xref: /openbsd/sys/kern/kern_sig.c (revision d479e871)
1 /*	$OpenBSD: kern_sig.c,v 1.359 2025/01/25 19:21:40 claudio Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #include <sys/param.h>
42 #include <sys/signalvar.h>
43 #include <sys/queue.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/event.h>
47 #include <sys/proc.h>
48 #include <sys/systm.h>
49 #include <sys/acct.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/wait.h>
53 #include <sys/ktrace.h>
54 #include <sys/stat.h>
55 #include <sys/malloc.h>
56 #include <sys/pool.h>
57 #include <sys/sched.h>
58 #include <sys/user.h>
59 #include <sys/syslog.h>
60 #include <sys/ttycom.h>
61 #include <sys/pledge.h>
62 #include <sys/witness.h>
63 #include <sys/exec_elf.h>
64 
65 #include <sys/mount.h>
66 #include <sys/syscallargs.h>
67 
68 #include <uvm/uvm_extern.h>
69 #include <machine/tcb.h>
70 
71 /*
72  * Locks used to protect data:
73  *	a	atomic
74  */
75 
76 int nosuidcoredump = 1;		/* [a] */
77 
78 /*
79  * The array below categorizes the signals and their default actions.
80  */
81 const int sigprop[NSIG] = {
82 	0,			/* unused */
83 	SA_KILL,		/* SIGHUP */
84 	SA_KILL,		/* SIGINT */
85 	SA_KILL|SA_CORE,	/* SIGQUIT */
86 	SA_KILL|SA_CORE,	/* SIGILL */
87 	SA_KILL|SA_CORE,	/* SIGTRAP */
88 	SA_KILL|SA_CORE,	/* SIGABRT */
89 	SA_KILL|SA_CORE,	/* SIGEMT */
90 	SA_KILL|SA_CORE,	/* SIGFPE */
91 	SA_KILL,		/* SIGKILL */
92 	SA_KILL|SA_CORE,	/* SIGBUS */
93 	SA_KILL|SA_CORE,	/* SIGSEGV */
94 	SA_KILL|SA_CORE,	/* SIGSYS */
95 	SA_KILL,		/* SIGPIPE */
96 	SA_KILL,		/* SIGALRM */
97 	SA_KILL,		/* SIGTERM */
98 	SA_IGNORE,		/* SIGURG */
99 	SA_STOP,		/* SIGSTOP */
100 	SA_STOP|SA_TTYSTOP,	/* SIGTSTP */
101 	SA_IGNORE|SA_CONT,	/* SIGCONT */
102 	SA_IGNORE,		/* SIGCHLD */
103 	SA_STOP|SA_TTYSTOP,	/* SIGTTIN */
104 	SA_STOP|SA_TTYSTOP,	/* SIGTTOU */
105 	SA_IGNORE,		/* SIGIO */
106 	SA_KILL,		/* SIGXCPU */
107 	SA_KILL,		/* SIGXFSZ */
108 	SA_KILL,		/* SIGVTALRM */
109 	SA_KILL,		/* SIGPROF */
110 	SA_IGNORE,		/* SIGWINCH  */
111 	SA_IGNORE,		/* SIGINFO */
112 	SA_KILL,		/* SIGUSR1 */
113 	SA_KILL,		/* SIGUSR2 */
114 	SA_IGNORE,		/* SIGTHR */
115 };
116 
117 #define	CONTSIGMASK	(sigmask(SIGCONT))
118 #define	STOPSIGMASK	(sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
119 			    sigmask(SIGTTIN) | sigmask(SIGTTOU))
120 
121 void setsigvec(struct proc *, int, struct sigaction *);
122 
123 int proc_trap(struct proc *, int);
124 void proc_stop(struct proc *p, int);
125 void proc_stop_sweep(void *);
126 void *proc_stop_si;
127 
128 void process_continue(struct process *, int);
129 
130 void setsigctx(struct proc *, int, struct sigctx *);
131 void postsig_done(struct proc *, int, sigset_t, int);
132 void postsig(struct proc *, int, struct sigctx *);
133 int cansignal(struct proc *, struct process *, int);
134 
135 void ptsignal_locked(struct proc *, int, enum signal_type);
136 
137 struct pool sigacts_pool;	/* memory pool for sigacts structures */
138 
139 void sigio_del(struct sigiolst *);
140 void sigio_unlink(struct sigio_ref *, struct sigiolst *);
141 struct mutex sigio_lock = MUTEX_INITIALIZER(IPL_HIGH);
142 
143 /*
144  * Can thread p, send the signal signum to process qr?
145  */
146 int
cansignal(struct proc * p,struct process * qr,int signum)147 cansignal(struct proc *p, struct process *qr, int signum)
148 {
149 	struct process *pr = p->p_p;
150 	struct ucred *uc = p->p_ucred;
151 	struct ucred *quc = qr->ps_ucred;
152 
153 	if (uc->cr_uid == 0)
154 		return (1);		/* root can always signal */
155 
156 	if (pr == qr)
157 		return (1);		/* process can always signal itself */
158 
159 	/* optimization: if the same creds then the tests below will pass */
160 	if (uc == quc)
161 		return (1);
162 
163 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
164 		return (1);		/* SIGCONT in session */
165 
166 	/*
167 	 * Using kill(), only certain signals can be sent to setugid
168 	 * child processes
169 	 */
170 	if (qr->ps_flags & PS_SUGID) {
171 		switch (signum) {
172 		case 0:
173 		case SIGKILL:
174 		case SIGINT:
175 		case SIGTERM:
176 		case SIGALRM:
177 		case SIGSTOP:
178 		case SIGTTIN:
179 		case SIGTTOU:
180 		case SIGTSTP:
181 		case SIGHUP:
182 		case SIGUSR1:
183 		case SIGUSR2:
184 			if (uc->cr_ruid == quc->cr_ruid ||
185 			    uc->cr_uid == quc->cr_ruid)
186 				return (1);
187 		}
188 		return (0);
189 	}
190 
191 	if (uc->cr_ruid == quc->cr_ruid ||
192 	    uc->cr_ruid == quc->cr_svuid ||
193 	    uc->cr_uid == quc->cr_ruid ||
194 	    uc->cr_uid == quc->cr_svuid)
195 		return (1);
196 	return (0);
197 }
198 
199 /*
200  * Initialize signal-related data structures.
201  */
202 void
signal_init(void)203 signal_init(void)
204 {
205 	proc_stop_si = softintr_establish(IPL_SOFTCLOCK, proc_stop_sweep,
206 	    NULL);
207 	if (proc_stop_si == NULL)
208 		panic("signal_init failed to register softintr");
209 
210 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE,
211 	    PR_WAITOK, "sigapl", NULL);
212 }
213 
214 /*
215  * Initialize a new sigaltstack structure.
216  */
217 void
sigstkinit(struct sigaltstack * ss)218 sigstkinit(struct sigaltstack *ss)
219 {
220 	ss->ss_flags = SS_DISABLE;
221 	ss->ss_size = 0;
222 	ss->ss_sp = NULL;
223 }
224 
225 /*
226  * Create an initial sigacts structure, using the same signal state
227  * as pr.
228  */
229 struct sigacts *
sigactsinit(struct process * pr)230 sigactsinit(struct process *pr)
231 {
232 	struct sigacts *ps;
233 
234 	ps = pool_get(&sigacts_pool, PR_WAITOK);
235 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
236 	return (ps);
237 }
238 
239 /*
240  * Release a sigacts structure.
241  */
242 void
sigactsfree(struct sigacts * ps)243 sigactsfree(struct sigacts *ps)
244 {
245 	pool_put(&sigacts_pool, ps);
246 }
247 
248 int
sys_sigaction(struct proc * p,void * v,register_t * retval)249 sys_sigaction(struct proc *p, void *v, register_t *retval)
250 {
251 	struct sys_sigaction_args /* {
252 		syscallarg(int) signum;
253 		syscallarg(const struct sigaction *) nsa;
254 		syscallarg(struct sigaction *) osa;
255 	} */ *uap = v;
256 	struct sigaction vec;
257 #ifdef KTRACE
258 	struct sigaction ovec;
259 #endif
260 	struct sigaction *sa;
261 	const struct sigaction *nsa;
262 	struct sigaction *osa;
263 	struct sigacts *ps = p->p_p->ps_sigacts;
264 	int signum;
265 	int bit, error;
266 
267 	signum = SCARG(uap, signum);
268 	nsa = SCARG(uap, nsa);
269 	osa = SCARG(uap, osa);
270 
271 	if (signum <= 0 || signum >= NSIG ||
272 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
273 		return (EINVAL);
274 	sa = &vec;
275 	if (osa) {
276 		mtx_enter(&p->p_p->ps_mtx);
277 		sa->sa_handler = ps->ps_sigact[signum];
278 		sa->sa_mask = ps->ps_catchmask[signum];
279 		bit = sigmask(signum);
280 		sa->sa_flags = 0;
281 		if ((ps->ps_sigonstack & bit) != 0)
282 			sa->sa_flags |= SA_ONSTACK;
283 		if ((ps->ps_sigintr & bit) == 0)
284 			sa->sa_flags |= SA_RESTART;
285 		if ((ps->ps_sigreset & bit) != 0)
286 			sa->sa_flags |= SA_RESETHAND;
287 		if ((ps->ps_siginfo & bit) != 0)
288 			sa->sa_flags |= SA_SIGINFO;
289 		if (signum == SIGCHLD) {
290 			if ((ps->ps_sigflags & SAS_NOCLDSTOP) != 0)
291 				sa->sa_flags |= SA_NOCLDSTOP;
292 			if ((ps->ps_sigflags & SAS_NOCLDWAIT) != 0)
293 				sa->sa_flags |= SA_NOCLDWAIT;
294 		}
295 		mtx_leave(&p->p_p->ps_mtx);
296 		if ((sa->sa_mask & bit) == 0)
297 			sa->sa_flags |= SA_NODEFER;
298 		sa->sa_mask &= ~bit;
299 		error = copyout(sa, osa, sizeof (vec));
300 		if (error)
301 			return (error);
302 #ifdef KTRACE
303 		if (KTRPOINT(p, KTR_STRUCT))
304 			ovec = vec;
305 #endif
306 	}
307 	if (nsa) {
308 		error = copyin(nsa, sa, sizeof (vec));
309 		if (error)
310 			return (error);
311 #ifdef KTRACE
312 		if (KTRPOINT(p, KTR_STRUCT))
313 			ktrsigaction(p, sa);
314 #endif
315 		setsigvec(p, signum, sa);
316 	}
317 #ifdef KTRACE
318 	if (osa && KTRPOINT(p, KTR_STRUCT))
319 		ktrsigaction(p, &ovec);
320 #endif
321 	return (0);
322 }
323 
324 void
setsigvec(struct proc * p,int signum,struct sigaction * sa)325 setsigvec(struct proc *p, int signum, struct sigaction *sa)
326 {
327 	struct sigacts *ps = p->p_p->ps_sigacts;
328 	int bit;
329 
330 	bit = sigmask(signum);
331 
332 	mtx_enter(&p->p_p->ps_mtx);
333 	ps->ps_sigact[signum] = sa->sa_handler;
334 	if ((sa->sa_flags & SA_NODEFER) == 0)
335 		sa->sa_mask |= sigmask(signum);
336 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
337 	if (signum == SIGCHLD) {
338 		if (sa->sa_flags & SA_NOCLDSTOP)
339 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
340 		else
341 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
342 		/*
343 		 * If the SA_NOCLDWAIT flag is set or the handler
344 		 * is SIG_IGN we reparent the dying child to PID 1
345 		 * (init) which will reap the zombie.  Because we use
346 		 * init to do our dirty work we never set SAS_NOCLDWAIT
347 		 * for PID 1.
