1 //===- llvm/ModuleSummaryIndex.h - Module Summary Index ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// ModuleSummaryIndex.h This file contains the declarations the classes that
11 /// hold the module index and summary for function importing.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_IR_MODULESUMMARYINDEX_H
16 #define LLVM_IR_MODULESUMMARYINDEX_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/ScaledNumber.h"
32 #include "llvm/Support/StringSaver.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <array>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <map>
40 #include <memory>
41 #include <optional>
42 #include <set>
43 #include <string>
44 #include <utility>
45 #include <vector>
46
47 namespace llvm {
48
49 template <class GraphType> struct GraphTraits;
50
51 namespace yaml {
52
53 template <typename T> struct MappingTraits;
54
55 } // end namespace yaml
56
57 /// Class to accumulate and hold information about a callee.
58 struct CalleeInfo {
59 enum class HotnessType : uint8_t {
60 Unknown = 0,
61 Cold = 1,
62 None = 2,
63 Hot = 3,
64 Critical = 4
65 };
66
67 // The size of the bit-field might need to be adjusted if more values are
68 // added to HotnessType enum.
69 uint32_t Hotness : 3;
70
71 /// The value stored in RelBlockFreq has to be interpreted as the digits of
72 /// a scaled number with a scale of \p -ScaleShift.
73 uint32_t RelBlockFreq : 29;
74 static constexpr int32_t ScaleShift = 8;
75 static constexpr uint64_t MaxRelBlockFreq = (1 << 29) - 1;
76
CalleeInfoCalleeInfo77 CalleeInfo()
78 : Hotness(static_cast<uint32_t>(HotnessType::Unknown)), RelBlockFreq(0) {}
CalleeInfoCalleeInfo79 explicit CalleeInfo(HotnessType Hotness, uint64_t RelBF)
80 : Hotness(static_cast<uint32_t>(Hotness)), RelBlockFreq(RelBF) {}
81
updateHotnessCalleeInfo82 void updateHotness(const HotnessType OtherHotness) {
83 Hotness = std::max(Hotness, static_cast<uint32_t>(OtherHotness));
84 }
85
getHotnessCalleeInfo86 HotnessType getHotness() const { return HotnessType(Hotness); }
87
88 /// Update \p RelBlockFreq from \p BlockFreq and \p EntryFreq
89 ///
90 /// BlockFreq is divided by EntryFreq and added to RelBlockFreq. To represent
91 /// fractional values, the result is represented as a fixed point number with
92 /// scale of -ScaleShift.
updateRelBlockFreqCalleeInfo93 void updateRelBlockFreq(uint64_t BlockFreq, uint64_t EntryFreq) {
94 if (EntryFreq == 0)
95 return;
96 using Scaled64 = ScaledNumber<uint64_t>;
97 Scaled64 Temp(BlockFreq, ScaleShift);
98 Temp /= Scaled64::get(EntryFreq);
99
100 uint64_t Sum =
101 SaturatingAdd<uint64_t>(Temp.toInt<uint64_t>(), RelBlockFreq);
102 Sum = std::min(Sum, uint64_t(MaxRelBlockFreq));
103 RelBlockFreq = static_cast<uint32_t>(Sum);
104 }
105 };
106
getHotnessName(CalleeInfo::HotnessType HT)107 inline const char *getHotnessName(CalleeInfo::HotnessType HT) {
108 switch (HT) {
109 case CalleeInfo::HotnessType::Unknown:
110 return "unknown";
111 case CalleeInfo::HotnessType::Cold:
112 return "cold";
113 case CalleeInfo::HotnessType::None:
114 return "none";
115 case CalleeInfo::HotnessType::Hot:
116 return "hot";
117 case CalleeInfo::HotnessType::Critical:
118 return "critical";
119 }
120 llvm_unreachable("invalid hotness");
121 }
122
123 class GlobalValueSummary;
124
125 using GlobalValueSummaryList = std::vector<std::unique_ptr<GlobalValueSummary>>;
126
127 struct alignas(8) GlobalValueSummaryInfo {
128 union NameOrGV {
NameOrGV(bool HaveGVs)129 NameOrGV(bool HaveGVs) {
130 if (HaveGVs)
131 GV = nullptr;
132 else
133 Name = "";
134 }
135
136 /// The GlobalValue corresponding to this summary. This is only used in
137 /// per-module summaries and when the IR is available. E.g. when module
138 /// analysis is being run, or when parsing both the IR and the summary
139 /// from assembly.
140 const GlobalValue *GV;
141
142 /// Summary string representation. This StringRef points to BC module
143 /// string table and is valid until module data is stored in memory.
144 /// This is guaranteed to happen until runThinLTOBackend function is
145 /// called, so it is safe to use this field during thin link. This field
146 /// is only valid if summary index was loaded from BC file.
147 StringRef Name;
148 } U;
149
GlobalValueSummaryInfoGlobalValueSummaryInfo150 GlobalValueSummaryInfo(bool HaveGVs) : U(HaveGVs) {}
151
152 /// List of global value summary structures for a particular value held
153 /// in the GlobalValueMap. Requires a vector in the case of multiple
154 /// COMDAT values of the same name.
155 GlobalValueSummaryList SummaryList;
156 };
157
158 /// Map from global value GUID to corresponding summary structures. Use a
159 /// std::map rather than a DenseMap so that pointers to the map's value_type
160 /// (which are used by ValueInfo) are not invalidated by insertion. Also it will
161 /// likely incur less overhead, as the value type is not very small and the size
162 /// of the map is unknown, resulting in inefficiencies due to repeated
163 /// insertions and resizing.
164 using GlobalValueSummaryMapTy =
165 std::map<GlobalValue::GUID, GlobalValueSummaryInfo>;
166
167 /// Struct that holds a reference to a particular GUID in a global value
168 /// summary.
169 struct ValueInfo {
170 enum Flags { HaveGV = 1, ReadOnly = 2, WriteOnly = 4 };
171 PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 3, int>
172 RefAndFlags;
173
174 ValueInfo() = default;
ValueInfoValueInfo175 ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) {
176 RefAndFlags.setPointer(R);
177 RefAndFlags.setInt(HaveGVs);
178 }
179
180 explicit operator bool() const { return getRef(); }
181
getGUIDValueInfo182 GlobalValue::GUID getGUID() const { return getRef()->first; }
getValueValueInfo183 const GlobalValue *getValue() const {
184 assert(haveGVs());
185 return getRef()->second.U.GV;
186 }
187
getSummaryListValueInfo188 ArrayRef<std::unique_ptr<GlobalValueSummary>> getSummaryList() const {
189 return getRef()->second.SummaryList;
190 }
191
nameValueInfo192 StringRef name() const {
193 return haveGVs() ? getRef()->second.U.GV->getName()
194 : getRef()->second.U.Name;
195 }
196
haveGVsValueInfo197 bool haveGVs() const { return RefAndFlags.getInt() & HaveGV; }
isReadOnlyValueInfo198 bool isReadOnly() const {
199 assert(isValidAccessSpecifier());
200 return RefAndFlags.getInt() & ReadOnly;
201 }
isWriteOnlyValueInfo202 bool isWriteOnly() const {
203 assert(isValidAccessSpecifier());
204 return RefAndFlags.getInt() & WriteOnly;
205 }
getAccessSpecifierValueInfo206 unsigned getAccessSpecifier() const {
207 assert(isValidAccessSpecifier());
208 return RefAndFlags.getInt() & (ReadOnly | WriteOnly);
209 }
isValidAccessSpecifierValueInfo210 bool isValidAccessSpecifier() const {
211 unsigned BadAccessMask = ReadOnly | WriteOnly;
212 return (RefAndFlags.getInt() & BadAccessMask) != BadAccessMask;
213 }
setReadOnlyValueInfo214 void setReadOnly() {
215 // We expect ro/wo attribute to set only once during
216 // ValueInfo lifetime.
217 assert(getAccessSpecifier() == 0);
218 RefAndFlags.setInt(RefAndFlags.getInt() | ReadOnly);
219 }
setWriteOnlyValueInfo220 void setWriteOnly() {
221 assert(getAccessSpecifier() == 0);
222 RefAndFlags.setInt(RefAndFlags.getInt() | WriteOnly);
223 }
224
getRefValueInfo225 const GlobalValueSummaryMapTy::value_type *getRef() const {
226 return RefAndFlags.getPointer();
227 }
228
229 /// Returns the most constraining visibility among summaries. The
230 /// visibilities, ordered from least to most constraining, are: default,
231 /// protected and hidden.
232 GlobalValue::VisibilityTypes getELFVisibility() const;
233
234 /// Checks if all summaries are DSO local (have the flag set). When DSOLocal
235 /// propagation has been done, set the parameter to enable fast check.
236 bool isDSOLocal(bool WithDSOLocalPropagation = false) const;
237
238 /// Checks if all copies are eligible for auto-hiding (have flag set).
239 bool canAutoHide() const;
240 };
241
242 inline raw_ostream &operator<<(raw_ostream &OS, const ValueInfo &VI) {
243 OS << VI.getGUID();
244 if (!VI.name().empty())
245 OS << " (" << VI.name() << ")";
246 return OS;
247 }
248
249 inline bool operator==(const ValueInfo &A, const ValueInfo &B) {
250 assert(A.getRef() && B.getRef() &&
251 "Need ValueInfo with non-null Ref for comparison");
252 return A.getRef() == B.getRef();
253 }
254
255 inline bool operator!=(const ValueInfo &A, const ValueInfo &B) {
256 assert(A.getRef() && B.getRef() &&
257 "Need ValueInfo with non-null Ref for comparison");
258 return A.getRef() != B.getRef();
259 }
260
261 inline bool operator<(const ValueInfo &A, const ValueInfo &B) {
262 assert(A.getRef() && B.getRef() &&
263 "Need ValueInfo with non-null Ref to compare GUIDs");
264 return A.getGUID() < B.getGUID();
265 }
266
267 template <> struct DenseMapInfo<ValueInfo> {
268 static inline ValueInfo getEmptyKey() {
269 return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
270 }
271
272 static inline ValueInfo getTombstoneKey() {
273 return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-16);
274 }
275
276 static inline bool isSpecialKey(ValueInfo V) {
277 return V == getTombstoneKey() || V == getEmptyKey();
278 }
279
280 static bool isEqual(ValueInfo L, ValueInfo R) {
281 // We are not supposed to mix ValueInfo(s) with different HaveGVs flag
282 // in a same container.
