1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cstring>
39 using namespace clang;
40 
getBestDynamicClassTypeExpr() const41 const Expr *Expr::getBestDynamicClassTypeExpr() const {
42   const Expr *E = this;
43   while (true) {
44     E = E->IgnoreParenBaseCasts();
45 
46     // Follow the RHS of a comma operator.
47     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
48       if (BO->getOpcode() == BO_Comma) {
49         E = BO->getRHS();
50         continue;
51       }
52     }
53 
54     // Step into initializer for materialized temporaries.
55     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
56       E = MTE->getSubExpr();
57       continue;
58     }
59 
60     break;
61   }
62 
63   return E;
64 }
65 
getBestDynamicClassType() const66 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
67   const Expr *E = getBestDynamicClassTypeExpr();
68   QualType DerivedType = E->getType();
69   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
70     DerivedType = PTy->getPointeeType();
71 
72   if (DerivedType->isDependentType())
73     return nullptr;
74 
75   const RecordType *Ty = DerivedType->castAs<RecordType>();
76   Decl *D = Ty->getDecl();
77   return cast<CXXRecordDecl>(D);
78 }
79 
skipRValueSubobjectAdjustments(SmallVectorImpl<const Expr * > & CommaLHSs,SmallVectorImpl<SubobjectAdjustment> & Adjustments) const80 const Expr *Expr::skipRValueSubobjectAdjustments(
81     SmallVectorImpl<const Expr *> &CommaLHSs,
82     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
83   const Expr *E = this;
84   while (true) {
85     E = E->IgnoreParens();
86 
87     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
88       if ((CE->getCastKind() == CK_DerivedToBase ||
89            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
90           E->getType()->isRecordType()) {
91         E = CE->getSubExpr();
92         auto *Derived =
93             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
94         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
95         continue;
96       }
97 
98       if (CE->getCastKind() == CK_NoOp) {
99         E = CE->getSubExpr();
100         continue;
101       }
102     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
103       if (!ME->isArrow()) {
104         assert(ME->getBase()->getType()->isRecordType());
105         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
106           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
107             E = ME->getBase();
108             Adjustments.push_back(SubobjectAdjustment(Field));
109             continue;
110           }
111         }
112       }
113     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
114       if (BO->getOpcode() == BO_PtrMemD) {
115         assert(BO->getRHS()->isRValue());
116         E = BO->getLHS();
117         const MemberPointerType *MPT =
118           BO->getRHS()->getType()->getAs<MemberPointerType>();
119         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
120         continue;
121       }
122       if (BO->getOpcode() == BO_Comma) {
123         CommaLHSs.push_back(BO->getLHS());
124         E = BO->getRHS();
125         continue;
126       }
127     }
128 
129     // Nothing changed.
130     break;
131   }
132   return E;
133 }
134 
isKnownToHaveBooleanValue(bool Semantic) const135 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
136   const Expr *E = IgnoreParens();
137 
138   // If this value has _Bool type, it is obvious 0/1.
139   if (E->getType()->isBooleanType()) return true;
140   // If this is a non-scalar-integer type, we don't care enough to try.
141   if (!E->getType()->isIntegralOrEnumerationType()) return false;
142 
143   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
144     switch (UO->getOpcode()) {
145     case UO_Plus:
146       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
147     case UO_LNot:
148       return true;
149     default:
150       return false;
151     }
152   }
153 
154   // Only look through implicit casts.  If the user writes
155   // '(int) (a && b)' treat it as an arbitrary int.
156   // FIXME: Should we look through any cast expression in !Semantic mode?
157   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
158     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
159 
160   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
161     switch (BO->getOpcode()) {
162     default: return false;
163     case BO_LT:   // Relational operators.
164     case BO_GT:
165     case BO_LE:
166     case BO_GE:
167     case BO_EQ:   // Equality operators.
168     case BO_NE:
169     case BO_LAnd: // AND operator.
170     case BO_LOr:  // Logical OR operator.
171       return true;
172 
173     case BO_And:  // Bitwise AND operator.
174     case BO_Xor:  // Bitwise XOR operator.
175     case BO_Or:   // Bitwise OR operator.
176       // Handle things like (x==2)|(y==12).
177       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
178              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
179 
180     case BO_Comma:
181     case BO_Assign:
182       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
183     }
184   }
185 
186   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
187     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
188            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
189 
190   if (isa<ObjCBoolLiteralExpr>(E))
191     return true;
192 
193   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
194     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
195 
196   if (const FieldDecl *FD = E->getSourceBitField())
197     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
198         !FD->getBitWidth()->isValueDependent() &&
199         FD->getBitWidthValue(FD->getASTContext()) == 1)
200       return true;
201 
202   return false;
203 }
204 
205 // Amusing macro metaprogramming hack: check whether a class provides
206 // a more specific implementation of getExprLoc().
207 //
208 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
209 namespace {
210   /// This implementation is used when a class provides a custom
211   /// implementation of getExprLoc.
212   template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)213   SourceLocation getExprLocImpl(const Expr *expr,
214                                 SourceLocation (T::*v)() const) {
215     return static_cast<const E*>(expr)->getExprLoc();
216   }
217 
218   /// This implementation is used when a class doesn't provide
219   /// a custom implementation of getExprLoc.  Overload resolution
220   /// should pick it over the implementation above because it's
221   /// more specialized according to function template partial ordering.
222   template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)223   SourceLocation getExprLocImpl(const Expr *expr,
224                                 SourceLocation (Expr::*v)() const) {
225     return static_cast<const E *>(expr)->getBeginLoc();
226   }
227 }
228 
getExprLoc() const229 SourceLocation Expr::getExprLoc() const {
230   switch (getStmtClass()) {
231   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
232 #define ABSTRACT_STMT(type)
233 #define STMT(type, base) \
234   case Stmt::type##Class: break;
235 #define EXPR(type, base) \
236   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
237 #include "clang/AST/StmtNodes.inc"
238   }
239   llvm_unreachable("unknown expression kind");
240 }
241 
242 //===----------------------------------------------------------------------===//
243 // Primary Expressions.
244 //===----------------------------------------------------------------------===//
245 
AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind)246 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
247   assert((Kind == ConstantExpr::RSK_APValue ||
248           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
249          "Invalid StorageKind Value");
250   (void)Kind;
251 }
252 
253 ConstantExpr::ResultStorageKind
getStorageKind(const APValue & Value)254 ConstantExpr::getStorageKind(const APValue &Value) {
255   switch (Value.getKind()) {
256   case APValue::None:
257   case APValue::Indeterminate:
258     return ConstantExpr::RSK_None;
259   case APValue::Int:
260     if (!Value.getInt().needsCleanup())
261       return ConstantExpr::RSK_Int64;
262     LLVM_FALLTHROUGH;
263   default:
264     return ConstantExpr::RSK_APValue;
265   }
266 }
267 
268 ConstantExpr::ResultStorageKind
getStorageKind(const Type * T,const ASTContext & Context)269 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
270   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
271     return ConstantExpr::RSK_Int64;
272   return ConstantExpr::RSK_APValue;
273 }
274 
ConstantExpr(Expr * SubExpr,ResultStorageKind StorageKind,bool IsImmediateInvocation)275 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
276                            bool IsImmediateInvocation)
277     : FullExpr(ConstantExprClass, SubExpr) {
278   ConstantExprBits.ResultKind = StorageKind;
279   ConstantExprBits.APValueKind = APValue::None;
280   ConstantExprBits.IsUnsigned = false;
281   ConstantExprBits.BitWidth = 0;
282   ConstantExprBits.HasCleanup = false;
283   ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
284 
285   if (StorageKind == ConstantExpr::RSK_APValue)
286     ::new (getTrailingObjects<APValue>()) APValue();
287 }
288 
Create(const ASTContext & Context,Expr * E,ResultStorageKind StorageKind,bool IsImmediateInvocation)289 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
290                                    ResultStorageKind StorageKind,
291                                    bool IsImmediateInvocation) {
292   assert(!isa<ConstantExpr>(E));
293   AssertResultStorageKind(StorageKind);
294 
295   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
296       StorageKind == ConstantExpr::RSK_APValue,
297       StorageKind == ConstantExpr::RSK_Int64);
298   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
299   return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
300 }
301 
Create(const ASTContext & Context,Expr * E,const APValue & Result)302 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
303                                    const APValue &Result) {
304   ResultStorageKind StorageKind = getStorageKind(Result);
305   ConstantExpr *Self = Create(Context, E, StorageKind);
306   Self->SetResult(Result, Context);
307   return Self;
308 }
309 
ConstantExpr(EmptyShell Empty,ResultStorageKind StorageKind)310 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
311     : FullExpr(ConstantExprClass, Empty) {
312   ConstantExprBits.ResultKind = StorageKind;
313 
314   if (StorageKind == ConstantExpr::RSK_APValue)
315     ::new (getTrailingObjects<APValue>()) APValue();
316 }
317 
CreateEmpty(const ASTContext & Context,ResultStorageKind StorageKind)318 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
319                                         ResultStorageKind StorageKind) {
320   AssertResultStorageKind(StorageKind);
321 
322   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
323       StorageKind == ConstantExpr::RSK_APValue,
324       StorageKind == ConstantExpr::RSK_Int64);
325   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
326   return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
327 }
328 
MoveIntoResult(APValue & Value,const ASTContext & Context)329 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
330   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
331          "Invalid storage for this value kind");
332   ConstantExprBits.APValueKind = Value.getKind();
333   switch (ConstantExprBits.ResultKind) {
334   case RSK_None:
335     return;
336   case RSK_Int64:
337     Int64Result() = *Value.getInt().getRawData();
338     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
339     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
340     return;
341   case RSK_APValue:
342     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
343       ConstantExprBits.HasCleanup = true;
344       Context.addDestruction(&APValueResult());
345     }
346     APValueResult() = std::move(Value);
347     return;
348   }
349   llvm_unreachable("Invalid ResultKind Bits");
350 }
351 
getResultAsAPSInt() const352 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
353   switch (ConstantExprBits.ResultKind) {
354   case ConstantExpr::RSK_APValue:
355     return APValueResult().getInt();
356   case ConstantExpr::RSK_Int64:
357     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
358                         ConstantExprBits.IsUnsigned);
359   default:
360     llvm_unreachable("invalid Accessor");
361   }
362 }
363 
getAPValueResult() const364 APValue ConstantExpr::getAPValueResult() const {
365 
366   switch (ConstantExprBits.ResultKind) {
367   case ConstantExpr::RSK_APValue:
368     return APValueResult();
369   case ConstantExpr::RSK_Int64:
370     return APValue(
371         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
372                      ConstantExprBits.IsUnsigned));
373   case ConstantExpr::RSK_None:
374     if (ConstantExprBits.APValueKind == APValue::Indeterminate)
375       return APValue::IndeterminateValue();
376     return APValue();
377   }
378   llvm_unreachable("invalid ResultKind");
379 }
380 
DeclRefExpr(const ASTContext & Ctx,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,QualType T,ExprValueKind VK,SourceLocation L,const DeclarationNameLoc & LocInfo,NonOdrUseReason NOUR)381 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
382                          bool RefersToEnclosingVariableOrCapture, QualType T,
383                          ExprValueKind VK, SourceLocation L,
384                          const DeclarationNameLoc &LocInfo,
385                          NonOdrUseReason NOUR)
386     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
387   DeclRefExprBits.HasQualifier = false;
388   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
389   DeclRefExprBits.HasFoundDecl = false;
390   DeclRefExprBits.HadMultipleCandidates = false;
391   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
392       RefersToEnclosingVariableOrCapture;
393   DeclRefExprBits.NonOdrUseReason = NOUR;
394   DeclRefExprBits.Loc = L;
395   setDependence(computeDependence(this, Ctx));
396 }
397 
DeclRefExpr(const ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK,NonOdrUseReason NOUR)398 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
399                          NestedNameSpecifierLoc QualifierLoc,
400                          SourceLocation TemplateKWLoc, ValueDecl *D,
401                          bool RefersToEnclosingVariableOrCapture,
402                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
403                          const TemplateArgumentListInfo *TemplateArgs,
404                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
405     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
406       DNLoc(NameInfo.getInfo()) {
407   DeclRefExprBits.Loc = NameInfo.getLoc();
408   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
409   if (QualifierLoc)
410     new (getTrailingObjects<NestedNameSpecifierLoc>())
411         NestedNameSpecifierLoc(QualifierLoc);
412   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
413   if (FoundD)
414     *getTrailingObjects<NamedDecl *>() = FoundD;
415   DeclRefExprBits.HasTemplateKWAndArgsInfo
416     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
417   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
418       RefersToEnclosingVariableOrCapture;
419   DeclRefExprBits.NonOdrUseReason = NOUR;
420   if (TemplateArgs) {
421     auto Deps = TemplateArgumentDependence::None;
422     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
423         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
424         Deps);
425     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
426            "built a DeclRefExpr with dependent template args");
427   } else if (TemplateKWLoc.isValid()) {
428     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
429         TemplateKWLoc);
430   }
431   DeclRefExprBits.HadMultipleCandidates = 0;
432   setDependence(computeDependence(this, Ctx));
433 }
434 
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,NonOdrUseReason NOUR)435 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
436                                  NestedNameSpecifierLoc QualifierLoc,
437                                  SourceLocation TemplateKWLoc, ValueDecl *D,
438                                  bool RefersToEnclosingVariableOrCapture,
439                                  SourceLocation NameLoc, QualType T,
440                                  ExprValueKind VK, NamedDecl *FoundD,
441                                  const TemplateArgumentListInfo *TemplateArgs,
442                                  NonOdrUseReason NOUR) {
443   return Create(Context, QualifierLoc, TemplateKWLoc, D,
444                 RefersToEnclosingVariableOrCapture,
445                 DeclarationNameInfo(D->getDeclName(), NameLoc),
446                 T, VK, FoundD, TemplateArgs, NOUR);
447 }
448 
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,NonOdrUseReason NOUR)449 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
450                                  NestedNameSpecifierLoc QualifierLoc,
451                                  SourceLocation TemplateKWLoc, ValueDecl *D,
452                                  bool RefersToEnclosingVariableOrCapture,
453                                  const DeclarationNameInfo &NameInfo,
454                                  QualType T, ExprValueKind VK,
455                                  NamedDecl *FoundD,
456                                  const TemplateArgumentListInfo *TemplateArgs,
457                                  NonOdrUseReason NOUR) {
458   // Filter out cases where the found Decl is the same as the value refenenced.
459   if (D == FoundD)
460     FoundD = nullptr;
461 
462   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
463   std::size_t Size =
464       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
465                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
466           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
467           HasTemplateKWAndArgsInfo ? 1 : 0,
468           TemplateArgs ? TemplateArgs->size() : 0);
469 
470   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
471   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
472                                RefersToEnclosingVariableOrCapture, NameInfo,
473                                FoundD, TemplateArgs, T, VK, NOUR);
474 }
475 
CreateEmpty(const ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)476 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
477                                       bool HasQualifier,
478                                       bool HasFoundDecl,
479                                       bool HasTemplateKWAndArgsInfo,
480                                       unsigned NumTemplateArgs) {
481   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
482   std::size_t Size =
483       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
484                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
485           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
486           NumTemplateArgs);
487   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
488   return new (Mem) DeclRefExpr(EmptyShell());
489 }
490 
setDecl(ValueDecl * NewD)491 void DeclRefExpr::setDecl(ValueDecl *NewD) {
492   D = NewD;
493   setDependence(computeDependence(this, NewD->getASTContext()));
494 }
495 
getBeginLoc() const496 SourceLocation DeclRefExpr::getBeginLoc() const {
497   if (hasQualifier())
498     return getQualifierLoc().getBeginLoc();
499   return getNameInfo().getBeginLoc();
500 }
getEndLoc() const501 SourceLocation DeclRefExpr::getEndLoc() const {
502   if (hasExplicitTemplateArgs())
503     return getRAngleLoc();
504   return getNameInfo().getEndLoc();
505 }
506 
PredefinedExpr(SourceLocation L,QualType FNTy,IdentKind IK,StringLiteral * SL)507 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
508                                StringLiteral *SL)
509     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
510   PredefinedExprBits.Kind = IK;
511   assert((getIdentKind() == IK) &&
512          "IdentKind do not fit in PredefinedExprBitfields!");
513   bool HasFunctionName = SL != nullptr;
514   PredefinedExprBits.HasFunctionName = HasFunctionName;
515   PredefinedExprBits.Loc = L;
516   if (HasFunctionName)
517     setFunctionName(SL);
518   setDependence(computeDependence(this));
519 }
520 
PredefinedExpr(EmptyShell Empty,bool HasFunctionName)521 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
522     : Expr(PredefinedExprClass, Empty) {
523   PredefinedExprBits.HasFunctionName = HasFunctionName;
524 }
525 
Create(const ASTContext & Ctx,SourceLocation L,QualType FNTy,IdentKind IK,StringLiteral * SL)526 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
527                                        QualType FNTy, IdentKind IK,
528                                        StringLiteral *SL) {
529   bool HasFunctionName = SL != nullptr;
530   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
531                            alignof(PredefinedExpr));
532   return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
533 }
534 
CreateEmpty(const ASTContext & Ctx,bool HasFunctionName)535 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
536                                             bool HasFunctionName) {
537   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
538                            alignof(PredefinedExpr));
539   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
540 }
541 
getIdentKindName(PredefinedExpr::IdentKind IK)542 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
543   switch (IK) {
544   case Func:
545     return "__func__";
546   case Function:
547     return "__FUNCTION__";
548   case FuncDName:
549     return "__FUNCDNAME__";
550   case LFunction:
551     return "L__FUNCTION__";
552   case PrettyFunction:
553     return "__PRETTY_FUNCTION__";
554   case FuncSig:
555     return "__FUNCSIG__";
556   case LFuncSig:
557     return "L__FUNCSIG__";
558   case PrettyFunctionNoVirtual:
559     break;
560   }
561   llvm_unreachable("Unknown ident kind for PredefinedExpr");
562 }
563 
564 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
565 // expr" policy instead.
ComputeName(IdentKind IK,const Decl * CurrentDecl)566 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
567   ASTContext &Context = CurrentDecl->getASTContext();
568 
569   if (IK == PredefinedExpr::FuncDName) {
570     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
571       std::unique_ptr<MangleContext> MC;
572       MC.reset(Context.createMangleContext());
573 
574       if (MC->shouldMangleDeclName(ND)) {
575         SmallString<256> Buffer;
576         llvm::raw_svector_ostream Out(Buffer);
577         GlobalDecl GD;
578         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
579           GD = GlobalDecl(CD, Ctor_Base);
580         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
581           GD = GlobalDecl(DD, Dtor_Base);
582         else if (ND->hasAttr<CUDAGlobalAttr>())
583           GD = GlobalDecl(cast<FunctionDecl>(ND));
584         else
585           GD = GlobalDecl(ND);
586         MC->mangleName(GD, Out);
587 
588         if (!Buffer.empty() && Buffer.front() == '\01')
589           return std::string(Buffer.substr(1));
590         return std::string(Buffer.str());
591       }
592       return std::string(ND->getIdentifier()->getName());
593     }
594     return "";
595   }
596   if (isa<BlockDecl>(CurrentDecl)) {
597     // For blocks we only emit something if it is enclosed in a function
598     // For top-level block we'd like to include the name of variable, but we
599     // don't have it at this point.
600     auto DC = CurrentDecl->getDeclContext();
601     if (DC->isFileContext())
602       return "";
603 
604     SmallString<256> Buffer;
605     llvm::raw_svector_ostream Out(Buffer);
606     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
607       // For nested blocks, propagate up to the parent.
608       Out << ComputeName(IK, DCBlock);
609     else if (auto *DCDecl = dyn_cast<Decl>(DC))
610       Out << ComputeName(IK, DCDecl) << "_block_invoke";
611     return std::string(Out.str());
612   }
613   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
614     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
615         IK != FuncSig && IK != LFuncSig)
616       return FD->getNameAsString();
617 
618     SmallString<256> Name;
619     llvm::raw_svector_ostream Out(Name);
620 
621     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
622       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
623         Out << "virtual ";
624       if (MD->isStatic())
625         Out << "static ";
626     }
627 
628     PrintingPolicy Policy(Context.getLangOpts());
629     std::string Proto;
630     llvm::raw_string_ostream POut(Proto);
631 
632     const FunctionDecl *Decl = FD;
633     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
634       Decl = Pattern;
635     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
636     const FunctionProtoType *FT = nullptr;
637     if (FD->hasWrittenPrototype())
638       FT = dyn_cast<FunctionProtoType>(AFT);
639 
640     if (IK == FuncSig || IK == LFuncSig) {
641       switch (AFT->getCallConv()) {
642       case CC_C: POut << "__cdecl "; break;
643       case CC_X86StdCall: POut << "__stdcall "; break;
644       case CC_X86FastCall: POut << "__fastcall "; break;
645       case CC_X86ThisCall: POut << "__thiscall "; break;
646       case CC_X86VectorCall: POut << "__vectorcall "; break;
647       case CC_X86RegCall: POut << "__regcall "; break;
648       // Only bother printing the conventions that MSVC knows about.
