1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputFiles.h"
16 #include "InputSection.h"
17 #include "OutputSections.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "Writer.h"
23 #include "lld/Common/CommonLinkerContext.h"
24 #include "lld/Common/Strings.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <limits>
37 #include <string>
38 #include <vector>
39 
40 using namespace llvm;
41 using namespace llvm::ELF;
42 using namespace llvm::object;
43 using namespace llvm::support::endian;
44 using namespace lld;
45 using namespace lld::elf;
46 
47 std::unique_ptr<LinkerScript> elf::script;
48 
isSectionPrefix(StringRef prefix,StringRef name)49 static bool isSectionPrefix(StringRef prefix, StringRef name) {
50   return name.consume_front(prefix) && (name.empty() || name[0] == '.');
51 }
52 
getOutputSectionName(const InputSectionBase * s)53 static StringRef getOutputSectionName(const InputSectionBase *s) {
54   // This is for --emit-relocs and -r. If .text.foo is emitted as .text.bar, we
55   // want to emit .rela.text.foo as .rela.text.bar for consistency (this is not
56   // technically required, but not doing it is odd). This code guarantees that.
57   if (auto *isec = dyn_cast<InputSection>(s)) {
58     if (InputSectionBase *rel = isec->getRelocatedSection()) {
59       OutputSection *out = rel->getOutputSection();
60       if (!out) {
61         assert(config->relocatable && (rel->flags & SHF_LINK_ORDER));
62         return s->name;
63       }
64       if (s->type == SHT_RELA)
65         return saver().save(".rela" + out->name);
66       return saver().save(".rel" + out->name);
67     }
68   }
69 
70   if (config->relocatable)
71     return s->name;
72 
73   // A BssSection created for a common symbol is identified as "COMMON" in
74   // linker scripts. It should go to .bss section.
75   if (s->name == "COMMON")
76     return ".bss";
77 
78   if (script->hasSectionsCommand)
79     return s->name;
80 
81   // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
82   // by grouping sections with certain prefixes.
83 
84   // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
85   // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
86   // We provide an option -z keep-text-section-prefix to group such sections
87   // into separate output sections. This is more flexible. See also
88   // sortISDBySectionOrder().
89   // ".text.unknown" means the hotness of the section is unknown. When
90   // SampleFDO is used, if a function doesn't have sample, it could be very
91   // cold or it could be a new function never being sampled. Those functions
92   // will be kept in the ".text.unknown" section.
93   // ".text.split." holds symbols which are split out from functions in other
94   // input sections. For example, with -fsplit-machine-functions, placing the
95   // cold parts in .text.split instead of .text.unlikely mitigates against poor
96   // profile inaccuracy. Techniques such as hugepage remapping can make
97   // conservative decisions at the section granularity.
98   if (isSectionPrefix(".text", s->name)) {
99     if (config->zKeepTextSectionPrefix)
100       for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely",
101                           ".text.startup", ".text.exit", ".text.split"})
102         if (isSectionPrefix(v.substr(5), s->name.substr(5)))
103           return v;
104     return ".text";
105   }
106 
107   for (StringRef v :
108        {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", ".ldata",
109         ".lrodata", ".lbss", ".gcc_except_table", ".init_array", ".fini_array",
110         ".tbss", ".tdata", ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"})
111     if (isSectionPrefix(v, s->name))
112       return v;
113 
114   return s->name;
115 }
116 
getValue() const117 uint64_t ExprValue::getValue() const {
118   if (sec)
119     return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val),
120                            alignment);
121   return alignToPowerOf2(val, alignment);
122 }
123 
getSecAddr() const124 uint64_t ExprValue::getSecAddr() const {
125   return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0;
126 }
127 
getSectionOffset() const128 uint64_t ExprValue::getSectionOffset() const {
129   return getValue() - getSecAddr();
130 }
131 
createOutputSection(StringRef name,StringRef location)132 OutputDesc *LinkerScript::createOutputSection(StringRef name,
133                                               StringRef location) {
134   OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)];
135   OutputDesc *sec;
136   if (secRef && secRef->osec.location.empty()) {
137     // There was a forward reference.
138     sec = secRef;
139   } else {
140     sec = make<OutputDesc>(name, SHT_PROGBITS, 0);
141     if (!secRef)
142       secRef = sec;
143   }
144   sec->osec.location = std::string(location);
145   return sec;
146 }
147 
getOrCreateOutputSection(StringRef name)148 OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) {
149   OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)];
150   if (!cmdRef)
151     cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0);
152   return cmdRef;
153 }
154 
155 // Expands the memory region by the specified size.
expandMemoryRegion(MemoryRegion * memRegion,uint64_t size,StringRef secName)156 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
157                                StringRef secName) {
158   memRegion->curPos += size;
159 }
160 
expandMemoryRegions(uint64_t size)161 void LinkerScript::expandMemoryRegions(uint64_t size) {
162   if (state->memRegion)
163     expandMemoryRegion(state->memRegion, size, state->outSec->name);
164   // Only expand the LMARegion if it is different from memRegion.
165   if (state->lmaRegion && state->memRegion != state->lmaRegion)
166     expandMemoryRegion(state->lmaRegion, size, state->outSec->name);
167 }
168 
expandOutputSection(uint64_t size)169 void LinkerScript::expandOutputSection(uint64_t size) {
170   state->outSec->size += size;
171   expandMemoryRegions(size);
172 }
173 
setDot(Expr e,const Twine & loc,bool inSec)174 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
175   uint64_t val = e().getValue();
176   // If val is smaller and we are in an output section, record the error and
177   // report it if this is the last assignAddresses iteration. dot may be smaller
178   // if there is another assignAddresses iteration.
179   if (val < dot && inSec) {
180     backwardDotErr =
181         (loc + ": unable to move location counter (0x" + Twine::utohexstr(dot) +
182          ") backward to 0x" + Twine::utohexstr(val) + " for section '" +
183          state->outSec->name + "'")
184             .str();
185   }
186 
187   // Update to location counter means update to section size.
188   if (inSec)
189     expandOutputSection(val - dot);
190 
191   dot = val;
192 }
193 
194 // Used for handling linker symbol assignments, for both finalizing
195 // their values and doing early declarations. Returns true if symbol
196 // should be defined from linker script.
shouldDefineSym(SymbolAssignment * cmd)197 static bool shouldDefineSym(SymbolAssignment *cmd) {
198   if (cmd->name == ".")
199     return false;
200 
201   if (!cmd->provide)
202     return true;
203 
204   // If a symbol was in PROVIDE(), we need to define it only
205   // when it is a referenced undefined symbol.
206   Symbol *b = symtab.find(cmd->name);
207   if (b && !b->isDefined() && !b->isCommon())
208     return true;
209   return false;
210 }
211 
212 // Called by processSymbolAssignments() to assign definitions to
213 // linker-script-defined symbols.
addSymbol(SymbolAssignment * cmd)214 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
215   if (!shouldDefineSym(cmd))
216     return;
217 
218   // Define a symbol.
219   ExprValue value = cmd->expression();
220   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
221   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
222 
223   // When this function is called, section addresses have not been
224   // fixed yet. So, we may or may not know the value of the RHS
225   // expression.
