1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanCFG.h"
21 #include "VPlanDominatorTree.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/GenericDomTreeConstruction.h"
39 #include "llvm/Support/GraphWriter.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/LoopVersioning.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 namespace llvm {
51 extern cl::opt<bool> EnableVPlanNativePath;
52 }
53 
54 #define DEBUG_TYPE "vplan"
55 
56 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
operator <<(raw_ostream & OS,const VPValue & V)57 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
58   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
59   VPSlotTracker SlotTracker(
60       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
61   V.print(OS, SlotTracker);
62   return OS;
63 }
64 #endif
65 
getAsRuntimeExpr(IRBuilderBase & Builder,const ElementCount & VF) const66 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
67                                 const ElementCount &VF) const {
68   switch (LaneKind) {
69   case VPLane::Kind::ScalableLast:
70     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
71     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
72                              Builder.getInt32(VF.getKnownMinValue() - Lane));
73   case VPLane::Kind::First:
74     return Builder.getInt32(Lane);
75   }
76   llvm_unreachable("Unknown lane kind");
77 }
78 
VPValue(const unsigned char SC,Value * UV,VPDef * Def)79 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
80     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
81   if (Def)
82     Def->addDefinedValue(this);
83 }
84 
~VPValue()85 VPValue::~VPValue() {
86   assert(Users.empty() && "trying to delete a VPValue with remaining users");
87   if (Def)
88     Def->removeDefinedValue(this);
89 }
90 
91 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS,VPSlotTracker & SlotTracker) const92 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
93   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
94     R->print(OS, "", SlotTracker);
95   else
96     printAsOperand(OS, SlotTracker);
97 }
98 
dump() const99 void VPValue::dump() const {
100   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
101   VPSlotTracker SlotTracker(
102       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
103   print(dbgs(), SlotTracker);
104   dbgs() << "\n";
105 }
106 
dump() const107 void VPDef::dump() const {
108   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
109   VPSlotTracker SlotTracker(
110       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
111   print(dbgs(), "", SlotTracker);
112   dbgs() << "\n";
113 }
114 #endif
115 
getDefiningRecipe()116 VPRecipeBase *VPValue::getDefiningRecipe() {
117   return cast_or_null<VPRecipeBase>(Def);
118 }
119 
getDefiningRecipe() const120 const VPRecipeBase *VPValue::getDefiningRecipe() const {
121   return cast_or_null<VPRecipeBase>(Def);
122 }
123 
124 // Get the top-most entry block of \p Start. This is the entry block of the
125 // containing VPlan. This function is templated to support both const and non-const blocks
getPlanEntry(T * Start)126 template <typename T> static T *getPlanEntry(T *Start) {
127   T *Next = Start;
128   T *Current = Start;
129   while ((Next = Next->getParent()))
130     Current = Next;
131 
132   SmallSetVector<T *, 8> WorkList;
133   WorkList.insert(Current);
134 
135   for (unsigned i = 0; i < WorkList.size(); i++) {
136     T *Current = WorkList[i];
137     if (Current->getNumPredecessors() == 0)
138       return Current;
139     auto &Predecessors = Current->getPredecessors();
140     WorkList.insert(Predecessors.begin(), Predecessors.end());
141   }
142 
143   llvm_unreachable("VPlan without any entry node without predecessors");
144 }
145 
getPlan()146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
147 
getPlan() const148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
149 
150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
getEntryBasicBlock() const151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
152   const VPBlockBase *Block = this;
153   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
154     Block = Region->getEntry();
155   return cast<VPBasicBlock>(Block);
156 }
157 
getEntryBasicBlock()158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
159   VPBlockBase *Block = this;
160   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
setPlan(VPlan * ParentPlan)165 void VPBlockBase::setPlan(VPlan *ParentPlan) {
166   assert(
167       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
168       "Can only set plan on its entry or preheader block.");
169   Plan = ParentPlan;
170 }
171 
172 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
getExitingBasicBlock() const173 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
174   const VPBlockBase *Block = this;
175   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
176     Block = Region->getExiting();
177   return cast<VPBasicBlock>(Block);
178 }
179 
getExitingBasicBlock()180 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
181   VPBlockBase *Block = this;
182   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183     Block = Region->getExiting();
184   return cast<VPBasicBlock>(Block);
185 }
186 
getEnclosingBlockWithSuccessors()187 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
188   if (!Successors.empty() || !Parent)
189     return this;
190   assert(Parent->getExiting() == this &&
191          "Block w/o successors not the exiting block of its parent.");
192   return Parent->getEnclosingBlockWithSuccessors();
193 }
194 
getEnclosingBlockWithPredecessors()195 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
196   if (!Predecessors.empty() || !Parent)
197     return this;
198   assert(Parent->getEntry() == this &&
199          "Block w/o predecessors not the entry of its parent.");
200   return Parent->getEnclosingBlockWithPredecessors();
201 }
202 
deleteCFG(VPBlockBase * Entry)203 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
204   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
205     delete Block;
206 }
207 
getFirstNonPhi()208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
209   iterator It = begin();
210   while (It != end() && It->isPhi())
211     It++;
212   return It;
213 }
214 
get(VPValue * Def,const VPIteration & Instance)215 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
216   if (Def->isLiveIn())
217     return Def->getLiveInIRValue();
218 
219   if (hasScalarValue(Def, Instance)) {
220     return Data
221         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
222   }
223 
224   assert(hasVectorValue(Def, Instance.Part));
225   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
226   if (!VecPart->getType()->isVectorTy()) {
227     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
228     return VecPart;
229   }
230   // TODO: Cache created scalar values.
