1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include <optional>
51 #include <utility>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "stack-protector"
56
57 STATISTIC(NumFunProtected, "Number of functions protected");
58 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59 " taken.");
60
61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62 cl::init(true), cl::Hidden);
63 static cl::opt<bool> DisableCheckNoReturn("disable-check-noreturn-call",
64 cl::init(false), cl::Hidden);
65
66 char StackProtector::ID = 0;
67
StackProtector()68 StackProtector::StackProtector() : FunctionPass(ID) {
69 initializeStackProtectorPass(*PassRegistry::getPassRegistry());
70 }
71
72 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
73 "Insert stack protectors", false, true)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)74 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
75 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
76 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
77 "Insert stack protectors", false, true)
78
79 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
80
getAnalysisUsage(AnalysisUsage & AU) const81 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
82 AU.addRequired<TargetPassConfig>();
83 AU.addPreserved<DominatorTreeWrapperPass>();
84 }
85
runOnFunction(Function & Fn)86 bool StackProtector::runOnFunction(Function &Fn) {
87 F = &Fn;
88 M = F->getParent();
89 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
90 DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy);
91 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
92 Trip = TM->getTargetTriple();
93 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
94 HasPrologue = false;
95 HasIRCheck = false;
96
97 SSPBufferSize = Fn.getFnAttributeAsParsedInteger(
98 "stack-protector-buffer-size", DefaultSSPBufferSize);
99 if (!RequiresStackProtector())
100 return false;
101
102 // TODO(etienneb): Functions with funclets are not correctly supported now.
103 // Do nothing if this is funclet-based personality.
104 if (Fn.hasPersonalityFn()) {
105 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
106 if (isFuncletEHPersonality(Personality))
107 return false;
108 }
109
110 ++NumFunProtected;
111 bool Changed = InsertStackProtectors();
112 #ifdef EXPENSIVE_CHECKS
113 assert((!DTU ||
114 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full)) &&
115 "Failed to maintain validity of domtree!");
116 #endif
117 DTU.reset();
118 return Changed;
119 }
120
121 /// \param [out] IsLarge is set to true if a protectable array is found and
122 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
123 /// multiple arrays, this gets set if any of them is large.
ContainsProtectableArray(Type * Ty,bool & IsLarge,bool Strong,bool InStruct) const124 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
125 bool Strong,
126 bool InStruct) const {
127 if (!Ty)
128 return false;
129 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
130 if (!AT->getElementType()->isIntegerTy(8)) {
131 // If we're on a non-Darwin platform or we're inside of a structure, don't
132 // add stack protectors unless the array is a character array.
133 // However, in strong mode any array, regardless of type and size,
134 // triggers a protector.
135 if (!Strong && (InStruct || !Trip.isOSDarwin()))
136 return false;
137 }
138
139 // If an array has more than SSPBufferSize bytes of allocated space, then we
140 // emit stack protectors.
141 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
142 IsLarge = true;
143 return true;
144 }
145
146 if (Strong)
147 // Require a protector for all arrays in strong mode
148 return true;
149 }
150
151 const StructType *ST = dyn_cast<StructType>(Ty);
152 if (!ST)
153 return false;
154
155 bool NeedsProtector = false;
156 for (Type *ET : ST->elements())
157 if (ContainsProtectableArray(ET, IsLarge, Strong, true)) {
158 // If the element is a protectable array and is large (>= SSPBufferSize)
159 // then we are done. If the protectable array is not large, then
160 // keep looking in case a subsequent element is a large array.
161 if (IsLarge)
162 return true;
163 NeedsProtector = true;
164 }
165
166 return NeedsProtector;
167 }
168
HasAddressTaken(const Instruction * AI,TypeSize AllocSize)169 bool StackProtector::HasAddressTaken(const Instruction *AI,
170 TypeSize AllocSize) {
171 const DataLayout &DL = M->getDataLayout();
172 for (const User *U : AI->users()) {
173 const auto *I = cast<Instruction>(U);
174 // If this instruction accesses memory make sure it doesn't access beyond
175 // the bounds of the allocated object.
