xref: /openbsd/gnu/llvm/clang/include/clang/AST/Decl.h (revision 12c85518)
1 //===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_DECL_H
14 #define LLVM_CLANG_AST_DECL_H
15 
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/DeclAccessPair.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclarationName.h"
21 #include "clang/AST/ExternalASTSource.h"
22 #include "clang/AST/NestedNameSpecifier.h"
23 #include "clang/AST/Redeclarable.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/AddressSpaces.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/LLVM.h"
29 #include "clang/Basic/Linkage.h"
30 #include "clang/Basic/OperatorKinds.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/PragmaKinds.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/Specifiers.h"
35 #include "clang/Basic/Visibility.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/PointerIntPair.h"
39 #include "llvm/ADT/PointerUnion.h"
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/ADT/iterator_range.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/TrailingObjects.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <optional>
49 #include <string>
50 #include <utility>
51 
52 namespace clang {
53 
54 class ASTContext;
55 struct ASTTemplateArgumentListInfo;
56 class CompoundStmt;
57 class DependentFunctionTemplateSpecializationInfo;
58 class EnumDecl;
59 class Expr;
60 class FunctionTemplateDecl;
61 class FunctionTemplateSpecializationInfo;
62 class FunctionTypeLoc;
63 class LabelStmt;
64 class MemberSpecializationInfo;
65 class Module;
66 class NamespaceDecl;
67 class ParmVarDecl;
68 class RecordDecl;
69 class Stmt;
70 class StringLiteral;
71 class TagDecl;
72 class TemplateArgumentList;
73 class TemplateArgumentListInfo;
74 class TemplateParameterList;
75 class TypeAliasTemplateDecl;
76 class UnresolvedSetImpl;
77 class VarTemplateDecl;
78 
79 /// The top declaration context.
80 class TranslationUnitDecl : public Decl,
81                             public DeclContext,
82                             public Redeclarable<TranslationUnitDecl> {
83   using redeclarable_base = Redeclarable<TranslationUnitDecl>;
84 
getNextRedeclarationImpl()85   TranslationUnitDecl *getNextRedeclarationImpl() override {
86     return getNextRedeclaration();
87   }
88 
getPreviousDeclImpl()89   TranslationUnitDecl *getPreviousDeclImpl() override {
90     return getPreviousDecl();
91   }
92 
getMostRecentDeclImpl()93   TranslationUnitDecl *getMostRecentDeclImpl() override {
94     return getMostRecentDecl();
95   }
96 
97   ASTContext &Ctx;
98 
99   /// The (most recently entered) anonymous namespace for this
100   /// translation unit, if one has been created.
101   NamespaceDecl *AnonymousNamespace = nullptr;
102 
103   explicit TranslationUnitDecl(ASTContext &ctx);
104 
105   virtual void anchor();
106 
107 public:
108   using redecl_range = redeclarable_base::redecl_range;
109   using redecl_iterator = redeclarable_base::redecl_iterator;
110 
111   using redeclarable_base::getMostRecentDecl;
112   using redeclarable_base::getPreviousDecl;
113   using redeclarable_base::isFirstDecl;
114   using redeclarable_base::redecls;
115   using redeclarable_base::redecls_begin;
116   using redeclarable_base::redecls_end;
117 
getASTContext()118   ASTContext &getASTContext() const { return Ctx; }
119 
getAnonymousNamespace()120   NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
setAnonymousNamespace(NamespaceDecl * D)121   void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
122 
123   static TranslationUnitDecl *Create(ASTContext &C);
124 
125   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)126   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)127   static bool classofKind(Kind K) { return K == TranslationUnit; }
castToDeclContext(const TranslationUnitDecl * D)128   static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
129     return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
130   }
castFromDeclContext(const DeclContext * DC)131   static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
132     return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
133   }
134 };
135 
136 /// Represents a `#pragma comment` line. Always a child of
137 /// TranslationUnitDecl.
138 class PragmaCommentDecl final
139     : public Decl,
140       private llvm::TrailingObjects<PragmaCommentDecl, char> {
141   friend class ASTDeclReader;
142   friend class ASTDeclWriter;
143   friend TrailingObjects;
144 
145   PragmaMSCommentKind CommentKind;
146 
PragmaCommentDecl(TranslationUnitDecl * TU,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind)147   PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
148                     PragmaMSCommentKind CommentKind)
149       : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
150 
151   virtual void anchor();
152 
153 public:
154   static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
155                                    SourceLocation CommentLoc,
156                                    PragmaMSCommentKind CommentKind,
157                                    StringRef Arg);
158   static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
159                                                unsigned ArgSize);
160 
getCommentKind()161   PragmaMSCommentKind getCommentKind() const { return CommentKind; }
162 
getArg()163   StringRef getArg() const { return getTrailingObjects<char>(); }
164 
165   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)166   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)167   static bool classofKind(Kind K) { return K == PragmaComment; }
168 };
169 
170 /// Represents a `#pragma detect_mismatch` line. Always a child of
171 /// TranslationUnitDecl.
172 class PragmaDetectMismatchDecl final
173     : public Decl,
174       private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
175   friend class ASTDeclReader;
176   friend class ASTDeclWriter;
177   friend TrailingObjects;
178 
179   size_t ValueStart;
180 
PragmaDetectMismatchDecl(TranslationUnitDecl * TU,SourceLocation Loc,size_t ValueStart)181   PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
182                            size_t ValueStart)
183       : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
184 
185   virtual void anchor();
186 
187 public:
188   static PragmaDetectMismatchDecl *Create(const ASTContext &C,
189                                           TranslationUnitDecl *DC,
190                                           SourceLocation Loc, StringRef Name,
191                                           StringRef Value);
192   static PragmaDetectMismatchDecl *
193   CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
194 
getName()195   StringRef getName() const { return getTrailingObjects<char>(); }
getValue()196   StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
197 
198   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)199   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)200   static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
201 };
202 
203 /// Declaration context for names declared as extern "C" in C++. This
204 /// is neither the semantic nor lexical context for such declarations, but is
205 /// used to check for conflicts with other extern "C" declarations. Example:
206 ///
207 /// \code
208 ///   namespace N { extern "C" void f(); } // #1
209 ///   void N::f() {}                       // #2
210 ///   namespace M { extern "C" void f(); } // #3
211 /// \endcode
212 ///
213 /// The semantic context of #1 is namespace N and its lexical context is the
214 /// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
215 /// context is the TU. However, both declarations are also visible in the
216 /// extern "C" context.
217 ///
218 /// The declaration at #3 finds it is a redeclaration of \c N::f through
219 /// lookup in the extern "C" context.
220 class ExternCContextDecl : public Decl, public DeclContext {
ExternCContextDecl(TranslationUnitDecl * TU)221   explicit ExternCContextDecl(TranslationUnitDecl *TU)
222     : Decl(ExternCContext, TU, SourceLocation()),
223       DeclContext(ExternCContext) {}
224 
225   virtual void anchor();
226 
227 public:
228   static ExternCContextDecl *Create(const ASTContext &C,
229                                     TranslationUnitDecl *TU);
230 
231   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)232   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)233   static bool classofKind(Kind K) { return K == ExternCContext; }
castToDeclContext(const ExternCContextDecl * D)234   static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
235     return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
236   }
castFromDeclContext(const DeclContext * DC)237   static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
238     return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
239   }
240 };
241 
242 /// This represents a decl that may have a name.  Many decls have names such
243 /// as ObjCMethodDecl, but not \@class, etc.
244 ///
245 /// Note that not every NamedDecl is actually named (e.g., a struct might
246 /// be anonymous), and not every name is an identifier.
247 class NamedDecl : public Decl {
248   /// The name of this declaration, which is typically a normal
249   /// identifier but may also be a special kind of name (C++
250   /// constructor, Objective-C selector, etc.)
251   DeclarationName Name;
252 
253   virtual void anchor();
254 
255 private:
256   NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
257 
258 protected:
NamedDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N)259   NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
260       : Decl(DK, DC, L), Name(N) {}
261 
262 public:
263   /// Get the identifier that names this declaration, if there is one.
264   ///
265   /// This will return NULL if this declaration has no name (e.g., for
266   /// an unnamed class) or if the name is a special name (C++ constructor,
267   /// Objective-C selector, etc.).
getIdentifier()268   IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
269 
270   /// Get the name of identifier for this declaration as a StringRef.
271   ///
272   /// This requires that the declaration have a name and that it be a simple
273   /// identifier.
getName()274   StringRef getName() const {
275     assert(Name.isIdentifier() && "Name is not a simple identifier");
276     return getIdentifier() ? getIdentifier()->getName() : "";
277   }
278 
279   /// Get a human-readable name for the declaration, even if it is one of the
280   /// special kinds of names (C++ constructor, Objective-C selector, etc).
281   ///
282   /// Creating this name requires expensive string manipulation, so it should
283   /// be called only when performance doesn't matter. For simple declarations,
284   /// getNameAsCString() should suffice.
285   //
286   // FIXME: This function should be renamed to indicate that it is not just an
287   // alternate form of getName(), and clients should move as appropriate.
288   //
289   // FIXME: Deprecated, move clients to getName().
getNameAsString()290   std::string getNameAsString() const { return Name.getAsString(); }
291 
292   /// Pretty-print the unqualified name of this declaration. Can be overloaded
293   /// by derived classes to provide a more user-friendly name when appropriate.
294   virtual void printName(raw_ostream &OS, const PrintingPolicy &Policy) const;
295   /// Calls printName() with the ASTContext printing policy from the decl.
296   void printName(raw_ostream &OS) const;
297 
298   /// Get the actual, stored name of the declaration, which may be a special
299   /// name.
300   ///
301   /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
302   /// should be sent into the diagnostic instead of using the result of
303   /// \p getDeclName().
304   ///
305   /// A \p DeclarationName in a diagnostic will just be streamed to the output,
306   /// which will directly result in a call to \p DeclarationName::print.
307   ///
308   /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
309   /// \p DeclarationName::print, but with two customisation points along the
310   /// way (\p getNameForDiagnostic and \p printName). These are used to print
311   /// the template arguments if any, and to provide a user-friendly name for
312   /// some entities (such as unnamed variables and anonymous records).
getDeclName()313   DeclarationName getDeclName() const { return Name; }
314 
315   /// Set the name of this declaration.
setDeclName(DeclarationName N)316   void setDeclName(DeclarationName N) { Name = N; }
317 
318   /// Returns a human-readable qualified name for this declaration, like
319   /// A::B::i, for i being member of namespace A::B.
320   ///
321   /// If the declaration is not a member of context which can be named (record,
322   /// namespace), it will return the same result as printName().
323   ///
324   /// Creating this name is expensive, so it should be called only when
325   /// performance doesn't matter.
326   void printQualifiedName(raw_ostream &OS) const;
327   void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
328 
329   /// Print only the nested name specifier part of a fully-qualified name,
330   /// including the '::' at the end. E.g.
331   ///    when `printQualifiedName(D)` prints "A::B::i",
332   ///    this function prints "A::B::".
333   void printNestedNameSpecifier(raw_ostream &OS) const;
334   void printNestedNameSpecifier(raw_ostream &OS,
335                                 const PrintingPolicy &Policy) const;
336 
337   // FIXME: Remove string version.
338   std::string getQualifiedNameAsString() const;
339 
340   /// Appends a human-readable name for this declaration into the given stream.
341   ///
342   /// This is the method invoked by Sema when displaying a NamedDecl
343   /// in a diagnostic.  It does not necessarily produce the same
344   /// result as printName(); for example, class template
345   /// specializations are printed with their template arguments.
346   virtual void getNameForDiagnostic(raw_ostream &OS,
347                                     const PrintingPolicy &Policy,
348                                     bool Qualified) const;
349 
350   /// Determine whether this declaration, if known to be well-formed within
351   /// its context, will replace the declaration OldD if introduced into scope.
352   ///
353   /// A declaration will replace another declaration if, for example, it is
354   /// a redeclaration of the same variable or function, but not if it is a
355   /// declaration of a different kind (function vs. class) or an overloaded
356   /// function.
357   ///
358   /// \param IsKnownNewer \c true if this declaration is known to be newer
359   /// than \p OldD (for instance, if this declaration is newly-created).
360   bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
361 
362   /// Determine whether this declaration has linkage.
363   bool hasLinkage() const;
364 
365   using Decl::isModulePrivate;
366   using Decl::setModulePrivate;
367 
368   /// Determine whether this declaration is a C++ class member.
isCXXClassMember()369   bool isCXXClassMember() const {
370     const DeclContext *DC = getDeclContext();
371 
372     // C++0x [class.mem]p1:
373     //   The enumerators of an unscoped enumeration defined in
374     //   the class are members of the class.
375     if (isa<EnumDecl>(DC))
376       DC = DC->getRedeclContext();
377 
378     return DC->isRecord();
379   }
380 
381   /// Determine whether the given declaration is an instance member of
382   /// a C++ class.
383   bool isCXXInstanceMember() const;
384 
385   /// Determine if the declaration obeys the reserved identifier rules of the
386   /// given language.
387   ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
388 
389   /// Determine what kind of linkage this entity has.
390   ///
391   /// This is not the linkage as defined by the standard or the codegen notion
392   /// of linkage. It is just an implementation detail that is used to compute
393   /// those.
394   Linkage getLinkageInternal() const;
395 
396   /// Get the linkage from a semantic point of view. Entities in
397   /// anonymous namespaces are external (in c++98).
getFormalLinkage()398   Linkage getFormalLinkage() const {
399     return clang::getFormalLinkage(getLinkageInternal());
400   }
401 
402   /// True if this decl has external linkage.
hasExternalFormalLinkage()403   bool hasExternalFormalLinkage() const {
404     return isExternalFormalLinkage(getLinkageInternal());
405   }
406 
isExternallyVisible()407   bool isExternallyVisible() const {
408     return clang::isExternallyVisible(getLinkageInternal());
409   }
410 
411   /// Determine whether this declaration can be redeclared in a
412   /// different translation unit.
isExternallyDeclarable()413   bool isExternallyDeclarable() const {
414     return isExternallyVisible() && !getOwningModuleForLinkage();
415   }
416 
417   /// Determines the visibility of this entity.
getVisibility()418   Visibility getVisibility() const {
419     return getLinkageAndVisibility().getVisibility();
420   }
421 
422   /// Determines the linkage and visibility of this entity.
423   LinkageInfo getLinkageAndVisibility() const;
424 
425   /// Kinds of explicit visibility.
426   enum ExplicitVisibilityKind {
427     /// Do an LV computation for, ultimately, a type.
428     /// Visibility may be restricted by type visibility settings and
429     /// the visibility of template arguments.
430     VisibilityForType,
431 
432     /// Do an LV computation for, ultimately, a non-type declaration.
433     /// Visibility may be restricted by value visibility settings and
434     /// the visibility of template arguments.
435     VisibilityForValue
436   };
437 
438   /// If visibility was explicitly specified for this
439   /// declaration, return that visibility.
440   std::optional<Visibility>
441   getExplicitVisibility(ExplicitVisibilityKind kind) const;
442 
443   /// True if the computed linkage is valid. Used for consistency
444   /// checking. Should always return true.
445   bool isLinkageValid() const;
446 
447   /// True if something has required us to compute the linkage
448   /// of this declaration.
449   ///
450   /// Language features which can retroactively change linkage (like a
451   /// typedef name for linkage purposes) may need to consider this,
452   /// but hopefully only in transitory ways during parsing.
hasLinkageBeenComputed()453   bool hasLinkageBeenComputed() const {
454     return hasCachedLinkage();
455   }
456 
457   /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
458   /// the underlying named decl.
getUnderlyingDecl()459   NamedDecl *getUnderlyingDecl() {
460     // Fast-path the common case.
461     if (this->getKind() != UsingShadow &&
462         this->getKind() != ConstructorUsingShadow &&
463         this->getKind() != ObjCCompatibleAlias &&
464         this->getKind() != NamespaceAlias)
465       return this;
466 
467     return getUnderlyingDeclImpl();
468   }
getUnderlyingDecl()469   const NamedDecl *getUnderlyingDecl() const {
470     return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
471   }
472 
getMostRecentDecl()473   NamedDecl *getMostRecentDecl() {
474     return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
475   }
getMostRecentDecl()476   const NamedDecl *getMostRecentDecl() const {
477     return const_cast<NamedDecl*>(this)->getMostRecentDecl();
478   }
479 
480   ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
481 
classof(const Decl * D)482   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)483   static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
484 };
485 
486 inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
487   ND.printName(OS);
488   return OS;
489 }
490 
491 /// Represents the declaration of a label.  Labels also have a
492 /// corresponding LabelStmt, which indicates the position that the label was
493 /// defined at.  For normal labels, the location of the decl is the same as the
494 /// location of the statement.  For GNU local labels (__label__), the decl
495 /// location is where the __label__ is.
496 class LabelDecl : public NamedDecl {
497   LabelStmt *TheStmt;
498   StringRef MSAsmName;
499   bool MSAsmNameResolved = false;
500 
501   /// For normal labels, this is the same as the main declaration
502   /// label, i.e., the location of the identifier; for GNU local labels,
503   /// this is the location of the __label__ keyword.
504   SourceLocation LocStart;
505 
LabelDecl(DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,LabelStmt * S,SourceLocation StartL)506   LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
507             LabelStmt *S, SourceLocation StartL)
508       : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
509 
510   void anchor() override;
511 
512 public:
513   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
514                            SourceLocation IdentL, IdentifierInfo *II);
515   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
516                            SourceLocation IdentL, IdentifierInfo *II,
517                            SourceLocation GnuLabelL);
518   static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
519 
getStmt()520   LabelStmt *getStmt() const { return TheStmt; }
setStmt(LabelStmt * T)521   void setStmt(LabelStmt *T) { TheStmt = T; }
522 
isGnuLocal()523   bool isGnuLocal() const { return LocStart != getLocation(); }
setLocStart(SourceLocation L)524   void setLocStart(SourceLocation L) { LocStart = L; }
525 
getSourceRange()526   SourceRange getSourceRange() const override LLVM_READONLY {
527     return SourceRange(LocStart, getLocation());
528   }
529 
isMSAsmLabel()530   bool isMSAsmLabel() const { return !MSAsmName.empty(); }
isResolvedMSAsmLabel()531   bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
532   void setMSAsmLabel(StringRef Name);
getMSAsmLabel()533   StringRef getMSAsmLabel() const { return MSAsmName; }
setMSAsmLabelResolved()534   void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
535 
536   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)537   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)538   static bool classofKind(Kind K) { return K == Label; }
539 };
540 
541 /// Represent a C++ namespace.
542 class NamespaceDecl : public NamedDecl, public DeclContext,
543                       public Redeclarable<NamespaceDecl>
544 {
545 
546   enum Flags : unsigned { F_Inline = 1 << 0, F_Nested = 1 << 1 };
547 
548   /// The starting location of the source range, pointing
549   /// to either the namespace or the inline keyword.
550   SourceLocation LocStart;
551 
552   /// The ending location of the source range.
553   SourceLocation RBraceLoc;
554 
555   /// A pointer to either the anonymous namespace that lives just inside
556   /// this namespace or to the first namespace in the chain (the latter case
557   /// only when this is not the first in the chain), along with a
558   /// boolean value indicating whether this is an inline namespace.
559   llvm::PointerIntPair<NamespaceDecl *, 2, unsigned>
560       AnonOrFirstNamespaceAndFlags;
561 
562   NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
563                 SourceLocation StartLoc, SourceLocation IdLoc,
564                 IdentifierInfo *Id, NamespaceDecl *PrevDecl, bool Nested);
565 
566   using redeclarable_base = Redeclarable<NamespaceDecl>;
567 
568   NamespaceDecl *getNextRedeclarationImpl() override;
569   NamespaceDecl *getPreviousDeclImpl() override;
570   NamespaceDecl *getMostRecentDeclImpl() override;
571 
572 public:
573   friend class ASTDeclReader;
574   friend class ASTDeclWriter;
575 
576   static NamespaceDecl *Create(ASTContext &C, DeclContext *DC, bool Inline,
577                                SourceLocation StartLoc, SourceLocation IdLoc,
578                                IdentifierInfo *Id, NamespaceDecl *PrevDecl,
579                                bool Nested);
580 
581   static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
582 
583   using redecl_range = redeclarable_base::redecl_range;
584   using redecl_iterator = redeclarable_base::redecl_iterator;
585 
586   using redeclarable_base::redecls_begin;
587   using redeclarable_base::redecls_end;
588   using redeclarable_base::redecls;
589   using redeclarable_base::getPreviousDecl;
590   using redeclarable_base::getMostRecentDecl;
591   using redeclarable_base::isFirstDecl;
592 
593   /// Returns true if this is an anonymous namespace declaration.
594   ///
595   /// For example:
596   /// \code
597   ///   namespace {
598   ///     ...
599   ///   };
600   /// \endcode
601   /// q.v. C++ [namespace.unnamed]
isAnonymousNamespace()602   bool isAnonymousNamespace() const {
603     return !getIdentifier();
604   }
605 
606   /// Returns true if this is an inline namespace declaration.
isInline()607   bool isInline() const {
608     return AnonOrFirstNamespaceAndFlags.getInt() & F_Inline;
609   }
610 
611   /// Set whether this is an inline namespace declaration.
setInline(bool Inline)612   void setInline(bool Inline) {
613     unsigned F = AnonOrFirstNamespaceAndFlags.getInt();
614     if (Inline)
615       AnonOrFirstNamespaceAndFlags.setInt(F | F_Inline);
616     else
617       AnonOrFirstNamespaceAndFlags.setInt(F & ~F_Inline);
618   }
619 
620   /// Returns true if this is a nested namespace declaration.
621   /// \code
622   /// namespace outer::nested { }
623   /// \endcode
isNested()624   bool isNested() const {
625     return AnonOrFirstNamespaceAndFlags.getInt() & F_Nested;
626   }
627 
628   /// Set whether this is a nested namespace declaration.
setNested(bool Nested)629   void setNested(bool Nested) {
630     unsigned F = AnonOrFirstNamespaceAndFlags.getInt();
631     if (Nested)
632       AnonOrFirstNamespaceAndFlags.setInt(F | F_Nested);
633     else
634       AnonOrFirstNamespaceAndFlags.setInt(F & ~F_Nested);
635   }
636 
637   /// Returns true if the inline qualifier for \c Name is redundant.
isRedundantInlineQualifierFor(DeclarationName Name)638   bool isRedundantInlineQualifierFor(DeclarationName Name) const {
639     if (!isInline())
640       return false;
641     auto X = lookup(Name);
642     // We should not perform a lookup within a transparent context, so find a
643     // non-transparent parent context.
644     auto Y = getParent()->getNonTransparentContext()->lookup(Name);
645     return std::distance(X.begin(), X.end()) ==
646       std::distance(Y.begin(), Y.end());
647   }
648 
649   /// Get the original (first) namespace declaration.
650   NamespaceDecl *getOriginalNamespace();
651 
652   /// Get the original (first) namespace declaration.
653   const NamespaceDecl *getOriginalNamespace() const;
654 
655   /// Return true if this declaration is an original (first) declaration
656   /// of the namespace. This is false for non-original (subsequent) namespace
657   /// declarations and anonymous namespaces.