231   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
232   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
233   // set(Def, Extract, Instance);
234   return Extract;
235 }
236 
get(VPValue * Def,unsigned Part)237 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
238   // If Values have been set for this Def return the one relevant for \p Part.
239   if (hasVectorValue(Def, Part))
240     return Data.PerPartOutput[Def][Part];
241 
242   auto GetBroadcastInstrs = [this, Def](Value *V) {
243     bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
244     if (VF.isScalar())
245       return V;
246     // Place the code for broadcasting invariant variables in the new preheader.
247     IRBuilder<>::InsertPointGuard Guard(Builder);
248     if (SafeToHoist) {
249       BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
250           Plan->getVectorLoopRegion()->getSinglePredecessor())];
251       if (LoopVectorPreHeader)
252         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
253     }
254 
255     // Place the code for broadcasting invariant variables in the new preheader.
256     // Broadcast the scalar into all locations in the vector.
257     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
258 
259     return Shuf;
260   };
261 
262   if (!hasScalarValue(Def, {Part, 0})) {
263     assert(Def->isLiveIn() && "expected a live-in");
264     if (Part != 0)
265       return get(Def, 0);
266     Value *IRV = Def->getLiveInIRValue();
267     Value *B = GetBroadcastInstrs(IRV);
268     set(Def, B, Part);
269     return B;
270   }
271 
272   Value *ScalarValue = get(Def, {Part, 0});
273   // If we aren't vectorizing, we can just copy the scalar map values over
274   // to the vector map.
275   if (VF.isScalar()) {
276     set(Def, ScalarValue, Part);
277     return ScalarValue;
278   }
279 
280   bool IsUniform = vputils::isUniformAfterVectorization(Def);
281 
282   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
283   // Check if there is a scalar value for the selected lane.
284   if (!hasScalarValue(Def, {Part, LastLane})) {
285     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
286     // VPExpandSCEVRecipes can also be uniform.
287     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
288             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
289             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
290            "unexpected recipe found to be invariant");
291     IsUniform = true;
292     LastLane = 0;
293   }
294 
295   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
296   // Set the insert point after the last scalarized instruction or after the
297   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
298   // will directly follow the scalar definitions.
299   auto OldIP = Builder.saveIP();
300   auto NewIP =
301       isa<PHINode>(LastInst)
302           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
303           : std::next(BasicBlock::iterator(LastInst));
304   Builder.SetInsertPoint(&*NewIP);
305 
306   // However, if we are vectorizing, we need to construct the vector values.
307   // If the value is known to be uniform after vectorization, we can just
308   // broadcast the scalar value corresponding to lane zero for each unroll
309   // iteration. Otherwise, we construct the vector values using
310   // insertelement instructions. Since the resulting vectors are stored in
311   // State, we will only generate the insertelements once.
312   Value *VectorValue = nullptr;
313   if (IsUniform) {
314     VectorValue = GetBroadcastInstrs(ScalarValue);
315     set(Def, VectorValue, Part);
316   } else {
317     // Initialize packing with insertelements to start from undef.
318     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
319     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
320     set(Def, Undef, Part);
321     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
322       packScalarIntoVectorValue(Def, {Part, Lane});
323     VectorValue = get(Def, Part);
324   }
325   Builder.restoreIP(OldIP);
326   return VectorValue;
327 }
328 
getPreheaderBBFor(VPRecipeBase * R)329 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
330   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
331   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
332 }
333 
addNewMetadata(Instruction * To,const Instruction * Orig)334 void VPTransformState::addNewMetadata(Instruction *To,
335                                       const Instruction *Orig) {
336   // If the loop was versioned with memchecks, add the corresponding no-alias
337   // metadata.
338   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
339     LVer->annotateInstWithNoAlias(To, Orig);
340 }
341 
addMetadata(Instruction * To,Instruction * From)342 void VPTransformState::addMetadata(Instruction *To, Instruction *From) {
343   // No source instruction to transfer metadata from?
344   if (!From)
345     return;
346 
347   propagateMetadata(To, From);
348   addNewMetadata(To, From);
349 }
350 
addMetadata(ArrayRef<Value * > To,Instruction * From)351 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) {
352   // No source instruction to transfer metadata from?
353   if (!From)
354     return;
355 
356   for (Value *V : To) {
357     if (Instruction *I = dyn_cast<Instruction>(V))
358       addMetadata(I, From);
359   }
360 }
361 
setDebugLocFrom(DebugLoc DL)362 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
363   const DILocation *DIL = DL;
364   // When a FSDiscriminator is enabled, we don't need to add the multiply
365   // factors to the discriminators.
366   if (DIL &&
367       Builder.GetInsertBlock()
368           ->getParent()
369           ->shouldEmitDebugInfoForProfiling() &&
370       !EnableFSDiscriminator) {
371     // FIXME: For scalable vectors, assume vscale=1.
