1 //===- llvm/ModuleSummaryIndex.h - Module Summary Index ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// ModuleSummaryIndex.h This file contains the declarations the classes that
11 ///  hold the module index and summary for function importing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_MODULESUMMARYINDEX_H
16 #define LLVM_IR_MODULESUMMARYINDEX_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/ScaledNumber.h"
32 #include "llvm/Support/StringSaver.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <array>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <map>
40 #include <memory>
41 #include <optional>
42 #include <set>
43 #include <string>
44 #include <utility>
45 #include <vector>
46 
47 namespace llvm {
48 
49 template <class GraphType> struct GraphTraits;
50 
51 namespace yaml {
52 
53 template <typename T> struct MappingTraits;
54 
55 } // end namespace yaml
56 
57 /// Class to accumulate and hold information about a callee.
58 struct CalleeInfo {
59   enum class HotnessType : uint8_t {
60     Unknown = 0,
61     Cold = 1,
62     None = 2,
63     Hot = 3,
64     Critical = 4
65   };
66 
67   // The size of the bit-field might need to be adjusted if more values are
68   // added to HotnessType enum.
69   uint32_t Hotness : 3;
70 
71   /// The value stored in RelBlockFreq has to be interpreted as the digits of
72   /// a scaled number with a scale of \p -ScaleShift.
73   uint32_t RelBlockFreq : 29;
74   static constexpr int32_t ScaleShift = 8;
75   static constexpr uint64_t MaxRelBlockFreq = (1 << 29) - 1;
76 
CalleeInfoCalleeInfo77   CalleeInfo()
78       : Hotness(static_cast<uint32_t>(HotnessType::Unknown)), RelBlockFreq(0) {}
CalleeInfoCalleeInfo79   explicit CalleeInfo(HotnessType Hotness, uint64_t RelBF)
80       : Hotness(static_cast<uint32_t>(Hotness)), RelBlockFreq(RelBF) {}
81 
updateHotnessCalleeInfo82   void updateHotness(const HotnessType OtherHotness) {
83     Hotness = std::max(Hotness, static_cast<uint32_t>(OtherHotness));
84   }
85 
getHotnessCalleeInfo86   HotnessType getHotness() const { return HotnessType(Hotness); }
87 
88   /// Update \p RelBlockFreq from \p BlockFreq and \p EntryFreq
89   ///
90   /// BlockFreq is divided by EntryFreq and added to RelBlockFreq. To represent
91   /// fractional values, the result is represented as a fixed point number with
92   /// scale of -ScaleShift.
updateRelBlockFreqCalleeInfo93   void updateRelBlockFreq(uint64_t BlockFreq, uint64_t EntryFreq) {
94     if (EntryFreq == 0)
95       return;
96     using Scaled64 = ScaledNumber<uint64_t>;
97     Scaled64 Temp(BlockFreq, ScaleShift);
98     Temp /= Scaled64::get(EntryFreq);
99 
100     uint64_t Sum =
101         SaturatingAdd<uint64_t>(Temp.toInt<uint64_t>(), RelBlockFreq);
102     Sum = std::min(Sum, uint64_t(MaxRelBlockFreq));
103     RelBlockFreq = static_cast<uint32_t>(Sum);
104   }
105 };
106 
getHotnessName(CalleeInfo::HotnessType HT)107 inline const char *getHotnessName(CalleeInfo::HotnessType HT) {
108   switch (HT) {
109   case CalleeInfo::HotnessType::Unknown:
110     return "unknown";
111   case CalleeInfo::HotnessType::Cold:
112     return "cold";
113   case CalleeInfo::HotnessType::None:
114     return "none";
115   case CalleeInfo::HotnessType::Hot:
116     return "hot";
117   case CalleeInfo::HotnessType::Critical:
118     return "critical";
119   }
120   llvm_unreachable("invalid hotness");
121 }
122 
123 class GlobalValueSummary;
124 
125 using GlobalValueSummaryList = std::vector<std::unique_ptr<GlobalValueSummary>>;
126 
127 struct alignas(8) GlobalValueSummaryInfo {
128   union NameOrGV {
NameOrGV(bool HaveGVs)129     NameOrGV(bool HaveGVs) {
130       if (HaveGVs)
131         GV = nullptr;
132       else
133         Name = "";
134     }
135 
136     /// The GlobalValue corresponding to this summary. This is only used in
137     /// per-module summaries and when the IR is available. E.g. when module
138     /// analysis is being run, or when parsing both the IR and the summary
139     /// from assembly.
140     const GlobalValue *GV;
141 
142     /// Summary string representation. This StringRef points to BC module
143     /// string table and is valid until module data is stored in memory.
144     /// This is guaranteed to happen until runThinLTOBackend function is
145     /// called, so it is safe to use this field during thin link. This field
146     /// is only valid if summary index was loaded from BC file.
147     StringRef Name;
148   } U;
149 
GlobalValueSummaryInfoGlobalValueSummaryInfo150   GlobalValueSummaryInfo(bool HaveGVs) : U(HaveGVs) {}
151 
152   /// List of global value summary structures for a particular value held
153   /// in the GlobalValueMap. Requires a vector in the case of multiple
154   /// COMDAT values of the same name.
155   GlobalValueSummaryList SummaryList;
156 };
157 
158 /// Map from global value GUID to corresponding summary structures. Use a
159 /// std::map rather than a DenseMap so that pointers to the map's value_type
160 /// (which are used by ValueInfo) are not invalidated by insertion. Also it will
161 /// likely incur less overhead, as the value type is not very small and the size
162 /// of the map is unknown, resulting in inefficiencies due to repeated
163 /// insertions and resizing.
164 using GlobalValueSummaryMapTy =
165     std::map<GlobalValue::GUID, GlobalValueSummaryInfo>;
166 
167 /// Struct that holds a reference to a particular GUID in a global value
168 /// summary.
169 struct ValueInfo {
170   enum Flags { HaveGV = 1, ReadOnly = 2, WriteOnly = 4 };
171   PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 3, int>
172       RefAndFlags;
173 
174   ValueInfo() = default;
ValueInfoValueInfo175   ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) {
176     RefAndFlags.setPointer(R);
177     RefAndFlags.setInt(HaveGVs);
178   }
179 
180   explicit operator bool() const { return getRef(); }
181 
getGUIDValueInfo182   GlobalValue::GUID getGUID() const { return getRef()->first; }
getValueValueInfo183   const GlobalValue *getValue() const {
184     assert(haveGVs());
185     return getRef()->second.U.GV;
186   }
187 
getSummaryListValueInfo188   ArrayRef<std::unique_ptr<GlobalValueSummary>> getSummaryList() const {
189     return getRef()->second.SummaryList;
190   }
191 
nameValueInfo192   StringRef name() const {
193     return haveGVs() ? getRef()->second.U.GV->getName()
194                      : getRef()->second.U.Name;
195   }
196 
haveGVsValueInfo197   bool haveGVs() const { return RefAndFlags.getInt() & HaveGV; }
isReadOnlyValueInfo198   bool isReadOnly() const {
199     assert(isValidAccessSpecifier());
200     return RefAndFlags.getInt() & ReadOnly;
201   }
isWriteOnlyValueInfo202   bool isWriteOnly() const {
203     assert(isValidAccessSpecifier());
204     return RefAndFlags.getInt() & WriteOnly;
205   }
getAccessSpecifierValueInfo206   unsigned getAccessSpecifier() const {
207     assert(isValidAccessSpecifier());
208     return RefAndFlags.getInt() & (ReadOnly | WriteOnly);
209   }
isValidAccessSpecifierValueInfo210   bool isValidAccessSpecifier() const {
211     unsigned BadAccessMask = ReadOnly | WriteOnly;
212     return (RefAndFlags.getInt() & BadAccessMask) != BadAccessMask;
213   }
setReadOnlyValueInfo214   void setReadOnly() {
215     // We expect ro/wo attribute to set only once during
216     // ValueInfo lifetime.
217     assert(getAccessSpecifier() == 0);
218     RefAndFlags.setInt(RefAndFlags.getInt() | ReadOnly);
219   }
setWriteOnlyValueInfo220   void setWriteOnly() {
221     assert(getAccessSpecifier() == 0);
222     RefAndFlags.setInt(RefAndFlags.getInt() | WriteOnly);
223   }
224 
getRefValueInfo225   const GlobalValueSummaryMapTy::value_type *getRef() const {
226     return RefAndFlags.getPointer();
227   }
228 
229   /// Returns the most constraining visibility among summaries. The
230   /// visibilities, ordered from least to most constraining, are: default,
231   /// protected and hidden.
232   GlobalValue::VisibilityTypes getELFVisibility() const;
233 
234   /// Checks if all summaries are DSO local (have the flag set). When DSOLocal
235   /// propagation has been done, set the parameter to enable fast check.
236   bool isDSOLocal(bool WithDSOLocalPropagation = false) const;
237 
238   /// Checks if all copies are eligible for auto-hiding (have flag set).
239   bool canAutoHide() const;
240 };
241 
242 inline raw_ostream &operator<<(raw_ostream &OS, const ValueInfo &VI) {
243   OS << VI.getGUID();
244   if (!VI.name().empty())
245     OS << " (" << VI.name() << ")";
246   return OS;
247 }
248 
249 inline bool operator==(const ValueInfo &A, const ValueInfo &B) {
250   assert(A.getRef() && B.getRef() &&
251          "Need ValueInfo with non-null Ref for comparison");
252   return A.getRef() == B.getRef();
253 }
254 
255 inline bool operator!=(const ValueInfo &A, const ValueInfo &B) {
256   assert(A.getRef() && B.getRef() &&
257          "Need ValueInfo with non-null Ref for comparison");
258   return A.getRef() != B.getRef();
259 }
260 
261 inline bool operator<(const ValueInfo &A, const ValueInfo &B) {
262   assert(A.getRef() && B.getRef() &&
263          "Need ValueInfo with non-null Ref to compare GUIDs");
264   return A.getGUID() < B.getGUID();
265 }
266 
267 template <> struct DenseMapInfo<ValueInfo> {
268   static inline ValueInfo getEmptyKey() {
269     return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
270   }
271 
272   static inline ValueInfo getTombstoneKey() {
273     return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-16);
274   }
275 
276   static inline bool isSpecialKey(ValueInfo V) {
277     return V == getTombstoneKey() || V == getEmptyKey();
278   }
279 
280   static bool isEqual(ValueInfo L, ValueInfo R) {
281     // We are not supposed to mix ValueInfo(s) with different HaveGVs flag
282     // in a same container.