649       default: break;
650       }
651     }
652 
653     FD->printQualifiedName(POut, Policy);
654 
655     POut << "(";
656     if (FT) {
657       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
658         if (i) POut << ", ";
659         POut << Decl->getParamDecl(i)->getType().stream(Policy);
660       }
661 
662       if (FT->isVariadic()) {
663         if (FD->getNumParams()) POut << ", ";
664         POut << "...";
665       } else if ((IK == FuncSig || IK == LFuncSig ||
666                   !Context.getLangOpts().CPlusPlus) &&
667                  !Decl->getNumParams()) {
668         POut << "void";
669       }
670     }
671     POut << ")";
672 
673     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
674       assert(FT && "We must have a written prototype in this case.");
675       if (FT->isConst())
676         POut << " const";
677       if (FT->isVolatile())
678         POut << " volatile";
679       RefQualifierKind Ref = MD->getRefQualifier();
680       if (Ref == RQ_LValue)
681         POut << " &";
682       else if (Ref == RQ_RValue)
683         POut << " &&";
684     }
685 
686     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
687     SpecsTy Specs;
688     const DeclContext *Ctx = FD->getDeclContext();
689     while (Ctx && isa<NamedDecl>(Ctx)) {
690       const ClassTemplateSpecializationDecl *Spec
691                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
692       if (Spec && !Spec->isExplicitSpecialization())
693         Specs.push_back(Spec);
694       Ctx = Ctx->getParent();
695     }
696 
697     std::string TemplateParams;
698     llvm::raw_string_ostream TOut(TemplateParams);
699     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
700          I != E; ++I) {
701       const TemplateParameterList *Params
702                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
703       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
704       assert(Params->size() == Args.size());
705       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
706         StringRef Param = Params->getParam(i)->getName();
707         if (Param.empty()) continue;
708         TOut << Param << " = ";
709         Args.get(i).print(
710             Policy, TOut,
711             TemplateParameterList::shouldIncludeTypeForArgument(Params, i));
712         TOut << ", ";
713       }
714     }
715 
716     FunctionTemplateSpecializationInfo *FSI
717                                           = FD->getTemplateSpecializationInfo();
718     if (FSI && !FSI->isExplicitSpecialization()) {
719       const TemplateParameterList* Params
720                                   = FSI->getTemplate()->getTemplateParameters();
721       const TemplateArgumentList* Args = FSI->TemplateArguments;
722       assert(Params->size() == Args->size());
723       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
724         StringRef Param = Params->getParam(i)->getName();
725         if (Param.empty()) continue;
726         TOut << Param << " = ";
727         Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
728         TOut << ", ";
729       }
730     }
731 
732     TOut.flush();
733     if (!TemplateParams.empty()) {
734       // remove the trailing comma and space
735       TemplateParams.resize(TemplateParams.size() - 2);
736       POut << " [" << TemplateParams << "]";
737     }
738 
739     POut.flush();
740 
741     // Print "auto" for all deduced return types. This includes C++1y return
742     // type deduction and lambdas. For trailing return types resolve the
743     // decltype expression. Otherwise print the real type when this is
744     // not a constructor or destructor.
745     if (isa<CXXMethodDecl>(FD) &&
746          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
747       Proto = "auto " + Proto;
748     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
749       FT->getReturnType()
750           ->getAs<DecltypeType>()
751           ->getUnderlyingType()
752           .getAsStringInternal(Proto, Policy);
753     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
754       AFT->getReturnType().getAsStringInternal(Proto, Policy);
755 
756     Out << Proto;
757 
758     return std::string(Name);
759   }
760   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
761     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
762       // Skip to its enclosing function or method, but not its enclosing
763       // CapturedDecl.
764       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
765         const Decl *D = Decl::castFromDeclContext(DC);
766         return ComputeName(IK, D);
767       }
768     llvm_unreachable("CapturedDecl not inside a function or method");
769   }
770   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
771     SmallString<256> Name;
772     llvm::raw_svector_ostream Out(Name);
773     Out << (MD->isInstanceMethod() ? '-' : '+');
774     Out << '[';
775 
776     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
777     // a null check to avoid a crash.
778     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
779       Out << *ID;
780 
781     if (const ObjCCategoryImplDecl *CID =
782         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
783       Out << '(' << *CID << ')';
784 
785     Out <<  ' ';
786     MD->getSelector().print(Out);
787     Out <<  ']';
788 
789     return std::string(Name);
790   }
791   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
792     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
793     return "top level";
794   }
795   return "";
796 }
797 
setIntValue(const ASTContext & C,const llvm::APInt & Val)798 void APNumericStorage::setIntValue(const ASTContext &C,
799                                    const llvm::APInt &Val) {
800   if (hasAllocation())
801     C.Deallocate(pVal);
802 
803   BitWidth = Val.getBitWidth();
804   unsigned NumWords = Val.getNumWords();
805   const uint64_t* Words = Val.getRawData();
806   if (NumWords > 1) {
807     pVal = new (C) uint64_t[NumWords];
808     std::copy(Words, Words + NumWords, pVal);
809   } else if (NumWords == 1)
810     VAL = Words[0];
811   else
812     VAL = 0;
813 }
814 
IntegerLiteral(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)815 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
816                                QualType type, SourceLocation l)
817     : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l) {
818   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
819   assert(V.getBitWidth() == C.getIntWidth(type) &&
820          "Integer type is not the correct size for constant.");
821   setValue(C, V);
822   setDependence(ExprDependence::None);
823 }
824 
825 IntegerLiteral *
Create(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)826 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
827                        QualType type, SourceLocation l) {
828   return new (C) IntegerLiteral(C, V, type, l);
829 }
830 
831 IntegerLiteral *
Create(const ASTContext & C,EmptyShell Empty)832 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
833   return new (C) IntegerLiteral(Empty);
834 }
835 
FixedPointLiteral(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l,unsigned Scale)836 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
837                                      QualType type, SourceLocation l,
838                                      unsigned Scale)
839     : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l),
840       Scale(Scale) {
841   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
842   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
843          "Fixed point type is not the correct size for constant.");
844   setValue(C, V);
845   setDependence(ExprDependence::None);
846 }
847 
CreateFromRawInt(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l,unsigned Scale)848 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
849                                                        const llvm::APInt &V,
850                                                        QualType type,
851                                                        SourceLocation l,
852                                                        unsigned Scale) {
853   return new (C) FixedPointLiteral(C, V, type, l, Scale);
854 }
855 
Create(const ASTContext & C,EmptyShell Empty)856 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
857                                              EmptyShell Empty) {
858   return new (C) FixedPointLiteral(Empty);
859 }
860 
getValueAsString(unsigned Radix) const861 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
862   // Currently the longest decimal number that can be printed is the max for an
863   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
864   // which is 43 characters.
865   SmallString<64> S;
866   FixedPointValueToString(
867       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
868   return std::string(S.str());
869 }
870 
print(unsigned Val,CharacterKind Kind,raw_ostream & OS)871 void CharacterLiteral::print(unsigned Val, CharacterKind Kind,
872                              raw_ostream &OS) {
873   switch (Kind) {
874   case CharacterLiteral::Ascii:
875     break; // no prefix.
876   case CharacterLiteral::Wide:
877     OS << 'L';
878     break;
879   case CharacterLiteral::UTF8:
880     OS << "u8";
881     break;
882   case CharacterLiteral::UTF16:
883     OS << 'u';
884     break;
885   case CharacterLiteral::UTF32:
886     OS << 'U';
887     break;
888   }
889 
890   switch (Val) {
891   case '\\':
892     OS << "'\\\\'";
893     break;
894   case '\'':
895     OS << "'\\''";
896     break;
897   case '\a':
898     // TODO: K&R: the meaning of '\\a' is different in traditional C
899     OS << "'\\a'";
900     break;
901   case '\b':
902     OS << "'\\b'";
903     break;
904   // Nonstandard escape sequence.
905   /*case '\e':
906     OS << "'\\e'";
907     break;*/
908   case '\f':
909     OS << "'\\f'";
910     break;
911   case '\n':
912     OS << "'\\n'";
913     break;
914   case '\r':
915     OS << "'\\r'";
916     break;
917   case '\t':
918     OS << "'\\t'";
919     break;
920   case '\v':
921     OS << "'\\v'";
922     break;
923   default:
924     // A character literal might be sign-extended, which
925     // would result in an invalid \U escape sequence.
926     // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
927     // are not correctly handled.
928     if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
929       Val &= 0xFFu;
930     if (Val < 256 && isPrintable((unsigned char)Val))
931       OS << "'" << (char)Val << "'";
932     else if (Val < 256)
933       OS << "'\\x" << llvm::format("%02x", Val) << "'";
934     else if (Val <= 0xFFFF)
935       OS << "'\\u" << llvm::format("%04x", Val) << "'";
936     else
937       OS << "'\\U" << llvm::format("%08x", Val) << "'";
938   }
939 }
940 
FloatingLiteral(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)941 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
942                                  bool isexact, QualType Type, SourceLocation L)
943     : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary), Loc(L) {
944   setSemantics(V.getSemantics());
945   FloatingLiteralBits.IsExact = isexact;
946   setValue(C, V);
947   setDependence(ExprDependence::None);
948 }
949 
FloatingLiteral(const ASTContext & C,EmptyShell Empty)950 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
951   : Expr(FloatingLiteralClass, Empty) {
952   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
953   FloatingLiteralBits.IsExact = false;
954 }
955 
956 FloatingLiteral *
Create(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)957 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
958                         bool isexact, QualType Type, SourceLocation L) {
959   return new (C) FloatingLiteral(C, V, isexact, Type, L);
960 }
961 
962 FloatingLiteral *
Create(const ASTContext & C,EmptyShell Empty)963 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
964   return new (C) FloatingLiteral(C, Empty);
965 }
966 
967 /// getValueAsApproximateDouble - This returns the value as an inaccurate
968 /// double.  Note that this may cause loss of precision, but is useful for
969 /// debugging dumps, etc.
getValueAsApproximateDouble() const970 double FloatingLiteral::getValueAsApproximateDouble() const {
971   llvm::APFloat V = getValue();
972   bool ignored;
973   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
974             &ignored);
975   return V.convertToDouble();
976 }
977 
mapCharByteWidth(TargetInfo const & Target,StringKind SK)978 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
979                                          StringKind SK) {
980   unsigned CharByteWidth = 0;
981   switch (SK) {
982   case Ascii:
983   case UTF8:
984     CharByteWidth = Target.getCharWidth();
985     break;
986   case Wide:
987     CharByteWidth = Target.getWCharWidth();
988     break;
989   case UTF16:
990     CharByteWidth = Target.getChar16Width();
991     break;
992   case UTF32:
993     CharByteWidth = Target.getChar32Width();
994     break;
995   }
996   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
997   CharByteWidth /= 8;
998   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
999          "The only supported character byte widths are 1,2 and 4!");
1000   return CharByteWidth;
1001 }
1002 
StringLiteral(const ASTContext & Ctx,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumConcatenated)1003 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1004                              StringKind Kind, bool Pascal, QualType Ty,
1005                              const SourceLocation *Loc,
1006                              unsigned NumConcatenated)
1007     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1008   assert(Ctx.getAsConstantArrayType(Ty) &&
1009          "StringLiteral must be of constant array type!");
1010   unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1011   unsigned ByteLength = Str.size();
1012   assert((ByteLength % CharByteWidth == 0) &&
1013          "The size of the data must be a multiple of CharByteWidth!");
1014 
1015   // Avoid the expensive division. The compiler should be able to figure it
1016   // out by itself. However as of clang 7, even with the appropriate
1017   // llvm_unreachable added just here, it is not able to do so.
1018   unsigned Length;
1019   switch (CharByteWidth) {
1020   case 1:
1021     Length = ByteLength;
1022     break;
1023   case 2:
1024     Length = ByteLength / 2;
1025     break;
1026   case 4:
1027     Length = ByteLength / 4;
1028     break;
1029   default:
1030     llvm_unreachable("Unsupported character width!");
1031   }
1032 
1033   StringLiteralBits.Kind = Kind;
1034   StringLiteralBits.CharByteWidth = CharByteWidth;
1035   StringLiteralBits.IsPascal = Pascal;
1036   StringLiteralBits.NumConcatenated = NumConcatenated;
1037   *getTrailingObjects<unsigned>() = Length;
1038 
1039   // Initialize the trailing array of SourceLocation.
1040   // This is safe since SourceLocation is POD-like.
1041   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1042               NumConcatenated * sizeof(SourceLocation));
1043 
1044   // Initialize the trailing array of char holding the string data.
1045   std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1046 
1047   setDependence(ExprDependence::None);
1048 }
1049 
StringLiteral(EmptyShell Empty,unsigned NumConcatenated,unsigned Length,unsigned CharByteWidth)1050 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1051                              unsigned Length, unsigned CharByteWidth)
1052     : Expr(StringLiteralClass, Empty) {
1053   StringLiteralBits.CharByteWidth = CharByteWidth;
1054   StringLiteralBits.NumConcatenated = NumConcatenated;
1055   *getTrailingObjects<unsigned>() = Length;
1056 }
1057 
Create(const ASTContext & Ctx,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumConcatenated)1058 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1059                                      StringKind Kind, bool Pascal, QualType Ty,
1060                                      const SourceLocation *Loc,
1061                                      unsigned NumConcatenated) {
1062   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1063                                1, NumConcatenated, Str.size()),
1064                            alignof(StringLiteral));
1065   return new (Mem)
1066       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1067 }
1068 
CreateEmpty(const ASTContext & Ctx,unsigned NumConcatenated,unsigned Length,unsigned CharByteWidth)1069 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1070                                           unsigned NumConcatenated,
1071                                           unsigned Length,
1072                                           unsigned CharByteWidth) {
1073   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1074                                1, NumConcatenated, Length * CharByteWidth),
1075                            alignof(StringLiteral));
1076   return new (Mem)
1077       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1078 }
1079 
outputString(raw_ostream & OS) const1080 void StringLiteral::outputString(raw_ostream &OS) const {
1081   switch (getKind()) {
1082   case Ascii: break; // no prefix.
1083   case Wide:  OS << 'L'; break;
1084   case UTF8:  OS << "u8"; break;
1085   case UTF16: OS << 'u'; break;
1086   case UTF32: OS << 'U'; break;
1087   }
1088   OS << '"';
1089   static const char Hex[] = "0123456789ABCDEF";
1090 
1091   unsigned LastSlashX = getLength();
1092   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1093     switch (uint32_t Char = getCodeUnit(I)) {
1094     default:
1095       // FIXME: Convert UTF-8 back to codepoints before rendering.
1096 
1097       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1098       // Leave invalid surrogates alone; we'll use \x for those.
1099       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1100           Char <= 0xdbff) {
1101         uint32_t Trail = getCodeUnit(I + 1);
1102         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1103           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1104           ++I;
1105         }
1106       }
1107 
1108       if (Char > 0xff) {
1109         // If this is a wide string, output characters over 0xff using \x
1110         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1111         // codepoint: use \x escapes for invalid codepoints.
1112         if (getKind() == Wide ||
1113             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1114           // FIXME: Is this the best way to print wchar_t?
1115           OS << "\\x";
1116           int Shift = 28;
1117           while ((Char >> Shift) == 0)
1118             Shift -= 4;
1119           for (/**/; Shift >= 0; Shift -= 4)
1120             OS << Hex[(Char >> Shift) & 15];
1121           LastSlashX = I;
1122           break;
1123         }
1124 
1125         if (Char > 0xffff)
1126           OS << "\\U00"
1127              << Hex[(Char >> 20) & 15]
1128              << Hex[(Char >> 16) & 15];
1129         else
1130           OS << "\\u";
1131         OS << Hex[(Char >> 12) & 15]
1132            << Hex[(Char >>  8) & 15]
1133            << Hex[(Char >>  4) & 15]
1134            << Hex[(Char >>  0) & 15];
1135         break;
1136       }
1137 
1138       // If we used \x... for the previous character, and this character is a
1139       // hexadecimal digit, prevent it being slurped as part of the \x.
1140       if (LastSlashX + 1 == I) {
1141         switch (Char) {
1142           case '0': case '1': case '2': case '3': case '4':
1143           case '5': case '6': case '7': case '8': case '9':
1144           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1145           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1146             OS << "\"\"";
1147         }
1148       }
1149 
1150       assert(Char <= 0xff &&
1151              "Characters above 0xff should already have been handled.");
1152 
1153       if (isPrintable(Char))
1154         OS << (char)Char;
1155       else  // Output anything hard as an octal escape.
1156         OS << '\\'
1157            << (char)('0' + ((Char >> 6) & 7))
1158            << (char)('0' + ((Char >> 3) & 7))
1159            << (char)('0' + ((Char >> 0) & 7));
1160       break;
1161     // Handle some common non-printable cases to make dumps prettier.
1162     case '\\': OS << "\\\\"; break;
1163     case '"': OS << "\\\""; break;
1164     case '\a': OS << "\\a"; break;
1165     case '\b': OS << "\\b"; break;
1166     case '\f': OS << "\\f"; break;
1167     case '\n': OS << "\\n"; break;
1168     case '\r': OS << "\\r"; break;
1169     case '\t': OS << "\\t"; break;
1170     case '\v': OS << "\\v"; break;
1171     }
1172   }
1173   OS << '"';
1174 }
1175 
1176 /// getLocationOfByte - Return a source location that points to the specified
1177 /// byte of this string literal.
1178 ///
1179 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1180 /// can have escape sequences in them in addition to the usual trigraph and
1181 /// escaped newline business.  This routine handles this complexity.
1182 ///
1183 /// The *StartToken sets the first token to be searched in this function and
1184 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1185 /// returning, it updates the *StartToken to the TokNo of the token being found
1186 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1187 /// string.
1188 /// Using these two parameters can reduce the time complexity from O(n^2) to
1189 /// O(n) if one wants to get the location of byte for all the tokens in a
1190 /// string.
1191 ///
1192 SourceLocation
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target,unsigned * StartToken,unsigned * StartTokenByteOffset) const1193 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1194                                  const LangOptions &Features,
1195                                  const TargetInfo &Target, unsigned *StartToken,
1196                                  unsigned *StartTokenByteOffset) const {
1197   assert((getKind() == StringLiteral::Ascii ||
1198           getKind() == StringLiteral::UTF8) &&
1199          "Only narrow string literals are currently supported");
1200 
1201   // Loop over all of the tokens in this string until we find the one that
1202   // contains the byte we're looking for.
1203   unsigned TokNo = 0;
1204   unsigned StringOffset = 0;
1205   if (StartToken)
1206     TokNo = *StartToken;
1207   if (StartTokenByteOffset) {
1208     StringOffset = *StartTokenByteOffset;
1209     ByteNo -= StringOffset;
1210   }
1211   while (1) {
1212     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1213     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1214 
1215     // Get the spelling of the string so that we can get the data that makes up
1216     // the string literal, not the identifier for the macro it is potentially
1217     // expanded through.
1218     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1219 
1220     // Re-lex the token to get its length and original spelling.
1221     std::pair<FileID, unsigned> LocInfo =
1222         SM.getDecomposedLoc(StrTokSpellingLoc);
1223     bool Invalid = false;
1224     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1225     if (Invalid) {
1226       if (StartTokenByteOffset != nullptr)
1227         *StartTokenByteOffset = StringOffset;
1228       if (StartToken != nullptr)
1229         *StartToken = TokNo;
1230       return StrTokSpellingLoc;
1231     }
1232 
1233     const char *StrData = Buffer.data()+LocInfo.second;
1234 
1235     // Create a lexer starting at the beginning of this token.
1236     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1237                    Buffer.begin(), StrData, Buffer.end());
1238     Token TheTok;
1239     TheLexer.LexFromRawLexer(TheTok);
1240 
1241     // Use the StringLiteralParser to compute the length of the string in bytes.
1242     StringLiteralParser SLP(TheTok, SM, Features, Target);
1243     unsigned TokNumBytes = SLP.GetStringLength();
1244 
1245     // If the byte is in this token, return the location of the byte.
1246     if (ByteNo < TokNumBytes ||
1247         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1248       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1249 
1250       // Now that we know the offset of the token in the spelling, use the
1251       // preprocessor to get the offset in the original source.
1252       if (StartTokenByteOffset != nullptr)
1253         *StartTokenByteOffset = StringOffset;
1254       if (StartToken != nullptr)
1255         *StartToken = TokNo;
1256       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1257     }
1258 
1259     // Move to the next string token.