176 std::optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
177 if (MemLoc && MemLoc->Size.hasValue() &&
178 !TypeSize::isKnownGE(AllocSize,
179 TypeSize::getFixed(MemLoc->Size.getValue())))
180 return true;
181 switch (I->getOpcode()) {
182 case Instruction::Store:
183 if (AI == cast<StoreInst>(I)->getValueOperand())
184 return true;
185 break;
186 case Instruction::AtomicCmpXchg:
187 // cmpxchg conceptually includes both a load and store from the same
188 // location. So, like store, the value being stored is what matters.
189 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
190 return true;
191 break;
192 case Instruction::PtrToInt:
193 if (AI == cast<PtrToIntInst>(I)->getOperand(0))
194 return true;
195 break;
196 case Instruction::Call: {
197 // Ignore intrinsics that do not become real instructions.
198 // TODO: Narrow this to intrinsics that have store-like effects.
199 const auto *CI = cast<CallInst>(I);
200 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
201 return true;
202 break;
203 }
204 case Instruction::Invoke:
205 return true;
206 case Instruction::GetElementPtr: {
207 // If the GEP offset is out-of-bounds, or is non-constant and so has to be
208 // assumed to be potentially out-of-bounds, then any memory access that
209 // would use it could also be out-of-bounds meaning stack protection is
210 // required.
211 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
212 unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
213 APInt Offset(IndexSize, 0);
214 if (!GEP->accumulateConstantOffset(DL, Offset))
215 return true;
216 TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
217 if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
218 return true;
219 // Adjust AllocSize to be the space remaining after this offset.
220 // We can't subtract a fixed size from a scalable one, so in that case
221 // assume the scalable value is of minimum size.
222 TypeSize NewAllocSize =
223 TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
224 if (HasAddressTaken(I, NewAllocSize))
225 return true;
226 break;
227 }
228 case Instruction::BitCast:
229 case Instruction::Select:
230 case Instruction::AddrSpaceCast:
231 if (HasAddressTaken(I, AllocSize))
232 return true;
233 break;
234 case Instruction::PHI: {
235 // Keep track of what PHI nodes we have already visited to ensure
236 // they are only visited once.
237 const auto *PN = cast<PHINode>(I);
238 if (VisitedPHIs.insert(PN).second)
239 if (HasAddressTaken(PN, AllocSize))
240 return true;
241 break;
242 }
243 case Instruction::Load:
244 case Instruction::AtomicRMW:
245 case Instruction::Ret:
246 // These instructions take an address operand, but have load-like or
247 // other innocuous behavior that should not trigger a stack protector.
248 // atomicrmw conceptually has both load and store semantics, but the
249 // value being stored must be integer; so if a pointer is being stored,
250 // we'll catch it in the PtrToInt case above.
251 break;
252 default:
253 // Conservatively return true for any instruction that takes an address
254 // operand, but is not handled above.
255 return true;
256 }
257 }
258 return false;
259 }
260
261 /// Search for the first call to the llvm.stackprotector intrinsic and return it
262 /// if present.
findStackProtectorIntrinsic(Function & F)263 static const CallInst *findStackProtectorIntrinsic(Function &F) {
264 for (const BasicBlock &BB : F)
265 for (const Instruction &I : BB)
266 if (const auto *II = dyn_cast<IntrinsicInst>(&I))
267 if (II->getIntrinsicID() == Intrinsic::stackprotector)
268 return II;
269 return nullptr;
270 }
271
272 /// Check whether or not this function needs a stack protector based
273 /// upon the stack protector level.
274 ///
275 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
276 /// The standard heuristic which will add a guard variable to functions that
277 /// call alloca with a either a variable size or a size >= SSPBufferSize,
278 /// functions with character buffers larger than SSPBufferSize, and functions
279 /// with aggregates containing character buffers larger than SSPBufferSize. The
280 /// strong heuristic will add a guard variables to functions that call alloca
281 /// regardless of size, functions with any buffer regardless of type and size,
282 /// functions with aggregates that contain any buffer regardless of type and
283 /// size, and functions that contain stack-based variables that have had their
284 /// address taken.