372     auto NewDIL =
373         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
374     if (NewDIL)
375       Builder.SetCurrentDebugLocation(*NewDIL);
376     else
377       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
378                         << DIL->getFilename() << " Line: " << DIL->getLine());
379   } else
380     Builder.SetCurrentDebugLocation(DIL);
381 }
382 
packScalarIntoVectorValue(VPValue * Def,const VPIteration & Instance)383 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
384                                                  const VPIteration &Instance) {
385   Value *ScalarInst = get(Def, Instance);
386   Value *VectorValue = get(Def, Instance.Part);
387   VectorValue = Builder.CreateInsertElement(
388       VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
389   set(Def, VectorValue, Instance.Part);
390 }
391 
392 BasicBlock *
createEmptyBasicBlock(VPTransformState::CFGState & CFG)393 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
394   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
395   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
396   BasicBlock *PrevBB = CFG.PrevBB;
397   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
398                                          PrevBB->getParent(), CFG.ExitBB);
399   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
400 
401   // Hook up the new basic block to its predecessors.
402   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
403     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
404     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
405     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
406 
407     assert(PredBB && "Predecessor basic-block not found building successor.");
408     auto *PredBBTerminator = PredBB->getTerminator();
409     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
410 
411     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
412     if (isa<UnreachableInst>(PredBBTerminator)) {
413       assert(PredVPSuccessors.size() == 1 &&
414              "Predecessor ending w/o branch must have single successor.");
415       DebugLoc DL = PredBBTerminator->getDebugLoc();
416       PredBBTerminator->eraseFromParent();
417       auto *Br = BranchInst::Create(NewBB, PredBB);
418       Br->setDebugLoc(DL);
419     } else if (TermBr && !TermBr->isConditional()) {
420       TermBr->setSuccessor(0, NewBB);
421     } else {
422       // Set each forward successor here when it is created, excluding
423       // backedges. A backward successor is set when the branch is created.
424       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
425       assert(!TermBr->getSuccessor(idx) &&
426              "Trying to reset an existing successor block.");
427       TermBr->setSuccessor(idx, NewBB);
428     }
429   }
430   return NewBB;
431 }
432 
execute(VPTransformState * State)433 void VPBasicBlock::execute(VPTransformState *State) {
434   bool Replica = State->Instance && !State->Instance->isFirstIteration();
435   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
436   VPBlockBase *SingleHPred = nullptr;
437   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
438 
439   auto IsLoopRegion = [](VPBlockBase *BB) {
440     auto *R = dyn_cast<VPRegionBlock>(BB);
441     return R && !R->isReplicator();
442   };
443 
444   // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
445   if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
446     // ExitBB can be re-used for the exit block of the Plan.
447     NewBB = State->CFG.ExitBB;
448     State->CFG.PrevBB = NewBB;
449     State->Builder.SetInsertPoint(NewBB->getFirstNonPHI());
450 
451     // Update the branch instruction in the predecessor to branch to ExitBB.
452     VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
453     VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
454     assert(PredVPB->getSingleSuccessor() == this &&
455            "predecessor must have the current block as only successor");
456     BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
457     // The Exit block of a loop is always set to be successor 0 of the Exiting
458     // block.
459     cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
460   } else if (PrevVPBB && /* A */
461              !((SingleHPred = getSingleHierarchicalPredecessor()) &&
462                SingleHPred->getExitingBasicBlock() == PrevVPBB &&
463                PrevVPBB->getSingleHierarchicalSuccessor() &&
464                (SingleHPred->getParent() == getEnclosingLoopRegion() &&
465                 !IsLoopRegion(SingleHPred))) &&         /* B */
466              !(Replica && getPredecessors().empty())) { /* C */
467     // The last IR basic block is reused, as an optimization, in three cases:
468     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
469     // B. when the current VPBB has a single (hierarchical) predecessor which
470     //    is PrevVPBB and the latter has a single (hierarchical) successor which
471     //    both are in the same non-replicator region; and
472     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
473     //    is the exiting VPBB of this region from a previous instance, or the
474     //    predecessor of this region.
475 
476     NewBB = createEmptyBasicBlock(State->CFG);
477     State->Builder.SetInsertPoint(NewBB);
478     // Temporarily terminate with unreachable until CFG is rewired.
479     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
480     // Register NewBB in its loop. In innermost loops its the same for all
481     // BB's.
482     if (State->CurrentVectorLoop)
483       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
484     State->Builder.SetInsertPoint(Terminator);
485     State->CFG.PrevBB = NewBB;
486   }
487 
488   // 2. Fill the IR basic block with IR instructions.
489   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
490                     << " in BB:" << NewBB->getName() << '\n');
491 
492   State->CFG.VPBB2IRBB[this] = NewBB;
493   State->CFG.PrevVPBB = this;
494 
495   for (VPRecipeBase &Recipe : Recipes)
496     Recipe.execute(*State);
497 
498   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
499 }
500 
dropAllReferences(VPValue * NewValue)501 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
502   for (VPRecipeBase &R : Recipes) {
503     for (auto *Def : R.definedValues())
504       Def->replaceAllUsesWith(NewValue);
505 
506     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
507       R.setOperand(I, NewValue);
508   }
509 }
510 
splitAt(iterator SplitAt)511 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
512   assert((SplitAt == end() || SplitAt->getParent() == this) &&
513          "can only split at a position in the same block");
514 
515   SmallVector<VPBlockBase *, 2> Succs(successors());
516   // First, disconnect the current block from its successors.