283     assert(isSpecialKey(L) || isSpecialKey(R) || (L.haveGVs() == R.haveGVs()));
284     return L.getRef() == R.getRef();
285   }
286   static unsigned getHashValue(ValueInfo I) { return (uintptr_t)I.getRef(); }
287 };
288 
289 /// Summary of memprof callsite metadata.
290 struct CallsiteInfo {
291   // Actual callee function.
292   ValueInfo Callee;
293 
294   // Used to record whole program analysis cloning decisions.
295   // The ThinLTO backend will need to create as many clones as there are entries
296   // in the vector (it is expected and should be confirmed that all such
297   // summaries in the same FunctionSummary have the same number of entries).
298   // Each index records version info for the corresponding clone of this
299   // function. The value is the callee clone it calls (becomes the appended
300   // suffix id). Index 0 is the original version, and a value of 0 calls the
301   // original callee.
302   SmallVector<unsigned> Clones{0};
303 
304   // Represents stack ids in this context, recorded as indices into the
305   // StackIds vector in the summary index, which in turn holds the full 64-bit
306   // stack ids. This reduces memory as there are in practice far fewer unique
307   // stack ids than stack id references.
308   SmallVector<unsigned> StackIdIndices;
309 
310   CallsiteInfo(ValueInfo Callee, SmallVector<unsigned> StackIdIndices)
311       : Callee(Callee), StackIdIndices(std::move(StackIdIndices)) {}
312   CallsiteInfo(ValueInfo Callee, SmallVector<unsigned> Clones,
313                SmallVector<unsigned> StackIdIndices)
314       : Callee(Callee), Clones(std::move(Clones)),
315         StackIdIndices(std::move(StackIdIndices)) {}
316 };
317 
318 // Allocation type assigned to an allocation reached by a given context.
319 // More can be added but initially this is just noncold and cold.
320 // Values should be powers of two so that they can be ORed, in particular to
321 // track allocations that have different behavior with different calling
322 // contexts.
323 enum class AllocationType : uint8_t { None = 0, NotCold = 1, Cold = 2 };
324 
325 /// Summary of a single MIB in a memprof metadata on allocations.
326 struct MIBInfo {
327   // The allocation type for this profiled context.
328   AllocationType AllocType;
329 
330   // Represents stack ids in this context, recorded as indices into the
331   // StackIds vector in the summary index, which in turn holds the full 64-bit
332   // stack ids. This reduces memory as there are in practice far fewer unique
333   // stack ids than stack id references.
334   SmallVector<unsigned> StackIdIndices;
335 
336   MIBInfo(AllocationType AllocType, SmallVector<unsigned> StackIdIndices)
337       : AllocType(AllocType), StackIdIndices(std::move(StackIdIndices)) {}
338 };
339 
340 /// Summary of memprof metadata on allocations.
341 struct AllocInfo {
342   // Used to record whole program analysis cloning decisions.
343   // The ThinLTO backend will need to create as many clones as there are entries
344   // in the vector (it is expected and should be confirmed that all such
345   // summaries in the same FunctionSummary have the same number of entries).
346   // Each index records version info for the corresponding clone of this
347   // function. The value is the allocation type of the corresponding allocation.
348   // Index 0 is the original version. Before cloning, index 0 may have more than
349   // one allocation type.
350   SmallVector<uint8_t> Versions;
351 
352   // Vector of MIBs in this memprof metadata.
353   std::vector<MIBInfo> MIBs;
354 
355   AllocInfo(std::vector<MIBInfo> MIBs) : MIBs(std::move(MIBs)) {
356     Versions.push_back(0);
357   }
358   AllocInfo(SmallVector<uint8_t> Versions, std::vector<MIBInfo> MIBs)
359       : Versions(std::move(Versions)), MIBs(std::move(MIBs)) {}
360 };
361 
362 /// Function and variable summary information to aid decisions and
363 /// implementation of importing.
364 class GlobalValueSummary {
365 public:
366   /// Sububclass discriminator (for dyn_cast<> et al.)
367   enum SummaryKind : unsigned { AliasKind, FunctionKind, GlobalVarKind };
368 
369   /// Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
370   struct GVFlags {
371     /// The linkage type of the associated global value.
372     ///
373     /// One use is to flag values that have local linkage types and need to
374     /// have module identifier appended before placing into the combined
375     /// index, to disambiguate from other values with the same name.
376     /// In the future this will be used to update and optimize linkage
377     /// types based on global summary-based analysis.
378     unsigned Linkage : 4;
379 
380     /// Indicates the visibility.
381     unsigned Visibility : 2;
382 
383     /// Indicate if the global value cannot be imported (e.g. it cannot
384     /// be renamed or references something that can't be renamed).
385     unsigned NotEligibleToImport : 1;
386 
387     /// In per-module summary, indicate that the global value must be considered
388     /// a live root for index-based liveness analysis. Used for special LLVM
389     /// values such as llvm.global_ctors that the linker does not know about.
390     ///
391     /// In combined summary, indicate that the global value is live.
392     unsigned Live : 1;
393 
394     /// Indicates that the linker resolved the symbol to a definition from
395     /// within the same linkage unit.
396     unsigned DSOLocal : 1;
397 
398     /// In the per-module summary, indicates that the global value is
399     /// linkonce_odr and global unnamed addr (so eligible for auto-hiding
400     /// via hidden visibility). In the combined summary, indicates that the
401     /// prevailing linkonce_odr copy can be auto-hidden via hidden visibility
402     /// when it is upgraded to weak_odr in the backend. This is legal when
403     /// all copies are eligible for auto-hiding (i.e. all copies were
404     /// linkonce_odr global unnamed addr. If any copy is not (e.g. it was
405     /// originally weak_odr, we cannot auto-hide the prevailing copy as it
406     /// means the symbol was externally visible.
407     unsigned CanAutoHide : 1;
408 
409     /// Convenience Constructors
410     explicit GVFlags(GlobalValue::LinkageTypes Linkage,
411                      GlobalValue::VisibilityTypes Visibility,
412                      bool NotEligibleToImport, bool Live, bool IsLocal,
413                      bool CanAutoHide)
414         : Linkage(Linkage), Visibility(Visibility),
415           NotEligibleToImport(NotEligibleToImport), Live(Live),
416           DSOLocal(IsLocal), CanAutoHide(CanAutoHide) {}
417   };
418 
419 private:
420   /// Kind of summary for use in dyn_cast<> et al.
421   SummaryKind Kind;
422 
423   GVFlags Flags;
424 
425   /// This is the hash of the name of the symbol in the original file. It is
426   /// identical to the GUID for global symbols, but differs for local since the
427   /// GUID includes the module level id in the hash.
428   GlobalValue::GUID OriginalName = 0;
429 
430   /// Path of module IR containing value's definition, used to locate
431   /// module during importing.
432   ///
433   /// This is only used during parsing of the combined index, or when
434   /// parsing the per-module index for creation of the combined summary index,
435   /// not during writing of the per-module index which doesn't contain a
436   /// module path string table.
437   StringRef ModulePath;
438 
439   /// List of values referenced by this global value's definition
440   /// (either by the initializer of a global variable, or referenced
441   /// from within a function). This does not include functions called, which
442   /// are listed in the derived FunctionSummary object.
443   std::vector<ValueInfo> RefEdgeList;
444 
445 protected:
446   GlobalValueSummary(SummaryKind K, GVFlags Flags, std::vector<ValueInfo> Refs)
447       : Kind(K), Flags(Flags), RefEdgeList(std::move(Refs)) {
448     assert((K != AliasKind || Refs.empty()) &&
449            "Expect no references for AliasSummary");
450   }
451 
452 public:
453   virtual ~GlobalValueSummary() = default;
454 
455   /// Returns the hash of the original name, it is identical to the GUID for
456   /// externally visible symbols, but not for local ones.
457   GlobalValue::GUID getOriginalName() const { return OriginalName; }
458 
459   /// Initialize the original name hash in this summary.
460   void setOriginalName(GlobalValue::GUID Name) { OriginalName = Name; }
461 
462   /// Which kind of summary subclass this is.
463   SummaryKind getSummaryKind() const { return Kind; }
464 
465   /// Set the path to the module containing this function, for use in
466   /// the combined index.
467   void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
468 
469   /// Get the path to the module containing this function.
470   StringRef modulePath() const { return ModulePath; }
471 
472   /// Get the flags for this GlobalValue (see \p struct GVFlags).
473   GVFlags flags() const { return Flags; }
474 
475   /// Return linkage type recorded for this global value.
476   GlobalValue::LinkageTypes linkage() const {
477     return static_cast<GlobalValue::LinkageTypes>(Flags.Linkage);
478   }
479 
480   /// Sets the linkage to the value determined by global summary-based
481   /// optimization. Will be applied in the ThinLTO backends.
482   void setLinkage(GlobalValue::LinkageTypes Linkage) {
483     Flags.Linkage = Linkage;
484   }
485 
486   /// Return true if this global value can't be imported.