283 assert(isSpecialKey(L) || isSpecialKey(R) || (L.haveGVs() == R.haveGVs()));
284 return L.getRef() == R.getRef();
285 }
286 static unsigned getHashValue(ValueInfo I) { return (uintptr_t)I.getRef(); }
287 };
288
289 /// Summary of memprof callsite metadata.
290 struct CallsiteInfo {
291 // Actual callee function.
292 ValueInfo Callee;
293
294 // Used to record whole program analysis cloning decisions.
295 // The ThinLTO backend will need to create as many clones as there are entries
296 // in the vector (it is expected and should be confirmed that all such
297 // summaries in the same FunctionSummary have the same number of entries).
298 // Each index records version info for the corresponding clone of this
299 // function. The value is the callee clone it calls (becomes the appended
300 // suffix id). Index 0 is the original version, and a value of 0 calls the
301 // original callee.
302 SmallVector<unsigned> Clones{0};
303
304 // Represents stack ids in this context, recorded as indices into the
305 // StackIds vector in the summary index, which in turn holds the full 64-bit
306 // stack ids. This reduces memory as there are in practice far fewer unique
307 // stack ids than stack id references.
308 SmallVector<unsigned> StackIdIndices;
309
310 CallsiteInfo(ValueInfo Callee, SmallVector<unsigned> StackIdIndices)
311 : Callee(Callee), StackIdIndices(std::move(StackIdIndices)) {}
312 CallsiteInfo(ValueInfo Callee, SmallVector<unsigned> Clones,
313 SmallVector<unsigned> StackIdIndices)
314 : Callee(Callee), Clones(std::move(Clones)),
315 StackIdIndices(std::move(StackIdIndices)) {}
316 };
317
318 // Allocation type assigned to an allocation reached by a given context.
319 // More can be added but initially this is just noncold and cold.
320 // Values should be powers of two so that they can be ORed, in particular to
321 // track allocations that have different behavior with different calling
322 // contexts.
323 enum class AllocationType : uint8_t { None = 0, NotCold = 1, Cold = 2 };
324
325 /// Summary of a single MIB in a memprof metadata on allocations.
326 struct MIBInfo {
327 // The allocation type for this profiled context.
328 AllocationType AllocType;
329
330 // Represents stack ids in this context, recorded as indices into the
331 // StackIds vector in the summary index, which in turn holds the full 64-bit
332 // stack ids. This reduces memory as there are in practice far fewer unique
333 // stack ids than stack id references.
334 SmallVector<unsigned> StackIdIndices;
335
336 MIBInfo(AllocationType AllocType, SmallVector<unsigned> StackIdIndices)
337 : AllocType(AllocType), StackIdIndices(std::move(StackIdIndices)) {}
338 };
339
340 /// Summary of memprof metadata on allocations.
341 struct AllocInfo {
342 // Used to record whole program analysis cloning decisions.
343 // The ThinLTO backend will need to create as many clones as there are entries
344 // in the vector (it is expected and should be confirmed that all such
345 // summaries in the same FunctionSummary have the same number of entries).
346 // Each index records version info for the corresponding clone of this
347 // function. The value is the allocation type of the corresponding allocation.
348 // Index 0 is the original version. Before cloning, index 0 may have more than
349 // one allocation type.
350 SmallVector<uint8_t> Versions;
351
352 // Vector of MIBs in this memprof metadata.
353 std::vector<MIBInfo> MIBs;
354
355 AllocInfo(std::vector<MIBInfo> MIBs) : MIBs(std::move(MIBs)) {
356 Versions.push_back(0);
357 }
358 AllocInfo(SmallVector<uint8_t> Versions, std::vector<MIBInfo> MIBs)
359 : Versions(std::move(Versions)), MIBs(std::move(MIBs)) {}
360 };
361
362 /// Function and variable summary information to aid decisions and
363 /// implementation of importing.
364 class GlobalValueSummary {
365 public:
366 /// Sububclass discriminator (for dyn_cast<> et al.)
367 enum SummaryKind : unsigned { AliasKind, FunctionKind, GlobalVarKind };
368
369 /// Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
370 struct GVFlags {
371 /// The linkage type of the associated global value.
372 ///
373 /// One use is to flag values that have local linkage types and need to
374 /// have module identifier appended before placing into the combined
375 /// index, to disambiguate from other values with the same name.
376 /// In the future this will be used to update and optimize linkage
377 /// types based on global summary-based analysis.
378 unsigned Linkage : 4;
379
380 /// Indicates the visibility.
381 unsigned Visibility : 2;
382
383 /// Indicate if the global value cannot be imported (e.g. it cannot
384 /// be renamed or references something that can't be renamed).
385 unsigned NotEligibleToImport : 1;
386
387 /// In per-module summary, indicate that the global value must be considered
388 /// a live root for index-based liveness analysis. Used for special LLVM
389 /// values such as llvm.global_ctors that the linker does not know about.
390 ///
391 /// In combined summary, indicate that the global value is live.
392 unsigned Live : 1;
393
394 /// Indicates that the linker resolved the symbol to a definition from
395 /// within the same linkage unit.
396 unsigned DSOLocal : 1;
397
398 /// In the per-module summary, indicates that the global value is
399 /// linkonce_odr and global unnamed addr (so eligible for auto-hiding
400 /// via hidden visibility). In the combined summary, indicates that the
401 /// prevailing linkonce_odr copy can be auto-hidden via hidden visibility
402 /// when it is upgraded to weak_odr in the backend. This is legal when
403 /// all copies are eligible for auto-hiding (i.e. all copies were
404 /// linkonce_odr global unnamed addr. If any copy is not (e.g. it was
405 /// originally weak_odr, we cannot auto-hide the prevailing copy as it
406 /// means the symbol was externally visible.
407 unsigned CanAutoHide : 1;
408
409 /// Convenience Constructors
410 explicit GVFlags(GlobalValue::LinkageTypes Linkage,
411 GlobalValue::VisibilityTypes Visibility,
412 bool NotEligibleToImport, bool Live, bool IsLocal,
413 bool CanAutoHide)
414 : Linkage(Linkage), Visibility(Visibility),
415 NotEligibleToImport(NotEligibleToImport), Live(Live),
416 DSOLocal(IsLocal), CanAutoHide(CanAutoHide) {}
417 };
418
419 private:
420 /// Kind of summary for use in dyn_cast<> et al.
421 SummaryKind Kind;
422
423 GVFlags Flags;
424
425 /// This is the hash of the name of the symbol in the original file. It is
426 /// identical to the GUID for global symbols, but differs for local since the
427 /// GUID includes the module level id in the hash.
428 GlobalValue::GUID OriginalName = 0;
429
430 /// Path of module IR containing value's definition, used to locate
431 /// module during importing.
432 ///
433 /// This is only used during parsing of the combined index, or when
434 /// parsing the per-module index for creation of the combined summary index,
435 /// not during writing of the per-module index which doesn't contain a
436 /// module path string table.
437 StringRef ModulePath;
438
439 /// List of values referenced by this global value's definition
440 /// (either by the initializer of a global variable, or referenced
441 /// from within a function). This does not include functions called, which
442 /// are listed in the derived FunctionSummary object.
443 std::vector<ValueInfo> RefEdgeList;
444
445 protected:
446 GlobalValueSummary(SummaryKind K, GVFlags Flags, std::vector<ValueInfo> Refs)
447 : Kind(K), Flags(Flags), RefEdgeList(std::move(Refs)) {
448 assert((K != AliasKind || Refs.empty()) &&
449 "Expect no references for AliasSummary");
450 }
451
452 public:
453 virtual ~GlobalValueSummary() = default;
454
455 /// Returns the hash of the original name, it is identical to the GUID for
456 /// externally visible symbols, but not for local ones.
457 GlobalValue::GUID getOriginalName() const { return OriginalName; }
458
459 /// Initialize the original name hash in this summary.
460 void setOriginalName(GlobalValue::GUID Name) { OriginalName = Name; }
461
462 /// Which kind of summary subclass this is.
463 SummaryKind getSummaryKind() const { return Kind; }
464
465 /// Set the path to the module containing this function, for use in
466 /// the combined index.
467 void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
468
469 /// Get the path to the module containing this function.
470 StringRef modulePath() const { return ModulePath; }
471
472 /// Get the flags for this GlobalValue (see \p struct GVFlags).
473 GVFlags flags() const { return Flags; }
474
475 /// Return linkage type recorded for this global value.
476 GlobalValue::LinkageTypes linkage() const {
477 return static_cast<GlobalValue::LinkageTypes>(Flags.Linkage);
478 }
479
480 /// Sets the linkage to the value determined by global summary-based
481 /// optimization. Will be applied in the ThinLTO backends.
482 void setLinkage(GlobalValue::LinkageTypes Linkage) {
483 Flags.Linkage = Linkage;
484 }
485
486 /// Return true if this global value can't be imported.