1260     StringOffset += TokNumBytes;
1261     ++TokNo;
1262     ByteNo -= TokNumBytes;
1263   }
1264 }
1265 
1266 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1267 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)1268 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1269   switch (Op) {
1270 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1271 #include "clang/AST/OperationKinds.def"
1272   }
1273   llvm_unreachable("Unknown unary operator");
1274 }
1275 
1276 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)1277 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1278   switch (OO) {
1279   default: llvm_unreachable("No unary operator for overloaded function");
1280   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1281   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1282   case OO_Amp:        return UO_AddrOf;
1283   case OO_Star:       return UO_Deref;
1284   case OO_Plus:       return UO_Plus;
1285   case OO_Minus:      return UO_Minus;
1286   case OO_Tilde:      return UO_Not;
1287   case OO_Exclaim:    return UO_LNot;
1288   case OO_Coawait:    return UO_Coawait;
1289   }
1290 }
1291 
getOverloadedOperator(Opcode Opc)1292 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1293   switch (Opc) {
1294   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1295   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1296   case UO_AddrOf: return OO_Amp;
1297   case UO_Deref: return OO_Star;
1298   case UO_Plus: return OO_Plus;
1299   case UO_Minus: return OO_Minus;
1300   case UO_Not: return OO_Tilde;
1301   case UO_LNot: return OO_Exclaim;
1302   case UO_Coawait: return OO_Coawait;
1303   default: return OO_None;
1304   }
1305 }
1306 
1307 
1308 //===----------------------------------------------------------------------===//
1309 // Postfix Operators.
1310 //===----------------------------------------------------------------------===//
1311 
CallExpr(StmtClass SC,Expr * Fn,ArrayRef<Expr * > PreArgs,ArrayRef<Expr * > Args,QualType Ty,ExprValueKind VK,SourceLocation RParenLoc,FPOptionsOverride FPFeatures,unsigned MinNumArgs,ADLCallKind UsesADL)1312 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1313                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1314                    SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1315                    unsigned MinNumArgs, ADLCallKind UsesADL)
1316     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1317   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1318   unsigned NumPreArgs = PreArgs.size();
1319   CallExprBits.NumPreArgs = NumPreArgs;
1320   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1321 
1322   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1323   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1324   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1325          "OffsetToTrailingObjects overflow!");
1326 
1327   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1328 
1329   setCallee(Fn);
1330   for (unsigned I = 0; I != NumPreArgs; ++I)
1331     setPreArg(I, PreArgs[I]);
1332   for (unsigned I = 0; I != Args.size(); ++I)
1333     setArg(I, Args[I]);
1334   for (unsigned I = Args.size(); I != NumArgs; ++I)
1335     setArg(I, nullptr);
1336 
1337   setDependence(computeDependence(this, PreArgs));
1338 
1339   CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1340   if (hasStoredFPFeatures())
1341     setStoredFPFeatures(FPFeatures);
1342 }
1343 
CallExpr(StmtClass SC,unsigned NumPreArgs,unsigned NumArgs,bool HasFPFeatures,EmptyShell Empty)1344 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1345                    bool HasFPFeatures, EmptyShell Empty)
1346     : Expr(SC, Empty), NumArgs(NumArgs) {
1347   CallExprBits.NumPreArgs = NumPreArgs;
1348   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1349 
1350   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1351   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1352   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1353          "OffsetToTrailingObjects overflow!");
1354   CallExprBits.HasFPFeatures = HasFPFeatures;
1355 }
1356 
Create(const ASTContext & Ctx,Expr * Fn,ArrayRef<Expr * > Args,QualType Ty,ExprValueKind VK,SourceLocation RParenLoc,FPOptionsOverride FPFeatures,unsigned MinNumArgs,ADLCallKind UsesADL)1357 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1358                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1359                            SourceLocation RParenLoc,
1360                            FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1361                            ADLCallKind UsesADL) {
1362   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1363   unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1364       /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1365   void *Mem =
1366       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1367   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1368                             RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1369 }
1370 
CreateTemporary(void * Mem,Expr * Fn,QualType Ty,ExprValueKind VK,SourceLocation RParenLoc,ADLCallKind UsesADL)1371 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1372                                     ExprValueKind VK, SourceLocation RParenLoc,
1373                                     ADLCallKind UsesADL) {
1374   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1375          "Misaligned memory in CallExpr::CreateTemporary!");
1376   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1377                             VK, RParenLoc, FPOptionsOverride(),
1378                             /*MinNumArgs=*/0, UsesADL);
1379 }
1380 
CreateEmpty(const ASTContext & Ctx,unsigned NumArgs,bool HasFPFeatures,EmptyShell Empty)1381 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1382                                 bool HasFPFeatures, EmptyShell Empty) {
1383   unsigned SizeOfTrailingObjects =
1384       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1385   void *Mem =
1386       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1387   return new (Mem)
1388       CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1389 }
1390 
offsetToTrailingObjects(StmtClass SC)1391 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1392   switch (SC) {
1393   case CallExprClass:
1394     return sizeof(CallExpr);
1395   case CXXOperatorCallExprClass:
1396     return sizeof(CXXOperatorCallExpr);
1397   case CXXMemberCallExprClass:
1398     return sizeof(CXXMemberCallExpr);
1399   case UserDefinedLiteralClass:
1400     return sizeof(UserDefinedLiteral);
1401   case CUDAKernelCallExprClass:
1402     return sizeof(CUDAKernelCallExpr);
1403   default:
1404     llvm_unreachable("unexpected class deriving from CallExpr!");
1405   }
1406 }
1407 
getReferencedDeclOfCallee()1408 Decl *Expr::getReferencedDeclOfCallee() {
1409   Expr *CEE = IgnoreParenImpCasts();
1410 
1411   while (SubstNonTypeTemplateParmExpr *NTTP =
1412              dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1413     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1414   }
1415 
1416   // If we're calling a dereference, look at the pointer instead.
1417   while (true) {
1418     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1419       if (BO->isPtrMemOp()) {
1420         CEE = BO->getRHS()->IgnoreParenImpCasts();
1421         continue;
1422       }
1423     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1424       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1425           UO->getOpcode() == UO_Plus) {
1426         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1427         continue;
1428       }
1429     }
1430     break;
1431   }
1432 
1433   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1434     return DRE->getDecl();
1435   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1436     return ME->getMemberDecl();
1437   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1438     return BE->getBlockDecl();
1439 
1440   return nullptr;
1441 }
1442 
1443 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
getBuiltinCallee() const1444 unsigned CallExpr::getBuiltinCallee() const {
1445   auto *FDecl =
1446       dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee());
1447   return FDecl ? FDecl->getBuiltinID() : 0;
1448 }
1449 
isUnevaluatedBuiltinCall(const ASTContext & Ctx) const1450 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1451   if (unsigned BI = getBuiltinCallee())
1452     return Ctx.BuiltinInfo.isUnevaluated(BI);
1453   return false;
1454 }
1455 
getCallReturnType(const ASTContext & Ctx) const1456 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1457   const Expr *Callee = getCallee();
1458   QualType CalleeType = Callee->getType();
1459   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1460     CalleeType = FnTypePtr->getPointeeType();
1461   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1462     CalleeType = BPT->getPointeeType();
1463   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1464     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1465       return Ctx.VoidTy;
1466 
1467     if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1468       return Ctx.DependentTy;
1469 
1470     // This should never be overloaded and so should never return null.
1471     CalleeType = Expr::findBoundMemberType(Callee);
1472     assert(!CalleeType.isNull());
1473   } else if (CalleeType->isDependentType() ||
1474              CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1475     return Ctx.DependentTy;
1476   }
1477 
1478   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1479   return FnType->getReturnType();
1480 }
1481 
getUnusedResultAttr(const ASTContext & Ctx) const1482 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1483   // If the return type is a struct, union, or enum that is marked nodiscard,
1484   // then return the return type attribute.
1485   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1486     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1487       return A;
1488 
1489   // Otherwise, see if the callee is marked nodiscard and return that attribute
1490   // instead.
1491   const Decl *D = getCalleeDecl();
1492   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1493 }
1494 
getBeginLoc() const1495 SourceLocation CallExpr::getBeginLoc() const {
1496   if (isa<CXXOperatorCallExpr>(this))
1497     return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1498 
1499   SourceLocation begin = getCallee()->getBeginLoc();
1500   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1501     begin = getArg(0)->getBeginLoc();
1502   return begin;
1503 }
getEndLoc() const1504 SourceLocation CallExpr::getEndLoc() const {
1505   if (isa<CXXOperatorCallExpr>(this))
1506     return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1507 
1508   SourceLocation end = getRParenLoc();
1509   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1510     end = getArg(getNumArgs() - 1)->getEndLoc();
1511   return end;
1512 }
1513 
Create(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1514 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1515                                    SourceLocation OperatorLoc,
1516                                    TypeSourceInfo *tsi,
1517                                    ArrayRef<OffsetOfNode> comps,
1518                                    ArrayRef<Expr*> exprs,
1519                                    SourceLocation RParenLoc) {
1520   void *Mem = C.Allocate(
1521       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1522 
1523   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1524                                 RParenLoc);
1525 }
1526 
CreateEmpty(const ASTContext & C,unsigned numComps,unsigned numExprs)1527 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1528                                         unsigned numComps, unsigned numExprs) {
1529   void *Mem =
1530       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1531   return new (Mem) OffsetOfExpr(numComps, numExprs);
1532 }
1533 
OffsetOfExpr(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1534 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1535                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1536                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1537                            SourceLocation RParenLoc)
1538     : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary),
1539       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1540       NumComps(comps.size()), NumExprs(exprs.size()) {
1541   for (unsigned i = 0; i != comps.size(); ++i)
1542     setComponent(i, comps[i]);
1543   for (unsigned i = 0; i != exprs.size(); ++i)
1544     setIndexExpr(i, exprs[i]);
1545 
1546   setDependence(computeDependence(this));
1547 }
1548 
getFieldName() const1549 IdentifierInfo *OffsetOfNode::getFieldName() const {
1550   assert(getKind() == Field || getKind() == Identifier);
1551   if (getKind() == Field)
1552     return getField()->getIdentifier();
1553 
1554   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1555 }
1556 
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind,Expr * E,QualType resultType,SourceLocation op,SourceLocation rp)1557 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1558     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1559     SourceLocation op, SourceLocation rp)
1560     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary),
1561       OpLoc(op), RParenLoc(rp) {
1562   assert(ExprKind <= UETT_Last && "invalid enum value!");
1563   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1564   assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1565          "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1566   UnaryExprOrTypeTraitExprBits.IsType = false;
1567   Argument.Ex = E;
1568   setDependence(computeDependence(this));
1569 }
1570 
MemberExpr(Expr * Base,bool IsArrow,SourceLocation OperatorLoc,ValueDecl * MemberDecl,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,ExprObjectKind OK,NonOdrUseReason NOUR)1571 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1572                        ValueDecl *MemberDecl,
1573                        const DeclarationNameInfo &NameInfo, QualType T,
1574                        ExprValueKind VK, ExprObjectKind OK,
1575                        NonOdrUseReason NOUR)
1576     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1577       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1578   assert(!NameInfo.getName() ||
1579          MemberDecl->getDeclName() == NameInfo.getName());
1580   MemberExprBits.IsArrow = IsArrow;
1581   MemberExprBits.HasQualifierOrFoundDecl = false;
1582   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1583   MemberExprBits.HadMultipleCandidates = false;
1584   MemberExprBits.NonOdrUseReason = NOUR;
1585   MemberExprBits.OperatorLoc = OperatorLoc;
1586   setDependence(computeDependence(this));
1587 }
1588 
Create(const ASTContext & C,Expr * Base,bool IsArrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * MemberDecl,DeclAccessPair FoundDecl,DeclarationNameInfo NameInfo,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK,ExprObjectKind OK,NonOdrUseReason NOUR)1589 MemberExpr *MemberExpr::Create(
1590     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1591     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1592     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1593     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1594     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1595   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1596                         FoundDecl.getAccess() != MemberDecl->getAccess();
1597   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1598   std::size_t Size =
1599       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1600                        TemplateArgumentLoc>(
1601           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1602           TemplateArgs ? TemplateArgs->size() : 0);
1603 
1604   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1605   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1606                                        NameInfo, T, VK, OK, NOUR);
1607 
1608   // FIXME: remove remaining dependence computation to computeDependence().
1609   auto Deps = E->getDependence();
1610   if (HasQualOrFound) {
1611     // FIXME: Wrong. We should be looking at the member declaration we found.
1612     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1613       Deps |= ExprDependence::TypeValueInstantiation;
1614     else if (QualifierLoc &&
1615              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1616       Deps |= ExprDependence::Instantiation;
1617 
1618     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1619 
1620     MemberExprNameQualifier *NQ =
1621         E->getTrailingObjects<MemberExprNameQualifier>();
1622     NQ->QualifierLoc = QualifierLoc;
1623     NQ->FoundDecl = FoundDecl;
1624   }
1625 
1626   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1627       TemplateArgs || TemplateKWLoc.isValid();
1628 
1629   if (TemplateArgs) {
1630     auto TemplateArgDeps = TemplateArgumentDependence::None;
1631     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1632         TemplateKWLoc, *TemplateArgs,
1633         E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1634     if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1635       Deps |= ExprDependence::Instantiation;
1636   } else if (TemplateKWLoc.isValid()) {
1637     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1638         TemplateKWLoc);
1639   }
1640   E->setDependence(Deps);
1641 
1642   return E;
1643 }
1644 
CreateEmpty(const ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)1645 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1646                                     bool HasQualifier, bool HasFoundDecl,
1647                                     bool HasTemplateKWAndArgsInfo,
1648                                     unsigned NumTemplateArgs) {
1649   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1650          "template args but no template arg info?");
1651   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1652   std::size_t Size =
1653       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1654                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1655                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1656                                             NumTemplateArgs);
1657   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1658   return new (Mem) MemberExpr(EmptyShell());
1659 }
1660 
setMemberDecl(ValueDecl * D)1661 void MemberExpr::setMemberDecl(ValueDecl *D) {
1662   MemberDecl = D;
1663   setDependence(computeDependence(this));
1664 }
1665 
getBeginLoc() const1666 SourceLocation MemberExpr::getBeginLoc() const {
1667   if (isImplicitAccess()) {
1668     if (hasQualifier())
1669       return getQualifierLoc().getBeginLoc();
1670     return MemberLoc;
1671   }
1672 
1673   // FIXME: We don't want this to happen. Rather, we should be able to
1674   // detect all kinds of implicit accesses more cleanly.
1675   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1676   if (BaseStartLoc.isValid())
1677     return BaseStartLoc;
1678   return MemberLoc;
1679 }
getEndLoc() const1680 SourceLocation MemberExpr::getEndLoc() const {
1681   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1682   if (hasExplicitTemplateArgs())
1683     EndLoc = getRAngleLoc();
1684   else if (EndLoc.isInvalid())
1685     EndLoc = getBase()->getEndLoc();
1686   return EndLoc;
1687 }
1688 
CastConsistency() const1689 bool CastExpr::CastConsistency() const {
1690   switch (getCastKind()) {
1691   case CK_DerivedToBase:
1692   case CK_UncheckedDerivedToBase:
1693   case CK_DerivedToBaseMemberPointer:
1694   case CK_BaseToDerived:
1695   case CK_BaseToDerivedMemberPointer:
1696     assert(!path_empty() && "Cast kind should have a base path!");
1697     break;
1698 
1699   case CK_CPointerToObjCPointerCast:
1700     assert(getType()->isObjCObjectPointerType());
1701     assert(getSubExpr()->getType()->isPointerType());
1702     goto CheckNoBasePath;
1703 
1704   case CK_BlockPointerToObjCPointerCast:
1705     assert(getType()->isObjCObjectPointerType());
1706     assert(getSubExpr()->getType()->isBlockPointerType());
1707     goto CheckNoBasePath;
1708 
1709   case CK_ReinterpretMemberPointer:
1710     assert(getType()->isMemberPointerType());
1711     assert(getSubExpr()->getType()->isMemberPointerType());
1712     goto CheckNoBasePath;
1713 
1714   case CK_BitCast:
1715     // Arbitrary casts to C pointer types count as bitcasts.
1716     // Otherwise, we should only have block and ObjC pointer casts
1717     // here if they stay within the type kind.
1718     if (!getType()->isPointerType()) {
1719       assert(getType()->isObjCObjectPointerType() ==
1720              getSubExpr()->getType()->isObjCObjectPointerType());
1721       assert(getType()->isBlockPointerType() ==
1722              getSubExpr()->getType()->isBlockPointerType());
1723     }
1724     goto CheckNoBasePath;
1725 
1726   case CK_AnyPointerToBlockPointerCast:
1727     assert(getType()->isBlockPointerType());
1728     assert(getSubExpr()->getType()->isAnyPointerType() &&
1729            !getSubExpr()->getType()->isBlockPointerType());
1730     goto CheckNoBasePath;
1731 
1732   case CK_CopyAndAutoreleaseBlockObject:
1733     assert(getType()->isBlockPointerType());
1734     assert(getSubExpr()->getType()->isBlockPointerType());
1735     goto CheckNoBasePath;
1736 
1737   case CK_FunctionToPointerDecay:
1738     assert(getType()->isPointerType());
1739     assert(getSubExpr()->getType()->isFunctionType());
1740     goto CheckNoBasePath;
1741 
1742   case CK_AddressSpaceConversion: {
1743     auto Ty = getType();
1744     auto SETy = getSubExpr()->getType();
1745     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1746     if (isRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1747       Ty = Ty->getPointeeType();
1748       SETy = SETy->getPointeeType();
1749     }
1750     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1751            (!Ty.isNull() && !SETy.isNull() &&
1752             Ty.getAddressSpace() != SETy.getAddressSpace()));
1753     goto CheckNoBasePath;
1754   }
1755   // These should not have an inheritance path.
1756   case CK_Dynamic:
1757   case CK_ToUnion:
1758   case CK_ArrayToPointerDecay:
1759   case CK_NullToMemberPointer:
1760   case CK_NullToPointer:
1761   case CK_ConstructorConversion:
1762   case CK_IntegralToPointer:
1763   case CK_PointerToIntegral:
1764   case CK_ToVoid:
1765   case CK_VectorSplat:
1766   case CK_IntegralCast:
1767   case CK_BooleanToSignedIntegral:
1768   case CK_IntegralToFloating:
1769   case CK_FloatingToIntegral:
1770   case CK_FloatingCast:
1771   case CK_ObjCObjectLValueCast:
1772   case CK_FloatingRealToComplex:
1773   case CK_FloatingComplexToReal:
1774   case CK_FloatingComplexCast:
1775   case CK_FloatingComplexToIntegralComplex:
1776   case CK_IntegralRealToComplex:
1777   case CK_IntegralComplexToReal:
1778   case CK_IntegralComplexCast:
1779   case CK_IntegralComplexToFloatingComplex:
1780   case CK_ARCProduceObject:
1781   case CK_ARCConsumeObject:
1782   case CK_ARCReclaimReturnedObject:
1783   case CK_ARCExtendBlockObject:
1784   case CK_ZeroToOCLOpaqueType:
1785   case CK_IntToOCLSampler:
1786   case CK_FloatingToFixedPoint:
1787   case CK_FixedPointToFloating:
1788   case CK_FixedPointCast:
1789   case CK_FixedPointToIntegral:
1790   case CK_IntegralToFixedPoint:
1791   case CK_MatrixCast:
1792     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1793     goto CheckNoBasePath;
1794 
1795   case CK_Dependent:
1796   case CK_LValueToRValue:
1797   case CK_NoOp:
1798   case CK_AtomicToNonAtomic:
1799   case CK_NonAtomicToAtomic:
1800   case CK_PointerToBoolean:
1801   case CK_IntegralToBoolean:
1802   case CK_FloatingToBoolean:
1803   case CK_MemberPointerToBoolean:
1804   case CK_FloatingComplexToBoolean:
1805   case CK_IntegralComplexToBoolean:
1806   case CK_LValueBitCast:            // -> bool&
1807   case CK_LValueToRValueBitCast:
1808   case CK_UserDefinedConversion:    // operator bool()
1809   case CK_BuiltinFnToFnPtr:
1810   case CK_FixedPointToBoolean:
1811   CheckNoBasePath:
1812     assert(path_empty() && "Cast kind should not have a base path!");
1813     break;
1814   }
1815   return true;
1816 }
1817 
getCastKindName(CastKind CK)1818 const char *CastExpr::getCastKindName(CastKind CK) {
1819   switch (CK) {
1820 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1821 #include "clang/AST/OperationKinds.def"
1822   }
1823   llvm_unreachable("Unhandled cast kind!");
1824 }
1825 
1826 namespace {
skipImplicitTemporary(const Expr * E)1827   const Expr *skipImplicitTemporary(const Expr *E) {
1828     // Skip through reference binding to temporary.