487   bool notEligibleToImport() const { return Flags.NotEligibleToImport; }
488 
489   bool isLive() const { return Flags.Live; }
490 
491   void setLive(bool Live) { Flags.Live = Live; }
492 
493   void setDSOLocal(bool Local) { Flags.DSOLocal = Local; }
494 
495   bool isDSOLocal() const { return Flags.DSOLocal; }
496 
497   void setCanAutoHide(bool CanAutoHide) { Flags.CanAutoHide = CanAutoHide; }
498 
499   bool canAutoHide() const { return Flags.CanAutoHide; }
500 
501   GlobalValue::VisibilityTypes getVisibility() const {
502     return (GlobalValue::VisibilityTypes)Flags.Visibility;
503   }
504   void setVisibility(GlobalValue::VisibilityTypes Vis) {
505     Flags.Visibility = (unsigned)Vis;
506   }
507 
508   /// Flag that this global value cannot be imported.
509   void setNotEligibleToImport() { Flags.NotEligibleToImport = true; }
510 
511   /// Return the list of values referenced by this global value definition.
512   ArrayRef<ValueInfo> refs() const { return RefEdgeList; }
513 
514   /// If this is an alias summary, returns the summary of the aliased object (a
515   /// global variable or function), otherwise returns itself.
516   GlobalValueSummary *getBaseObject();
517   const GlobalValueSummary *getBaseObject() const;
518 
519   friend class ModuleSummaryIndex;
520 };
521 
522 /// Alias summary information.
523 class AliasSummary : public GlobalValueSummary {
524   ValueInfo AliaseeValueInfo;
525 
526   /// This is the Aliasee in the same module as alias (could get from VI, trades
527   /// memory for time). Note that this pointer may be null (and the value info
528   /// empty) when we have a distributed index where the alias is being imported
529   /// (as a copy of the aliasee), but the aliasee is not.
530   GlobalValueSummary *AliaseeSummary;
531 
532 public:
533   AliasSummary(GVFlags Flags)
534       : GlobalValueSummary(AliasKind, Flags, ArrayRef<ValueInfo>{}),
535         AliaseeSummary(nullptr) {}
536 
537   /// Check if this is an alias summary.
538   static bool classof(const GlobalValueSummary *GVS) {
539     return GVS->getSummaryKind() == AliasKind;
540   }
541 
542   void setAliasee(ValueInfo &AliaseeVI, GlobalValueSummary *Aliasee) {
543     AliaseeValueInfo = AliaseeVI;
544     AliaseeSummary = Aliasee;
545   }
546 
547   bool hasAliasee() const {
548     assert(!!AliaseeSummary == (AliaseeValueInfo &&
549                                 !AliaseeValueInfo.getSummaryList().empty()) &&
550            "Expect to have both aliasee summary and summary list or neither");
551     return !!AliaseeSummary;
552   }
553 
554   const GlobalValueSummary &getAliasee() const {
555     assert(AliaseeSummary && "Unexpected missing aliasee summary");
556     return *AliaseeSummary;
557   }
558 
559   GlobalValueSummary &getAliasee() {
560     return const_cast<GlobalValueSummary &>(
561                          static_cast<const AliasSummary *>(this)->getAliasee());
562   }
563   ValueInfo getAliaseeVI() const {
564     assert(AliaseeValueInfo && "Unexpected missing aliasee");
565     return AliaseeValueInfo;
566   }
567   GlobalValue::GUID getAliaseeGUID() const {
568     assert(AliaseeValueInfo && "Unexpected missing aliasee");
569     return AliaseeValueInfo.getGUID();
570   }
571 };
572 
573 const inline GlobalValueSummary *GlobalValueSummary::getBaseObject() const {
574   if (auto *AS = dyn_cast<AliasSummary>(this))
575     return &AS->getAliasee();
576   return this;
577 }
578 
579 inline GlobalValueSummary *GlobalValueSummary::getBaseObject() {
580   if (auto *AS = dyn_cast<AliasSummary>(this))
581     return &AS->getAliasee();
582   return this;
583 }
584 
585 /// Function summary information to aid decisions and implementation of
586 /// importing.
587 class FunctionSummary : public GlobalValueSummary {
588 public:
589   /// <CalleeValueInfo, CalleeInfo> call edge pair.
590   using EdgeTy = std::pair<ValueInfo, CalleeInfo>;
591 
592   /// Types for -force-summary-edges-cold debugging option.
593   enum ForceSummaryHotnessType : unsigned {
594     FSHT_None,
595     FSHT_AllNonCritical,
596     FSHT_All
597   };
598 
599   /// An "identifier" for a virtual function. This contains the type identifier
600   /// represented as a GUID and the offset from the address point to the virtual
601   /// function pointer, where "address point" is as defined in the Itanium ABI:
602   /// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general
603   struct VFuncId {
604     GlobalValue::GUID GUID;
605     uint64_t Offset;
606   };
607 
608   /// A specification for a virtual function call with all constant integer
609   /// arguments. This is used to perform virtual constant propagation on the
610   /// summary.
611   struct ConstVCall {
612     VFuncId VFunc;
613     std::vector<uint64_t> Args;
614   };
615 
616   /// All type identifier related information. Because these fields are
617   /// relatively uncommon we only allocate space for them if necessary.
618   struct TypeIdInfo {
619     /// List of type identifiers used by this function in llvm.type.test
620     /// intrinsics referenced by something other than an llvm.assume intrinsic,
621     /// represented as GUIDs.
622     std::vector<GlobalValue::GUID> TypeTests;
623 
624     /// List of virtual calls made by this function using (respectively)
625     /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics that do
626     /// not have all constant integer arguments.
627     std::vector<VFuncId> TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
628 
629     /// List of virtual calls made by this function using (respectively)
630     /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics with
631     /// all constant integer arguments.
632     std::vector<ConstVCall> TypeTestAssumeConstVCalls,
633         TypeCheckedLoadConstVCalls;
634   };
635 
636   /// Flags specific to function summaries.
637   struct FFlags {
638     // Function attribute flags. Used to track if a function accesses memory,
639     // recurses or aliases.
640     unsigned ReadNone : 1;
641     unsigned ReadOnly : 1;
642     unsigned NoRecurse : 1;
643     unsigned ReturnDoesNotAlias : 1;
644 
645     // Indicate if the global value cannot be inlined.
646     unsigned NoInline : 1;
647     // Indicate if function should be always inlined.
648     unsigned AlwaysInline : 1;
649     // Indicate if function never raises an exception. Can be modified during
650     // thinlink function attribute propagation
651     unsigned NoUnwind : 1;
652     // Indicate if function contains instructions that mayThrow
653     unsigned MayThrow : 1;
654 
655     // If there are calls to unknown targets (e.g. indirect)
656     unsigned HasUnknownCall : 1;
657 
658     // Indicate if a function must be an unreachable function.
659     //
660     // This bit is sufficient but not necessary;
661     // if this bit is on, the function must be regarded as unreachable;
662     // if this bit is off, the function might be reachable or unreachable.
663     unsigned MustBeUnreachable : 1;
664 
665     FFlags &operator&=(const FFlags &RHS) {
666       this->ReadNone &= RHS.ReadNone;
667       this->ReadOnly &= RHS.ReadOnly;
668       this->NoRecurse &= RHS.NoRecurse;
669       this->ReturnDoesNotAlias &= RHS.ReturnDoesNotAlias;
670       this->NoInline &= RHS.NoInline;
671       this->AlwaysInline &= RHS.AlwaysInline;
672       this->NoUnwind &= RHS.NoUnwind;
673       this->MayThrow &= RHS.MayThrow;
674       this->HasUnknownCall &= RHS.HasUnknownCall;
675       this->MustBeUnreachable &= RHS.MustBeUnreachable;
676       return *this;
677     }
678 
679     bool anyFlagSet() {
680       return this->ReadNone | this->ReadOnly | this->NoRecurse |
681              this->ReturnDoesNotAlias | this->NoInline | this->AlwaysInline |
682              this->NoUnwind | this->MayThrow | this->HasUnknownCall |
683              this->MustBeUnreachable;
684     }
685 
686     operator std::string() {
687       std::string Output;
688       raw_string_ostream OS(Output);
689       OS << "funcFlags: (";
690       OS << "readNone: " << this->ReadNone;
691       OS << ", readOnly: " << this->ReadOnly;
692       OS << ", noRecurse: " << this->NoRecurse;
693       OS << ", returnDoesNotAlias: " << this->ReturnDoesNotAlias;
694       OS << ", noInline: " << this->NoInline;
695       OS << ", alwaysInline: " << this->AlwaysInline;
696       OS << ", noUnwind: " << this->NoUnwind;
697       OS << ", mayThrow: " << this->MayThrow;
698       OS << ", hasUnknownCall: " << this->HasUnknownCall;
699       OS << ", mustBeUnreachable: " << this->MustBeUnreachable;
700       OS << ")";
701       return OS.str();
702     }
703   };
704 
705   /// Describes the uses of a parameter by the function.
706   struct ParamAccess {
707     static constexpr uint32_t RangeWidth = 64;
708 
709     /// Describes the use of a value in a call instruction, specifying the
710     /// call's target, the value's parameter number, and the possible range of
711     /// offsets from the beginning of the value that are passed.
712     struct Call {
713       uint64_t ParamNo = 0;
714       ValueInfo Callee;
715       ConstantRange Offsets{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
716 
717       Call() = default;
718       Call(uint64_t ParamNo, ValueInfo Callee, const ConstantRange &Offsets)
719           : ParamNo(ParamNo), Callee(Callee), Offsets(Offsets) {}
720     };
721 
722     uint64_t ParamNo = 0;
723     /// The range contains byte offsets from the parameter pointer which
724     /// accessed by the function. In the per-module summary, it only includes
725     /// accesses made by the function instructions. In the combined summary, it
726     /// also includes accesses by nested function calls.
727     ConstantRange Use{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
728     /// In the per-module summary, it summarizes the byte offset applied to each
729     /// pointer parameter before passing to each corresponding callee.
730     /// In the combined summary, it's empty and information is propagated by
731     /// inter-procedural analysis and applied to the Use field.