348 		 * XXX exit1 rework means this is unnecessary?
349 		 */
350 		if (initprocess->ps_sigacts != ps &&
351 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
352 		    sa->sa_handler == SIG_IGN))
353 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
354 		else
355 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
356 	}
357 	if ((sa->sa_flags & SA_RESETHAND) != 0)
358 		ps->ps_sigreset |= bit;
359 	else
360 		ps->ps_sigreset &= ~bit;
361 	if ((sa->sa_flags & SA_SIGINFO) != 0)
362 		ps->ps_siginfo |= bit;
363 	else
364 		ps->ps_siginfo &= ~bit;
365 	if ((sa->sa_flags & SA_RESTART) == 0)
366 		ps->ps_sigintr |= bit;
367 	else
368 		ps->ps_sigintr &= ~bit;
369 	if ((sa->sa_flags & SA_ONSTACK) != 0)
370 		ps->ps_sigonstack |= bit;
371 	else
372 		ps->ps_sigonstack &= ~bit;
373 	/*
374 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
375 	 * and for signals set to SIG_DFL where the default is to ignore.
376 	 * However, don't put SIGCONT in ps_sigignore,
377 	 * as we have to restart the process.
378 	 */
379 	if (sa->sa_handler == SIG_IGN ||
380 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
381 		atomic_clearbits_int(&p->p_siglist, bit);
382 		atomic_clearbits_int(&p->p_p->ps_siglist, bit);
383 		if (signum != SIGCONT)
384 			ps->ps_sigignore |= bit;	/* easier in psignal */
385 		ps->ps_sigcatch &= ~bit;
386 	} else {
387 		ps->ps_sigignore &= ~bit;
388 		if (sa->sa_handler == SIG_DFL)
389 			ps->ps_sigcatch &= ~bit;
390 		else
391 			ps->ps_sigcatch |= bit;
392 	}
393 	mtx_leave(&p->p_p->ps_mtx);
394 }
395 
396 /*
397  * Initialize signal state for process 0;
398  * set to ignore signals that are ignored by default.
399  */
400 void
siginit(struct sigacts * ps)401 siginit(struct sigacts *ps)
402 {
403 	int i;
404 
405 	for (i = 0; i < NSIG; i++)
406 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
407 			ps->ps_sigignore |= sigmask(i);
408 	ps->ps_sigflags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
409 }
410 
411 /*
412  * Reset signals for an exec by the specified thread.
413  */
414 void
execsigs(struct proc * p)415 execsigs(struct proc *p)
416 {
417 	struct sigacts *ps;
418 	int nc, mask;
419 
420 	ps = p->p_p->ps_sigacts;
421 	mtx_enter(&p->p_p->ps_mtx);
422 
423 	/*
424 	 * Reset caught signals.  Held signals remain held
425 	 * through p_sigmask (unless they were caught,
426 	 * and are now ignored by default).
427 	 */
428 	while (ps->ps_sigcatch) {
429 		nc = ffs((long)ps->ps_sigcatch);
430 		mask = sigmask(nc);
431 		ps->ps_sigcatch &= ~mask;
432 		if (sigprop[nc] & SA_IGNORE) {
433 			if (nc != SIGCONT)
434 				ps->ps_sigignore |= mask;
435 			atomic_clearbits_int(&p->p_siglist, mask);
436 			atomic_clearbits_int(&p->p_p->ps_siglist, mask);
437 		}
438 		ps->ps_sigact[nc] = SIG_DFL;
439 	}
440 	/*
441 	 * Reset stack state to the user stack.
442 	 * Clear set of signals caught on the signal stack.
443 	 */
444 	sigstkinit(&p->p_sigstk);
445 	atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
446 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
447 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
448 	mtx_leave(&p->p_p->ps_mtx);
449 }
450 
451 /*
452  * Manipulate signal mask.
453  * Note that we receive new mask, not pointer,
454  * and return old mask as return value;
455  * the library stub does the rest.
456  */
457 int
sys_sigprocmask(struct proc * p,void * v,register_t * retval)458 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
459 {
460 	struct sys_sigprocmask_args /* {
461 		syscallarg(int) how;
462 		syscallarg(sigset_t) mask;
463 	} */ *uap = v;
464 	int error = 0;
465 	sigset_t mask;
466 
467 	KASSERT(p == curproc);
468 
469 	*retval = p->p_sigmask;
470 	mask = SCARG(uap, mask) &~ sigcantmask;
471 
472 	switch (SCARG(uap, how)) {
473 	case SIG_BLOCK:
474 		SET(p->p_sigmask, mask);
475 		break;
476 	case SIG_UNBLOCK:
477 		CLR(p->p_sigmask, mask);
478 		break;
479 	case SIG_SETMASK:
480 		p->p_sigmask = mask;
481 		break;
482 	default:
483 		error = EINVAL;
484 		break;
485 	}
486 	return (error);
487 }
488 
489 int
sys_sigpending(struct proc * p,void * v,register_t * retval)490 sys_sigpending(struct proc *p, void *v, register_t *retval)
491 {
492 	*retval = p->p_siglist | p->p_p->ps_siglist;
493 	return (0);
494 }
495 
496 /*
497  * Temporarily replace calling proc's signal mask for the duration of a
498  * system call.  Original signal mask will be restored by userret().
499  */
500 void
dosigsuspend(struct proc * p,sigset_t newmask)501 dosigsuspend(struct proc *p, sigset_t newmask)
502 {
503 	KASSERT(p == curproc);
504 
505 	p->p_oldmask = p->p_sigmask;
506 	p->p_sigmask = newmask;
507 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
508 }
509 
510 /*
511  * Suspend thread until signal, providing mask to be set
512  * in the meantime.  Note nonstandard calling convention:
513  * libc stub passes mask, not pointer, to save a copyin.
514  */
515 int
sys_sigsuspend(struct proc * p,void * v,register_t * retval)516 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
517 {
518 	struct sys_sigsuspend_args /* {
519 		syscallarg(int) mask;
520 	} */ *uap = v;
521 
522 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
523 	while (tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigsusp", INFSLP) == 0)
524 		continue;
525 	/* always return EINTR rather than ERESTART... */
526 	return (EINTR);
527 }
528 
529 int
sigonstack(size_t stack)530 sigonstack(size_t stack)
531 {
532 	const struct sigaltstack *ss = &curproc->p_sigstk;
533 
534 	return (ss->ss_flags & SS_DISABLE ? 0 :
535 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
536 }
537 
538 int
sys_sigaltstack(struct proc * p,void * v,register_t * retval)539 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
540 {
541 	struct sys_sigaltstack_args /* {
542 		syscallarg(const struct sigaltstack *) nss;
543 		syscallarg(struct sigaltstack *) oss;
544 	} */ *uap = v;
545 	struct sigaltstack ss;
546 	const struct sigaltstack *nss;
547 	struct sigaltstack *oss;
548 	int onstack = sigonstack(PROC_STACK(p));
549 	int error;
550 
551 	nss = SCARG(uap, nss);
552 	oss = SCARG(uap, oss);
553 
554 	if (oss != NULL) {
555 		ss = p->p_sigstk;
556 		if (onstack)
557 			ss.ss_flags |= SS_ONSTACK;
558 		if ((error = copyout(&ss, oss, sizeof(ss))))
559 			return (error);
560 	}
561 	if (nss == NULL)
562 		return (0);
563 	error = copyin(nss, &ss, sizeof(ss));
564 	if (error)
565 		return (error);
566 	if (onstack)
567 		return (EPERM);
568 	if (ss.ss_flags & ~SS_DISABLE)
569 		return (EINVAL);
570 	if (ss.ss_flags & SS_DISABLE) {
571 		p->p_sigstk.ss_flags = ss.ss_flags;
572 		return (0);
573 	}
574 	if (ss.ss_size < MINSIGSTKSZ)
575 		return (ENOMEM);
576 
577 	error = uvm_map_remap_as_stack(p, (vaddr_t)ss.ss_sp, ss.ss_size);
578 	if (error)
579 		return (error);
580 
581 	p->p_sigstk = ss;
582 	return (0);
583 }
584 
585 int
sys_kill(struct proc * cp,void * v,register_t * retval)586 sys_kill(struct proc *cp, void *v, register_t *retval)
587 {
588 	struct sys_kill_args /* {
589 		syscallarg(int) pid;
590 		syscallarg(int) signum;
591 	} */ *uap = v;
592 	struct process *pr;
593 	int pid = SCARG(uap, pid);
594 	int signum = SCARG(uap, signum);
595 	int error;
596 	int zombie = 0;
597 
598 	if ((error = pledge_kill(cp, pid)) != 0)
599 		return (error);
600 	if (((u_int)signum) >= NSIG)
601 		return (EINVAL);
602 	if (pid > 0) {
603 		if ((pr = prfind(pid)) == NULL) {
604 			if ((pr = zombiefind(pid)) == NULL)
605 				return (ESRCH);
606 			else
607 				zombie = 1;
608 		}
609 		if (!cansignal(cp, pr, signum))
610 			return (EPERM);
611 
612 		/* kill single process */
613 		if (signum && !zombie)
614 			prsignal(pr, signum);
615 		return (0);
616 	}
617 	switch (pid) {
618 	case -1:		/* broadcast signal */
619 		return (killpg1(cp, signum, 0, 1));
620 	case 0:			/* signal own process group */
621 		return (killpg1(cp, signum, 0, 0));
622 	default:		/* negative explicit process group */
623 		return (killpg1(cp, signum, -pid, 0));
624 	}
625 }
626 
627 int
sys_thrkill(struct proc * cp,void * v,register_t * retval)628 sys_thrkill(struct proc *cp, void *v, register_t *retval)
629 {
630 	struct sys_thrkill_args /* {
631 		syscallarg(pid_t) tid;
632 		syscallarg(int) signum;
633 		syscallarg(void *) tcb;
634 	} */ *uap = v;
635 	struct proc *p;
636 	int tid = SCARG(uap, tid);
637 	int signum = SCARG(uap, signum);
638 	void *tcb;
639 
640 	if (((u_int)signum) >= NSIG)
641 		return (EINVAL);
642 
643 	p = tid ? tfind_user(tid, cp->p_p) : cp;
644 	if (p == NULL)
645 		return (ESRCH);
646 
647 	/* optionally require the target thread to have the given tcb addr */
648 	tcb = SCARG(uap, tcb);
649 	if (tcb != NULL && tcb != TCB_GET(p))
650 		return (ESRCH);
651 
652 	if (signum)
653 		ptsignal(p, signum, STHREAD);
654 	return (0);
655 }
656 
657 /*
658  * Common code for kill process group/broadcast kill.
659  * cp is calling process.