226   //
227   // For example, if an expression is `x = 42`, we know x is always 42.
228   // However, if an expression is `x = .`, there's no way to know its
229   // value at the moment.
230   //
231   // We want to set symbol values early if we can. This allows us to
232   // use symbols as variables in linker scripts. Doing so allows us to
233   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
234   uint64_t symValue = value.sec ? 0 : value.getValue();
235 
236   Defined newSym(createInternalFile(cmd->location), cmd->name, STB_GLOBAL,
237                  visibility, value.type, symValue, 0, sec);
238 
239   Symbol *sym = symtab.insert(cmd->name);
240   sym->mergeProperties(newSym);
241   newSym.overwrite(*sym);
242   sym->isUsedInRegularObj = true;
243   cmd->sym = cast<Defined>(sym);
244 }
245 
246 // This function is called from LinkerScript::declareSymbols.
247 // It creates a placeholder symbol if needed.
declareSymbol(SymbolAssignment * cmd)248 static void declareSymbol(SymbolAssignment *cmd) {
249   if (!shouldDefineSym(cmd))
250     return;
251 
252   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
253   Defined newSym(ctx.internalFile, cmd->name, STB_GLOBAL, visibility,
254                  STT_NOTYPE, 0, 0, nullptr);
255 
256   // If the symbol is already defined, its order is 0 (with absence indicating
257   // 0); otherwise it's assigned the order of the SymbolAssignment.
258   Symbol *sym = symtab.insert(cmd->name);
259   if (!sym->isDefined())
260     ctx.scriptSymOrder.insert({sym, cmd->symOrder});
261 
262   // We can't calculate final value right now.
263   sym->mergeProperties(newSym);
264   newSym.overwrite(*sym);
265 
266   cmd->sym = cast<Defined>(sym);
267   cmd->provide = false;
268   sym->isUsedInRegularObj = true;
269   sym->scriptDefined = true;
270 }
271 
272 using SymbolAssignmentMap =
273     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
274 
275 // Collect section/value pairs of linker-script-defined symbols. This is used to
276 // check whether symbol values converge.
277 static SymbolAssignmentMap
getSymbolAssignmentValues(ArrayRef<SectionCommand * > sectionCommands)278 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) {
279   SymbolAssignmentMap ret;
280   for (SectionCommand *cmd : sectionCommands) {
281     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
282       if (assign->sym) // sym is nullptr for dot.
283         ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
284                                                     assign->sym->value));
285       continue;
286     }
287     for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
288       if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
289         if (assign->sym)
290           ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
291                                                       assign->sym->value));
292   }
293   return ret;
294 }
295 
296 // Returns the lexicographical smallest (for determinism) Defined whose
297 // section/value has changed.
298 static const Defined *
getChangedSymbolAssignment(const SymbolAssignmentMap & oldValues)299 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
300   const Defined *changed = nullptr;
301   for (auto &it : oldValues) {
302     const Defined *sym = it.first;
303     if (std::make_pair(sym->section, sym->value) != it.second &&
304         (!changed || sym->getName() < changed->getName()))
305       changed = sym;
306   }
307   return changed;
308 }
309 
310 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the
311 // specified output section to the designated place.
processInsertCommands()312 void LinkerScript::processInsertCommands() {
313   SmallVector<OutputDesc *, 0> moves;
314   for (const InsertCommand &cmd : insertCommands) {
315     for (StringRef name : cmd.names) {
316       // If base is empty, it may have been discarded by
317       // adjustOutputSections(). We do not handle such output sections.
318       auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) {
319         return isa<OutputDesc>(subCmd) &&
320                cast<OutputDesc>(subCmd)->osec.name == name;
321       });
322       if (from == sectionCommands.end())
323         continue;
324       moves.push_back(cast<OutputDesc>(*from));
325       sectionCommands.erase(from);
326     }
327 
328     auto insertPos =
329         llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) {
330           auto *to = dyn_cast<OutputDesc>(subCmd);
331           return to != nullptr && to->osec.name == cmd.where;
332         });
333     if (insertPos == sectionCommands.end()) {
334       error("unable to insert " + cmd.names[0] +
335             (cmd.isAfter ? " after " : " before ") + cmd.where);
336     } else {
337       if (cmd.isAfter)
338         ++insertPos;
339       sectionCommands.insert(insertPos, moves.begin(), moves.end());
340     }
341     moves.clear();
342   }
343 }
344 
345 // Symbols defined in script should not be inlined by LTO. At the same time
346 // we don't know their final values until late stages of link. Here we scan
347 // over symbol assignment commands and create placeholder symbols if needed.
declareSymbols()348 void LinkerScript::declareSymbols() {
349   assert(!state);
350   for (SectionCommand *cmd : sectionCommands) {
351     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
352       declareSymbol(assign);
353       continue;
354     }
355 
356     // If the output section directive has constraints,
357     // we can't say for sure if it is going to be included or not.
358     // Skip such sections for now. Improve the checks if we ever
359     // need symbols from that sections to be declared early.
360     const OutputSection &sec = cast<OutputDesc>(cmd)->osec;
361     if (sec.constraint != ConstraintKind::NoConstraint)
362       continue;
363     for (SectionCommand *cmd : sec.commands)
364       if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
365         declareSymbol(assign);
366   }
367 }
368 
369 // This function is called from assignAddresses, while we are
370 // fixing the output section addresses. This function is supposed
371 // to set the final value for a given symbol assignment.
assignSymbol(SymbolAssignment * cmd,bool inSec)372 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
373   if (cmd->name == ".") {
374     setDot(cmd->expression, cmd->location, inSec);
375     return;
376   }
377 
378   if (!cmd->sym)
379     return;
380 
381   ExprValue v = cmd->expression();
382   if (v.isAbsolute()) {
383     cmd->sym->section = nullptr;
384     cmd->sym->value = v.getValue();
385   } else {
386     cmd->sym->section = v.sec;
387     cmd->sym->value = v.getSectionOffset();
388   }
389   cmd->sym->type = v.type;
390 }
391 
getFilename(const InputFile * file)392 static inline StringRef getFilename(const InputFile *file) {
393   return file ? file->getNameForScript() : StringRef();
394 }
395 
matchesFile(const InputFile * file) const396 bool InputSectionDescription::matchesFile(const InputFile *file) const {
397   if (filePat.isTrivialMatchAll())
398     return true;
399 
400   if (!matchesFileCache || matchesFileCache->first != file)
401     matchesFileCache.emplace(file, filePat.match(getFilename(file)));
402 
403   return matchesFileCache->second;
404 }
405 
excludesFile(const InputFile * file) const406 bool SectionPattern::excludesFile(const InputFile *file) const {
407   if (excludedFilePat.empty())
408     return false;
409 
410   if (!excludesFileCache || excludesFileCache->first != file)
411     excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file)));
412 
413   return excludesFileCache->second;
414 }
415 
shouldKeep(InputSectionBase * s)416 bool LinkerScript::shouldKeep(InputSectionBase *s) {
417   for (InputSectionDescription *id : keptSections)
418     if (id->matchesFile(s->file))
419       for (SectionPattern &p : id->sectionPatterns)
420         if (p.sectionPat.match(s->name) &&
421             (s->flags & id->withFlags) == id->withFlags &&
422             (s->flags & id->withoutFlags) == 0)
423           return true;
424   return false;
425 }
426 
427 // A helper function for the SORT() command.
matchConstraints(ArrayRef<InputSectionBase * > sections,ConstraintKind kind)428 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
429                              ConstraintKind kind) {
430   if (kind == ConstraintKind::NoConstraint)
431     return true;
432 
433   bool isRW = llvm::any_of(
434       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
435 
436   return (isRW && kind == ConstraintKind::ReadWrite) ||
437          (!isRW && kind == ConstraintKind::ReadOnly);
438 }
439 
sortSections(MutableArrayRef<InputSectionBase * > vec,SortSectionPolicy k)440 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
441                          SortSectionPolicy k) {
442   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
443     // ">" is not a mistake. Sections with larger alignments are placed
444     // before sections with smaller alignments in order to reduce the
445     // amount of padding necessary. This is compatible with GNU.