732     std::vector<Call> Calls;
733 
734     ParamAccess() = default;
735     ParamAccess(uint64_t ParamNo, const ConstantRange &Use)
736         : ParamNo(ParamNo), Use(Use) {}
737   };
738 
739   /// Create an empty FunctionSummary (with specified call edges).
740   /// Used to represent external nodes and the dummy root node.
741   static FunctionSummary
742   makeDummyFunctionSummary(std::vector<FunctionSummary::EdgeTy> Edges) {
743     return FunctionSummary(
744         FunctionSummary::GVFlags(
745             GlobalValue::LinkageTypes::AvailableExternallyLinkage,
746             GlobalValue::DefaultVisibility,
747             /*NotEligibleToImport=*/true, /*Live=*/true, /*IsLocal=*/false,
748             /*CanAutoHide=*/false),
749         /*NumInsts=*/0, FunctionSummary::FFlags{}, /*EntryCount=*/0,
750         std::vector<ValueInfo>(), std::move(Edges),
751         std::vector<GlobalValue::GUID>(),
752         std::vector<FunctionSummary::VFuncId>(),
753         std::vector<FunctionSummary::VFuncId>(),
754         std::vector<FunctionSummary::ConstVCall>(),
755         std::vector<FunctionSummary::ConstVCall>(),
756         std::vector<FunctionSummary::ParamAccess>(),
757         std::vector<CallsiteInfo>(), std::vector<AllocInfo>());
758   }
759 
760   /// A dummy node to reference external functions that aren't in the index
761   static FunctionSummary ExternalNode;
762 
763 private:
764   /// Number of instructions (ignoring debug instructions, e.g.) computed
765   /// during the initial compile step when the summary index is first built.
766   unsigned InstCount;
767 
768   /// Function summary specific flags.
769   FFlags FunFlags;
770 
771   /// The synthesized entry count of the function.
772   /// This is only populated during ThinLink phase and remains unused while
773   /// generating per-module summaries.
774   uint64_t EntryCount = 0;
775 
776   /// List of <CalleeValueInfo, CalleeInfo> call edge pairs from this function.
777   std::vector<EdgeTy> CallGraphEdgeList;
778 
779   std::unique_ptr<TypeIdInfo> TIdInfo;
780 
781   /// Uses for every parameter to this function.
782   using ParamAccessesTy = std::vector<ParamAccess>;
783   std::unique_ptr<ParamAccessesTy> ParamAccesses;
784 
785   /// Optional list of memprof callsite metadata summaries. The correspondence
786   /// between the callsite summary and the callsites in the function is implied
787   /// by the order in the vector (and can be validated by comparing the stack
788   /// ids in the CallsiteInfo to those in the instruction callsite metadata).
789   /// As a memory savings optimization, we only create these for the prevailing
790   /// copy of a symbol when creating the combined index during LTO.
791   using CallsitesTy = std::vector<CallsiteInfo>;
792   std::unique_ptr<CallsitesTy> Callsites;
793 
794   /// Optional list of allocation memprof metadata summaries. The correspondence
795   /// between the alloc memprof summary and the allocation callsites in the
796   /// function is implied by the order in the vector (and can be validated by
797   /// comparing the stack ids in the AllocInfo to those in the instruction
798   /// memprof metadata).
799   /// As a memory savings optimization, we only create these for the prevailing
800   /// copy of a symbol when creating the combined index during LTO.
801   using AllocsTy = std::vector<AllocInfo>;
802   std::unique_ptr<AllocsTy> Allocs;
803 
804 public:
805   FunctionSummary(GVFlags Flags, unsigned NumInsts, FFlags FunFlags,
806                   uint64_t EntryCount, std::vector<ValueInfo> Refs,
807                   std::vector<EdgeTy> CGEdges,
808                   std::vector<GlobalValue::GUID> TypeTests,
809                   std::vector<VFuncId> TypeTestAssumeVCalls,
810                   std::vector<VFuncId> TypeCheckedLoadVCalls,
811                   std::vector<ConstVCall> TypeTestAssumeConstVCalls,
812                   std::vector<ConstVCall> TypeCheckedLoadConstVCalls,
813                   std::vector<ParamAccess> Params, CallsitesTy CallsiteList,
814                   AllocsTy AllocList)
815       : GlobalValueSummary(FunctionKind, Flags, std::move(Refs)),
816         InstCount(NumInsts), FunFlags(FunFlags), EntryCount(EntryCount),
817         CallGraphEdgeList(std::move(CGEdges)) {
818     if (!TypeTests.empty() || !TypeTestAssumeVCalls.empty() ||
819         !TypeCheckedLoadVCalls.empty() || !TypeTestAssumeConstVCalls.empty() ||
820         !TypeCheckedLoadConstVCalls.empty())
821       TIdInfo = std::make_unique<TypeIdInfo>(
822           TypeIdInfo{std::move(TypeTests), std::move(TypeTestAssumeVCalls),
823                      std::move(TypeCheckedLoadVCalls),
824                      std::move(TypeTestAssumeConstVCalls),
825                      std::move(TypeCheckedLoadConstVCalls)});
826     if (!Params.empty())
827       ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(Params));
828     if (!CallsiteList.empty())
829       Callsites = std::make_unique<CallsitesTy>(std::move(CallsiteList));
830     if (!AllocList.empty())
831       Allocs = std::make_unique<AllocsTy>(std::move(AllocList));
832   }
833   // Gets the number of readonly and writeonly refs in RefEdgeList
834   std::pair<unsigned, unsigned> specialRefCounts() const;
835 
836   /// Check if this is a function summary.
837   static bool classof(const GlobalValueSummary *GVS) {
838     return GVS->getSummaryKind() == FunctionKind;
839   }
840 
841   /// Get function summary flags.
842   FFlags fflags() const { return FunFlags; }
843 
844   void setNoRecurse() { FunFlags.NoRecurse = true; }
845 
846   void setNoUnwind() { FunFlags.NoUnwind = true; }
847 
848   /// Get the instruction count recorded for this function.
849   unsigned instCount() const { return InstCount; }
850 
851   /// Get the synthetic entry count for this function.
852   uint64_t entryCount() const { return EntryCount; }
853 
854   /// Set the synthetic entry count for this function.
855   void setEntryCount(uint64_t EC) { EntryCount = EC; }
856 
857   /// Return the list of <CalleeValueInfo, CalleeInfo> pairs.
858   ArrayRef<EdgeTy> calls() const { return CallGraphEdgeList; }
859 
860   std::vector<EdgeTy> &mutableCalls() { return CallGraphEdgeList; }
861 
862   void addCall(EdgeTy E) { CallGraphEdgeList.push_back(E); }
863 
864   /// Returns the list of type identifiers used by this function in
865   /// llvm.type.test intrinsics other than by an llvm.assume intrinsic,
866   /// represented as GUIDs.
867   ArrayRef<GlobalValue::GUID> type_tests() const {
868     if (TIdInfo)
869       return TIdInfo->TypeTests;
870     return {};
871   }
872 
873   /// Returns the list of virtual calls made by this function using
874   /// llvm.assume(llvm.type.test) intrinsics that do not have all constant
875   /// integer arguments.
876   ArrayRef<VFuncId> type_test_assume_vcalls() const {
877     if (TIdInfo)
878       return TIdInfo->TypeTestAssumeVCalls;
879     return {};
880   }
881 
882   /// Returns the list of virtual calls made by this function using
883   /// llvm.type.checked.load intrinsics that do not have all constant integer
884   /// arguments.
885   ArrayRef<VFuncId> type_checked_load_vcalls() const {
886     if (TIdInfo)
887       return TIdInfo->TypeCheckedLoadVCalls;
888     return {};
889   }
890 
891   /// Returns the list of virtual calls made by this function using
892   /// llvm.assume(llvm.type.test) intrinsics with all constant integer
893   /// arguments.
894   ArrayRef<ConstVCall> type_test_assume_const_vcalls() const {
895     if (TIdInfo)
896       return TIdInfo->TypeTestAssumeConstVCalls;
897     return {};
898   }
899 
900   /// Returns the list of virtual calls made by this function using
901   /// llvm.type.checked.load intrinsics with all constant integer arguments.
902   ArrayRef<ConstVCall> type_checked_load_const_vcalls() const {
903     if (TIdInfo)
904       return TIdInfo->TypeCheckedLoadConstVCalls;
905     return {};
906   }
907 
908   /// Returns the list of known uses of pointer parameters.
909   ArrayRef<ParamAccess> paramAccesses() const {
910     if (ParamAccesses)
911       return *ParamAccesses;
912     return {};
913   }
914 
915   /// Sets the list of known uses of pointer parameters.
916   void setParamAccesses(std::vector<ParamAccess> NewParams) {
917     if (NewParams.empty())
918       ParamAccesses.reset();
919     else if (ParamAccesses)
920       *ParamAccesses = std::move(NewParams);
921     else
922       ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(NewParams));
923   }
924 
925   /// Add a type test to the summary. This is used by WholeProgramDevirt if we
926   /// were unable to devirtualize a checked call.