658   bool isOriginalNamespace() const;
659 
660   /// Retrieve the anonymous namespace nested inside this namespace,
661   /// if any.
getAnonymousNamespace()662   NamespaceDecl *getAnonymousNamespace() const {
663     return getOriginalNamespace()->AnonOrFirstNamespaceAndFlags.getPointer();
664   }
665 
setAnonymousNamespace(NamespaceDecl * D)666   void setAnonymousNamespace(NamespaceDecl *D) {
667     getOriginalNamespace()->AnonOrFirstNamespaceAndFlags.setPointer(D);
668   }
669 
670   /// Retrieves the canonical declaration of this namespace.
getCanonicalDecl()671   NamespaceDecl *getCanonicalDecl() override {
672     return getOriginalNamespace();
673   }
getCanonicalDecl()674   const NamespaceDecl *getCanonicalDecl() const {
675     return getOriginalNamespace();
676   }
677 
getSourceRange()678   SourceRange getSourceRange() const override LLVM_READONLY {
679     return SourceRange(LocStart, RBraceLoc);
680   }
681 
getBeginLoc()682   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
getRBraceLoc()683   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setLocStart(SourceLocation L)684   void setLocStart(SourceLocation L) { LocStart = L; }
setRBraceLoc(SourceLocation L)685   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
686 
687   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)688   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)689   static bool classofKind(Kind K) { return K == Namespace; }
castToDeclContext(const NamespaceDecl * D)690   static DeclContext *castToDeclContext(const NamespaceDecl *D) {
691     return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
692   }
castFromDeclContext(const DeclContext * DC)693   static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
694     return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
695   }
696 };
697 
698 class VarDecl;
699 
700 /// Represent the declaration of a variable (in which case it is
701 /// an lvalue) a function (in which case it is a function designator) or
702 /// an enum constant.
703 class ValueDecl : public NamedDecl {
704   QualType DeclType;
705 
706   void anchor() override;
707 
708 protected:
ValueDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T)709   ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
710             DeclarationName N, QualType T)
711     : NamedDecl(DK, DC, L, N), DeclType(T) {}
712 
713 public:
getType()714   QualType getType() const { return DeclType; }
setType(QualType newType)715   void setType(QualType newType) { DeclType = newType; }
716 
717   /// Determine whether this symbol is weakly-imported,
718   ///        or declared with the weak or weak-ref attr.
719   bool isWeak() const;
720 
721   /// Whether this variable is the implicit variable for a lambda init-capture.
722   /// Only VarDecl can be init captures, but both VarDecl and BindingDecl
723   /// can be captured.
724   bool isInitCapture() const;
725 
726   // If this is a VarDecl, or a BindindDecl with an
727   // associated decomposed VarDecl, return that VarDecl.
728   VarDecl *getPotentiallyDecomposedVarDecl();
getPotentiallyDecomposedVarDecl()729   const VarDecl *getPotentiallyDecomposedVarDecl() const {
730     return const_cast<ValueDecl *>(this)->getPotentiallyDecomposedVarDecl();
731   }
732 
733   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)734   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)735   static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
736 };
737 
738 /// A struct with extended info about a syntactic
739 /// name qualifier, to be used for the case of out-of-line declarations.
740 struct QualifierInfo {
741   NestedNameSpecifierLoc QualifierLoc;
742 
743   /// The number of "outer" template parameter lists.
744   /// The count includes all of the template parameter lists that were matched
745   /// against the template-ids occurring into the NNS and possibly (in the
746   /// case of an explicit specialization) a final "template <>".
747   unsigned NumTemplParamLists = 0;
748 
749   /// A new-allocated array of size NumTemplParamLists,
750   /// containing pointers to the "outer" template parameter lists.
751   /// It includes all of the template parameter lists that were matched
752   /// against the template-ids occurring into the NNS and possibly (in the
753   /// case of an explicit specialization) a final "template <>".
754   TemplateParameterList** TemplParamLists = nullptr;
755 
756   QualifierInfo() = default;
757   QualifierInfo(const QualifierInfo &) = delete;
758   QualifierInfo& operator=(const QualifierInfo &) = delete;
759 
760   /// Sets info about "outer" template parameter lists.
761   void setTemplateParameterListsInfo(ASTContext &Context,
762                                      ArrayRef<TemplateParameterList *> TPLists);
763 };
764 
765 /// Represents a ValueDecl that came out of a declarator.
766 /// Contains type source information through TypeSourceInfo.
767 class DeclaratorDecl : public ValueDecl {
768   // A struct representing a TInfo, a trailing requires-clause and a syntactic
769   // qualifier, to be used for the (uncommon) case of out-of-line declarations
770   // and constrained function decls.
771   struct ExtInfo : public QualifierInfo {
772     TypeSourceInfo *TInfo;
773     Expr *TrailingRequiresClause = nullptr;
774   };
775 
776   llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
777 
778   /// The start of the source range for this declaration,
779   /// ignoring outer template declarations.
780   SourceLocation InnerLocStart;
781 
hasExtInfo()782   bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
getExtInfo()783   ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
getExtInfo()784   const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
785 
786 protected:
DeclaratorDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL)787   DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
788                  DeclarationName N, QualType T, TypeSourceInfo *TInfo,
789                  SourceLocation StartL)
790       : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
791 
792 public:
793   friend class ASTDeclReader;
794   friend class ASTDeclWriter;
795 
getTypeSourceInfo()796   TypeSourceInfo *getTypeSourceInfo() const {
797     return hasExtInfo()
798       ? getExtInfo()->TInfo
799       : DeclInfo.get<TypeSourceInfo*>();
800   }
801 
setTypeSourceInfo(TypeSourceInfo * TI)802   void setTypeSourceInfo(TypeSourceInfo *TI) {
803     if (hasExtInfo())
804       getExtInfo()->TInfo = TI;
805     else
806       DeclInfo = TI;
807   }
808 
809   /// Return start of source range ignoring outer template declarations.
getInnerLocStart()810   SourceLocation getInnerLocStart() const { return InnerLocStart; }
setInnerLocStart(SourceLocation L)811   void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
812 
813   /// Return start of source range taking into account any outer template
814   /// declarations.
815   SourceLocation getOuterLocStart() const;
816 
817   SourceRange getSourceRange() const override LLVM_READONLY;
818 
getBeginLoc()819   SourceLocation getBeginLoc() const LLVM_READONLY {
820     return getOuterLocStart();
821   }
822 
823   /// Retrieve the nested-name-specifier that qualifies the name of this
824   /// declaration, if it was present in the source.
getQualifier()825   NestedNameSpecifier *getQualifier() const {
826     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
827                         : nullptr;
828   }
829 
830   /// Retrieve the nested-name-specifier (with source-location
831   /// information) that qualifies the name of this declaration, if it was
832   /// present in the source.
getQualifierLoc()833   NestedNameSpecifierLoc getQualifierLoc() const {
834     return hasExtInfo() ? getExtInfo()->QualifierLoc
835                         : NestedNameSpecifierLoc();
836   }
837 
838   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
839 
840   /// \brief Get the constraint-expression introduced by the trailing
841   /// requires-clause in the function/member declaration, or null if no
842   /// requires-clause was provided.
getTrailingRequiresClause()843   Expr *getTrailingRequiresClause() {
844     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
845                         : nullptr;
846   }
847 
getTrailingRequiresClause()848   const Expr *getTrailingRequiresClause() const {
849     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
850                         : nullptr;
851   }
852 
853   void setTrailingRequiresClause(Expr *TrailingRequiresClause);
854 
getNumTemplateParameterLists()855   unsigned getNumTemplateParameterLists() const {
856     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
857   }
858 
getTemplateParameterList(unsigned index)859   TemplateParameterList *getTemplateParameterList(unsigned index) const {
860     assert(index < getNumTemplateParameterLists());
861     return getExtInfo()->TemplParamLists[index];
862   }
863 
864   void setTemplateParameterListsInfo(ASTContext &Context,
865                                      ArrayRef<TemplateParameterList *> TPLists);
866 
867   SourceLocation getTypeSpecStartLoc() const;
868   SourceLocation getTypeSpecEndLoc() const;
869 
870   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)871   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)872   static bool classofKind(Kind K) {
873     return K >= firstDeclarator && K <= lastDeclarator;
874   }
875 };
876 
877 /// Structure used to store a statement, the constant value to
878 /// which it was evaluated (if any), and whether or not the statement
879 /// is an integral constant expression (if known).
880 struct EvaluatedStmt {
881   /// Whether this statement was already evaluated.
882   bool WasEvaluated : 1;
883 
884   /// Whether this statement is being evaluated.
885   bool IsEvaluating : 1;
886 
887   /// Whether this variable is known to have constant initialization. This is
888   /// currently only computed in C++, for static / thread storage duration
889   /// variables that might have constant initialization and for variables that
890   /// are usable in constant expressions.
891   bool HasConstantInitialization : 1;
892 
893   /// Whether this variable is known to have constant destruction. That is,
894   /// whether running the destructor on the initial value is a side-effect
895   /// (and doesn't inspect any state that might have changed during program
896   /// execution). This is currently only computed if the destructor is
897   /// non-trivial.
898   bool HasConstantDestruction : 1;
899 
900   /// In C++98, whether the initializer is an ICE. This affects whether the
901   /// variable is usable in constant expressions.
902   bool HasICEInit : 1;
903   bool CheckedForICEInit : 1;
904 
905   Stmt *Value;
906   APValue Evaluated;
907 
EvaluatedStmtEvaluatedStmt908   EvaluatedStmt()
909       : WasEvaluated(false), IsEvaluating(false),
910         HasConstantInitialization(false), HasConstantDestruction(false),
911         HasICEInit(false), CheckedForICEInit(false) {}
912 };
913 
914 /// Represents a variable declaration or definition.
915 class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
916 public:
917   /// Initialization styles.
918   enum InitializationStyle {
919     /// C-style initialization with assignment
920     CInit,
921 
922     /// Call-style initialization (C++98)
923     CallInit,
924 
925     /// Direct list-initialization (C++11)
926     ListInit,
927 
928     /// Parenthesized list-initialization (C++20)
929     ParenListInit
930   };
931 
932   /// Kinds of thread-local storage.
933   enum TLSKind {
934     /// Not a TLS variable.
935     TLS_None,
936 
937     /// TLS with a known-constant initializer.
938     TLS_Static,
939 
940     /// TLS with a dynamic initializer.
941     TLS_Dynamic
942   };
943 
944   /// Return the string used to specify the storage class \p SC.
945   ///
946   /// It is illegal to call this function with SC == None.
947   static const char *getStorageClassSpecifierString(StorageClass SC);
948 
949 protected:
950   // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
951   // have allocated the auxiliary struct of information there.
952   //
953   // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
954   // this as *many* VarDecls are ParmVarDecls that don't have default
955   // arguments. We could save some space by moving this pointer union to be
956   // allocated in trailing space when necessary.
957   using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
958 
959   /// The initializer for this variable or, for a ParmVarDecl, the
960   /// C++ default argument.
961   mutable InitType Init;
962 
963 private:
964   friend class ASTDeclReader;
965   friend class ASTNodeImporter;
966   friend class StmtIteratorBase;
967 
968   class VarDeclBitfields {
969     friend class ASTDeclReader;
970     friend class VarDecl;
971 
972     unsigned SClass : 3;
973     unsigned TSCSpec : 2;
974     unsigned InitStyle : 2;
975 
976     /// Whether this variable is an ARC pseudo-__strong variable; see
977     /// isARCPseudoStrong() for details.
978     unsigned ARCPseudoStrong : 1;
979   };
980   enum { NumVarDeclBits = 8 };
981 
982 protected:
983   enum { NumParameterIndexBits = 8 };
984 
985   enum DefaultArgKind {
986     DAK_None,
987     DAK_Unparsed,
988     DAK_Uninstantiated,
989     DAK_Normal
990   };
991 
992   enum { NumScopeDepthOrObjCQualsBits = 7 };
993 
994   class ParmVarDeclBitfields {
995     friend class ASTDeclReader;
996     friend class ParmVarDecl;
997 
998     unsigned : NumVarDeclBits;
999 
1000     /// Whether this parameter inherits a default argument from a
1001     /// prior declaration.
1002     unsigned HasInheritedDefaultArg : 1;
1003 
1004     /// Describes the kind of default argument for this parameter. By default
1005     /// this is none. If this is normal, then the default argument is stored in
1006     /// the \c VarDecl initializer expression unless we were unable to parse
1007     /// (even an invalid) expression for the default argument.
1008     unsigned DefaultArgKind : 2;
1009 
1010     /// Whether this parameter undergoes K&R argument promotion.
1011     unsigned IsKNRPromoted : 1;
1012 
1013     /// Whether this parameter is an ObjC method parameter or not.
1014     unsigned IsObjCMethodParam : 1;
1015 
1016     /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
1017     /// Otherwise, the number of function parameter scopes enclosing
1018     /// the function parameter scope in which this parameter was
1019     /// declared.
1020     unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
1021 
1022     /// The number of parameters preceding this parameter in the
1023     /// function parameter scope in which it was declared.
1024     unsigned ParameterIndex : NumParameterIndexBits;
1025   };
1026 
1027   class NonParmVarDeclBitfields {
1028     friend class ASTDeclReader;
1029     friend class ImplicitParamDecl;
1030     friend class VarDecl;
1031 
1032     unsigned : NumVarDeclBits;
1033 
1034     // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
1035     /// Whether this variable is a definition which was demoted due to
1036     /// module merge.
1037     unsigned IsThisDeclarationADemotedDefinition : 1;
1038 
1039     /// Whether this variable is the exception variable in a C++ catch
1040     /// or an Objective-C @catch statement.
1041     unsigned ExceptionVar : 1;
1042 
1043     /// Whether this local variable could be allocated in the return
1044     /// slot of its function, enabling the named return value optimization
1045     /// (NRVO).
1046     unsigned NRVOVariable : 1;
1047 
1048     /// Whether this variable is the for-range-declaration in a C++0x
1049     /// for-range statement.
1050     unsigned CXXForRangeDecl : 1;
1051 
1052     /// Whether this variable is the for-in loop declaration in Objective-C.
1053     unsigned ObjCForDecl : 1;
1054 
1055     /// Whether this variable is (C++1z) inline.
1056     unsigned IsInline : 1;
1057 
1058     /// Whether this variable has (C++1z) inline explicitly specified.
1059     unsigned IsInlineSpecified : 1;
1060 
1061     /// Whether this variable is (C++0x) constexpr.
1062     unsigned IsConstexpr : 1;
1063 
1064     /// Whether this variable is the implicit variable for a lambda
1065     /// init-capture.
1066     unsigned IsInitCapture : 1;
1067 
1068     /// Whether this local extern variable's previous declaration was
1069     /// declared in the same block scope. This controls whether we should merge
1070     /// the type of this declaration with its previous declaration.
1071     unsigned PreviousDeclInSameBlockScope : 1;
1072 
1073     /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1074     /// something else.
1075     unsigned ImplicitParamKind : 3;
1076 
1077     unsigned EscapingByref : 1;
1078   };
1079 
1080   union {
1081     unsigned AllBits;
1082     VarDeclBitfields VarDeclBits;
1083     ParmVarDeclBitfields ParmVarDeclBits;
1084     NonParmVarDeclBitfields NonParmVarDeclBits;
1085   };
1086 
1087   VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1088           SourceLocation IdLoc, const IdentifierInfo *Id, QualType T,
1089           TypeSourceInfo *TInfo, StorageClass SC);
1090 
1091   using redeclarable_base = Redeclarable<VarDecl>;
1092 
getNextRedeclarationImpl()1093   VarDecl *getNextRedeclarationImpl() override {
1094     return getNextRedeclaration();
1095   }
1096 
getPreviousDeclImpl()1097   VarDecl *getPreviousDeclImpl() override {
1098     return getPreviousDecl();
1099   }
1100 
getMostRecentDeclImpl()1101   VarDecl *getMostRecentDeclImpl() override {
1102     return getMostRecentDecl();
1103   }
1104 
1105 public:
1106   using redecl_range = redeclarable_base::redecl_range;
1107   using redecl_iterator = redeclarable_base::redecl_iterator;
1108 
1109   using redeclarable_base::redecls_begin;
1110   using redeclarable_base::redecls_end;
1111   using redeclarable_base::redecls;
1112   using redeclarable_base::getPreviousDecl;
1113   using redeclarable_base::getMostRecentDecl;
1114   using redeclarable_base::isFirstDecl;
1115 
1116   static VarDecl *Create(ASTContext &C, DeclContext *DC,
1117                          SourceLocation StartLoc, SourceLocation IdLoc,
1118                          const IdentifierInfo *Id, QualType T,
1119                          TypeSourceInfo *TInfo, StorageClass S);
1120 
1121   static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1122 
1123   SourceRange getSourceRange() const override LLVM_READONLY;
1124 
1125   /// Returns the storage class as written in the source. For the
1126   /// computed linkage of symbol, see getLinkage.
getStorageClass()1127   StorageClass getStorageClass() const {
1128     return (StorageClass) VarDeclBits.SClass;
1129   }
1130   void setStorageClass(StorageClass SC);
1131 
setTSCSpec(ThreadStorageClassSpecifier TSC)1132   void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1133     VarDeclBits.TSCSpec = TSC;
1134     assert(VarDeclBits.TSCSpec == TSC && "truncation");
1135   }
getTSCSpec()1136   ThreadStorageClassSpecifier getTSCSpec() const {
1137     return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1138   }
1139   TLSKind getTLSKind() const;
1140 
1141   /// Returns true if a variable with function scope is a non-static local
1142   /// variable.
hasLocalStorage()1143   bool hasLocalStorage() const {
1144     if (getStorageClass() == SC_None) {
1145       // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1146       // used to describe variables allocated in global memory and which are
1147       // accessed inside a kernel(s) as read-only variables. As such, variables
1148       // in constant address space cannot have local storage.
1149       if (getType().getAddressSpace() == LangAS::opencl_constant)
1150         return false;
1151       // Second check is for C++11 [dcl.stc]p4.
1152       return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1153     }
1154 
1155     // Global Named Register (GNU extension)
1156     if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1157       return false;
1158 
1159     // Return true for:  Auto, Register.
1160     // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1161 
1162     return getStorageClass() >= SC_Auto;
1163   }
1164 
1165   /// Returns true if a variable with function scope is a static local
1166   /// variable.
isStaticLocal()1167   bool isStaticLocal() const {
1168     return (getStorageClass() == SC_Static ||
1169             // C++11 [dcl.stc]p4
1170             (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1171       && !isFileVarDecl();
1172   }
1173 
1174   /// Returns true if a variable has extern or __private_extern__
1175   /// storage.
hasExternalStorage()1176   bool hasExternalStorage() const {
1177     return getStorageClass() == SC_Extern ||
1178            getStorageClass() == SC_PrivateExtern;
1179   }
1180 
1181   /// Returns true for all variables that do not have local storage.
1182   ///
1183   /// This includes all global variables as well as static variables declared
1184   /// within a function.
hasGlobalStorage()1185   bool hasGlobalStorage() const { return !hasLocalStorage(); }
1186 
1187   /// Get the storage duration of this variable, per C++ [basic.stc].
getStorageDuration()1188   StorageDuration getStorageDuration() const {
1189     return hasLocalStorage() ? SD_Automatic :
1190            getTSCSpec() ? SD_Thread : SD_Static;
1191   }
1192 
1193   /// Compute the language linkage.
1194   LanguageLinkage getLanguageLinkage() const;
1195 
1196   /// Determines whether this variable is a variable with external, C linkage.
1197   bool isExternC() const;
1198 
1199   /// Determines whether this variable's context is, or is nested within,
1200   /// a C++ extern "C" linkage spec.
1201   bool isInExternCContext() const;
1202 
1203   /// Determines whether this variable's context is, or is nested within,
1204   /// a C++ extern "C++" linkage spec.
1205   bool isInExternCXXContext() const;
1206 
1207   /// Returns true for local variable declarations other than parameters.
1208   /// Note that this includes static variables inside of functions. It also
1209   /// includes variables inside blocks.
1210   ///
1211   ///   void foo() { int x; static int y; extern int z; }
isLocalVarDecl()1212   bool isLocalVarDecl() const {
1213     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1214       return false;
1215     if (const DeclContext *DC = getLexicalDeclContext())
1216       return DC->getRedeclContext()->isFunctionOrMethod();
1217     return false;
1218   }
1219 
1220   /// Similar to isLocalVarDecl but also includes parameters.
isLocalVarDeclOrParm()1221   bool isLocalVarDeclOrParm() const {
1222     return isLocalVarDecl() || getKind() == Decl::ParmVar;
1223   }
1224 
1225   /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
isFunctionOrMethodVarDecl()1226   bool isFunctionOrMethodVarDecl() const {
1227     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1228       return false;
1229     const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1230     return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1231   }
1232 
1233   /// Determines whether this is a static data member.
1234   ///
1235   /// This will only be true in C++, and applies to, e.g., the
1236   /// variable 'x' in:
1237   /// \code
1238   /// struct S {
1239   ///   static int x;
1240   /// };
1241   /// \endcode
isStaticDataMember()1242   bool isStaticDataMember() const {
1243     // If it wasn't static, it would be a FieldDecl.
1244     return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1245   }
1246 
1247   VarDecl *getCanonicalDecl() override;
getCanonicalDecl()1248   const VarDecl *getCanonicalDecl() const {
1249     return const_cast<VarDecl*>(this)->getCanonicalDecl();
1250   }
1251 
1252   enum DefinitionKind {
1253     /// This declaration is only a declaration.
1254     DeclarationOnly,
1255 
1256     /// This declaration is a tentative definition.
1257     TentativeDefinition,
1258 
1259     /// This declaration is definitely a definition.
1260     Definition
1261   };
1262 
1263   /// Check whether this declaration is a definition. If this could be
1264   /// a tentative definition (in C), don't check whether there's an overriding
1265   /// definition.
1266   DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
isThisDeclarationADefinition()1267   DefinitionKind isThisDeclarationADefinition() const {
1268     return isThisDeclarationADefinition(getASTContext());
1269   }
1270 
1271   /// Check whether this variable is defined in this translation unit.
1272   DefinitionKind hasDefinition(ASTContext &) const;
hasDefinition()1273   DefinitionKind hasDefinition() const {
1274     return hasDefinition(getASTContext());
1275   }
1276 
1277   /// Get the tentative definition that acts as the real definition in a TU.
1278   /// Returns null if there is a proper definition available.
1279   VarDecl *getActingDefinition();
getActingDefinition()1280   const VarDecl *getActingDefinition() const {
1281     return const_cast<VarDecl*>(this)->getActingDefinition();
1282   }
1283 
1284   /// Get the real (not just tentative) definition for this declaration.
1285   VarDecl *getDefinition(ASTContext &);
getDefinition(ASTContext & C)1286   const VarDecl *getDefinition(ASTContext &C) const {
1287     return const_cast<VarDecl*>(this)->getDefinition(C);
1288   }
getDefinition()1289   VarDecl *getDefinition() {
1290     return getDefinition(getASTContext());
1291   }
getDefinition()1292   const VarDecl *getDefinition() const {
1293     return const_cast<VarDecl*>(this)->getDefinition();
1294   }
1295 
1296   /// Determine whether this is or was instantiated from an out-of-line
1297   /// definition of a static data member.