660  */
661 int
killpg1(struct proc * cp,int signum,int pgid,int all)662 killpg1(struct proc *cp, int signum, int pgid, int all)
663 {
664 	struct process *pr;
665 	struct pgrp *pgrp;
666 	int nfound = 0;
667 
668 	if (all) {
669 		/*
670 		 * broadcast
671 		 */
672 		LIST_FOREACH(pr, &allprocess, ps_list) {
673 			if (pr->ps_pid <= 1 ||
674 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
675 			    pr == cp->p_p || !cansignal(cp, pr, signum))
676 				continue;
677 			nfound++;
678 			if (signum)
679 				prsignal(pr, signum);
680 		}
681 	} else {
682 		if (pgid == 0)
683 			/*
684 			 * zero pgid means send to my process group.
685 			 */
686 			pgrp = cp->p_p->ps_pgrp;
687 		else {
688 			pgrp = pgfind(pgid);
689 			if (pgrp == NULL)
690 				return (ESRCH);
691 		}
692 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
693 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
694 			    !cansignal(cp, pr, signum))
695 				continue;
696 			nfound++;
697 			if (signum)
698 				prsignal(pr, signum);
699 		}
700 	}
701 	return (nfound ? 0 : ESRCH);
702 }
703 
704 #define CANDELIVER(uid, euid, pr) \
705 	(euid == 0 || \
706 	(uid) == (pr)->ps_ucred->cr_ruid || \
707 	(uid) == (pr)->ps_ucred->cr_svuid || \
708 	(uid) == (pr)->ps_ucred->cr_uid || \
709 	(euid) == (pr)->ps_ucred->cr_ruid || \
710 	(euid) == (pr)->ps_ucred->cr_svuid || \
711 	(euid) == (pr)->ps_ucred->cr_uid)
712 
713 #define CANSIGIO(cr, pr) \
714 	CANDELIVER((cr)->cr_ruid, (cr)->cr_uid, (pr))
715 
716 /*
717  * Send a signal to a process group.  If checktty is 1,
718  * limit to members which have a controlling terminal.
719  */
720 void
pgsignal(struct pgrp * pgrp,int signum,int checkctty)721 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
722 {
723 	struct process *pr;
724 
725 	if (pgrp)
726 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
727 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
728 				prsignal(pr, signum);
729 }
730 
731 /*
732  * Send a SIGIO or SIGURG signal to a process or process group using stored
733  * credentials rather than those of the current process.
734  */
735 void
pgsigio(struct sigio_ref * sir,int sig,int checkctty)736 pgsigio(struct sigio_ref *sir, int sig, int checkctty)
737 {
738 	struct process *pr;
739 	struct sigio *sigio;
740 
741 	if (sir->sir_sigio == NULL)
742 		return;
743 
744 	KERNEL_LOCK();
745 	mtx_enter(&sigio_lock);
746 	sigio = sir->sir_sigio;
747 	if (sigio == NULL)
748 		goto out;
749 	if (sigio->sio_pgid > 0) {
750 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc))
751 			prsignal(sigio->sio_proc, sig);
752 	} else if (sigio->sio_pgid < 0) {
753 		LIST_FOREACH(pr, &sigio->sio_pgrp->pg_members, ps_pglist) {
754 			if (CANSIGIO(sigio->sio_ucred, pr) &&
755 			    (checkctty == 0 || (pr->ps_flags & PS_CONTROLT)))
756 				prsignal(pr, sig);
757 		}
758 	}
759 out:
760 	mtx_leave(&sigio_lock);
761 	KERNEL_UNLOCK();
762 }
763 
764 /*
765  * Recalculate the signal mask and reset the signal disposition after
766  * usermode frame for delivery is formed.
767  */
768 void
postsig_done(struct proc * p,int signum,sigset_t catchmask,int reset)769 postsig_done(struct proc *p, int signum, sigset_t catchmask, int reset)
770 {
771 	p->p_ru.ru_nsignals++;
772 	SET(p->p_sigmask, catchmask);
773 	if (reset != 0) {
774 		sigset_t mask = sigmask(signum);
775 		struct sigacts *ps = p->p_p->ps_sigacts;
776 
777 		mtx_enter(&p->p_p->ps_mtx);
778 		ps->ps_sigcatch &= ~mask;
779 		if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
780 			ps->ps_sigignore |= mask;
781 		ps->ps_sigact[signum] = SIG_DFL;
782 		mtx_leave(&p->p_p->ps_mtx);
783 	}
784 }
785 
786 /*
787  * Send a signal caused by a trap to the current thread
788  * If it will be caught immediately, deliver it with correct code.
789  * Otherwise, post it normally.
790  */
791 void
trapsignal(struct proc * p,int signum,u_long trapno,int code,union sigval sigval)792 trapsignal(struct proc *p, int signum, u_long trapno, int code,
793     union sigval sigval)
794 {
795 	struct process *pr = p->p_p;
796 	struct sigctx ctx;
797 	int mask;
798 
799 	switch (signum) {
800 	case SIGILL:
801 		if (code == ILL_BTCFI) {
802 			pr->ps_acflag |= ABTCFI;
803 			break;
804 		}
805 		/* FALLTHROUGH */
806 	case SIGBUS:
807 	case SIGSEGV:
808 		pr->ps_acflag |= ATRAP;
809 		break;
810 	}
811 
812 	mask = sigmask(signum);
813 	setsigctx(p, signum, &ctx);
814 	if ((pr->ps_flags & PS_TRACED) == 0 && ctx.sig_catch != 0 &&
815 	    (p->p_sigmask & mask) == 0) {
816 		siginfo_t si;
817 
818 		initsiginfo(&si, signum, trapno, code, sigval);
819 #ifdef KTRACE
820 		if (KTRPOINT(p, KTR_PSIG)) {
821 			ktrpsig(p, signum, ctx.sig_action,
822 			    p->p_sigmask, code, &si);
823 		}
824 #endif
825 		if (sendsig(ctx.sig_action, signum, p->p_sigmask, &si,
826 		    ctx.sig_info, ctx.sig_onstack)) {
827 			KERNEL_LOCK();
828 			sigexit(p, SIGILL);
829 			/* NOTREACHED */
830 		}
831 		postsig_done(p, signum, ctx.sig_catchmask, ctx.sig_reset);
832 	} else {
833 		p->p_sisig = signum;
834 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
835 		p->p_sicode = code;
836 		p->p_sigval = sigval;
837 
838 		/*
839 		 * If traced, stop if signal is masked, and stay stopped
840 		 * until released by the debugger.  If our parent process
841 		 * is waiting for us, don't hang as we could deadlock.
842 		 */
843 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
844 		    signum != SIGKILL && (p->p_sigmask & mask) != 0) {
845 			signum = proc_trap(p, signum);
846 
847 			mask = sigmask(signum);
848 			setsigctx(p, signum, &ctx);
849 
850 			/*
851 			 * If we are no longer being traced, or the parent
852 			 * didn't give us a signal, skip sending the signal.
853 			 */
854 			if ((pr->ps_flags & PS_TRACED) == 0 || signum == 0)
855 				return;
856 
857 			/* update signal info */
858 			p->p_sisig = signum;
859 		}
860 
861 		/*
862 		 * Signals like SIGBUS and SIGSEGV should not, when
863 		 * generated by the kernel, be ignorable or blockable.
864 		 * If it is and we're not being traced, then just kill
865 		 * the process.
866 		 * After vfs_shutdown(9), init(8) cannot receive signals
867 		 * because new code pages of the signal handler cannot be
868 		 * mapped from halted storage.  init(8) may not die or the
869 		 * kernel panics.  Better loop between signal handler and
870 		 * page fault trap until the machine is halted.
871 		 */
872 		if ((pr->ps_flags & PS_TRACED) == 0 &&
873 		    (sigprop[signum] & SA_KILL) &&
874 		    ((p->p_sigmask & mask) || ctx.sig_ignore) &&
875 		    pr->ps_pid != 1) {
876 			KERNEL_LOCK();
877 			sigexit(p, signum);
878 			/* NOTREACHED */
879 		}
880 		ptsignal(p, signum, STHREAD);
881 	}
882 }
883 
884 /*
885  * Send the signal to the process.  If the signal has an action, the action
886  * is usually performed by the target process rather than the caller; we add
887  * the signal to the set of pending signals for the process.
888  *
889  * Exceptions:
890  *   o When a stop signal is sent to a sleeping process that takes the
891  *     default action, the process is stopped without awakening it.
892  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
893  *     regardless of the signal action (eg, blocked or ignored).
894  *
895  * Other ignored signals are discarded immediately.
896  */
897 void
psignal(struct proc * p,int signum)898 psignal(struct proc *p, int signum)
899 {
900 	ptsignal(p, signum, SPROCESS);
901 }
902 
903 void
prsignal(struct process * pr,int signum)904 prsignal(struct process *pr, int signum)
905 {
906 	mtx_enter(&pr->ps_mtx);
907 	/* Ignore signal if the target process is exiting */
908 	if (pr->ps_flags & PS_EXITING) {
909 		mtx_leave(&pr->ps_mtx);
910 		return;
911 	}
912 	ptsignal_locked(TAILQ_FIRST(&pr->ps_threads), signum, SPROCESS);
913 	mtx_leave(&pr->ps_mtx);
914 }
915 
916 /*
917  * type = SPROCESS	process signal, can be diverted (sigwait())
918  * type = STHREAD	thread signal, but should be propagated if unhandled
919  * type = SPROPAGATED	propagated to this thread, so don't propagate again
920  */
921 void
ptsignal(struct proc * p,int signum,enum signal_type type)922 ptsignal(struct proc *p, int signum, enum signal_type type)
923 {
924 	struct process *pr = p->p_p;
925 
926 	mtx_enter(&pr->ps_mtx);
927 	ptsignal_locked(p, signum, type);
928 	mtx_leave(&pr->ps_mtx);
929 }
930 
931 void
ptsignal_locked(struct proc * p,int signum,enum signal_type type)932 ptsignal_locked(struct proc *p, int signum, enum signal_type type)
933 {
934 	int prop;
935 	sig_t action, altaction = SIG_DFL;
936 	sigset_t mask, sigmask;
937 	int *siglist;
938 	struct process *pr = p->p_p;
939 	struct proc *q;
940 	int wakeparent = 0;
941 
942 	MUTEX_ASSERT_LOCKED(&pr->ps_mtx);
943 
944 #ifdef DIAGNOSTIC
945 	if ((u_int)signum >= NSIG || signum == 0)
946 		panic("psignal signal number");
947 #endif
948 
949 	/* Ignore signal if the target process is exiting */
950 	if (pr->ps_flags & PS_EXITING)
951 		return;
952 
953 	mask = sigmask(signum);
954 	sigmask = READ_ONCE(p->p_sigmask);
955 
956 	if (type == SPROCESS) {
957 		sigset_t tmpmask;
958 
959 		/* Accept SIGKILL to coredumping processes */
960 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
961 			atomic_setbits_int(&pr->ps_siglist, mask);
962 			return;
963 		}
964 
965 		/*
966 		 * If the current thread can process the signal
967 		 * immediately (it's unblocked) then have it take it.
968 		 */
969 		q = curproc;
970 		tmpmask = READ_ONCE(q->p_sigmask);
971 		if (q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
972 		    (tmpmask & mask) == 0) {
973 			p = q;
974 			sigmask = tmpmask;
975 		} else {
976 			/*
977 			 * A process-wide signal can be diverted to a
978 			 * different thread that's in sigwait() for this
979 			 * signal.  If there isn't such a thread, then
980 			 * pick a thread that doesn't have it blocked so
981 			 * that the stop/kill consideration isn't
982 			 * delayed.  Otherwise, mark it pending on the
983 			 * main thread.