927   void addTypeTest(GlobalValue::GUID Guid) {
928     if (!TIdInfo)
929       TIdInfo = std::make_unique<TypeIdInfo>();
930     TIdInfo->TypeTests.push_back(Guid);
931   }
932 
933   const TypeIdInfo *getTypeIdInfo() const { return TIdInfo.get(); };
934 
935   ArrayRef<CallsiteInfo> callsites() const {
936     if (Callsites)
937       return *Callsites;
938     return {};
939   }
940 
941   ArrayRef<AllocInfo> allocs() const {
942     if (Allocs)
943       return *Allocs;
944     return {};
945   }
946 
947   friend struct GraphTraits<ValueInfo>;
948 };
949 
950 template <> struct DenseMapInfo<FunctionSummary::VFuncId> {
951   static FunctionSummary::VFuncId getEmptyKey() { return {0, uint64_t(-1)}; }
952 
953   static FunctionSummary::VFuncId getTombstoneKey() {
954     return {0, uint64_t(-2)};
955   }
956 
957   static bool isEqual(FunctionSummary::VFuncId L, FunctionSummary::VFuncId R) {
958     return L.GUID == R.GUID && L.Offset == R.Offset;
959   }
960 
961   static unsigned getHashValue(FunctionSummary::VFuncId I) { return I.GUID; }
962 };
963 
964 template <> struct DenseMapInfo<FunctionSummary::ConstVCall> {
965   static FunctionSummary::ConstVCall getEmptyKey() {
966     return {{0, uint64_t(-1)}, {}};
967   }
968 
969   static FunctionSummary::ConstVCall getTombstoneKey() {
970     return {{0, uint64_t(-2)}, {}};
971   }
972 
973   static bool isEqual(FunctionSummary::ConstVCall L,
974                       FunctionSummary::ConstVCall R) {
975     return DenseMapInfo<FunctionSummary::VFuncId>::isEqual(L.VFunc, R.VFunc) &&
976            L.Args == R.Args;
977   }
978 
979   static unsigned getHashValue(FunctionSummary::ConstVCall I) {
980     return I.VFunc.GUID;
981   }
982 };
983 
984 /// The ValueInfo and offset for a function within a vtable definition
985 /// initializer array.
986 struct VirtFuncOffset {
987   VirtFuncOffset(ValueInfo VI, uint64_t Offset)
988       : FuncVI(VI), VTableOffset(Offset) {}
989 
990   ValueInfo FuncVI;
991   uint64_t VTableOffset;
992 };
993 /// List of functions referenced by a particular vtable definition.
994 using VTableFuncList = std::vector<VirtFuncOffset>;
995 
996 /// Global variable summary information to aid decisions and
997 /// implementation of importing.
998 ///
999 /// Global variable summary has two extra flag, telling if it is
1000 /// readonly or writeonly. Both readonly and writeonly variables
1001 /// can be optimized in the backed: readonly variables can be
1002 /// const-folded, while writeonly vars can be completely eliminated
1003 /// together with corresponding stores. We let both things happen
1004 /// by means of internalizing such variables after ThinLTO import.
1005 class GlobalVarSummary : public GlobalValueSummary {
1006 private:
1007   /// For vtable definitions this holds the list of functions and
1008   /// their corresponding offsets within the initializer array.
1009   std::unique_ptr<VTableFuncList> VTableFuncs;
1010 
1011 public:
1012   struct GVarFlags {
1013     GVarFlags(bool ReadOnly, bool WriteOnly, bool Constant,
1014               GlobalObject::VCallVisibility Vis)
1015         : MaybeReadOnly(ReadOnly), MaybeWriteOnly(WriteOnly),
1016           Constant(Constant), VCallVisibility(Vis) {}
1017 
1018     // If true indicates that this global variable might be accessed
1019     // purely by non-volatile load instructions. This in turn means
1020     // it can be internalized in source and destination modules during
1021     // thin LTO import because it neither modified nor its address
1022     // is taken.
1023     unsigned MaybeReadOnly : 1;
1024     // If true indicates that variable is possibly only written to, so
1025     // its value isn't loaded and its address isn't taken anywhere.
1026     // False, when 'Constant' attribute is set.
1027     unsigned MaybeWriteOnly : 1;
1028     // Indicates that value is a compile-time constant. Global variable
1029     // can be 'Constant' while not being 'ReadOnly' on several occasions:
1030     // - it is volatile, (e.g mapped device address)
1031     // - its address is taken, meaning that unlike 'ReadOnly' vars we can't
1032     //   internalize it.
1033     // Constant variables are always imported thus giving compiler an
1034     // opportunity to make some extra optimizations. Readonly constants
1035     // are also internalized.
1036     unsigned Constant : 1;
1037     // Set from metadata on vtable definitions during the module summary
1038     // analysis.
1039     unsigned VCallVisibility : 2;
1040   } VarFlags;
1041 
1042   GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags,
1043                    std::vector<ValueInfo> Refs)
1044       : GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)),
1045         VarFlags(VarFlags) {}
1046 
1047   /// Check if this is a global variable summary.
1048   static bool classof(const GlobalValueSummary *GVS) {
1049     return GVS->getSummaryKind() == GlobalVarKind;
1050   }
1051 
1052   GVarFlags varflags() const { return VarFlags; }
1053   void setReadOnly(bool RO) { VarFlags.MaybeReadOnly = RO; }
1054   void setWriteOnly(bool WO) { VarFlags.MaybeWriteOnly = WO; }
1055   bool maybeReadOnly() const { return VarFlags.MaybeReadOnly; }
1056   bool maybeWriteOnly() const { return VarFlags.MaybeWriteOnly; }
1057   bool isConstant() const { return VarFlags.Constant; }
1058   void setVCallVisibility(GlobalObject::VCallVisibility Vis) {
1059     VarFlags.VCallVisibility = Vis;
1060   }
1061   GlobalObject::VCallVisibility getVCallVisibility() const {
1062     return (GlobalObject::VCallVisibility)VarFlags.VCallVisibility;
1063   }
1064 
1065   void setVTableFuncs(VTableFuncList Funcs) {
1066     assert(!VTableFuncs);
1067     VTableFuncs = std::make_unique<VTableFuncList>(std::move(Funcs));
1068   }
1069 
1070   ArrayRef<VirtFuncOffset> vTableFuncs() const {
1071     if (VTableFuncs)
1072       return *VTableFuncs;
1073     return {};
1074   }
1075 };
1076 
1077 struct TypeTestResolution {
1078   /// Specifies which kind of type check we should emit for this byte array.
1079   /// See http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html for full
1080   /// details on each kind of check; the enumerators are described with
1081   /// reference to that document.
1082   enum Kind {
1083     Unsat,     ///< Unsatisfiable type (i.e. no global has this type metadata)
1084     ByteArray, ///< Test a byte array (first example)
1085     Inline,    ///< Inlined bit vector ("Short Inline Bit Vectors")
1086     Single,    ///< Single element (last example in "Short Inline Bit Vectors")
1087     AllOnes,   ///< All-ones bit vector ("Eliminating Bit Vector Checks for
1088                ///  All-Ones Bit Vectors")
1089     Unknown,   ///< Unknown (analysis not performed, don't lower)
1090   } TheKind = Unknown;
1091 
1092   /// Range of size-1 expressed as a bit width. For example, if the size is in
1093   /// range [1,256], this number will be 8. This helps generate the most compact
1094   /// instruction sequences.
1095   unsigned SizeM1BitWidth = 0;
1096 
1097   // The following fields are only used if the target does not support the use
1098   // of absolute symbols to store constants. Their meanings are the same as the
1099   // corresponding fields in LowerTypeTestsModule::TypeIdLowering in
1100   // LowerTypeTests.cpp.
1101 
1102   uint64_t AlignLog2 = 0;
1103   uint64_t SizeM1 = 0;
1104   uint8_t BitMask = 0;
1105   uint64_t InlineBits = 0;
1106 };
1107 
1108 struct WholeProgramDevirtResolution {
1109   enum Kind {
1110     Indir,        ///< Just do a regular virtual call
1111     SingleImpl,   ///< Single implementation devirtualization
1112     BranchFunnel, ///< When retpoline mitigation is enabled, use a branch funnel
1113                   ///< that is defined in the merged module. Otherwise same as
1114                   ///< Indir.
1115   } TheKind = Indir;
1116 
1117   std::string SingleImplName;
1118 
1119   struct ByArg {
1120     enum Kind {
1121       Indir,            ///< Just do a regular virtual call
1122       UniformRetVal,    ///< Uniform return value optimization
1123       UniqueRetVal,     ///< Unique return value optimization
1124       VirtualConstProp, ///< Virtual constant propagation
1125     } TheKind = Indir;
1126 
1127     /// Additional information for the resolution:
1128     /// - UniformRetVal: the uniform return value.
1129     /// - UniqueRetVal: the return value associated with the unique vtable (0 or
1130     ///   1).
1131     uint64_t Info = 0;
1132 
1133     // The following fields are only used if the target does not support the use
1134     // of absolute symbols to store constants.
1135 
1136     uint32_t Byte = 0;
1137     uint32_t Bit = 0;
1138   };
1139 
1140   /// Resolutions for calls with all constant integer arguments (excluding the
1141   /// first argument, "this"), where the key is the argument vector.
1142   std::map<std::vector<uint64_t>, ByArg> ResByArg;
1143 };
1144 
1145 struct TypeIdSummary {
1146   TypeTestResolution TTRes;
1147 
1148   /// Mapping from byte offset to whole-program devirt resolution for that
1149   /// (typeid, byte offset) pair.
1150   std::map<uint64_t, WholeProgramDevirtResolution> WPDRes;
1151 };
1152 
1153 /// 160 bits SHA1
1154 using ModuleHash = std::array<uint32_t, 5>;
1155 
1156 /// Type used for iterating through the global value summary map.
1157 using const_gvsummary_iterator = GlobalValueSummaryMapTy::const_iterator;
1158 using gvsummary_iterator = GlobalValueSummaryMapTy::iterator;
1159 
1160 /// String table to hold/own module path strings, which additionally holds the
1161 /// module ID assigned to each module during the plugin step, as well as a hash
1162 /// of the module. The StringMap makes a copy of and owns inserted strings.
1163 using ModulePathStringTableTy = StringMap<std::pair<uint64_t, ModuleHash>>;
1164 
1165 /// Map of global value GUID to its summary, used to identify values defined in
1166 /// a particular module, and provide efficient access to their summary.
1167 using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
1168 
1169 /// Map of a type GUID to type id string and summary (multimap used
1170 /// in case of GUID conflicts).
1171 using TypeIdSummaryMapTy =
1172     std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
1173 
1174 /// The following data structures summarize type metadata information.