1298   bool isOutOfLine() const override;
1299 
1300   /// Returns true for file scoped variable declaration.
isFileVarDecl()1301   bool isFileVarDecl() const {
1302     Kind K = getKind();
1303     if (K == ParmVar || K == ImplicitParam)
1304       return false;
1305 
1306     if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1307       return true;
1308 
1309     if (isStaticDataMember())
1310       return true;
1311 
1312     return false;
1313   }
1314 
1315   /// Get the initializer for this variable, no matter which
1316   /// declaration it is attached to.
getAnyInitializer()1317   const Expr *getAnyInitializer() const {
1318     const VarDecl *D;
1319     return getAnyInitializer(D);
1320   }
1321 
1322   /// Get the initializer for this variable, no matter which
1323   /// declaration it is attached to. Also get that declaration.
1324   const Expr *getAnyInitializer(const VarDecl *&D) const;
1325 
1326   bool hasInit() const;
getInit()1327   const Expr *getInit() const {
1328     return const_cast<VarDecl *>(this)->getInit();
1329   }
1330   Expr *getInit();
1331 
1332   /// Retrieve the address of the initializer expression.
1333   Stmt **getInitAddress();
1334 
1335   void setInit(Expr *I);
1336 
1337   /// Get the initializing declaration of this variable, if any. This is
1338   /// usually the definition, except that for a static data member it can be
1339   /// the in-class declaration.
1340   VarDecl *getInitializingDeclaration();
getInitializingDeclaration()1341   const VarDecl *getInitializingDeclaration() const {
1342     return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1343   }
1344 
1345   /// Determine whether this variable's value might be usable in a
1346   /// constant expression, according to the relevant language standard.
1347   /// This only checks properties of the declaration, and does not check
1348   /// whether the initializer is in fact a constant expression.
1349   ///
1350   /// This corresponds to C++20 [expr.const]p3's notion of a
1351   /// "potentially-constant" variable.
1352   bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1353 
1354   /// Determine whether this variable's value can be used in a
1355   /// constant expression, according to the relevant language standard,
1356   /// including checking whether it was initialized by a constant expression.
1357   bool isUsableInConstantExpressions(const ASTContext &C) const;
1358 
1359   EvaluatedStmt *ensureEvaluatedStmt() const;
1360   EvaluatedStmt *getEvaluatedStmt() const;
1361 
1362   /// Attempt to evaluate the value of the initializer attached to this
1363   /// declaration, and produce notes explaining why it cannot be evaluated.
1364   /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1365   APValue *evaluateValue() const;
1366 
1367 private:
1368   APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1369                              bool IsConstantInitialization) const;
1370 
1371 public:
1372   /// Return the already-evaluated value of this variable's
1373   /// initializer, or NULL if the value is not yet known. Returns pointer
1374   /// to untyped APValue if the value could not be evaluated.
1375   APValue *getEvaluatedValue() const;
1376 
1377   /// Evaluate the destruction of this variable to determine if it constitutes
1378   /// constant destruction.
1379   ///
1380   /// \pre hasConstantInitialization()
1381   /// \return \c true if this variable has constant destruction, \c false if
1382   ///         not.
1383   bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1384 
1385   /// Determine whether this variable has constant initialization.
1386   ///
1387   /// This is only set in two cases: when the language semantics require
1388   /// constant initialization (globals in C and some globals in C++), and when
1389   /// the variable is usable in constant expressions (constexpr, const int, and
1390   /// reference variables in C++).
1391   bool hasConstantInitialization() const;
1392 
1393   /// Determine whether the initializer of this variable is an integer constant
1394   /// expression. For use in C++98, where this affects whether the variable is
1395   /// usable in constant expressions.
1396   bool hasICEInitializer(const ASTContext &Context) const;
1397 
1398   /// Evaluate the initializer of this variable to determine whether it's a
1399   /// constant initializer. Should only be called once, after completing the
1400   /// definition of the variable.
1401   bool checkForConstantInitialization(
1402       SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1403 
setInitStyle(InitializationStyle Style)1404   void setInitStyle(InitializationStyle Style) {
1405     VarDeclBits.InitStyle = Style;
1406   }
1407 
1408   /// The style of initialization for this declaration.
1409   ///
1410   /// C-style initialization is "int x = 1;". Call-style initialization is
1411   /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1412   /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1413   /// expression for class types. List-style initialization is C++11 syntax,
1414   /// e.g. "int x{1};". Clients can distinguish between different forms of
1415   /// initialization by checking this value. In particular, "int x = {1};" is
1416   /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1417   /// Init expression in all three cases is an InitListExpr.
getInitStyle()1418   InitializationStyle getInitStyle() const {
1419     return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1420   }
1421 
1422   /// Whether the initializer is a direct-initializer (list or call).
isDirectInit()1423   bool isDirectInit() const {
1424     return getInitStyle() != CInit;
1425   }
1426 
1427   /// If this definition should pretend to be a declaration.
isThisDeclarationADemotedDefinition()1428   bool isThisDeclarationADemotedDefinition() const {
1429     return isa<ParmVarDecl>(this) ? false :
1430       NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1431   }
1432 
1433   /// This is a definition which should be demoted to a declaration.
1434   ///
1435   /// In some cases (mostly module merging) we can end up with two visible
1436   /// definitions one of which needs to be demoted to a declaration to keep
1437   /// the AST invariants.
demoteThisDefinitionToDeclaration()1438   void demoteThisDefinitionToDeclaration() {
1439     assert(isThisDeclarationADefinition() && "Not a definition!");
1440     assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
1441     NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1442   }
1443 
1444   /// Determine whether this variable is the exception variable in a
1445   /// C++ catch statememt or an Objective-C \@catch statement.
isExceptionVariable()1446   bool isExceptionVariable() const {
1447     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1448   }
setExceptionVariable(bool EV)1449   void setExceptionVariable(bool EV) {
1450     assert(!isa<ParmVarDecl>(this));
1451     NonParmVarDeclBits.ExceptionVar = EV;
1452   }
1453 
1454   /// Determine whether this local variable can be used with the named
1455   /// return value optimization (NRVO).
1456   ///
1457   /// The named return value optimization (NRVO) works by marking certain
1458   /// non-volatile local variables of class type as NRVO objects. These
1459   /// locals can be allocated within the return slot of their containing
1460   /// function, in which case there is no need to copy the object to the
1461   /// return slot when returning from the function. Within the function body,
1462   /// each return that returns the NRVO object will have this variable as its
1463   /// NRVO candidate.
isNRVOVariable()1464   bool isNRVOVariable() const {
1465     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1466   }
setNRVOVariable(bool NRVO)1467   void setNRVOVariable(bool NRVO) {
1468     assert(!isa<ParmVarDecl>(this));
1469     NonParmVarDeclBits.NRVOVariable = NRVO;
1470   }
1471 
1472   /// Determine whether this variable is the for-range-declaration in
1473   /// a C++0x for-range statement.
isCXXForRangeDecl()1474   bool isCXXForRangeDecl() const {
1475     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1476   }
setCXXForRangeDecl(bool FRD)1477   void setCXXForRangeDecl(bool FRD) {
1478     assert(!isa<ParmVarDecl>(this));
1479     NonParmVarDeclBits.CXXForRangeDecl = FRD;
1480   }
1481 
1482   /// Determine whether this variable is a for-loop declaration for a
1483   /// for-in statement in Objective-C.
isObjCForDecl()1484   bool isObjCForDecl() const {
1485     return NonParmVarDeclBits.ObjCForDecl;
1486   }
1487 
setObjCForDecl(bool FRD)1488   void setObjCForDecl(bool FRD) {
1489     NonParmVarDeclBits.ObjCForDecl = FRD;
1490   }
1491 
1492   /// Determine whether this variable is an ARC pseudo-__strong variable. A
1493   /// pseudo-__strong variable has a __strong-qualified type but does not
1494   /// actually retain the object written into it. Generally such variables are
1495   /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1496   /// the variable is annotated with the objc_externally_retained attribute, 2)
1497   /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1498   /// loop.
isARCPseudoStrong()1499   bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
setARCPseudoStrong(bool PS)1500   void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1501 
1502   /// Whether this variable is (C++1z) inline.
isInline()1503   bool isInline() const {
1504     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1505   }
isInlineSpecified()1506   bool isInlineSpecified() const {
1507     return isa<ParmVarDecl>(this) ? false
1508                                   : NonParmVarDeclBits.IsInlineSpecified;
1509   }
setInlineSpecified()1510   void setInlineSpecified() {
1511     assert(!isa<ParmVarDecl>(this));
1512     NonParmVarDeclBits.IsInline = true;
1513     NonParmVarDeclBits.IsInlineSpecified = true;
1514   }
setImplicitlyInline()1515   void setImplicitlyInline() {
1516     assert(!isa<ParmVarDecl>(this));
1517     NonParmVarDeclBits.IsInline = true;
1518   }
1519 
1520   /// Whether this variable is (C++11) constexpr.
isConstexpr()1521   bool isConstexpr() const {
1522     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1523   }
setConstexpr(bool IC)1524   void setConstexpr(bool IC) {
1525     assert(!isa<ParmVarDecl>(this));
1526     NonParmVarDeclBits.IsConstexpr = IC;
1527   }
1528 
1529   /// Whether this variable is the implicit variable for a lambda init-capture.
isInitCapture()1530   bool isInitCapture() const {
1531     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1532   }
setInitCapture(bool IC)1533   void setInitCapture(bool IC) {
1534     assert(!isa<ParmVarDecl>(this));
1535     NonParmVarDeclBits.IsInitCapture = IC;
1536   }
1537 
1538   /// Determine whether this variable is actually a function parameter pack or
1539   /// init-capture pack.
1540   bool isParameterPack() const;
1541 
1542   /// Whether this local extern variable declaration's previous declaration
1543   /// was declared in the same block scope. Only correct in C++.
isPreviousDeclInSameBlockScope()1544   bool isPreviousDeclInSameBlockScope() const {
1545     return isa<ParmVarDecl>(this)
1546                ? false
1547                : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1548   }
setPreviousDeclInSameBlockScope(bool Same)1549   void setPreviousDeclInSameBlockScope(bool Same) {
1550     assert(!isa<ParmVarDecl>(this));
1551     NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1552   }
1553 
1554   /// Indicates the capture is a __block variable that is captured by a block
1555   /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1556   /// returns false).
1557   bool isEscapingByref() const;
1558 
1559   /// Indicates the capture is a __block variable that is never captured by an
1560   /// escaping block.
1561   bool isNonEscapingByref() const;
1562 
setEscapingByref()1563   void setEscapingByref() {
1564     NonParmVarDeclBits.EscapingByref = true;
1565   }
1566 
1567   /// Determines if this variable's alignment is dependent.
1568   bool hasDependentAlignment() const;
1569 
1570   /// Retrieve the variable declaration from which this variable could
1571   /// be instantiated, if it is an instantiation (rather than a non-template).
1572   VarDecl *getTemplateInstantiationPattern() const;
1573 
1574   /// If this variable is an instantiated static data member of a
1575   /// class template specialization, returns the templated static data member
1576   /// from which it was instantiated.
1577   VarDecl *getInstantiatedFromStaticDataMember() const;
1578 
1579   /// If this variable is an instantiation of a variable template or a
1580   /// static data member of a class template, determine what kind of
1581   /// template specialization or instantiation this is.
1582   TemplateSpecializationKind getTemplateSpecializationKind() const;
1583 
1584   /// Get the template specialization kind of this variable for the purposes of
1585   /// template instantiation. This differs from getTemplateSpecializationKind()
1586   /// for an instantiation of a class-scope explicit specialization.
1587   TemplateSpecializationKind
1588   getTemplateSpecializationKindForInstantiation() const;
1589 
1590   /// If this variable is an instantiation of a variable template or a
1591   /// static data member of a class template, determine its point of
1592   /// instantiation.
1593   SourceLocation getPointOfInstantiation() const;
1594 
1595   /// If this variable is an instantiation of a static data member of a
1596   /// class template specialization, retrieves the member specialization
1597   /// information.
1598   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1599 
1600   /// For a static data member that was instantiated from a static
1601   /// data member of a class template, set the template specialiation kind.
1602   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1603                         SourceLocation PointOfInstantiation = SourceLocation());
1604 
1605   /// Specify that this variable is an instantiation of the
1606   /// static data member VD.
1607   void setInstantiationOfStaticDataMember(VarDecl *VD,
1608                                           TemplateSpecializationKind TSK);
1609 
1610   /// Retrieves the variable template that is described by this
1611   /// variable declaration.
1612   ///
1613   /// Every variable template is represented as a VarTemplateDecl and a
1614   /// VarDecl. The former contains template properties (such as
1615   /// the template parameter lists) while the latter contains the
1616   /// actual description of the template's
1617   /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1618   /// VarDecl that from a VarTemplateDecl, while
1619   /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1620   /// a VarDecl.
1621   VarTemplateDecl *getDescribedVarTemplate() const;
1622 
1623   void setDescribedVarTemplate(VarTemplateDecl *Template);
1624 
1625   // Is this variable known to have a definition somewhere in the complete
1626   // program? This may be true even if the declaration has internal linkage and
1627   // has no definition within this source file.
1628   bool isKnownToBeDefined() const;
1629 
1630   /// Is destruction of this variable entirely suppressed? If so, the variable
1631   /// need not have a usable destructor at all.
1632   bool isNoDestroy(const ASTContext &) const;
1633 
1634   /// Would the destruction of this variable have any effect, and if so, what
1635   /// kind?
1636   QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1637 
1638   /// Whether this variable has a flexible array member initialized with one
1639   /// or more elements. This can only be called for declarations where
1640   /// hasInit() is true.
1641   ///
1642   /// (The standard doesn't allow initializing flexible array members; this is
1643   /// a gcc/msvc extension.)
1644   bool hasFlexibleArrayInit(const ASTContext &Ctx) const;
1645 
1646   /// If hasFlexibleArrayInit is true, compute the number of additional bytes
1647   /// necessary to store those elements. Otherwise, returns zero.
1648   ///
1649   /// This can only be called for declarations where hasInit() is true.
1650   CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const;
1651 
1652   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1653   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1654   static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1655 };
1656 
1657 class ImplicitParamDecl : public VarDecl {
1658   void anchor() override;
1659 
1660 public:
1661   /// Defines the kind of the implicit parameter: is this an implicit parameter
1662   /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1663   /// context or something else.
1664   enum ImplicitParamKind : unsigned {
1665     /// Parameter for Objective-C 'self' argument
1666     ObjCSelf,
1667 
1668     /// Parameter for Objective-C '_cmd' argument
1669     ObjCCmd,
1670 
1671     /// Parameter for C++ 'this' argument
1672     CXXThis,
1673 
1674     /// Parameter for C++ virtual table pointers
1675     CXXVTT,
1676 
1677     /// Parameter for captured context
1678     CapturedContext,
1679 
1680     /// Parameter for Thread private variable
1681     ThreadPrivateVar,
1682 
1683     /// Other implicit parameter
1684     Other,
1685   };
1686 
1687   /// Create implicit parameter.
1688   static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1689                                    SourceLocation IdLoc, IdentifierInfo *Id,
1690                                    QualType T, ImplicitParamKind ParamKind);
1691   static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1692                                    ImplicitParamKind ParamKind);
1693 
1694   static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1695 
ImplicitParamDecl(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type,ImplicitParamKind ParamKind)1696   ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1697                     IdentifierInfo *Id, QualType Type,
1698                     ImplicitParamKind ParamKind)
1699       : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1700                 /*TInfo=*/nullptr, SC_None) {
1701     NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1702     setImplicit();
1703   }
1704 
ImplicitParamDecl(ASTContext & C,QualType Type,ImplicitParamKind ParamKind)1705   ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1706       : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1707                 SourceLocation(), /*Id=*/nullptr, Type,
1708                 /*TInfo=*/nullptr, SC_None) {
1709     NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1710     setImplicit();
1711   }
1712 
1713   /// Returns the implicit parameter kind.
getParameterKind()1714   ImplicitParamKind getParameterKind() const {
1715     return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1716   }
1717 
1718   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1719   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1720   static bool classofKind(Kind K) { return K == ImplicitParam; }
1721 };
1722 
1723 /// Represents a parameter to a function.
1724 class ParmVarDecl : public VarDecl {
1725 public:
1726   enum { MaxFunctionScopeDepth = 255 };
1727   enum { MaxFunctionScopeIndex = 255 };
1728 
1729 protected:
ParmVarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)1730   ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1731               SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1732               TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1733       : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1734     assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1735     assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
1736     assert(ParmVarDeclBits.IsKNRPromoted == false);
1737     assert(ParmVarDeclBits.IsObjCMethodParam == false);
1738     setDefaultArg(DefArg);
1739   }
1740 
1741 public:
1742   static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1743                              SourceLocation StartLoc,
1744                              SourceLocation IdLoc, IdentifierInfo *Id,
1745                              QualType T, TypeSourceInfo *TInfo,
1746                              StorageClass S, Expr *DefArg);
1747 
1748   static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1749 
1750   SourceRange getSourceRange() const override LLVM_READONLY;
1751 
setObjCMethodScopeInfo(unsigned parameterIndex)1752   void setObjCMethodScopeInfo(unsigned parameterIndex) {
1753     ParmVarDeclBits.IsObjCMethodParam = true;
1754     setParameterIndex(parameterIndex);
1755   }
1756 
setScopeInfo(unsigned scopeDepth,unsigned parameterIndex)1757   void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1758     assert(!ParmVarDeclBits.IsObjCMethodParam);
1759 
1760     ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1761     assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1762            && "truncation!");
1763 
1764     setParameterIndex(parameterIndex);
1765   }
1766 
isObjCMethodParameter()1767   bool isObjCMethodParameter() const {
1768     return ParmVarDeclBits.IsObjCMethodParam;
1769   }
1770 
1771   /// Determines whether this parameter is destroyed in the callee function.
1772   bool isDestroyedInCallee() const;
1773 
getFunctionScopeDepth()1774   unsigned getFunctionScopeDepth() const {
1775     if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1776     return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1777   }
1778 
getMaxFunctionScopeDepth()1779   static constexpr unsigned getMaxFunctionScopeDepth() {
1780     return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1781   }
1782 
1783   /// Returns the index of this parameter in its prototype or method scope.
getFunctionScopeIndex()1784   unsigned getFunctionScopeIndex() const {
1785     return getParameterIndex();
1786   }
1787 
getObjCDeclQualifier()1788   ObjCDeclQualifier getObjCDeclQualifier() const {
1789     if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1790     return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1791   }
setObjCDeclQualifier(ObjCDeclQualifier QTVal)1792   void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1793     assert(ParmVarDeclBits.IsObjCMethodParam);
1794     ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1795   }
1796 
1797   /// True if the value passed to this parameter must undergo
1798   /// K&R-style default argument promotion:
1799   ///
1800   /// C99 6.5.2.2.
1801   ///   If the expression that denotes the called function has a type
1802   ///   that does not include a prototype, the integer promotions are
1803   ///   performed on each argument, and arguments that have type float
1804   ///   are promoted to double.
isKNRPromoted()1805   bool isKNRPromoted() const {
1806     return ParmVarDeclBits.IsKNRPromoted;
1807   }
setKNRPromoted(bool promoted)1808   void setKNRPromoted(bool promoted) {
1809     ParmVarDeclBits.IsKNRPromoted = promoted;
1810   }
1811 
1812   Expr *getDefaultArg();
getDefaultArg()1813   const Expr *getDefaultArg() const {
1814     return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1815   }
1816 
1817   void setDefaultArg(Expr *defarg);
1818 
1819   /// Retrieve the source range that covers the entire default
1820   /// argument.
1821   SourceRange getDefaultArgRange() const;
1822   void setUninstantiatedDefaultArg(Expr *arg);
1823   Expr *getUninstantiatedDefaultArg();
getUninstantiatedDefaultArg()1824   const Expr *getUninstantiatedDefaultArg() const {
1825     return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1826   }
1827 
1828   /// Determines whether this parameter has a default argument,
1829   /// either parsed or not.
1830   bool hasDefaultArg() const;
1831 
1832   /// Determines whether this parameter has a default argument that has not
1833   /// yet been parsed. This will occur during the processing of a C++ class
1834   /// whose member functions have default arguments, e.g.,
1835   /// @code
1836   ///   class X {
1837   ///   public:
1838   ///     void f(int x = 17); // x has an unparsed default argument now
1839   ///   }; // x has a regular default argument now
1840   /// @endcode
hasUnparsedDefaultArg()1841   bool hasUnparsedDefaultArg() const {
1842     return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1843   }
1844 
hasUninstantiatedDefaultArg()1845   bool hasUninstantiatedDefaultArg() const {
1846     return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1847   }
1848 
1849   /// Specify that this parameter has an unparsed default argument.
1850   /// The argument will be replaced with a real default argument via
1851   /// setDefaultArg when the class definition enclosing the function
1852   /// declaration that owns this default argument is completed.
setUnparsedDefaultArg()1853   void setUnparsedDefaultArg() {
1854     ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1855   }
1856 
hasInheritedDefaultArg()1857   bool hasInheritedDefaultArg() const {
1858     return ParmVarDeclBits.HasInheritedDefaultArg;
1859   }
1860 
1861   void setHasInheritedDefaultArg(bool I = true) {
1862     ParmVarDeclBits.HasInheritedDefaultArg = I;
1863   }
1864 
1865   QualType getOriginalType() const;
1866 
1867   /// Sets the function declaration that owns this
1868   /// ParmVarDecl. Since ParmVarDecls are often created before the
1869   /// FunctionDecls that own them, this routine is required to update
1870   /// the DeclContext appropriately.
setOwningFunction(DeclContext * FD)1871   void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1872 
1873   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1874   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1875   static bool classofKind(Kind K) { return K == ParmVar; }
1876 
1877 private:
1878   enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1879 
setParameterIndex(unsigned parameterIndex)1880   void setParameterIndex(unsigned parameterIndex) {
1881     if (parameterIndex >= ParameterIndexSentinel) {
1882       setParameterIndexLarge(parameterIndex);
1883       return;
1884     }
1885 
1886     ParmVarDeclBits.ParameterIndex = parameterIndex;
1887     assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1888   }
getParameterIndex()1889   unsigned getParameterIndex() const {
1890     unsigned d = ParmVarDeclBits.ParameterIndex;
1891     return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1892   }
1893 
1894   void setParameterIndexLarge(unsigned parameterIndex);
1895   unsigned getParameterIndexLarge() const;
1896 };
1897 
1898 enum class MultiVersionKind {
1899   None,
1900   Target,
1901   CPUSpecific,
1902   CPUDispatch,
1903   TargetClones,
1904   TargetVersion
1905 };
1906 
1907 /// Represents a function declaration or definition.
1908 ///
1909 /// Since a given function can be declared several times in a program,
1910 /// there may be several FunctionDecls that correspond to that
1911 /// function. Only one of those FunctionDecls will be found when
1912 /// traversing the list of declarations in the context of the
1913 /// FunctionDecl (e.g., the translation unit); this FunctionDecl
1914 /// contains all of the information known about the function. Other,
1915 /// previous declarations of the function are available via the
1916 /// getPreviousDecl() chain.