487 bool notEligibleToImport() const { return Flags.NotEligibleToImport; }
488
489 bool isLive() const { return Flags.Live; }
490
491 void setLive(bool Live) { Flags.Live = Live; }
492
493 void setDSOLocal(bool Local) { Flags.DSOLocal = Local; }
494
495 bool isDSOLocal() const { return Flags.DSOLocal; }
496
497 void setCanAutoHide(bool CanAutoHide) { Flags.CanAutoHide = CanAutoHide; }
498
499 bool canAutoHide() const { return Flags.CanAutoHide; }
500
501 GlobalValue::VisibilityTypes getVisibility() const {
502 return (GlobalValue::VisibilityTypes)Flags.Visibility;
503 }
504 void setVisibility(GlobalValue::VisibilityTypes Vis) {
505 Flags.Visibility = (unsigned)Vis;
506 }
507
508 /// Flag that this global value cannot be imported.
509 void setNotEligibleToImport() { Flags.NotEligibleToImport = true; }
510
511 /// Return the list of values referenced by this global value definition.
512 ArrayRef<ValueInfo> refs() const { return RefEdgeList; }
513
514 /// If this is an alias summary, returns the summary of the aliased object (a
515 /// global variable or function), otherwise returns itself.
516 GlobalValueSummary *getBaseObject();
517 const GlobalValueSummary *getBaseObject() const;
518
519 friend class ModuleSummaryIndex;
520 };
521
522 /// Alias summary information.
523 class AliasSummary : public GlobalValueSummary {
524 ValueInfo AliaseeValueInfo;
525
526 /// This is the Aliasee in the same module as alias (could get from VI, trades
527 /// memory for time). Note that this pointer may be null (and the value info
528 /// empty) when we have a distributed index where the alias is being imported
529 /// (as a copy of the aliasee), but the aliasee is not.
530 GlobalValueSummary *AliaseeSummary;
531
532 public:
533 AliasSummary(GVFlags Flags)
534 : GlobalValueSummary(AliasKind, Flags, ArrayRef<ValueInfo>{}),
535 AliaseeSummary(nullptr) {}
536
537 /// Check if this is an alias summary.
538 static bool classof(const GlobalValueSummary *GVS) {
539 return GVS->getSummaryKind() == AliasKind;
540 }
541
542 void setAliasee(ValueInfo &AliaseeVI, GlobalValueSummary *Aliasee) {
543 AliaseeValueInfo = AliaseeVI;
544 AliaseeSummary = Aliasee;
545 }
546
547 bool hasAliasee() const {
548 assert(!!AliaseeSummary == (AliaseeValueInfo &&
549 !AliaseeValueInfo.getSummaryList().empty()) &&
550 "Expect to have both aliasee summary and summary list or neither");
551 return !!AliaseeSummary;
552 }
553
554 const GlobalValueSummary &getAliasee() const {
555 assert(AliaseeSummary && "Unexpected missing aliasee summary");
556 return *AliaseeSummary;
557 }
558
559 GlobalValueSummary &getAliasee() {
560 return const_cast<GlobalValueSummary &>(
561 static_cast<const AliasSummary *>(this)->getAliasee());
562 }
563 ValueInfo getAliaseeVI() const {
564 assert(AliaseeValueInfo && "Unexpected missing aliasee");
565 return AliaseeValueInfo;
566 }
567 GlobalValue::GUID getAliaseeGUID() const {
568 assert(AliaseeValueInfo && "Unexpected missing aliasee");
569 return AliaseeValueInfo.getGUID();
570 }
571 };
572
573 const inline GlobalValueSummary *GlobalValueSummary::getBaseObject() const {
574 if (auto *AS = dyn_cast<AliasSummary>(this))
575 return &AS->getAliasee();
576 return this;
577 }
578
579 inline GlobalValueSummary *GlobalValueSummary::getBaseObject() {
580 if (auto *AS = dyn_cast<AliasSummary>(this))
581 return &AS->getAliasee();
582 return this;
583 }
584
585 /// Function summary information to aid decisions and implementation of
586 /// importing.
587 class FunctionSummary : public GlobalValueSummary {
588 public:
589 /// <CalleeValueInfo, CalleeInfo> call edge pair.
590 using EdgeTy = std::pair<ValueInfo, CalleeInfo>;
591
592 /// Types for -force-summary-edges-cold debugging option.
593 enum ForceSummaryHotnessType : unsigned {
594 FSHT_None,
595 FSHT_AllNonCritical,
596 FSHT_All
597 };
598
599 /// An "identifier" for a virtual function. This contains the type identifier
600 /// represented as a GUID and the offset from the address point to the virtual
601 /// function pointer, where "address point" is as defined in the Itanium ABI:
602 /// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general
603 struct VFuncId {
604 GlobalValue::GUID GUID;
605 uint64_t Offset;
606 };
607
608 /// A specification for a virtual function call with all constant integer
609 /// arguments. This is used to perform virtual constant propagation on the
610 /// summary.
611 struct ConstVCall {
612 VFuncId VFunc;
613 std::vector<uint64_t> Args;
614 };
615
616 /// All type identifier related information. Because these fields are
617 /// relatively uncommon we only allocate space for them if necessary.
618 struct TypeIdInfo {
619 /// List of type identifiers used by this function in llvm.type.test
620 /// intrinsics referenced by something other than an llvm.assume intrinsic,
621 /// represented as GUIDs.
622 std::vector<GlobalValue::GUID> TypeTests;
623
624 /// List of virtual calls made by this function using (respectively)
625 /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics that do
626 /// not have all constant integer arguments.
627 std::vector<VFuncId> TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
628
629 /// List of virtual calls made by this function using (respectively)
630 /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics with
631 /// all constant integer arguments.
632 std::vector<ConstVCall> TypeTestAssumeConstVCalls,
633 TypeCheckedLoadConstVCalls;
634 };
635
636 /// Flags specific to function summaries.
637 struct FFlags {
638 // Function attribute flags. Used to track if a function accesses memory,
639 // recurses or aliases.
640 unsigned ReadNone : 1;
641 unsigned ReadOnly : 1;
642 unsigned NoRecurse : 1;
643 unsigned ReturnDoesNotAlias : 1;
644
645 // Indicate if the global value cannot be inlined.
646 unsigned NoInline : 1;
647 // Indicate if function should be always inlined.
648 unsigned AlwaysInline : 1;
649 // Indicate if function never raises an exception. Can be modified during
650 // thinlink function attribute propagation
651 unsigned NoUnwind : 1;
652 // Indicate if function contains instructions that mayThrow
653 unsigned MayThrow : 1;
654
655 // If there are calls to unknown targets (e.g. indirect)
656 unsigned HasUnknownCall : 1;
657
658 // Indicate if a function must be an unreachable function.
659 //
660 // This bit is sufficient but not necessary;
661 // if this bit is on, the function must be regarded as unreachable;
662 // if this bit is off, the function might be reachable or unreachable.
663 unsigned MustBeUnreachable : 1;
664
665 FFlags &operator&=(const FFlags &RHS) {
666 this->ReadNone &= RHS.ReadNone;
667 this->ReadOnly &= RHS.ReadOnly;
668 this->NoRecurse &= RHS.NoRecurse;
669 this->ReturnDoesNotAlias &= RHS.ReturnDoesNotAlias;
670 this->NoInline &= RHS.NoInline;
671 this->AlwaysInline &= RHS.AlwaysInline;
672 this->NoUnwind &= RHS.NoUnwind;
673 this->MayThrow &= RHS.MayThrow;
674 this->HasUnknownCall &= RHS.HasUnknownCall;
675 this->MustBeUnreachable &= RHS.MustBeUnreachable;
676 return *this;
677 }
678
679 bool anyFlagSet() {
680 return this->ReadNone | this->ReadOnly | this->NoRecurse |
681 this->ReturnDoesNotAlias | this->NoInline | this->AlwaysInline |
682 this->NoUnwind | this->MayThrow | this->HasUnknownCall |
683 this->MustBeUnreachable;
684 }
685
686 operator std::string() {
687 std::string Output;
688 raw_string_ostream OS(Output);
689 OS << "funcFlags: (";
690 OS << "readNone: " << this->ReadNone;
691 OS << ", readOnly: " << this->ReadOnly;
692 OS << ", noRecurse: " << this->NoRecurse;
693 OS << ", returnDoesNotAlias: " << this->ReturnDoesNotAlias;
694 OS << ", noInline: " << this->NoInline;
695 OS << ", alwaysInline: " << this->AlwaysInline;
696 OS << ", noUnwind: " << this->NoUnwind;
697 OS << ", mayThrow: " << this->MayThrow;
698 OS << ", hasUnknownCall: " << this->HasUnknownCall;
699 OS << ", mustBeUnreachable: " << this->MustBeUnreachable;
700 OS << ")";
701 return OS.str();
702 }
703 };
704
705 /// Describes the uses of a parameter by the function.
706 struct ParamAccess {
707 static constexpr uint32_t RangeWidth = 64;
708
709 /// Describes the use of a value in a call instruction, specifying the
710 /// call's target, the value's parameter number, and the possible range of
711 /// offsets from the beginning of the value that are passed.
712 struct Call {
713 uint64_t ParamNo = 0;
714 ValueInfo Callee;
715 ConstantRange Offsets{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
716
717 Call() = default;
718 Call(uint64_t ParamNo, ValueInfo Callee, const ConstantRange &Offsets)
719 : ParamNo(ParamNo), Callee(Callee), Offsets(Offsets) {}
720 };
721
722 uint64_t ParamNo = 0;
723 /// The range contains byte offsets from the parameter pointer which
724 /// accessed by the function. In the per-module summary, it only includes
725 /// accesses made by the function instructions. In the combined summary, it
726 /// also includes accesses by nested function calls.
727 ConstantRange Use{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
728 /// In the per-module summary, it summarizes the byte offset applied to each
729 /// pointer parameter before passing to each corresponding callee.