517   for (VPBlockBase *Succ : Succs)
518     VPBlockUtils::disconnectBlocks(this, Succ);
519 
520   // Create new empty block after the block to split.
521   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
522   VPBlockUtils::insertBlockAfter(SplitBlock, this);
523 
524   // Add successors for block to split to new block.
525   for (VPBlockBase *Succ : Succs)
526     VPBlockUtils::connectBlocks(SplitBlock, Succ);
527 
528   // Finally, move the recipes starting at SplitAt to new block.
529   for (VPRecipeBase &ToMove :
530        make_early_inc_range(make_range(SplitAt, this->end())))
531     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
532 
533   return SplitBlock;
534 }
535 
getEnclosingLoopRegion()536 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
537   VPRegionBlock *P = getParent();
538   if (P && P->isReplicator()) {
539     P = P->getParent();
540     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
541            "unexpected nested replicate regions");
542   }
543   return P;
544 }
545 
hasConditionalTerminator(const VPBasicBlock * VPBB)546 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
547   if (VPBB->empty()) {
548     assert(
549         VPBB->getNumSuccessors() < 2 &&
550         "block with multiple successors doesn't have a recipe as terminator");
551     return false;
552   }
553 
554   const VPRecipeBase *R = &VPBB->back();
555   auto *VPI = dyn_cast<VPInstruction>(R);
556   bool IsCondBranch =
557       isa<VPBranchOnMaskRecipe>(R) ||
558       (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond ||
559                VPI->getOpcode() == VPInstruction::BranchOnCount));
560   (void)IsCondBranch;
561 
562   if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) {
563     assert(IsCondBranch && "block with multiple successors not terminated by "
564                            "conditional branch recipe");
565 
566     return true;
567   }
568 
569   assert(
570       !IsCondBranch &&
571       "block with 0 or 1 successors terminated by conditional branch recipe");
572   return false;
573 }
574 
getTerminator()575 VPRecipeBase *VPBasicBlock::getTerminator() {
576   if (hasConditionalTerminator(this))
577     return &back();
578   return nullptr;
579 }
580 
getTerminator() const581 const VPRecipeBase *VPBasicBlock::getTerminator() const {
582   if (hasConditionalTerminator(this))
583     return &back();
584   return nullptr;
585 }
586 
isExiting() const587 bool VPBasicBlock::isExiting() const {
588   return getParent()->getExitingBasicBlock() == this;
589 }
590 
591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
printSuccessors(raw_ostream & O,const Twine & Indent) const592 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
593   if (getSuccessors().empty()) {
594     O << Indent << "No successors\n";
595   } else {
596     O << Indent << "Successor(s): ";
597     ListSeparator LS;
598     for (auto *Succ : getSuccessors())
599       O << LS << Succ->getName();
600     O << '\n';
601   }
602 }
603 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const604 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
605                          VPSlotTracker &SlotTracker) const {
606   O << Indent << getName() << ":\n";
607 
608   auto RecipeIndent = Indent + "  ";
609   for (const VPRecipeBase &Recipe : *this) {
610     Recipe.print(O, RecipeIndent, SlotTracker);
611     O << '\n';
612   }
613 
614   printSuccessors(O, Indent);
615 }
616 #endif
617 
dropAllReferences(VPValue * NewValue)618 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
619   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
620     // Drop all references in VPBasicBlocks and replace all uses with
621     // DummyValue.
622     Block->dropAllReferences(NewValue);
623 }
624 
execute(VPTransformState * State)625 void VPRegionBlock::execute(VPTransformState *State) {
626   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
627       RPOT(Entry);
628 
629   if (!isReplicator()) {
630     // Create and register the new vector loop.
631     Loop *PrevLoop = State->CurrentVectorLoop;
632     State->CurrentVectorLoop = State->LI->AllocateLoop();
633     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
634     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
635 
636     // Insert the new loop into the loop nest and register the new basic blocks
637     // before calling any utilities such as SCEV that require valid LoopInfo.
638     if (ParentLoop)
639       ParentLoop->addChildLoop(State->CurrentVectorLoop);
640     else
641       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
642 
643     // Visit the VPBlocks connected to "this", starting from it.
644     for (VPBlockBase *Block : RPOT) {
645       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
646       Block->execute(State);
647     }
648 
649     State->CurrentVectorLoop = PrevLoop;
650     return;
651   }
652 
653   assert(!State->Instance && "Replicating a Region with non-null instance.");
654 
655   // Enter replicating mode.
656   State->Instance = VPIteration(0, 0);
657 
658   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
659     State->Instance->Part = Part;
660     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
661     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
662          ++Lane) {
663       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
664       // Visit the VPBlocks connected to \p this, starting from it.
665       for (VPBlockBase *Block : RPOT) {
666         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
667         Block->execute(State);
668       }
669     }
670   }
671 
672   // Exit replicating mode.