RequiresStackProtector()285 bool StackProtector::RequiresStackProtector() {
286 bool Strong = false;
287 bool NeedsProtector = false;
288
289 if (F->hasFnAttribute(Attribute::SafeStack))
290 return false;
291
292 // We are constructing the OptimizationRemarkEmitter on the fly rather than
293 // using the analysis pass to avoid building DominatorTree and LoopInfo which
294 // are not available this late in the IR pipeline.
295 OptimizationRemarkEmitter ORE(F);
296
297 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
298 ORE.emit([&]() {
299 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
300 << "Stack protection applied to function "
301 << ore::NV("Function", F)
302 << " due to a function attribute or command-line switch";
303 });
304 NeedsProtector = true;
305 Strong = true; // Use the same heuristic as strong to determine SSPLayout
306 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
307 Strong = true;
308 else if (!F->hasFnAttribute(Attribute::StackProtect))
309 return false;
310
311 for (const BasicBlock &BB : *F) {
312 for (const Instruction &I : BB) {
313 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
314 if (AI->isArrayAllocation()) {
315 auto RemarkBuilder = [&]() {
316 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
317 &I)
318 << "Stack protection applied to function "
319 << ore::NV("Function", F)
320 << " due to a call to alloca or use of a variable length "
321 "array";
322 };
323 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
324 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
325 // A call to alloca with size >= SSPBufferSize requires
326 // stack protectors.
327 Layout.insert(std::make_pair(AI,
328 MachineFrameInfo::SSPLK_LargeArray));
329 ORE.emit(RemarkBuilder);
330 NeedsProtector = true;
331 } else if (Strong) {
332 // Require protectors for all alloca calls in strong mode.
333 Layout.insert(std::make_pair(AI,
334 MachineFrameInfo::SSPLK_SmallArray));
335 ORE.emit(RemarkBuilder);
336 NeedsProtector = true;
337 }
338 } else {
339 // A call to alloca with a variable size requires protectors.
340 Layout.insert(std::make_pair(AI,
341 MachineFrameInfo::SSPLK_LargeArray));
342 ORE.emit(RemarkBuilder);
343 NeedsProtector = true;
344 }
345 continue;
346 }
347
348 bool IsLarge = false;
349 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
350 Layout.insert(std::make_pair(AI, IsLarge
351 ? MachineFrameInfo::SSPLK_LargeArray
352 : MachineFrameInfo::SSPLK_SmallArray));
353 ORE.emit([&]() {
354 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
355 << "Stack protection applied to function "
356 << ore::NV("Function", F)
357 << " due to a stack allocated buffer or struct containing a "
358 "buffer";
359 });
360 NeedsProtector = true;
361 continue;
362 }
363
364 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
365 AI->getAllocatedType()))) {
366 ++NumAddrTaken;
367 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
368 ORE.emit([&]() {
369 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
370 &I)
371 << "Stack protection applied to function "
372 << ore::NV("Function", F)
373 << " due to the address of a local variable being taken";
374 });
375 NeedsProtector = true;
376 }
377 // Clear any PHIs that we visited, to make sure we examine all uses of
378 // any subsequent allocas that we look at.
379 VisitedPHIs.clear();
380 }
381 }
382 }
383
384 return NeedsProtector;
385 }
386
387 /// Create a stack guard loading and populate whether SelectionDAG SSP is
388 /// supported.
getStackGuard(const TargetLoweringBase * TLI,Module * M,IRBuilder<> & B,bool * SupportsSelectionDAGSP=nullptr)389 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
390 IRBuilder<> &B,
391 bool *SupportsSelectionDAGSP = nullptr) {
392 Value *Guard = TLI->getIRStackGuard(B);
393 StringRef GuardMode = M->getStackProtectorGuard();
394 if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
395 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
396
397 // Use SelectionDAG SSP handling, since there isn't an IR guard.
398 //
399 // This is more or less weird, since we optionally output whether we
400 // should perform a SelectionDAG SP here. The reason is that it's strictly
401 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
402 // mutating. There is no way to get this bit without mutating the IR, so
403 // getting this bit has to happen in this right time.