984 			 */
985 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
986 
987 				/* ignore exiting threads */
988 				if (q->p_flag & P_WEXIT)
989 					continue;
990 
991 				/* skip threads that have the signal blocked */
992 				tmpmask = READ_ONCE(q->p_sigmask);
993 				if ((tmpmask & mask) != 0)
994 					continue;
995 
996 				/* okay, could send to this thread */
997 				p = q;
998 				sigmask = tmpmask;
999 
1000 				/*
1001 				 * sigsuspend, sigwait, ppoll/pselect, etc?
1002 				 * Definitely go to this thread, as it's
1003 				 * already blocked in the kernel.
1004 				 */
1005 				if (q->p_flag & P_SIGSUSPEND)
1006 					break;
1007 			}
1008 		}
1009 	}
1010 
1011 	if (type != SPROPAGATED)
1012 		knote_locked(&pr->ps_klist, NOTE_SIGNAL | signum);
1013 
1014 	prop = sigprop[signum];
1015 
1016 	/*
1017 	 * If proc is traced, always give parent a chance.
1018 	 */
1019 	if (pr->ps_flags & PS_TRACED) {
1020 		action = SIG_DFL;
1021 	} else {
1022 		sigset_t sigcatch, sigignore;
1023 
1024 		/*
1025 		 * If the signal is being ignored,
1026 		 * then we forget about it immediately.
1027 		 * (Note: we don't set SIGCONT in ps_sigignore,
1028 		 * and if it is set to SIG_IGN,
1029 		 * action will be SIG_DFL here.)
1030 		 */
1031 		sigignore = pr->ps_sigacts->ps_sigignore;
1032 		sigcatch = pr->ps_sigacts->ps_sigcatch;
1033 
1034 		if (sigignore & mask)
1035 			return;
1036 		if (sigmask & mask) {
1037 			action = SIG_HOLD;
1038 			if (sigcatch & mask)
1039 				altaction = SIG_CATCH;
1040 		} else if (sigcatch & mask) {
1041 			action = SIG_CATCH;
1042 		} else {
1043 			action = SIG_DFL;
1044 
1045 			if (prop & SA_KILL && pr->ps_nice > NZERO)
1046 				 pr->ps_nice = NZERO;
1047 
1048 			/*
1049 			 * If sending a tty stop signal to a member of an
1050 			 * orphaned process group, discard the signal here if
1051 			 * the action is default; don't stop the process below
1052 			 * if sleeping, and don't clear any pending SIGCONT.
1053 			 */
1054 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
1055 				return;
1056 		}
1057 	}
1058 	/*
1059 	 * If delivered to process, mark as pending there.  Continue and stop
1060 	 * signals will be propagated to all threads.  So they are always
1061 	 * marked at thread level.
1062 	 */
1063 	siglist = (type == SPROCESS) ? &pr->ps_siglist : &p->p_siglist;
1064 	if (prop & (SA_CONT | SA_STOP))
1065 		siglist = &p->p_siglist;
1066 
1067 	/*
1068 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
1069 	 */
1070 	if (prop & SA_STOP && type != SPROPAGATED)
1071 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
1072 			if (q != p)
1073 				ptsignal_locked(q, signum, SPROPAGATED);
1074 
1075 	SCHED_LOCK();
1076 
1077 	switch (p->p_stat) {
1078 
1079 	case SSTOP:
1080 		/*
1081 		 * If traced process is already stopped,
1082 		 * then no further action is necessary.
1083 		 */
1084 		if (pr->ps_flags & PS_TRACED)
1085 			goto out;
1086 
1087 		/*
1088 		 * Kill signal always sets processes running.
1089 		 */
1090 		if (signum == SIGKILL) {
1091 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1092 			/* Raise priority to at least PUSER. */
1093 			if (p->p_usrpri > PUSER)
1094 				p->p_usrpri = PUSER;
1095 			unsleep(p);
1096 			setrunnable(p);
1097 			goto out;
1098 		}
1099 
1100 		if (prop & SA_CONT) {
1101 			/*
1102 			 * If SIGCONT is default (or ignored), we continue the
1103 			 * process but don't leave the signal in p_siglist, as
1104 			 * it has no further action.  If SIGCONT is held, we
1105 			 * continue the process and leave the signal in
1106 			 * p_siglist.  If the process catches SIGCONT, let it
1107 			 * handle the signal itself.  At the end continue
1108 			 * the process.
1109 			 */
1110 			atomic_setbits_int(&pr->ps_flags, PS_CONTINUED);
1111 			atomic_clearbits_int(&pr->ps_flags,
1112 			    PS_WAITED | PS_STOPPED | PS_STOPPING | PS_TRAPPED);
1113 			if (action == SIG_DFL)
1114 				mask = 0;
1115 			if (action == SIG_CATCH) {
1116 				/* Raise priority to at least PUSER. */
1117 				if (p->p_usrpri > PUSER)
1118 					p->p_usrpri = PUSER;
1119 				unsleep(p);
1120 			}
1121 
1122 			process_continue(pr, P_SUSPSIG);
1123 			wakeparent = 1;
1124 			goto out;
1125 		}
1126 
1127 		/*
1128 		 * Defer further processing for signals which are held,
1129 		 * except that stopped processes must be continued by SIGCONT.
1130 		 */
1131 		if (action == SIG_HOLD)
1132 			goto out;
1133 
1134 		if (prop & SA_STOP) {
1135 			/*
1136 			 * Already stopped, don't need to stop again.
1137 			 * (If we did the shell could get confused.)
1138 			 */
1139 			mask = 0;
1140 			goto out;
1141 		}
1142 
1143 		/*
1144 		 * If process is sleeping interruptibly, then simulate a
1145 		 * wakeup so that when it is continued, it will be made
1146 		 * runnable and can look at the signal.  But don't make
1147 		 * the process runnable, leave it stopped.
1148 		 */
1149 		if (p->p_flag & P_SINTR)
1150 			unsleep(p);
1151 		goto out;
1152 
1153 	case SSLEEP:
1154 		/*
1155 		 * If process is sleeping uninterruptibly
1156 		 * we can't interrupt the sleep... the signal will
1157 		 * be noticed when the process returns through
1158 		 * trap() or syscall().
1159 		 */
1160 		if ((p->p_flag & P_SINTR) == 0)
1161 			goto out;
1162 		/*
1163 		 * Process is sleeping and traced... make it runnable
1164 		 * so it can discover the signal in cursig() and stop
1165 		 * for the parent.
1166 		 */
1167 		if (pr->ps_flags & PS_TRACED) {
1168 			unsleep(p);
1169 			setrunnable(p);
1170 			goto out;
1171 		}
1172 
1173 		/*
1174 		 * Recheck sigmask before waking up the process,
1175 		 * there is a chance that while sending the signal
1176 		 * the process changed sigmask and went to sleep.
1177 		 */
1178 		sigmask = READ_ONCE(p->p_sigmask);
1179 		if (sigmask & mask)
1180 			goto out;
1181 		else if (action == SIG_HOLD) {
1182 			/* signal got unmasked, get proper action */
1183 			action = altaction;
1184 
1185 			if (action == SIG_DFL) {
1186 				if (prop & SA_KILL && pr->ps_nice > NZERO)
1187 					 pr->ps_nice = NZERO;
1188 
1189 				/*
1190 				 * Discard tty stop signals sent to an
1191 				 * orphaned process group, see above.
1192 				 */
1193 				if (prop & SA_TTYSTOP &&
1194 				    pr->ps_pgrp->pg_jobc == 0) {
1195 					mask = 0;
1196 					prop = 0;
1197 					goto out;
1198 				}
1199 			}
1200 		}
1201 
1202 		/*
1203 		 * If SIGCONT is default (or ignored) and process is
1204 		 * asleep, we are finished; the process should not
1205 		 * be awakened.
1206 		 */
1207 		if ((prop & SA_CONT) && action == SIG_DFL) {
1208 			mask = 0;
1209 			goto out;
1210 		}
1211 		/*
1212 		 * When a sleeping process receives a stop
1213 		 * signal, process immediately if possible.
1214 		 */
1215 		if ((prop & SA_STOP) && action == SIG_DFL) {
1216 			/*
1217 			 * If a child holding parent blocked,
1218 			 * stopping could cause deadlock.
1219 			 */
1220 			if (pr->ps_flags & PS_PPWAIT)
1221 				goto out;
1222 			mask = 0;
1223 			pr->ps_xsig = signum;
1224 			proc_stop(p, 0);
1225 			goto out;
1226 		}
1227 		/*
1228 		 * All other (caught or default) signals
1229 		 * cause the process to run.
1230 		 * Raise priority to at least PUSER.
1231 		 */
1232 		if (p->p_usrpri > PUSER)
1233 			p->p_usrpri = PUSER;
1234 		unsleep(p);
1235 		setrunnable(p);
1236 		goto out;
1237 		/* NOTREACHED */
1238 
1239 	case SONPROC:
1240 		if (action == SIG_HOLD)
1241 			goto out;
1242 
1243 		/* set siglist before issuing the ast */
1244 		atomic_setbits_int(siglist, mask);
1245 		mask = 0;
1246 		signotify(p);
1247 		/* FALLTHROUGH */
1248 	default:
1249 		/*
1250 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1251 		 * other than kicking ourselves if we are running.
1252 		 * It will either never be noticed, or noticed very soon.
1253 		 */
1254 		goto out;
1255 	}
1256 	/* NOTREACHED */
1257 
1258 out:
1259 	/* finally adjust siglist */
1260 	if (mask)
1261 		atomic_setbits_int(siglist, mask);
1262 	if (prop & SA_CONT) {
1263 		atomic_clearbits_int(siglist, STOPSIGMASK);
1264 	}
1265 	if (prop & SA_STOP) {
1266 		atomic_clearbits_int(siglist, CONTSIGMASK);
1267 		atomic_clearbits_int(&pr->ps_flags, PS_CONTINUED);
1268 	}
1269 
1270 	SCHED_UNLOCK();
1271 	if (wakeparent)
1272 		wakeup(pr->ps_pptr);
1273 }
1274 
1275 /* fill the signal context which should be used by postsig() and issignal() */
1276 void
setsigctx(struct proc * p,int signum,struct sigctx * sctx)1277 setsigctx(struct proc *p, int signum, struct sigctx *sctx)
1278 {
1279 	struct process *pr = p->p_p;
1280 	struct sigacts *ps = pr->ps_sigacts;
1281 	sigset_t mask;
1282 
1283 	mtx_enter(&pr->ps_mtx);
1284 	mask = sigmask(signum);
1285 	sctx->sig_action = ps->ps_sigact[signum];
1286 	sctx->sig_catchmask = ps->ps_catchmask[signum];
1287 	sctx->sig_reset = (ps->ps_sigreset & mask) != 0;
1288 	sctx->sig_info = (ps->ps_siginfo & mask) != 0;
1289 	sctx->sig_intr = (ps->ps_sigintr & mask) != 0;
1290 	sctx->sig_onstack = (ps->ps_sigonstack & mask) != 0;
1291 	sctx->sig_ignore = (ps->ps_sigignore & mask) != 0;
1292 	sctx->sig_catch = (ps->ps_sigcatch & mask) != 0;
1293 	sctx->sig_stop = sigprop[signum] & SA_STOP &&
1294 	    (long)sctx->sig_action == (long)SIG_DFL;
1295 	if (sctx->sig_stop) {
1296 		/*
1297 		 * If the process is a member of an orphaned
1298 		 * process group, ignore tty stop signals.