446     return a->addralign > b->addralign;
447   };
448   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
449     return a->name < b->name;
450   };
451   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
452     return getPriority(a->name) < getPriority(b->name);
453   };
454 
455   switch (k) {
456   case SortSectionPolicy::Default:
457   case SortSectionPolicy::None:
458     return;
459   case SortSectionPolicy::Alignment:
460     return llvm::stable_sort(vec, alignmentComparator);
461   case SortSectionPolicy::Name:
462     return llvm::stable_sort(vec, nameComparator);
463   case SortSectionPolicy::Priority:
464     return llvm::stable_sort(vec, priorityComparator);
465   case SortSectionPolicy::Reverse:
466     return std::reverse(vec.begin(), vec.end());
467   }
468 }
469 
470 // Sort sections as instructed by SORT-family commands and --sort-section
471 // option. Because SORT-family commands can be nested at most two depth
472 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
473 // line option is respected even if a SORT command is given, the exact
474 // behavior we have here is a bit complicated. Here are the rules.
475 //
476 // 1. If two SORT commands are given, --sort-section is ignored.
477 // 2. If one SORT command is given, and if it is not SORT_NONE,
478 //    --sort-section is handled as an inner SORT command.
479 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
480 // 4. If no SORT command is given, sort according to --sort-section.
sortInputSections(MutableArrayRef<InputSectionBase * > vec,SortSectionPolicy outer,SortSectionPolicy inner)481 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
482                               SortSectionPolicy outer,
483                               SortSectionPolicy inner) {
484   if (outer == SortSectionPolicy::None)
485     return;
486 
487   if (inner == SortSectionPolicy::Default)
488     sortSections(vec, config->sortSection);
489   else
490     sortSections(vec, inner);
491   sortSections(vec, outer);
492 }
493 
494 // Compute and remember which sections the InputSectionDescription matches.
495 SmallVector<InputSectionBase *, 0>
computeInputSections(const InputSectionDescription * cmd,ArrayRef<InputSectionBase * > sections)496 LinkerScript::computeInputSections(const InputSectionDescription *cmd,
497                                    ArrayRef<InputSectionBase *> sections) {
498   SmallVector<InputSectionBase *, 0> ret;
499   SmallVector<size_t, 0> indexes;
500   DenseSet<size_t> seen;
501   auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) {
502     llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin));
503     for (size_t i = begin; i != end; ++i)
504       ret[i] = sections[indexes[i]];
505     sortInputSections(
506         MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin),
507         config->sortSection, SortSectionPolicy::None);
508   };
509 
510   // Collects all sections that satisfy constraints of Cmd.
511   size_t sizeAfterPrevSort = 0;
512   for (const SectionPattern &pat : cmd->sectionPatterns) {
513     size_t sizeBeforeCurrPat = ret.size();
514 
515     for (size_t i = 0, e = sections.size(); i != e; ++i) {
516       // Skip if the section is dead or has been matched by a previous input
517       // section description or a previous pattern.
518       InputSectionBase *sec = sections[i];
519       if (!sec->isLive() || sec->parent || seen.contains(i))
520         continue;
521 
522       // For --emit-relocs we have to ignore entries like
523       //   .rela.dyn : { *(.rela.data) }
524       // which are common because they are in the default bfd script.
525       // We do not ignore SHT_REL[A] linker-synthesized sections here because
526       // want to support scripts that do custom layout for them.
527       if (isa<InputSection>(sec) &&
528           cast<InputSection>(sec)->getRelocatedSection())
529         continue;
530 
531       // Check the name early to improve performance in the common case.
532       if (!pat.sectionPat.match(sec->name))
533         continue;
534 
535       if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) ||
536           (sec->flags & cmd->withFlags) != cmd->withFlags ||
537           (sec->flags & cmd->withoutFlags) != 0)
538         continue;
539 
540       ret.push_back(sec);
541       indexes.push_back(i);
542       seen.insert(i);
543     }
544 
545     if (pat.sortOuter == SortSectionPolicy::Default)
546       continue;
547 
548     // Matched sections are ordered by radix sort with the keys being (SORT*,
549     // --sort-section, input order), where SORT* (if present) is most
550     // significant.
551     //
552     // Matched sections between the previous SORT* and this SORT* are sorted by
553     // (--sort-alignment, input order).
554     sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat);
555     // Matched sections by this SORT* pattern are sorted using all 3 keys.
556     // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we
557     // just sort by sortOuter and sortInner.
558     sortInputSections(
559         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat),
560         pat.sortOuter, pat.sortInner);
561     sizeAfterPrevSort = ret.size();
562   }
563   // Matched sections after the last SORT* are sorted by (--sort-alignment,
564   // input order).
565   sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size());
566   return ret;
567 }
568 
discard(InputSectionBase & s)569 void LinkerScript::discard(InputSectionBase &s) {
570   if (&s == in.shStrTab.get())
571     error("discarding " + s.name + " section is not allowed");
572 
573   s.markDead();
574   s.parent = nullptr;
575   for (InputSection *sec : s.dependentSections)
576     discard(*sec);
577 }
578 
discardSynthetic(OutputSection & outCmd)579 void LinkerScript::discardSynthetic(OutputSection &outCmd) {
580   for (Partition &part : partitions) {
581     if (!part.armExidx || !part.armExidx->isLive())
582       continue;
583     SmallVector<InputSectionBase *, 0> secs(
584         part.armExidx->exidxSections.begin(),
585         part.armExidx->exidxSections.end());
586     for (SectionCommand *cmd : outCmd.commands)
587       if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
588         for (InputSectionBase *s : computeInputSections(isd, secs))
589           discard(*s);
590   }
591 }
592 
593 SmallVector<InputSectionBase *, 0>
createInputSectionList(OutputSection & outCmd)594 LinkerScript::createInputSectionList(OutputSection &outCmd) {
595   SmallVector<InputSectionBase *, 0> ret;
596 
597   for (SectionCommand *cmd : outCmd.commands) {
598     if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
599       isd->sectionBases = computeInputSections(isd, ctx.inputSections);
600       for (InputSectionBase *s : isd->sectionBases)
601         s->parent = &outCmd;
602       ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end());
603     }
604   }
605   return ret;
606 }
607 
608 // Create output sections described by SECTIONS commands.
processSectionCommands()609 void LinkerScript::processSectionCommands() {
610   auto process = [this](OutputSection *osec) {
611     SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec);
612 
613     // The output section name `/DISCARD/' is special.