673   State->Instance.reset();
674 }
675 
676 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const677 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
678                           VPSlotTracker &SlotTracker) const {
679   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
680   auto NewIndent = Indent + "  ";
681   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
682     O << '\n';
683     BlockBase->print(O, NewIndent, SlotTracker);
684   }
685   O << Indent << "}\n";
686 
687   printSuccessors(O, Indent);
688 }
689 #endif
690 
~VPlan()691 VPlan::~VPlan() {
692   for (auto &KV : LiveOuts)
693     delete KV.second;
694   LiveOuts.clear();
695 
696   if (Entry) {
697     VPValue DummyValue;
698     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
699       Block->dropAllReferences(&DummyValue);
700 
701     VPBlockBase::deleteCFG(Entry);
702 
703     Preheader->dropAllReferences(&DummyValue);
704     delete Preheader;
705   }
706   for (VPValue *VPV : VPLiveInsToFree)
707     delete VPV;
708   if (BackedgeTakenCount)
709     delete BackedgeTakenCount;
710 }
711 
createInitialVPlan(const SCEV * TripCount,ScalarEvolution & SE)712 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) {
713   VPBasicBlock *Preheader = new VPBasicBlock("ph");
714   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
715   auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader);
716   Plan->TripCount =
717       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
718   // Create empty VPRegionBlock, to be filled during processing later.
719   auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/);
720   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
721   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
722   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
723   return Plan;
724 }
725 
prepareToExecute(Value * TripCountV,Value * VectorTripCountV,Value * CanonicalIVStartValue,VPTransformState & State)726 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
727                              Value *CanonicalIVStartValue,
728                              VPTransformState &State) {
729   // Check if the backedge taken count is needed, and if so build it.
730   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
731     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
732     auto *TCMO = Builder.CreateSub(TripCountV,
733                                    ConstantInt::get(TripCountV->getType(), 1),
734                                    "trip.count.minus.1");
735     auto VF = State.VF;
736     Value *VTCMO =
737         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
738     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
739       State.set(BackedgeTakenCount, VTCMO, Part);
740   }
741 
742   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
743     State.set(&VectorTripCount, VectorTripCountV, Part);
744 
745   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
746   // FIXME: Model VF * UF computation completely in VPlan.
747   State.set(&VFxUF,
748             createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF),
749             0);
750 
751   // When vectorizing the epilogue loop, the canonical induction start value
752   // needs to be changed from zero to the value after the main vector loop.
753   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
754   if (CanonicalIVStartValue) {
755     VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue);
756     auto *IV = getCanonicalIV();
757     assert(all_of(IV->users(),
758                   [](const VPUser *U) {
759                     return isa<VPScalarIVStepsRecipe>(U) ||
760                            isa<VPDerivedIVRecipe>(U) ||
761                            cast<VPInstruction>(U)->getOpcode() ==
762                                Instruction::Add;
763                   }) &&
764            "the canonical IV should only be used by its increment or "
765            "ScalarIVSteps when resetting the start value");
766     IV->setOperand(0, VPV);
767   }
768 }
769 
770 /// Generate the code inside the preheader and body of the vectorized loop.
771 /// Assumes a single pre-header basic-block was created for this. Introduce
772 /// additional basic-blocks as needed, and fill them all.
execute(VPTransformState * State)773 void VPlan::execute(VPTransformState *State) {
774   // Set the reverse mapping from VPValues to Values for code generation.
775   for (auto &Entry : Value2VPValue)
776     State->VPValue2Value[Entry.second] = Entry.first;
777 
778   // Initialize CFG state.
779   State->CFG.PrevVPBB = nullptr;
780   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
781   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
782   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
783 
784   // Generate code in the loop pre-header and body.
785   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
786     Block->execute(State);
787 
788   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
789   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
790 
791   // Fix the latch value of canonical, reduction and first-order recurrences
792   // phis in the vector loop.
793   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
794   for (VPRecipeBase &R : Header->phis()) {
795     // Skip phi-like recipes that generate their backedege values themselves.
796     if (isa<VPWidenPHIRecipe>(&R))
797       continue;
798 
799     if (isa<VPWidenPointerInductionRecipe>(&R) ||
800         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
801       PHINode *Phi = nullptr;
802       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
803         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
804       } else {
805         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
806         // TODO: Split off the case that all users of a pointer phi are scalar
807         // from the VPWidenPointerInductionRecipe.
808         if (WidenPhi->onlyScalarsGenerated(State->VF))
809           continue;
810 
811         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
812         Phi = cast<PHINode>(GEP->getPointerOperand());
813       }
814 
815       Phi->setIncomingBlock(1, VectorLatchBB);
816 
817       // Move the last step to the end of the latch block. This ensures
818       // consistent placement of all induction updates.
819       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
820       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
821       continue;
822     }
823 
824     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
825     // For  canonical IV, first-order recurrences and in-order reduction phis,
826     // only a single part is generated, which provides the last part from the
827     // previous iteration. For non-ordered reductions all UF parts are
828     // generated.
829     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
830                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
831                             (isa<VPReductionPHIRecipe>(PhiR) &&
832                              cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
833     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
834 
835     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
836       Value *Phi = State->get(PhiR, Part);
837       Value *Val = State->get(PhiR->getBackedgeValue(),
838                               SinglePartNeeded ? State->UF - 1 : Part);
839       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
840     }
841   }
842 
843   // We do not attempt to preserve DT for outer loop vectorization currently.