1175 /// For type metadata overview see https://llvm.org/docs/TypeMetadata.html.
1176 /// Each type metadata includes both the type identifier and the offset of
1177 /// the address point of the type (the address held by objects of that type
1178 /// which may not be the beginning of the virtual table). Vtable definitions
1179 /// are decorated with type metadata for the types they are compatible with.
1180 ///
1181 /// Holds information about vtable definitions decorated with type metadata:
1182 /// the vtable definition value and its address point offset in a type
1183 /// identifier metadata it is decorated (compatible) with.
1184 struct TypeIdOffsetVtableInfo {
1185   TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI)
1186       : AddressPointOffset(Offset), VTableVI(VI) {}
1187 
1188   uint64_t AddressPointOffset;
1189   ValueInfo VTableVI;
1190 };
1191 /// List of vtable definitions decorated by a particular type identifier,
1192 /// and their corresponding offsets in that type identifier's metadata.
1193 /// Note that each type identifier may be compatible with multiple vtables, due
1194 /// to inheritance, which is why this is a vector.
1195 using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
1196 
1197 /// Class to hold module path string table and global value map,
1198 /// and encapsulate methods for operating on them.
1199 class ModuleSummaryIndex {
1200 private:
1201   /// Map from value name to list of summary instances for values of that
1202   /// name (may be duplicates in the COMDAT case, e.g.).
1203   GlobalValueSummaryMapTy GlobalValueMap;
1204 
1205   /// Holds strings for combined index, mapping to the corresponding module ID.
1206   ModulePathStringTableTy ModulePathStringTable;
1207 
1208   /// Mapping from type identifier GUIDs to type identifier and its summary
1209   /// information. Produced by thin link.
1210   TypeIdSummaryMapTy TypeIdMap;
1211 
1212   /// Mapping from type identifier to information about vtables decorated
1213   /// with that type identifier's metadata. Produced by per module summary
1214   /// analysis and consumed by thin link. For more information, see description
1215   /// above where TypeIdCompatibleVtableInfo is defined.
1216   std::map<std::string, TypeIdCompatibleVtableInfo, std::less<>>
1217       TypeIdCompatibleVtableMap;
1218 
1219   /// Mapping from original ID to GUID. If original ID can map to multiple
1220   /// GUIDs, it will be mapped to 0.
1221   std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
1222 
1223   /// Indicates that summary-based GlobalValue GC has run, and values with
1224   /// GVFlags::Live==false are really dead. Otherwise, all values must be
1225   /// considered live.
1226   bool WithGlobalValueDeadStripping = false;
1227 
1228   /// Indicates that summary-based attribute propagation has run and
1229   /// GVarFlags::MaybeReadonly / GVarFlags::MaybeWriteonly are really
1230   /// read/write only.
1231   bool WithAttributePropagation = false;
1232 
1233   /// Indicates that summary-based DSOLocal propagation has run and the flag in
1234   /// every summary of a GV is synchronized.
1235   bool WithDSOLocalPropagation = false;
1236 
1237   /// Indicates that we have whole program visibility.
1238   bool WithWholeProgramVisibility = false;
1239 
1240   /// Indicates that summary-based synthetic entry count propagation has run
1241   bool HasSyntheticEntryCounts = false;
1242 
1243   /// Indicates that distributed backend should skip compilation of the
1244   /// module. Flag is suppose to be set by distributed ThinLTO indexing
1245   /// when it detected that the module is not needed during the final
1246   /// linking. As result distributed backend should just output a minimal
1247   /// valid object file.
1248   bool SkipModuleByDistributedBackend = false;
1249 
1250   /// If true then we're performing analysis of IR module, or parsing along with
1251   /// the IR from assembly. The value of 'false' means we're reading summary
1252   /// from BC or YAML source. Affects the type of value stored in NameOrGV
1253   /// union.
1254   bool HaveGVs;
1255 
1256   // True if the index was created for a module compiled with -fsplit-lto-unit.
1257   bool EnableSplitLTOUnit;
1258 
1259   // True if some of the modules were compiled with -fsplit-lto-unit and
1260   // some were not. Set when the combined index is created during the thin link.
1261   bool PartiallySplitLTOUnits = false;
1262 
1263   /// True if some of the FunctionSummary contains a ParamAccess.
1264   bool HasParamAccess = false;
1265 
1266   std::set<std::string> CfiFunctionDefs;
1267   std::set<std::string> CfiFunctionDecls;
1268 
1269   // Used in cases where we want to record the name of a global, but
1270   // don't have the string owned elsewhere (e.g. the Strtab on a module).
1271   BumpPtrAllocator Alloc;
1272   StringSaver Saver;
1273 
1274   // The total number of basic blocks in the module in the per-module summary or
1275   // the total number of basic blocks in the LTO unit in the combined index.
1276   uint64_t BlockCount;
1277 
1278   // List of unique stack ids (hashes). We use a 4B index of the id in the
1279   // stack id lists on the alloc and callsite summaries for memory savings,
1280   // since the number of unique ids is in practice much smaller than the
1281   // number of stack id references in the summaries.
1282   std::vector<uint64_t> StackIds;
1283 
1284   // Temporary map while building StackIds list. Clear when index is completely
1285   // built via releaseTemporaryMemory.
1286   std::map<uint64_t, unsigned> StackIdToIndex;
1287 
1288   // YAML I/O support.
1289   friend yaml::MappingTraits<ModuleSummaryIndex>;
1290 
1291   GlobalValueSummaryMapTy::value_type *
1292   getOrInsertValuePtr(GlobalValue::GUID GUID) {
1293     return &*GlobalValueMap.emplace(GUID, GlobalValueSummaryInfo(HaveGVs))
1294                  .first;
1295   }
1296 
1297 public:
1298   // See HaveGVs variable comment.
1299   ModuleSummaryIndex(bool HaveGVs, bool EnableSplitLTOUnit = false)
1300       : HaveGVs(HaveGVs), EnableSplitLTOUnit(EnableSplitLTOUnit), Saver(Alloc),
1301         BlockCount(0) {}
1302 
1303   // Current version for the module summary in bitcode files.
1304   // The BitcodeSummaryVersion should be bumped whenever we introduce changes
1305   // in the way some record are interpreted, like flags for instance.
1306   // Note that incrementing this may require changes in both BitcodeReader.cpp
1307   // and BitcodeWriter.cpp.
1308   static constexpr uint64_t BitcodeSummaryVersion = 9;
1309 
1310   // Regular LTO module name for ASM writer
1311   static constexpr const char *getRegularLTOModuleName() {
1312     return "[Regular LTO]";
1313   }
1314 
1315   bool haveGVs() const { return HaveGVs; }
1316 
1317   uint64_t getFlags() const;
1318   void setFlags(uint64_t Flags);
1319 
1320   uint64_t getBlockCount() const { return BlockCount; }
1321   void addBlockCount(uint64_t C) { BlockCount += C; }
1322   void setBlockCount(uint64_t C) { BlockCount = C; }
1323 
1324   gvsummary_iterator begin() { return GlobalValueMap.begin(); }
1325   const_gvsummary_iterator begin() const { return GlobalValueMap.begin(); }
1326   gvsummary_iterator end() { return GlobalValueMap.end(); }
1327   const_gvsummary_iterator end() const { return GlobalValueMap.end(); }
1328   size_t size() const { return GlobalValueMap.size(); }
1329 
1330   const std::vector<uint64_t> &stackIds() const { return StackIds; }
1331 
1332   unsigned addOrGetStackIdIndex(uint64_t StackId) {
1333     auto Inserted = StackIdToIndex.insert({StackId, StackIds.size()});
1334     if (Inserted.second)
1335       StackIds.push_back(StackId);
1336     return Inserted.first->second;
1337   }
1338 
1339   uint64_t getStackIdAtIndex(unsigned Index) const {
1340     assert(StackIds.size() > Index);
1341     return StackIds[Index];
1342   }
1343 
1344   // Facility to release memory from data structures only needed during index
1345   // construction (including while building combined index). Currently this only
1346   // releases the temporary map used while constructing a correspondence between
1347   // stack ids and their index in the StackIds vector. Mostly impactful when
1348   // building a large combined index.
1349   void releaseTemporaryMemory() {
1350     assert(StackIdToIndex.size() == StackIds.size());
1351     StackIdToIndex.clear();
1352     StackIds.shrink_to_fit();
1353   }
1354 
1355   /// Convenience function for doing a DFS on a ValueInfo. Marks the function in
1356   /// the FunctionHasParent map.
1357   static void discoverNodes(ValueInfo V,
1358                             std::map<ValueInfo, bool> &FunctionHasParent) {
1359     if (!V.getSummaryList().size())
1360       return; // skip external functions that don't have summaries
1361 
1362     // Mark discovered if we haven't yet
1363     auto S = FunctionHasParent.emplace(V, false);
1364 
1365     // Stop if we've already discovered this node
1366     if (!S.second)
1367       return;
1368 
1369     FunctionSummary *F =
1370         dyn_cast<FunctionSummary>(V.getSummaryList().front().get());
1371     assert(F != nullptr && "Expected FunctionSummary node");
1372 
1373     for (const auto &C : F->calls()) {
1374       // Insert node if necessary
1375       auto S = FunctionHasParent.emplace(C.first, true);
1376 
1377       // Skip nodes that we're sure have parents
1378       if (!S.second && S.first->second)
1379         continue;
1380 
1381       if (S.second)
1382         discoverNodes(C.first, FunctionHasParent);
1383       else
1384         S.first->second = true;
1385     }
1386   }
1387 
1388   // Calculate the callgraph root
1389   FunctionSummary calculateCallGraphRoot() {
1390     // Functions that have a parent will be marked in FunctionHasParent pair.