1917 class FunctionDecl : public DeclaratorDecl,
1918                      public DeclContext,
1919                      public Redeclarable<FunctionDecl> {
1920   // This class stores some data in DeclContext::FunctionDeclBits
1921   // to save some space. Use the provided accessors to access it.
1922 public:
1923   /// The kind of templated function a FunctionDecl can be.
1924   enum TemplatedKind {
1925     // Not templated.
1926     TK_NonTemplate,
1927     // The pattern in a function template declaration.
1928     TK_FunctionTemplate,
1929     // A non-template function that is an instantiation or explicit
1930     // specialization of a member of a templated class.
1931     TK_MemberSpecialization,
1932     // An instantiation or explicit specialization of a function template.
1933     // Note: this might have been instantiated from a templated class if it
1934     // is a class-scope explicit specialization.
1935     TK_FunctionTemplateSpecialization,
1936     // A function template specialization that hasn't yet been resolved to a
1937     // particular specialized function template.
1938     TK_DependentFunctionTemplateSpecialization,
1939     // A non-template function which is in a dependent scope.
1940     TK_DependentNonTemplate
1941 
1942   };
1943 
1944   /// Stashed information about a defaulted function definition whose body has
1945   /// not yet been lazily generated.
1946   class DefaultedFunctionInfo final
1947       : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1948     friend TrailingObjects;
1949     unsigned NumLookups;
1950 
1951   public:
1952     static DefaultedFunctionInfo *Create(ASTContext &Context,
1953                                          ArrayRef<DeclAccessPair> Lookups);
1954     /// Get the unqualified lookup results that should be used in this
1955     /// defaulted function definition.
getUnqualifiedLookups()1956     ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1957       return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1958     }
1959   };
1960 
1961 private:
1962   /// A new[]'d array of pointers to VarDecls for the formal
1963   /// parameters of this function.  This is null if a prototype or if there are
1964   /// no formals.
1965   ParmVarDecl **ParamInfo = nullptr;
1966 
1967   /// The active member of this union is determined by
1968   /// FunctionDeclBits.HasDefaultedFunctionInfo.
1969   union {
1970     /// The body of the function.
1971     LazyDeclStmtPtr Body;
1972     /// Information about a future defaulted function definition.
1973     DefaultedFunctionInfo *DefaultedInfo;
1974   };
1975 
1976   unsigned ODRHash;
1977 
1978   /// End part of this FunctionDecl's source range.
1979   ///
1980   /// We could compute the full range in getSourceRange(). However, when we're
1981   /// dealing with a function definition deserialized from a PCH/AST file,
1982   /// we can only compute the full range once the function body has been
1983   /// de-serialized, so it's far better to have the (sometimes-redundant)
1984   /// EndRangeLoc.
1985   SourceLocation EndRangeLoc;
1986 
1987   SourceLocation DefaultKWLoc;
1988 
1989   /// The template or declaration that this declaration
1990   /// describes or was instantiated from, respectively.
1991   ///
1992   /// For non-templates this value will be NULL, unless this declaration was
1993   /// declared directly inside of a function template, in which case it will
1994   /// have a pointer to a FunctionDecl, stored in the NamedDecl. For function
1995   /// declarations that describe a function template, this will be a pointer to
1996   /// a FunctionTemplateDecl, stored in the NamedDecl. For member functions of
1997   /// class template specializations, this will be a MemberSpecializationInfo
1998   /// pointer containing information about the specialization.
1999   /// For function template specializations, this will be a
2000   /// FunctionTemplateSpecializationInfo, which contains information about
2001   /// the template being specialized and the template arguments involved in
2002   /// that specialization.
2003   llvm::PointerUnion<NamedDecl *, MemberSpecializationInfo *,
2004                      FunctionTemplateSpecializationInfo *,
2005                      DependentFunctionTemplateSpecializationInfo *>
2006       TemplateOrSpecialization;
2007 
2008   /// Provides source/type location info for the declaration name embedded in
2009   /// the DeclaratorDecl base class.
2010   DeclarationNameLoc DNLoc;
2011 
2012   /// Specify that this function declaration is actually a function
2013   /// template specialization.
2014   ///
2015   /// \param C the ASTContext.
2016   ///
2017   /// \param Template the function template that this function template
2018   /// specialization specializes.
2019   ///
2020   /// \param TemplateArgs the template arguments that produced this
2021   /// function template specialization from the template.
2022   ///
2023   /// \param InsertPos If non-NULL, the position in the function template
2024   /// specialization set where the function template specialization data will
2025   /// be inserted.
2026   ///
2027   /// \param TSK the kind of template specialization this is.
2028   ///
2029   /// \param TemplateArgsAsWritten location info of template arguments.
2030   ///
2031   /// \param PointOfInstantiation point at which the function template
2032   /// specialization was first instantiated.
2033   void setFunctionTemplateSpecialization(ASTContext &C,
2034                                          FunctionTemplateDecl *Template,
2035                                        const TemplateArgumentList *TemplateArgs,
2036                                          void *InsertPos,
2037                                          TemplateSpecializationKind TSK,
2038                           const TemplateArgumentListInfo *TemplateArgsAsWritten,
2039                                          SourceLocation PointOfInstantiation);
2040 
2041   /// Specify that this record is an instantiation of the
2042   /// member function FD.
2043   void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
2044                                         TemplateSpecializationKind TSK);
2045 
2046   void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
2047 
2048   // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
2049   // need to access this bit but we want to avoid making ASTDeclWriter
2050   // a friend of FunctionDeclBitfields just for this.
isDeletedBit()2051   bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
2052 
2053   /// Whether an ODRHash has been stored.
hasODRHash()2054   bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
2055 
2056   /// State that an ODRHash has been stored.
2057   void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
2058 
2059 protected:
2060   FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2061                const DeclarationNameInfo &NameInfo, QualType T,
2062                TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin,
2063                bool isInlineSpecified, ConstexprSpecKind ConstexprKind,
2064                Expr *TrailingRequiresClause = nullptr);
2065 
2066   using redeclarable_base = Redeclarable<FunctionDecl>;
2067 
getNextRedeclarationImpl()2068   FunctionDecl *getNextRedeclarationImpl() override {
2069     return getNextRedeclaration();
2070   }
2071 
getPreviousDeclImpl()2072   FunctionDecl *getPreviousDeclImpl() override {
2073     return getPreviousDecl();
2074   }
2075 
getMostRecentDeclImpl()2076   FunctionDecl *getMostRecentDeclImpl() override {
2077     return getMostRecentDecl();
2078   }
2079 
2080 public:
2081   friend class ASTDeclReader;
2082   friend class ASTDeclWriter;
2083 
2084   using redecl_range = redeclarable_base::redecl_range;
2085   using redecl_iterator = redeclarable_base::redecl_iterator;
2086 
2087   using redeclarable_base::redecls_begin;
2088   using redeclarable_base::redecls_end;
2089   using redeclarable_base::redecls;
2090   using redeclarable_base::getPreviousDecl;
2091   using redeclarable_base::getMostRecentDecl;
2092   using redeclarable_base::isFirstDecl;
2093 
2094   static FunctionDecl *
2095   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2096          SourceLocation NLoc, DeclarationName N, QualType T,
2097          TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false,
2098          bool isInlineSpecified = false, bool hasWrittenPrototype = true,
2099          ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
2100          Expr *TrailingRequiresClause = nullptr) {
2101     DeclarationNameInfo NameInfo(N, NLoc);
2102     return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2103                                 UsesFPIntrin, isInlineSpecified,
2104                                 hasWrittenPrototype, ConstexprKind,
2105                                 TrailingRequiresClause);
2106   }
2107 
2108   static FunctionDecl *
2109   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2110          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2111          StorageClass SC, bool UsesFPIntrin, bool isInlineSpecified,
2112          bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind,
2113          Expr *TrailingRequiresClause);
2114 
2115   static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2116 
getNameInfo()2117   DeclarationNameInfo getNameInfo() const {
2118     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2119   }
2120 
2121   void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2122                             bool Qualified) const override;
2123 
setRangeEnd(SourceLocation E)2124   void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2125 
2126   /// Returns the location of the ellipsis of a variadic function.
getEllipsisLoc()2127   SourceLocation getEllipsisLoc() const {
2128     const auto *FPT = getType()->getAs<FunctionProtoType>();
2129     if (FPT && FPT->isVariadic())
2130       return FPT->getEllipsisLoc();
2131     return SourceLocation();
2132   }
2133 
2134   SourceRange getSourceRange() const override LLVM_READONLY;
2135 
2136   // Function definitions.
2137   //
2138   // A function declaration may be:
2139   // - a non defining declaration,
2140   // - a definition. A function may be defined because:
2141   //   - it has a body, or will have it in the case of late parsing.
2142   //   - it has an uninstantiated body. The body does not exist because the
2143   //     function is not used yet, but the declaration is considered a
2144   //     definition and does not allow other definition of this function.
2145   //   - it does not have a user specified body, but it does not allow
2146   //     redefinition, because it is deleted/defaulted or is defined through
2147   //     some other mechanism (alias, ifunc).
2148 
2149   /// Returns true if the function has a body.
2150   ///
2151   /// The function body might be in any of the (re-)declarations of this
2152   /// function. The variant that accepts a FunctionDecl pointer will set that
2153   /// function declaration to the actual declaration containing the body (if
2154   /// there is one).
2155   bool hasBody(const FunctionDecl *&Definition) const;
2156 
hasBody()2157   bool hasBody() const override {
2158     const FunctionDecl* Definition;
2159     return hasBody(Definition);
2160   }
2161 
2162   /// Returns whether the function has a trivial body that does not require any
2163   /// specific codegen.
2164   bool hasTrivialBody() const;
2165 
2166   /// Returns true if the function has a definition that does not need to be
2167   /// instantiated.
2168   ///
2169   /// The variant that accepts a FunctionDecl pointer will set that function
2170   /// declaration to the declaration that is a definition (if there is one).
2171   ///
2172   /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2173   ///        declarations that were instantiataed from function definitions.
2174   ///        Such a declaration behaves as if it is a definition for the
2175   ///        purpose of redefinition checking, but isn't actually a "real"
2176   ///        definition until its body is instantiated.
2177   bool isDefined(const FunctionDecl *&Definition,
2178                  bool CheckForPendingFriendDefinition = false) const;
2179 
isDefined()2180   bool isDefined() const {
2181     const FunctionDecl* Definition;
2182     return isDefined(Definition);
2183   }
2184 
2185   /// Get the definition for this declaration.
getDefinition()2186   FunctionDecl *getDefinition() {
2187     const FunctionDecl *Definition;
2188     if (isDefined(Definition))
2189       return const_cast<FunctionDecl *>(Definition);
2190     return nullptr;
2191   }
getDefinition()2192   const FunctionDecl *getDefinition() const {
2193     return const_cast<FunctionDecl *>(this)->getDefinition();
2194   }
2195 
2196   /// Retrieve the body (definition) of the function. The function body might be
2197   /// in any of the (re-)declarations of this function. The variant that accepts
2198   /// a FunctionDecl pointer will set that function declaration to the actual
2199   /// declaration containing the body (if there is one).
2200   /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2201   /// unnecessary AST de-serialization of the body.
2202   Stmt *getBody(const FunctionDecl *&Definition) const;
2203 
getBody()2204   Stmt *getBody() const override {
2205     const FunctionDecl* Definition;
2206     return getBody(Definition);
2207   }
2208 
2209   /// Returns whether this specific declaration of the function is also a
2210   /// definition that does not contain uninstantiated body.
2211   ///
2212   /// This does not determine whether the function has been defined (e.g., in a
2213   /// previous definition); for that information, use isDefined.
2214   ///
2215   /// Note: the function declaration does not become a definition until the
2216   /// parser reaches the definition, if called before, this function will return
2217   /// `false`.
isThisDeclarationADefinition()2218   bool isThisDeclarationADefinition() const {
2219     return isDeletedAsWritten() || isDefaulted() ||
2220            doesThisDeclarationHaveABody() || hasSkippedBody() ||
2221            willHaveBody() || hasDefiningAttr();
2222   }
2223 
2224   /// Determine whether this specific declaration of the function is a friend
2225   /// declaration that was instantiated from a function definition. Such
2226   /// declarations behave like definitions in some contexts.
2227   bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2228 
2229   /// Returns whether this specific declaration of the function has a body.
doesThisDeclarationHaveABody()2230   bool doesThisDeclarationHaveABody() const {
2231     return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2232            isLateTemplateParsed();
2233   }
2234 
2235   void setBody(Stmt *B);
setLazyBody(uint64_t Offset)2236   void setLazyBody(uint64_t Offset) {
2237     FunctionDeclBits.HasDefaultedFunctionInfo = false;
2238     Body = LazyDeclStmtPtr(Offset);
2239   }
2240 
2241   void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2242   DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2243 
2244   /// Whether this function is variadic.
2245   bool isVariadic() const;
2246 
2247   /// Whether this function is marked as virtual explicitly.
isVirtualAsWritten()2248   bool isVirtualAsWritten() const {
2249     return FunctionDeclBits.IsVirtualAsWritten;
2250   }
2251 
2252   /// State that this function is marked as virtual explicitly.
setVirtualAsWritten(bool V)2253   void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2254 
2255   /// Whether this virtual function is pure, i.e. makes the containing class
2256   /// abstract.
isPure()2257   bool isPure() const { return FunctionDeclBits.IsPure; }
2258   void setPure(bool P = true);
2259 
2260   /// Whether this templated function will be late parsed.
isLateTemplateParsed()2261   bool isLateTemplateParsed() const {
2262     return FunctionDeclBits.IsLateTemplateParsed;
2263   }
2264 
2265   /// State that this templated function will be late parsed.
2266   void setLateTemplateParsed(bool ILT = true) {
2267     FunctionDeclBits.IsLateTemplateParsed = ILT;
2268   }
2269 
2270   /// Whether this function is "trivial" in some specialized C++ senses.
2271   /// Can only be true for default constructors, copy constructors,
2272   /// copy assignment operators, and destructors.  Not meaningful until
2273   /// the class has been fully built by Sema.
isTrivial()2274   bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
setTrivial(bool IT)2275   void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2276 
isTrivialForCall()2277   bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
setTrivialForCall(bool IT)2278   void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2279 
2280   /// Whether this function is defaulted. Valid for e.g.
2281   /// special member functions, defaulted comparisions (not methods!).
isDefaulted()2282   bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2283   void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2284 
2285   /// Whether this function is explicitly defaulted.
isExplicitlyDefaulted()2286   bool isExplicitlyDefaulted() const {
2287     return FunctionDeclBits.IsExplicitlyDefaulted;
2288   }
2289 
2290   /// State that this function is explicitly defaulted.
2291   void setExplicitlyDefaulted(bool ED = true) {
2292     FunctionDeclBits.IsExplicitlyDefaulted = ED;
2293   }
2294 
getDefaultLoc()2295   SourceLocation getDefaultLoc() const {
2296     return isExplicitlyDefaulted() ? DefaultKWLoc : SourceLocation();
2297   }
2298 
setDefaultLoc(SourceLocation NewLoc)2299   void setDefaultLoc(SourceLocation NewLoc) {
2300     assert((NewLoc.isInvalid() || isExplicitlyDefaulted()) &&
2301            "Can't set default loc is function isn't explicitly defaulted");
2302     DefaultKWLoc = NewLoc;
2303   }
2304 
2305   /// True if this method is user-declared and was not
2306   /// deleted or defaulted on its first declaration.
isUserProvided()2307   bool isUserProvided() const {
2308     auto *DeclAsWritten = this;
2309     if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2310       DeclAsWritten = Pattern;
2311     return !(DeclAsWritten->isDeleted() ||
2312              DeclAsWritten->getCanonicalDecl()->isDefaulted());
2313   }
2314 
isIneligibleOrNotSelected()2315   bool isIneligibleOrNotSelected() const {
2316     return FunctionDeclBits.IsIneligibleOrNotSelected;
2317   }
setIneligibleOrNotSelected(bool II)2318   void setIneligibleOrNotSelected(bool II) {
2319     FunctionDeclBits.IsIneligibleOrNotSelected = II;
2320   }
2321 
2322   /// Whether falling off this function implicitly returns null/zero.
2323   /// If a more specific implicit return value is required, front-ends
2324   /// should synthesize the appropriate return statements.
hasImplicitReturnZero()2325   bool hasImplicitReturnZero() const {
2326     return FunctionDeclBits.HasImplicitReturnZero;
2327   }
2328 
2329   /// State that falling off this function implicitly returns null/zero.
2330   /// If a more specific implicit return value is required, front-ends
2331   /// should synthesize the appropriate return statements.
setHasImplicitReturnZero(bool IRZ)2332   void setHasImplicitReturnZero(bool IRZ) {
2333     FunctionDeclBits.HasImplicitReturnZero = IRZ;
2334   }
2335 
2336   /// Whether this function has a prototype, either because one
2337   /// was explicitly written or because it was "inherited" by merging
2338   /// a declaration without a prototype with a declaration that has a
2339   /// prototype.
hasPrototype()2340   bool hasPrototype() const {
2341     return hasWrittenPrototype() || hasInheritedPrototype();
2342   }
2343 
2344   /// Whether this function has a written prototype.
hasWrittenPrototype()2345   bool hasWrittenPrototype() const {
2346     return FunctionDeclBits.HasWrittenPrototype;
2347   }
2348 
2349   /// State that this function has a written prototype.
2350   void setHasWrittenPrototype(bool P = true) {
2351     FunctionDeclBits.HasWrittenPrototype = P;
2352   }
2353 
2354   /// Whether this function inherited its prototype from a
2355   /// previous declaration.
hasInheritedPrototype()2356   bool hasInheritedPrototype() const {
2357     return FunctionDeclBits.HasInheritedPrototype;
2358   }
2359 
2360   /// State that this function inherited its prototype from a
2361   /// previous declaration.
2362   void setHasInheritedPrototype(bool P = true) {
2363     FunctionDeclBits.HasInheritedPrototype = P;
2364   }
2365 
2366   /// Whether this is a (C++11) constexpr function or constexpr constructor.
isConstexpr()2367   bool isConstexpr() const {
2368     return getConstexprKind() != ConstexprSpecKind::Unspecified;
2369   }
setConstexprKind(ConstexprSpecKind CSK)2370   void setConstexprKind(ConstexprSpecKind CSK) {
2371     FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2372   }
getConstexprKind()2373   ConstexprSpecKind getConstexprKind() const {
2374     return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2375   }
isConstexprSpecified()2376   bool isConstexprSpecified() const {
2377     return getConstexprKind() == ConstexprSpecKind::Constexpr;
2378   }
isConsteval()2379   bool isConsteval() const {
2380     return getConstexprKind() == ConstexprSpecKind::Consteval;
2381   }
2382 
2383   /// Whether the instantiation of this function is pending.
2384   /// This bit is set when the decision to instantiate this function is made
2385   /// and unset if and when the function body is created. That leaves out
2386   /// cases where instantiation did not happen because the template definition
2387   /// was not seen in this TU. This bit remains set in those cases, under the
2388   /// assumption that the instantiation will happen in some other TU.
instantiationIsPending()2389   bool instantiationIsPending() const {
2390     return FunctionDeclBits.InstantiationIsPending;
2391   }
2392 
2393   /// State that the instantiation of this function is pending.
2394   /// (see instantiationIsPending)
setInstantiationIsPending(bool IC)2395   void setInstantiationIsPending(bool IC) {
2396     FunctionDeclBits.InstantiationIsPending = IC;
2397   }
2398 
2399   /// Indicates the function uses __try.
usesSEHTry()2400   bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
setUsesSEHTry(bool UST)2401   void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2402 
2403   /// Whether this function has been deleted.
2404   ///
2405   /// A function that is "deleted" (via the C++0x "= delete" syntax)
2406   /// acts like a normal function, except that it cannot actually be
2407   /// called or have its address taken. Deleted functions are
2408   /// typically used in C++ overload resolution to attract arguments
2409   /// whose type or lvalue/rvalue-ness would permit the use of a
2410   /// different overload that would behave incorrectly. For example,
2411   /// one might use deleted functions to ban implicit conversion from
2412   /// a floating-point number to an Integer type:
2413   ///
2414   /// @code
2415   /// struct Integer {
2416   ///   Integer(long); // construct from a long
2417   ///   Integer(double) = delete; // no construction from float or double
2418   ///   Integer(long double) = delete; // no construction from long double
2419   /// };
2420   /// @endcode
2421   // If a function is deleted, its first declaration must be.
isDeleted()2422   bool isDeleted() const {
2423     return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2424   }
2425 
isDeletedAsWritten()2426   bool isDeletedAsWritten() const {
2427     return FunctionDeclBits.IsDeleted && !isDefaulted();
2428   }
2429 
2430   void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2431 
2432   /// Determines whether this function is "main", which is the
2433   /// entry point into an executable program.
2434   bool isMain() const;
2435 
2436   /// Determines whether this function is a MSVCRT user defined entry
2437   /// point.
2438   bool isMSVCRTEntryPoint() const;
2439 
2440   /// Determines whether this operator new or delete is one
2441   /// of the reserved global placement operators:
2442   ///    void *operator new(size_t, void *);
2443   ///    void *operator new[](size_t, void *);
2444   ///    void operator delete(void *, void *);
2445   ///    void operator delete[](void *, void *);
2446   /// These functions have special behavior under [new.delete.placement]:
2447   ///    These functions are reserved, a C++ program may not define
2448   ///    functions that displace the versions in the Standard C++ library.
2449   ///    The provisions of [basic.stc.dynamic] do not apply to these
2450   ///    reserved placement forms of operator new and operator delete.
2451   ///
2452   /// This function must be an allocation or deallocation function.
2453   bool isReservedGlobalPlacementOperator() const;
2454 
2455   /// Determines whether this function is one of the replaceable
2456   /// global allocation functions:
2457   ///    void *operator new(size_t);
2458   ///    void *operator new(size_t, const std::nothrow_t &) noexcept;
2459   ///    void *operator new[](size_t);
2460   ///    void *operator new[](size_t, const std::nothrow_t &) noexcept;
2461   ///    void operator delete(void *) noexcept;
2462   ///    void operator delete(void *, std::size_t) noexcept;      [C++1y]
2463   ///    void operator delete(void *, const std::nothrow_t &) noexcept;
2464   ///    void operator delete[](void *) noexcept;
2465   ///    void operator delete[](void *, std::size_t) noexcept;    [C++1y]
2466   ///    void operator delete[](void *, const std::nothrow_t &) noexcept;
2467   /// These functions have special behavior under C++1y [expr.new]:
2468   ///    An implementation is allowed to omit a call to a replaceable global
2469   ///    allocation function. [...]
2470   ///
2471   /// If this function is an aligned allocation/deallocation function, return
2472   /// the parameter number of the requested alignment through AlignmentParam.
2473   ///
2474   /// If this function is an allocation/deallocation function that takes
2475   /// the `std::nothrow_t` tag, return true through IsNothrow,
2476   bool isReplaceableGlobalAllocationFunction(
2477       std::optional<unsigned> *AlignmentParam = nullptr,
2478       bool *IsNothrow = nullptr) const;
2479 
2480   /// Determine if this function provides an inline implementation of a builtin.