844   if (!EnableVPlanNativePath) {
845     BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
846     State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
847     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
848                         State->CFG.ExitBB);
849   }
850 }
851 
852 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
printLiveIns(raw_ostream & O) const853 void VPlan::printLiveIns(raw_ostream &O) const {
854   VPSlotTracker SlotTracker(this);
855 
856   if (VFxUF.getNumUsers() > 0) {
857     O << "\nLive-in ";
858     VFxUF.printAsOperand(O, SlotTracker);
859     O << " = VF * UF";
860   }
861 
862   if (VectorTripCount.getNumUsers() > 0) {
863     O << "\nLive-in ";
864     VectorTripCount.printAsOperand(O, SlotTracker);
865     O << " = vector-trip-count";
866   }
867 
868   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
869     O << "\nLive-in ";
870     BackedgeTakenCount->printAsOperand(O, SlotTracker);
871     O << " = backedge-taken count";
872   }
873 
874   O << "\n";
875   if (TripCount->isLiveIn())
876     O << "Live-in ";
877   TripCount->printAsOperand(O, SlotTracker);
878   O << " = original trip-count";
879   O << "\n";
880 }
881 
882 LLVM_DUMP_METHOD
print(raw_ostream & O) const883 void VPlan::print(raw_ostream &O) const {
884   VPSlotTracker SlotTracker(this);
885 
886   O << "VPlan '" << getName() << "' {";
887 
888   printLiveIns(O);
889 
890   if (!getPreheader()->empty()) {
891     O << "\n";
892     getPreheader()->print(O, "", SlotTracker);
893   }
894 
895   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
896     O << '\n';
897     Block->print(O, "", SlotTracker);
898   }
899 
900   if (!LiveOuts.empty())
901     O << "\n";
902   for (const auto &KV : LiveOuts) {
903     KV.second->print(O, SlotTracker);
904   }
905 
906   O << "}\n";
907 }
908 
getName() const909 std::string VPlan::getName() const {
910   std::string Out;
911   raw_string_ostream RSO(Out);
912   RSO << Name << " for ";
913   if (!VFs.empty()) {
914     RSO << "VF={" << VFs[0];
915     for (ElementCount VF : drop_begin(VFs))
916       RSO << "," << VF;
917     RSO << "},";
918   }
919 
920   if (UFs.empty()) {
921     RSO << "UF>=1";
922   } else {
923     RSO << "UF={" << UFs[0];
924     for (unsigned UF : drop_begin(UFs))
925       RSO << "," << UF;
926     RSO << "}";
927   }
928 
929   return Out;
930 }
931 
932 LLVM_DUMP_METHOD
printDOT(raw_ostream & O) const933 void VPlan::printDOT(raw_ostream &O) const {
934   VPlanPrinter Printer(O, *this);
935   Printer.dump();
936 }
937 
938 LLVM_DUMP_METHOD
dump() const939 void VPlan::dump() const { print(dbgs()); }
940 #endif
941 
addLiveOut(PHINode * PN,VPValue * V)942 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
943   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
944   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
945 }
946 
updateDominatorTree(DominatorTree * DT,BasicBlock * LoopHeaderBB,BasicBlock * LoopLatchBB,BasicBlock * LoopExitBB)947 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
948                                 BasicBlock *LoopLatchBB,
949                                 BasicBlock *LoopExitBB) {
950   // The vector body may be more than a single basic-block by this point.
951   // Update the dominator tree information inside the vector body by propagating
952   // it from header to latch, expecting only triangular control-flow, if any.
953   BasicBlock *PostDomSucc = nullptr;
954   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
955     // Get the list of successors of this block.
956     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
957     assert(Succs.size() <= 2 &&
958            "Basic block in vector loop has more than 2 successors.");
959     PostDomSucc = Succs[0];
960     if (Succs.size() == 1) {
961       assert(PostDomSucc->getSinglePredecessor() &&
962              "PostDom successor has more than one predecessor.");
963       DT->addNewBlock(PostDomSucc, BB);
964       continue;
965     }
966     BasicBlock *InterimSucc = Succs[1];
967     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
968       PostDomSucc = Succs[1];
969       InterimSucc = Succs[0];
970     }
971     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
972            "One successor of a basic block does not lead to the other.");
973     assert(InterimSucc->getSinglePredecessor() &&
974            "Interim successor has more than one predecessor.");
975     assert(PostDomSucc->hasNPredecessors(2) &&
976            "PostDom successor has more than two predecessors.");
977     DT->addNewBlock(InterimSucc, BB);
978     DT->addNewBlock(PostDomSucc, BB);
979   }
980   // Latch block is a new dominator for the loop exit.
981   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
982   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
983 }
984 
985 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
986 
getUID(const VPBlockBase * Block)987 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
988   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
989          Twine(getOrCreateBID(Block));
990 }
991 
getOrCreateName(const VPBlockBase * Block)992 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
993   const std::string &Name = Block->getName();
994   if (!Name.empty())
995     return Name;
996   return "VPB" + Twine(getOrCreateBID(Block));
997 }
998 
dump()999 void VPlanPrinter::dump() {
1000   Depth = 1;
1001   bumpIndent(0);
1002   OS << "digraph VPlan {\n";
1003   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1004   if (!Plan.getName().empty())
1005     OS << "\\n" << DOT::EscapeString(Plan.getName());
1006 
1007   {
1008     // Print live-ins.