1829     if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1830       E = Materialize->getSubExpr();
1831 
1832     // Skip any temporary bindings; they're implicit.
1833     if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1834       E = Binder->getSubExpr();
1835 
1836     return E;
1837   }
1838 }
1839 
getSubExprAsWritten()1840 Expr *CastExpr::getSubExprAsWritten() {
1841   const Expr *SubExpr = nullptr;
1842   const CastExpr *E = this;
1843   do {
1844     SubExpr = skipImplicitTemporary(E->getSubExpr());
1845 
1846     // Conversions by constructor and conversion functions have a
1847     // subexpression describing the call; strip it off.
1848     if (E->getCastKind() == CK_ConstructorConversion)
1849       SubExpr =
1850         skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr->IgnoreImplicit())->getArg(0));
1851     else if (E->getCastKind() == CK_UserDefinedConversion) {
1852       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1853               isa<BlockExpr>(SubExpr)) &&
1854              "Unexpected SubExpr for CK_UserDefinedConversion.");
1855       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1856         SubExpr = MCE->getImplicitObjectArgument();
1857     }
1858 
1859     // If the subexpression we're left with is an implicit cast, look
1860     // through that, too.
1861   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1862 
1863   return const_cast<Expr*>(SubExpr);
1864 }
1865 
getConversionFunction() const1866 NamedDecl *CastExpr::getConversionFunction() const {
1867   const Expr *SubExpr = nullptr;
1868 
1869   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1870     SubExpr = skipImplicitTemporary(E->getSubExpr());
1871 
1872     if (E->getCastKind() == CK_ConstructorConversion)
1873       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1874 
1875     if (E->getCastKind() == CK_UserDefinedConversion) {
1876       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1877         return MCE->getMethodDecl();
1878     }
1879   }
1880 
1881   return nullptr;
1882 }
1883 
path_buffer()1884 CXXBaseSpecifier **CastExpr::path_buffer() {
1885   switch (getStmtClass()) {
1886 #define ABSTRACT_STMT(x)
1887 #define CASTEXPR(Type, Base)                                                   \
1888   case Stmt::Type##Class:                                                      \
1889     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1890 #define STMT(Type, Base)
1891 #include "clang/AST/StmtNodes.inc"
1892   default:
1893     llvm_unreachable("non-cast expressions not possible here");
1894   }
1895 }
1896 
getTargetFieldForToUnionCast(QualType unionType,QualType opType)1897 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
1898                                                         QualType opType) {
1899   auto RD = unionType->castAs<RecordType>()->getDecl();
1900   return getTargetFieldForToUnionCast(RD, opType);
1901 }
1902 
getTargetFieldForToUnionCast(const RecordDecl * RD,QualType OpType)1903 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
1904                                                         QualType OpType) {
1905   auto &Ctx = RD->getASTContext();
1906   RecordDecl::field_iterator Field, FieldEnd;
1907   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1908        Field != FieldEnd; ++Field) {
1909     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1910         !Field->isUnnamedBitfield()) {
1911       return *Field;
1912     }
1913   }
1914   return nullptr;
1915 }
1916 
getTrailingFPFeatures()1917 FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
1918   assert(hasStoredFPFeatures());
1919   switch (getStmtClass()) {
1920   case ImplicitCastExprClass:
1921     return static_cast<ImplicitCastExpr *>(this)
1922         ->getTrailingObjects<FPOptionsOverride>();
1923   case CStyleCastExprClass:
1924     return static_cast<CStyleCastExpr *>(this)
1925         ->getTrailingObjects<FPOptionsOverride>();
1926   case CXXFunctionalCastExprClass:
1927     return static_cast<CXXFunctionalCastExpr *>(this)
1928         ->getTrailingObjects<FPOptionsOverride>();
1929   case CXXStaticCastExprClass:
1930     return static_cast<CXXStaticCastExpr *>(this)
1931         ->getTrailingObjects<FPOptionsOverride>();
1932   default:
1933     llvm_unreachable("Cast does not have FPFeatures");
1934   }
1935 }
1936 
Create(const ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK,FPOptionsOverride FPO)1937 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1938                                            CastKind Kind, Expr *Operand,
1939                                            const CXXCastPath *BasePath,
1940                                            ExprValueKind VK,
1941                                            FPOptionsOverride FPO) {
1942   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1943   void *Buffer =
1944       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1945           PathSize, FPO.requiresTrailingStorage()));
1946   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
1947   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
1948   assert((Kind != CK_LValueToRValue ||
1949           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
1950          "invalid type for lvalue-to-rvalue conversion");
1951   ImplicitCastExpr *E =
1952       new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
1953   if (PathSize)
1954     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1955                               E->getTrailingObjects<CXXBaseSpecifier *>());
1956   return E;
1957 }
1958 
CreateEmpty(const ASTContext & C,unsigned PathSize,bool HasFPFeatures)1959 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1960                                                 unsigned PathSize,
1961                                                 bool HasFPFeatures) {
1962   void *Buffer =
1963       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1964           PathSize, HasFPFeatures));
1965   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
1966 }
1967 
Create(const ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,FPOptionsOverride FPO,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1968 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1969                                        ExprValueKind VK, CastKind K, Expr *Op,
1970                                        const CXXCastPath *BasePath,
1971                                        FPOptionsOverride FPO,
1972                                        TypeSourceInfo *WrittenTy,
1973                                        SourceLocation L, SourceLocation R) {
1974   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1975   void *Buffer =
1976       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1977           PathSize, FPO.requiresTrailingStorage()));
1978   CStyleCastExpr *E =
1979       new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
1980   if (PathSize)
1981     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1982                               E->getTrailingObjects<CXXBaseSpecifier *>());
1983   return E;
1984 }
1985 
CreateEmpty(const ASTContext & C,unsigned PathSize,bool HasFPFeatures)1986 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1987                                             unsigned PathSize,
1988                                             bool HasFPFeatures) {
1989   void *Buffer =
1990       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1991           PathSize, HasFPFeatures));
1992   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
1993 }
1994 
1995 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1996 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1997 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1998   switch (Op) {
1999 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2000 #include "clang/AST/OperationKinds.def"
2001   }
2002   llvm_unreachable("Invalid OpCode!");
2003 }
2004 
2005 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)2006 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2007   switch (OO) {
2008   default: llvm_unreachable("Not an overloadable binary operator");
2009   case OO_Plus: return BO_Add;
2010   case OO_Minus: return BO_Sub;
2011   case OO_Star: return BO_Mul;
2012   case OO_Slash: return BO_Div;
2013   case OO_Percent: return BO_Rem;
2014   case OO_Caret: return BO_Xor;
2015   case OO_Amp: return BO_And;
2016   case OO_Pipe: return BO_Or;
2017   case OO_Equal: return BO_Assign;
2018   case OO_Spaceship: return BO_Cmp;
2019   case OO_Less: return BO_LT;
2020   case OO_Greater: return BO_GT;
2021   case OO_PlusEqual: return BO_AddAssign;
2022   case OO_MinusEqual: return BO_SubAssign;
2023   case OO_StarEqual: return BO_MulAssign;
2024   case OO_SlashEqual: return BO_DivAssign;
2025   case OO_PercentEqual: return BO_RemAssign;
2026   case OO_CaretEqual: return BO_XorAssign;
2027   case OO_AmpEqual: return BO_AndAssign;
2028   case OO_PipeEqual: return BO_OrAssign;
2029   case OO_LessLess: return BO_Shl;
2030   case OO_GreaterGreater: return BO_Shr;
2031   case OO_LessLessEqual: return BO_ShlAssign;
2032   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2033   case OO_EqualEqual: return BO_EQ;
2034   case OO_ExclaimEqual: return BO_NE;
2035   case OO_LessEqual: return BO_LE;
2036   case OO_GreaterEqual: return BO_GE;
2037   case OO_AmpAmp: return BO_LAnd;
2038   case OO_PipePipe: return BO_LOr;
2039   case OO_Comma: return BO_Comma;
2040   case OO_ArrowStar: return BO_PtrMemI;
2041   }
2042 }
2043 
getOverloadedOperator(Opcode Opc)2044 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2045   static const OverloadedOperatorKind OverOps[] = {
2046     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2047     OO_Star, OO_Slash, OO_Percent,
2048     OO_Plus, OO_Minus,
2049     OO_LessLess, OO_GreaterGreater,
2050     OO_Spaceship,
2051     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2052     OO_EqualEqual, OO_ExclaimEqual,
2053     OO_Amp,
2054     OO_Caret,
2055     OO_Pipe,
2056     OO_AmpAmp,
2057     OO_PipePipe,
2058     OO_Equal, OO_StarEqual,
2059     OO_SlashEqual, OO_PercentEqual,
2060     OO_PlusEqual, OO_MinusEqual,
2061     OO_LessLessEqual, OO_GreaterGreaterEqual,
2062     OO_AmpEqual, OO_CaretEqual,
2063     OO_PipeEqual,
2064     OO_Comma
2065   };
2066   return OverOps[Opc];
2067 }
2068 
isNullPointerArithmeticExtension(ASTContext & Ctx,Opcode Opc,Expr * LHS,Expr * RHS)2069 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2070                                                       Opcode Opc,
2071                                                       Expr *LHS, Expr *RHS) {
2072   if (Opc != BO_Add)
2073     return false;
2074 
2075   // Check that we have one pointer and one integer operand.
2076   Expr *PExp;
2077   if (LHS->getType()->isPointerType()) {
2078     if (!RHS->getType()->isIntegerType())
2079       return false;
2080     PExp = LHS;
2081   } else if (RHS->getType()->isPointerType()) {
2082     if (!LHS->getType()->isIntegerType())
2083       return false;
2084     PExp = RHS;
2085   } else {
2086     return false;
2087   }
2088 
2089   // Check that the pointer is a nullptr.
2090   if (!PExp->IgnoreParenCasts()
2091           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2092     return false;
2093 
2094   // Check that the pointee type is char-sized.
2095   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2096   if (!PTy || !PTy->getPointeeType()->isCharType())
2097     return false;
2098 
2099   return true;
2100 }
2101 
getDecayedSourceLocExprType(const ASTContext & Ctx,SourceLocExpr::IdentKind Kind)2102 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
2103                                             SourceLocExpr::IdentKind Kind) {
2104   switch (Kind) {
2105   case SourceLocExpr::File:
2106   case SourceLocExpr::Function: {
2107     QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2108     return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2109   }
2110   case SourceLocExpr::Line:
2111   case SourceLocExpr::Column:
2112     return Ctx.UnsignedIntTy;
2113   }
2114   llvm_unreachable("unhandled case");
2115 }
2116 
SourceLocExpr(const ASTContext & Ctx,IdentKind Kind,SourceLocation BLoc,SourceLocation RParenLoc,DeclContext * ParentContext)2117 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2118                              SourceLocation BLoc, SourceLocation RParenLoc,
2119                              DeclContext *ParentContext)
2120     : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2121            VK_RValue, OK_Ordinary),
2122       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2123   SourceLocExprBits.Kind = Kind;
2124   setDependence(ExprDependence::None);
2125 }
2126 
getBuiltinStr() const2127 StringRef SourceLocExpr::getBuiltinStr() const {
2128   switch (getIdentKind()) {
2129   case File:
2130     return "__builtin_FILE";
2131   case Function:
2132     return "__builtin_FUNCTION";
2133   case Line:
2134     return "__builtin_LINE";
2135   case Column:
2136     return "__builtin_COLUMN";
2137   }
2138   llvm_unreachable("unexpected IdentKind!");
2139 }
2140 
EvaluateInContext(const ASTContext & Ctx,const Expr * DefaultExpr) const2141 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2142                                          const Expr *DefaultExpr) const {
2143   SourceLocation Loc;
2144   const DeclContext *Context;
2145 
2146   std::tie(Loc,
2147            Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2148     if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2149       return {DIE->getUsedLocation(), DIE->getUsedContext()};
2150     if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2151       return {DAE->getUsedLocation(), DAE->getUsedContext()};
2152     return {this->getLocation(), this->getParentContext()};
2153   }();
2154 
2155   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2156       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2157 
2158   auto MakeStringLiteral = [&](StringRef Tmp) {
2159     using LValuePathEntry = APValue::LValuePathEntry;
2160     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2161     // Decay the string to a pointer to the first character.
2162     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2163     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2164   };
2165 
2166   switch (getIdentKind()) {
2167   case SourceLocExpr::File:
2168     return MakeStringLiteral(PLoc.getFilename());
2169   case SourceLocExpr::Function: {
2170     const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2171     return MakeStringLiteral(
2172         CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2173                 : std::string(""));
2174   }
2175   case SourceLocExpr::Line:
2176   case SourceLocExpr::Column: {
2177     llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2178                         /*isUnsigned=*/true);
2179     IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2180                                                    : PLoc.getColumn();
2181     return APValue(IntVal);
2182   }
2183   }
2184   llvm_unreachable("unhandled case");
2185 }
2186 
InitListExpr(const ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)2187 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2188                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2189     : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary),
2190       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2191       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2192   sawArrayRangeDesignator(false);
2193   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2194 
2195   setDependence(computeDependence(this));
2196 }
2197 
reserveInits(const ASTContext & C,unsigned NumInits)2198 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2199   if (NumInits > InitExprs.size())
2200     InitExprs.reserve(C, NumInits);
2201 }
2202 
resizeInits(const ASTContext & C,unsigned NumInits)2203 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2204   InitExprs.resize(C, NumInits, nullptr);
2205 }
2206 
updateInit(const ASTContext & C,unsigned Init,Expr * expr)2207 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2208   if (Init >= InitExprs.size()) {
2209     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2210     setInit(Init, expr);
2211     return nullptr;
2212   }
2213 
2214   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2215   setInit(Init, expr);
2216   return Result;
2217 }
2218 
setArrayFiller(Expr * filler)2219 void InitListExpr::setArrayFiller(Expr *filler) {
2220   assert(!hasArrayFiller() && "Filler already set!");
2221   ArrayFillerOrUnionFieldInit = filler;
2222   // Fill out any "holes" in the array due to designated initializers.
2223   Expr **inits = getInits();
2224   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2225     if (inits[i] == nullptr)
2226       inits[i] = filler;
2227 }
2228 
isStringLiteralInit() const2229 bool InitListExpr::isStringLiteralInit() const {
2230   if (getNumInits() != 1)
2231     return false;
2232   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2233   if (!AT || !AT->getElementType()->isIntegerType())
2234     return false;
2235   // It is possible for getInit() to return null.
2236   const Expr *Init = getInit(0);
2237   if (!Init)
2238     return false;
2239   Init = Init->IgnoreParens();
2240   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2241 }
2242 
isTransparent() const2243 bool InitListExpr::isTransparent() const {
2244   assert(isSemanticForm() && "syntactic form never semantically transparent");
2245 
2246   // A glvalue InitListExpr is always just sugar.
2247   if (isGLValue()) {
2248     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2249     return true;
2250   }
2251 
2252   // Otherwise, we're sugar if and only if we have exactly one initializer that
2253   // is of the same type.
2254   if (getNumInits() != 1 || !getInit(0))
2255     return false;
2256 
2257   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2258   // transparent struct copy.
2259   if (!getInit(0)->isRValue() && getType()->isRecordType())
2260     return false;
2261 
2262   return getType().getCanonicalType() ==
2263          getInit(0)->getType().getCanonicalType();
2264 }
2265 
isIdiomaticZeroInitializer(const LangOptions & LangOpts) const2266 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2267   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2268 
2269   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2270     return false;
2271   }
2272 
2273   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2274   return Lit && Lit->getValue() == 0;
2275 }
2276 
getBeginLoc() const2277 SourceLocation InitListExpr::getBeginLoc() const {
2278   if (InitListExpr *SyntacticForm = getSyntacticForm())
2279     return SyntacticForm->getBeginLoc();
2280   SourceLocation Beg = LBraceLoc;
2281   if (Beg.isInvalid()) {
2282     // Find the first non-null initializer.
2283     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2284                                      E = InitExprs.end();
2285       I != E; ++I) {
2286       if (Stmt *S = *I) {
2287         Beg = S->getBeginLoc();
2288         break;
2289       }
2290     }
2291   }
2292   return Beg;
2293 }
2294 
getEndLoc() const2295 SourceLocation InitListExpr::getEndLoc() const {
2296   if (InitListExpr *SyntacticForm = getSyntacticForm())
2297     return SyntacticForm->getEndLoc();
2298   SourceLocation End = RBraceLoc;
2299   if (End.isInvalid()) {
2300     // Find the first non-null initializer from the end.
2301     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2302          E = InitExprs.rend();
2303          I != E; ++I) {
2304       if (Stmt *S = *I) {
2305         End = S->getEndLoc();
2306         break;
2307       }
2308     }
2309   }
2310   return End;
2311 }
2312 
2313 /// getFunctionType - Return the underlying function type for this block.
2314 ///
getFunctionType() const2315 const FunctionProtoType *BlockExpr::getFunctionType() const {
2316   // The block pointer is never sugared, but the function type might be.
2317   return cast<BlockPointerType>(getType())
2318            ->getPointeeType()->castAs<FunctionProtoType>();
2319 }
2320 
getCaretLocation() const2321 SourceLocation BlockExpr::getCaretLocation() const {
2322   return TheBlock->getCaretLocation();
2323 }
getBody() const2324 const Stmt *BlockExpr::getBody() const {
2325   return TheBlock->getBody();
2326 }
getBody()2327 Stmt *BlockExpr::getBody() {
2328   return TheBlock->getBody();
2329 }
2330 
2331 
2332 //===----------------------------------------------------------------------===//
2333 // Generic Expression Routines
2334 //===----------------------------------------------------------------------===//
2335 
isReadIfDiscardedInCPlusPlus11() const2336 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2337   // In C++11, discarded-value expressions of a certain form are special,
2338   // according to [expr]p10:
2339   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2340   //   expression is an lvalue of volatile-qualified type and it has
2341   //   one of the following forms:
2342   if (!isGLValue() || !getType().isVolatileQualified())
2343     return false;
2344 
2345   const Expr *E = IgnoreParens();
2346 
2347   //   - id-expression (5.1.1),
2348   if (isa<DeclRefExpr>(E))
2349     return true;
2350 
2351   //   - subscripting (5.2.1),
2352   if (isa<ArraySubscriptExpr>(E))
2353     return true;
2354 
2355   //   - class member access (5.2.5),
2356   if (isa<MemberExpr>(E))
2357     return true;
2358 
2359   //   - indirection (5.3.1),
2360   if (auto *UO = dyn_cast<UnaryOperator>(E))
2361     if (UO->getOpcode() == UO_Deref)
2362       return true;
2363 
2364   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2365     //   - pointer-to-member operation (5.5),
2366     if (BO->isPtrMemOp())
2367       return true;
2368 
2369     //   - comma expression (5.18) where the right operand is one of the above.
2370     if (BO->getOpcode() == BO_Comma)
2371       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2372   }
2373 
2374   //   - conditional expression (5.16) where both the second and the third
2375   //     operands are one of the above, or
2376   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2377     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2378            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2379   // The related edge case of "*x ?: *x".
2380   if (auto *BCO =
2381           dyn_cast<BinaryConditionalOperator>(E)) {
2382     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2383       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2384              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2385   }
2386 
2387   // Objective-C++ extensions to the rule.
2388   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
2389     return true;
2390 
2391   return false;
2392 }
2393 
2394 /// isUnusedResultAWarning - Return true if this immediate expression should
2395 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2396 /// with location to warn on and the source range[s] to report with the
2397 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const2398 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2399                                   SourceRange &R1, SourceRange &R2,
2400                                   ASTContext &Ctx) const {
2401   // Don't warn if the expr is type dependent. The type could end up
2402   // instantiating to void.
2403   if (isTypeDependent())
2404     return false;
2405 
2406   switch (getStmtClass()) {
2407   default:
2408     if (getType()->isVoidType())
2409       return false;
2410     WarnE = this;
2411     Loc = getExprLoc();
2412     R1 = getSourceRange();
2413     return true;
2414   case ParenExprClass:
2415     return cast<ParenExpr>(this)->getSubExpr()->
2416       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2417   case GenericSelectionExprClass:
2418     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2419       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2420   case CoawaitExprClass:
2421   case CoyieldExprClass:
2422     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2423       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2424   case ChooseExprClass:
2425     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2426       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2427   case UnaryOperatorClass: {
2428     const UnaryOperator *UO = cast<UnaryOperator>(this);
2429 
2430     switch (UO->getOpcode()) {
2431     case UO_Plus:
2432     case UO_Minus:
2433     case UO_AddrOf:
2434     case UO_Not:
2435     case UO_LNot:
2436     case UO_Deref:
2437       break;
2438     case UO_Coawait:
2439       // This is just the 'operator co_await' call inside the guts of a
2440       // dependent co_await call.