2481   bool isInlineBuiltinDeclaration() const;
2482 
2483   /// Determine whether this is a destroying operator delete.
2484   bool isDestroyingOperatorDelete() const;
2485 
2486   /// Compute the language linkage.
2487   LanguageLinkage getLanguageLinkage() const;
2488 
2489   /// Determines whether this function is a function with
2490   /// external, C linkage.
2491   bool isExternC() const;
2492 
2493   /// Determines whether this function's context is, or is nested within,
2494   /// a C++ extern "C" linkage spec.
2495   bool isInExternCContext() const;
2496 
2497   /// Determines whether this function's context is, or is nested within,
2498   /// a C++ extern "C++" linkage spec.
2499   bool isInExternCXXContext() const;
2500 
2501   /// Determines whether this is a global function.
2502   bool isGlobal() const;
2503 
2504   /// Determines whether this function is known to be 'noreturn', through
2505   /// an attribute on its declaration or its type.
2506   bool isNoReturn() const;
2507 
2508   /// True if the function was a definition but its body was skipped.
hasSkippedBody()2509   bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2510   void setHasSkippedBody(bool Skipped = true) {
2511     FunctionDeclBits.HasSkippedBody = Skipped;
2512   }
2513 
2514   /// True if this function will eventually have a body, once it's fully parsed.
willHaveBody()2515   bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2516   void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2517 
2518   /// True if this function is considered a multiversioned function.
isMultiVersion()2519   bool isMultiVersion() const {
2520     return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2521   }
2522 
2523   /// Sets the multiversion state for this declaration and all of its
2524   /// redeclarations.
2525   void setIsMultiVersion(bool V = true) {
2526     getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2527   }
2528 
2529   // Sets that this is a constrained friend where the constraint refers to an
2530   // enclosing template.
2531   void setFriendConstraintRefersToEnclosingTemplate(bool V = true) {
2532     getCanonicalDecl()
2533         ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = V;
2534   }
2535   // Indicates this function is a constrained friend, where the constraint
2536   // refers to an enclosing template for hte purposes of [temp.friend]p9.
FriendConstraintRefersToEnclosingTemplate()2537   bool FriendConstraintRefersToEnclosingTemplate() const {
2538     return getCanonicalDecl()
2539         ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate;
2540   }
2541 
2542   /// Gets the kind of multiversioning attribute this declaration has. Note that
2543   /// this can return a value even if the function is not multiversion, such as
2544   /// the case of 'target'.
2545   MultiVersionKind getMultiVersionKind() const;
2546 
2547 
2548   /// True if this function is a multiversioned dispatch function as a part of
2549   /// the cpu_specific/cpu_dispatch functionality.
2550   bool isCPUDispatchMultiVersion() const;
2551   /// True if this function is a multiversioned processor specific function as a
2552   /// part of the cpu_specific/cpu_dispatch functionality.
2553   bool isCPUSpecificMultiVersion() const;
2554 
2555   /// True if this function is a multiversioned dispatch function as a part of
2556   /// the target functionality.
2557   bool isTargetMultiVersion() const;
2558 
2559   /// True if this function is a multiversioned dispatch function as a part of
2560   /// the target-clones functionality.
2561   bool isTargetClonesMultiVersion() const;
2562 
2563   /// \brief Get the associated-constraints of this function declaration.
2564   /// Currently, this will either be a vector of size 1 containing the
2565   /// trailing-requires-clause or an empty vector.
2566   ///
2567   /// Use this instead of getTrailingRequiresClause for concepts APIs that
2568   /// accept an ArrayRef of constraint expressions.
getAssociatedConstraints(SmallVectorImpl<const Expr * > & AC)2569   void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2570     if (auto *TRC = getTrailingRequiresClause())
2571       AC.push_back(TRC);
2572   }
2573 
2574   void setPreviousDeclaration(FunctionDecl * PrevDecl);
2575 
2576   FunctionDecl *getCanonicalDecl() override;
getCanonicalDecl()2577   const FunctionDecl *getCanonicalDecl() const {
2578     return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2579   }
2580 
2581   unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2582 
2583   // ArrayRef interface to parameters.
parameters()2584   ArrayRef<ParmVarDecl *> parameters() const {
2585     return {ParamInfo, getNumParams()};
2586   }
parameters()2587   MutableArrayRef<ParmVarDecl *> parameters() {
2588     return {ParamInfo, getNumParams()};
2589   }
2590 
2591   // Iterator access to formal parameters.
2592   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2593   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2594 
param_empty()2595   bool param_empty() const { return parameters().empty(); }
param_begin()2596   param_iterator param_begin() { return parameters().begin(); }
param_end()2597   param_iterator param_end() { return parameters().end(); }
param_begin()2598   param_const_iterator param_begin() const { return parameters().begin(); }
param_end()2599   param_const_iterator param_end() const { return parameters().end(); }
param_size()2600   size_t param_size() const { return parameters().size(); }
2601 
2602   /// Return the number of parameters this function must have based on its
2603   /// FunctionType.  This is the length of the ParamInfo array after it has been
2604   /// created.
2605   unsigned getNumParams() const;
2606 
getParamDecl(unsigned i)2607   const ParmVarDecl *getParamDecl(unsigned i) const {
2608     assert(i < getNumParams() && "Illegal param #");
2609     return ParamInfo[i];
2610   }
getParamDecl(unsigned i)2611   ParmVarDecl *getParamDecl(unsigned i) {
2612     assert(i < getNumParams() && "Illegal param #");
2613     return ParamInfo[i];
2614   }
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)2615   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2616     setParams(getASTContext(), NewParamInfo);
2617   }
2618 
2619   /// Returns the minimum number of arguments needed to call this function. This
2620   /// may be fewer than the number of function parameters, if some of the
2621   /// parameters have default arguments (in C++).
2622   unsigned getMinRequiredArguments() const;
2623 
2624   /// Determine whether this function has a single parameter, or multiple
2625   /// parameters where all but the first have default arguments.
2626   ///
2627   /// This notion is used in the definition of copy/move constructors and
2628   /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2629   /// parameter packs are not treated specially here.
2630   bool hasOneParamOrDefaultArgs() const;
2631 
2632   /// Find the source location information for how the type of this function
2633   /// was written. May be absent (for example if the function was declared via
2634   /// a typedef) and may contain a different type from that of the function
2635   /// (for example if the function type was adjusted by an attribute).
2636   FunctionTypeLoc getFunctionTypeLoc() const;
2637 
getReturnType()2638   QualType getReturnType() const {
2639     return getType()->castAs<FunctionType>()->getReturnType();
2640   }
2641 
2642   /// Attempt to compute an informative source range covering the
2643   /// function return type. This may omit qualifiers and other information with
2644   /// limited representation in the AST.
2645   SourceRange getReturnTypeSourceRange() const;
2646 
2647   /// Attempt to compute an informative source range covering the
2648   /// function parameters, including the ellipsis of a variadic function.
2649   /// The source range excludes the parentheses, and is invalid if there are
2650   /// no parameters and no ellipsis.
2651   SourceRange getParametersSourceRange() const;
2652 
2653   /// Get the declared return type, which may differ from the actual return
2654   /// type if the return type is deduced.
getDeclaredReturnType()2655   QualType getDeclaredReturnType() const {
2656     auto *TSI = getTypeSourceInfo();
2657     QualType T = TSI ? TSI->getType() : getType();
2658     return T->castAs<FunctionType>()->getReturnType();
2659   }
2660 
2661   /// Gets the ExceptionSpecificationType as declared.
getExceptionSpecType()2662   ExceptionSpecificationType getExceptionSpecType() const {
2663     auto *TSI = getTypeSourceInfo();
2664     QualType T = TSI ? TSI->getType() : getType();
2665     const auto *FPT = T->getAs<FunctionProtoType>();
2666     return FPT ? FPT->getExceptionSpecType() : EST_None;
2667   }
2668 
2669   /// Attempt to compute an informative source range covering the
2670   /// function exception specification, if any.
2671   SourceRange getExceptionSpecSourceRange() const;
2672 
2673   /// Determine the type of an expression that calls this function.
getCallResultType()2674   QualType getCallResultType() const {
2675     return getType()->castAs<FunctionType>()->getCallResultType(
2676         getASTContext());
2677   }
2678 
2679   /// Returns the storage class as written in the source. For the
2680   /// computed linkage of symbol, see getLinkage.
getStorageClass()2681   StorageClass getStorageClass() const {
2682     return static_cast<StorageClass>(FunctionDeclBits.SClass);
2683   }
2684 
2685   /// Sets the storage class as written in the source.
setStorageClass(StorageClass SClass)2686   void setStorageClass(StorageClass SClass) {
2687     FunctionDeclBits.SClass = SClass;
2688   }
2689 
2690   /// Determine whether the "inline" keyword was specified for this
2691   /// function.
isInlineSpecified()2692   bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2693 
2694   /// Set whether the "inline" keyword was specified for this function.
setInlineSpecified(bool I)2695   void setInlineSpecified(bool I) {
2696     FunctionDeclBits.IsInlineSpecified = I;
2697     FunctionDeclBits.IsInline = I;
2698   }
2699 
2700   /// Determine whether the function was declared in source context
2701   /// that requires constrained FP intrinsics
UsesFPIntrin()2702   bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
2703 
2704   /// Set whether the function was declared in source context
2705   /// that requires constrained FP intrinsics
setUsesFPIntrin(bool I)2706   void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; }
2707 
2708   /// Flag that this function is implicitly inline.
2709   void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2710 
2711   /// Determine whether this function should be inlined, because it is
2712   /// either marked "inline" or "constexpr" or is a member function of a class
2713   /// that was defined in the class body.
isInlined()2714   bool isInlined() const { return FunctionDeclBits.IsInline; }
2715 
2716   bool isInlineDefinitionExternallyVisible() const;
2717 
2718   bool isMSExternInline() const;
2719 
2720   bool doesDeclarationForceExternallyVisibleDefinition() const;
2721 
isStatic()2722   bool isStatic() const { return getStorageClass() == SC_Static; }
2723 
2724   /// Whether this function declaration represents an C++ overloaded
2725   /// operator, e.g., "operator+".
isOverloadedOperator()2726   bool isOverloadedOperator() const {
2727     return getOverloadedOperator() != OO_None;
2728   }
2729 
2730   OverloadedOperatorKind getOverloadedOperator() const;
2731 
2732   const IdentifierInfo *getLiteralIdentifier() const;
2733 
2734   /// If this function is an instantiation of a member function
2735   /// of a class template specialization, retrieves the function from
2736   /// which it was instantiated.
2737   ///
2738   /// This routine will return non-NULL for (non-templated) member
2739   /// functions of class templates and for instantiations of function
2740   /// templates. For example, given:
2741   ///
2742   /// \code
2743   /// template<typename T>
2744   /// struct X {
2745   ///   void f(T);
2746   /// };
2747   /// \endcode
2748   ///
2749   /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2750   /// whose parent is the class template specialization X<int>. For
2751   /// this declaration, getInstantiatedFromFunction() will return
2752   /// the FunctionDecl X<T>::A. When a complete definition of
2753   /// X<int>::A is required, it will be instantiated from the
2754   /// declaration returned by getInstantiatedFromMemberFunction().
2755   FunctionDecl *getInstantiatedFromMemberFunction() const;
2756 
2757   /// What kind of templated function this is.
2758   TemplatedKind getTemplatedKind() const;
2759 
2760   /// If this function is an instantiation of a member function of a
2761   /// class template specialization, retrieves the member specialization
2762   /// information.
2763   MemberSpecializationInfo *getMemberSpecializationInfo() const;
2764 
2765   /// Specify that this record is an instantiation of the
2766   /// member function FD.
setInstantiationOfMemberFunction(FunctionDecl * FD,TemplateSpecializationKind TSK)2767   void setInstantiationOfMemberFunction(FunctionDecl *FD,
2768                                         TemplateSpecializationKind TSK) {
2769     setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2770   }
2771 
2772   /// Specify that this function declaration was instantiated from a
2773   /// FunctionDecl FD. This is only used if this is a function declaration
2774   /// declared locally inside of a function template.
2775   void setInstantiatedFromDecl(FunctionDecl *FD);
2776 
2777   FunctionDecl *getInstantiatedFromDecl() const;
2778 
2779   /// Retrieves the function template that is described by this
2780   /// function declaration.
2781   ///
2782   /// Every function template is represented as a FunctionTemplateDecl
2783   /// and a FunctionDecl (or something derived from FunctionDecl). The
2784   /// former contains template properties (such as the template
2785   /// parameter lists) while the latter contains the actual
2786   /// description of the template's
2787   /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2788   /// FunctionDecl that describes the function template,
2789   /// getDescribedFunctionTemplate() retrieves the
2790   /// FunctionTemplateDecl from a FunctionDecl.
2791   FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2792 
2793   void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2794 
2795   /// Determine whether this function is a function template
2796   /// specialization.
isFunctionTemplateSpecialization()2797   bool isFunctionTemplateSpecialization() const {
2798     return getPrimaryTemplate() != nullptr;
2799   }
2800 
2801   /// If this function is actually a function template specialization,
2802   /// retrieve information about this function template specialization.
2803   /// Otherwise, returns NULL.
2804   FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2805 
2806   /// Determines whether this function is a function template
2807   /// specialization or a member of a class template specialization that can
2808   /// be implicitly instantiated.
2809   bool isImplicitlyInstantiable() const;
2810 
2811   /// Determines if the given function was instantiated from a
2812   /// function template.
2813   bool isTemplateInstantiation() const;
2814 
2815   /// Retrieve the function declaration from which this function could
2816   /// be instantiated, if it is an instantiation (rather than a non-template
2817   /// or a specialization, for example).
2818   ///
2819   /// If \p ForDefinition is \c false, explicit specializations will be treated
2820   /// as if they were implicit instantiations. This will then find the pattern
2821   /// corresponding to non-definition portions of the declaration, such as
2822   /// default arguments and the exception specification.
2823   FunctionDecl *
2824   getTemplateInstantiationPattern(bool ForDefinition = true) const;
2825 
2826   /// Retrieve the primary template that this function template
2827   /// specialization either specializes or was instantiated from.
2828   ///
2829   /// If this function declaration is not a function template specialization,
2830   /// returns NULL.
2831   FunctionTemplateDecl *getPrimaryTemplate() const;
2832 
2833   /// Retrieve the template arguments used to produce this function
2834   /// template specialization from the primary template.
2835   ///
2836   /// If this function declaration is not a function template specialization,
2837   /// returns NULL.
2838   const TemplateArgumentList *getTemplateSpecializationArgs() const;
2839 
2840   /// Retrieve the template argument list as written in the sources,
2841   /// if any.
2842   ///
2843   /// If this function declaration is not a function template specialization
2844   /// or if it had no explicit template argument list, returns NULL.
2845   /// Note that it an explicit template argument list may be written empty,
2846   /// e.g., template<> void foo<>(char* s);
2847   const ASTTemplateArgumentListInfo*
2848   getTemplateSpecializationArgsAsWritten() const;
2849 
2850   /// Specify that this function declaration is actually a function
2851   /// template specialization.
2852   ///
2853   /// \param Template the function template that this function template
2854   /// specialization specializes.
2855   ///
2856   /// \param TemplateArgs the template arguments that produced this
2857   /// function template specialization from the template.
2858   ///
2859   /// \param InsertPos If non-NULL, the position in the function template
2860   /// specialization set where the function template specialization data will
2861   /// be inserted.
2862   ///
2863   /// \param TSK the kind of template specialization this is.
2864   ///
2865   /// \param TemplateArgsAsWritten location info of template arguments.
2866   ///
2867   /// \param PointOfInstantiation point at which the function template
2868   /// specialization was first instantiated.
2869   void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2870                 const TemplateArgumentList *TemplateArgs,
2871                 void *InsertPos,
2872                 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2873                 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2874                 SourceLocation PointOfInstantiation = SourceLocation()) {
2875     setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2876                                       InsertPos, TSK, TemplateArgsAsWritten,
2877                                       PointOfInstantiation);
2878   }
2879 
2880   /// Specifies that this function declaration is actually a
2881   /// dependent function template specialization.
2882   void setDependentTemplateSpecialization(ASTContext &Context,
2883                              const UnresolvedSetImpl &Templates,
2884                       const TemplateArgumentListInfo &TemplateArgs);
2885 
2886   DependentFunctionTemplateSpecializationInfo *
2887   getDependentSpecializationInfo() const;
2888 
2889   /// Determine what kind of template instantiation this function
2890   /// represents.
2891   TemplateSpecializationKind getTemplateSpecializationKind() const;
2892 
2893   /// Determine the kind of template specialization this function represents
2894   /// for the purpose of template instantiation.
2895   TemplateSpecializationKind
2896   getTemplateSpecializationKindForInstantiation() const;
2897 
2898   /// Determine what kind of template instantiation this function
2899   /// represents.
2900   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2901                         SourceLocation PointOfInstantiation = SourceLocation());
2902 
2903   /// Retrieve the (first) point of instantiation of a function template
2904   /// specialization or a member of a class template specialization.
2905   ///
2906   /// \returns the first point of instantiation, if this function was
2907   /// instantiated from a template; otherwise, returns an invalid source
2908   /// location.
2909   SourceLocation getPointOfInstantiation() const;
2910 
2911   /// Determine whether this is or was instantiated from an out-of-line
2912   /// definition of a member function.
2913   bool isOutOfLine() const override;
2914 
2915   /// Identify a memory copying or setting function.
2916   /// If the given function is a memory copy or setting function, returns
2917   /// the corresponding Builtin ID. If the function is not a memory function,
2918   /// returns 0.
2919   unsigned getMemoryFunctionKind() const;
2920 
2921   /// Returns ODRHash of the function.  This value is calculated and
2922   /// stored on first call, then the stored value returned on the other calls.
2923   unsigned getODRHash();
2924 
2925   /// Returns cached ODRHash of the function.  This must have been previously
2926   /// computed and stored.
2927   unsigned getODRHash() const;
2928 
2929   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2930   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2931   static bool classofKind(Kind K) {
2932     return K >= firstFunction && K <= lastFunction;
2933   }
castToDeclContext(const FunctionDecl * D)2934   static DeclContext *castToDeclContext(const FunctionDecl *D) {
2935     return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2936   }
castFromDeclContext(const DeclContext * DC)2937   static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2938     return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2939   }
2940 };
2941 
2942 /// Represents a member of a struct/union/class.
2943 class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2944   unsigned BitField : 1;
2945   unsigned Mutable : 1;
2946   mutable unsigned CachedFieldIndex : 30;
2947 
2948   /// The kinds of value we can store in InitializerOrBitWidth.
2949   ///
2950   /// Note that this is compatible with InClassInitStyle except for
2951   /// ISK_CapturedVLAType.
2952   enum InitStorageKind {
2953     /// If the pointer is null, there's nothing special.  Otherwise,
2954     /// this is a bitfield and the pointer is the Expr* storing the
2955     /// bit-width.
2956     ISK_NoInit = (unsigned) ICIS_NoInit,
2957 
2958     /// The pointer is an (optional due to delayed parsing) Expr*
2959     /// holding the copy-initializer.
2960     ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2961 
2962     /// The pointer is an (optional due to delayed parsing) Expr*
2963     /// holding the list-initializer.
2964     ISK_InClassListInit = (unsigned) ICIS_ListInit,
2965 
2966     /// The pointer is a VariableArrayType* that's been captured;
2967     /// the enclosing context is a lambda or captured statement.
2968     ISK_CapturedVLAType,
2969   };
2970 
2971   /// If this is a bitfield with a default member initializer, this
2972   /// structure is used to represent the two expressions.
2973   struct InitAndBitWidth {
2974     Expr *Init;
2975     Expr *BitWidth;
2976   };
2977 
2978   /// Storage for either the bit-width, the in-class initializer, or
2979   /// both (via InitAndBitWidth), or the captured variable length array bound.
2980   ///
2981   /// If the storage kind is ISK_InClassCopyInit or
2982   /// ISK_InClassListInit, but the initializer is null, then this
2983   /// field has an in-class initializer that has not yet been parsed
2984   /// and attached.
2985   // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2986   // overwhelmingly common case that we have none of these things.
2987   llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2988 
2989 protected:
FieldDecl(Kind DK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)2990   FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2991             SourceLocation IdLoc, IdentifierInfo *Id,
2992             QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2993             InClassInitStyle InitStyle)
2994     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2995       BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2996       InitStorage(nullptr, (InitStorageKind) InitStyle) {
2997     if (BW)
2998       setBitWidth(BW);
2999   }
3000 
3001 public:
3002   friend class ASTDeclReader;
3003   friend class ASTDeclWriter;
3004 
3005   static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
3006                            SourceLocation StartLoc, SourceLocation IdLoc,
3007                            IdentifierInfo *Id, QualType T,
3008                            TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3009                            InClassInitStyle InitStyle);
3010 
3011   static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3012 
3013   /// Returns the index of this field within its record,
3014   /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
3015   unsigned getFieldIndex() const;
3016 
3017   /// Determines whether this field is mutable (C++ only).
isMutable()3018   bool isMutable() const { return Mutable; }
3019 
3020   /// Determines whether this field is a bitfield.
isBitField()3021   bool isBitField() const { return BitField; }
3022 
3023   /// Determines whether this is an unnamed bitfield.
isUnnamedBitfield()3024   bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
3025 
3026   /// Determines whether this field is a
3027   /// representative for an anonymous struct or union. Such fields are
3028   /// unnamed and are implicitly generated by the implementation to
3029   /// store the data for the anonymous union or struct.
3030   bool isAnonymousStructOrUnion() const;
3031 
getBitWidth()3032   Expr *getBitWidth() const {
3033     if (!BitField)
3034       return nullptr;
3035     void *Ptr = InitStorage.getPointer();
3036     if (getInClassInitStyle())
3037       return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
3038     return static_cast<Expr*>(Ptr);
3039   }
3040 
3041   unsigned getBitWidthValue(const ASTContext &Ctx) const;
3042 
3043   /// Set the bit-field width for this member.
3044   // Note: used by some clients (i.e., do not remove it).
setBitWidth(Expr * Width)3045   void setBitWidth(Expr *Width) {
3046     assert(!hasCapturedVLAType() && !BitField &&
3047            "bit width or captured type already set");
3048     assert(Width && "no bit width specified");
3049     InitStorage.setPointer(
3050         InitStorage.getInt()
3051             ? new (getASTContext())
3052                   InitAndBitWidth{getInClassInitializer(), Width}
3053             : static_cast<void*>(Width));
3054     BitField = true;
3055   }
3056 
3057   /// Remove the bit-field width from this member.
3058   // Note: used by some clients (i.e., do not remove it).
removeBitWidth()3059   void removeBitWidth() {
3060     assert(isBitField() && "no bitfield width to remove");
3061     InitStorage.setPointer(getInClassInitializer());
3062     BitField = false;
3063   }
3064 
3065   /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
3066   /// at all and instead act as a separator between contiguous runs of other
3067   /// bit-fields.
3068   bool isZeroLengthBitField(const ASTContext &Ctx) const;
3069 
3070   /// Determine if this field is a subobject of zero size, that is, either a
3071   /// zero-length bit-field or a field of empty class type with the
3072   /// [[no_unique_address]] attribute.