614     // Any input section assigned to it is discarded.
615     if (osec->name == "/DISCARD/") {
616       for (InputSectionBase *s : v)
617         discard(*s);
618       discardSynthetic(*osec);
619       osec->commands.clear();
620       return false;
621     }
622 
623     // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
624     // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
625     // sections satisfy a given constraint. If not, a directive is handled
626     // as if it wasn't present from the beginning.
627     //
628     // Because we'll iterate over SectionCommands many more times, the easy
629     // way to "make it as if it wasn't present" is to make it empty.
630     if (!matchConstraints(v, osec->constraint)) {
631       for (InputSectionBase *s : v)
632         s->parent = nullptr;
633       osec->commands.clear();
634       return false;
635     }
636 
637     // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
638     // is given, input sections are aligned to that value, whether the
639     // given value is larger or smaller than the original section alignment.
640     if (osec->subalignExpr) {
641       uint32_t subalign = osec->subalignExpr().getValue();
642       for (InputSectionBase *s : v)
643         s->addralign = subalign;
644     }
645 
646     // Set the partition field the same way OutputSection::recordSection()
647     // does. Partitions cannot be used with the SECTIONS command, so this is
648     // always 1.
649     osec->partition = 1;
650     return true;
651   };
652 
653   // Process OVERWRITE_SECTIONS first so that it can overwrite the main script
654   // or orphans.
655   DenseMap<CachedHashStringRef, OutputDesc *> map;
656   size_t i = 0;
657   for (OutputDesc *osd : overwriteSections) {
658     OutputSection *osec = &osd->osec;
659     if (process(osec) &&
660         !map.try_emplace(CachedHashStringRef(osec->name), osd).second)
661       warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name);
662   }
663   for (SectionCommand *&base : sectionCommands)
664     if (auto *osd = dyn_cast<OutputDesc>(base)) {
665       OutputSection *osec = &osd->osec;
666       if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) {
667         log(overwrite->osec.location + " overwrites " + osec->name);
668         overwrite->osec.sectionIndex = i++;
669         base = overwrite;
670       } else if (process(osec)) {
671         osec->sectionIndex = i++;
672       }
673     }
674 
675   // If an OVERWRITE_SECTIONS specified output section is not in
676   // sectionCommands, append it to the end. The section will be inserted by
677   // orphan placement.
678   for (OutputDesc *osd : overwriteSections)
679     if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX)
680       sectionCommands.push_back(osd);
681 }
682 
processSymbolAssignments()683 void LinkerScript::processSymbolAssignments() {
684   // Dot outside an output section still represents a relative address, whose
685   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
686   // that fills the void outside a section. It has an index of one, which is
687   // indistinguishable from any other regular section index.
688   aether = make<OutputSection>("", 0, SHF_ALLOC);
689   aether->sectionIndex = 1;
690 
691   // `st` captures the local AddressState and makes it accessible deliberately.
692   // This is needed as there are some cases where we cannot just thread the
693   // current state through to a lambda function created by the script parser.
694   AddressState st;
695   state = &st;
696   st.outSec = aether;
697 
698   for (SectionCommand *cmd : sectionCommands) {
699     if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
700       addSymbol(assign);
701     else
702       for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
703         if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
704           addSymbol(assign);
705   }
706 
707   state = nullptr;
708 }
709 
findByName(ArrayRef<SectionCommand * > vec,StringRef name)710 static OutputSection *findByName(ArrayRef<SectionCommand *> vec,
711                                  StringRef name) {
712   for (SectionCommand *cmd : vec)
713     if (auto *osd = dyn_cast<OutputDesc>(cmd))
714       if (osd->osec.name == name)
715         return &osd->osec;
716   return nullptr;
717 }
718 
createSection(InputSectionBase * isec,StringRef outsecName)719 static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) {
720   OutputDesc *osd = script->createOutputSection(outsecName, "<internal>");
721   osd->osec.recordSection(isec);
722   return osd;
723 }
724 
addInputSec(StringMap<TinyPtrVector<OutputSection * >> & map,InputSectionBase * isec,StringRef outsecName)725 static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
726                                InputSectionBase *isec, StringRef outsecName) {
727   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
728   // option is given. A section with SHT_GROUP defines a "section group", and
729   // its members have SHF_GROUP attribute. Usually these flags have already been
730   // stripped by InputFiles.cpp as section groups are processed and uniquified.
731   // However, for the -r option, we want to pass through all section groups
732   // as-is because adding/removing members or merging them with other groups
733   // change their semantics.
734   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
735     return createSection(isec, outsecName);
736 
737   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
738   // relocation sections .rela.foo and .rela.bar for example. Most tools do
739   // not allow multiple REL[A] sections for output section. Hence we
740   // should combine these relocation sections into single output.
741   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
742   // other REL[A] sections created by linker itself.
743   if (!isa<SyntheticSection>(isec) &&
744       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
745     auto *sec = cast<InputSection>(isec);
746     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
747 
748     if (out->relocationSection) {
749       out->relocationSection->recordSection(sec);
750       return nullptr;
751     }
752 
753     OutputDesc *osd = createSection(isec, outsecName);
754     out->relocationSection = &osd->osec;
755     return osd;
756   }
757 
758   //  The ELF spec just says
759   // ----------------------------------------------------------------
760   // In the first phase, input sections that match in name, type and
761   // attribute flags should be concatenated into single sections.
762   // ----------------------------------------------------------------
763   //
764   // However, it is clear that at least some flags have to be ignored for
765   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
766   // ignored. We should not have two output .text sections just because one was
767   // in a group and another was not for example.
768   //
769   // It also seems that wording was a late addition and didn't get the
770   // necessary scrutiny.
771   //
772   // Merging sections with different flags is expected by some users. One
773   // reason is that if one file has
774   //
775   // int *const bar __attribute__((section(".foo"))) = (int *)0;
776   //
777   // gcc with -fPIC will produce a read only .foo section. But if another
778   // file has
779   //
780   // int zed;
781   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
782   //
783   // gcc with -fPIC will produce a read write section.
784   //
785   // Last but not least, when using linker script the merge rules are forced by
786   // the script. Unfortunately, linker scripts are name based. This means that
787   // expressions like *(.foo*) can refer to multiple input sections with
788   // different flags. We cannot put them in different output sections or we
789   // would produce wrong results for
790   //
791   // start = .; *(.foo.*) end = .; *(.bar)
792   //
793   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
794   // another. The problem is that there is no way to layout those output
795   // sections such that the .foo sections are the only thing between the start
796   // and end symbols.
797   //
798   // Given the above issues, we instead merge sections by name and error on
799   // incompatible types and flags.
800   TinyPtrVector<OutputSection *> &v = map[outsecName];
801   for (OutputSection *sec : v) {
802     if (sec->partition != isec->partition)
803       continue;
804 
805     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
806       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
807       // change their semantics, so we only merge them in -r links if they will
808       // end up being linked to the same output section. The casts are fine
809       // because everything in the map was created by the orphan placement code.