2441     case UO_PostInc:
2442     case UO_PostDec:
2443     case UO_PreInc:
2444     case UO_PreDec:                 // ++/--
2445       return false;  // Not a warning.
2446     case UO_Real:
2447     case UO_Imag:
2448       // accessing a piece of a volatile complex is a side-effect.
2449       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2450           .isVolatileQualified())
2451         return false;
2452       break;
2453     case UO_Extension:
2454       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2455     }
2456     WarnE = this;
2457     Loc = UO->getOperatorLoc();
2458     R1 = UO->getSubExpr()->getSourceRange();
2459     return true;
2460   }
2461   case BinaryOperatorClass: {
2462     const BinaryOperator *BO = cast<BinaryOperator>(this);
2463     switch (BO->getOpcode()) {
2464       default:
2465         break;
2466       // Consider the RHS of comma for side effects. LHS was checked by
2467       // Sema::CheckCommaOperands.
2468       case BO_Comma:
2469         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2470         // lvalue-ness) of an assignment written in a macro.
2471         if (IntegerLiteral *IE =
2472               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2473           if (IE->getValue() == 0)
2474             return false;
2475         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2476       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2477       case BO_LAnd:
2478       case BO_LOr:
2479         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2480             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2481           return false;
2482         break;
2483     }
2484     if (BO->isAssignmentOp())
2485       return false;
2486     WarnE = this;
2487     Loc = BO->getOperatorLoc();
2488     R1 = BO->getLHS()->getSourceRange();
2489     R2 = BO->getRHS()->getSourceRange();
2490     return true;
2491   }
2492   case CompoundAssignOperatorClass:
2493   case VAArgExprClass:
2494   case AtomicExprClass:
2495     return false;
2496 
2497   case ConditionalOperatorClass: {
2498     // If only one of the LHS or RHS is a warning, the operator might
2499     // be being used for control flow. Only warn if both the LHS and
2500     // RHS are warnings.
2501     const auto *Exp = cast<ConditionalOperator>(this);
2502     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2503            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2504   }
2505   case BinaryConditionalOperatorClass: {
2506     const auto *Exp = cast<BinaryConditionalOperator>(this);
2507     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2508   }
2509 
2510   case MemberExprClass:
2511     WarnE = this;
2512     Loc = cast<MemberExpr>(this)->getMemberLoc();
2513     R1 = SourceRange(Loc, Loc);
2514     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2515     return true;
2516 
2517   case ArraySubscriptExprClass:
2518     WarnE = this;
2519     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2520     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2521     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2522     return true;
2523 
2524   case CXXOperatorCallExprClass: {
2525     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2526     // overloads as there is no reasonable way to define these such that they
2527     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2528     // warning: operators == and != are commonly typo'ed, and so warning on them
2529     // provides additional value as well. If this list is updated,
2530     // DiagnoseUnusedComparison should be as well.
2531     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2532     switch (Op->getOperator()) {
2533     default:
2534       break;
2535     case OO_EqualEqual:
2536     case OO_ExclaimEqual:
2537     case OO_Less:
2538     case OO_Greater:
2539     case OO_GreaterEqual:
2540     case OO_LessEqual:
2541       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2542           Op->getCallReturnType(Ctx)->isVoidType())
2543         break;
2544       WarnE = this;
2545       Loc = Op->getOperatorLoc();
2546       R1 = Op->getSourceRange();
2547       return true;
2548     }
2549 
2550     // Fallthrough for generic call handling.
2551     LLVM_FALLTHROUGH;
2552   }
2553   case CallExprClass:
2554   case CXXMemberCallExprClass:
2555   case UserDefinedLiteralClass: {
2556     // If this is a direct call, get the callee.
2557     const CallExpr *CE = cast<CallExpr>(this);
2558     if (const Decl *FD = CE->getCalleeDecl()) {
2559       // If the callee has attribute pure, const, or warn_unused_result, warn
2560       // about it. void foo() { strlen("bar"); } should warn.
2561       //
2562       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2563       // updated to match for QoI.
2564       if (CE->hasUnusedResultAttr(Ctx) ||
2565           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2566         WarnE = this;
2567         Loc = CE->getCallee()->getBeginLoc();
2568         R1 = CE->getCallee()->getSourceRange();
2569 
2570         if (unsigned NumArgs = CE->getNumArgs())
2571           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2572                            CE->getArg(NumArgs - 1)->getEndLoc());
2573         return true;
2574       }
2575     }
2576     return false;
2577   }
2578 
2579   // If we don't know precisely what we're looking at, let's not warn.
2580   case UnresolvedLookupExprClass:
2581   case CXXUnresolvedConstructExprClass:
2582   case RecoveryExprClass:
2583     return false;
2584 
2585   case CXXTemporaryObjectExprClass:
2586   case CXXConstructExprClass: {
2587     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2588       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2589       if (Type->hasAttr<WarnUnusedAttr>() ||
2590           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2591         WarnE = this;
2592         Loc = getBeginLoc();
2593         R1 = getSourceRange();
2594         return true;
2595       }
2596     }
2597 
2598     const auto *CE = cast<CXXConstructExpr>(this);
2599     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2600       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2601       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2602         WarnE = this;
2603         Loc = getBeginLoc();
2604         R1 = getSourceRange();
2605 
2606         if (unsigned NumArgs = CE->getNumArgs())
2607           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2608                            CE->getArg(NumArgs - 1)->getEndLoc());
2609         return true;
2610       }
2611     }
2612 
2613     return false;
2614   }
2615 
2616   case ObjCMessageExprClass: {
2617     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2618     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2619         ME->isInstanceMessage() &&
2620         !ME->getType()->isVoidType() &&
2621         ME->getMethodFamily() == OMF_init) {
2622       WarnE = this;
2623       Loc = getExprLoc();
2624       R1 = ME->getSourceRange();
2625       return true;
2626     }
2627 
2628     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2629       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2630         WarnE = this;
2631         Loc = getExprLoc();
2632         return true;
2633       }
2634 
2635     return false;
2636   }
2637 
2638   case ObjCPropertyRefExprClass:
2639     WarnE = this;
2640     Loc = getExprLoc();
2641     R1 = getSourceRange();
2642     return true;
2643 
2644   case PseudoObjectExprClass: {
2645     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2646 
2647     // Only complain about things that have the form of a getter.
2648     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2649         isa<BinaryOperator>(PO->getSyntacticForm()))
2650       return false;
2651 
2652     WarnE = this;
2653     Loc = getExprLoc();
2654     R1 = getSourceRange();
2655     return true;
2656   }
2657 
2658   case StmtExprClass: {
2659     // Statement exprs don't logically have side effects themselves, but are
2660     // sometimes used in macros in ways that give them a type that is unused.
2661     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2662     // however, if the result of the stmt expr is dead, we don't want to emit a
2663     // warning.
2664     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2665     if (!CS->body_empty()) {
2666       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2667         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2668       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2669         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2670           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2671     }
2672 
2673     if (getType()->isVoidType())
2674       return false;
2675     WarnE = this;
2676     Loc = cast<StmtExpr>(this)->getLParenLoc();
2677     R1 = getSourceRange();
2678     return true;
2679   }
2680   case CXXFunctionalCastExprClass:
2681   case CStyleCastExprClass: {
2682     // Ignore an explicit cast to void, except in C++98 if the operand is a
2683     // volatile glvalue for which we would trigger an implicit read in any
2684     // other language mode. (Such an implicit read always happens as part of
2685     // the lvalue conversion in C, and happens in C++ for expressions of all
2686     // forms where it seems likely the user intended to trigger a volatile
2687     // load.)
2688     const CastExpr *CE = cast<CastExpr>(this);
2689     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2690     if (CE->getCastKind() == CK_ToVoid) {
2691       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2692           SubE->isReadIfDiscardedInCPlusPlus11()) {
2693         // Suppress the "unused value" warning for idiomatic usage of
2694         // '(void)var;' used to suppress "unused variable" warnings.
2695         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2696           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2697             if (!VD->isExternallyVisible())
2698               return false;
2699 
2700         // The lvalue-to-rvalue conversion would have no effect for an array.
2701         // It's implausible that the programmer expected this to result in a
2702         // volatile array load, so don't warn.
2703         if (SubE->getType()->isArrayType())
2704           return false;
2705 
2706         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2707       }
2708       return false;
2709     }
2710 
2711     // If this is a cast to a constructor conversion, check the operand.
2712     // Otherwise, the result of the cast is unused.
2713     if (CE->getCastKind() == CK_ConstructorConversion)
2714       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2715     if (CE->getCastKind() == CK_Dependent)
2716       return false;
2717 
2718     WarnE = this;
2719     if (const CXXFunctionalCastExpr *CXXCE =
2720             dyn_cast<CXXFunctionalCastExpr>(this)) {
2721       Loc = CXXCE->getBeginLoc();
2722       R1 = CXXCE->getSubExpr()->getSourceRange();
2723     } else {
2724       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2725       Loc = CStyleCE->getLParenLoc();
2726       R1 = CStyleCE->getSubExpr()->getSourceRange();
2727     }
2728     return true;
2729   }
2730   case ImplicitCastExprClass: {
2731     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2732 
2733     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2734     if (ICE->getCastKind() == CK_LValueToRValue &&
2735         ICE->getSubExpr()->getType().isVolatileQualified())
2736       return false;
2737 
2738     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2739   }
2740   case CXXDefaultArgExprClass:
2741     return (cast<CXXDefaultArgExpr>(this)
2742             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2743   case CXXDefaultInitExprClass:
2744     return (cast<CXXDefaultInitExpr>(this)
2745             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2746 
2747   case CXXNewExprClass:
2748     // FIXME: In theory, there might be new expressions that don't have side
2749     // effects (e.g. a placement new with an uninitialized POD).
2750   case CXXDeleteExprClass:
2751     return false;
2752   case MaterializeTemporaryExprClass:
2753     return cast<MaterializeTemporaryExpr>(this)
2754         ->getSubExpr()
2755         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2756   case CXXBindTemporaryExprClass:
2757     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2758                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2759   case ExprWithCleanupsClass:
2760     return cast<ExprWithCleanups>(this)->getSubExpr()
2761                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2762   }
2763 }
2764 
2765 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2766 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2767 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2768   const Expr *E = IgnoreParens();
2769   switch (E->getStmtClass()) {
2770   default:
2771     return false;
2772   case ObjCIvarRefExprClass:
2773     return true;
2774   case Expr::UnaryOperatorClass:
2775     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2776   case ImplicitCastExprClass:
2777     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2778   case MaterializeTemporaryExprClass:
2779     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2780         Ctx);
2781   case CStyleCastExprClass:
2782     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2783   case DeclRefExprClass: {
2784     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2785 
2786     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2787       if (VD->hasGlobalStorage())
2788         return true;
2789       QualType T = VD->getType();
2790       // dereferencing to a  pointer is always a gc'able candidate,
2791       // unless it is __weak.
2792       return T->isPointerType() &&
2793              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2794     }
2795     return false;
2796   }
2797   case MemberExprClass: {
2798     const MemberExpr *M = cast<MemberExpr>(E);
2799     return M->getBase()->isOBJCGCCandidate(Ctx);
2800   }
2801   case ArraySubscriptExprClass:
2802     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2803   }
2804 }
2805 
isBoundMemberFunction(ASTContext & Ctx) const2806 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2807   if (isTypeDependent())
2808     return false;
2809   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2810 }
2811 
findBoundMemberType(const Expr * expr)2812 QualType Expr::findBoundMemberType(const Expr *expr) {
2813   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2814 
2815   // Bound member expressions are always one of these possibilities:
2816   //   x->m      x.m      x->*y      x.*y
2817   // (possibly parenthesized)
2818 
2819   expr = expr->IgnoreParens();
2820   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2821     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2822     return mem->getMemberDecl()->getType();
2823   }
2824 
2825   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2826     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2827                       ->getPointeeType();
2828     assert(type->isFunctionType());
2829     return type;
2830   }
2831 
2832   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2833   return QualType();
2834 }
2835 
IgnoreImpCasts()2836 Expr *Expr::IgnoreImpCasts() {
2837   return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
2838 }
2839 
IgnoreCasts()2840 Expr *Expr::IgnoreCasts() {
2841   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2842 }
2843 
IgnoreImplicit()2844 Expr *Expr::IgnoreImplicit() {
2845   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
2846 }
2847 
IgnoreImplicitAsWritten()2848 Expr *Expr::IgnoreImplicitAsWritten() {
2849   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
2850 }
2851 
IgnoreParens()2852 Expr *Expr::IgnoreParens() {
2853   return IgnoreExprNodes(this, IgnoreParensSingleStep);
2854 }
2855 
IgnoreParenImpCasts()2856 Expr *Expr::IgnoreParenImpCasts() {
2857   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2858                          IgnoreImplicitCastsExtraSingleStep);
2859 }
2860 
IgnoreParenCasts()2861 Expr *Expr::IgnoreParenCasts() {
2862   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
2863 }
2864 
IgnoreConversionOperatorSingleStep()2865 Expr *Expr::IgnoreConversionOperatorSingleStep() {
2866   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2867     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2868       return MCE->getImplicitObjectArgument();
2869   }
2870   return this;
2871 }
2872 
IgnoreParenLValueCasts()2873 Expr *Expr::IgnoreParenLValueCasts() {
2874   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2875                          IgnoreLValueCastsSingleStep);
2876 }
2877 
IgnoreParenBaseCasts()2878 Expr *Expr::IgnoreParenBaseCasts() {
2879   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2880                          IgnoreBaseCastsSingleStep);
2881 }
2882 
IgnoreParenNoopCasts(const ASTContext & Ctx)2883 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
2884   auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
2885     if (auto *CE = dyn_cast<CastExpr>(E)) {
2886       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2887       // ptr<->int casts of the same width. We also ignore all identity casts.
2888       Expr *SubExpr = CE->getSubExpr();
2889       bool IsIdentityCast =
2890           Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2891       bool IsSameWidthCast = (E->getType()->isPointerType() ||
2892                               E->getType()->isIntegralType(Ctx)) &&
2893                              (SubExpr->getType()->isPointerType() ||
2894                               SubExpr->getType()->isIntegralType(Ctx)) &&
2895                              (Ctx.getTypeSize(E->getType()) ==
2896                               Ctx.getTypeSize(SubExpr->getType()));
2897 
2898       if (IsIdentityCast || IsSameWidthCast)
2899         return SubExpr;
2900     } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2901       return NTTP->getReplacement();
2902 
2903     return E;
2904   };
2905   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2906                          IgnoreNoopCastsSingleStep);
2907 }
2908 
IgnoreUnlessSpelledInSource()2909 Expr *Expr::IgnoreUnlessSpelledInSource() {
2910   auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
2911     if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
2912       auto *SE = Cast->getSubExpr();
2913       if (SE->getSourceRange() == E->getSourceRange())
2914         return SE;
2915     }
2916 
2917     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
2918       auto NumArgs = C->getNumArgs();
2919       if (NumArgs == 1 ||
2920           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
2921         Expr *A = C->getArg(0);
2922         if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
2923           return A;
2924       }
2925     }
2926     return E;
2927   };
2928   auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
2929     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
2930       Expr *ExprNode = C->getImplicitObjectArgument();
2931       if (ExprNode->getSourceRange() == E->getSourceRange()) {
2932         return ExprNode;
2933       }
2934       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
2935         if (PE->getSourceRange() == C->getSourceRange()) {
2936           return cast<Expr>(PE);
2937         }
2938       }
2939       ExprNode = ExprNode->IgnoreParenImpCasts();
2940       if (ExprNode->getSourceRange() == E->getSourceRange())
2941         return ExprNode;
2942     }
2943     return E;
2944   };
2945   return IgnoreExprNodes(
2946       this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
2947       IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
2948       IgnoreImplicitMemberCallSingleStep);
2949 }
2950 
isDefaultArgument() const2951 bool Expr::isDefaultArgument() const {
2952   const Expr *E = this;
2953   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2954     E = M->getSubExpr();
2955 
2956   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2957     E = ICE->getSubExprAsWritten();
2958 
2959   return isa<CXXDefaultArgExpr>(E);
2960 }
2961 
2962 /// Skip over any no-op casts and any temporary-binding
2963 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2964 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2965   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2966     E = M->getSubExpr();
2967 
2968   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2969     if (ICE->getCastKind() == CK_NoOp)
2970       E = ICE->getSubExpr();
2971     else
2972       break;
2973   }
2974 
2975   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2976     E = BE->getSubExpr();
2977 
2978   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2979     if (ICE->getCastKind() == CK_NoOp)
2980       E = ICE->getSubExpr();
2981     else
2982       break;
2983   }
2984 
2985   return E->IgnoreParens();
2986 }
2987 
2988 /// isTemporaryObject - Determines if this expression produces a
2989 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2990 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2991   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2992     return false;
2993 
2994   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2995 
2996   // Temporaries are by definition pr-values of class type.
2997   if (!E->Classify(C).isPRValue()) {
2998     // In this context, property reference is a message call and is pr-value.
2999     if (!isa<ObjCPropertyRefExpr>(E))
3000       return false;
3001   }
3002 
3003   // Black-list a few cases which yield pr-values of class type that don't
3004   // refer to temporaries of that type:
3005 
3006   // - implicit derived-to-base conversions
3007   if (isa<ImplicitCastExpr>(E)) {
3008     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3009     case CK_DerivedToBase:
3010     case CK_UncheckedDerivedToBase:
3011       return false;
3012     default:
3013       break;
3014     }
3015   }
3016 
3017   // - member expressions (all)
3018   if (isa<MemberExpr>(E))
3019     return false;
3020 
3021   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3022     if (BO->isPtrMemOp())
3023       return false;
3024 
3025   // - opaque values (all)
3026   if (isa<OpaqueValueExpr>(E))
3027     return false;
3028 
3029   return true;
3030 }
3031 
isImplicitCXXThis() const3032 bool Expr::isImplicitCXXThis() const {
3033   const Expr *E = this;
3034 
3035   // Strip away parentheses and casts we don't care about.
3036   while (true) {
3037     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3038       E = Paren->getSubExpr();
3039       continue;
3040     }
3041 
3042     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3043       if (ICE->getCastKind() == CK_NoOp ||
3044           ICE->getCastKind() == CK_LValueToRValue ||
3045           ICE->getCastKind() == CK_DerivedToBase ||
3046           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3047         E = ICE->getSubExpr();
3048         continue;
3049       }
3050     }
3051 
3052     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3053       if (UnOp->getOpcode() == UO_Extension) {
3054         E = UnOp->getSubExpr();
3055         continue;
3056       }
3057     }
3058 
3059     if (const MaterializeTemporaryExpr *M
3060                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3061       E = M->getSubExpr();
3062       continue;
3063     }
3064 
3065     break;
3066   }
3067 
3068   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3069     return This->isImplicit();
3070 
3071   return false;
3072 }
3073 
3074 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3075 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)3076 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3077   for (unsigned I = 0; I < Exprs.size(); ++I)
3078     if (Exprs[I]->isTypeDependent())
3079       return true;
3080 
3081   return false;
3082 }
3083 
isConstantInitializer(ASTContext & Ctx,bool IsForRef,const Expr ** Culprit) const3084 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3085                                  const Expr **Culprit) const {
3086   assert(!isValueDependent() &&
3087          "Expression evaluator can't be called on a dependent expression.");
3088 
3089   // This function is attempting whether an expression is an initializer
3090   // which can be evaluated at compile-time. It very closely parallels
3091   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3092   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3093   // to isEvaluatable most of the time.
3094   //
3095   // If we ever capture reference-binding directly in the AST, we can
3096   // kill the second parameter.
3097 
3098   if (IsForRef) {
3099     EvalResult Result;
3100     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3101       return true;
3102     if (Culprit)
3103       *Culprit = this;
3104     return false;
3105   }
3106 
3107   switch (getStmtClass()) {
3108   default: break;
3109   case Stmt::ExprWithCleanupsClass:
3110     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3111         Ctx, IsForRef, Culprit);
3112   case StringLiteralClass:
3113   case ObjCEncodeExprClass:
3114     return true;
3115   case CXXTemporaryObjectExprClass:
3116   case CXXConstructExprClass: {
3117     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3118 
3119     if (CE->getConstructor()->isTrivial() &&
3120         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3121       // Trivial default constructor
3122       if (!CE->getNumArgs()) return true;
3123 
3124       // Trivial copy constructor
3125       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3126       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3127     }
3128 
3129     break;
3130   }
3131   case ConstantExprClass: {
3132     // FIXME: We should be able to return "true" here, but it can lead to extra
3133     // error messages. E.g. in Sema/array-init.c.