3073   bool isZeroSize(const ASTContext &Ctx) const;
3074 
3075   /// Get the kind of (C++11) default member initializer that this field has.
getInClassInitStyle()3076   InClassInitStyle getInClassInitStyle() const {
3077     InitStorageKind storageKind = InitStorage.getInt();
3078     return (storageKind == ISK_CapturedVLAType
3079               ? ICIS_NoInit : (InClassInitStyle) storageKind);
3080   }
3081 
3082   /// Determine whether this member has a C++11 default member initializer.
hasInClassInitializer()3083   bool hasInClassInitializer() const {
3084     return getInClassInitStyle() != ICIS_NoInit;
3085   }
3086 
3087   /// Get the C++11 default member initializer for this member, or null if one
3088   /// has not been set. If a valid declaration has a default member initializer,
3089   /// but this returns null, then we have not parsed and attached it yet.
getInClassInitializer()3090   Expr *getInClassInitializer() const {
3091     if (!hasInClassInitializer())
3092       return nullptr;
3093     void *Ptr = InitStorage.getPointer();
3094     if (BitField)
3095       return static_cast<InitAndBitWidth*>(Ptr)->Init;
3096     return static_cast<Expr*>(Ptr);
3097   }
3098 
3099   /// Set the C++11 in-class initializer for this member.
setInClassInitializer(Expr * Init)3100   void setInClassInitializer(Expr *Init) {
3101     assert(hasInClassInitializer() && !getInClassInitializer());
3102     if (BitField)
3103       static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
3104     else
3105       InitStorage.setPointer(Init);
3106   }
3107 
3108   /// Remove the C++11 in-class initializer from this member.
removeInClassInitializer()3109   void removeInClassInitializer() {
3110     assert(hasInClassInitializer() && "no initializer to remove");
3111     InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
3112   }
3113 
3114   /// Determine whether this member captures the variable length array
3115   /// type.
hasCapturedVLAType()3116   bool hasCapturedVLAType() const {
3117     return InitStorage.getInt() == ISK_CapturedVLAType;
3118   }
3119 
3120   /// Get the captured variable length array type.
getCapturedVLAType()3121   const VariableArrayType *getCapturedVLAType() const {
3122     return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
3123                                       InitStorage.getPointer())
3124                                 : nullptr;
3125   }
3126 
3127   /// Set the captured variable length array type for this field.
3128   void setCapturedVLAType(const VariableArrayType *VLAType);
3129 
3130   /// Returns the parent of this field declaration, which
3131   /// is the struct in which this field is defined.
3132   ///
3133   /// Returns null if this is not a normal class/struct field declaration, e.g.
3134   /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
getParent()3135   const RecordDecl *getParent() const {
3136     return dyn_cast<RecordDecl>(getDeclContext());
3137   }
3138 
getParent()3139   RecordDecl *getParent() {
3140     return dyn_cast<RecordDecl>(getDeclContext());
3141   }
3142 
3143   SourceRange getSourceRange() const override LLVM_READONLY;
3144 
3145   /// Retrieves the canonical declaration of this field.
getCanonicalDecl()3146   FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3147   const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3148 
3149   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3150   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3151   static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
3152 };
3153 
3154 /// An instance of this object exists for each enum constant
3155 /// that is defined.  For example, in "enum X {a,b}", each of a/b are
3156 /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
3157 /// TagType for the X EnumDecl.
3158 class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
3159   Stmt *Init; // an integer constant expression
3160   llvm::APSInt Val; // The value.
3161 
3162 protected:
EnumConstantDecl(DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3163   EnumConstantDecl(DeclContext *DC, SourceLocation L,
3164                    IdentifierInfo *Id, QualType T, Expr *E,
3165                    const llvm::APSInt &V)
3166     : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
3167 
3168 public:
3169   friend class StmtIteratorBase;
3170 
3171   static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
3172                                   SourceLocation L, IdentifierInfo *Id,
3173                                   QualType T, Expr *E,
3174                                   const llvm::APSInt &V);
3175   static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3176 
getInitExpr()3177   const Expr *getInitExpr() const { return (const Expr*) Init; }
getInitExpr()3178   Expr *getInitExpr() { return (Expr*) Init; }
getInitVal()3179   const llvm::APSInt &getInitVal() const { return Val; }
3180 
setInitExpr(Expr * E)3181   void setInitExpr(Expr *E) { Init = (Stmt*) E; }
setInitVal(const llvm::APSInt & V)3182   void setInitVal(const llvm::APSInt &V) { Val = V; }
3183 
3184   SourceRange getSourceRange() const override LLVM_READONLY;
3185 
3186   /// Retrieves the canonical declaration of this enumerator.
getCanonicalDecl()3187   EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3188   const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3189 
3190   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3191   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3192   static bool classofKind(Kind K) { return K == EnumConstant; }
3193 };
3194 
3195 /// Represents a field injected from an anonymous union/struct into the parent
3196 /// scope. These are always implicit.
3197 class IndirectFieldDecl : public ValueDecl,
3198                           public Mergeable<IndirectFieldDecl> {
3199   NamedDecl **Chaining;
3200   unsigned ChainingSize;
3201 
3202   IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
3203                     DeclarationName N, QualType T,
3204                     MutableArrayRef<NamedDecl *> CH);
3205 
3206   void anchor() override;
3207 
3208 public:
3209   friend class ASTDeclReader;
3210 
3211   static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3212                                    SourceLocation L, IdentifierInfo *Id,
3213                                    QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
3214 
3215   static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3216 
3217   using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3218 
chain()3219   ArrayRef<NamedDecl *> chain() const {
3220     return llvm::ArrayRef(Chaining, ChainingSize);
3221   }
chain_begin()3222   chain_iterator chain_begin() const { return chain().begin(); }
chain_end()3223   chain_iterator chain_end() const { return chain().end(); }
3224 
getChainingSize()3225   unsigned getChainingSize() const { return ChainingSize; }
3226 
getAnonField()3227   FieldDecl *getAnonField() const {
3228     assert(chain().size() >= 2);
3229     return cast<FieldDecl>(chain().back());
3230   }
3231 
getVarDecl()3232   VarDecl *getVarDecl() const {
3233     assert(chain().size() >= 2);
3234     return dyn_cast<VarDecl>(chain().front());
3235   }
3236 
getCanonicalDecl()3237   IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3238   const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3239 
3240   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3241   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3242   static bool classofKind(Kind K) { return K == IndirectField; }
3243 };
3244 
3245 /// Represents a declaration of a type.
3246 class TypeDecl : public NamedDecl {
3247   friend class ASTContext;
3248 
3249   /// This indicates the Type object that represents
3250   /// this TypeDecl.  It is a cache maintained by
3251   /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3252   /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3253   mutable const Type *TypeForDecl = nullptr;
3254 
3255   /// The start of the source range for this declaration.
3256   SourceLocation LocStart;
3257 
3258   void anchor() override;
3259 
3260 protected:
3261   TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
3262            SourceLocation StartL = SourceLocation())
NamedDecl(DK,DC,L,Id)3263     : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3264 
3265 public:
3266   // Low-level accessor. If you just want the type defined by this node,
3267   // check out ASTContext::getTypeDeclType or one of
3268   // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3269   // already know the specific kind of node this is.
getTypeForDecl()3270   const Type *getTypeForDecl() const { return TypeForDecl; }
setTypeForDecl(const Type * TD)3271   void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3272 
getBeginLoc()3273   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
setLocStart(SourceLocation L)3274   void setLocStart(SourceLocation L) { LocStart = L; }
getSourceRange()3275   SourceRange getSourceRange() const override LLVM_READONLY {
3276     if (LocStart.isValid())
3277       return SourceRange(LocStart, getLocation());
3278     else
3279       return SourceRange(getLocation());
3280   }
3281 
3282   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3283   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3284   static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3285 };
3286 
3287 /// Base class for declarations which introduce a typedef-name.
3288 class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3289   struct alignas(8) ModedTInfo {
3290     TypeSourceInfo *first;
3291     QualType second;
3292   };
3293 
3294   /// If int part is 0, we have not computed IsTransparentTag.
3295   /// Otherwise, IsTransparentTag is (getInt() >> 1).
3296   mutable llvm::PointerIntPair<
3297       llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3298       MaybeModedTInfo;
3299 
3300   void anchor() override;
3301 
3302 protected:
TypedefNameDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3303   TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3304                   SourceLocation StartLoc, SourceLocation IdLoc,
3305                   IdentifierInfo *Id, TypeSourceInfo *TInfo)
3306       : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3307         MaybeModedTInfo(TInfo, 0) {}
3308 
3309   using redeclarable_base = Redeclarable<TypedefNameDecl>;
3310 
getNextRedeclarationImpl()3311   TypedefNameDecl *getNextRedeclarationImpl() override {
3312     return getNextRedeclaration();
3313   }
3314 
getPreviousDeclImpl()3315   TypedefNameDecl *getPreviousDeclImpl() override {
3316     return getPreviousDecl();
3317   }
3318 
getMostRecentDeclImpl()3319   TypedefNameDecl *getMostRecentDeclImpl() override {
3320     return getMostRecentDecl();
3321   }
3322 
3323 public:
3324   using redecl_range = redeclarable_base::redecl_range;
3325   using redecl_iterator = redeclarable_base::redecl_iterator;
3326 
3327   using redeclarable_base::redecls_begin;
3328   using redeclarable_base::redecls_end;
3329   using redeclarable_base::redecls;
3330   using redeclarable_base::getPreviousDecl;
3331   using redeclarable_base::getMostRecentDecl;
3332   using redeclarable_base::isFirstDecl;
3333 
isModed()3334   bool isModed() const {
3335     return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3336   }
3337 
getTypeSourceInfo()3338   TypeSourceInfo *getTypeSourceInfo() const {
3339     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3340                      : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3341   }
3342 
getUnderlyingType()3343   QualType getUnderlyingType() const {
3344     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3345                      : MaybeModedTInfo.getPointer()
3346                            .get<TypeSourceInfo *>()
3347                            ->getType();
3348   }
3349 
setTypeSourceInfo(TypeSourceInfo * newType)3350   void setTypeSourceInfo(TypeSourceInfo *newType) {
3351     MaybeModedTInfo.setPointer(newType);
3352   }
3353 
setModedTypeSourceInfo(TypeSourceInfo * unmodedTSI,QualType modedTy)3354   void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3355     MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3356                                    ModedTInfo({unmodedTSI, modedTy}));
3357   }
3358 
3359   /// Retrieves the canonical declaration of this typedef-name.
getCanonicalDecl()3360   TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3361   const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3362 
3363   /// Retrieves the tag declaration for which this is the typedef name for
3364   /// linkage purposes, if any.
3365   ///
3366   /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3367   /// this typedef declaration.
3368   TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3369 
3370   /// Determines if this typedef shares a name and spelling location with its
3371   /// underlying tag type, as is the case with the NS_ENUM macro.
isTransparentTag()3372   bool isTransparentTag() const {
3373     if (MaybeModedTInfo.getInt())
3374       return MaybeModedTInfo.getInt() & 0x2;
3375     return isTransparentTagSlow();
3376   }
3377 
3378   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3379   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3380   static bool classofKind(Kind K) {
3381     return K >= firstTypedefName && K <= lastTypedefName;
3382   }
3383 
3384 private:
3385   bool isTransparentTagSlow() const;
3386 };
3387 
3388 /// Represents the declaration of a typedef-name via the 'typedef'
3389 /// type specifier.
3390 class TypedefDecl : public TypedefNameDecl {
TypedefDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3391   TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3392               SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3393       : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3394 
3395 public:
3396   static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3397                              SourceLocation StartLoc, SourceLocation IdLoc,
3398                              IdentifierInfo *Id, TypeSourceInfo *TInfo);
3399   static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3400 
3401   SourceRange getSourceRange() const override LLVM_READONLY;
3402 
3403   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3404   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3405   static bool classofKind(Kind K) { return K == Typedef; }
3406 };
3407 
3408 /// Represents the declaration of a typedef-name via a C++11
3409 /// alias-declaration.
3410 class TypeAliasDecl : public TypedefNameDecl {
3411   /// The template for which this is the pattern, if any.
3412   TypeAliasTemplateDecl *Template;
3413 
TypeAliasDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3414   TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3415                 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3416       : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3417         Template(nullptr) {}
3418 
3419 public:
3420   static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3421                                SourceLocation StartLoc, SourceLocation IdLoc,
3422                                IdentifierInfo *Id, TypeSourceInfo *TInfo);
3423   static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3424 
3425   SourceRange getSourceRange() const override LLVM_READONLY;
3426 
getDescribedAliasTemplate()3427   TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
setDescribedAliasTemplate(TypeAliasTemplateDecl * TAT)3428   void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3429 
3430   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3431   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3432   static bool classofKind(Kind K) { return K == TypeAlias; }
3433 };
3434 
3435 /// Represents the declaration of a struct/union/class/enum.
3436 class TagDecl : public TypeDecl,
3437                 public DeclContext,
3438                 public Redeclarable<TagDecl> {
3439   // This class stores some data in DeclContext::TagDeclBits
3440   // to save some space. Use the provided accessors to access it.
3441 public:
3442   // This is really ugly.
3443   using TagKind = TagTypeKind;
3444 
3445 private:
3446   SourceRange BraceRange;
3447 
3448   // A struct representing syntactic qualifier info,
3449   // to be used for the (uncommon) case of out-of-line declarations.
3450   using ExtInfo = QualifierInfo;
3451 
3452   /// If the (out-of-line) tag declaration name
3453   /// is qualified, it points to the qualifier info (nns and range);
3454   /// otherwise, if the tag declaration is anonymous and it is part of
3455   /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3456   /// otherwise, if the tag declaration is anonymous and it is used as a
3457   /// declaration specifier for variables, it points to the first VarDecl (used
3458   /// for mangling);
3459   /// otherwise, it is a null (TypedefNameDecl) pointer.
3460   llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3461 
hasExtInfo()3462   bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
getExtInfo()3463   ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
getExtInfo()3464   const ExtInfo *getExtInfo() const {
3465     return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3466   }
3467 
3468 protected:
3469   TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3470           SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3471           SourceLocation StartL);
3472 
3473   using redeclarable_base = Redeclarable<TagDecl>;
3474 
getNextRedeclarationImpl()3475   TagDecl *getNextRedeclarationImpl() override {
3476     return getNextRedeclaration();
3477   }
3478 
getPreviousDeclImpl()3479   TagDecl *getPreviousDeclImpl() override {
3480     return getPreviousDecl();
3481   }
3482 
getMostRecentDeclImpl()3483   TagDecl *getMostRecentDeclImpl() override {
3484     return getMostRecentDecl();
3485   }
3486 
3487   /// Completes the definition of this tag declaration.
3488   ///
3489   /// This is a helper function for derived classes.
3490   void completeDefinition();
3491 
3492   /// True if this decl is currently being defined.
3493   void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3494 
3495   /// Indicates whether it is possible for declarations of this kind
3496   /// to have an out-of-date definition.
3497   ///
3498   /// This option is only enabled when modules are enabled.
3499   void setMayHaveOutOfDateDef(bool V = true) {
3500     TagDeclBits.MayHaveOutOfDateDef = V;
3501   }
3502 
3503 public:
3504   friend class ASTDeclReader;
3505   friend class ASTDeclWriter;
3506 
3507   using redecl_range = redeclarable_base::redecl_range;
3508   using redecl_iterator = redeclarable_base::redecl_iterator;
3509 
3510   using redeclarable_base::redecls_begin;
3511   using redeclarable_base::redecls_end;
3512   using redeclarable_base::redecls;
3513   using redeclarable_base::getPreviousDecl;
3514   using redeclarable_base::getMostRecentDecl;
3515   using redeclarable_base::isFirstDecl;
3516 
getBraceRange()3517   SourceRange getBraceRange() const { return BraceRange; }
setBraceRange(SourceRange R)3518   void setBraceRange(SourceRange R) { BraceRange = R; }
3519 
3520   /// Return SourceLocation representing start of source
3521   /// range ignoring outer template declarations.
getInnerLocStart()3522   SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3523 
3524   /// Return SourceLocation representing start of source
3525   /// range taking into account any outer template declarations.
3526   SourceLocation getOuterLocStart() const;
3527   SourceRange getSourceRange() const override LLVM_READONLY;
3528 
3529   TagDecl *getCanonicalDecl() override;
getCanonicalDecl()3530   const TagDecl *getCanonicalDecl() const {
3531     return const_cast<TagDecl*>(this)->getCanonicalDecl();
3532   }
3533 
3534   /// Return true if this declaration is a completion definition of the type.
3535   /// Provided for consistency.
isThisDeclarationADefinition()3536   bool isThisDeclarationADefinition() const {
3537     return isCompleteDefinition();
3538   }
3539 
3540   /// Return true if this decl has its body fully specified.
isCompleteDefinition()3541   bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3542 
3543   /// True if this decl has its body fully specified.
3544   void setCompleteDefinition(bool V = true) {
3545     TagDeclBits.IsCompleteDefinition = V;
3546   }
3547 
3548   /// Return true if this complete decl is
3549   /// required to be complete for some existing use.
isCompleteDefinitionRequired()3550   bool isCompleteDefinitionRequired() const {
3551     return TagDeclBits.IsCompleteDefinitionRequired;
3552   }
3553 
3554   /// True if this complete decl is
3555   /// required to be complete for some existing use.
3556   void setCompleteDefinitionRequired(bool V = true) {
3557     TagDeclBits.IsCompleteDefinitionRequired = V;
3558   }
3559 
3560   /// Return true if this decl is currently being defined.
isBeingDefined()3561   bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3562 
3563   /// True if this tag declaration is "embedded" (i.e., defined or declared
3564   /// for the very first time) in the syntax of a declarator.
isEmbeddedInDeclarator()3565   bool isEmbeddedInDeclarator() const {
3566     return TagDeclBits.IsEmbeddedInDeclarator;
3567   }
3568 
3569   /// True if this tag declaration is "embedded" (i.e., defined or declared
3570   /// for the very first time) in the syntax of a declarator.
setEmbeddedInDeclarator(bool isInDeclarator)3571   void setEmbeddedInDeclarator(bool isInDeclarator) {
3572     TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3573   }
3574 
3575   /// True if this tag is free standing, e.g. "struct foo;".
isFreeStanding()3576   bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3577 
3578   /// True if this tag is free standing, e.g. "struct foo;".
3579   void setFreeStanding(bool isFreeStanding = true) {
3580     TagDeclBits.IsFreeStanding = isFreeStanding;
3581   }
3582 
3583   /// Indicates whether it is possible for declarations of this kind
3584   /// to have an out-of-date definition.
3585   ///
3586   /// This option is only enabled when modules are enabled.
mayHaveOutOfDateDef()3587   bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3588 
3589   /// Whether this declaration declares a type that is
3590   /// dependent, i.e., a type that somehow depends on template
3591   /// parameters.
isDependentType()3592   bool isDependentType() const { return isDependentContext(); }
3593 
3594   /// Whether this declaration was a definition in some module but was forced
3595   /// to be a declaration.
3596   ///
3597   /// Useful for clients checking if a module has a definition of a specific
3598   /// symbol and not interested in the final AST with deduplicated definitions.
isThisDeclarationADemotedDefinition()3599   bool isThisDeclarationADemotedDefinition() const {
3600     return TagDeclBits.IsThisDeclarationADemotedDefinition;
3601   }
3602 
3603   /// Mark a definition as a declaration and maintain information it _was_
3604   /// a definition.
demoteThisDefinitionToDeclaration()3605   void demoteThisDefinitionToDeclaration() {
3606     assert(isCompleteDefinition() &&
3607            "Should demote definitions only, not forward declarations");
3608     setCompleteDefinition(false);
3609     TagDeclBits.IsThisDeclarationADemotedDefinition = true;
3610   }
3611 
3612   /// Starts the definition of this tag declaration.
3613   ///
3614   /// This method should be invoked at the beginning of the definition
3615   /// of this tag declaration. It will set the tag type into a state
3616   /// where it is in the process of being defined.
3617   void startDefinition();
3618 
3619   /// Returns the TagDecl that actually defines this
3620   ///  struct/union/class/enum.  When determining whether or not a
3621   ///  struct/union/class/enum has a definition, one should use this
3622   ///  method as opposed to 'isDefinition'.  'isDefinition' indicates
3623   ///  whether or not a specific TagDecl is defining declaration, not
3624   ///  whether or not the struct/union/class/enum type is defined.
3625   ///  This method returns NULL if there is no TagDecl that defines
3626   ///  the struct/union/class/enum.
3627   TagDecl *getDefinition() const;
3628 
getKindName()3629   StringRef getKindName() const {
3630     return TypeWithKeyword::getTagTypeKindName(getTagKind());
3631   }
3632 
getTagKind()3633   TagKind getTagKind() const {
3634     return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3635   }
3636 
setTagKind(TagKind TK)3637   void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3638 
isStruct()3639   bool isStruct() const { return getTagKind() == TTK_Struct; }
isInterface()3640   bool isInterface() const { return getTagKind() == TTK_Interface; }
isClass()3641   bool isClass()  const { return getTagKind() == TTK_Class; }
isUnion()3642   bool isUnion()  const { return getTagKind() == TTK_Union; }
isEnum()3643   bool isEnum()   const { return getTagKind() == TTK_Enum; }
3644 
3645   /// Is this tag type named, either directly or via being defined in
3646   /// a typedef of this type?
3647   ///
3648   /// C++11 [basic.link]p8:
3649   ///   A type is said to have linkage if and only if:
3650   ///     - it is a class or enumeration type that is named (or has a
3651   ///       name for linkage purposes) and the name has linkage; ...
3652   /// C++11 [dcl.typedef]p9:
3653   ///   If the typedef declaration defines an unnamed class (or enum),
3654   ///   the first typedef-name declared by the declaration to be that
3655   ///   class type (or enum type) is used to denote the class type (or
3656   ///   enum type) for linkage purposes only.
3657   ///
3658   /// C does not have an analogous rule, but the same concept is
3659   /// nonetheless useful in some places.
hasNameForLinkage()3660   bool hasNameForLinkage() const {
3661     return (getDeclName() || getTypedefNameForAnonDecl());
3662   }
3663 
getTypedefNameForAnonDecl()3664   TypedefNameDecl *getTypedefNameForAnonDecl() const {
3665     return hasExtInfo() ? nullptr
3666                         : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3667   }
3668 
3669   void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3670 
3671   /// Retrieve the nested-name-specifier that qualifies the name of this
3672   /// declaration, if it was present in the source.
getQualifier()3673   NestedNameSpecifier *getQualifier() const {
3674     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3675                         : nullptr;
3676   }
3677 
3678   /// Retrieve the nested-name-specifier (with source-location
3679   /// information) that qualifies the name of this declaration, if it was
3680   /// present in the source.
getQualifierLoc()3681   NestedNameSpecifierLoc getQualifierLoc() const {
3682     return hasExtInfo() ? getExtInfo()->QualifierLoc
3683                         : NestedNameSpecifierLoc();
3684   }
3685 
3686   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3687 
getNumTemplateParameterLists()3688   unsigned getNumTemplateParameterLists() const {
3689     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3690   }
3691 
getTemplateParameterList(unsigned i)3692   TemplateParameterList *getTemplateParameterList(unsigned i) const {
3693     assert(i < getNumTemplateParameterLists());
3694     return getExtInfo()->TemplParamLists[i];
3695   }
3696 
3697   void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
3698 
3699   void setTemplateParameterListsInfo(ASTContext &Context,
3700                                      ArrayRef<TemplateParameterList *> TPLists);
3701 
3702   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3703   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3704   static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3705 
castToDeclContext(const TagDecl * D)3706   static DeclContext *castToDeclContext(const TagDecl *D) {
3707     return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3708   }
3709 
castFromDeclContext(const DeclContext * DC)3710   static TagDecl *castFromDeclContext(const DeclContext *DC) {
3711     return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3712   }
3713 };
3714 
3715 /// Represents an enum.  In C++11, enums can be forward-declared
3716 /// with a fixed underlying type, and in C we allow them to be forward-declared
3717 /// with no underlying type as an extension.