730 /// In the combined summary, it's empty and information is propagated by
731 /// inter-procedural analysis and applied to the Use field.
732 std::vector<Call> Calls;
733
734 ParamAccess() = default;
735 ParamAccess(uint64_t ParamNo, const ConstantRange &Use)
736 : ParamNo(ParamNo), Use(Use) {}
737 };
738
739 /// Create an empty FunctionSummary (with specified call edges).
740 /// Used to represent external nodes and the dummy root node.
741 static FunctionSummary
742 makeDummyFunctionSummary(std::vector<FunctionSummary::EdgeTy> Edges) {
743 return FunctionSummary(
744 FunctionSummary::GVFlags(
745 GlobalValue::LinkageTypes::AvailableExternallyLinkage,
746 GlobalValue::DefaultVisibility,
747 /*NotEligibleToImport=*/true, /*Live=*/true, /*IsLocal=*/false,
748 /*CanAutoHide=*/false),
749 /*NumInsts=*/0, FunctionSummary::FFlags{}, /*EntryCount=*/0,
750 std::vector<ValueInfo>(), std::move(Edges),
751 std::vector<GlobalValue::GUID>(),
752 std::vector<FunctionSummary::VFuncId>(),
753 std::vector<FunctionSummary::VFuncId>(),
754 std::vector<FunctionSummary::ConstVCall>(),
755 std::vector<FunctionSummary::ConstVCall>(),
756 std::vector<FunctionSummary::ParamAccess>(),
757 std::vector<CallsiteInfo>(), std::vector<AllocInfo>());
758 }
759
760 /// A dummy node to reference external functions that aren't in the index
761 static FunctionSummary ExternalNode;
762
763 private:
764 /// Number of instructions (ignoring debug instructions, e.g.) computed
765 /// during the initial compile step when the summary index is first built.
766 unsigned InstCount;
767
768 /// Function summary specific flags.
769 FFlags FunFlags;
770
771 /// The synthesized entry count of the function.
772 /// This is only populated during ThinLink phase and remains unused while
773 /// generating per-module summaries.
774 uint64_t EntryCount = 0;
775
776 /// List of <CalleeValueInfo, CalleeInfo> call edge pairs from this function.
777 std::vector<EdgeTy> CallGraphEdgeList;
778
779 std::unique_ptr<TypeIdInfo> TIdInfo;
780
781 /// Uses for every parameter to this function.
782 using ParamAccessesTy = std::vector<ParamAccess>;
783 std::unique_ptr<ParamAccessesTy> ParamAccesses;
784
785 /// Optional list of memprof callsite metadata summaries. The correspondence
786 /// between the callsite summary and the callsites in the function is implied
787 /// by the order in the vector (and can be validated by comparing the stack
788 /// ids in the CallsiteInfo to those in the instruction callsite metadata).
789 /// As a memory savings optimization, we only create these for the prevailing
790 /// copy of a symbol when creating the combined index during LTO.
791 using CallsitesTy = std::vector<CallsiteInfo>;
792 std::unique_ptr<CallsitesTy> Callsites;
793
794 /// Optional list of allocation memprof metadata summaries. The correspondence
795 /// between the alloc memprof summary and the allocation callsites in the
796 /// function is implied by the order in the vector (and can be validated by
797 /// comparing the stack ids in the AllocInfo to those in the instruction
798 /// memprof metadata).
799 /// As a memory savings optimization, we only create these for the prevailing
800 /// copy of a symbol when creating the combined index during LTO.
801 using AllocsTy = std::vector<AllocInfo>;
802 std::unique_ptr<AllocsTy> Allocs;
803
804 public:
805 FunctionSummary(GVFlags Flags, unsigned NumInsts, FFlags FunFlags,
806 uint64_t EntryCount, std::vector<ValueInfo> Refs,
807 std::vector<EdgeTy> CGEdges,
808 std::vector<GlobalValue::GUID> TypeTests,
809 std::vector<VFuncId> TypeTestAssumeVCalls,
810 std::vector<VFuncId> TypeCheckedLoadVCalls,
811 std::vector<ConstVCall> TypeTestAssumeConstVCalls,
812 std::vector<ConstVCall> TypeCheckedLoadConstVCalls,
813 std::vector<ParamAccess> Params, CallsitesTy CallsiteList,
814 AllocsTy AllocList)
815 : GlobalValueSummary(FunctionKind, Flags, std::move(Refs)),
816 InstCount(NumInsts), FunFlags(FunFlags), EntryCount(EntryCount),
817 CallGraphEdgeList(std::move(CGEdges)) {
818 if (!TypeTests.empty() || !TypeTestAssumeVCalls.empty() ||
819 !TypeCheckedLoadVCalls.empty() || !TypeTestAssumeConstVCalls.empty() ||
820 !TypeCheckedLoadConstVCalls.empty())
821 TIdInfo = std::make_unique<TypeIdInfo>(
822 TypeIdInfo{std::move(TypeTests), std::move(TypeTestAssumeVCalls),
823 std::move(TypeCheckedLoadVCalls),
824 std::move(TypeTestAssumeConstVCalls),
825 std::move(TypeCheckedLoadConstVCalls)});
826 if (!Params.empty())
827 ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(Params));
828 if (!CallsiteList.empty())
829 Callsites = std::make_unique<CallsitesTy>(std::move(CallsiteList));
830 if (!AllocList.empty())
831 Allocs = std::make_unique<AllocsTy>(std::move(AllocList));
832 }
833 // Gets the number of readonly and writeonly refs in RefEdgeList
834 std::pair<unsigned, unsigned> specialRefCounts() const;
835
836 /// Check if this is a function summary.
837 static bool classof(const GlobalValueSummary *GVS) {
838 return GVS->getSummaryKind() == FunctionKind;
839 }
840
841 /// Get function summary flags.
842 FFlags fflags() const { return FunFlags; }
843
844 void setNoRecurse() { FunFlags.NoRecurse = true; }
845
846 void setNoUnwind() { FunFlags.NoUnwind = true; }
847
848 /// Get the instruction count recorded for this function.
849 unsigned instCount() const { return InstCount; }
850
851 /// Get the synthetic entry count for this function.
852 uint64_t entryCount() const { return EntryCount; }
853
854 /// Set the synthetic entry count for this function.
855 void setEntryCount(uint64_t EC) { EntryCount = EC; }
856
857 /// Return the list of <CalleeValueInfo, CalleeInfo> pairs.
858 ArrayRef<EdgeTy> calls() const { return CallGraphEdgeList; }
859
860 std::vector<EdgeTy> &mutableCalls() { return CallGraphEdgeList; }
861
862 void addCall(EdgeTy E) { CallGraphEdgeList.push_back(E); }
863
864 /// Returns the list of type identifiers used by this function in
865 /// llvm.type.test intrinsics other than by an llvm.assume intrinsic,
866 /// represented as GUIDs.
867 ArrayRef<GlobalValue::GUID> type_tests() const {
868 if (TIdInfo)
869 return TIdInfo->TypeTests;
870 return {};
871 }
872
873 /// Returns the list of virtual calls made by this function using
874 /// llvm.assume(llvm.type.test) intrinsics that do not have all constant
875 /// integer arguments.
876 ArrayRef<VFuncId> type_test_assume_vcalls() const {
877 if (TIdInfo)
878 return TIdInfo->TypeTestAssumeVCalls;
879 return {};
880 }
881
882 /// Returns the list of virtual calls made by this function using
883 /// llvm.type.checked.load intrinsics that do not have all constant integer
884 /// arguments.
885 ArrayRef<VFuncId> type_checked_load_vcalls() const {
886 if (TIdInfo)
887 return TIdInfo->TypeCheckedLoadVCalls;
888 return {};
889 }
890
891 /// Returns the list of virtual calls made by this function using
892 /// llvm.assume(llvm.type.test) intrinsics with all constant integer
893 /// arguments.
894 ArrayRef<ConstVCall> type_test_assume_const_vcalls() const {
895 if (TIdInfo)
896 return TIdInfo->TypeTestAssumeConstVCalls;
897 return {};
898 }
899
900 /// Returns the list of virtual calls made by this function using
901 /// llvm.type.checked.load intrinsics with all constant integer arguments.
902 ArrayRef<ConstVCall> type_checked_load_const_vcalls() const {
903 if (TIdInfo)
904 return TIdInfo->TypeCheckedLoadConstVCalls;
905 return {};
906 }
907
908 /// Returns the list of known uses of pointer parameters.
909 ArrayRef<ParamAccess> paramAccesses() const {
910 if (ParamAccesses)
911 return *ParamAccesses;
912 return {};
913 }
914
915 /// Sets the list of known uses of pointer parameters.
916 void setParamAccesses(std::vector<ParamAccess> NewParams) {
917 if (NewParams.empty())
918 ParamAccesses.reset();
919 else if (ParamAccesses)
920 *ParamAccesses = std::move(NewParams);
921 else
922 ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(NewParams));
923 }
924
925 /// Add a type test to the summary. This is used by WholeProgramDevirt if we
926 /// were unable to devirtualize a checked call.