3134     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3135     return Exp->isConstantInitializer(Ctx, false, Culprit);
3136   }
3137   case CompoundLiteralExprClass: {
3138     // This handles gcc's extension that allows global initializers like
3139     // "struct x {int x;} x = (struct x) {};".
3140     // FIXME: This accepts other cases it shouldn't!
3141     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3142     return Exp->isConstantInitializer(Ctx, false, Culprit);
3143   }
3144   case DesignatedInitUpdateExprClass: {
3145     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3146     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3147            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3148   }
3149   case InitListExprClass: {
3150     const InitListExpr *ILE = cast<InitListExpr>(this);
3151     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3152     if (ILE->getType()->isArrayType()) {
3153       unsigned numInits = ILE->getNumInits();
3154       for (unsigned i = 0; i < numInits; i++) {
3155         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3156           return false;
3157       }
3158       return true;
3159     }
3160 
3161     if (ILE->getType()->isRecordType()) {
3162       unsigned ElementNo = 0;
3163       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3164       for (const auto *Field : RD->fields()) {
3165         // If this is a union, skip all the fields that aren't being initialized.
3166         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3167           continue;
3168 
3169         // Don't emit anonymous bitfields, they just affect layout.
3170         if (Field->isUnnamedBitfield())
3171           continue;
3172 
3173         if (ElementNo < ILE->getNumInits()) {
3174           const Expr *Elt = ILE->getInit(ElementNo++);
3175           if (Field->isBitField()) {
3176             // Bitfields have to evaluate to an integer.
3177             EvalResult Result;
3178             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3179               if (Culprit)
3180                 *Culprit = Elt;
3181               return false;
3182             }
3183           } else {
3184             bool RefType = Field->getType()->isReferenceType();
3185             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3186               return false;
3187           }
3188         }
3189       }
3190       return true;
3191     }
3192 
3193     break;
3194   }
3195   case ImplicitValueInitExprClass:
3196   case NoInitExprClass:
3197     return true;
3198   case ParenExprClass:
3199     return cast<ParenExpr>(this)->getSubExpr()
3200       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3201   case GenericSelectionExprClass:
3202     return cast<GenericSelectionExpr>(this)->getResultExpr()
3203       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3204   case ChooseExprClass:
3205     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3206       if (Culprit)
3207         *Culprit = this;
3208       return false;
3209     }
3210     return cast<ChooseExpr>(this)->getChosenSubExpr()
3211       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3212   case UnaryOperatorClass: {
3213     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3214     if (Exp->getOpcode() == UO_Extension)
3215       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3216     break;
3217   }
3218   case CXXFunctionalCastExprClass:
3219   case CXXStaticCastExprClass:
3220   case ImplicitCastExprClass:
3221   case CStyleCastExprClass:
3222   case ObjCBridgedCastExprClass:
3223   case CXXDynamicCastExprClass:
3224   case CXXReinterpretCastExprClass:
3225   case CXXAddrspaceCastExprClass:
3226   case CXXConstCastExprClass: {
3227     const CastExpr *CE = cast<CastExpr>(this);
3228 
3229     // Handle misc casts we want to ignore.
3230     if (CE->getCastKind() == CK_NoOp ||
3231         CE->getCastKind() == CK_LValueToRValue ||
3232         CE->getCastKind() == CK_ToUnion ||
3233         CE->getCastKind() == CK_ConstructorConversion ||
3234         CE->getCastKind() == CK_NonAtomicToAtomic ||
3235         CE->getCastKind() == CK_AtomicToNonAtomic ||
3236         CE->getCastKind() == CK_IntToOCLSampler)
3237       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3238 
3239     break;
3240   }
3241   case MaterializeTemporaryExprClass:
3242     return cast<MaterializeTemporaryExpr>(this)
3243         ->getSubExpr()
3244         ->isConstantInitializer(Ctx, false, Culprit);
3245 
3246   case SubstNonTypeTemplateParmExprClass:
3247     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3248       ->isConstantInitializer(Ctx, false, Culprit);
3249   case CXXDefaultArgExprClass:
3250     return cast<CXXDefaultArgExpr>(this)->getExpr()
3251       ->isConstantInitializer(Ctx, false, Culprit);
3252   case CXXDefaultInitExprClass:
3253     return cast<CXXDefaultInitExpr>(this)->getExpr()
3254       ->isConstantInitializer(Ctx, false, Culprit);
3255   }
3256   // Allow certain forms of UB in constant initializers: signed integer
3257   // overflow and floating-point division by zero. We'll give a warning on
3258   // these, but they're common enough that we have to accept them.
3259   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3260     return true;
3261   if (Culprit)
3262     *Culprit = this;
3263   return false;
3264 }
3265 
isBuiltinAssumeFalse(const ASTContext & Ctx) const3266 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3267   const FunctionDecl* FD = getDirectCallee();
3268   if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3269               FD->getBuiltinID() != Builtin::BI__builtin_assume))
3270     return false;
3271 
3272   const Expr* Arg = getArg(0);
3273   bool ArgVal;
3274   return !Arg->isValueDependent() &&
3275          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3276 }
3277 
3278 namespace {
3279   /// Look for any side effects within a Stmt.
3280   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3281     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3282     const bool IncludePossibleEffects;
3283     bool HasSideEffects;
3284 
3285   public:
SideEffectFinder(const ASTContext & Context,bool IncludePossible)3286     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3287       : Inherited(Context),
3288         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3289 
hasSideEffects() const3290     bool hasSideEffects() const { return HasSideEffects; }
3291 
VisitDecl(const Decl * D)3292     void VisitDecl(const Decl *D) {
3293       if (!D)
3294         return;
3295 
3296       // We assume the caller checks subexpressions (eg, the initializer, VLA
3297       // bounds) for side-effects on our behalf.
3298       if (auto *VD = dyn_cast<VarDecl>(D)) {
3299         // Registering a destructor is a side-effect.
3300         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3301             VD->needsDestruction(Context))
3302           HasSideEffects = true;
3303       }
3304     }
3305 
VisitDeclStmt(const DeclStmt * DS)3306     void VisitDeclStmt(const DeclStmt *DS) {
3307       for (auto *D : DS->decls())
3308         VisitDecl(D);
3309       Inherited::VisitDeclStmt(DS);
3310     }
3311 
VisitExpr(const Expr * E)3312     void VisitExpr(const Expr *E) {
3313       if (!HasSideEffects &&
3314           E->HasSideEffects(Context, IncludePossibleEffects))
3315         HasSideEffects = true;
3316     }
3317   };
3318 }
3319 
HasSideEffects(const ASTContext & Ctx,bool IncludePossibleEffects) const3320 bool Expr::HasSideEffects(const ASTContext &Ctx,
3321                           bool IncludePossibleEffects) const {
3322   // In circumstances where we care about definite side effects instead of
3323   // potential side effects, we want to ignore expressions that are part of a
3324   // macro expansion as a potential side effect.
3325   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3326     return false;
3327 
3328   switch (getStmtClass()) {
3329   case NoStmtClass:
3330   #define ABSTRACT_STMT(Type)
3331   #define STMT(Type, Base) case Type##Class:
3332   #define EXPR(Type, Base)
3333   #include "clang/AST/StmtNodes.inc"
3334     llvm_unreachable("unexpected Expr kind");
3335 
3336   case DependentScopeDeclRefExprClass:
3337   case CXXUnresolvedConstructExprClass:
3338   case CXXDependentScopeMemberExprClass:
3339   case UnresolvedLookupExprClass:
3340   case UnresolvedMemberExprClass:
3341   case PackExpansionExprClass:
3342   case SubstNonTypeTemplateParmPackExprClass:
3343   case FunctionParmPackExprClass:
3344   case TypoExprClass:
3345   case RecoveryExprClass:
3346   case CXXFoldExprClass:
3347     // Make a conservative assumption for dependent nodes.
3348     return IncludePossibleEffects;
3349 
3350   case DeclRefExprClass:
3351   case ObjCIvarRefExprClass:
3352   case PredefinedExprClass:
3353   case IntegerLiteralClass:
3354   case FixedPointLiteralClass:
3355   case FloatingLiteralClass:
3356   case ImaginaryLiteralClass:
3357   case StringLiteralClass:
3358   case CharacterLiteralClass:
3359   case OffsetOfExprClass:
3360   case ImplicitValueInitExprClass:
3361   case UnaryExprOrTypeTraitExprClass:
3362   case AddrLabelExprClass:
3363   case GNUNullExprClass:
3364   case ArrayInitIndexExprClass:
3365   case NoInitExprClass:
3366   case CXXBoolLiteralExprClass:
3367   case CXXNullPtrLiteralExprClass:
3368   case CXXThisExprClass:
3369   case CXXScalarValueInitExprClass:
3370   case TypeTraitExprClass:
3371   case ArrayTypeTraitExprClass:
3372   case ExpressionTraitExprClass:
3373   case CXXNoexceptExprClass:
3374   case SizeOfPackExprClass:
3375   case ObjCStringLiteralClass:
3376   case ObjCEncodeExprClass:
3377   case ObjCBoolLiteralExprClass:
3378   case ObjCAvailabilityCheckExprClass:
3379   case CXXUuidofExprClass:
3380   case OpaqueValueExprClass:
3381   case SourceLocExprClass:
3382   case ConceptSpecializationExprClass:
3383   case RequiresExprClass:
3384     // These never have a side-effect.
3385     return false;
3386 
3387   case ConstantExprClass:
3388     // FIXME: Move this into the "return false;" block above.
3389     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3390         Ctx, IncludePossibleEffects);
3391 
3392   case CallExprClass:
3393   case CXXOperatorCallExprClass:
3394   case CXXMemberCallExprClass:
3395   case CUDAKernelCallExprClass:
3396   case UserDefinedLiteralClass: {
3397     // We don't know a call definitely has side effects, except for calls
3398     // to pure/const functions that definitely don't.
3399     // If the call itself is considered side-effect free, check the operands.
3400     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3401     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3402     if (IsPure || !IncludePossibleEffects)
3403       break;
3404     return true;
3405   }
3406 
3407   case BlockExprClass:
3408   case CXXBindTemporaryExprClass:
3409     if (!IncludePossibleEffects)
3410       break;
3411     return true;
3412 
3413   case MSPropertyRefExprClass:
3414   case MSPropertySubscriptExprClass:
3415   case CompoundAssignOperatorClass:
3416   case VAArgExprClass:
3417   case AtomicExprClass:
3418   case CXXThrowExprClass:
3419   case CXXNewExprClass:
3420   case CXXDeleteExprClass:
3421   case CoawaitExprClass:
3422   case DependentCoawaitExprClass:
3423   case CoyieldExprClass:
3424     // These always have a side-effect.
3425     return true;
3426 
3427   case StmtExprClass: {
3428     // StmtExprs have a side-effect if any substatement does.
3429     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3430     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3431     return Finder.hasSideEffects();
3432   }
3433 
3434   case ExprWithCleanupsClass:
3435     if (IncludePossibleEffects)
3436       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3437         return true;
3438     break;
3439 
3440   case ParenExprClass:
3441   case ArraySubscriptExprClass:
3442   case MatrixSubscriptExprClass:
3443   case OMPArraySectionExprClass:
3444   case OMPArrayShapingExprClass:
3445   case OMPIteratorExprClass:
3446   case MemberExprClass:
3447   case ConditionalOperatorClass:
3448   case BinaryConditionalOperatorClass:
3449   case CompoundLiteralExprClass:
3450   case ExtVectorElementExprClass:
3451   case DesignatedInitExprClass:
3452   case DesignatedInitUpdateExprClass:
3453   case ArrayInitLoopExprClass:
3454   case ParenListExprClass:
3455   case CXXPseudoDestructorExprClass:
3456   case CXXRewrittenBinaryOperatorClass:
3457   case CXXStdInitializerListExprClass:
3458   case SubstNonTypeTemplateParmExprClass:
3459   case MaterializeTemporaryExprClass:
3460   case ShuffleVectorExprClass:
3461   case ConvertVectorExprClass:
3462   case AsTypeExprClass:
3463     // These have a side-effect if any subexpression does.
3464     break;
3465 
3466   case UnaryOperatorClass:
3467     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3468       return true;
3469     break;
3470 
3471   case BinaryOperatorClass:
3472     if (cast<BinaryOperator>(this)->isAssignmentOp())
3473       return true;
3474     break;
3475 
3476   case InitListExprClass:
3477     // FIXME: The children for an InitListExpr doesn't include the array filler.
3478     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3479       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3480         return true;
3481     break;
3482 
3483   case GenericSelectionExprClass:
3484     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3485         HasSideEffects(Ctx, IncludePossibleEffects);
3486 
3487   case ChooseExprClass:
3488     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3489         Ctx, IncludePossibleEffects);
3490 
3491   case CXXDefaultArgExprClass:
3492     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3493         Ctx, IncludePossibleEffects);
3494 
3495   case CXXDefaultInitExprClass: {
3496     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3497     if (const Expr *E = FD->getInClassInitializer())
3498       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3499     // If we've not yet parsed the initializer, assume it has side-effects.
3500     return true;
3501   }
3502 
3503   case CXXDynamicCastExprClass: {
3504     // A dynamic_cast expression has side-effects if it can throw.
3505     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3506     if (DCE->getTypeAsWritten()->isReferenceType() &&
3507         DCE->getCastKind() == CK_Dynamic)
3508       return true;
3509     }
3510     LLVM_FALLTHROUGH;
3511   case ImplicitCastExprClass:
3512   case CStyleCastExprClass:
3513   case CXXStaticCastExprClass:
3514   case CXXReinterpretCastExprClass:
3515   case CXXConstCastExprClass:
3516   case CXXAddrspaceCastExprClass:
3517   case CXXFunctionalCastExprClass:
3518   case BuiltinBitCastExprClass: {
3519     // While volatile reads are side-effecting in both C and C++, we treat them
3520     // as having possible (not definite) side-effects. This allows idiomatic
3521     // code to behave without warning, such as sizeof(*v) for a volatile-
3522     // qualified pointer.
3523     if (!IncludePossibleEffects)
3524       break;
3525 
3526     const CastExpr *CE = cast<CastExpr>(this);
3527     if (CE->getCastKind() == CK_LValueToRValue &&
3528         CE->getSubExpr()->getType().isVolatileQualified())
3529       return true;
3530     break;
3531   }
3532 
3533   case CXXTypeidExprClass:
3534     // typeid might throw if its subexpression is potentially-evaluated, so has
3535     // side-effects in that case whether or not its subexpression does.
3536     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3537 
3538   case CXXConstructExprClass:
3539   case CXXTemporaryObjectExprClass: {
3540     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3541     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3542       return true;
3543     // A trivial constructor does not add any side-effects of its own. Just look
3544     // at its arguments.
3545     break;
3546   }
3547 
3548   case CXXInheritedCtorInitExprClass: {
3549     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3550     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3551       return true;
3552     break;
3553   }
3554 
3555   case LambdaExprClass: {
3556     const LambdaExpr *LE = cast<LambdaExpr>(this);
3557     for (Expr *E : LE->capture_inits())
3558       if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3559         return true;
3560     return false;
3561   }
3562 
3563   case PseudoObjectExprClass: {
3564     // Only look for side-effects in the semantic form, and look past
3565     // OpaqueValueExpr bindings in that form.
3566     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3567     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3568                                                     E = PO->semantics_end();
3569          I != E; ++I) {
3570       const Expr *Subexpr = *I;
3571       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3572         Subexpr = OVE->getSourceExpr();
3573       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3574         return true;
3575     }
3576     return false;
3577   }
3578 
3579   case ObjCBoxedExprClass:
3580   case ObjCArrayLiteralClass:
3581   case ObjCDictionaryLiteralClass:
3582   case ObjCSelectorExprClass:
3583   case ObjCProtocolExprClass:
3584   case ObjCIsaExprClass:
3585   case ObjCIndirectCopyRestoreExprClass:
3586   case ObjCSubscriptRefExprClass:
3587   case ObjCBridgedCastExprClass:
3588   case ObjCMessageExprClass:
3589   case ObjCPropertyRefExprClass:
3590   // FIXME: Classify these cases better.
3591     if (IncludePossibleEffects)
3592       return true;
3593     break;
3594   }
3595 
3596   // Recurse to children.
3597   for (const Stmt *SubStmt : children())
3598     if (SubStmt &&
3599         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3600       return true;
3601 
3602   return false;
3603 }
3604 
getFPFeaturesInEffect(const LangOptions & LO) const3605 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3606   if (auto Call = dyn_cast<CallExpr>(this))
3607     return Call->getFPFeaturesInEffect(LO);
3608   if (auto UO = dyn_cast<UnaryOperator>(this))
3609     return UO->getFPFeaturesInEffect(LO);
3610   if (auto BO = dyn_cast<BinaryOperator>(this))
3611     return BO->getFPFeaturesInEffect(LO);
3612   if (auto Cast = dyn_cast<CastExpr>(this))
3613     return Cast->getFPFeaturesInEffect(LO);
3614   return FPOptions::defaultWithoutTrailingStorage(LO);
3615 }
3616 
3617 namespace {
3618   /// Look for a call to a non-trivial function within an expression.
3619   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3620   {
3621     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3622 
3623     bool NonTrivial;
3624 
3625   public:
NonTrivialCallFinder(const ASTContext & Context)3626     explicit NonTrivialCallFinder(const ASTContext &Context)
3627       : Inherited(Context), NonTrivial(false) { }
3628 
hasNonTrivialCall() const3629     bool hasNonTrivialCall() const { return NonTrivial; }
3630 
VisitCallExpr(const CallExpr * E)3631     void VisitCallExpr(const CallExpr *E) {
3632       if (const CXXMethodDecl *Method
3633           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3634         if (Method->isTrivial()) {
3635           // Recurse to children of the call.
3636           Inherited::VisitStmt(E);
3637           return;
3638         }
3639       }
3640 
3641       NonTrivial = true;
3642     }
3643 
VisitCXXConstructExpr(const CXXConstructExpr * E)3644     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3645       if (E->getConstructor()->isTrivial()) {
3646         // Recurse to children of the call.
3647         Inherited::VisitStmt(E);
3648         return;
3649       }
3650 
3651       NonTrivial = true;
3652     }
3653 
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)3654     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3655       if (E->getTemporary()->getDestructor()->isTrivial()) {
3656         Inherited::VisitStmt(E);
3657         return;
3658       }
3659 
3660       NonTrivial = true;
3661     }
3662   };
3663 }
3664 
hasNonTrivialCall(const ASTContext & Ctx) const3665 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3666   NonTrivialCallFinder Finder(Ctx);
3667   Finder.Visit(this);
3668   return Finder.hasNonTrivialCall();
3669 }
3670 
3671 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3672 /// pointer constant or not, as well as the specific kind of constant detected.
3673 /// Null pointer constants can be integer constant expressions with the
3674 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3675 /// (a GNU extension).
3676 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const3677 Expr::isNullPointerConstant(ASTContext &Ctx,
3678                             NullPointerConstantValueDependence NPC) const {
3679   if (isValueDependent() &&
3680       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3681     // Error-dependent expr should never be a null pointer.
3682     if (containsErrors())
3683       return NPCK_NotNull;
3684     switch (NPC) {
3685     case NPC_NeverValueDependent:
3686       llvm_unreachable("Unexpected value dependent expression!");
3687     case NPC_ValueDependentIsNull:
3688       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3689         return NPCK_ZeroExpression;
3690       else
3691         return NPCK_NotNull;
3692 
3693     case NPC_ValueDependentIsNotNull:
3694       return NPCK_NotNull;
3695     }
3696   }
3697 
3698   // Strip off a cast to void*, if it exists. Except in C++.
3699   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3700     if (!Ctx.getLangOpts().CPlusPlus) {
3701       // Check that it is a cast to void*.
3702       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3703         QualType Pointee = PT->getPointeeType();
3704         Qualifiers Qs = Pointee.getQualifiers();
3705         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3706         // has non-default address space it is not treated as nullptr.
3707         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3708         // since it cannot be assigned to a pointer to constant address space.
3709         if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3710              Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3711             (Ctx.getLangOpts().OpenCL &&
3712              Ctx.getLangOpts().OpenCLVersion < 200 &&
3713              Pointee.getAddressSpace() == LangAS::opencl_private))
3714           Qs.removeAddressSpace();
3715 
3716         if (Pointee->isVoidType() && Qs.empty() && // to void*
3717             CE->getSubExpr()->getType()->isIntegerType()) // from int
3718           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3719       }
3720     }
3721   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3722     // Ignore the ImplicitCastExpr type entirely.
3723     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3724   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3725     // Accept ((void*)0) as a null pointer constant, as many other
3726     // implementations do.