810       auto *firstIsec = cast<InputSectionBase>(
811           cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]);
812       OutputSection *firstIsecOut =
813           firstIsec->flags & SHF_LINK_ORDER
814               ? firstIsec->getLinkOrderDep()->getOutputSection()
815               : nullptr;
816       if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection())
817         continue;
818     }
819 
820     sec->recordSection(isec);
821     return nullptr;
822   }
823 
824   OutputDesc *osd = createSection(isec, outsecName);
825   v.push_back(&osd->osec);
826   return osd;
827 }
828 
829 // Add sections that didn't match any sections command.
addOrphanSections()830 void LinkerScript::addOrphanSections() {
831   StringMap<TinyPtrVector<OutputSection *>> map;
832   SmallVector<OutputDesc *, 0> v;
833 
834   auto add = [&](InputSectionBase *s) {
835     if (s->isLive() && !s->parent) {
836       orphanSections.push_back(s);
837 
838       StringRef name = getOutputSectionName(s);
839       if (config->unique) {
840         v.push_back(createSection(s, name));
841       } else if (OutputSection *sec = findByName(sectionCommands, name)) {
842         sec->recordSection(s);
843       } else {
844         if (OutputDesc *osd = addInputSec(map, s, name))
845           v.push_back(osd);
846         assert(isa<MergeInputSection>(s) ||
847                s->getOutputSection()->sectionIndex == UINT32_MAX);
848       }
849     }
850   };
851 
852   // For further --emit-reloc handling code we need target output section
853   // to be created before we create relocation output section, so we want
854   // to create target sections first. We do not want priority handling
855   // for synthetic sections because them are special.
856   size_t n = 0;
857   for (InputSectionBase *isec : ctx.inputSections) {
858     // Process InputSection and MergeInputSection.
859     if (LLVM_LIKELY(isa<InputSection>(isec)))
860       ctx.inputSections[n++] = isec;
861 
862     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
863     // sections because we need to know the parent's output section before we
864     // can select an output section for the SHF_LINK_ORDER section.
865     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
866       continue;
867 
868     if (auto *sec = dyn_cast<InputSection>(isec))
869       if (InputSectionBase *rel = sec->getRelocatedSection())
870         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
871           add(relIS);
872     add(isec);
873     if (config->relocatable)
874       for (InputSectionBase *depSec : isec->dependentSections)
875         if (depSec->flags & SHF_LINK_ORDER)
876           add(depSec);
877   }
878   // Keep just InputSection.
879   ctx.inputSections.resize(n);
880 
881   // If no SECTIONS command was given, we should insert sections commands
882   // before others, so that we can handle scripts which refers them,
883   // for example: "foo = ABSOLUTE(ADDR(.text)));".
884   // When SECTIONS command is present we just add all orphans to the end.
885   if (hasSectionsCommand)
886     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
887   else
888     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
889 }
890 
diagnoseOrphanHandling() const891 void LinkerScript::diagnoseOrphanHandling() const {
892   llvm::TimeTraceScope timeScope("Diagnose orphan sections");
893   if (config->orphanHandling == OrphanHandlingPolicy::Place)
894     return;
895   for (const InputSectionBase *sec : orphanSections) {
896     // .relro_padding is inserted before DATA_SEGMENT_RELRO_END, if present,
897     // automatically. The section is not supposed to be specified by scripts.
898     if (sec == in.relroPadding.get())
899       continue;
900     // Input SHT_REL[A] retained by --emit-relocs are ignored by
901     // computeInputSections(). Don't warn/error.
902     if (isa<InputSection>(sec) &&
903         cast<InputSection>(sec)->getRelocatedSection())
904       continue;
905 
906     StringRef name = getOutputSectionName(sec);
907     if (config->orphanHandling == OrphanHandlingPolicy::Error)
908       error(toString(sec) + " is being placed in '" + name + "'");
909     else
910       warn(toString(sec) + " is being placed in '" + name + "'");
911   }
912 }
913 
diagnoseMissingSGSectionAddress() const914 void LinkerScript::diagnoseMissingSGSectionAddress() const {
915   if (!config->cmseImplib || !in.armCmseSGSection->isNeeded())
916     return;
917 
918   OutputSection *sec = findByName(sectionCommands, ".gnu.sgstubs");
919   if (sec && !sec->addrExpr && !config->sectionStartMap.count(".gnu.sgstubs"))
920     error("no address assigned to the veneers output section " + sec->name);
921 }
922 
923 // This function searches for a memory region to place the given output
924 // section in. If found, a pointer to the appropriate memory region is
925 // returned in the first member of the pair. Otherwise, a nullptr is returned.
926 // The second member of the pair is a hint that should be passed to the
927 // subsequent call of this method.
928 std::pair<MemoryRegion *, MemoryRegion *>
findMemoryRegion(OutputSection * sec,MemoryRegion * hint)929 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) {
930   // Non-allocatable sections are not part of the process image.
931   if (!(sec->flags & SHF_ALLOC)) {
932     bool hasInputOrByteCommand =
933         sec->hasInputSections ||
934         llvm::any_of(sec->commands, [](SectionCommand *comm) {
935           return ByteCommand::classof(comm);
936         });
937     if (!sec->memoryRegionName.empty() && hasInputOrByteCommand)
938       warn("ignoring memory region assignment for non-allocatable section '" +
939            sec->name + "'");
940     return {nullptr, nullptr};
941   }
942 
943   // If a memory region name was specified in the output section command,
944   // then try to find that region first.
945   if (!sec->memoryRegionName.empty()) {
946     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
947       return {m, m};
948     error("memory region '" + sec->memoryRegionName + "' not declared");
949     return {nullptr, nullptr};
950   }
951 
952   // If at least one memory region is defined, all sections must
953   // belong to some memory region. Otherwise, we don't need to do
954   // anything for memory regions.
955   if (memoryRegions.empty())
956     return {nullptr, nullptr};
957 
958   // An orphan section should continue the previous memory region.
959   if (sec->sectionIndex == UINT32_MAX && hint)
960     return {hint, hint};
961 
962   // See if a region can be found by matching section flags.
963   for (auto &pair : memoryRegions) {
964     MemoryRegion *m = pair.second;
965     if (m->compatibleWith(sec->flags))
966       return {m, nullptr};
967   }
968 
969   // Otherwise, no suitable region was found.
970   error("no memory region specified for section '" + sec->name + "'");
971   return {nullptr, nullptr};
972 }
973 
findFirstSection(PhdrEntry * load)974 static OutputSection *findFirstSection(PhdrEntry *load) {
975   for (OutputSection *sec : outputSections)
976     if (sec->ptLoad == load)
977       return sec;
978   return nullptr;
979 }
980 
981 // This function assigns offsets to input sections and an output section
982 // for a single sections command (e.g. ".text { *(.text); }").
assignOffsets(OutputSection * sec)983 void LinkerScript::assignOffsets(OutputSection *sec) {
984   const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS;
985   const bool sameMemRegion = state->memRegion == sec->memRegion;
986   const bool prevLMARegionIsDefault = state->lmaRegion == nullptr;
987   const uint64_t savedDot = dot;
988   state->memRegion = sec->memRegion;
989   state->lmaRegion = sec->lmaRegion;
990 
991   if (!(sec->flags & SHF_ALLOC)) {
992     // Non-SHF_ALLOC sections have zero addresses.