927 void addTypeTest(GlobalValue::GUID Guid) {
928 if (!TIdInfo)
929 TIdInfo = std::make_unique<TypeIdInfo>();
930 TIdInfo->TypeTests.push_back(Guid);
931 }
932
933 const TypeIdInfo *getTypeIdInfo() const { return TIdInfo.get(); };
934
935 ArrayRef<CallsiteInfo> callsites() const {
936 if (Callsites)
937 return *Callsites;
938 return {};
939 }
940
941 ArrayRef<AllocInfo> allocs() const {
942 if (Allocs)
943 return *Allocs;
944 return {};
945 }
946
947 friend struct GraphTraits<ValueInfo>;
948 };
949
950 template <> struct DenseMapInfo<FunctionSummary::VFuncId> {
951 static FunctionSummary::VFuncId getEmptyKey() { return {0, uint64_t(-1)}; }
952
953 static FunctionSummary::VFuncId getTombstoneKey() {
954 return {0, uint64_t(-2)};
955 }
956
957 static bool isEqual(FunctionSummary::VFuncId L, FunctionSummary::VFuncId R) {
958 return L.GUID == R.GUID && L.Offset == R.Offset;
959 }
960
961 static unsigned getHashValue(FunctionSummary::VFuncId I) { return I.GUID; }
962 };
963
964 template <> struct DenseMapInfo<FunctionSummary::ConstVCall> {
965 static FunctionSummary::ConstVCall getEmptyKey() {
966 return {{0, uint64_t(-1)}, {}};
967 }
968
969 static FunctionSummary::ConstVCall getTombstoneKey() {
970 return {{0, uint64_t(-2)}, {}};
971 }
972
973 static bool isEqual(FunctionSummary::ConstVCall L,
974 FunctionSummary::ConstVCall R) {
975 return DenseMapInfo<FunctionSummary::VFuncId>::isEqual(L.VFunc, R.VFunc) &&
976 L.Args == R.Args;
977 }
978
979 static unsigned getHashValue(FunctionSummary::ConstVCall I) {
980 return I.VFunc.GUID;
981 }
982 };
983
984 /// The ValueInfo and offset for a function within a vtable definition
985 /// initializer array.
986 struct VirtFuncOffset {
987 VirtFuncOffset(ValueInfo VI, uint64_t Offset)
988 : FuncVI(VI), VTableOffset(Offset) {}
989
990 ValueInfo FuncVI;
991 uint64_t VTableOffset;
992 };
993 /// List of functions referenced by a particular vtable definition.
994 using VTableFuncList = std::vector<VirtFuncOffset>;
995
996 /// Global variable summary information to aid decisions and
997 /// implementation of importing.
998 ///
999 /// Global variable summary has two extra flag, telling if it is
1000 /// readonly or writeonly. Both readonly and writeonly variables
1001 /// can be optimized in the backed: readonly variables can be
1002 /// const-folded, while writeonly vars can be completely eliminated
1003 /// together with corresponding stores. We let both things happen
1004 /// by means of internalizing such variables after ThinLTO import.
1005 class GlobalVarSummary : public GlobalValueSummary {
1006 private:
1007 /// For vtable definitions this holds the list of functions and
1008 /// their corresponding offsets within the initializer array.
1009 std::unique_ptr<VTableFuncList> VTableFuncs;
1010
1011 public:
1012 struct GVarFlags {
1013 GVarFlags(bool ReadOnly, bool WriteOnly, bool Constant,
1014 GlobalObject::VCallVisibility Vis)
1015 : MaybeReadOnly(ReadOnly), MaybeWriteOnly(WriteOnly),
1016 Constant(Constant), VCallVisibility(Vis) {}
1017
1018 // If true indicates that this global variable might be accessed
1019 // purely by non-volatile load instructions. This in turn means
1020 // it can be internalized in source and destination modules during
1021 // thin LTO import because it neither modified nor its address
1022 // is taken.
1023 unsigned MaybeReadOnly : 1;
1024 // If true indicates that variable is possibly only written to, so
1025 // its value isn't loaded and its address isn't taken anywhere.
1026 // False, when 'Constant' attribute is set.
1027 unsigned MaybeWriteOnly : 1;
1028 // Indicates that value is a compile-time constant. Global variable
1029 // can be 'Constant' while not being 'ReadOnly' on several occasions:
1030 // - it is volatile, (e.g mapped device address)
1031 // - its address is taken, meaning that unlike 'ReadOnly' vars we can't
1032 // internalize it.
1033 // Constant variables are always imported thus giving compiler an
1034 // opportunity to make some extra optimizations. Readonly constants
1035 // are also internalized.
1036 unsigned Constant : 1;
1037 // Set from metadata on vtable definitions during the module summary
1038 // analysis.
1039 unsigned VCallVisibility : 2;
1040 } VarFlags;
1041
1042 GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags,
1043 std::vector<ValueInfo> Refs)
1044 : GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)),
1045 VarFlags(VarFlags) {}
1046
1047 /// Check if this is a global variable summary.
1048 static bool classof(const GlobalValueSummary *GVS) {
1049 return GVS->getSummaryKind() == GlobalVarKind;
1050 }
1051
1052 GVarFlags varflags() const { return VarFlags; }
1053 void setReadOnly(bool RO) { VarFlags.MaybeReadOnly = RO; }
1054 void setWriteOnly(bool WO) { VarFlags.MaybeWriteOnly = WO; }
1055 bool maybeReadOnly() const { return VarFlags.MaybeReadOnly; }
1056 bool maybeWriteOnly() const { return VarFlags.MaybeWriteOnly; }
1057 bool isConstant() const { return VarFlags.Constant; }
1058 void setVCallVisibility(GlobalObject::VCallVisibility Vis) {
1059 VarFlags.VCallVisibility = Vis;
1060 }
1061 GlobalObject::VCallVisibility getVCallVisibility() const {
1062 return (GlobalObject::VCallVisibility)VarFlags.VCallVisibility;
1063 }
1064
1065 void setVTableFuncs(VTableFuncList Funcs) {
1066 assert(!VTableFuncs);
1067 VTableFuncs = std::make_unique<VTableFuncList>(std::move(Funcs));
1068 }
1069
1070 ArrayRef<VirtFuncOffset> vTableFuncs() const {
1071 if (VTableFuncs)
1072 return *VTableFuncs;
1073 return {};
1074 }
1075 };
1076
1077 struct TypeTestResolution {
1078 /// Specifies which kind of type check we should emit for this byte array.
1079 /// See http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html for full
1080 /// details on each kind of check; the enumerators are described with
1081 /// reference to that document.
1082 enum Kind {
1083 Unsat, ///< Unsatisfiable type (i.e. no global has this type metadata)
1084 ByteArray, ///< Test a byte array (first example)
1085 Inline, ///< Inlined bit vector ("Short Inline Bit Vectors")
1086 Single, ///< Single element (last example in "Short Inline Bit Vectors")
1087 AllOnes, ///< All-ones bit vector ("Eliminating Bit Vector Checks for
1088 /// All-Ones Bit Vectors")
1089 Unknown, ///< Unknown (analysis not performed, don't lower)
1090 } TheKind = Unknown;
1091
1092 /// Range of size-1 expressed as a bit width. For example, if the size is in
1093 /// range [1,256], this number will be 8. This helps generate the most compact
1094 /// instruction sequences.
1095 unsigned SizeM1BitWidth = 0;
1096
1097 // The following fields are only used if the target does not support the use
1098 // of absolute symbols to store constants. Their meanings are the same as the
1099 // corresponding fields in LowerTypeTestsModule::TypeIdLowering in
1100 // LowerTypeTests.cpp.
1101
1102 uint64_t AlignLog2 = 0;
1103 uint64_t SizeM1 = 0;
1104 uint8_t BitMask = 0;
1105 uint64_t InlineBits = 0;
1106 };
1107
1108 struct WholeProgramDevirtResolution {
1109 enum Kind {
1110 Indir, ///< Just do a regular virtual call
1111 SingleImpl, ///< Single implementation devirtualization
1112 BranchFunnel, ///< When retpoline mitigation is enabled, use a branch funnel
1113 ///< that is defined in the merged module. Otherwise same as
1114 ///< Indir.
1115 } TheKind = Indir;
1116
1117 std::string SingleImplName;
1118
1119 struct ByArg {
1120 enum Kind {
1121 Indir, ///< Just do a regular virtual call
1122 UniformRetVal, ///< Uniform return value optimization
1123 UniqueRetVal, ///< Unique return value optimization
1124 VirtualConstProp, ///< Virtual constant propagation
1125 } TheKind = Indir;
1126
1127 /// Additional information for the resolution:
1128 /// - UniformRetVal: the uniform return value.
1129 /// - UniqueRetVal: the return value associated with the unique vtable (0 or
1130 /// 1).
1131 uint64_t Info = 0;
1132
1133 // The following fields are only used if the target does not support the use
1134 // of absolute symbols to store constants.
1135
1136 uint32_t Byte = 0;
1137 uint32_t Bit = 0;
1138 };
1139
1140 /// Resolutions for calls with all constant integer arguments (excluding the
1141 /// first argument, "this"), where the key is the argument vector.
1142 std::map<std::vector<uint64_t>, ByArg> ResByArg;
1143 };
1144
1145 struct TypeIdSummary {
1146 TypeTestResolution TTRes;
1147
1148 /// Mapping from byte offset to whole-program devirt resolution for that
1149 /// (typeid, byte offset) pair.
1150 std::map<uint64_t, WholeProgramDevirtResolution> WPDRes;
1151 };
1152
1153 /// 160 bits SHA1
1154 using ModuleHash = std::array<uint32_t, 5>;
1155
1156 /// Type used for iterating through the global value summary map.
1157 using const_gvsummary_iterator = GlobalValueSummaryMapTy::const_iterator;
1158 using gvsummary_iterator = GlobalValueSummaryMapTy::iterator;
1159
1160 /// String table to hold/own module path strings, which additionally holds the
1161 /// module ID assigned to each module during the plugin step, as well as a hash
1162 /// of the module. The StringMap makes a copy of and owns inserted strings.
1163 using ModulePathStringTableTy = StringMap<std::pair<uint64_t, ModuleHash>>;
1164
1165 /// Map of global value GUID to its summary, used to identify values defined in
1166 /// a particular module, and provide efficient access to their summary.
1167 using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
1168
1169 /// Map of a type GUID to type id string and summary (multimap used
1170 /// in case of GUID conflicts).
1171 using TypeIdSummaryMapTy =
1172 std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
1173
1174 /// The following data structures summarize type metadata information.