3727     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3728   } else if (const GenericSelectionExpr *GE =
3729                dyn_cast<GenericSelectionExpr>(this)) {
3730     if (GE->isResultDependent())
3731       return NPCK_NotNull;
3732     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3733   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3734     if (CE->isConditionDependent())
3735       return NPCK_NotNull;
3736     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3737   } else if (const CXXDefaultArgExpr *DefaultArg
3738                = dyn_cast<CXXDefaultArgExpr>(this)) {
3739     // See through default argument expressions.
3740     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3741   } else if (const CXXDefaultInitExpr *DefaultInit
3742                = dyn_cast<CXXDefaultInitExpr>(this)) {
3743     // See through default initializer expressions.
3744     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3745   } else if (isa<GNUNullExpr>(this)) {
3746     // The GNU __null extension is always a null pointer constant.
3747     return NPCK_GNUNull;
3748   } else if (const MaterializeTemporaryExpr *M
3749                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3750     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3751   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3752     if (const Expr *Source = OVE->getSourceExpr())
3753       return Source->isNullPointerConstant(Ctx, NPC);
3754   }
3755 
3756   // If the expression has no type information, it cannot be a null pointer
3757   // constant.
3758   if (getType().isNull())
3759     return NPCK_NotNull;
3760 
3761   // C++11 nullptr_t is always a null pointer constant.
3762   if (getType()->isNullPtrType())
3763     return NPCK_CXX11_nullptr;
3764 
3765   if (const RecordType *UT = getType()->getAsUnionType())
3766     if (!Ctx.getLangOpts().CPlusPlus11 &&
3767         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3768       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3769         const Expr *InitExpr = CLE->getInitializer();
3770         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3771           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3772       }
3773   // This expression must be an integer type.
3774   if (!getType()->isIntegerType() ||
3775       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3776     return NPCK_NotNull;
3777 
3778   if (Ctx.getLangOpts().CPlusPlus11) {
3779     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3780     // value zero or a prvalue of type std::nullptr_t.
3781     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3782     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3783     if (Lit && !Lit->getValue())
3784       return NPCK_ZeroLiteral;
3785     if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3786       return NPCK_NotNull;
3787   } else {
3788     // If we have an integer constant expression, we need to *evaluate* it and
3789     // test for the value 0.
3790     if (!isIntegerConstantExpr(Ctx))
3791       return NPCK_NotNull;
3792   }
3793 
3794   if (EvaluateKnownConstInt(Ctx) != 0)
3795     return NPCK_NotNull;
3796 
3797   if (isa<IntegerLiteral>(this))
3798     return NPCK_ZeroLiteral;
3799   return NPCK_ZeroExpression;
3800 }
3801 
3802 /// If this expression is an l-value for an Objective C
3803 /// property, find the underlying property reference expression.
getObjCProperty() const3804 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3805   const Expr *E = this;
3806   while (true) {
3807     assert((E->getValueKind() == VK_LValue &&
3808             E->getObjectKind() == OK_ObjCProperty) &&
3809            "expression is not a property reference");
3810     E = E->IgnoreParenCasts();
3811     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3812       if (BO->getOpcode() == BO_Comma) {
3813         E = BO->getRHS();
3814         continue;
3815       }
3816     }
3817 
3818     break;
3819   }
3820 
3821   return cast<ObjCPropertyRefExpr>(E);
3822 }
3823 
isObjCSelfExpr() const3824 bool Expr::isObjCSelfExpr() const {
3825   const Expr *E = IgnoreParenImpCasts();
3826 
3827   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3828   if (!DRE)
3829     return false;
3830 
3831   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3832   if (!Param)
3833     return false;
3834 
3835   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3836   if (!M)
3837     return false;
3838 
3839   return M->getSelfDecl() == Param;
3840 }
3841 
getSourceBitField()3842 FieldDecl *Expr::getSourceBitField() {
3843   Expr *E = this->IgnoreParens();
3844 
3845   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3846     if (ICE->getCastKind() == CK_LValueToRValue ||
3847         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3848       E = ICE->getSubExpr()->IgnoreParens();
3849     else
3850       break;
3851   }
3852 
3853   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3854     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3855       if (Field->isBitField())
3856         return Field;
3857 
3858   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3859     FieldDecl *Ivar = IvarRef->getDecl();
3860     if (Ivar->isBitField())
3861       return Ivar;
3862   }
3863 
3864   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3865     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3866       if (Field->isBitField())
3867         return Field;
3868 
3869     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3870       if (Expr *E = BD->getBinding())
3871         return E->getSourceBitField();
3872   }
3873 
3874   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3875     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3876       return BinOp->getLHS()->getSourceBitField();
3877 
3878     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3879       return BinOp->getRHS()->getSourceBitField();
3880   }
3881 
3882   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3883     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3884       return UnOp->getSubExpr()->getSourceBitField();
3885 
3886   return nullptr;
3887 }
3888 
refersToVectorElement() const3889 bool Expr::refersToVectorElement() const {
3890   // FIXME: Why do we not just look at the ObjectKind here?
3891   const Expr *E = this->IgnoreParens();
3892 
3893   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3894     if (ICE->getValueKind() != VK_RValue &&
3895         ICE->getCastKind() == CK_NoOp)
3896       E = ICE->getSubExpr()->IgnoreParens();
3897     else
3898       break;
3899   }
3900 
3901   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3902     return ASE->getBase()->getType()->isVectorType();
3903 
3904   if (isa<ExtVectorElementExpr>(E))
3905     return true;
3906 
3907   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3908     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3909       if (auto *E = BD->getBinding())
3910         return E->refersToVectorElement();
3911 
3912   return false;
3913 }
3914 
refersToGlobalRegisterVar() const3915 bool Expr::refersToGlobalRegisterVar() const {
3916   const Expr *E = this->IgnoreParenImpCasts();
3917 
3918   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3919     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3920       if (VD->getStorageClass() == SC_Register &&
3921           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3922         return true;
3923 
3924   return false;
3925 }
3926 
isSameComparisonOperand(const Expr * E1,const Expr * E2)3927 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
3928   E1 = E1->IgnoreParens();
3929   E2 = E2->IgnoreParens();
3930 
3931   if (E1->getStmtClass() != E2->getStmtClass())
3932     return false;
3933 
3934   switch (E1->getStmtClass()) {
3935     default:
3936       return false;
3937     case CXXThisExprClass:
3938       return true;
3939     case DeclRefExprClass: {
3940       // DeclRefExpr without an ImplicitCastExpr can happen for integral
3941       // template parameters.
3942       const auto *DRE1 = cast<DeclRefExpr>(E1);
3943       const auto *DRE2 = cast<DeclRefExpr>(E2);
3944       return DRE1->isRValue() && DRE2->isRValue() &&
3945              DRE1->getDecl() == DRE2->getDecl();
3946     }
3947     case ImplicitCastExprClass: {
3948       // Peel off implicit casts.
3949       while (true) {
3950         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
3951         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
3952         if (!ICE1 || !ICE2)
3953           return false;
3954         if (ICE1->getCastKind() != ICE2->getCastKind())
3955           return false;
3956         E1 = ICE1->getSubExpr()->IgnoreParens();
3957         E2 = ICE2->getSubExpr()->IgnoreParens();
3958         // The final cast must be one of these types.
3959         if (ICE1->getCastKind() == CK_LValueToRValue ||
3960             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
3961             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
3962           break;
3963         }
3964       }
3965 
3966       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
3967       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
3968       if (DRE1 && DRE2)
3969         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
3970 
3971       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
3972       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
3973       if (Ivar1 && Ivar2) {
3974         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
3975                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
3976       }
3977 
3978       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
3979       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
3980       if (Array1 && Array2) {
3981         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
3982           return false;
3983 
3984         auto Idx1 = Array1->getIdx();
3985         auto Idx2 = Array2->getIdx();
3986         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
3987         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
3988         if (Integer1 && Integer2) {
3989           if (!llvm::APInt::isSameValue(Integer1->getValue(),
3990                                         Integer2->getValue()))
3991             return false;
3992         } else {
3993           if (!isSameComparisonOperand(Idx1, Idx2))
3994             return false;
3995         }
3996 
3997         return true;
3998       }
3999 
4000       // Walk the MemberExpr chain.
4001       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4002         const auto *ME1 = cast<MemberExpr>(E1);
4003         const auto *ME2 = cast<MemberExpr>(E2);
4004         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4005           return false;
4006         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4007           if (D->isStaticDataMember())
4008             return true;
4009         E1 = ME1->getBase()->IgnoreParenImpCasts();
4010         E2 = ME2->getBase()->IgnoreParenImpCasts();
4011       }
4012 
4013       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4014         return true;
4015 
4016       // A static member variable can end the MemberExpr chain with either
4017       // a MemberExpr or a DeclRefExpr.
4018       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4019         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4020           return DRE->getDecl();
4021         if (const auto *ME = dyn_cast<MemberExpr>(E))
4022           return ME->getMemberDecl();
4023         return nullptr;
4024       };
4025 
4026       const ValueDecl *VD1 = getAnyDecl(E1);
4027       const ValueDecl *VD2 = getAnyDecl(E2);
4028       return declaresSameEntity(VD1, VD2);
4029     }
4030   }
4031 }
4032 
4033 /// isArrow - Return true if the base expression is a pointer to vector,
4034 /// return false if the base expression is a vector.
isArrow() const4035 bool ExtVectorElementExpr::isArrow() const {
4036   return getBase()->getType()->isPointerType();
4037 }
4038 
getNumElements() const4039 unsigned ExtVectorElementExpr::getNumElements() const {
4040   if (const VectorType *VT = getType()->getAs<VectorType>())
4041     return VT->getNumElements();
4042   return 1;
4043 }
4044 
4045 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const4046 bool ExtVectorElementExpr::containsDuplicateElements() const {
4047   // FIXME: Refactor this code to an accessor on the AST node which returns the
4048   // "type" of component access, and share with code below and in Sema.
4049   StringRef Comp = Accessor->getName();
4050 
4051   // Halving swizzles do not contain duplicate elements.
4052   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4053     return false;
4054 
4055   // Advance past s-char prefix on hex swizzles.
4056   if (Comp[0] == 's' || Comp[0] == 'S')
4057     Comp = Comp.substr(1);
4058 
4059   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4060     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
4061         return true;
4062 
4063   return false;
4064 }
4065 
4066 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<uint32_t> & Elts) const4067 void ExtVectorElementExpr::getEncodedElementAccess(
4068     SmallVectorImpl<uint32_t> &Elts) const {
4069   StringRef Comp = Accessor->getName();
4070   bool isNumericAccessor = false;
4071   if (Comp[0] == 's' || Comp[0] == 'S') {
4072     Comp = Comp.substr(1);
4073     isNumericAccessor = true;
4074   }
4075 
4076   bool isHi =   Comp == "hi";
4077   bool isLo =   Comp == "lo";
4078   bool isEven = Comp == "even";
4079   bool isOdd  = Comp == "odd";
4080 
4081   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4082     uint64_t Index;
4083 
4084     if (isHi)
4085       Index = e + i;
4086     else if (isLo)
4087       Index = i;
4088     else if (isEven)
4089       Index = 2 * i;
4090     else if (isOdd)
4091       Index = 2 * i + 1;
4092     else
4093       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4094 
4095     Elts.push_back(Index);
4096   }
4097 }
4098 
ShuffleVectorExpr(const ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)4099 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4100                                      QualType Type, SourceLocation BLoc,
4101                                      SourceLocation RP)
4102     : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary),
4103       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4104   SubExprs = new (C) Stmt*[args.size()];
4105   for (unsigned i = 0; i != args.size(); i++)
4106     SubExprs[i] = args[i];
4107 
4108   setDependence(computeDependence(this));
4109 }
4110 
setExprs(const ASTContext & C,ArrayRef<Expr * > Exprs)4111 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4112   if (SubExprs) C.Deallocate(SubExprs);
4113 
4114   this->NumExprs = Exprs.size();
4115   SubExprs = new (C) Stmt*[NumExprs];
4116   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4117 }
4118 
GenericSelectionExpr(const ASTContext &,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)4119 GenericSelectionExpr::GenericSelectionExpr(
4120     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4121     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4122     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4123     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4124     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4125            AssocExprs[ResultIndex]->getValueKind(),
4126            AssocExprs[ResultIndex]->getObjectKind()),
4127       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4128       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4129   assert(AssocTypes.size() == AssocExprs.size() &&
4130          "Must have the same number of association expressions"
4131          " and TypeSourceInfo!");
4132   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4133 
4134   GenericSelectionExprBits.GenericLoc = GenericLoc;
4135   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4136   std::copy(AssocExprs.begin(), AssocExprs.end(),
4137             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4138   std::copy(AssocTypes.begin(), AssocTypes.end(),
4139             getTrailingObjects<TypeSourceInfo *>());
4140 
4141   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4142 }
4143 
GenericSelectionExpr(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)4144 GenericSelectionExpr::GenericSelectionExpr(
4145     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4146     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4147     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4148     bool ContainsUnexpandedParameterPack)
4149     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
4150            OK_Ordinary),
4151       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4152       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4153   assert(AssocTypes.size() == AssocExprs.size() &&
4154          "Must have the same number of association expressions"
4155          " and TypeSourceInfo!");
4156 
4157   GenericSelectionExprBits.GenericLoc = GenericLoc;
4158   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4159   std::copy(AssocExprs.begin(), AssocExprs.end(),
4160             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4161   std::copy(AssocTypes.begin(), AssocTypes.end(),
4162             getTrailingObjects<TypeSourceInfo *>());
4163 
4164   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4165 }
4166 
GenericSelectionExpr(EmptyShell Empty,unsigned NumAssocs)4167 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4168     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4169 
Create(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)4170 GenericSelectionExpr *GenericSelectionExpr::Create(
4171     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4172     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4173     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4174     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4175   unsigned NumAssocs = AssocExprs.size();
4176   void *Mem = Context.Allocate(
4177       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4178       alignof(GenericSelectionExpr));
4179   return new (Mem) GenericSelectionExpr(
4180       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4181       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4182 }
4183 
Create(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)4184 GenericSelectionExpr *GenericSelectionExpr::Create(
4185     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4186     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4187     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4188     bool ContainsUnexpandedParameterPack) {
4189   unsigned NumAssocs = AssocExprs.size();
4190   void *Mem = Context.Allocate(
4191       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4192       alignof(GenericSelectionExpr));
4193   return new (Mem) GenericSelectionExpr(
4194       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4195       RParenLoc, ContainsUnexpandedParameterPack);
4196 }
4197 
4198 GenericSelectionExpr *
CreateEmpty(const ASTContext & Context,unsigned NumAssocs)4199 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4200                                   unsigned NumAssocs) {
4201   void *Mem = Context.Allocate(
4202       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4203       alignof(GenericSelectionExpr));
4204   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4205 }
4206 
4207 //===----------------------------------------------------------------------===//
4208 //  DesignatedInitExpr
4209 //===----------------------------------------------------------------------===//
4210 
getFieldName() const4211 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4212   assert(Kind == FieldDesignator && "Only valid on a field designator");
4213   if (Field.NameOrField & 0x01)
4214     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4215   return getField()->getIdentifier();
4216 }
4217 
DesignatedInitExpr(const ASTContext & C,QualType Ty,llvm::ArrayRef<Designator> Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)4218 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4219                                        llvm::ArrayRef<Designator> Designators,
4220                                        SourceLocation EqualOrColonLoc,
4221                                        bool GNUSyntax,
4222                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4223     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4224            Init->getObjectKind()),
4225       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4226       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4227   this->Designators = new (C) Designator[NumDesignators];
4228 
4229   // Record the initializer itself.
4230   child_iterator Child = child_begin();
4231   *Child++ = Init;
4232 
4233   // Copy the designators and their subexpressions, computing
4234   // value-dependence along the way.
4235   unsigned IndexIdx = 0;
4236   for (unsigned I = 0; I != NumDesignators; ++I) {
4237     this->Designators[I] = Designators[I];
4238     if (this->Designators[I].isArrayDesignator()) {
4239       // Copy the index expressions into permanent storage.
4240       *Child++ = IndexExprs[IndexIdx++];
4241     } else if (this->Designators[I].isArrayRangeDesignator()) {
4242       // Copy the start/end expressions into permanent storage.
4243       *Child++ = IndexExprs[IndexIdx++];
4244       *Child++ = IndexExprs[IndexIdx++];
4245     }
4246   }
4247 
4248   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4249   setDependence(computeDependence(this));
4250 }
4251 
4252 DesignatedInitExpr *
Create(const ASTContext & C,llvm::ArrayRef<Designator> Designators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)4253 DesignatedInitExpr::Create(const ASTContext &C,
4254                            llvm::ArrayRef<Designator> Designators,
4255                            ArrayRef<Expr*> IndexExprs,
4256                            SourceLocation ColonOrEqualLoc,
4257                            bool UsesColonSyntax, Expr *Init) {
4258   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4259                          alignof(DesignatedInitExpr));
4260   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4261                                       ColonOrEqualLoc, UsesColonSyntax,
4262                                       IndexExprs, Init);
4263 }
4264 
CreateEmpty(const ASTContext & C,unsigned NumIndexExprs)4265 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4266                                                     unsigned NumIndexExprs) {
4267   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4268                          alignof(DesignatedInitExpr));
4269   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4270 }
4271 
setDesignators(const ASTContext & C,const Designator * Desigs,unsigned NumDesigs)4272 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4273                                         const Designator *Desigs,
4274                                         unsigned NumDesigs) {
4275   Designators = new (C) Designator[NumDesigs];
4276   NumDesignators = NumDesigs;
4277   for (unsigned I = 0; I != NumDesigs; ++I)
4278     Designators[I] = Desigs[I];
4279 }
4280 
getDesignatorsSourceRange() const4281 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4282   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4283   if (size() == 1)
4284     return DIE->getDesignator(0)->getSourceRange();
4285   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4286                      DIE->getDesignator(size() - 1)->getEndLoc());
4287 }
4288 
getBeginLoc() const4289 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4290   SourceLocation StartLoc;
4291   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4292   Designator &First = *DIE->getDesignator(0);
4293   if (First.isFieldDesignator())
4294     StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4295   else
4296     StartLoc = First.ArrayOrRange.LBracketLoc;
4297   return StartLoc;
4298 }
4299 
getEndLoc() const4300 SourceLocation DesignatedInitExpr::getEndLoc() const {
4301   return getInit()->getEndLoc();
4302 }
4303 
getArrayIndex(const Designator & D) const4304 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4305   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4306   return getSubExpr(D.ArrayOrRange.Index + 1);
4307 }
4308 
getArrayRangeStart(const Designator & D) const4309 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4310   assert(D.Kind == Designator::ArrayRangeDesignator &&
4311          "Requires array range designator");
4312   return getSubExpr(D.ArrayOrRange.Index + 1);
4313 }
4314 
getArrayRangeEnd(const Designator & D) const4315 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4316   assert(D.Kind == Designator::ArrayRangeDesignator &&
4317          "Requires array range designator");
4318   return getSubExpr(D.ArrayOrRange.Index + 2);
4319 }
4320 
4321 /// Replaces the designator at index @p Idx with the series
4322 /// of designators in [First, Last).
ExpandDesignator(const ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)4323 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4324                                           const Designator *First,
4325                                           const Designator *Last) {
4326   unsigned NumNewDesignators = Last - First;
4327   if (NumNewDesignators == 0) {
4328     std::copy_backward(Designators + Idx + 1,
4329                        Designators + NumDesignators,
4330                        Designators + Idx);
4331     --NumNewDesignators;
4332     return;
4333   }
4334   if (NumNewDesignators == 1) {
4335     Designators[Idx] = *First;
4336     return;
4337   }
4338 
4339   Designator *NewDesignators
4340     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4341   std::copy(Designators, Designators + Idx, NewDesignators);
4342   std::copy(First, Last, NewDesignators + Idx);
4343   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4344             NewDesignators + Idx + NumNewDesignators);
4345   Designators = NewDesignators;
4346   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4347 }
4348 
DesignatedInitUpdateExpr(const ASTContext & C,SourceLocation lBraceLoc,Expr * baseExpr,SourceLocation rBraceLoc)4349 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4350                                                    SourceLocation lBraceLoc,
4351                                                    Expr *baseExpr,
4352                                                    SourceLocation rBraceLoc)
4353     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
4354            OK_Ordinary) {
4355   BaseAndUpdaterExprs[0] = baseExpr;
4356 
4357   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4358   ILE->setType(baseExpr->getType());
4359   BaseAndUpdaterExprs[1] = ILE;
4360 
4361   // FIXME: this is wrong, set it correctly.