404 //
405 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
406 // will put more burden on the backends' overriding work, especially when it
407 // actually conveys the same information getIRStackGuard() already gives.
408 if (SupportsSelectionDAGSP)
409 *SupportsSelectionDAGSP = true;
410 TLI->insertSSPDeclarations(*M);
411 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
412 }
413
414 /// Insert code into the entry block that stores the stack guard
415 /// variable onto the stack:
416 ///
417 /// entry:
418 /// StackGuardSlot = alloca i8*
419 /// StackGuard = <stack guard>
420 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
421 ///
422 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
423 /// node.
CreatePrologue(Function * F,Module * M,Instruction * CheckLoc,const TargetLoweringBase * TLI,AllocaInst * & AI)424 static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc,
425 const TargetLoweringBase *TLI, AllocaInst *&AI) {
426 bool SupportsSelectionDAGSP = false;
427 IRBuilder<> B(&F->getEntryBlock().front());
428 PointerType *PtrTy = Type::getInt8PtrTy(CheckLoc->getContext());
429 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
430
431 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
432 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
433 {GuardSlot, AI});
434 return SupportsSelectionDAGSP;
435 }
436
437 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
438 /// function.
439 ///
440 /// - The prologue code loads and stores the stack guard onto the stack.
441 /// - The epilogue checks the value stored in the prologue against the original
442 /// value. It calls __stack_chk_fail if they differ.
InsertStackProtectors()443 bool StackProtector::InsertStackProtectors() {
444 // If the target wants to XOR the frame pointer into the guard value, it's
445 // impossible to emit the check in IR, so the target *must* support stack
446 // protection in SDAG.
447 bool SupportsSelectionDAGSP =
448 TLI->useStackGuardXorFP() ||
449 (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
450 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
451 BasicBlock *FailBB = nullptr;
452
453 for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
454 // This is stack protector auto generated check BB, skip it.
455 if (&BB == FailBB)
456 continue;
457 Instruction *CheckLoc = dyn_cast<ReturnInst>(BB.getTerminator());
458 if (!CheckLoc && !DisableCheckNoReturn)
459 for (auto &Inst : BB)
460 if (auto *CB = dyn_cast<CallBase>(&Inst))
461 // Do stack check before noreturn calls that aren't nounwind (e.g:
462 // __cxa_throw).
463 if (CB->doesNotReturn() && !CB->doesNotThrow()) {
464 CheckLoc = CB;
465 break;
466 }
467
468 if (!CheckLoc)
469 continue;
470
471 // Generate prologue instrumentation if not already generated.
472 if (!HasPrologue) {
473 HasPrologue = true;
474 SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI);
475 }
476
477 // SelectionDAG based code generation. Nothing else needs to be done here.
478 // The epilogue instrumentation is postponed to SelectionDAG.
479 if (SupportsSelectionDAGSP)
480 break;
481
482 // Find the stack guard slot if the prologue was not created by this pass
483 // itself via a previous call to CreatePrologue().
484 if (!AI) {
485 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
486 assert(SPCall && "Call to llvm.stackprotector is missing");
487 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
488 }
489
490 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
491 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
492 // instrumentation has already been generated.
493 HasIRCheck = true;
494
495 // If we're instrumenting a block with a tail call, the check has to be
496 // inserted before the call rather than between it and the return. The
497 // verifier guarantees that a tail call is either directly before the
498 // return or with a single correct bitcast of the return value in between so
499 // we don't need to worry about many situations here.
500 Instruction *Prev = CheckLoc->getPrevNonDebugInstruction();
501 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
502 CheckLoc = Prev;
503 else if (Prev) {
504 Prev = Prev->getPrevNonDebugInstruction();
505 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
506 CheckLoc = Prev;
507 }
508
509 // Generate epilogue instrumentation. The epilogue intrumentation can be
510 // function-based or inlined depending on which mechanism the target is
511 // providing.
512 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
513 // Generate the function-based epilogue instrumentation.
514 // The target provides a guard check function, generate a call to it.