1175 /// For type metadata overview see https://llvm.org/docs/TypeMetadata.html.
1176 /// Each type metadata includes both the type identifier and the offset of
1177 /// the address point of the type (the address held by objects of that type
1178 /// which may not be the beginning of the virtual table). Vtable definitions
1179 /// are decorated with type metadata for the types they are compatible with.
1180 ///
1181 /// Holds information about vtable definitions decorated with type metadata:
1182 /// the vtable definition value and its address point offset in a type
1183 /// identifier metadata it is decorated (compatible) with.
1184 struct TypeIdOffsetVtableInfo {
1185 TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI)
1186 : AddressPointOffset(Offset), VTableVI(VI) {}
1187
1188 uint64_t AddressPointOffset;
1189 ValueInfo VTableVI;
1190 };
1191 /// List of vtable definitions decorated by a particular type identifier,
1192 /// and their corresponding offsets in that type identifier's metadata.
1193 /// Note that each type identifier may be compatible with multiple vtables, due
1194 /// to inheritance, which is why this is a vector.
1195 using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
1196
1197 /// Class to hold module path string table and global value map,
1198 /// and encapsulate methods for operating on them.
1199 class ModuleSummaryIndex {
1200 private:
1201 /// Map from value name to list of summary instances for values of that
1202 /// name (may be duplicates in the COMDAT case, e.g.).
1203 GlobalValueSummaryMapTy GlobalValueMap;
1204
1205 /// Holds strings for combined index, mapping to the corresponding module ID.
1206 ModulePathStringTableTy ModulePathStringTable;
1207
1208 /// Mapping from type identifier GUIDs to type identifier and its summary
1209 /// information. Produced by thin link.
1210 TypeIdSummaryMapTy TypeIdMap;
1211
1212 /// Mapping from type identifier to information about vtables decorated
1213 /// with that type identifier's metadata. Produced by per module summary
1214 /// analysis and consumed by thin link. For more information, see description
1215 /// above where TypeIdCompatibleVtableInfo is defined.
1216 std::map<std::string, TypeIdCompatibleVtableInfo, std::less<>>
1217 TypeIdCompatibleVtableMap;
1218
1219 /// Mapping from original ID to GUID. If original ID can map to multiple
1220 /// GUIDs, it will be mapped to 0.
1221 std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
1222
1223 /// Indicates that summary-based GlobalValue GC has run, and values with
1224 /// GVFlags::Live==false are really dead. Otherwise, all values must be
1225 /// considered live.
1226 bool WithGlobalValueDeadStripping = false;
1227
1228 /// Indicates that summary-based attribute propagation has run and
1229 /// GVarFlags::MaybeReadonly / GVarFlags::MaybeWriteonly are really
1230 /// read/write only.
1231 bool WithAttributePropagation = false;
1232
1233 /// Indicates that summary-based DSOLocal propagation has run and the flag in
1234 /// every summary of a GV is synchronized.
1235 bool WithDSOLocalPropagation = false;
1236
1237 /// Indicates that we have whole program visibility.
1238 bool WithWholeProgramVisibility = false;
1239
1240 /// Indicates that summary-based synthetic entry count propagation has run
1241 bool HasSyntheticEntryCounts = false;
1242
1243 /// Indicates that distributed backend should skip compilation of the
1244 /// module. Flag is suppose to be set by distributed ThinLTO indexing
1245 /// when it detected that the module is not needed during the final
1246 /// linking. As result distributed backend should just output a minimal
1247 /// valid object file.
1248 bool SkipModuleByDistributedBackend = false;
1249
1250 /// If true then we're performing analysis of IR module, or parsing along with
1251 /// the IR from assembly. The value of 'false' means we're reading summary
1252 /// from BC or YAML source. Affects the type of value stored in NameOrGV
1253 /// union.
1254 bool HaveGVs;
1255
1256 // True if the index was created for a module compiled with -fsplit-lto-unit.
1257 bool EnableSplitLTOUnit;
1258
1259 // True if some of the modules were compiled with -fsplit-lto-unit and
1260 // some were not. Set when the combined index is created during the thin link.
1261 bool PartiallySplitLTOUnits = false;
1262
1263 /// True if some of the FunctionSummary contains a ParamAccess.
1264 bool HasParamAccess = false;
1265
1266 std::set<std::string> CfiFunctionDefs;
1267 std::set<std::string> CfiFunctionDecls;
1268
1269 // Used in cases where we want to record the name of a global, but
1270 // don't have the string owned elsewhere (e.g. the Strtab on a module).
1271 BumpPtrAllocator Alloc;
1272 StringSaver Saver;
1273
1274 // The total number of basic blocks in the module in the per-module summary or
1275 // the total number of basic blocks in the LTO unit in the combined index.
1276 uint64_t BlockCount;
1277
1278 // List of unique stack ids (hashes). We use a 4B index of the id in the
1279 // stack id lists on the alloc and callsite summaries for memory savings,
1280 // since the number of unique ids is in practice much smaller than the
1281 // number of stack id references in the summaries.
1282 std::vector<uint64_t> StackIds;
1283
1284 // Temporary map while building StackIds list. Clear when index is completely
1285 // built via releaseTemporaryMemory.
1286 std::map<uint64_t, unsigned> StackIdToIndex;
1287
1288 // YAML I/O support.
1289 friend yaml::MappingTraits<ModuleSummaryIndex>;
1290
1291 GlobalValueSummaryMapTy::value_type *
1292 getOrInsertValuePtr(GlobalValue::GUID GUID) {
1293 return &*GlobalValueMap.emplace(GUID, GlobalValueSummaryInfo(HaveGVs))
1294 .first;
1295 }
1296
1297 public:
1298 // See HaveGVs variable comment.
1299 ModuleSummaryIndex(bool HaveGVs, bool EnableSplitLTOUnit = false)
1300 : HaveGVs(HaveGVs), EnableSplitLTOUnit(EnableSplitLTOUnit), Saver(Alloc),
1301 BlockCount(0) {}
1302
1303 // Current version for the module summary in bitcode files.
1304 // The BitcodeSummaryVersion should be bumped whenever we introduce changes
1305 // in the way some record are interpreted, like flags for instance.
1306 // Note that incrementing this may require changes in both BitcodeReader.cpp
1307 // and BitcodeWriter.cpp.
1308 static constexpr uint64_t BitcodeSummaryVersion = 9;
1309
1310 // Regular LTO module name for ASM writer
1311 static constexpr const char *getRegularLTOModuleName() {
1312 return "[Regular LTO]";
1313 }
1314
1315 bool haveGVs() const { return HaveGVs; }
1316
1317 uint64_t getFlags() const;
1318 void setFlags(uint64_t Flags);
1319
1320 uint64_t getBlockCount() const { return BlockCount; }
1321 void addBlockCount(uint64_t C) { BlockCount += C; }
1322 void setBlockCount(uint64_t C) { BlockCount = C; }
1323
1324 gvsummary_iterator begin() { return GlobalValueMap.begin(); }
1325 const_gvsummary_iterator begin() const { return GlobalValueMap.begin(); }
1326 gvsummary_iterator end() { return GlobalValueMap.end(); }
1327 const_gvsummary_iterator end() const { return GlobalValueMap.end(); }
1328 size_t size() const { return GlobalValueMap.size(); }
1329
1330 const std::vector<uint64_t> &stackIds() const { return StackIds; }
1331
1332 unsigned addOrGetStackIdIndex(uint64_t StackId) {
1333 auto Inserted = StackIdToIndex.insert({StackId, StackIds.size()});
1334 if (Inserted.second)
1335 StackIds.push_back(StackId);
1336 return Inserted.first->second;
1337 }
1338
1339 uint64_t getStackIdAtIndex(unsigned Index) const {
1340 assert(StackIds.size() > Index);
1341 return StackIds[Index];
1342 }
1343
1344 // Facility to release memory from data structures only needed during index
1345 // construction (including while building combined index). Currently this only
1346 // releases the temporary map used while constructing a correspondence between
1347 // stack ids and their index in the StackIds vector. Mostly impactful when
1348 // building a large combined index.
1349 void releaseTemporaryMemory() {
1350 assert(StackIdToIndex.size() == StackIds.size());
1351 StackIdToIndex.clear();
1352 StackIds.shrink_to_fit();
1353 }
1354
1355 /// Convenience function for doing a DFS on a ValueInfo. Marks the function in
1356 /// the FunctionHasParent map.
1357 static void discoverNodes(ValueInfo V,
1358 std::map<ValueInfo, bool> &FunctionHasParent) {
1359 if (!V.getSummaryList().size())
1360 return; // skip external functions that don't have summaries
1361
1362 // Mark discovered if we haven't yet
1363 auto S = FunctionHasParent.emplace(V, false);
1364
1365 // Stop if we've already discovered this node
1366 if (!S.second)
1367 return;
1368
1369 FunctionSummary *F =
1370 dyn_cast<FunctionSummary>(V.getSummaryList().front().get());
1371 assert(F != nullptr && "Expected FunctionSummary node");
1372
1373 for (const auto &C : F->calls()) {
1374 // Insert node if necessary
1375 auto S = FunctionHasParent.emplace(C.first, true);
1376
1377 // Skip nodes that we're sure have parents
1378 if (!S.second && S.first->second)
1379 continue;
1380
1381 if (S.second)
1382 discoverNodes(C.first, FunctionHasParent);
1383 else
1384 S.first->second = true;
1385 }
1386 }
1387
1388 // Calculate the callgraph root
1389 FunctionSummary calculateCallGraphRoot() {
1390 // Functions that have a parent will be marked in FunctionHasParent pair.