1299 		 */
1300 		if (pr->ps_flags & PS_TRACED ||
1301 		    (pr->ps_pgrp->pg_jobc == 0 &&
1302 		    sigprop[signum] & SA_TTYSTOP)) {
1303 			sctx->sig_stop = 0;
1304 			sctx->sig_ignore = 1;
1305 		}
1306 	}
1307 	mtx_leave(&pr->ps_mtx);
1308 }
1309 
1310 /*
1311  * Determine signal that should be delivered to process p, the current
1312  * process, 0 if none.
1313  *
1314  * If the current process has received a signal (should be caught or cause
1315  * termination, should interrupt current syscall), return the signal number.
1316  * Stop signals with default action are processed immediately, then cleared;
1317  * they aren't returned.  This is checked after each entry to the system for
1318  * a syscall or trap. The normal call sequence is
1319  *
1320  *	while (signum = cursig(curproc, &ctx, 0))
1321  *		postsig(signum, &ctx);
1322  *
1323  * Assumes that if the P_SINTR flag is set, we're holding both the
1324  * kernel and scheduler locks.
1325  */
1326 int
cursig(struct proc * p,struct sigctx * sctx,int deep)1327 cursig(struct proc *p, struct sigctx *sctx, int deep)
1328 {
1329 	struct process *pr = p->p_p;
1330 	int signum, mask, keep = 0, prop;
1331 	sigset_t ps_siglist;
1332 
1333 	KASSERT(p == curproc);
1334 
1335 	for (;;) {
1336 		ps_siglist = READ_ONCE(pr->ps_siglist);
1337 		membar_consumer();
1338 		mask = SIGPENDING(p);
1339 		if (pr->ps_flags & PS_PPWAIT)
1340 			mask &= ~STOPSIGMASK;
1341 		signum = ffs(mask);
1342 		if (signum == 0)	 	/* no signal to send */
1343 			goto keep;
1344 		mask = sigmask(signum);
1345 
1346 		/* take the signal! */
1347 		if (atomic_cas_uint(&pr->ps_siglist, ps_siglist,
1348 		    ps_siglist & ~mask) != ps_siglist) {
1349 			/* lost race taking the process signal, restart */
1350 			continue;
1351 		}
1352 		atomic_clearbits_int(&p->p_siglist, mask);
1353 		setsigctx(p, signum, sctx);
1354 
1355 		/*
1356 		 * We should see pending but ignored signals
1357 		 * only if PS_TRACED was on when they were posted.
1358 		 */
1359 		if (sctx->sig_ignore && (pr->ps_flags & PS_TRACED) == 0)
1360 			continue;
1361 
1362 		/*
1363 		 * If cursig is called while going to sleep, abort now
1364 		 * and stop the sleep. When the call unwinded to userret
1365 		 * cursig is called again and there the signal can be
1366 		 * handled cleanly.
1367 		 */
1368 		if (deep) {
1369 			/*
1370 			 * Do not stop the thread here if multiple
1371 			 * signals are pending and at least one of
1372 			 * them would force an unwind.
1373 			 *
1374 			 * ffs() favors low numbered signals and
1375 			 * so stop signals may be picked up before
1376 			 * other pending signals.
1377 			 */
1378 			if (sctx->sig_stop && SIGPENDING(p)) {
1379 				keep |= mask;
1380 				continue;
1381 			}
1382 			goto keep;
1383 		}
1384 
1385 		/*
1386 		 * If traced, always stop, and stay stopped until released
1387 		 * by the debugger.  If our parent process is waiting for
1388 		 * us, don't hang as we could deadlock.
1389 		 */
1390 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
1391 		    signum != SIGKILL) {
1392 			signum = proc_trap(p, signum);
1393 
1394 			mask = sigmask(signum);
1395 			setsigctx(p, signum, sctx);
1396 
1397 			/*
1398 			 * If we are no longer being traced, or the parent
1399 			 * didn't give us a signal, or the signal is ignored,
1400 			 * look for more signals.
1401 			 */
1402 			if ((pr->ps_flags & PS_TRACED) == 0 || signum == 0 ||
1403 			    sctx->sig_ignore)
1404 				continue;
1405 
1406 			/*
1407 			 * If the new signal is being masked, look for other
1408 			 * signals but leave it for later.
1409 			 */
1410 			if ((p->p_sigmask & mask) != 0) {
1411 				atomic_setbits_int(&p->p_siglist, mask);
1412 				continue;
1413 			}
1414 
1415 		}
1416 
1417 		prop = sigprop[signum];
1418 
1419 		/*
1420 		 * Decide whether the signal should be returned.
1421 		 * Return the signal's number, or fall through
1422 		 * to clear it from the pending mask.
1423 		 */
1424 		switch ((long)sctx->sig_action) {
1425 		case (long)SIG_DFL:
1426 			/*
1427 			 * Don't take default actions on system processes.
1428 			 */
1429 			if (pr->ps_pid <= 1) {
1430 #ifdef DIAGNOSTIC
1431 				/*
1432 				 * Are you sure you want to ignore SIGSEGV
1433 				 * in init? XXX
1434 				 */
1435 				printf("Process (pid %d) got signal"
1436 				    " %d\n", pr->ps_pid, signum);
1437 #endif
1438 				break;		/* == ignore */
1439 			}
1440 			/*
1441 			 * If there is a pending stop signal to process
1442 			 * with default action, stop here,
1443 			 * then clear the signal.
1444 			 */
1445 			if (sctx->sig_stop) {
1446 				pr->ps_xsig = signum;
1447 				SCHED_LOCK();
1448 				proc_stop(p, 1);
1449 				SCHED_UNLOCK();
1450 				break;
1451 			} else if (prop & SA_IGNORE) {
1452 				/*
1453 				 * Except for SIGCONT, shouldn't get here.
1454 				 * Default action is to ignore; drop it.
1455 				 */
1456 				break;		/* == ignore */
1457 			} else
1458 				goto keep;
1459 			/* NOTREACHED */
1460 		case (long)SIG_IGN:
1461 			/*
1462 			 * Masking above should prevent us ever trying
1463 			 * to take action on an ignored signal other
1464 			 * than SIGCONT, unless process is traced.
1465 			 */
1466 			if ((prop & SA_CONT) == 0 &&
1467 			    (pr->ps_flags & PS_TRACED) == 0)
1468 				printf("%s\n", __func__);
1469 			break;		/* == ignore */
1470 		default:
1471 			/*
1472 			 * This signal has an action, let
1473 			 * postsig() process it.
1474 			 */
1475 			goto keep;
1476 		}
1477 	}
1478 	/* NOTREACHED */
1479 
1480 keep:
1481 	/*
1482 	 * if we stashed a stop signal but no other signal is pending
1483 	 * anymore pick the stop signal up again.
1484 	 */
1485 	if (keep != 0 && signum == 0) {
1486 		signum = ffs(keep);
1487 		setsigctx(p, signum, sctx);
1488 	}
1489 	/* move the signal to p_siglist for later */
1490 	atomic_setbits_int(&p->p_siglist, mask | keep);
1491 	return (signum);
1492 }
1493 
1494 int
proc_trap(struct proc * p,int signum)1495 proc_trap(struct proc *p, int signum)
1496 {
1497 	struct process *pr = p->p_p;
1498 
1499 	single_thread_set(p, SINGLE_SUSPEND | SINGLE_NOWAIT);
1500 	pr->ps_xsig = signum;
1501 
1502 	SCHED_LOCK();
1503 	atomic_setbits_int(&pr->ps_flags, PS_TRAPPED);
1504 	proc_stop(p, 1);
1505 	atomic_clearbits_int(&pr->ps_flags,
1506 	    PS_WAITED | PS_STOPPED | PS_TRAPPED);
1507 	SCHED_UNLOCK();
1508 
1509 	signum = pr->ps_xsig;
1510 	pr->ps_xsig = 0;
1511 	if ((p->p_flag & P_TRACESINGLE) == 0)
1512 		single_thread_clear(p);
1513 	atomic_clearbits_int(&p->p_flag, P_TRACESINGLE);
1514 
1515 	return signum;
1516 }
1517 
1518 /*
1519  * Continue all threads of a process that were stopped because of `flag'.
1520  */
1521 void
process_continue(struct process * pr,int flag)1522 process_continue(struct process *pr, int flag)
1523 {
1524 	struct proc *q, *p = NULL;
1525 
1526 	MUTEX_ASSERT_LOCKED(&pr->ps_mtx);
1527 
1528 	/* skip curproc if it is part of pr */
1529 	if (curproc->p_p == pr)
1530 		p = curproc;
1531 
1532 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
1533 		if (q == p)
1534 			continue;
1535 		if (!ISSET(q->p_flag, flag))
1536 			continue;
1537 		atomic_clearbits_int(&q->p_flag, flag);
1538 
1539 		/*
1540 		 * XXX in ptsignal the SCHED_LOCK is already held so we can't
1541 		 * grab it here until that is fixed.
1542 		 */
1543 		/* XXX SCHED_LOCK(); */
1544 		SCHED_ASSERT_LOCKED();
1545 		/*
1546 		 * Stopping a process is not an atomic operation so
1547 		 * it is possible that some threads are not stopped
1548 		 * when process_continue is called. These threads
1549 		 * need to be skipped.
1550 		 *
1551 		 * Clearing either makes the thread runnable or puts
1552 		 * it back into some sleep queue.
1553 		 */
1554 		if (q->p_stat == SSTOP) {
1555 			if (q->p_wchan == NULL)
1556 				setrunnable(q);
1557 			else
1558 				q->p_stat = SSLEEP;
1559 		}
1560 		/* XXX SCHED_UNLOCK(); */
1561 	}
1562 }
1563 
1564 /*
1565  * Put the argument process into the stopped state and notify the parent
1566  * via wakeup.  Signals are handled elsewhere.  The process must not be
1567  * on the run queue.
1568  */
1569 void
proc_stop(struct proc * p,int sw)1570 proc_stop(struct proc *p, int sw)
1571 {
1572 	struct process *pr = p->p_p;
1573 
1574 #ifdef MULTIPROCESSOR
1575 	SCHED_ASSERT_LOCKED();
1576 #endif
1577 	/* do not stop exiting procs */
1578 	if (ISSET(p->p_flag, P_WEXIT))
1579 		return;
1580 
1581 	p->p_stat = SSTOP;
1582 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1583 	atomic_setbits_int(&pr->ps_flags, PS_STOPPING);
1584 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1585 	/*
1586 	 * We need this soft interrupt to be handled fast.
1587 	 * Extra calls to softclock don't hurt.
1588 	 */
1589 	softintr_schedule(proc_stop_si);
1590 	if (sw)
1591 		mi_switch();
1592 }
1593 
1594 /*
1595  * Called from a soft interrupt to send signals to the parents of stopped
1596  * processes.
1597  * We can't do this in proc_stop because it's called with nasty locks held
1598  * and we would need recursive scheduler lock to deal with that.