1391     // Once we've marked all functions, the functions in the map that are false
1392     // have no parent (so they're the roots)
1393     std::map<ValueInfo, bool> FunctionHasParent;
1394 
1395     for (auto &S : *this) {
1396       // Skip external functions
1397       if (!S.second.SummaryList.size() ||
1398           !isa<FunctionSummary>(S.second.SummaryList.front().get()))
1399         continue;
1400       discoverNodes(ValueInfo(HaveGVs, &S), FunctionHasParent);
1401     }
1402 
1403     std::vector<FunctionSummary::EdgeTy> Edges;
1404     // create edges to all roots in the Index
1405     for (auto &P : FunctionHasParent) {
1406       if (P.second)
1407         continue; // skip over non-root nodes
1408       Edges.push_back(std::make_pair(P.first, CalleeInfo{}));
1409     }
1410     if (Edges.empty()) {
1411       // Failed to find root - return an empty node
1412       return FunctionSummary::makeDummyFunctionSummary({});
1413     }
1414     auto CallGraphRoot = FunctionSummary::makeDummyFunctionSummary(Edges);
1415     return CallGraphRoot;
1416   }
1417 
1418   bool withGlobalValueDeadStripping() const {
1419     return WithGlobalValueDeadStripping;
1420   }
1421   void setWithGlobalValueDeadStripping() {
1422     WithGlobalValueDeadStripping = true;
1423   }
1424 
1425   bool withAttributePropagation() const { return WithAttributePropagation; }
1426   void setWithAttributePropagation() {
1427     WithAttributePropagation = true;
1428   }
1429 
1430   bool withDSOLocalPropagation() const { return WithDSOLocalPropagation; }
1431   void setWithDSOLocalPropagation() { WithDSOLocalPropagation = true; }
1432 
1433   bool withWholeProgramVisibility() const { return WithWholeProgramVisibility; }
1434   void setWithWholeProgramVisibility() { WithWholeProgramVisibility = true; }
1435 
1436   bool isReadOnly(const GlobalVarSummary *GVS) const {
1437     return WithAttributePropagation && GVS->maybeReadOnly();
1438   }
1439   bool isWriteOnly(const GlobalVarSummary *GVS) const {
1440     return WithAttributePropagation && GVS->maybeWriteOnly();
1441   }
1442 
1443   bool hasSyntheticEntryCounts() const { return HasSyntheticEntryCounts; }
1444   void setHasSyntheticEntryCounts() { HasSyntheticEntryCounts = true; }
1445 
1446   bool skipModuleByDistributedBackend() const {
1447     return SkipModuleByDistributedBackend;
1448   }
1449   void setSkipModuleByDistributedBackend() {
1450     SkipModuleByDistributedBackend = true;
1451   }
1452 
1453   bool enableSplitLTOUnit() const { return EnableSplitLTOUnit; }
1454   void setEnableSplitLTOUnit() { EnableSplitLTOUnit = true; }
1455 
1456   bool partiallySplitLTOUnits() const { return PartiallySplitLTOUnits; }
1457   void setPartiallySplitLTOUnits() { PartiallySplitLTOUnits = true; }
1458 
1459   bool hasParamAccess() const { return HasParamAccess; }
1460 
1461   bool isGlobalValueLive(const GlobalValueSummary *GVS) const {
1462     return !WithGlobalValueDeadStripping || GVS->isLive();
1463   }
1464   bool isGUIDLive(GlobalValue::GUID GUID) const;
1465 
1466   /// Return a ValueInfo for the index value_type (convenient when iterating
1467   /// index).
1468   ValueInfo getValueInfo(const GlobalValueSummaryMapTy::value_type &R) const {
1469     return ValueInfo(HaveGVs, &R);
1470   }
1471 
1472   /// Return a ValueInfo for GUID if it exists, otherwise return ValueInfo().
1473   ValueInfo getValueInfo(GlobalValue::GUID GUID) const {
1474     auto I = GlobalValueMap.find(GUID);
1475     return ValueInfo(HaveGVs, I == GlobalValueMap.end() ? nullptr : &*I);
1476   }
1477 
1478   /// Return a ValueInfo for \p GUID.
1479   ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID) {
1480     return ValueInfo(HaveGVs, getOrInsertValuePtr(GUID));
1481   }
1482 
1483   // Save a string in the Index. Use before passing Name to
1484   // getOrInsertValueInfo when the string isn't owned elsewhere (e.g. on the
1485   // module's Strtab).
1486   StringRef saveString(StringRef String) { return Saver.save(String); }
1487 
1488   /// Return a ValueInfo for \p GUID setting value \p Name.
1489   ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID, StringRef Name) {
1490     assert(!HaveGVs);
1491     auto VP = getOrInsertValuePtr(GUID);
1492     VP->second.U.Name = Name;
1493     return ValueInfo(HaveGVs, VP);
1494   }
1495 
1496   /// Return a ValueInfo for \p GV and mark it as belonging to GV.
1497   ValueInfo getOrInsertValueInfo(const GlobalValue *GV) {
1498     assert(HaveGVs);
1499     auto VP = getOrInsertValuePtr(GV->getGUID());
1500     VP->second.U.GV = GV;
1501     return ValueInfo(HaveGVs, VP);
1502   }
1503 
1504   /// Return the GUID for \p OriginalId in the OidGuidMap.
1505   GlobalValue::GUID getGUIDFromOriginalID(GlobalValue::GUID OriginalID) const {
1506     const auto I = OidGuidMap.find(OriginalID);
1507     return I == OidGuidMap.end() ? 0 : I->second;
1508   }
1509 
1510   std::set<std::string> &cfiFunctionDefs() { return CfiFunctionDefs; }
1511   const std::set<std::string> &cfiFunctionDefs() const { return CfiFunctionDefs; }
1512 
1513   std::set<std::string> &cfiFunctionDecls() { return CfiFunctionDecls; }
1514   const std::set<std::string> &cfiFunctionDecls() const { return CfiFunctionDecls; }
1515 
1516   /// Add a global value summary for a value.
1517   void addGlobalValueSummary(const GlobalValue &GV,
1518                              std::unique_ptr<GlobalValueSummary> Summary) {
1519     addGlobalValueSummary(getOrInsertValueInfo(&GV), std::move(Summary));
1520   }
1521 
1522   /// Add a global value summary for a value of the given name.
1523   void addGlobalValueSummary(StringRef ValueName,
1524                              std::unique_ptr<GlobalValueSummary> Summary) {
1525     addGlobalValueSummary(getOrInsertValueInfo(GlobalValue::getGUID(ValueName)),
1526                           std::move(Summary));
1527   }
1528 
1529   /// Add a global value summary for the given ValueInfo.
1530   void addGlobalValueSummary(ValueInfo VI,
1531                              std::unique_ptr<GlobalValueSummary> Summary) {
1532     if (const FunctionSummary *FS = dyn_cast<FunctionSummary>(Summary.get()))
1533       HasParamAccess |= !FS->paramAccesses().empty();
1534     addOriginalName(VI.getGUID(), Summary->getOriginalName());
1535     // Here we have a notionally const VI, but the value it points to is owned
1536     // by the non-const *this.
1537     const_cast<GlobalValueSummaryMapTy::value_type *>(VI.getRef())
1538         ->second.SummaryList.push_back(std::move(Summary));
1539   }
1540 
1541   /// Add an original name for the value of the given GUID.
1542   void addOriginalName(GlobalValue::GUID ValueGUID,
1543                        GlobalValue::GUID OrigGUID) {
1544     if (OrigGUID == 0 || ValueGUID == OrigGUID)
1545       return;
1546     if (OidGuidMap.count(OrigGUID) && OidGuidMap[OrigGUID] != ValueGUID)
1547       OidGuidMap[OrigGUID] = 0;
1548     else
1549       OidGuidMap[OrigGUID] = ValueGUID;
1550   }
1551 
1552   /// Find the summary for ValueInfo \p VI in module \p ModuleId, or nullptr if
1553   /// not found.
1554   GlobalValueSummary *findSummaryInModule(ValueInfo VI, StringRef ModuleId) const {
1555     auto SummaryList = VI.getSummaryList();
1556     auto Summary =
1557         llvm::find_if(SummaryList,
1558                       [&](const std::unique_ptr<GlobalValueSummary> &Summary) {
1559                         return Summary->modulePath() == ModuleId;
1560                       });
1561     if (Summary == SummaryList.end())
1562       return nullptr;
1563     return Summary->get();
1564   }
1565 
1566   /// Find the summary for global \p GUID in module \p ModuleId, or nullptr if
1567   /// not found.
1568   GlobalValueSummary *findSummaryInModule(GlobalValue::GUID ValueGUID,
1569                                           StringRef ModuleId) const {
1570     auto CalleeInfo = getValueInfo(ValueGUID);
1571     if (!CalleeInfo)
1572       return nullptr; // This function does not have a summary
1573     return findSummaryInModule(CalleeInfo, ModuleId);
1574   }
1575 
1576   /// Returns the first GlobalValueSummary for \p GV, asserting that there
1577   /// is only one if \p PerModuleIndex.
1578   GlobalValueSummary *getGlobalValueSummary(const GlobalValue &GV,
1579                                             bool PerModuleIndex = true) const {
1580     assert(GV.hasName() && "Can't get GlobalValueSummary for GV with no name");
1581     return getGlobalValueSummary(GV.getGUID(), PerModuleIndex);
1582   }
1583 
1584   /// Returns the first GlobalValueSummary for \p ValueGUID, asserting that
1585   /// there
1586   /// is only one if \p PerModuleIndex.
1587   GlobalValueSummary *getGlobalValueSummary(GlobalValue::GUID ValueGUID,
1588                                             bool PerModuleIndex = true) const;
1589 
1590   /// Table of modules, containing module hash and id.
1591   const StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() const {
1592     return ModulePathStringTable;
1593   }
1594 
1595   /// Table of modules, containing hash and id.