1391 // Once we've marked all functions, the functions in the map that are false
1392 // have no parent (so they're the roots)
1393 std::map<ValueInfo, bool> FunctionHasParent;
1394
1395 for (auto &S : *this) {
1396 // Skip external functions
1397 if (!S.second.SummaryList.size() ||
1398 !isa<FunctionSummary>(S.second.SummaryList.front().get()))
1399 continue;
1400 discoverNodes(ValueInfo(HaveGVs, &S), FunctionHasParent);
1401 }
1402
1403 std::vector<FunctionSummary::EdgeTy> Edges;
1404 // create edges to all roots in the Index
1405 for (auto &P : FunctionHasParent) {
1406 if (P.second)
1407 continue; // skip over non-root nodes
1408 Edges.push_back(std::make_pair(P.first, CalleeInfo{}));
1409 }
1410 if (Edges.empty()) {
1411 // Failed to find root - return an empty node
1412 return FunctionSummary::makeDummyFunctionSummary({});
1413 }
1414 auto CallGraphRoot = FunctionSummary::makeDummyFunctionSummary(Edges);
1415 return CallGraphRoot;
1416 }
1417
1418 bool withGlobalValueDeadStripping() const {
1419 return WithGlobalValueDeadStripping;
1420 }
1421 void setWithGlobalValueDeadStripping() {
1422 WithGlobalValueDeadStripping = true;
1423 }
1424
1425 bool withAttributePropagation() const { return WithAttributePropagation; }
1426 void setWithAttributePropagation() {
1427 WithAttributePropagation = true;
1428 }
1429
1430 bool withDSOLocalPropagation() const { return WithDSOLocalPropagation; }
1431 void setWithDSOLocalPropagation() { WithDSOLocalPropagation = true; }
1432
1433 bool withWholeProgramVisibility() const { return WithWholeProgramVisibility; }
1434 void setWithWholeProgramVisibility() { WithWholeProgramVisibility = true; }
1435
1436 bool isReadOnly(const GlobalVarSummary *GVS) const {
1437 return WithAttributePropagation && GVS->maybeReadOnly();
1438 }
1439 bool isWriteOnly(const GlobalVarSummary *GVS) const {
1440 return WithAttributePropagation && GVS->maybeWriteOnly();
1441 }
1442
1443 bool hasSyntheticEntryCounts() const { return HasSyntheticEntryCounts; }
1444 void setHasSyntheticEntryCounts() { HasSyntheticEntryCounts = true; }
1445
1446 bool skipModuleByDistributedBackend() const {
1447 return SkipModuleByDistributedBackend;
1448 }
1449 void setSkipModuleByDistributedBackend() {
1450 SkipModuleByDistributedBackend = true;
1451 }
1452
1453 bool enableSplitLTOUnit() const { return EnableSplitLTOUnit; }
1454 void setEnableSplitLTOUnit() { EnableSplitLTOUnit = true; }
1455
1456 bool partiallySplitLTOUnits() const { return PartiallySplitLTOUnits; }
1457 void setPartiallySplitLTOUnits() { PartiallySplitLTOUnits = true; }
1458
1459 bool hasParamAccess() const { return HasParamAccess; }
1460
1461 bool isGlobalValueLive(const GlobalValueSummary *GVS) const {
1462 return !WithGlobalValueDeadStripping || GVS->isLive();
1463 }
1464 bool isGUIDLive(GlobalValue::GUID GUID) const;
1465
1466 /// Return a ValueInfo for the index value_type (convenient when iterating
1467 /// index).
1468 ValueInfo getValueInfo(const GlobalValueSummaryMapTy::value_type &R) const {
1469 return ValueInfo(HaveGVs, &R);
1470 }
1471
1472 /// Return a ValueInfo for GUID if it exists, otherwise return ValueInfo().
1473 ValueInfo getValueInfo(GlobalValue::GUID GUID) const {
1474 auto I = GlobalValueMap.find(GUID);
1475 return ValueInfo(HaveGVs, I == GlobalValueMap.end() ? nullptr : &*I);
1476 }
1477
1478 /// Return a ValueInfo for \p GUID.
1479 ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID) {
1480 return ValueInfo(HaveGVs, getOrInsertValuePtr(GUID));
1481 }
1482
1483 // Save a string in the Index. Use before passing Name to
1484 // getOrInsertValueInfo when the string isn't owned elsewhere (e.g. on the
1485 // module's Strtab).
1486 StringRef saveString(StringRef String) { return Saver.save(String); }
1487
1488 /// Return a ValueInfo for \p GUID setting value \p Name.
1489 ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID, StringRef Name) {
1490 assert(!HaveGVs);
1491 auto VP = getOrInsertValuePtr(GUID);
1492 VP->second.U.Name = Name;
1493 return ValueInfo(HaveGVs, VP);
1494 }
1495
1496 /// Return a ValueInfo for \p GV and mark it as belonging to GV.
1497 ValueInfo getOrInsertValueInfo(const GlobalValue *GV) {
1498 assert(HaveGVs);
1499 auto VP = getOrInsertValuePtr(GV->getGUID());
1500 VP->second.U.GV = GV;
1501 return ValueInfo(HaveGVs, VP);
1502 }
1503
1504 /// Return the GUID for \p OriginalId in the OidGuidMap.
1505 GlobalValue::GUID getGUIDFromOriginalID(GlobalValue::GUID OriginalID) const {
1506 const auto I = OidGuidMap.find(OriginalID);
1507 return I == OidGuidMap.end() ? 0 : I->second;
1508 }
1509
1510 std::set<std::string> &cfiFunctionDefs() { return CfiFunctionDefs; }
1511 const std::set<std::string> &cfiFunctionDefs() const { return CfiFunctionDefs; }
1512
1513 std::set<std::string> &cfiFunctionDecls() { return CfiFunctionDecls; }
1514 const std::set<std::string> &cfiFunctionDecls() const { return CfiFunctionDecls; }
1515
1516 /// Add a global value summary for a value.
1517 void addGlobalValueSummary(const GlobalValue &GV,
1518 std::unique_ptr<GlobalValueSummary> Summary) {
1519 addGlobalValueSummary(getOrInsertValueInfo(&GV), std::move(Summary));
1520 }
1521
1522 /// Add a global value summary for a value of the given name.
1523 void addGlobalValueSummary(StringRef ValueName,
1524 std::unique_ptr<GlobalValueSummary> Summary) {
1525 addGlobalValueSummary(getOrInsertValueInfo(GlobalValue::getGUID(ValueName)),
1526 std::move(Summary));
1527 }
1528
1529 /// Add a global value summary for the given ValueInfo.
1530 void addGlobalValueSummary(ValueInfo VI,
1531 std::unique_ptr<GlobalValueSummary> Summary) {
1532 if (const FunctionSummary *FS = dyn_cast<FunctionSummary>(Summary.get()))
1533 HasParamAccess |= !FS->paramAccesses().empty();
1534 addOriginalName(VI.getGUID(), Summary->getOriginalName());
1535 // Here we have a notionally const VI, but the value it points to is owned
1536 // by the non-const *this.
1537 const_cast<GlobalValueSummaryMapTy::value_type *>(VI.getRef())
1538 ->second.SummaryList.push_back(std::move(Summary));
1539 }
1540
1541 /// Add an original name for the value of the given GUID.
1542 void addOriginalName(GlobalValue::GUID ValueGUID,
1543 GlobalValue::GUID OrigGUID) {
1544 if (OrigGUID == 0 || ValueGUID == OrigGUID)
1545 return;
1546 if (OidGuidMap.count(OrigGUID) && OidGuidMap[OrigGUID] != ValueGUID)
1547 OidGuidMap[OrigGUID] = 0;
1548 else
1549 OidGuidMap[OrigGUID] = ValueGUID;
1550 }
1551
1552 /// Find the summary for ValueInfo \p VI in module \p ModuleId, or nullptr if
1553 /// not found.
1554 GlobalValueSummary *findSummaryInModule(ValueInfo VI, StringRef ModuleId) const {
1555 auto SummaryList = VI.getSummaryList();
1556 auto Summary =
1557 llvm::find_if(SummaryList,
1558 [&](const std::unique_ptr<GlobalValueSummary> &Summary) {
1559 return Summary->modulePath() == ModuleId;
1560 });
1561 if (Summary == SummaryList.end())
1562 return nullptr;
1563 return Summary->get();
1564 }
1565
1566 /// Find the summary for global \p GUID in module \p ModuleId, or nullptr if
1567 /// not found.
1568 GlobalValueSummary *findSummaryInModule(GlobalValue::GUID ValueGUID,
1569 StringRef ModuleId) const {
1570 auto CalleeInfo = getValueInfo(ValueGUID);
1571 if (!CalleeInfo)
1572 return nullptr; // This function does not have a summary
1573 return findSummaryInModule(CalleeInfo, ModuleId);
1574 }
1575
1576 /// Returns the first GlobalValueSummary for \p GV, asserting that there
1577 /// is only one if \p PerModuleIndex.
1578 GlobalValueSummary *getGlobalValueSummary(const GlobalValue &GV,
1579 bool PerModuleIndex = true) const {
1580 assert(GV.hasName() && "Can't get GlobalValueSummary for GV with no name");
1581 return getGlobalValueSummary(GV.getGUID(), PerModuleIndex);
1582 }
1583
1584 /// Returns the first GlobalValueSummary for \p ValueGUID, asserting that
1585 /// there
1586 /// is only one if \p PerModuleIndex.
1587 GlobalValueSummary *getGlobalValueSummary(GlobalValue::GUID ValueGUID,
1588 bool PerModuleIndex = true) const;
1589
1590 /// Table of modules, containing module hash and id.
1591 const StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() const {
1592 return ModulePathStringTable;
1593 }
1594
1595 /// Table of modules, containing hash and id.
1596 StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() {
1597 return ModulePathStringTable;
1598 }
1599
1600 /// Get the module ID recorded for the given module path.