1009   std::string Str;
1010   raw_string_ostream SS(Str);
1011   Plan.printLiveIns(SS);
1012   SmallVector<StringRef, 0> Lines;
1013   StringRef(Str).rtrim('\n').split(Lines, "\n");
1014   for (auto Line : Lines)
1015     OS << DOT::EscapeString(Line.str()) << "\\n";
1016   }
1017 
1018   OS << "\"]\n";
1019   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1020   OS << "edge [fontname=Courier, fontsize=30]\n";
1021   OS << "compound=true\n";
1022 
1023   dumpBlock(Plan.getPreheader());
1024 
1025   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1026     dumpBlock(Block);
1027 
1028   OS << "}\n";
1029 }
1030 
dumpBlock(const VPBlockBase * Block)1031 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1032   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1033     dumpBasicBlock(BasicBlock);
1034   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1035     dumpRegion(Region);
1036   else
1037     llvm_unreachable("Unsupported kind of VPBlock.");
1038 }
1039 
drawEdge(const VPBlockBase * From,const VPBlockBase * To,bool Hidden,const Twine & Label)1040 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1041                             bool Hidden, const Twine &Label) {
1042   // Due to "dot" we print an edge between two regions as an edge between the
1043   // exiting basic block and the entry basic of the respective regions.
1044   const VPBlockBase *Tail = From->getExitingBasicBlock();
1045   const VPBlockBase *Head = To->getEntryBasicBlock();
1046   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1047   OS << " [ label=\"" << Label << '\"';
1048   if (Tail != From)
1049     OS << " ltail=" << getUID(From);
1050   if (Head != To)
1051     OS << " lhead=" << getUID(To);
1052   if (Hidden)
1053     OS << "; splines=none";
1054   OS << "]\n";
1055 }
1056 
dumpEdges(const VPBlockBase * Block)1057 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1058   auto &Successors = Block->getSuccessors();
1059   if (Successors.size() == 1)
1060     drawEdge(Block, Successors.front(), false, "");
1061   else if (Successors.size() == 2) {
1062     drawEdge(Block, Successors.front(), false, "T");
1063     drawEdge(Block, Successors.back(), false, "F");
1064   } else {
1065     unsigned SuccessorNumber = 0;
1066     for (auto *Successor : Successors)
1067       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1068   }
1069 }
1070 
dumpBasicBlock(const VPBasicBlock * BasicBlock)1071 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1072   // Implement dot-formatted dump by performing plain-text dump into the
1073   // temporary storage followed by some post-processing.
1074   OS << Indent << getUID(BasicBlock) << " [label =\n";
1075   bumpIndent(1);
1076   std::string Str;
1077   raw_string_ostream SS(Str);
1078   // Use no indentation as we need to wrap the lines into quotes ourselves.
1079   BasicBlock->print(SS, "", SlotTracker);
1080 
1081   // We need to process each line of the output separately, so split
1082   // single-string plain-text dump.
1083   SmallVector<StringRef, 0> Lines;
1084   StringRef(Str).rtrim('\n').split(Lines, "\n");
1085 
1086   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1087     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1088   };
1089 
1090   // Don't need the "+" after the last line.
1091   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1092     EmitLine(Line, " +\n");
1093   EmitLine(Lines.back(), "\n");
1094 
1095   bumpIndent(-1);
1096   OS << Indent << "]\n";
1097 
1098   dumpEdges(BasicBlock);
1099 }
1100 
dumpRegion(const VPRegionBlock * Region)1101 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1102   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1103   bumpIndent(1);
1104   OS << Indent << "fontname=Courier\n"
1105      << Indent << "label=\""
1106      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1107      << DOT::EscapeString(Region->getName()) << "\"\n";
1108   // Dump the blocks of the region.
1109   assert(Region->getEntry() && "Region contains no inner blocks.");
1110   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1111     dumpBlock(Block);
1112   bumpIndent(-1);
1113   OS << Indent << "}\n";
1114   dumpEdges(Region);
1115 }
1116 
print(raw_ostream & O) const1117 void VPlanIngredient::print(raw_ostream &O) const {
1118   if (auto *Inst = dyn_cast<Instruction>(V)) {
1119     if (!Inst->getType()->isVoidTy()) {
1120       Inst->printAsOperand(O, false);
1121       O << " = ";
1122     }
1123     O << Inst->getOpcodeName() << " ";
1124     unsigned E = Inst->getNumOperands();
1125     if (E > 0) {
1126       Inst->getOperand(0)->printAsOperand(O, false);
1127       for (unsigned I = 1; I < E; ++I)
1128         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1129     }
1130   } else // !Inst
1131     V->printAsOperand(O, false);
1132 }
1133 
1134 #endif
1135 
1136 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1137 
replaceAllUsesWith(VPValue * New)1138 void VPValue::replaceAllUsesWith(VPValue *New) {
1139   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1140 }
1141 
replaceUsesWithIf(VPValue * New,llvm::function_ref<bool (VPUser & U,unsigned Idx)> ShouldReplace)1142 void VPValue::replaceUsesWithIf(
1143     VPValue *New,
1144     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1145   // Note that this early exit is required for correctness; the implementation
1146   // below relies on the number of users for this VPValue to decrease, which
1147   // isn't the case if this == New.