993     dot = 0;
994   } else if (isTbss) {
995     // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range
996     // starts from the end address of the previous tbss section.
997     if (state->tbssAddr == 0)
998       state->tbssAddr = dot;
999     else
1000       dot = state->tbssAddr;
1001   } else {
1002     if (state->memRegion)
1003       dot = state->memRegion->curPos;
1004     if (sec->addrExpr)
1005       setDot(sec->addrExpr, sec->location, false);
1006 
1007     // If the address of the section has been moved forward by an explicit
1008     // expression so that it now starts past the current curPos of the enclosing
1009     // region, we need to expand the current region to account for the space
1010     // between the previous section, if any, and the start of this section.
1011     if (state->memRegion && state->memRegion->curPos < dot)
1012       expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos,
1013                          sec->name);
1014   }
1015 
1016   state->outSec = sec;
1017   if (sec->addrExpr && script->hasSectionsCommand) {
1018     // The alignment is ignored.
1019     sec->addr = dot;
1020   } else {
1021     // sec->alignment is the max of ALIGN and the maximum of input
1022     // section alignments.
1023     const uint64_t pos = dot;
1024     dot = alignToPowerOf2(dot, sec->addralign);
1025     sec->addr = dot;
1026     expandMemoryRegions(dot - pos);
1027   }
1028 
1029   // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT()
1030   // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA
1031   // region is the default, and the two sections are in the same memory region,
1032   // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
1033   // heuristics described in
1034   // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
1035   if (sec->lmaExpr) {
1036     state->lmaOffset = sec->lmaExpr().getValue() - dot;
1037   } else if (MemoryRegion *mr = sec->lmaRegion) {
1038     uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign);
1039     if (mr->curPos < lmaStart)
1040       expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name);
1041     state->lmaOffset = lmaStart - dot;
1042   } else if (!sameMemRegion || !prevLMARegionIsDefault) {
1043     state->lmaOffset = 0;
1044   }
1045 
1046   // Propagate state->lmaOffset to the first "non-header" section.
1047   if (PhdrEntry *l = sec->ptLoad)
1048     if (sec == findFirstSection(l))
1049       l->lmaOffset = state->lmaOffset;
1050 
1051   // We can call this method multiple times during the creation of
1052   // thunks and want to start over calculation each time.
1053   sec->size = 0;
1054 
1055   // We visited SectionsCommands from processSectionCommands to
1056   // layout sections. Now, we visit SectionsCommands again to fix
1057   // section offsets.
1058   for (SectionCommand *cmd : sec->commands) {
1059     // This handles the assignments to symbol or to the dot.
1060     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1061       assign->addr = dot;
1062       assignSymbol(assign, true);
1063       assign->size = dot - assign->addr;
1064       continue;
1065     }
1066 
1067     // Handle BYTE(), SHORT(), LONG(), or QUAD().
1068     if (auto *data = dyn_cast<ByteCommand>(cmd)) {
1069       data->offset = dot - sec->addr;
1070       dot += data->size;
1071       expandOutputSection(data->size);
1072       continue;
1073     }
1074 
1075     // Handle a single input section description command.
1076     // It calculates and assigns the offsets for each section and also
1077     // updates the output section size.
1078     for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) {
1079       assert(isec->getParent() == sec);
1080       const uint64_t pos = dot;
1081       dot = alignToPowerOf2(dot, isec->addralign);
1082       isec->outSecOff = dot - sec->addr;
1083       dot += isec->getSize();
1084 
1085       // Update output section size after adding each section. This is so that
1086       // SIZEOF works correctly in the case below:
1087       // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
1088       expandOutputSection(dot - pos);
1089     }
1090   }
1091 
1092   // If .relro_padding is present, round up the end to a common-page-size
1093   // boundary to protect the last page.
1094   if (in.relroPadding && sec == in.relroPadding->getParent())
1095     expandOutputSection(alignToPowerOf2(dot, config->commonPageSize) - dot);
1096 
1097   // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections
1098   // as they are not part of the process image.
1099   if (!(sec->flags & SHF_ALLOC)) {
1100     dot = savedDot;
1101   } else if (isTbss) {
1102     // NOBITS TLS sections are similar. Additionally save the end address.
1103     state->tbssAddr = dot;
1104     dot = savedDot;
1105   }
1106 }
1107 
isDiscardable(const OutputSection & sec)1108 static bool isDiscardable(const OutputSection &sec) {
1109   if (sec.name == "/DISCARD/")
1110     return true;
1111 
1112   // We do not want to remove OutputSections with expressions that reference
1113   // symbols even if the OutputSection is empty. We want to ensure that the
1114   // expressions can be evaluated and report an error if they cannot.
1115   if (sec.expressionsUseSymbols)
1116     return false;
1117 
1118   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
1119   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
1120   // to maintain the integrity of the other Expression.
1121   if (sec.usedInExpression)
1122     return false;
1123 
1124   for (SectionCommand *cmd : sec.commands) {
1125     if (auto assign = dyn_cast<SymbolAssignment>(cmd))
1126       // Don't create empty output sections just for unreferenced PROVIDE
1127       // symbols.
1128       if (assign->name != "." && !assign->sym)
1129         continue;
1130 
1131     if (!isa<InputSectionDescription>(*cmd))
1132       return false;
1133   }
1134   return true;
1135 }
1136 
isDiscarded(const OutputSection * sec) const1137 bool LinkerScript::isDiscarded(const OutputSection *sec) const {
1138   return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) &&
1139          isDiscardable(*sec);
1140 }
1141 
maybePropagatePhdrs(OutputSection & sec,SmallVector<StringRef,0> & phdrs)1142 static void maybePropagatePhdrs(OutputSection &sec,
1143                                 SmallVector<StringRef, 0> &phdrs) {
1144   if (sec.phdrs.empty()) {
1145     // To match the bfd linker script behaviour, only propagate program
1146     // headers to sections that are allocated.
1147     if (sec.flags & SHF_ALLOC)
1148       sec.phdrs = phdrs;
1149   } else {
1150     phdrs = sec.phdrs;
1151   }
1152 }
1153 
adjustOutputSections()1154 void LinkerScript::adjustOutputSections() {
1155   // If the output section contains only symbol assignments, create a
1156   // corresponding output section. The issue is what to do with linker script
1157   // like ".foo : { symbol = 42; }". One option would be to convert it to
1158   // "symbol = 42;". That is, move the symbol out of the empty section
1159   // description. That seems to be what bfd does for this simple case. The
1160   // problem is that this is not completely general. bfd will give up and
1161   // create a dummy section too if there is a ". = . + 1" inside the section
1162   // for example.
1163   // Given that we want to create the section, we have to worry what impact
1164   // it will have on the link. For example, if we just create a section with
1165   // 0 for flags, it would change which PT_LOADs are created.
1166   // We could remember that particular section is dummy and ignore it in
1167   // other parts of the linker, but unfortunately there are quite a few places
1168   // that would need to change:
1169   //   * The program header creation.