1601 uint64_t getModuleId(const StringRef ModPath) const {
1602 return ModulePathStringTable.lookup(ModPath).first;
1603 }
1604
1605 /// Get the module SHA1 hash recorded for the given module path.
1606 const ModuleHash &getModuleHash(const StringRef ModPath) const {
1607 auto It = ModulePathStringTable.find(ModPath);
1608 assert(It != ModulePathStringTable.end() && "Module not registered");
1609 return It->second.second;
1610 }
1611
1612 /// Convenience method for creating a promoted global name
1613 /// for the given value name of a local, and its original module's ID.
1614 static std::string getGlobalNameForLocal(StringRef Name, ModuleHash ModHash) {
1615 std::string Suffix = utostr((uint64_t(ModHash[0]) << 32) |
1616 ModHash[1]); // Take the first 64 bits
1617 return getGlobalNameForLocal(Name, Suffix);
1618 }
1619
1620 static std::string getGlobalNameForLocal(StringRef Name, StringRef Suffix) {
1621 SmallString<256> NewName(Name);
1622 NewName += ".llvm.";
1623 NewName += Suffix;
1624 return std::string(NewName.str());
1625 }
1626
1627 /// Helper to obtain the unpromoted name for a global value (or the original
1628 /// name if not promoted). Split off the rightmost ".llvm.${hash}" suffix,
1629 /// because it is possible in certain clients (not clang at the moment) for
1630 /// two rounds of ThinLTO optimization and therefore promotion to occur.
1631 static StringRef getOriginalNameBeforePromote(StringRef Name) {
1632 std::pair<StringRef, StringRef> Pair = Name.rsplit(".llvm.");
1633 return Pair.first;
1634 }
1635
1636 typedef ModulePathStringTableTy::value_type ModuleInfo;
1637
1638 /// Add a new module with the given \p Hash, mapped to the given \p
1639 /// ModID, and return a reference to the module.
1640 ModuleInfo *addModule(StringRef ModPath, uint64_t ModId,
1641 ModuleHash Hash = ModuleHash{{0}}) {
1642 return &*ModulePathStringTable.insert({ModPath, {ModId, Hash}}).first;
1643 }
1644
1645 /// Return module entry for module with the given \p ModPath.
1646 ModuleInfo *getModule(StringRef ModPath) {
1647 auto It = ModulePathStringTable.find(ModPath);
1648 assert(It != ModulePathStringTable.end() && "Module not registered");
1649 return &*It;
1650 }
1651
1652 /// Check if the given Module has any functions available for exporting
1653 /// in the index. We consider any module present in the ModulePathStringTable
1654 /// to have exported functions.
1655 bool hasExportedFunctions(const Module &M) const {
1656 return ModulePathStringTable.count(M.getModuleIdentifier());
1657 }
1658
1659 const TypeIdSummaryMapTy &typeIds() const { return TypeIdMap; }
1660
1661 /// Return an existing or new TypeIdSummary entry for \p TypeId.
1662 /// This accessor can mutate the map and therefore should not be used in
1663 /// the ThinLTO backends.
1664 TypeIdSummary &getOrInsertTypeIdSummary(StringRef TypeId) {
1665 auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1666 for (auto It = TidIter.first; It != TidIter.second; ++It)
1667 if (It->second.first == TypeId)
1668 return It->second.second;
1669 auto It = TypeIdMap.insert(
1670 {GlobalValue::getGUID(TypeId), {std::string(TypeId), TypeIdSummary()}});
1671 return It->second.second;
1672 }
1673
1674 /// This returns either a pointer to the type id summary (if present in the
1675 /// summary map) or null (if not present). This may be used when importing.
1676 const TypeIdSummary *getTypeIdSummary(StringRef TypeId) const {
1677 auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1678 for (auto It = TidIter.first; It != TidIter.second; ++It)
1679 if (It->second.first == TypeId)
1680 return &It->second.second;
1681 return nullptr;
1682 }
1683
1684 TypeIdSummary *getTypeIdSummary(StringRef TypeId) {
1685 return const_cast<TypeIdSummary *>(
1686 static_cast<const ModuleSummaryIndex *>(this)->getTypeIdSummary(
1687 TypeId));
1688 }
1689
1690 const auto &typeIdCompatibleVtableMap() const {
1691 return TypeIdCompatibleVtableMap;
1692 }
1693
1694 /// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId.
1695 /// This accessor can mutate the map and therefore should not be used in
1696 /// the ThinLTO backends.
1697 TypeIdCompatibleVtableInfo &
1698 getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) {
1699 return TypeIdCompatibleVtableMap[std::string(TypeId)];
1700 }
1701
1702 /// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap
1703 /// entry if present in the summary map. This may be used when importing.
1704 std::optional<TypeIdCompatibleVtableInfo>
1705 getTypeIdCompatibleVtableSummary(StringRef TypeId) const {
1706 auto I = TypeIdCompatibleVtableMap.find(TypeId);
1707 if (I == TypeIdCompatibleVtableMap.end())
1708 return std::nullopt;
1709 return I->second;
1710 }
1711
1712 /// Collect for the given module the list of functions it defines
1713 /// (GUID -> Summary).
1714 void collectDefinedFunctionsForModule(StringRef ModulePath,
1715 GVSummaryMapTy &GVSummaryMap) const;
1716
1717 /// Collect for each module the list of Summaries it defines (GUID ->
1718 /// Summary).
1719 template <class Map>
1720 void
1721 collectDefinedGVSummariesPerModule(Map &ModuleToDefinedGVSummaries) const {
1722 for (const auto &GlobalList : *this) {
1723 auto GUID = GlobalList.first;
1724 for (const auto &Summary : GlobalList.second.SummaryList) {
1725 ModuleToDefinedGVSummaries[Summary->modulePath()][GUID] = Summary.get();
1726 }
1727 }
1728 }
1729
1730 /// Print to an output stream.
1731 void print(raw_ostream &OS, bool IsForDebug = false) const;
1732
1733 /// Dump to stderr (for debugging).
1734 void dump() const;
1735
1736 /// Export summary to dot file for GraphViz.
1737 void
1738 exportToDot(raw_ostream &OS,
1739 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) const;
1740
1741 /// Print out strongly connected components for debugging.
1742 void dumpSCCs(raw_ostream &OS);
1743
1744 /// Do the access attribute and DSOLocal propagation in combined index.
1745 void propagateAttributes(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
1746
1747 /// Checks if we can import global variable from another module.
1748 bool canImportGlobalVar(GlobalValueSummary *S, bool AnalyzeRefs) const;
1749 };
1750
1751 /// GraphTraits definition to build SCC for the index
1752 template <> struct GraphTraits<ValueInfo> {
1753 typedef ValueInfo NodeRef;
1754 using EdgeRef = FunctionSummary::EdgeTy &;
1755
1756 static NodeRef valueInfoFromEdge(FunctionSummary::EdgeTy &P) {
1757 return P.first;
1758 }
1759 using ChildIteratorType =
1760 mapped_iterator<std::vector<FunctionSummary::EdgeTy>::iterator,
1761 decltype(&valueInfoFromEdge)>;
1762
1763 using ChildEdgeIteratorType = std::vector<FunctionSummary::EdgeTy>::iterator;
1764
1765 static NodeRef getEntryNode(ValueInfo V) { return V; }
1766
1767 static ChildIteratorType child_begin(NodeRef N) {
1768 if (!N.getSummaryList().size()) // handle external function
1769 return ChildIteratorType(
1770 FunctionSummary::ExternalNode.CallGraphEdgeList.begin(),
1771 &valueInfoFromEdge);
1772 FunctionSummary *F =
1773 cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1774 return ChildIteratorType(F->CallGraphEdgeList.begin(), &valueInfoFromEdge);
1775 }
1776
1777 static ChildIteratorType child_end(NodeRef N) {
1778 if (!N.getSummaryList().size()) // handle external function
1779 return ChildIteratorType(
1780 FunctionSummary::ExternalNode.CallGraphEdgeList.end(),
1781 &valueInfoFromEdge);
1782 FunctionSummary *F =
1783 cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1784 return ChildIteratorType(F->CallGraphEdgeList.end(), &valueInfoFromEdge);
1785 }
1786
1787 static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
1788 if (!N.getSummaryList().size()) // handle external function
1789 return FunctionSummary::ExternalNode.CallGraphEdgeList.begin();
1790
1791 FunctionSummary *F =
1792 cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1793 return F->CallGraphEdgeList.begin();
1794 }
1795
1796 static ChildEdgeIteratorType child_edge_end(NodeRef N) {
1797 if (!N.getSummaryList().size()) // handle external function
1798 return FunctionSummary::ExternalNode.CallGraphEdgeList.end();
1799
1800 FunctionSummary *F =
1801 cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1802 return F->CallGraphEdgeList.end();
1803 }
1804
1805 static NodeRef edge_dest(EdgeRef E) { return E.first; }
1806 };
1807
1808 template <>
1809 struct GraphTraits<ModuleSummaryIndex *> : public GraphTraits<ValueInfo> {
1810 static NodeRef getEntryNode(ModuleSummaryIndex *I) {
1811 std::unique_ptr<GlobalValueSummary> Root =
1812 std::make_unique<FunctionSummary>(I->calculateCallGraphRoot());
1813 GlobalValueSummaryInfo G(I->haveGVs());
1814 G.SummaryList.push_back(std::move(Root));
1815 static auto P =
1816 GlobalValueSummaryMapTy::value_type(GlobalValue::GUID(0), std::move(G));
1817 return ValueInfo(I->haveGVs(), &P);
1818 }
1819 };
1820 } // end namespace llvm
1821
1822 #endif // LLVM_IR_MODULESUMMARYINDEX_H
1823