1599  */
1600 void
proc_stop_sweep(void * v)1601 proc_stop_sweep(void *v)
1602 {
1603 	struct process *pr;
1604 
1605 	LIST_FOREACH(pr, &allprocess, ps_list) {
1606 		if ((pr->ps_flags & PS_STOPPING) == 0)
1607 			continue;
1608 		atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1609 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPING);
1610 
1611 		if ((pr->ps_pptr->ps_sigacts->ps_sigflags & SAS_NOCLDSTOP) == 0)
1612 			prsignal(pr->ps_pptr, SIGCHLD);
1613 		wakeup(pr->ps_pptr);
1614 	}
1615 }
1616 
1617 /*
1618  * Take the action for the specified signal
1619  * from the current set of pending signals.
1620  */
1621 void
postsig(struct proc * p,int signum,struct sigctx * sctx)1622 postsig(struct proc *p, int signum, struct sigctx *sctx)
1623 {
1624 	u_long trapno;
1625 	int mask, returnmask;
1626 	siginfo_t si;
1627 	union sigval sigval;
1628 	int code;
1629 
1630 	KASSERT(signum != 0);
1631 
1632 	mask = sigmask(signum);
1633 	atomic_clearbits_int(&p->p_siglist, mask);
1634 	sigval.sival_ptr = NULL;
1635 
1636 	if (p->p_sisig != signum) {
1637 		trapno = 0;
1638 		code = SI_USER;
1639 		sigval.sival_ptr = NULL;
1640 	} else {
1641 		trapno = p->p_sitrapno;
1642 		code = p->p_sicode;
1643 		sigval = p->p_sigval;
1644 	}
1645 	initsiginfo(&si, signum, trapno, code, sigval);
1646 
1647 #ifdef KTRACE
1648 	if (KTRPOINT(p, KTR_PSIG)) {
1649 		ktrpsig(p, signum, sctx->sig_action, p->p_flag & P_SIGSUSPEND ?
1650 		    p->p_oldmask : p->p_sigmask, code, &si);
1651 	}
1652 #endif
1653 	if (sctx->sig_action == SIG_DFL) {
1654 		/*
1655 		 * Default action, where the default is to kill
1656 		 * the process.  (Other cases were ignored above.)
1657 		 */
1658 		KERNEL_LOCK();
1659 		sigexit(p, signum);
1660 		/* NOTREACHED */
1661 	} else {
1662 		/*
1663 		 * If we get here, the signal must be caught.
1664 		 */
1665 #ifdef DIAGNOSTIC
1666 		if (sctx->sig_action == SIG_IGN || (p->p_sigmask & mask))
1667 			panic("postsig action");
1668 #endif
1669 		/*
1670 		 * Set the new mask value and also defer further
1671 		 * occurrences of this signal.
1672 		 *
1673 		 * Special case: user has done a sigpause.  Here the
1674 		 * current mask is not of interest, but rather the
1675 		 * mask from before the sigpause is what we want
1676 		 * restored after the signal processing is completed.
1677 		 */
1678 		if (p->p_flag & P_SIGSUSPEND) {
1679 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1680 			returnmask = p->p_oldmask;
1681 		} else {
1682 			returnmask = p->p_sigmask;
1683 		}
1684 		if (p->p_sisig == signum) {
1685 			p->p_sisig = 0;
1686 			p->p_sitrapno = 0;
1687 			p->p_sicode = SI_USER;
1688 			p->p_sigval.sival_ptr = NULL;
1689 		}
1690 
1691 		if (sendsig(sctx->sig_action, signum, returnmask, &si,
1692 		    sctx->sig_info, sctx->sig_onstack)) {
1693 			KERNEL_LOCK();
1694 			sigexit(p, SIGILL);
1695 			/* NOTREACHED */
1696 		}
1697 		postsig_done(p, signum, sctx->sig_catchmask, sctx->sig_reset);
1698 	}
1699 }
1700 
1701 /*
1702  * Force the current process to exit with the specified signal, dumping core
1703  * if appropriate.  We bypass the normal tests for masked and caught signals,
1704  * allowing unrecoverable failures to terminate the process without changing
1705  * signal state.  Mark the accounting record with the signal termination.
1706  * If dumping core, save the signal number for the debugger.  Calls exit and
1707  * does not return.
1708  */
1709 void
sigexit(struct proc * p,int signum)1710 sigexit(struct proc *p, int signum)
1711 {
1712 	/* Mark process as going away */
1713 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1714 
1715 	p->p_p->ps_acflag |= AXSIG;
1716 	if (sigprop[signum] & SA_CORE) {
1717 		p->p_sisig = signum;
1718 
1719 		/* if there are other threads, pause them */
1720 		if (P_HASSIBLING(p))
1721 			single_thread_set(p, SINGLE_UNWIND);
1722 
1723 		if (coredump(p) == 0)
1724 			signum |= WCOREFLAG;
1725 	}
1726 	exit1(p, 0, signum, EXIT_NORMAL);
1727 	/* NOTREACHED */
1728 }
1729 
1730 /*
1731  * Send uncatchable SIGABRT for coredump.
1732  */
1733 void
sigabort(struct proc * p)1734 sigabort(struct proc *p)
1735 {
1736 	struct sigaction sa;
1737 
1738 	KASSERT(p == curproc || panicstr || db_active);
1739 
1740 	memset(&sa, 0, sizeof sa);
1741 	sa.sa_handler = SIG_DFL;
1742 	setsigvec(p, SIGABRT, &sa);
1743 	CLR(p->p_sigmask, sigmask(SIGABRT));
1744 	psignal(p, SIGABRT);
1745 }
1746 
1747 /*
1748  * Return 1 if `sig', a given signal, is ignored or masked for `p', a given
1749  * thread, and 0 otherwise.
1750  */
1751 int
sigismasked(struct proc * p,int sig)1752 sigismasked(struct proc *p, int sig)
1753 {
1754 	struct process *pr = p->p_p;
1755 	int rv;
1756 
1757 	KASSERT(p == curproc);
1758 
1759 	mtx_enter(&pr->ps_mtx);
1760 	rv = (pr->ps_sigacts->ps_sigignore & sigmask(sig)) ||
1761 	    (p->p_sigmask & sigmask(sig));
1762 	mtx_leave(&pr->ps_mtx);
1763 
1764 	return !!rv;
1765 }
1766 
1767 struct coredump_iostate {
1768 	struct proc *io_proc;
1769 	struct vnode *io_vp;
1770 	struct ucred *io_cred;
1771 	off_t io_offset;
1772 };
1773 
1774 /*
1775  * Dump core, into a file named "progname.core", unless the process was
1776  * setuid/setgid.
1777  */
1778 int
coredump(struct proc * p)1779 coredump(struct proc *p)
1780 {
1781 #ifdef SMALL_KERNEL
1782 	return EPERM;
1783 #else
1784 	struct process *pr = p->p_p;
1785 	struct vnode *vp;
1786 	struct ucred *cred = p->p_ucred;
1787 	struct vmspace *vm = p->p_vmspace;
1788 	struct nameidata nd;
1789 	struct vattr vattr;
1790 	struct coredump_iostate	io;
1791 	int error, len, incrash = 0;
1792 	char *name;
1793 	const char *dir = "/var/crash";
1794 	int nosuidcoredump_local = atomic_load_int(&nosuidcoredump);
1795 
1796 	atomic_setbits_int(&pr->ps_flags, PS_COREDUMP);
1797 
1798 #ifdef PMAP_CHECK_COPYIN
1799 	/* disable copyin checks, so we can write out text sections if needed */
1800 	p->p_vmspace->vm_map.check_copyin_count = 0;
1801 #endif
1802 
1803 	/* Don't dump if will exceed file size limit. */
1804 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >= lim_cur(RLIMIT_CORE))
1805 		return (EFBIG);
1806 
1807 	name = pool_get(&namei_pool, PR_WAITOK);
1808 
1809 	/*
1810 	 * If the process has inconsistent uids, nosuidcoredump
1811 	 * determines coredump placement policy.
1812 	 */
1813 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p))) ||
1814 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump_local)) {
1815 		if (nosuidcoredump_local == 3) {
1816 			/*
1817 			 * If the program directory does not exist, dumps of
1818 			 * that core will silently fail.
1819 			 */
1820 			len = snprintf(name, MAXPATHLEN, "%s/%s/%u.core",
1821 			    dir, pr->ps_comm, pr->ps_pid);
1822 			incrash = KERNELPATH;
1823 		} else if (nosuidcoredump_local == 2) {
1824 			len = snprintf(name, MAXPATHLEN, "%s/%s.core",
1825 			    dir, pr->ps_comm);
1826 			incrash = KERNELPATH;
1827 		} else {
1828 			pool_put(&namei_pool, name);
1829 			return (EPERM);
1830 		}
1831 	} else
1832 		len = snprintf(name, MAXPATHLEN, "%s.core", pr->ps_comm);
1833 
1834 	if (len >= MAXPATHLEN) {
1835 		pool_put(&namei_pool, name);
1836 		return (EACCES);
1837 	}
1838 
1839 	/*
1840 	 * Control the UID used to write out.  The normal case uses
1841 	 * the real UID.  If the sugid case is going to write into the
1842 	 * controlled directory, we do so as root.
1843 	 */
1844 	if (incrash == 0) {
1845 		cred = crdup(cred);
1846 		cred->cr_uid = cred->cr_ruid;
1847 		cred->cr_gid = cred->cr_rgid;
1848 	} else {
1849 		if (p->p_fd->fd_rdir) {
1850 			vrele(p->p_fd->fd_rdir);
1851 			p->p_fd->fd_rdir = NULL;
1852 		}
1853 		p->p_ucred = crdup(p->p_ucred);
1854 		crfree(cred);
1855 		cred = p->p_ucred;
1856 		crhold(cred);
1857 		cred->cr_uid = 0;
1858 		cred->cr_gid = 0;
1859 	}
1860 
1861 	/* incrash should be 0 or KERNELPATH only */
1862 	NDINIT(&nd, 0, BYPASSUNVEIL | incrash, UIO_SYSSPACE, name, p);
1863 
1864 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW | O_NONBLOCK,
1865 	    S_IRUSR | S_IWUSR);
1866 
1867 	if (error)
1868 		goto out;
1869 
1870 	/*
1871 	 * Don't dump to non-regular files, files with links, or files
1872 	 * owned by someone else.