515 IRBuilder<> B(CheckLoc);
516 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
517 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
518 Call->setAttributes(GuardCheck->getAttributes());
519 Call->setCallingConv(GuardCheck->getCallingConv());
520 } else {
521 // Generate the epilogue with inline instrumentation.
522 // If we do not support SelectionDAG based calls, generate IR level
523 // calls.
524 //
525 // For each block with a return instruction, convert this:
526 //
527 // return:
528 // ...
529 // ret ...
530 //
531 // into this:
532 //
533 // return:
534 // ...
535 // %1 = <stack guard>
536 // %2 = load StackGuardSlot
537 // %3 = icmp ne i1 %1, %2
538 // br i1 %3, label %CallStackCheckFailBlk, label %SP_return
539 //
540 // SP_return:
541 // ret ...
542 //
543 // CallStackCheckFailBlk:
544 // call void @__stack_chk_fail()
545 // unreachable
546
547 // Create the FailBB. We duplicate the BB every time since the MI tail
548 // merge pass will merge together all of the various BB into one including
549 // fail BB generated by the stack protector pseudo instruction.
550 if (!FailBB)
551 FailBB = CreateFailBB();
552
553 IRBuilder<> B(CheckLoc);
554 Value *Guard = getStackGuard(TLI, M, B);
555 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
556 auto *Cmp = cast<ICmpInst>(B.CreateICmpNE(Guard, LI2));
557 auto SuccessProb =
558 BranchProbabilityInfo::getBranchProbStackProtector(true);
559 auto FailureProb =
560 BranchProbabilityInfo::getBranchProbStackProtector(false);
561 MDNode *Weights = MDBuilder(F->getContext())
562 .createBranchWeights(FailureProb.getNumerator(),
563 SuccessProb.getNumerator());
564
565 SplitBlockAndInsertIfThen(Cmp, CheckLoc,
566 /*Unreachable=*/false, Weights,
567 DTU ? &*DTU : nullptr,
568 /*LI=*/nullptr, /*ThenBlock=*/FailBB);
569
570 auto *BI = cast<BranchInst>(Cmp->getParent()->getTerminator());
571 BasicBlock *NewBB = BI->getSuccessor(1);
572 NewBB->setName("SP_return");
573 NewBB->moveAfter(&BB);
574
575 Cmp->setPredicate(Cmp->getInversePredicate());
576 BI->swapSuccessors();
577 }
578 }
579
580 // Return if we didn't modify any basic blocks. i.e., there are no return
581 // statements in the function.
582 return HasPrologue;
583 }
584
585 /// CreateFailBB - Create a basic block to jump to when the stack protector
586 /// check fails.
CreateFailBB()587 BasicBlock *StackProtector::CreateFailBB() {
588 LLVMContext &Context = F->getContext();
589 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
590 IRBuilder<> B(FailBB);
591 if (F->getSubprogram())
592 B.SetCurrentDebugLocation(
593 DILocation::get(Context, 0, 0, F->getSubprogram()));
594 if (Trip.isOSOpenBSD()) {
595 FunctionCallee StackChkFail = M->getOrInsertFunction(
596 "__stack_smash_handler", Type::getVoidTy(Context),
597 Type::getInt8PtrTy(Context));
598
599 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
600 } else {
601 FunctionCallee StackChkFail =
602 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
603
604 B.CreateCall(StackChkFail, {});
605 }
606 B.CreateUnreachable();
607 return FailBB;
608 }
609
shouldEmitSDCheck(const BasicBlock & BB) const610 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
611 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
612 }
613
copyToMachineFrameInfo(MachineFrameInfo & MFI) const614 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
615 if (Layout.empty())
616 return;
617
618 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
619 if (MFI.isDeadObjectIndex(I))
620 continue;
621
622 const AllocaInst *AI = MFI.getObjectAllocation(I);
623 if (!AI)
624 continue;
625
626 SSPLayoutMap::const_iterator LI = Layout.find(AI);
627 if (LI == Layout.end())
628 continue;
629
630 MFI.setObjectSSPLayout(I, LI->second);
631 }
632 }
633