1596   StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() {
1597     return ModulePathStringTable;
1598   }
1599 
1600   /// Get the module ID recorded for the given module path.
1601   uint64_t getModuleId(const StringRef ModPath) const {
1602     return ModulePathStringTable.lookup(ModPath).first;
1603   }
1604 
1605   /// Get the module SHA1 hash recorded for the given module path.
1606   const ModuleHash &getModuleHash(const StringRef ModPath) const {
1607     auto It = ModulePathStringTable.find(ModPath);
1608     assert(It != ModulePathStringTable.end() && "Module not registered");
1609     return It->second.second;
1610   }
1611 
1612   /// Convenience method for creating a promoted global name
1613   /// for the given value name of a local, and its original module's ID.
1614   static std::string getGlobalNameForLocal(StringRef Name, ModuleHash ModHash) {
1615     std::string Suffix = utostr((uint64_t(ModHash[0]) << 32) |
1616                                 ModHash[1]); // Take the first 64 bits
1617     return getGlobalNameForLocal(Name, Suffix);
1618   }
1619 
1620   static std::string getGlobalNameForLocal(StringRef Name, StringRef Suffix) {
1621     SmallString<256> NewName(Name);
1622     NewName += ".llvm.";
1623     NewName += Suffix;
1624     return std::string(NewName.str());
1625   }
1626 
1627   /// Helper to obtain the unpromoted name for a global value (or the original
1628   /// name if not promoted). Split off the rightmost ".llvm.${hash}" suffix,
1629   /// because it is possible in certain clients (not clang at the moment) for
1630   /// two rounds of ThinLTO optimization and therefore promotion to occur.
1631   static StringRef getOriginalNameBeforePromote(StringRef Name) {
1632     std::pair<StringRef, StringRef> Pair = Name.rsplit(".llvm.");
1633     return Pair.first;
1634   }
1635 
1636   typedef ModulePathStringTableTy::value_type ModuleInfo;
1637 
1638   /// Add a new module with the given \p Hash, mapped to the given \p
1639   /// ModID, and return a reference to the module.
1640   ModuleInfo *addModule(StringRef ModPath, uint64_t ModId,
1641                         ModuleHash Hash = ModuleHash{{0}}) {
1642     return &*ModulePathStringTable.insert({ModPath, {ModId, Hash}}).first;
1643   }
1644 
1645   /// Return module entry for module with the given \p ModPath.
1646   ModuleInfo *getModule(StringRef ModPath) {
1647     auto It = ModulePathStringTable.find(ModPath);
1648     assert(It != ModulePathStringTable.end() && "Module not registered");
1649     return &*It;
1650   }
1651 
1652   /// Check if the given Module has any functions available for exporting
1653   /// in the index. We consider any module present in the ModulePathStringTable
1654   /// to have exported functions.
1655   bool hasExportedFunctions(const Module &M) const {
1656     return ModulePathStringTable.count(M.getModuleIdentifier());
1657   }
1658 
1659   const TypeIdSummaryMapTy &typeIds() const { return TypeIdMap; }
1660 
1661   /// Return an existing or new TypeIdSummary entry for \p TypeId.
1662   /// This accessor can mutate the map and therefore should not be used in
1663   /// the ThinLTO backends.
1664   TypeIdSummary &getOrInsertTypeIdSummary(StringRef TypeId) {
1665     auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1666     for (auto It = TidIter.first; It != TidIter.second; ++It)
1667       if (It->second.first == TypeId)
1668         return It->second.second;
1669     auto It = TypeIdMap.insert(
1670         {GlobalValue::getGUID(TypeId), {std::string(TypeId), TypeIdSummary()}});
1671     return It->second.second;
1672   }
1673 
1674   /// This returns either a pointer to the type id summary (if present in the
1675   /// summary map) or null (if not present). This may be used when importing.
1676   const TypeIdSummary *getTypeIdSummary(StringRef TypeId) const {
1677     auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1678     for (auto It = TidIter.first; It != TidIter.second; ++It)
1679       if (It->second.first == TypeId)
1680         return &It->second.second;
1681     return nullptr;
1682   }
1683 
1684   TypeIdSummary *getTypeIdSummary(StringRef TypeId) {
1685     return const_cast<TypeIdSummary *>(
1686         static_cast<const ModuleSummaryIndex *>(this)->getTypeIdSummary(
1687             TypeId));
1688   }
1689 
1690   const auto &typeIdCompatibleVtableMap() const {
1691     return TypeIdCompatibleVtableMap;
1692   }
1693 
1694   /// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId.
1695   /// This accessor can mutate the map and therefore should not be used in
1696   /// the ThinLTO backends.
1697   TypeIdCompatibleVtableInfo &
1698   getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) {
1699     return TypeIdCompatibleVtableMap[std::string(TypeId)];
1700   }
1701 
1702   /// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap
1703   /// entry if present in the summary map. This may be used when importing.
1704   std::optional<TypeIdCompatibleVtableInfo>
1705   getTypeIdCompatibleVtableSummary(StringRef TypeId) const {
1706     auto I = TypeIdCompatibleVtableMap.find(TypeId);
1707     if (I == TypeIdCompatibleVtableMap.end())
1708       return std::nullopt;
1709     return I->second;
1710   }
1711 
1712   /// Collect for the given module the list of functions it defines
1713   /// (GUID -> Summary).
1714   void collectDefinedFunctionsForModule(StringRef ModulePath,
1715                                         GVSummaryMapTy &GVSummaryMap) const;
1716 
1717   /// Collect for each module the list of Summaries it defines (GUID ->
1718   /// Summary).
1719   template <class Map>
1720   void
1721   collectDefinedGVSummariesPerModule(Map &ModuleToDefinedGVSummaries) const {
1722     for (const auto &GlobalList : *this) {
1723       auto GUID = GlobalList.first;
1724       for (const auto &Summary : GlobalList.second.SummaryList) {
1725         ModuleToDefinedGVSummaries[Summary->modulePath()][GUID] = Summary.get();
1726       }
1727     }
1728   }
1729 
1730   /// Print to an output stream.
1731   void print(raw_ostream &OS, bool IsForDebug = false) const;
1732 
1733   /// Dump to stderr (for debugging).
1734   void dump() const;
1735 
1736   /// Export summary to dot file for GraphViz.
1737   void
1738   exportToDot(raw_ostream &OS,
1739               const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) const;
1740 
1741   /// Print out strongly connected components for debugging.
1742   void dumpSCCs(raw_ostream &OS);
1743 
1744   /// Do the access attribute and DSOLocal propagation in combined index.
1745   void propagateAttributes(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
1746 
1747   /// Checks if we can import global variable from another module.
1748   bool canImportGlobalVar(GlobalValueSummary *S, bool AnalyzeRefs) const;
1749 };
1750 
1751 /// GraphTraits definition to build SCC for the index
1752 template <> struct GraphTraits<ValueInfo> {
1753   typedef ValueInfo NodeRef;
1754   using EdgeRef = FunctionSummary::EdgeTy &;
1755 
1756   static NodeRef valueInfoFromEdge(FunctionSummary::EdgeTy &P) {
1757     return P.first;
1758   }
1759   using ChildIteratorType =
1760       mapped_iterator<std::vector<FunctionSummary::EdgeTy>::iterator,
1761                       decltype(&valueInfoFromEdge)>;
1762 
1763   using ChildEdgeIteratorType = std::vector<FunctionSummary::EdgeTy>::iterator;
1764 
1765   static NodeRef getEntryNode(ValueInfo V) { return V; }
1766 
1767   static ChildIteratorType child_begin(NodeRef N) {
1768     if (!N.getSummaryList().size()) // handle external function
1769       return ChildIteratorType(
1770           FunctionSummary::ExternalNode.CallGraphEdgeList.begin(),
1771           &valueInfoFromEdge);
1772     FunctionSummary *F =
1773         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1774     return ChildIteratorType(F->CallGraphEdgeList.begin(), &valueInfoFromEdge);
1775   }
1776 
1777   static ChildIteratorType child_end(NodeRef N) {
1778     if (!N.getSummaryList().size()) // handle external function
1779       return ChildIteratorType(
1780           FunctionSummary::ExternalNode.CallGraphEdgeList.end(),
1781           &valueInfoFromEdge);
1782     FunctionSummary *F =
1783         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1784     return ChildIteratorType(F->CallGraphEdgeList.end(), &valueInfoFromEdge);
1785   }
1786 
1787   static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
1788     if (!N.getSummaryList().size()) // handle external function
1789       return FunctionSummary::ExternalNode.CallGraphEdgeList.begin();
1790 
1791     FunctionSummary *F =
1792         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1793     return F->CallGraphEdgeList.begin();
1794   }
1795 
1796   static ChildEdgeIteratorType child_edge_end(NodeRef N) {
1797     if (!N.getSummaryList().size()) // handle external function
1798       return FunctionSummary::ExternalNode.CallGraphEdgeList.end();
1799 
1800     FunctionSummary *F =
1801         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1802     return F->CallGraphEdgeList.end();
1803   }
1804 
1805   static NodeRef edge_dest(EdgeRef E) { return E.first; }
1806 };
1807 
1808 template <>
1809 struct GraphTraits<ModuleSummaryIndex *> : public GraphTraits<ValueInfo> {
1810   static NodeRef getEntryNode(ModuleSummaryIndex *I) {
1811     std::unique_ptr<GlobalValueSummary> Root =
1812         std::make_unique<FunctionSummary>(I->calculateCallGraphRoot());
1813     GlobalValueSummaryInfo G(I->haveGVs());
1814     G.SummaryList.push_back(std::move(Root));
1815     static auto P =
1816         GlobalValueSummaryMapTy::value_type(GlobalValue::GUID(0), std::move(G));
1817     return ValueInfo(I->haveGVs(), &P);
1818   }
1819 };
1820 } // end namespace llvm
1821 
1822 #endif // LLVM_IR_MODULESUMMARYINDEX_H
1823