1873 	 */
1874 	vp = nd.ni_vp;
1875 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1876 		VOP_UNLOCK(vp);
1877 		vn_close(vp, FWRITE, cred, p);
1878 		goto out;
1879 	}
1880 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1881 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1882 	    vattr.va_uid != cred->cr_uid) {
1883 		error = EACCES;
1884 		VOP_UNLOCK(vp);
1885 		vn_close(vp, FWRITE, cred, p);
1886 		goto out;
1887 	}
1888 	vattr_null(&vattr);
1889 	vattr.va_size = 0;
1890 	VOP_SETATTR(vp, &vattr, cred, p);
1891 	pr->ps_acflag |= ACORE;
1892 
1893 	io.io_proc = p;
1894 	io.io_vp = vp;
1895 	io.io_cred = cred;
1896 	io.io_offset = 0;
1897 	VOP_UNLOCK(vp);
1898 	vref(vp);
1899 	error = vn_close(vp, FWRITE, cred, p);
1900 	if (error == 0)
1901 		error = coredump_elf(p, &io);
1902 	vrele(vp);
1903 out:
1904 	crfree(cred);
1905 	pool_put(&namei_pool, name);
1906 	return (error);
1907 #endif
1908 }
1909 
1910 #ifndef SMALL_KERNEL
1911 int
coredump_write(void * cookie,enum uio_seg segflg,const void * data,size_t len,int isvnode)1912 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len,
1913     int isvnode)
1914 {
1915 	struct coredump_iostate *io = cookie;
1916 	off_t coffset = 0;
1917 	size_t csize;
1918 	int chunk, error;
1919 
1920 	csize = len;
1921 	do {
1922 		if (sigmask(SIGKILL) &
1923 		    (io->io_proc->p_siglist | io->io_proc->p_p->ps_siglist))
1924 			return (EINTR);
1925 
1926 		/* Rest of the loop sleeps with lock held, so... */
1927 		yield();
1928 
1929 		chunk = MIN(csize, MAXPHYS);
1930 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1931 		    (caddr_t)data + coffset, chunk,
1932 		    io->io_offset + coffset, segflg,
1933 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1934 		if (error && (error != EFAULT || !isvnode)) {
1935 			struct process *pr = io->io_proc->p_p;
1936 
1937 			if (error == ENOSPC)
1938 				log(LOG_ERR,
1939 				    "coredump of %s(%d) failed, filesystem full\n",
1940 				    pr->ps_comm, pr->ps_pid);
1941 			else
1942 				log(LOG_ERR,
1943 				    "coredump of %s(%d), write failed: errno %d\n",
1944 				    pr->ps_comm, pr->ps_pid, error);
1945 			return (error);
1946 		}
1947 
1948 		coffset += chunk;
1949 		csize -= chunk;
1950 	} while (csize > 0);
1951 
1952 	io->io_offset += len;
1953 	return (0);
1954 }
1955 
1956 void
coredump_unmap(void * cookie,vaddr_t start,vaddr_t end)1957 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1958 {
1959 	struct coredump_iostate *io = cookie;
1960 
1961 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1962 }
1963 
1964 #endif	/* !SMALL_KERNEL */
1965 
1966 /*
1967  * Nonexistent system call-- signal process (may want to handle it).
1968  * Flag error in case process won't see signal immediately (blocked or ignored).
1969  */
1970 int
sys_nosys(struct proc * p,void * v,register_t * retval)1971 sys_nosys(struct proc *p, void *v, register_t *retval)
1972 {
1973 	ptsignal(p, SIGSYS, STHREAD);
1974 	return (ENOSYS);
1975 }
1976 
1977 int
sys___thrsigdivert(struct proc * p,void * v,register_t * retval)1978 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1979 {
1980 	struct sys___thrsigdivert_args /* {
1981 		syscallarg(sigset_t) sigmask;
1982 		syscallarg(siginfo_t *) info;
1983 		syscallarg(const struct timespec *) timeout;
1984 	} */ *uap = v;
1985 	struct sigctx ctx;
1986 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1987 	siginfo_t si;
1988 	uint64_t nsecs = INFSLP;
1989 	int timeinvalid = 0;
1990 	int error = 0;
1991 
1992 	memset(&si, 0, sizeof(si));
1993 
1994 	if (SCARG(uap, timeout) != NULL) {
1995 		struct timespec ts;
1996 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1997 			return (error);
1998 #ifdef KTRACE
1999 		if (KTRPOINT(p, KTR_STRUCT))
2000 			ktrreltimespec(p, &ts);
2001 #endif
2002 		if (!timespecisvalid(&ts))
2003 			timeinvalid = 1;
2004 		else
2005 			nsecs = TIMESPEC_TO_NSEC(&ts);
2006 	}
2007 
2008 	dosigsuspend(p, p->p_sigmask &~ mask);
2009 	for (;;) {
2010 		si.si_signo = cursig(p, &ctx, 0);
2011 		if (si.si_signo != 0) {
2012 			sigset_t smask = sigmask(si.si_signo);
2013 			if (smask & mask) {
2014 				atomic_clearbits_int(&p->p_siglist, smask);
2015 				error = 0;
2016 				break;
2017 			}
2018 		}
2019 
2020 		/* per-POSIX, delay this error until after the above */
2021 		if (timeinvalid)
2022 			error = EINVAL;
2023 		/* per-POSIX, return immediately if timeout is zero-valued */
2024 		if (nsecs == 0)
2025 			error = EAGAIN;
2026 
2027 		if (error != 0)
2028 			break;
2029 
2030 		error = tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigwait", nsecs);
2031 	}
2032 
2033 	if (error == 0) {
2034 		*retval = si.si_signo;
2035 		if (SCARG(uap, info) != NULL) {
2036 			error = copyout(&si, SCARG(uap, info), sizeof(si));
2037 #ifdef KTRACE
2038 			if (error == 0 && KTRPOINT(p, KTR_STRUCT))
2039 				ktrsiginfo(p, &si);
2040 #endif
2041 		}
2042 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
2043 		/*
2044 		 * Restarting is wrong if there's a timeout, as it'll be
2045 		 * for the same interval again
2046 		 */
2047 		error = EINTR;
2048 	}
2049 
2050 	return (error);
2051 }
2052 
2053 void
initsiginfo(siginfo_t * si,int sig,u_long trapno,int code,union sigval val)2054 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
2055 {
2056 	memset(si, 0, sizeof(*si));
2057 
2058 	si->si_signo = sig;
2059 	si->si_code = code;
2060 	if (code == SI_USER) {
2061 		si->si_value = val;
2062 	} else {
2063 		switch (sig) {
2064 		case SIGSEGV:
2065 		case SIGILL:
2066 		case SIGBUS:
2067 		case SIGFPE:
2068 			si->si_addr = val.sival_ptr;
2069 			si->si_trapno = trapno;
2070 			break;
2071 		case SIGXFSZ:
2072 			break;
2073 		}
2074 	}
2075 }
2076 
2077 void
userret(struct proc * p)2078 userret(struct proc *p)
2079 {
2080 	struct sigctx ctx;
2081 	int signum;
2082 
2083 	if (p->p_flag & P_SUSPSINGLE)
2084 		single_thread_check(p, 0);
2085 
2086 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
2087 	if (p->p_flag & P_PROFPEND) {
2088 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
2089 		psignal(p, SIGPROF);
2090 	}
2091 	if (p->p_flag & P_ALRMPEND) {
2092 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
2093 		psignal(p, SIGVTALRM);
2094 	}
2095 
2096 	if (SIGPENDING(p) != 0) {
2097 		while ((signum = cursig(p, &ctx, 0)) != 0)
2098 			postsig(p, signum, &ctx);
2099 	}
2100 
2101 	/*
2102 	 * If P_SIGSUSPEND is still set here, then we still need to restore
2103 	 * the original sigmask before returning to userspace.  Also, this
2104 	 * might unmask some pending signals, so we need to check a second
2105 	 * time for signals to post.
2106 	 */
2107 	if (p->p_flag & P_SIGSUSPEND) {
2108 		p->p_sigmask = p->p_oldmask;
2109 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
2110 
2111 		while ((signum = cursig(p, &ctx, 0)) != 0)
2112 			postsig(p, signum, &ctx);
2113 	}
2114 
2115 	WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
2116 
2117 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
2118 }
2119 
2120 int
single_thread_check_locked(struct proc * p,int deep)2121 single_thread_check_locked(struct proc *p, int deep)
2122 {
2123 	struct process *pr = p->p_p;
2124 
2125 	MUTEX_ASSERT_LOCKED(&pr->ps_mtx);
2126 
2127 	if (pr->ps_single == NULL || pr->ps_single == p)
2128 		return (0);
2129 
2130 	/* if we're in deep, we need to unwind to the edge */
2131 	if (deep) {
2132 		int err = 0;
2133 
2134 		if (pr->ps_flags & PS_SINGLEUNWIND ||
2135 		    pr->ps_flags & PS_SINGLEEXIT)
2136 			return (ERESTART);
2137 		SCHED_LOCK();
2138 		if (p->p_stat != SSTOP)
2139 			err = EWOULDBLOCK;
2140 		SCHED_UNLOCK();
2141 		return (err);
2142 	}
2143 
2144 	do {
2145 		if (pr->ps_flags & PS_SINGLEEXIT) {
2146 			mtx_leave(&pr->ps_mtx);
2147 			KERNEL_LOCK();
2148 			exit1(p, 0, 0, EXIT_THREAD_NOCHECK);
2149 			/* NOTREACHED */
2150 		}
2151 
2152 		if (--pr->ps_singlecnt == 0)
2153 			wakeup(&pr->ps_singlecnt);
2154 
2155 		/* not exiting and don't need to unwind, so suspend */
2156 		mtx_leave(&pr->ps_mtx);
2157 
2158 		SCHED_LOCK();
2159 		p->p_stat = SSTOP;
2160 		mi_switch();
2161 		SCHED_UNLOCK();
2162 		mtx_enter(&pr->ps_mtx);
2163 	} while (pr->ps_single != NULL);
2164 
2165 	return (0);
2166 }
2167 
2168 int
single_thread_check(struct proc * p,int deep)2169 single_thread_check(struct proc *p, int deep)
2170 {
2171 	int error;
2172 
2173 	mtx_enter(&p->p_p->ps_mtx);
2174 	error = single_thread_check_locked(p, deep);
2175 	mtx_leave(&p->p_p->ps_mtx);
2176 
2177 	return error;
2178 }
2179 
2180 /*
2181  * Stop other threads in the process.  The mode controls how and
2182  * where the other threads should stop:
2183  *  - SINGLE_SUSPEND: stop wherever they are, will later be released (via
2184  *    single_thread_clear())
2185  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
2186  *    (by setting to SINGLE_EXIT) or released as with SINGLE_SUSPEND
2187  *  - SINGLE_EXIT: unwind to kernel boundary and exit
2188  */
2189 int
single_thread_set(struct proc * p,int flags)2190 single_thread_set(struct proc *p, int flags)
2191 {
2192 	struct process *pr = p->p_p;
2193 	struct proc *q;
2194 	int error, mode = flags & SINGLE_MASK;
2195 
2196 	KASSERT(curproc == p);
2197 
2198 	mtx_enter(&pr->ps_mtx);
2199 	error = single_thread_check_locked(p, flags & SINGLE_DEEP);
2200 	if (error) {
2201 		mtx_leave(&pr->ps_mtx);
2202 		return error;
2203 	}
2204 
2205 	switch (mode) {
2206 	case SINGLE_SUSPEND:
2207 		break;
2208 	case SINGLE_UNWIND:
2209 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2210 		break;
2211 	case SINGLE_EXIT:
2212 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
2213 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2214 		break;
2215 #ifdef DIAGNOSTIC
2216 	default:
2217 		panic("single_thread_mode = %d", mode);
2218 #endif
2219 	}
2220 	KASSERT((p->p_flag & P_SUSPSINGLE) == 0);
2221 	pr->ps_single = p;
2222 	pr->ps_singlecnt = pr->ps_threadcnt;
2223 
2224 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2225 		if (q == p)
2226 			continue;
2227 		SCHED_LOCK();
2228 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
2229 		switch (q->p_stat) {
2230 		case SSTOP:
2231 			if (mode == SINGLE_EXIT) {
2232 				unsleep(q);
2233 				setrunnable(q);
2234 			} else
2235 				--pr->ps_singlecnt;
2236 			break;
2237 		case SSLEEP:
2238 			/* if it's not interruptible, then just have to wait */
2239 			if (q->p_flag & P_SINTR) {
2240 				/* merely need to suspend?  just stop it */
2241 				if (mode == SINGLE_SUSPEND) {
2242 					q->p_stat = SSTOP;
2243 					--pr->ps_singlecnt;
2244 					break;
2245 				}
2246 				/* need to unwind or exit, so wake it */
2247 				unsleep(q);
2248 				setrunnable(q);
2249 			}
2250 			break;
2251 		case SONPROC:
2252 			signotify(q);
2253 			break;
2254 		case SRUN:
2255 		case SIDL:
2256 		case SDEAD:
2257 			break;
2258 		}
2259 		SCHED_UNLOCK();
2260 	}
2261 
2262 	/* count ourself out */
2263 	--pr->ps_singlecnt;
2264 	mtx_leave(&pr->ps_mtx);
2265 
2266 	if ((flags & SINGLE_NOWAIT) == 0)
2267 		single_thread_wait(pr, 1);
2268 
2269 	return 0;
2270 }
2271 
2272 /*
2273  * Wait for other threads to stop. If recheck is false then the function
2274  * returns non-zero if the caller needs to restart the check else 0 is
2275  * returned. If recheck is true the return value is always 0.