1170   //   * The orphan section placement.
1171   //   * The address assignment.
1172   // The other option is to pick flags that minimize the impact the section
1173   // will have on the rest of the linker. That is why we copy the flags from
1174   // the previous sections. We copy just SHF_ALLOC and SHF_WRITE to keep the
1175   // impact low. We do not propagate SHF_EXECINSTR as in some cases this can
1176   // lead to executable writeable section.
1177   uint64_t flags = SHF_ALLOC;
1178 
1179   SmallVector<StringRef, 0> defPhdrs;
1180   bool seenRelro = false;
1181   for (SectionCommand *&cmd : sectionCommands) {
1182     if (!isa<OutputDesc>(cmd))
1183       continue;
1184     auto *sec = &cast<OutputDesc>(cmd)->osec;
1185 
1186     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
1187     if (sec->alignExpr)
1188       sec->addralign =
1189           std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue());
1190 
1191     bool isEmpty = (getFirstInputSection(sec) == nullptr);
1192     bool discardable = isEmpty && isDiscardable(*sec);
1193     // If sec has at least one input section and not discarded, remember its
1194     // flags to be inherited by subsequent output sections. (sec may contain
1195     // just one empty synthetic section.)
1196     if (sec->hasInputSections && !discardable)
1197       flags = sec->flags;
1198 
1199     // We do not want to keep any special flags for output section
1200     // in case it is empty.
1201     if (isEmpty)
1202       sec->flags =
1203           flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | SHF_WRITE);
1204 
1205     // The code below may remove empty output sections. We should save the
1206     // specified program headers (if exist) and propagate them to subsequent
1207     // sections which do not specify program headers.
1208     // An example of such a linker script is:
1209     // SECTIONS { .empty : { *(.empty) } :rw
1210     //            .foo : { *(.foo) } }
1211     // Note: at this point the order of output sections has not been finalized,
1212     // because orphans have not been inserted into their expected positions. We
1213     // will handle them in adjustSectionsAfterSorting().
1214     if (sec->sectionIndex != UINT32_MAX)
1215       maybePropagatePhdrs(*sec, defPhdrs);
1216 
1217     // Discard .relro_padding if we have not seen one RELRO section. Note: when
1218     // .tbss is the only RELRO section, there is no associated PT_LOAD segment
1219     // (needsPtLoad), so we don't append .relro_padding in the case.
1220     if (in.relroPadding && in.relroPadding->getParent() == sec && !seenRelro)
1221       discardable = true;
1222     if (discardable) {
1223       sec->markDead();
1224       cmd = nullptr;
1225     } else {
1226       seenRelro |=
1227           sec->relro && !(sec->type == SHT_NOBITS && (sec->flags & SHF_TLS));
1228     }
1229   }
1230 
1231   // It is common practice to use very generic linker scripts. So for any
1232   // given run some of the output sections in the script will be empty.
1233   // We could create corresponding empty output sections, but that would
1234   // clutter the output.
1235   // We instead remove trivially empty sections. The bfd linker seems even
1236   // more aggressive at removing them.
1237   llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; });
1238 }
1239 
adjustSectionsAfterSorting()1240 void LinkerScript::adjustSectionsAfterSorting() {
1241   // Try and find an appropriate memory region to assign offsets in.
1242   MemoryRegion *hint = nullptr;
1243   for (SectionCommand *cmd : sectionCommands) {
1244     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1245       OutputSection *sec = &osd->osec;
1246       if (!sec->lmaRegionName.empty()) {
1247         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
1248           sec->lmaRegion = m;
1249         else
1250           error("memory region '" + sec->lmaRegionName + "' not declared");
1251       }
1252       std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint);
1253     }
1254   }
1255 
1256   // If output section command doesn't specify any segments,
1257   // and we haven't previously assigned any section to segment,
1258   // then we simply assign section to the very first load segment.
1259   // Below is an example of such linker script:
1260   // PHDRS { seg PT_LOAD; }
1261   // SECTIONS { .aaa : { *(.aaa) } }
1262   SmallVector<StringRef, 0> defPhdrs;
1263   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
1264     return cmd.type == PT_LOAD;
1265   });
1266   if (firstPtLoad != phdrsCommands.end())
1267     defPhdrs.push_back(firstPtLoad->name);
1268 
1269   // Walk the commands and propagate the program headers to commands that don't
1270   // explicitly specify them.
1271   for (SectionCommand *cmd : sectionCommands)
1272     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1273       maybePropagatePhdrs(osd->osec, defPhdrs);
1274 }
1275 
computeBase(uint64_t min,bool allocateHeaders)1276 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1277   // If there is no SECTIONS or if the linkerscript is explicit about program
1278   // headers, do our best to allocate them.
1279   if (!script->hasSectionsCommand || allocateHeaders)
1280     return 0;
1281   // Otherwise only allocate program headers if that would not add a page.
1282   return alignDown(min, config->maxPageSize);
1283 }
1284 
1285 // When the SECTIONS command is used, try to find an address for the file and
1286 // program headers output sections, which can be added to the first PT_LOAD
1287 // segment when program headers are created.
1288 //
1289 // We check if the headers fit below the first allocated section. If there isn't
1290 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1291 // and we'll also remove the PT_PHDR segment.
allocateHeaders(SmallVector<PhdrEntry *,0> & phdrs)1292 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) {
1293   uint64_t min = std::numeric_limits<uint64_t>::max();
1294   for (OutputSection *sec : outputSections)
1295     if (sec->flags & SHF_ALLOC)
1296       min = std::min<uint64_t>(min, sec->addr);
1297 
1298   auto it = llvm::find_if(
1299       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1300   if (it == phdrs.end())
1301     return;
1302   PhdrEntry *firstPTLoad = *it;
1303 
1304   bool hasExplicitHeaders =
1305       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1306         return cmd.hasPhdrs || cmd.hasFilehdr;
1307       });
1308   bool paged = !config->omagic && !config->nmagic;
1309   uint64_t headerSize = getHeaderSize();
1310   if ((paged || hasExplicitHeaders) &&
1311       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1312     min = alignDown(min - headerSize, config->maxPageSize);
1313     Out::elfHeader->addr = min;
1314     Out::programHeaders->addr = min + Out::elfHeader->size;
1315     return;
1316   }
1317 
1318   // Error if we were explicitly asked to allocate headers.
1319   if (hasExplicitHeaders)
1320     error("could not allocate headers");
1321 
1322   Out::elfHeader->ptLoad = nullptr;
1323   Out::programHeaders->ptLoad = nullptr;
1324   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1325 
1326   llvm::erase_if(phdrs,
1327                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1328 }
1329 
AddressState()1330 LinkerScript::AddressState::AddressState() {
1331   for (auto &mri : script->memoryRegions) {
1332     MemoryRegion *mr = mri.second;
1333     mr->curPos = (mr->origin)().getValue();
1334   }
1335 }
1336 
1337 // Here we assign addresses as instructed by linker script SECTIONS
1338 // sub-commands. Doing that allows us to use final VA values, so here
1339 // we also handle rest commands like symbol assignments and ASSERTs.