4362   setDependence(ExprDependence::None);
4363 }
4364 
getBeginLoc() const4365 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4366   return getBase()->getBeginLoc();
4367 }
4368 
getEndLoc() const4369 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4370   return getBase()->getEndLoc();
4371 }
4372 
ParenListExpr(SourceLocation LParenLoc,ArrayRef<Expr * > Exprs,SourceLocation RParenLoc)4373 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4374                              SourceLocation RParenLoc)
4375     : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary),
4376       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4377   ParenListExprBits.NumExprs = Exprs.size();
4378 
4379   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4380     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4381   setDependence(computeDependence(this));
4382 }
4383 
ParenListExpr(EmptyShell Empty,unsigned NumExprs)4384 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4385     : Expr(ParenListExprClass, Empty) {
4386   ParenListExprBits.NumExprs = NumExprs;
4387 }
4388 
Create(const ASTContext & Ctx,SourceLocation LParenLoc,ArrayRef<Expr * > Exprs,SourceLocation RParenLoc)4389 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4390                                      SourceLocation LParenLoc,
4391                                      ArrayRef<Expr *> Exprs,
4392                                      SourceLocation RParenLoc) {
4393   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4394                            alignof(ParenListExpr));
4395   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4396 }
4397 
CreateEmpty(const ASTContext & Ctx,unsigned NumExprs)4398 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4399                                           unsigned NumExprs) {
4400   void *Mem =
4401       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4402   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4403 }
4404 
BinaryOperator(const ASTContext & Ctx,Expr * lhs,Expr * rhs,Opcode opc,QualType ResTy,ExprValueKind VK,ExprObjectKind OK,SourceLocation opLoc,FPOptionsOverride FPFeatures)4405 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4406                                Opcode opc, QualType ResTy, ExprValueKind VK,
4407                                ExprObjectKind OK, SourceLocation opLoc,
4408                                FPOptionsOverride FPFeatures)
4409     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4410   BinaryOperatorBits.Opc = opc;
4411   assert(!isCompoundAssignmentOp() &&
4412          "Use CompoundAssignOperator for compound assignments");
4413   BinaryOperatorBits.OpLoc = opLoc;
4414   SubExprs[LHS] = lhs;
4415   SubExprs[RHS] = rhs;
4416   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4417   if (hasStoredFPFeatures())
4418     setStoredFPFeatures(FPFeatures);
4419   setDependence(computeDependence(this));
4420 }
4421 
BinaryOperator(const ASTContext & Ctx,Expr * lhs,Expr * rhs,Opcode opc,QualType ResTy,ExprValueKind VK,ExprObjectKind OK,SourceLocation opLoc,FPOptionsOverride FPFeatures,bool dead2)4422 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4423                                Opcode opc, QualType ResTy, ExprValueKind VK,
4424                                ExprObjectKind OK, SourceLocation opLoc,
4425                                FPOptionsOverride FPFeatures, bool dead2)
4426     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4427   BinaryOperatorBits.Opc = opc;
4428   assert(isCompoundAssignmentOp() &&
4429          "Use CompoundAssignOperator for compound assignments");
4430   BinaryOperatorBits.OpLoc = opLoc;
4431   SubExprs[LHS] = lhs;
4432   SubExprs[RHS] = rhs;
4433   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4434   if (hasStoredFPFeatures())
4435     setStoredFPFeatures(FPFeatures);
4436   setDependence(computeDependence(this));
4437 }
4438 
CreateEmpty(const ASTContext & C,bool HasFPFeatures)4439 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4440                                             bool HasFPFeatures) {
4441   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4442   void *Mem =
4443       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4444   return new (Mem) BinaryOperator(EmptyShell());
4445 }
4446 
Create(const ASTContext & C,Expr * lhs,Expr * rhs,Opcode opc,QualType ResTy,ExprValueKind VK,ExprObjectKind OK,SourceLocation opLoc,FPOptionsOverride FPFeatures)4447 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4448                                        Expr *rhs, Opcode opc, QualType ResTy,
4449                                        ExprValueKind VK, ExprObjectKind OK,
4450                                        SourceLocation opLoc,
4451                                        FPOptionsOverride FPFeatures) {
4452   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4453   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4454   void *Mem =
4455       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4456   return new (Mem)
4457       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4458 }
4459 
4460 CompoundAssignOperator *
CreateEmpty(const ASTContext & C,bool HasFPFeatures)4461 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4462   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4463   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4464                          alignof(CompoundAssignOperator));
4465   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4466 }
4467 
4468 CompoundAssignOperator *
Create(const ASTContext & C,Expr * lhs,Expr * rhs,Opcode opc,QualType ResTy,ExprValueKind VK,ExprObjectKind OK,SourceLocation opLoc,FPOptionsOverride FPFeatures,QualType CompLHSType,QualType CompResultType)4469 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4470                                Opcode opc, QualType ResTy, ExprValueKind VK,
4471                                ExprObjectKind OK, SourceLocation opLoc,
4472                                FPOptionsOverride FPFeatures,
4473                                QualType CompLHSType, QualType CompResultType) {
4474   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4475   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4476   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4477                          alignof(CompoundAssignOperator));
4478   return new (Mem)
4479       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4480                              CompLHSType, CompResultType);
4481 }
4482 
CreateEmpty(const ASTContext & C,bool hasFPFeatures)4483 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4484                                           bool hasFPFeatures) {
4485   void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4486                          alignof(UnaryOperator));
4487   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4488 }
4489 
UnaryOperator(const ASTContext & Ctx,Expr * input,Opcode opc,QualType type,ExprValueKind VK,ExprObjectKind OK,SourceLocation l,bool CanOverflow,FPOptionsOverride FPFeatures)4490 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4491                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4492                              SourceLocation l, bool CanOverflow,
4493                              FPOptionsOverride FPFeatures)
4494     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4495   UnaryOperatorBits.Opc = opc;
4496   UnaryOperatorBits.CanOverflow = CanOverflow;
4497   UnaryOperatorBits.Loc = l;
4498   UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4499   if (hasStoredFPFeatures())
4500     setStoredFPFeatures(FPFeatures);
4501   setDependence(computeDependence(this, Ctx));
4502 }
4503 
Create(const ASTContext & C,Expr * input,Opcode opc,QualType type,ExprValueKind VK,ExprObjectKind OK,SourceLocation l,bool CanOverflow,FPOptionsOverride FPFeatures)4504 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4505                                      Opcode opc, QualType type,
4506                                      ExprValueKind VK, ExprObjectKind OK,
4507                                      SourceLocation l, bool CanOverflow,
4508                                      FPOptionsOverride FPFeatures) {
4509   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4510   unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4511   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4512   return new (Mem)
4513       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4514 }
4515 
findInCopyConstruct(const Expr * e)4516 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4517   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4518     e = ewc->getSubExpr();
4519   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4520     e = m->getSubExpr();
4521   e = cast<CXXConstructExpr>(e)->getArg(0);
4522   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4523     e = ice->getSubExpr();
4524   return cast<OpaqueValueExpr>(e);
4525 }
4526 
Create(const ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)4527 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4528                                            EmptyShell sh,
4529                                            unsigned numSemanticExprs) {
4530   void *buffer =
4531       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4532                        alignof(PseudoObjectExpr));
4533   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4534 }
4535 
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)4536 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4537   : Expr(PseudoObjectExprClass, shell) {
4538   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4539 }
4540 
Create(const ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)4541 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4542                                            ArrayRef<Expr*> semantics,
4543                                            unsigned resultIndex) {
4544   assert(syntax && "no syntactic expression!");
4545   assert(semantics.size() && "no semantic expressions!");
4546 
4547   QualType type;
4548   ExprValueKind VK;
4549   if (resultIndex == NoResult) {
4550     type = C.VoidTy;
4551     VK = VK_RValue;
4552   } else {
4553     assert(resultIndex < semantics.size());
4554     type = semantics[resultIndex]->getType();
4555     VK = semantics[resultIndex]->getValueKind();
4556     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4557   }
4558 
4559   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4560                             alignof(PseudoObjectExpr));
4561   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4562                                       resultIndex);
4563 }
4564 
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)4565 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4566                                    Expr *syntax, ArrayRef<Expr *> semantics,
4567                                    unsigned resultIndex)
4568     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4569   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4570   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4571 
4572   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4573     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4574     getSubExprsBuffer()[i] = E;
4575 
4576     if (isa<OpaqueValueExpr>(E))
4577       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4578              "opaque-value semantic expressions for pseudo-object "
4579              "operations must have sources");
4580   }
4581 
4582   setDependence(computeDependence(this));
4583 }
4584 
4585 //===----------------------------------------------------------------------===//
4586 //  Child Iterators for iterating over subexpressions/substatements
4587 //===----------------------------------------------------------------------===//
4588 
4589 // UnaryExprOrTypeTraitExpr
children()4590 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4591   const_child_range CCR =
4592       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4593   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4594 }
4595 
children() const4596 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4597   // If this is of a type and the type is a VLA type (and not a typedef), the
4598   // size expression of the VLA needs to be treated as an executable expression.
4599   // Why isn't this weirdness documented better in StmtIterator?
4600   if (isArgumentType()) {
4601     if (const VariableArrayType *T =
4602             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4603       return const_child_range(const_child_iterator(T), const_child_iterator());
4604     return const_child_range(const_child_iterator(), const_child_iterator());
4605   }
4606   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4607 }
4608 
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)4609 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4610                        AtomicOp op, SourceLocation RP)
4611     : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary),
4612       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4613   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4614   for (unsigned i = 0; i != args.size(); i++)
4615     SubExprs[i] = args[i];
4616   setDependence(computeDependence(this));
4617 }
4618 
getNumSubExprs(AtomicOp Op)4619 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4620   switch (Op) {
4621   case AO__c11_atomic_init:
4622   case AO__opencl_atomic_init:
4623   case AO__c11_atomic_load:
4624   case AO__atomic_load_n:
4625     return 2;
4626 
4627   case AO__opencl_atomic_load:
4628   case AO__c11_atomic_store:
4629   case AO__c11_atomic_exchange:
4630   case AO__atomic_load:
4631   case AO__atomic_store:
4632   case AO__atomic_store_n:
4633   case AO__atomic_exchange_n:
4634   case AO__c11_atomic_fetch_add:
4635   case AO__c11_atomic_fetch_sub:
4636   case AO__c11_atomic_fetch_and:
4637   case AO__c11_atomic_fetch_or:
4638   case AO__c11_atomic_fetch_xor:
4639   case AO__c11_atomic_fetch_max:
4640   case AO__c11_atomic_fetch_min:
4641   case AO__atomic_fetch_add:
4642   case AO__atomic_fetch_sub:
4643   case AO__atomic_fetch_and:
4644   case AO__atomic_fetch_or:
4645   case AO__atomic_fetch_xor:
4646   case AO__atomic_fetch_nand:
4647   case AO__atomic_add_fetch:
4648   case AO__atomic_sub_fetch:
4649   case AO__atomic_and_fetch:
4650   case AO__atomic_or_fetch:
4651   case AO__atomic_xor_fetch:
4652   case AO__atomic_nand_fetch:
4653   case AO__atomic_min_fetch:
4654   case AO__atomic_max_fetch:
4655   case AO__atomic_fetch_min:
4656   case AO__atomic_fetch_max:
4657     return 3;
4658 
4659   case AO__opencl_atomic_store:
4660   case AO__opencl_atomic_exchange:
4661   case AO__opencl_atomic_fetch_add:
4662   case AO__opencl_atomic_fetch_sub:
4663   case AO__opencl_atomic_fetch_and:
4664   case AO__opencl_atomic_fetch_or:
4665   case AO__opencl_atomic_fetch_xor:
4666   case AO__opencl_atomic_fetch_min:
4667   case AO__opencl_atomic_fetch_max:
4668   case AO__atomic_exchange:
4669     return 4;
4670 
4671   case AO__c11_atomic_compare_exchange_strong:
4672   case AO__c11_atomic_compare_exchange_weak:
4673     return 5;
4674 
4675   case AO__opencl_atomic_compare_exchange_strong:
4676   case AO__opencl_atomic_compare_exchange_weak:
4677   case AO__atomic_compare_exchange:
4678   case AO__atomic_compare_exchange_n:
4679     return 6;
4680   }
4681   llvm_unreachable("unknown atomic op");
4682 }
4683 
getValueType() const4684 QualType AtomicExpr::getValueType() const {
4685   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4686   if (auto AT = T->getAs<AtomicType>())
4687     return AT->getValueType();
4688   return T;
4689 }
4690 
getBaseOriginalType(const Expr * Base)4691 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4692   unsigned ArraySectionCount = 0;
4693   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4694     Base = OASE->getBase();
4695     ++ArraySectionCount;
4696   }
4697   while (auto *ASE =
4698              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4699     Base = ASE->getBase();
4700     ++ArraySectionCount;
4701   }
4702   Base = Base->IgnoreParenImpCasts();
4703   auto OriginalTy = Base->getType();
4704   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4705     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4706       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4707 
4708   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4709     if (OriginalTy->isAnyPointerType())
4710       OriginalTy = OriginalTy->getPointeeType();
4711     else {
4712       assert (OriginalTy->isArrayType());
4713       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4714     }
4715   }
4716   return OriginalTy;
4717 }
4718 
RecoveryExpr(ASTContext & Ctx,QualType T,SourceLocation BeginLoc,SourceLocation EndLoc,ArrayRef<Expr * > SubExprs)4719 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4720                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4721     : Expr(RecoveryExprClass, T.getNonReferenceType(),
4722            T->isDependentType() ? VK_LValue : getValueKindForType(T),
4723            OK_Ordinary),
4724       BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4725   assert(!T.isNull());
4726   assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; }));
4727 
4728   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4729   setDependence(computeDependence(this));
4730 }
4731 
Create(ASTContext & Ctx,QualType T,SourceLocation BeginLoc,SourceLocation EndLoc,ArrayRef<Expr * > SubExprs)4732 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4733                                    SourceLocation BeginLoc,
4734                                    SourceLocation EndLoc,
4735                                    ArrayRef<Expr *> SubExprs) {
4736   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4737                            alignof(RecoveryExpr));
4738   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4739 }
4740 
CreateEmpty(ASTContext & Ctx,unsigned NumSubExprs)4741 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4742   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4743                            alignof(RecoveryExpr));
4744   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4745 }
4746 
setDimensions(ArrayRef<Expr * > Dims)4747 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4748   assert(
4749       NumDims == Dims.size() &&
4750       "Preallocated number of dimensions is different from the provided one.");
4751   llvm::copy(Dims, getTrailingObjects<Expr *>());
4752 }
4753 
setBracketsRanges(ArrayRef<SourceRange> BR)4754 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4755   assert(
4756       NumDims == BR.size() &&
4757       "Preallocated number of dimensions is different from the provided one.");
4758   llvm::copy(BR, getTrailingObjects<SourceRange>());
4759 }
4760 
OMPArrayShapingExpr(QualType ExprTy,Expr * Op,SourceLocation L,SourceLocation R,ArrayRef<Expr * > Dims)4761 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4762                                          SourceLocation L, SourceLocation R,
4763                                          ArrayRef<Expr *> Dims)
4764     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4765       RPLoc(R), NumDims(Dims.size()) {
4766   setBase(Op);
4767   setDimensions(Dims);
4768   setDependence(computeDependence(this));
4769 }
4770 
4771 OMPArrayShapingExpr *
Create(const ASTContext & Context,QualType T,Expr * Op,SourceLocation L,SourceLocation R,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> BracketRanges)4772 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4773                             SourceLocation L, SourceLocation R,
4774                             ArrayRef<Expr *> Dims,
4775                             ArrayRef<SourceRange> BracketRanges) {
4776   assert(Dims.size() == BracketRanges.size() &&
4777          "Different number of dimensions and brackets ranges.");
4778   void *Mem = Context.Allocate(
4779       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4780       alignof(OMPArrayShapingExpr));
4781   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4782   E->setBracketsRanges(BracketRanges);
4783   return E;
4784 }
4785 
CreateEmpty(const ASTContext & Context,unsigned NumDims)4786 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4787                                                       unsigned NumDims) {
4788   void *Mem = Context.Allocate(
4789       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4790       alignof(OMPArrayShapingExpr));
4791   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4792 }
4793 
setIteratorDeclaration(unsigned I,Decl * D)4794 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4795   assert(I < NumIterators &&
4796          "Idx is greater or equal the number of iterators definitions.");
4797   getTrailingObjects<Decl *>()[I] = D;
4798 }
4799 
setAssignmentLoc(unsigned I,SourceLocation Loc)4800 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4801   assert(I < NumIterators &&
4802          "Idx is greater or equal the number of iterators definitions.");
4803   getTrailingObjects<
4804       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4805                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
4806 }
4807 
setIteratorRange(unsigned I,Expr * Begin,SourceLocation ColonLoc,Expr * End,SourceLocation SecondColonLoc,Expr * Step)4808 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
4809                                        SourceLocation ColonLoc, Expr *End,
4810                                        SourceLocation SecondColonLoc,
4811                                        Expr *Step) {
4812   assert(I < NumIterators &&
4813          "Idx is greater or equal the number of iterators definitions.");
4814   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4815                                static_cast<int>(RangeExprOffset::Begin)] =
4816       Begin;
4817   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4818                                static_cast<int>(RangeExprOffset::End)] = End;
4819   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4820                                static_cast<int>(RangeExprOffset::Step)] = Step;
4821   getTrailingObjects<
4822       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4823                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
4824       ColonLoc;
4825   getTrailingObjects<
4826       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4827                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
4828       SecondColonLoc;
4829 }
4830 
getIteratorDecl(unsigned I)4831 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
4832   return getTrailingObjects<Decl *>()[I];
4833 }
4834 
getIteratorRange(unsigned I)4835 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
4836   IteratorRange Res;
4837   Res.Begin =
4838       getTrailingObjects<Expr *>()[I * static_cast<int>(
4839                                            RangeExprOffset::Total) +
4840                                    static_cast<int>(RangeExprOffset::Begin)];
4841   Res.End =
4842       getTrailingObjects<Expr *>()[I * static_cast<int>(
4843                                            RangeExprOffset::Total) +
4844                                    static_cast<int>(RangeExprOffset::End)];
4845   Res.Step =
4846       getTrailingObjects<Expr *>()[I * static_cast<int>(
4847                                            RangeExprOffset::Total) +
4848                                    static_cast<int>(RangeExprOffset::Step)];
4849   return Res;
4850 }
4851 
getAssignLoc(unsigned I) const4852 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
4853   return getTrailingObjects<
4854       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4855                         static_cast<int>(RangeLocOffset::AssignLoc)];
4856 }
4857 
getColonLoc(unsigned I) const4858 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
4859   return getTrailingObjects<
4860       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4861                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
4862 }
4863 
getSecondColonLoc(unsigned I) const4864 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
4865   return getTrailingObjects<
4866       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4867                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
4868 }
4869 
setHelper(unsigned I,const OMPIteratorHelperData & D)4870 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
4871   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
4872 }
4873 
getHelper(unsigned I)4874 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
4875   return getTrailingObjects<OMPIteratorHelperData>()[I];
4876 }
4877 
getHelper(unsigned I) const4878 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
4879   return getTrailingObjects<OMPIteratorHelperData>()[I];
4880 }
4881 
OMPIteratorExpr(QualType ExprTy,SourceLocation IteratorKwLoc,SourceLocation L,SourceLocation R,ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,ArrayRef<OMPIteratorHelperData> Helpers)4882 OMPIteratorExpr::OMPIteratorExpr(
4883     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
4884     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4885     ArrayRef<OMPIteratorHelperData> Helpers)
4886     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
4887       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
4888       NumIterators(Data.size()) {
4889   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
4890     const IteratorDefinition &D = Data[I];
4891     setIteratorDeclaration(I, D.IteratorDecl);
4892     setAssignmentLoc(I, D.AssignmentLoc);
4893     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
4894                      D.SecondColonLoc, D.Range.Step);
4895     setHelper(I, Helpers[I]);
4896   }
4897   setDependence(computeDependence(this));
4898 }
4899 
4900 OMPIteratorExpr *
Create(const ASTContext & Context,QualType T,SourceLocation IteratorKwLoc,SourceLocation L,SourceLocation R,ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,ArrayRef<OMPIteratorHelperData> Helpers)4901 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
4902                         SourceLocation IteratorKwLoc, SourceLocation L,
4903                         SourceLocation R,
4904                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4905                         ArrayRef<OMPIteratorHelperData> Helpers) {
4906   assert(Data.size() == Helpers.size() &&
4907          "Data and helpers must have the same size.");
4908   void *Mem = Context.Allocate(
4909       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4910           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
4911           Data.size() * static_cast<int>(RangeLocOffset::Total),
4912           Helpers.size()),
4913       alignof(OMPIteratorExpr));
4914   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
4915 }
4916 
CreateEmpty(const ASTContext & Context,unsigned NumIterators)4917 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
4918                                               unsigned NumIterators) {
4919   void *Mem = Context.Allocate(
4920       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4921           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
4922           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
4923       alignof(OMPIteratorExpr));
4924   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
4925 }
4926