171 2172 /// Return A unsign-divided by B, rounded by the given rounding mode. 2173 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); 2174 2175 /// Return A sign-divided by B, rounded by the given rounding mode. 2176 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); 2177 2178 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range 2179 /// (e.g. 32 for i32). 2180 /// This function finds the smallest number n, such that 2181 /// (a) n >= 0 and q(n) = 0, or 2182 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all 2183 /// integers, belong to two different intervals [Rk, Rk+R), 2184 /// where R = 2^BW, and k is an integer. 2185 /// The idea here is to find when q(n) "overflows" 2^BW, while at the 2186 /// same time "allowing" subtraction. In unsigned modulo arithmetic a 2187 /// subtraction (treated as addition of negated numbers) would always 2188 /// count as an overflow, but here we want to allow values to decrease 2189 /// and increase as long as they are within the same interval. 2190 /// Specifically, adding of two negative numbers should not cause an 2191 /// overflow (as long as the magnitude does not exceed the bit width). 2192 /// On the other hand, given a positive number, adding a negative 2193 /// number to it can give a negative result, which would cause the 2194 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is 2195 /// treated as a special case of an overflow. 2196 /// 2197 /// This function returns None if after finding k that minimizes the 2198 /// positive solution to q(n) = kR, both solutions are contained between 2199 /// two consecutive integers. 2200 /// 2201 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation 2202 /// in arithmetic modulo 2^BW, and treating the values as signed) by the 2203 /// virtue of *signed* overflow. This function will *not* find such an n, 2204 /// however it may find a value of n satisfying the inequalities due to 2205 /// an *unsigned* overflow (if the values are treated as unsigned). 2206 /// To find a solution for a signed overflow, treat it as a problem of 2207 /// finding an unsigned overflow with a range with of BW-1. 2208 /// 2209 /// The returned value may have a different bit width from the input 2210 /// coefficients. 2211 Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2212 unsigned RangeWidth); 2213 2214 /// Compare two values, and if they are different, return the position of the 2215 /// most significant bit that is different in the values. 2216 Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, 2217 const APInt &B); 2218 2219 /// Splat/Merge neighboring bits to widen/narrow the bitmask represented 2220 /// by \param A to \param NewBitWidth bits. 2221 /// 2222 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 2223 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111 2224 /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other. 2225 /// 2226 /// TODO: Do we need a mode where all bits must be set when merging down? 2227 APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth); 2228 } // namespace APIntOps 2229 2230 // See friend declaration above. This additional declaration is required in 2231 // order to compile LLVM with IBM xlC compiler. 2232 hash_code hash_value(const APInt &Arg); 2233 2234 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 2235 /// with the integer held in IntVal. 2236 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); 2237 2238 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 2239 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 2240 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); 2241 2242 /// Provide DenseMapInfo for APInt. 2243 template <> struct DenseMapInfo<APInt> { 2244 static inline APInt getEmptyKey() { 2245 APInt V(nullptr, 0); 2246 V.U.VAL = 0; 2247 return V; 2248 } 2249 2250 static inline APInt getTombstoneKey() { 2251 APInt V(nullptr, 0); 2252 V.U.VAL = 1; 2253 return V; 2254 } 2255 2256 static unsigned getHashValue(const APInt &Key); 2257 2258 static bool isEqual(const APInt &LHS, const APInt &RHS) { 2259 return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; 2260 } 2261 }; 2262 2263 } // namespace llvm 2264 2265 #endif 2266