1340 // Returns a symbol that has changed its section or value, or nullptr if no
1341 // symbol has changed.
assignAddresses()1342 const Defined *LinkerScript::assignAddresses() {
1343   if (script->hasSectionsCommand) {
1344     // With a linker script, assignment of addresses to headers is covered by
1345     // allocateHeaders().
1346     dot = config->imageBase.value_or(0);
1347   } else {
1348     // Assign addresses to headers right now.
1349     dot = target->getImageBase();
1350     Out::elfHeader->addr = dot;
1351     Out::programHeaders->addr = dot + Out::elfHeader->size;
1352     dot += getHeaderSize();
1353   }
1354 
1355   AddressState st;
1356   state = &st;
1357   errorOnMissingSection = true;
1358   st.outSec = aether;
1359   backwardDotErr.clear();
1360 
1361   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1362   for (SectionCommand *cmd : sectionCommands) {
1363     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1364       assign->addr = dot;
1365       assignSymbol(assign, false);
1366       assign->size = dot - assign->addr;
1367       continue;
1368     }
1369     assignOffsets(&cast<OutputDesc>(cmd)->osec);
1370   }
1371 
1372   state = nullptr;
1373   return getChangedSymbolAssignment(oldValues);
1374 }
1375 
1376 // Creates program headers as instructed by PHDRS linker script command.
createPhdrs()1377 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() {
1378   SmallVector<PhdrEntry *, 0> ret;
1379 
1380   // Process PHDRS and FILEHDR keywords because they are not
1381   // real output sections and cannot be added in the following loop.
1382   for (const PhdrsCommand &cmd : phdrsCommands) {
1383     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R));
1384 
1385     if (cmd.hasFilehdr)
1386       phdr->add(Out::elfHeader);
1387     if (cmd.hasPhdrs)
1388       phdr->add(Out::programHeaders);
1389 
1390     if (cmd.lmaExpr) {
1391       phdr->p_paddr = cmd.lmaExpr().getValue();
1392       phdr->hasLMA = true;
1393     }
1394     ret.push_back(phdr);
1395   }
1396 
1397   // Add output sections to program headers.
1398   for (OutputSection *sec : outputSections) {
1399     // Assign headers specified by linker script
1400     for (size_t id : getPhdrIndices(sec)) {
1401       ret[id]->add(sec);
1402       if (!phdrsCommands[id].flags)
1403         ret[id]->p_flags |= sec->getPhdrFlags();
1404     }
1405   }
1406   return ret;
1407 }
1408 
1409 // Returns true if we should emit an .interp section.
1410 //
1411 // We usually do. But if PHDRS commands are given, and
1412 // no PT_INTERP is there, there's no place to emit an
1413 // .interp, so we don't do that in that case.
needsInterpSection()1414 bool LinkerScript::needsInterpSection() {
1415   if (phdrsCommands.empty())
1416     return true;
1417   for (PhdrsCommand &cmd : phdrsCommands)
1418     if (cmd.type == PT_INTERP)
1419       return true;
1420   return false;
1421 }
1422 
getSymbolValue(StringRef name,const Twine & loc)1423 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1424   if (name == ".") {
1425     if (state)
1426       return {state->outSec, false, dot - state->outSec->addr, loc};
1427     error(loc + ": unable to get location counter value");
1428     return 0;
1429   }
1430 
1431   if (Symbol *sym = symtab.find(name)) {
1432     if (auto *ds = dyn_cast<Defined>(sym)) {
1433       ExprValue v{ds->section, false, ds->value, loc};
1434       // Retain the original st_type, so that the alias will get the same
1435       // behavior in relocation processing. Any operation will reset st_type to
1436       // STT_NOTYPE.
1437       v.type = ds->type;
1438       return v;
1439     }
1440     if (isa<SharedSymbol>(sym))
1441       if (!errorOnMissingSection)
1442         return {nullptr, false, 0, loc};
1443   }
1444 
1445   error(loc + ": symbol not found: " + name);
1446   return 0;
1447 }
1448 
1449 // Returns the index of the segment named Name.
getPhdrIndex(ArrayRef<PhdrsCommand> vec,StringRef name)1450 static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1451                                           StringRef name) {
1452   for (size_t i = 0; i < vec.size(); ++i)
1453     if (vec[i].name == name)
1454       return i;
1455   return std::nullopt;
1456 }
1457 
1458 // Returns indices of ELF headers containing specific section. Each index is a
1459 // zero based number of ELF header listed within PHDRS {} script block.
getPhdrIndices(OutputSection * cmd)1460 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1461   SmallVector<size_t, 0> ret;
1462 
1463   for (StringRef s : cmd->phdrs) {
1464     if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1465       ret.push_back(*idx);
1466     else if (s != "NONE")
1467       error(cmd->location + ": program header '" + s +
1468             "' is not listed in PHDRS");
1469   }
1470   return ret;
1471 }
1472 
printMemoryUsage(raw_ostream & os)1473 void LinkerScript::printMemoryUsage(raw_ostream& os) {
1474   auto printSize = [&](uint64_t size) {
1475     if ((size & 0x3fffffff) == 0)
1476       os << format_decimal(size >> 30, 10) << " GB";
1477     else if ((size & 0xfffff) == 0)
1478       os << format_decimal(size >> 20, 10) << " MB";
1479     else if ((size & 0x3ff) == 0)
1480       os << format_decimal(size >> 10, 10) << " KB";
1481     else
1482       os << " " << format_decimal(size, 10) << " B";
1483   };
1484   os << "Memory region         Used Size  Region Size  %age Used\n";
1485   for (auto &pair : memoryRegions) {
1486     MemoryRegion *m = pair.second;
1487     uint64_t usedLength = m->curPos - m->getOrigin();
1488     os << right_justify(m->name, 16) << ": ";
1489     printSize(usedLength);
1490     uint64_t length = m->getLength();
1491     if (length != 0) {
1492       printSize(length);
1493       double percent = usedLength * 100.0 / length;
1494       os << "    " << format("%6.2f%%", percent);
1495     }
1496     os << '\n';
1497   }
1498 }
1499 
checkMemoryRegion(const MemoryRegion * region,const OutputSection * osec,uint64_t addr)1500 static void checkMemoryRegion(const MemoryRegion *region,
1501                               const OutputSection *osec, uint64_t addr) {
1502   uint64_t osecEnd = addr + osec->size;
1503   uint64_t regionEnd = region->getOrigin() + region->getLength();
1504   if (osecEnd > regionEnd) {
1505     error("section '" + osec->name + "' will not fit in region '" +
1506           region->name + "': overflowed by " + Twine(osecEnd - regionEnd) +
1507           " bytes");
1508   }
1509 }
1510 
checkFinalScriptConditions() const1511 void LinkerScript::checkFinalScriptConditions() const {
1512   if (backwardDotErr.size())
1513     errorOrWarn(backwardDotErr);
1514   for (const OutputSection *sec : outputSections) {
1515     if (const MemoryRegion *memoryRegion = sec->memRegion)
1516       checkMemoryRegion(memoryRegion, sec, sec->addr);
1517     if (const MemoryRegion *lmaRegion = sec->lmaRegion)
1518       checkMemoryRegion(lmaRegion, sec, sec->getLMA());
1519   }
1520 }
1521