1148   if (this == New)
1149     return;
1150 
1151   for (unsigned J = 0; J < getNumUsers();) {
1152     VPUser *User = Users[J];
1153     bool RemovedUser = false;
1154     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1155       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1156         continue;
1157 
1158       RemovedUser = true;
1159       User->setOperand(I, New);
1160     }
1161     // If a user got removed after updating the current user, the next user to
1162     // update will be moved to the current position, so we only need to
1163     // increment the index if the number of users did not change.
1164     if (!RemovedUser)
1165       J++;
1166   }
1167 }
1168 
1169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
printAsOperand(raw_ostream & OS,VPSlotTracker & Tracker) const1170 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1171   if (const Value *UV = getUnderlyingValue()) {
1172     OS << "ir<";
1173     UV->printAsOperand(OS, false);
1174     OS << ">";
1175     return;
1176   }
1177 
1178   unsigned Slot = Tracker.getSlot(this);
1179   if (Slot == unsigned(-1))
1180     OS << "<badref>";
1181   else
1182     OS << "vp<%" << Tracker.getSlot(this) << ">";
1183 }
1184 
printOperands(raw_ostream & O,VPSlotTracker & SlotTracker) const1185 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1186   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1187     Op->printAsOperand(O, SlotTracker);
1188   });
1189 }
1190 #endif
1191 
visitRegion(VPRegionBlock * Region,Old2NewTy & Old2New,InterleavedAccessInfo & IAI)1192 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1193                                           Old2NewTy &Old2New,
1194                                           InterleavedAccessInfo &IAI) {
1195   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1196       RPOT(Region->getEntry());
1197   for (VPBlockBase *Base : RPOT) {
1198     visitBlock(Base, Old2New, IAI);
1199   }
1200 }
1201 
visitBlock(VPBlockBase * Block,Old2NewTy & Old2New,InterleavedAccessInfo & IAI)1202 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1203                                          InterleavedAccessInfo &IAI) {
1204   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1205     for (VPRecipeBase &VPI : *VPBB) {
1206       if (isa<VPHeaderPHIRecipe>(&VPI))
1207         continue;
1208       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1209       auto *VPInst = cast<VPInstruction>(&VPI);
1210 
1211       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1212       if (!Inst)
1213         continue;
1214       auto *IG = IAI.getInterleaveGroup(Inst);
1215       if (!IG)
1216         continue;
1217 
1218       auto NewIGIter = Old2New.find(IG);
1219       if (NewIGIter == Old2New.end())
1220         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1221             IG->getFactor(), IG->isReverse(), IG->getAlign());
1222 
1223       if (Inst == IG->getInsertPos())
1224         Old2New[IG]->setInsertPos(VPInst);
1225 
1226       InterleaveGroupMap[VPInst] = Old2New[IG];
1227       InterleaveGroupMap[VPInst]->insertMember(
1228           VPInst, IG->getIndex(Inst),
1229           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1230                                 : IG->getFactor()));
1231     }
1232   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1233     visitRegion(Region, Old2New, IAI);
1234   else
1235     llvm_unreachable("Unsupported kind of VPBlock.");
1236 }
1237 
VPInterleavedAccessInfo(VPlan & Plan,InterleavedAccessInfo & IAI)1238 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1239                                                  InterleavedAccessInfo &IAI) {
1240   Old2NewTy Old2New;
1241   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1242 }
1243 
assignSlot(const VPValue * V)1244 void VPSlotTracker::assignSlot(const VPValue *V) {
1245   assert(!Slots.contains(V) && "VPValue already has a slot!");
1246   Slots[V] = NextSlot++;
1247 }
1248 
assignSlots(const VPlan & Plan)1249 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1250   if (Plan.VFxUF.getNumUsers() > 0)
1251     assignSlot(&Plan.VFxUF);
1252   assignSlot(&Plan.VectorTripCount);
1253   if (Plan.BackedgeTakenCount)
1254     assignSlot(Plan.BackedgeTakenCount);
1255   assignSlots(Plan.getPreheader());
1256 
1257   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1258       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1259   for (const VPBasicBlock *VPBB :
1260        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1261     assignSlots(VPBB);
1262 }
1263 
assignSlots(const VPBasicBlock * VPBB)1264 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1265   for (const VPRecipeBase &Recipe : *VPBB)
1266     for (VPValue *Def : Recipe.definedValues())
1267       assignSlot(Def);
1268 }
1269 
onlyFirstLaneUsed(VPValue * Def)1270 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1271   return all_of(Def->users(),
1272                 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1273 }
1274 
onlyFirstPartUsed(VPValue * Def)1275 bool vputils::onlyFirstPartUsed(VPValue *Def) {
1276   return all_of(Def->users(),
1277                 [Def](VPUser *U) { return U->onlyFirstPartUsed(Def); });
1278 }
1279 
getOrCreateVPValueForSCEVExpr(VPlan & Plan,const SCEV * Expr,ScalarEvolution & SE)1280 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1281                                                 ScalarEvolution &SE) {
1282   if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1283     return Expanded;
1284   VPValue *Expanded = nullptr;
1285   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1286     Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1287   else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1288     Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1289   else {
1290     Expanded = new VPExpandSCEVRecipe(Expr, SE);
1291     Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1292   }
1293   Plan.addSCEVExpansion(Expr, Expanded);
1294   return Expanded;
1295 }
1296