3718 class EnumDecl : public TagDecl {
3719   // This class stores some data in DeclContext::EnumDeclBits
3720   // to save some space. Use the provided accessors to access it.
3721 
3722   /// This represent the integer type that the enum corresponds
3723   /// to for code generation purposes.  Note that the enumerator constants may
3724   /// have a different type than this does.
3725   ///
3726   /// If the underlying integer type was explicitly stated in the source
3727   /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3728   /// was automatically deduced somehow, and this is a Type*.
3729   ///
3730   /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3731   /// some cases it won't.
3732   ///
3733   /// The underlying type of an enumeration never has any qualifiers, so
3734   /// we can get away with just storing a raw Type*, and thus save an
3735   /// extra pointer when TypeSourceInfo is needed.
3736   llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3737 
3738   /// The integer type that values of this type should
3739   /// promote to.  In C, enumerators are generally of an integer type
3740   /// directly, but gcc-style large enumerators (and all enumerators
3741   /// in C++) are of the enum type instead.
3742   QualType PromotionType;
3743 
3744   /// If this enumeration is an instantiation of a member enumeration
3745   /// of a class template specialization, this is the member specialization
3746   /// information.
3747   MemberSpecializationInfo *SpecializationInfo = nullptr;
3748 
3749   /// Store the ODRHash after first calculation.
3750   /// The corresponding flag HasODRHash is in EnumDeclBits
3751   /// and can be accessed with the provided accessors.
3752   unsigned ODRHash;
3753 
3754   EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3755            SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3756            bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3757 
3758   void anchor() override;
3759 
3760   void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3761                                     TemplateSpecializationKind TSK);
3762 
3763   /// Sets the width in bits required to store all the
3764   /// non-negative enumerators of this enum.
setNumPositiveBits(unsigned Num)3765   void setNumPositiveBits(unsigned Num) {
3766     EnumDeclBits.NumPositiveBits = Num;
3767     assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
3768   }
3769 
3770   /// Returns the width in bits required to store all the
3771   /// negative enumerators of this enum. (see getNumNegativeBits)
setNumNegativeBits(unsigned Num)3772   void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3773 
3774 public:
3775   /// True if this tag declaration is a scoped enumeration. Only
3776   /// possible in C++11 mode.
3777   void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3778 
3779   /// If this tag declaration is a scoped enum,
3780   /// then this is true if the scoped enum was declared using the class
3781   /// tag, false if it was declared with the struct tag. No meaning is
3782   /// associated if this tag declaration is not a scoped enum.
3783   void setScopedUsingClassTag(bool ScopedUCT = true) {
3784     EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3785   }
3786 
3787   /// True if this is an Objective-C, C++11, or
3788   /// Microsoft-style enumeration with a fixed underlying type.
3789   void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3790 
3791 private:
3792   /// True if a valid hash is stored in ODRHash.
hasODRHash()3793   bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3794   void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3795 
3796 public:
3797   friend class ASTDeclReader;
3798 
getCanonicalDecl()3799   EnumDecl *getCanonicalDecl() override {
3800     return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3801   }
getCanonicalDecl()3802   const EnumDecl *getCanonicalDecl() const {
3803     return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3804   }
3805 
getPreviousDecl()3806   EnumDecl *getPreviousDecl() {
3807     return cast_or_null<EnumDecl>(
3808             static_cast<TagDecl *>(this)->getPreviousDecl());
3809   }
getPreviousDecl()3810   const EnumDecl *getPreviousDecl() const {
3811     return const_cast<EnumDecl*>(this)->getPreviousDecl();
3812   }
3813 
getMostRecentDecl()3814   EnumDecl *getMostRecentDecl() {
3815     return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3816   }
getMostRecentDecl()3817   const EnumDecl *getMostRecentDecl() const {
3818     return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3819   }
3820 
getDefinition()3821   EnumDecl *getDefinition() const {
3822     return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3823   }
3824 
3825   static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3826                           SourceLocation StartLoc, SourceLocation IdLoc,
3827                           IdentifierInfo *Id, EnumDecl *PrevDecl,
3828                           bool IsScoped, bool IsScopedUsingClassTag,
3829                           bool IsFixed);
3830   static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3831 
3832   /// Overrides to provide correct range when there's an enum-base specifier
3833   /// with forward declarations.
3834   SourceRange getSourceRange() const override LLVM_READONLY;
3835 
3836   /// When created, the EnumDecl corresponds to a
3837   /// forward-declared enum. This method is used to mark the
3838   /// declaration as being defined; its enumerators have already been
3839   /// added (via DeclContext::addDecl). NewType is the new underlying
3840   /// type of the enumeration type.
3841   void completeDefinition(QualType NewType,
3842                           QualType PromotionType,
3843                           unsigned NumPositiveBits,
3844                           unsigned NumNegativeBits);
3845 
3846   // Iterates through the enumerators of this enumeration.
3847   using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3848   using enumerator_range =
3849       llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3850 
enumerators()3851   enumerator_range enumerators() const {
3852     return enumerator_range(enumerator_begin(), enumerator_end());
3853   }
3854 
enumerator_begin()3855   enumerator_iterator enumerator_begin() const {
3856     const EnumDecl *E = getDefinition();
3857     if (!E)
3858       E = this;
3859     return enumerator_iterator(E->decls_begin());
3860   }
3861 
enumerator_end()3862   enumerator_iterator enumerator_end() const {
3863     const EnumDecl *E = getDefinition();
3864     if (!E)
3865       E = this;
3866     return enumerator_iterator(E->decls_end());
3867   }
3868 
3869   /// Return the integer type that enumerators should promote to.
getPromotionType()3870   QualType getPromotionType() const { return PromotionType; }
3871 
3872   /// Set the promotion type.
setPromotionType(QualType T)3873   void setPromotionType(QualType T) { PromotionType = T; }
3874 
3875   /// Return the integer type this enum decl corresponds to.
3876   /// This returns a null QualType for an enum forward definition with no fixed
3877   /// underlying type.
getIntegerType()3878   QualType getIntegerType() const {
3879     if (!IntegerType)
3880       return QualType();
3881     if (const Type *T = IntegerType.dyn_cast<const Type*>())
3882       return QualType(T, 0);
3883     return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3884   }
3885 
3886   /// Set the underlying integer type.
setIntegerType(QualType T)3887   void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3888 
3889   /// Set the underlying integer type source info.
setIntegerTypeSourceInfo(TypeSourceInfo * TInfo)3890   void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3891 
3892   /// Return the type source info for the underlying integer type,
3893   /// if no type source info exists, return 0.
getIntegerTypeSourceInfo()3894   TypeSourceInfo *getIntegerTypeSourceInfo() const {
3895     return IntegerType.dyn_cast<TypeSourceInfo*>();
3896   }
3897 
3898   /// Retrieve the source range that covers the underlying type if
3899   /// specified.
3900   SourceRange getIntegerTypeRange() const LLVM_READONLY;
3901 
3902   /// Returns the width in bits required to store all the
3903   /// non-negative enumerators of this enum.
getNumPositiveBits()3904   unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3905 
3906   /// Returns the width in bits required to store all the
3907   /// negative enumerators of this enum.  These widths include
3908   /// the rightmost leading 1;  that is:
3909   ///
3910   /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
3911   /// ------------------------     -------     -----------------
3912   ///                       -1     1111111                     1
3913   ///                      -10     1110110                     5
3914   ///                     -101     1001011                     8
getNumNegativeBits()3915   unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3916 
3917   /// Calculates the [Min,Max) values the enum can store based on the
3918   /// NumPositiveBits and NumNegativeBits. This matters for enums that do not
3919   /// have a fixed underlying type.
3920   void getValueRange(llvm::APInt &Max, llvm::APInt &Min) const;
3921 
3922   /// Returns true if this is a C++11 scoped enumeration.
isScoped()3923   bool isScoped() const { return EnumDeclBits.IsScoped; }
3924 
3925   /// Returns true if this is a C++11 scoped enumeration.
isScopedUsingClassTag()3926   bool isScopedUsingClassTag() const {
3927     return EnumDeclBits.IsScopedUsingClassTag;
3928   }
3929 
3930   /// Returns true if this is an Objective-C, C++11, or
3931   /// Microsoft-style enumeration with a fixed underlying type.
isFixed()3932   bool isFixed() const { return EnumDeclBits.IsFixed; }
3933 
3934   unsigned getODRHash();
3935 
3936   /// Returns true if this can be considered a complete type.
isComplete()3937   bool isComplete() const {
3938     // IntegerType is set for fixed type enums and non-fixed but implicitly
3939     // int-sized Microsoft enums.
3940     return isCompleteDefinition() || IntegerType;
3941   }
3942 
3943   /// Returns true if this enum is either annotated with
3944   /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3945   bool isClosed() const;
3946 
3947   /// Returns true if this enum is annotated with flag_enum and isn't annotated
3948   /// with enum_extensibility(open).
3949   bool isClosedFlag() const;
3950 
3951   /// Returns true if this enum is annotated with neither flag_enum nor
3952   /// enum_extensibility(open).
3953   bool isClosedNonFlag() const;
3954 
3955   /// Retrieve the enum definition from which this enumeration could
3956   /// be instantiated, if it is an instantiation (rather than a non-template).
3957   EnumDecl *getTemplateInstantiationPattern() const;
3958 
3959   /// Returns the enumeration (declared within the template)
3960   /// from which this enumeration type was instantiated, or NULL if
3961   /// this enumeration was not instantiated from any template.
3962   EnumDecl *getInstantiatedFromMemberEnum() const;
3963 
3964   /// If this enumeration is a member of a specialization of a
3965   /// templated class, determine what kind of template specialization
3966   /// or instantiation this is.
3967   TemplateSpecializationKind getTemplateSpecializationKind() const;
3968 
3969   /// For an enumeration member that was instantiated from a member
3970   /// enumeration of a templated class, set the template specialiation kind.
3971   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3972                         SourceLocation PointOfInstantiation = SourceLocation());
3973 
3974   /// If this enumeration is an instantiation of a member enumeration of
3975   /// a class template specialization, retrieves the member specialization
3976   /// information.
getMemberSpecializationInfo()3977   MemberSpecializationInfo *getMemberSpecializationInfo() const {
3978     return SpecializationInfo;
3979   }
3980 
3981   /// Specify that this enumeration is an instantiation of the
3982   /// member enumeration ED.
setInstantiationOfMemberEnum(EnumDecl * ED,TemplateSpecializationKind TSK)3983   void setInstantiationOfMemberEnum(EnumDecl *ED,
3984                                     TemplateSpecializationKind TSK) {
3985     setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3986   }
3987 
classof(const Decl * D)3988   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3989   static bool classofKind(Kind K) { return K == Enum; }
3990 };
3991 
3992 /// Represents a struct/union/class.  For example:
3993 ///   struct X;                  // Forward declaration, no "body".
3994 ///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
3995 /// This decl will be marked invalid if *any* members are invalid.
3996 class RecordDecl : public TagDecl {
3997   // This class stores some data in DeclContext::RecordDeclBits
3998   // to save some space. Use the provided accessors to access it.
3999 public:
4000   friend class DeclContext;
4001   friend class ASTDeclReader;
4002   /// Enum that represents the different ways arguments are passed to and
4003   /// returned from function calls. This takes into account the target-specific
4004   /// and version-specific rules along with the rules determined by the
4005   /// language.
4006   enum ArgPassingKind : unsigned {
4007     /// The argument of this type can be passed directly in registers.
4008     APK_CanPassInRegs,
4009 
4010     /// The argument of this type cannot be passed directly in registers.
4011     /// Records containing this type as a subobject are not forced to be passed
4012     /// indirectly. This value is used only in C++. This value is required by
4013     /// C++ because, in uncommon situations, it is possible for a class to have
4014     /// only trivial copy/move constructors even when one of its subobjects has
4015     /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
4016     /// constructor in the derived class is deleted).
4017     APK_CannotPassInRegs,
4018 
4019     /// The argument of this type cannot be passed directly in registers.
4020     /// Records containing this type as a subobject are forced to be passed
4021     /// indirectly.
4022     APK_CanNeverPassInRegs
4023   };
4024 
4025 protected:
4026   RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4027              SourceLocation StartLoc, SourceLocation IdLoc,
4028              IdentifierInfo *Id, RecordDecl *PrevDecl);
4029 
4030 public:
4031   static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4032                             SourceLocation StartLoc, SourceLocation IdLoc,
4033                             IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
4034   static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
4035 
getPreviousDecl()4036   RecordDecl *getPreviousDecl() {
4037     return cast_or_null<RecordDecl>(
4038             static_cast<TagDecl *>(this)->getPreviousDecl());
4039   }
getPreviousDecl()4040   const RecordDecl *getPreviousDecl() const {
4041     return const_cast<RecordDecl*>(this)->getPreviousDecl();
4042   }
4043 
getMostRecentDecl()4044   RecordDecl *getMostRecentDecl() {
4045     return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
4046   }
getMostRecentDecl()4047   const RecordDecl *getMostRecentDecl() const {
4048     return const_cast<RecordDecl*>(this)->getMostRecentDecl();
4049   }
4050 
hasFlexibleArrayMember()4051   bool hasFlexibleArrayMember() const {
4052     return RecordDeclBits.HasFlexibleArrayMember;
4053   }
4054 
setHasFlexibleArrayMember(bool V)4055   void setHasFlexibleArrayMember(bool V) {
4056     RecordDeclBits.HasFlexibleArrayMember = V;
4057   }
4058 
4059   /// Whether this is an anonymous struct or union. To be an anonymous
4060   /// struct or union, it must have been declared without a name and
4061   /// there must be no objects of this type declared, e.g.,
4062   /// @code
4063   ///   union { int i; float f; };
4064   /// @endcode
4065   /// is an anonymous union but neither of the following are:
4066   /// @code
4067   ///  union X { int i; float f; };
4068   ///  union { int i; float f; } obj;
4069   /// @endcode
isAnonymousStructOrUnion()4070   bool isAnonymousStructOrUnion() const {
4071     return RecordDeclBits.AnonymousStructOrUnion;
4072   }
4073 
setAnonymousStructOrUnion(bool Anon)4074   void setAnonymousStructOrUnion(bool Anon) {
4075     RecordDeclBits.AnonymousStructOrUnion = Anon;
4076   }
4077 
hasObjectMember()4078   bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
setHasObjectMember(bool val)4079   void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
4080 
hasVolatileMember()4081   bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
4082 
setHasVolatileMember(bool val)4083   void setHasVolatileMember(bool val) {
4084     RecordDeclBits.HasVolatileMember = val;
4085   }
4086 
hasLoadedFieldsFromExternalStorage()4087   bool hasLoadedFieldsFromExternalStorage() const {
4088     return RecordDeclBits.LoadedFieldsFromExternalStorage;
4089   }
4090 
setHasLoadedFieldsFromExternalStorage(bool val)4091   void setHasLoadedFieldsFromExternalStorage(bool val) const {
4092     RecordDeclBits.LoadedFieldsFromExternalStorage = val;
4093   }
4094 
4095   /// Functions to query basic properties of non-trivial C structs.
isNonTrivialToPrimitiveDefaultInitialize()4096   bool isNonTrivialToPrimitiveDefaultInitialize() const {
4097     return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
4098   }
4099 
setNonTrivialToPrimitiveDefaultInitialize(bool V)4100   void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
4101     RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
4102   }
4103 
isNonTrivialToPrimitiveCopy()4104   bool isNonTrivialToPrimitiveCopy() const {
4105     return RecordDeclBits.NonTrivialToPrimitiveCopy;
4106   }
4107 
setNonTrivialToPrimitiveCopy(bool V)4108   void setNonTrivialToPrimitiveCopy(bool V) {
4109     RecordDeclBits.NonTrivialToPrimitiveCopy = V;
4110   }
4111 
isNonTrivialToPrimitiveDestroy()4112   bool isNonTrivialToPrimitiveDestroy() const {
4113     return RecordDeclBits.NonTrivialToPrimitiveDestroy;
4114   }
4115 
setNonTrivialToPrimitiveDestroy(bool V)4116   void setNonTrivialToPrimitiveDestroy(bool V) {
4117     RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
4118   }
4119 
hasNonTrivialToPrimitiveDefaultInitializeCUnion()4120   bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
4121     return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
4122   }
4123 
setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V)4124   void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
4125     RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
4126   }
4127 
hasNonTrivialToPrimitiveDestructCUnion()4128   bool hasNonTrivialToPrimitiveDestructCUnion() const {
4129     return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
4130   }
4131 
setHasNonTrivialToPrimitiveDestructCUnion(bool V)4132   void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
4133     RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
4134   }
4135 
hasNonTrivialToPrimitiveCopyCUnion()4136   bool hasNonTrivialToPrimitiveCopyCUnion() const {
4137     return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
4138   }
4139 
setHasNonTrivialToPrimitiveCopyCUnion(bool V)4140   void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
4141     RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
4142   }
4143 
4144   /// Determine whether this class can be passed in registers. In C++ mode,
4145   /// it must have at least one trivial, non-deleted copy or move constructor.
4146   /// FIXME: This should be set as part of completeDefinition.
canPassInRegisters()4147   bool canPassInRegisters() const {
4148     return getArgPassingRestrictions() == APK_CanPassInRegs;
4149   }
4150 
getArgPassingRestrictions()4151   ArgPassingKind getArgPassingRestrictions() const {
4152     return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
4153   }
4154 
setArgPassingRestrictions(ArgPassingKind Kind)4155   void setArgPassingRestrictions(ArgPassingKind Kind) {
4156     RecordDeclBits.ArgPassingRestrictions = Kind;
4157   }
4158 
isParamDestroyedInCallee()4159   bool isParamDestroyedInCallee() const {
4160     return RecordDeclBits.ParamDestroyedInCallee;
4161   }
4162 
setParamDestroyedInCallee(bool V)4163   void setParamDestroyedInCallee(bool V) {
4164     RecordDeclBits.ParamDestroyedInCallee = V;
4165   }
4166 
isRandomized()4167   bool isRandomized() const { return RecordDeclBits.IsRandomized; }
4168 
setIsRandomized(bool V)4169   void setIsRandomized(bool V) { RecordDeclBits.IsRandomized = V; }
4170 
4171   void reorderDecls(const SmallVectorImpl<Decl *> &Decls);
4172 
4173   /// Determines whether this declaration represents the
4174   /// injected class name.
4175   ///
4176   /// The injected class name in C++ is the name of the class that
4177   /// appears inside the class itself. For example:
4178   ///
4179   /// \code
4180   /// struct C {
4181   ///   // C is implicitly declared here as a synonym for the class name.
4182   /// };
4183   ///
4184   /// C::C c; // same as "C c;"
4185   /// \endcode
4186   bool isInjectedClassName() const;
4187 
4188   /// Determine whether this record is a class describing a lambda
4189   /// function object.
4190   bool isLambda() const;
4191 
4192   /// Determine whether this record is a record for captured variables in
4193   /// CapturedStmt construct.
4194   bool isCapturedRecord() const;
4195 
4196   /// Mark the record as a record for captured variables in CapturedStmt
4197   /// construct.
4198   void setCapturedRecord();
4199 
4200   /// Returns the RecordDecl that actually defines
4201   ///  this struct/union/class.  When determining whether or not a
4202   ///  struct/union/class is completely defined, one should use this
4203   ///  method as opposed to 'isCompleteDefinition'.
4204   ///  'isCompleteDefinition' indicates whether or not a specific
4205   ///  RecordDecl is a completed definition, not whether or not the
4206   ///  record type is defined.  This method returns NULL if there is
4207   ///  no RecordDecl that defines the struct/union/tag.
getDefinition()4208   RecordDecl *getDefinition() const {
4209     return cast_or_null<RecordDecl>(TagDecl::getDefinition());
4210   }
4211 
4212   /// Returns whether this record is a union, or contains (at any nesting level)
4213   /// a union member. This is used by CMSE to warn about possible information
4214   /// leaks.
4215   bool isOrContainsUnion() const;
4216 
4217   // Iterator access to field members. The field iterator only visits
4218   // the non-static data members of this class, ignoring any static
4219   // data members, functions, constructors, destructors, etc.
4220   using field_iterator = specific_decl_iterator<FieldDecl>;
4221   using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
4222 
fields()4223   field_range fields() const { return field_range(field_begin(), field_end()); }
4224   field_iterator field_begin() const;
4225 
field_end()4226   field_iterator field_end() const {
4227     return field_iterator(decl_iterator());
4228   }
4229 
4230   // Whether there are any fields (non-static data members) in this record.
field_empty()4231   bool field_empty() const {
4232     return field_begin() == field_end();
4233   }
4234 
4235   /// Note that the definition of this type is now complete.
4236   virtual void completeDefinition();
4237 
classof(const Decl * D)4238   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4239   static bool classofKind(Kind K) {
4240     return K >= firstRecord && K <= lastRecord;
4241   }
4242 
4243   /// Get whether or not this is an ms_struct which can
4244   /// be turned on with an attribute, pragma, or -mms-bitfields
4245   /// commandline option.
4246   bool isMsStruct(const ASTContext &C) const;
4247 
4248   /// Whether we are allowed to insert extra padding between fields.
4249   /// These padding are added to help AddressSanitizer detect
4250   /// intra-object-overflow bugs.
4251   bool mayInsertExtraPadding(bool EmitRemark = false) const;
4252 
4253   /// Finds the first data member which has a name.
4254   /// nullptr is returned if no named data member exists.
4255   const FieldDecl *findFirstNamedDataMember() const;
4256 
4257   /// Get precomputed ODRHash or add a new one.
4258   unsigned getODRHash();
4259 
4260 private:
4261   /// Deserialize just the fields.