2276  */
2277 int
single_thread_wait(struct process * pr,int recheck)2278 single_thread_wait(struct process *pr, int recheck)
2279 {
2280 	int wait;
2281 
2282 	/* wait until they're all suspended */
2283 	mtx_enter(&pr->ps_mtx);
2284 	while ((wait = pr->ps_singlecnt > 0)) {
2285 		msleep_nsec(&pr->ps_singlecnt, &pr->ps_mtx, PWAIT, "suspend",
2286 		    INFSLP);
2287 		if (!recheck)
2288 			break;
2289 	}
2290 	KASSERT((pr->ps_single->p_flag & P_SUSPSINGLE) == 0);
2291 	mtx_leave(&pr->ps_mtx);
2292 
2293 	return wait;
2294 }
2295 
2296 void
single_thread_clear(struct proc * p)2297 single_thread_clear(struct proc *p)
2298 {
2299 	struct process *pr = p->p_p;
2300 
2301 	KASSERT(pr->ps_single == p);
2302 	KASSERT(curproc == p);
2303 
2304 	mtx_enter(&pr->ps_mtx);
2305 	pr->ps_single = NULL;
2306 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2307 
2308 	SCHED_LOCK();
2309 	process_continue(pr, P_SUSPSINGLE);
2310 	SCHED_UNLOCK();
2311 
2312 	mtx_leave(&pr->ps_mtx);
2313 }
2314 
2315 void
sigio_del(struct sigiolst * rmlist)2316 sigio_del(struct sigiolst *rmlist)
2317 {
2318 	struct sigio *sigio;
2319 
2320 	while ((sigio = LIST_FIRST(rmlist)) != NULL) {
2321 		LIST_REMOVE(sigio, sio_pgsigio);
2322 		crfree(sigio->sio_ucred);
2323 		free(sigio, M_SIGIO, sizeof(*sigio));
2324 	}
2325 }
2326 
2327 void
sigio_unlink(struct sigio_ref * sir,struct sigiolst * rmlist)2328 sigio_unlink(struct sigio_ref *sir, struct sigiolst *rmlist)
2329 {
2330 	struct sigio *sigio;
2331 
2332 	MUTEX_ASSERT_LOCKED(&sigio_lock);
2333 
2334 	sigio = sir->sir_sigio;
2335 	if (sigio != NULL) {
2336 		KASSERT(sigio->sio_myref == sir);
2337 		sir->sir_sigio = NULL;
2338 
2339 		if (sigio->sio_pgid > 0)
2340 			sigio->sio_proc = NULL;
2341 		else
2342 			sigio->sio_pgrp = NULL;
2343 		LIST_REMOVE(sigio, sio_pgsigio);
2344 
2345 		LIST_INSERT_HEAD(rmlist, sigio, sio_pgsigio);
2346 	}
2347 }
2348 
2349 void
sigio_free(struct sigio_ref * sir)2350 sigio_free(struct sigio_ref *sir)
2351 {
2352 	struct sigiolst rmlist;
2353 
2354 	if (sir->sir_sigio == NULL)
2355 		return;
2356 
2357 	LIST_INIT(&rmlist);
2358 
2359 	mtx_enter(&sigio_lock);
2360 	sigio_unlink(sir, &rmlist);
2361 	mtx_leave(&sigio_lock);
2362 
2363 	sigio_del(&rmlist);
2364 }
2365 
2366 void
sigio_freelist(struct sigiolst * sigiolst)2367 sigio_freelist(struct sigiolst *sigiolst)
2368 {
2369 	struct sigiolst rmlist;
2370 	struct sigio *sigio;
2371 
2372 	if (LIST_EMPTY(sigiolst))
2373 		return;
2374 
2375 	LIST_INIT(&rmlist);
2376 
2377 	mtx_enter(&sigio_lock);
2378 	while ((sigio = LIST_FIRST(sigiolst)) != NULL)
2379 		sigio_unlink(sigio->sio_myref, &rmlist);
2380 	mtx_leave(&sigio_lock);
2381 
2382 	sigio_del(&rmlist);
2383 }
2384 
2385 int
sigio_setown(struct sigio_ref * sir,u_long cmd,caddr_t data)2386 sigio_setown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2387 {
2388 	struct sigiolst rmlist;
2389 	struct proc *p = curproc;
2390 	struct pgrp *pgrp = NULL;
2391 	struct process *pr = NULL;
2392 	struct sigio *sigio;
2393 	int error;
2394 	pid_t pgid = *(int *)data;
2395 
2396 	if (pgid == 0) {
2397 		sigio_free(sir);
2398 		return (0);
2399 	}
2400 
2401 	if (cmd == TIOCSPGRP) {
2402 		if (pgid < 0)
2403 			return (EINVAL);
2404 		pgid = -pgid;
2405 	}
2406 
2407 	sigio = malloc(sizeof(*sigio), M_SIGIO, M_WAITOK);
2408 	sigio->sio_pgid = pgid;
2409 	sigio->sio_ucred = crhold(p->p_ucred);
2410 	sigio->sio_myref = sir;
2411 
2412 	LIST_INIT(&rmlist);
2413 
2414 	/*
2415 	 * The kernel lock, and not sleeping between prfind()/pgfind() and
2416 	 * linking of the sigio ensure that the process or process group does
2417 	 * not disappear unexpectedly.
2418 	 */
2419 	KERNEL_LOCK();
2420 	mtx_enter(&sigio_lock);
2421 
2422 	if (pgid > 0) {
2423 		pr = prfind(pgid);
2424 		if (pr == NULL) {
2425 			error = ESRCH;
2426 			goto fail;
2427 		}
2428 
2429 		/*
2430 		 * Policy - Don't allow a process to FSETOWN a process
2431 		 * in another session.
2432 		 *
2433 		 * Remove this test to allow maximum flexibility or
2434 		 * restrict FSETOWN to the current process or process
2435 		 * group for maximum safety.
2436 		 */
2437 		if (pr->ps_session != p->p_p->ps_session) {
2438 			error = EPERM;
2439 			goto fail;
2440 		}
2441 
2442 		if ((pr->ps_flags & PS_EXITING) != 0) {
2443 			error = ESRCH;
2444 			goto fail;
2445 		}
2446 	} else /* if (pgid < 0) */ {
2447 		pgrp = pgfind(-pgid);
2448 		if (pgrp == NULL) {
2449 			error = ESRCH;
2450 			goto fail;
2451 		}
2452 
2453 		/*
2454 		 * Policy - Don't allow a process to FSETOWN a process
2455 		 * in another session.
2456 		 *
2457 		 * Remove this test to allow maximum flexibility or
2458 		 * restrict FSETOWN to the current process or process
2459 		 * group for maximum safety.
2460 		 */
2461 		if (pgrp->pg_session != p->p_p->ps_session) {
2462 			error = EPERM;
2463 			goto fail;
2464 		}
2465 	}
2466 
2467 	if (pgid > 0) {
2468 		sigio->sio_proc = pr;
2469 		LIST_INSERT_HEAD(&pr->ps_sigiolst, sigio, sio_pgsigio);
2470 	} else {
2471 		sigio->sio_pgrp = pgrp;
2472 		LIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
2473 	}
2474 
2475 	sigio_unlink(sir, &rmlist);
2476 	sir->sir_sigio = sigio;
2477 
2478 	mtx_leave(&sigio_lock);
2479 	KERNEL_UNLOCK();
2480 
2481 	sigio_del(&rmlist);
2482 
2483 	return (0);
2484 
2485 fail:
2486 	mtx_leave(&sigio_lock);
2487 	KERNEL_UNLOCK();
2488 
2489 	crfree(sigio->sio_ucred);
2490 	free(sigio, M_SIGIO, sizeof(*sigio));
2491 
2492 	return (error);
2493 }
2494 
2495 void
sigio_getown(struct sigio_ref * sir,u_long cmd,caddr_t data)2496 sigio_getown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2497 {
2498 	struct sigio *sigio;
2499 	pid_t pgid = 0;
2500 
2501 	mtx_enter(&sigio_lock);
2502 	sigio = sir->sir_sigio;
2503 	if (sigio != NULL)
2504 		pgid = sigio->sio_pgid;
2505 	mtx_leave(&sigio_lock);
2506 
2507 	if (cmd == TIOCGPGRP)
2508 		pgid = -pgid;
2509 
2510 	*(int *)data = pgid;
2511 }
2512 
2513 void
sigio_copy(struct sigio_ref * dst,struct sigio_ref * src)2514 sigio_copy(struct sigio_ref *dst, struct sigio_ref *src)
2515 {
2516 	struct sigiolst rmlist;
2517 	struct sigio *newsigio, *sigio;
2518 
2519 	sigio_free(dst);
2520 
2521 	if (src->sir_sigio == NULL)
2522 		return;
2523 
2524 	newsigio = malloc(sizeof(*newsigio), M_SIGIO, M_WAITOK);
2525 	LIST_INIT(&rmlist);
2526 
2527 	mtx_enter(&sigio_lock);
2528 
2529 	sigio = src->sir_sigio;
2530 	if (sigio == NULL) {
2531 		mtx_leave(&sigio_lock);
2532 		free(newsigio, M_SIGIO, sizeof(*newsigio));
2533 		return;
2534 	}
2535 
2536 	newsigio->sio_pgid = sigio->sio_pgid;
2537 	newsigio->sio_ucred = crhold(sigio->sio_ucred);
2538 	newsigio->sio_myref = dst;
2539 	if (newsigio->sio_pgid > 0) {
2540 		newsigio->sio_proc = sigio->sio_proc;
2541 		LIST_INSERT_HEAD(&newsigio->sio_proc->ps_sigiolst, newsigio,
2542 		    sio_pgsigio);
2543 	} else {
2544 		newsigio->sio_pgrp = sigio->sio_pgrp;
2545 		LIST_INSERT_HEAD(&newsigio->sio_pgrp->pg_sigiolst, newsigio,
2546 		    sio_pgsigio);
2547 	}
2548 
2549 	sigio_unlink(dst, &rmlist);
2550 	dst->sir_sigio = newsigio;
2551 
2552 	mtx_leave(&sigio_lock);
2553 
2554 	sigio_del(&rmlist);
2555 }
2556