4262   void LoadFieldsFromExternalStorage() const;
4263 
4264   /// True if a valid hash is stored in ODRHash.
hasODRHash()4265   bool hasODRHash() const { return RecordDeclBits.ODRHash; }
setODRHash(unsigned Hash)4266   void setODRHash(unsigned Hash) { RecordDeclBits.ODRHash = Hash; }
4267 };
4268 
4269 class FileScopeAsmDecl : public Decl {
4270   StringLiteral *AsmString;
4271   SourceLocation RParenLoc;
4272 
FileScopeAsmDecl(DeclContext * DC,StringLiteral * asmstring,SourceLocation StartL,SourceLocation EndL)4273   FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4274                    SourceLocation StartL, SourceLocation EndL)
4275     : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4276 
4277   virtual void anchor();
4278 
4279 public:
4280   static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
4281                                   StringLiteral *Str, SourceLocation AsmLoc,
4282                                   SourceLocation RParenLoc);
4283 
4284   static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4285 
getAsmLoc()4286   SourceLocation getAsmLoc() const { return getLocation(); }
getRParenLoc()4287   SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)4288   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
getSourceRange()4289   SourceRange getSourceRange() const override LLVM_READONLY {
4290     return SourceRange(getAsmLoc(), getRParenLoc());
4291   }
4292 
getAsmString()4293   const StringLiteral *getAsmString() const { return AsmString; }
getAsmString()4294   StringLiteral *getAsmString() { return AsmString; }
setAsmString(StringLiteral * Asm)4295   void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4296 
classof(const Decl * D)4297   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4298   static bool classofKind(Kind K) { return K == FileScopeAsm; }
4299 };
4300 
4301 /// A declaration that models statements at global scope. This declaration
4302 /// supports incremental and interactive C/C++.
4303 ///
4304 /// \note This is used in libInterpreter, clang -cc1 -fincremental-extensions
4305 /// and in tools such as clang-repl.
4306 class TopLevelStmtDecl : public Decl {
4307   friend class ASTDeclReader;
4308   friend class ASTDeclWriter;
4309 
4310   Stmt *Statement = nullptr;
4311 
TopLevelStmtDecl(DeclContext * DC,SourceLocation L,Stmt * S)4312   TopLevelStmtDecl(DeclContext *DC, SourceLocation L, Stmt *S)
4313       : Decl(TopLevelStmt, DC, L), Statement(S) {}
4314 
4315   virtual void anchor();
4316 
4317 public:
4318   static TopLevelStmtDecl *Create(ASTContext &C, Stmt *Statement);
4319   static TopLevelStmtDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4320 
4321   SourceRange getSourceRange() const override LLVM_READONLY;
getStmt()4322   Stmt *getStmt() { return Statement; }
getStmt()4323   const Stmt *getStmt() const { return Statement; }
4324 
classof(const Decl * D)4325   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4326   static bool classofKind(Kind K) { return K == TopLevelStmt; }
4327 };
4328 
4329 /// Represents a block literal declaration, which is like an
4330 /// unnamed FunctionDecl.  For example:
4331 /// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4332 class BlockDecl : public Decl, public DeclContext {
4333   // This class stores some data in DeclContext::BlockDeclBits
4334   // to save some space. Use the provided accessors to access it.
4335 public:
4336   /// A class which contains all the information about a particular
4337   /// captured value.
4338   class Capture {
4339     enum {
4340       flag_isByRef = 0x1,
4341       flag_isNested = 0x2
4342     };
4343 
4344     /// The variable being captured.
4345     llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4346 
4347     /// The copy expression, expressed in terms of a DeclRef (or
4348     /// BlockDeclRef) to the captured variable.  Only required if the
4349     /// variable has a C++ class type.
4350     Expr *CopyExpr;
4351 
4352   public:
Capture(VarDecl * variable,bool byRef,bool nested,Expr * copy)4353     Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4354       : VariableAndFlags(variable,
4355                   (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4356         CopyExpr(copy) {}
4357 
4358     /// The variable being captured.
getVariable()4359     VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4360 
4361     /// Whether this is a "by ref" capture, i.e. a capture of a __block
4362     /// variable.
isByRef()4363     bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4364 
isEscapingByref()4365     bool isEscapingByref() const {
4366       return getVariable()->isEscapingByref();
4367     }
4368 
isNonEscapingByref()4369     bool isNonEscapingByref() const {
4370       return getVariable()->isNonEscapingByref();
4371     }
4372 
4373     /// Whether this is a nested capture, i.e. the variable captured
4374     /// is not from outside the immediately enclosing function/block.
isNested()4375     bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4376 
hasCopyExpr()4377     bool hasCopyExpr() const { return CopyExpr != nullptr; }
getCopyExpr()4378     Expr *getCopyExpr() const { return CopyExpr; }
setCopyExpr(Expr * e)4379     void setCopyExpr(Expr *e) { CopyExpr = e; }
4380   };
4381 
4382 private:
4383   /// A new[]'d array of pointers to ParmVarDecls for the formal
4384   /// parameters of this function.  This is null if a prototype or if there are
4385   /// no formals.
4386   ParmVarDecl **ParamInfo = nullptr;
4387   unsigned NumParams = 0;
4388 
4389   Stmt *Body = nullptr;
4390   TypeSourceInfo *SignatureAsWritten = nullptr;
4391 
4392   const Capture *Captures = nullptr;
4393   unsigned NumCaptures = 0;
4394 
4395   unsigned ManglingNumber = 0;
4396   Decl *ManglingContextDecl = nullptr;
4397 
4398 protected:
4399   BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4400 
4401 public:
4402   static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4403   static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4404 
getCaretLocation()4405   SourceLocation getCaretLocation() const { return getLocation(); }
4406 
isVariadic()4407   bool isVariadic() const { return BlockDeclBits.IsVariadic; }
setIsVariadic(bool value)4408   void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4409 
getCompoundBody()4410   CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
getBody()4411   Stmt *getBody() const override { return (Stmt*) Body; }
setBody(CompoundStmt * B)4412   void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4413 
setSignatureAsWritten(TypeSourceInfo * Sig)4414   void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
getSignatureAsWritten()4415   TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4416 
4417   // ArrayRef access to formal parameters.
parameters()4418   ArrayRef<ParmVarDecl *> parameters() const {
4419     return {ParamInfo, getNumParams()};
4420   }
parameters()4421   MutableArrayRef<ParmVarDecl *> parameters() {
4422     return {ParamInfo, getNumParams()};
4423   }
4424 
4425   // Iterator access to formal parameters.
4426   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4427   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4428 
param_empty()4429   bool param_empty() const { return parameters().empty(); }
param_begin()4430   param_iterator param_begin() { return parameters().begin(); }
param_end()4431   param_iterator param_end() { return parameters().end(); }
param_begin()4432   param_const_iterator param_begin() const { return parameters().begin(); }
param_end()4433   param_const_iterator param_end() const { return parameters().end(); }
param_size()4434   size_t param_size() const { return parameters().size(); }
4435 
getNumParams()4436   unsigned getNumParams() const { return NumParams; }
4437 
getParamDecl(unsigned i)4438   const ParmVarDecl *getParamDecl(unsigned i) const {
4439     assert(i < getNumParams() && "Illegal param #");
4440     return ParamInfo[i];
4441   }
getParamDecl(unsigned i)4442   ParmVarDecl *getParamDecl(unsigned i) {
4443     assert(i < getNumParams() && "Illegal param #");
4444     return ParamInfo[i];
4445   }
4446 
4447   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4448 
4449   /// True if this block (or its nested blocks) captures
4450   /// anything of local storage from its enclosing scopes.
hasCaptures()4451   bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4452 
4453   /// Returns the number of captured variables.
4454   /// Does not include an entry for 'this'.
getNumCaptures()4455   unsigned getNumCaptures() const { return NumCaptures; }
4456 
4457   using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4458 
captures()4459   ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4460 
capture_begin()4461   capture_const_iterator capture_begin() const { return captures().begin(); }
capture_end()4462   capture_const_iterator capture_end() const { return captures().end(); }
4463 
capturesCXXThis()4464   bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4465   void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4466 
blockMissingReturnType()4467   bool blockMissingReturnType() const {
4468     return BlockDeclBits.BlockMissingReturnType;
4469   }
4470 
4471   void setBlockMissingReturnType(bool val = true) {
4472     BlockDeclBits.BlockMissingReturnType = val;
4473   }
4474 
isConversionFromLambda()4475   bool isConversionFromLambda() const {
4476     return BlockDeclBits.IsConversionFromLambda;
4477   }
4478 
4479   void setIsConversionFromLambda(bool val = true) {
4480     BlockDeclBits.IsConversionFromLambda = val;
4481   }
4482 
doesNotEscape()4483   bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4484   void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4485 
canAvoidCopyToHeap()4486   bool canAvoidCopyToHeap() const {
4487     return BlockDeclBits.CanAvoidCopyToHeap;
4488   }
4489   void setCanAvoidCopyToHeap(bool B = true) {
4490     BlockDeclBits.CanAvoidCopyToHeap = B;
4491   }
4492 
4493   bool capturesVariable(const VarDecl *var) const;
4494 
4495   void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4496                    bool CapturesCXXThis);
4497 
getBlockManglingNumber()4498   unsigned getBlockManglingNumber() const { return ManglingNumber; }
4499 
getBlockManglingContextDecl()4500   Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4501 
setBlockMangling(unsigned Number,Decl * Ctx)4502   void setBlockMangling(unsigned Number, Decl *Ctx) {
4503     ManglingNumber = Number;
4504     ManglingContextDecl = Ctx;
4505   }
4506 
4507   SourceRange getSourceRange() const override LLVM_READONLY;
4508 
4509   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4510   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4511   static bool classofKind(Kind K) { return K == Block; }
castToDeclContext(const BlockDecl * D)4512   static DeclContext *castToDeclContext(const BlockDecl *D) {
4513     return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4514   }
castFromDeclContext(const DeclContext * DC)4515   static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4516     return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4517   }
4518 };
4519 
4520 /// Represents the body of a CapturedStmt, and serves as its DeclContext.
4521 class CapturedDecl final
4522     : public Decl,
4523       public DeclContext,
4524       private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4525 protected:
numTrailingObjects(OverloadToken<ImplicitParamDecl>)4526   size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4527     return NumParams;
4528   }
4529 
4530 private:
4531   /// The number of parameters to the outlined function.
4532   unsigned NumParams;
4533 
4534   /// The position of context parameter in list of parameters.
4535   unsigned ContextParam;
4536 
4537   /// The body of the outlined function.
4538   llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4539 
4540   explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4541 
getParams()4542   ImplicitParamDecl *const *getParams() const {
4543     return getTrailingObjects<ImplicitParamDecl *>();
4544   }
4545 
getParams()4546   ImplicitParamDecl **getParams() {
4547     return getTrailingObjects<ImplicitParamDecl *>();
4548   }
4549 
4550 public:
4551   friend class ASTDeclReader;
4552   friend class ASTDeclWriter;
4553   friend TrailingObjects;
4554 
4555   static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4556                               unsigned NumParams);
4557   static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4558                                           unsigned NumParams);
4559 
4560   Stmt *getBody() const override;
4561   void setBody(Stmt *B);
4562 
4563   bool isNothrow() const;
4564   void setNothrow(bool Nothrow = true);
4565 
getNumParams()4566   unsigned getNumParams() const { return NumParams; }
4567 
getParam(unsigned i)4568   ImplicitParamDecl *getParam(unsigned i) const {
4569     assert(i < NumParams);
4570     return getParams()[i];
4571   }
setParam(unsigned i,ImplicitParamDecl * P)4572   void setParam(unsigned i, ImplicitParamDecl *P) {
4573     assert(i < NumParams);
4574     getParams()[i] = P;
4575   }
4576 
4577   // ArrayRef interface to parameters.
parameters()4578   ArrayRef<ImplicitParamDecl *> parameters() const {
4579     return {getParams(), getNumParams()};
4580   }
parameters()4581   MutableArrayRef<ImplicitParamDecl *> parameters() {
4582     return {getParams(), getNumParams()};
4583   }
4584 
4585   /// Retrieve the parameter containing captured variables.
getContextParam()4586   ImplicitParamDecl *getContextParam() const {
4587     assert(ContextParam < NumParams);
4588     return getParam(ContextParam);
4589   }
setContextParam(unsigned i,ImplicitParamDecl * P)4590   void setContextParam(unsigned i, ImplicitParamDecl *P) {
4591     assert(i < NumParams);
4592     ContextParam = i;
4593     setParam(i, P);
4594   }
getContextParamPosition()4595   unsigned getContextParamPosition() const { return ContextParam; }
4596 
4597   using param_iterator = ImplicitParamDecl *const *;
4598   using param_range = llvm::iterator_range<param_iterator>;
4599 
4600   /// Retrieve an iterator pointing to the first parameter decl.
param_begin()4601   param_iterator param_begin() const { return getParams(); }
4602   /// Retrieve an iterator one past the last parameter decl.
param_end()4603   param_iterator param_end() const { return getParams() + NumParams; }
4604 
4605   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4606   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4607   static bool classofKind(Kind K) { return K == Captured; }
castToDeclContext(const CapturedDecl * D)4608   static DeclContext *castToDeclContext(const CapturedDecl *D) {
4609     return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4610   }
castFromDeclContext(const DeclContext * DC)4611   static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4612     return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4613   }
4614 };
4615 
4616 /// Describes a module import declaration, which makes the contents
4617 /// of the named module visible in the current translation unit.
4618 ///
4619 /// An import declaration imports the named module (or submodule). For example:
4620 /// \code
4621 ///   @import std.vector;
4622 /// \endcode
4623 ///
4624 /// A C++20 module import declaration imports the named module or partition.
4625 /// Periods are permitted in C++20 module names, but have no semantic meaning.
4626 /// For example:
4627 /// \code
4628 ///   import NamedModule;
4629 ///   import :SomePartition; // Must be a partition of the current module.
4630 ///   import Names.Like.this; // Allowed.
4631 ///   import :and.Also.Partition.names;
4632 /// \endcode
4633 ///
4634 /// Import declarations can also be implicitly generated from
4635 /// \#include/\#import directives.
4636 class ImportDecl final : public Decl,
4637                          llvm::TrailingObjects<ImportDecl, SourceLocation> {
4638   friend class ASTContext;
4639   friend class ASTDeclReader;
4640   friend class ASTReader;
4641   friend TrailingObjects;
4642 
4643   /// The imported module.
4644   Module *ImportedModule = nullptr;
4645 
4646   /// The next import in the list of imports local to the translation
4647   /// unit being parsed (not loaded from an AST file).
4648   ///
4649   /// Includes a bit that indicates whether we have source-location information
4650   /// for each identifier in the module name.
4651   ///
4652   /// When the bit is false, we only have a single source location for the
4653   /// end of the import declaration.
4654   llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
4655 
4656   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4657              ArrayRef<SourceLocation> IdentifierLocs);
4658 
4659   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4660              SourceLocation EndLoc);
4661 
ImportDecl(EmptyShell Empty)4662   ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4663 
isImportComplete()4664   bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
4665 
setImportComplete(bool C)4666   void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
4667 
4668   /// The next import in the list of imports local to the translation
4669   /// unit being parsed (not loaded from an AST file).
getNextLocalImport()4670   ImportDecl *getNextLocalImport() const {
4671     return NextLocalImportAndComplete.getPointer();
4672   }
4673 
setNextLocalImport(ImportDecl * Import)4674   void setNextLocalImport(ImportDecl *Import) {
4675     NextLocalImportAndComplete.setPointer(Import);
4676   }
4677 
4678 public:
4679   /// Create a new module import declaration.
4680   static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4681                             SourceLocation StartLoc, Module *Imported,
4682                             ArrayRef<SourceLocation> IdentifierLocs);
4683 
4684   /// Create a new module import declaration for an implicitly-generated
4685   /// import.
4686   static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4687                                     SourceLocation StartLoc, Module *Imported,
4688                                     SourceLocation EndLoc);
4689 
4690   /// Create a new, deserialized module import declaration.
4691   static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4692                                         unsigned NumLocations);
4693 
4694   /// Retrieve the module that was imported by the import declaration.
getImportedModule()4695   Module *getImportedModule() const { return ImportedModule; }
4696 
4697   /// Retrieves the locations of each of the identifiers that make up
4698   /// the complete module name in the import declaration.
4699   ///
4700   /// This will return an empty array if the locations of the individual
4701   /// identifiers aren't available.
4702   ArrayRef<SourceLocation> getIdentifierLocs() const;
4703 
4704   SourceRange getSourceRange() const override LLVM_READONLY;
4705 
classof(const Decl * D)4706   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4707   static bool classofKind(Kind K) { return K == Import; }
4708 };
4709 
4710 /// Represents a C++ Modules TS module export declaration.
4711 ///
4712 /// For example:
4713 /// \code
4714 ///   export void foo();
4715 /// \endcode
4716 class ExportDecl final : public Decl, public DeclContext {
4717   virtual void anchor();
4718 
4719 private:
4720   friend class ASTDeclReader;
4721 
4722   /// The source location for the right brace (if valid).
4723   SourceLocation RBraceLoc;
4724 
ExportDecl(DeclContext * DC,SourceLocation ExportLoc)4725   ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4726       : Decl(Export, DC, ExportLoc), DeclContext(Export),
4727         RBraceLoc(SourceLocation()) {}
4728 
4729 public:
4730   static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4731                             SourceLocation ExportLoc);
4732   static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4733 
getExportLoc()4734   SourceLocation getExportLoc() const { return getLocation(); }
getRBraceLoc()4735   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setRBraceLoc(SourceLocation L)4736   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4737 
hasBraces()4738   bool hasBraces() const { return RBraceLoc.isValid(); }
4739 
getEndLoc()4740   SourceLocation getEndLoc() const LLVM_READONLY {
4741     if (hasBraces())
4742       return RBraceLoc;
4743     // No braces: get the end location of the (only) declaration in context
4744     // (if present).
4745     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4746   }
4747 
getSourceRange()4748   SourceRange getSourceRange() const override LLVM_READONLY {
4749     return SourceRange(getLocation(), getEndLoc());
4750   }
4751 
classof(const Decl * D)4752   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4753   static bool classofKind(Kind K) { return K == Export; }
castToDeclContext(const ExportDecl * D)4754   static DeclContext *castToDeclContext(const ExportDecl *D) {
4755     return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4756   }
castFromDeclContext(const DeclContext * DC)4757   static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4758     return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4759   }
4760 };
4761 
4762 /// Represents an empty-declaration.
4763 class EmptyDecl : public Decl {
EmptyDecl(DeclContext * DC,SourceLocation L)4764   EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4765 
4766   virtual void anchor();
4767 
4768 public:
4769   static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4770                            SourceLocation L);
4771   static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4772 
classof(const Decl * D)4773   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4774   static bool classofKind(Kind K) { return K == Empty; }
4775 };
4776 
4777 /// HLSLBufferDecl - Represent a cbuffer or tbuffer declaration.
4778 class HLSLBufferDecl final : public NamedDecl, public DeclContext {
4779   /// LBraceLoc - The ending location of the source range.
4780   SourceLocation LBraceLoc;
4781   /// RBraceLoc - The ending location of the source range.
4782   SourceLocation RBraceLoc;
4783   /// KwLoc - The location of the cbuffer or tbuffer keyword.
4784   SourceLocation KwLoc;
4785   /// IsCBuffer - Whether the buffer is a cbuffer (and not a tbuffer).
4786   bool IsCBuffer;
4787 
4788   HLSLBufferDecl(DeclContext *DC, bool CBuffer, SourceLocation KwLoc,
4789                  IdentifierInfo *ID, SourceLocation IDLoc,
4790                  SourceLocation LBrace);
4791 
4792 public:
4793   static HLSLBufferDecl *Create(ASTContext &C, DeclContext *LexicalParent,
4794                                 bool CBuffer, SourceLocation KwLoc,
4795                                 IdentifierInfo *ID, SourceLocation IDLoc,
4796                                 SourceLocation LBrace);
4797   static HLSLBufferDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4798 
getSourceRange()4799   SourceRange getSourceRange() const override LLVM_READONLY {
4800     return SourceRange(getLocStart(), RBraceLoc);
4801   }
getLocStart()4802   SourceLocation getLocStart() const LLVM_READONLY { return KwLoc; }
getLBraceLoc()4803   SourceLocation getLBraceLoc() const { return LBraceLoc; }
getRBraceLoc()4804   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setRBraceLoc(SourceLocation L)4805   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
isCBuffer()4806   bool isCBuffer() const { return IsCBuffer; }
4807 
4808   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4809   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4810   static bool classofKind(Kind K) { return K == HLSLBuffer; }
castToDeclContext(const HLSLBufferDecl * D)4811   static DeclContext *castToDeclContext(const HLSLBufferDecl *D) {
4812     return static_cast<DeclContext *>(const_cast<HLSLBufferDecl *>(D));
4813   }
castFromDeclContext(const DeclContext * DC)4814   static HLSLBufferDecl *castFromDeclContext(const DeclContext *DC) {
4815     return static_cast<HLSLBufferDecl *>(const_cast<DeclContext *>(DC));
4816   }
4817 
4818   friend class ASTDeclReader;
4819   friend class ASTDeclWriter;
4820 };
4821 
4822 /// Insertion operator for diagnostics.  This allows sending NamedDecl's
4823 /// into a diagnostic with <<.
4824 inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
4825                                              const NamedDecl *ND) {
4826   PD.AddTaggedVal(reinterpret_cast<uint64_t>(ND),
4827                   DiagnosticsEngine::ak_nameddecl);
4828   return PD;
4829 }
4830 
4831 template<typename decl_type>
setPreviousDecl(decl_type * PrevDecl)4832 void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4833   // Note: This routine is implemented here because we need both NamedDecl
4834   // and Redeclarable to be defined.
4835   assert(RedeclLink.isFirst() &&
4836          "setPreviousDecl on a decl already in a redeclaration chain");
4837 
4838   if (PrevDecl) {
4839     // Point to previous. Make sure that this is actually the most recent
4840     // redeclaration, or we can build invalid chains. If the most recent
4841     // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4842     First = PrevDecl->getFirstDecl();
4843     assert(First->RedeclLink.isFirst() && "Expected first");
4844     decl_type *MostRecent = First->getNextRedeclaration();
4845     RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4846 
4847     // If the declaration was previously visible, a redeclaration of it remains
4848     // visible even if it wouldn't be visible by itself.
4849     static_cast<decl_type*>(this)->IdentifierNamespace |=
4850       MostRecent->getIdentifierNamespace() &
4851       (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4852   } else {
4853     // Make this first.
4854     First = static_cast<decl_type*>(this);
4855   }
4856 
4857   // First one will point to this one as latest.
4858   First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4859 
4860   assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
4861          cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
4862 }
4863 
4864 // Inline function definitions.
4865 
4866 /// Check if the given decl is complete.
4867 ///
4868 /// We use this function to break a cycle between the inline definitions in
4869 /// Type.h and Decl.h.
IsEnumDeclComplete(EnumDecl * ED)4870 inline bool IsEnumDeclComplete(EnumDecl *ED) {
4871   return ED->isComplete();
4872 }
4873 
4874 /// Check if the given decl is scoped.
4875 ///
4876 /// We use this function to break a cycle between the inline definitions in
4877 /// Type.h and Decl.h.
IsEnumDeclScoped(EnumDecl * ED)4878 inline bool IsEnumDeclScoped(EnumDecl *ED) {
4879   return ED->isScoped();
4880 }
4881 
4882 /// OpenMP variants are mangled early based on their OpenMP context selector.
4883 /// The new name looks likes this:
4884 ///  <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
getOpenMPVariantManglingSeparatorStr()4885 static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
4886   return "$ompvariant";
4887 }
4888 
4889 } // namespace clang
4890 
4891 #endif // LLVM_CLANG_AST_DECL_H
4892