xref: /linux/include/linux/skbuff.h (revision a86a0661)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357  * segment using its current segmentation instead.
358  */
359 #define GSO_BY_FRAGS	0xFFFF
360 
361 typedef struct skb_frag {
362 	netmem_ref netmem;
363 	unsigned int len;
364 	unsigned int offset;
365 } skb_frag_t;
366 
367 /**
368  * skb_frag_size() - Returns the size of a skb fragment
369  * @frag: skb fragment
370  */
skb_frag_size(const skb_frag_t * frag)371 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372 {
373 	return frag->len;
374 }
375 
376 /**
377  * skb_frag_size_set() - Sets the size of a skb fragment
378  * @frag: skb fragment
379  * @size: size of fragment
380  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382 {
383 	frag->len = size;
384 }
385 
386 /**
387  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
388  * @frag: skb fragment
389  * @delta: value to add
390  */
skb_frag_size_add(skb_frag_t * frag,int delta)391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
392 {
393 	frag->len += delta;
394 }
395 
396 /**
397  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
398  * @frag: skb fragment
399  * @delta: value to subtract
400  */
skb_frag_size_sub(skb_frag_t * frag,int delta)401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
402 {
403 	frag->len -= delta;
404 }
405 
406 /**
407  * skb_frag_must_loop - Test if %p is a high memory page
408  * @p: fragment's page
409  */
skb_frag_must_loop(struct page * p)410 static inline bool skb_frag_must_loop(struct page *p)
411 {
412 #if defined(CONFIG_HIGHMEM)
413 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
414 		return true;
415 #endif
416 	return false;
417 }
418 
419 /**
420  *	skb_frag_foreach_page - loop over pages in a fragment
421  *
422  *	@f:		skb frag to operate on
423  *	@f_off:		offset from start of f->netmem
424  *	@f_len:		length from f_off to loop over
425  *	@p:		(temp var) current page
426  *	@p_off:		(temp var) offset from start of current page,
427  *	                           non-zero only on first page.
428  *	@p_len:		(temp var) length in current page,
429  *				   < PAGE_SIZE only on first and last page.
430  *	@copied:	(temp var) length so far, excluding current p_len.
431  *
432  *	A fragment can hold a compound page, in which case per-page
433  *	operations, notably kmap_atomic, must be called for each
434  *	regular page.
435  */
436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
437 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
438 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
439 	     p_len = skb_frag_must_loop(p) ?				\
440 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
441 	     copied = 0;						\
442 	     copied < f_len;						\
443 	     copied += p_len, p++, p_off = 0,				\
444 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
445 
446 /**
447  * struct skb_shared_hwtstamps - hardware time stamps
448  * @hwtstamp:		hardware time stamp transformed into duration
449  *			since arbitrary point in time
450  * @netdev_data:	address/cookie of network device driver used as
451  *			reference to actual hardware time stamp
452  *
453  * Software time stamps generated by ktime_get_real() are stored in
454  * skb->tstamp.
455  *
456  * hwtstamps can only be compared against other hwtstamps from
457  * the same device.
458  *
459  * This structure is attached to packets as part of the
460  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461  */
462 struct skb_shared_hwtstamps {
463 	union {
464 		ktime_t	hwtstamp;
465 		void *netdev_data;
466 	};
467 };
468 
469 /* Definitions for tx_flags in struct skb_shared_info */
470 enum {
471 	/* generate hardware time stamp */
472 	SKBTX_HW_TSTAMP = 1 << 0,
473 
474 	/* generate software time stamp when queueing packet to NIC */
475 	SKBTX_SW_TSTAMP = 1 << 1,
476 
477 	/* device driver is going to provide hardware time stamp */
478 	SKBTX_IN_PROGRESS = 1 << 2,
479 
480 	/* generate hardware time stamp based on cycles if supported */
481 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
482 
483 	/* generate wifi status information (where possible) */
484 	SKBTX_WIFI_STATUS = 1 << 4,
485 
486 	/* determine hardware time stamp based on time or cycles */
487 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
488 
489 	/* generate software time stamp when entering packet scheduling */
490 	SKBTX_SCHED_TSTAMP = 1 << 6,
491 };
492 
493 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
494 				 SKBTX_SCHED_TSTAMP)
495 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
496 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
497 				 SKBTX_ANY_SW_TSTAMP)
498 
499 /* Definitions for flags in struct skb_shared_info */
500 enum {
501 	/* use zcopy routines */
502 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
503 
504 	/* This indicates at least one fragment might be overwritten
505 	 * (as in vmsplice(), sendfile() ...)
506 	 * If we need to compute a TX checksum, we'll need to copy
507 	 * all frags to avoid possible bad checksum
508 	 */
509 	SKBFL_SHARED_FRAG = BIT(1),
510 
511 	/* segment contains only zerocopy data and should not be
512 	 * charged to the kernel memory.
513 	 */
514 	SKBFL_PURE_ZEROCOPY = BIT(2),
515 
516 	SKBFL_DONT_ORPHAN = BIT(3),
517 
518 	/* page references are managed by the ubuf_info, so it's safe to
519 	 * use frags only up until ubuf_info is released
520 	 */
521 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
522 };
523 
524 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
525 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
526 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
527 
528 struct ubuf_info_ops {
529 	void (*complete)(struct sk_buff *, struct ubuf_info *,
530 			 bool zerocopy_success);
531 	/* has to be compatible with skb_zcopy_set() */
532 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
533 };
534 
535 /*
536  * The callback notifies userspace to release buffers when skb DMA is done in
537  * lower device, the skb last reference should be 0 when calling this.
538  * The zerocopy_success argument is true if zero copy transmit occurred,
539  * false on data copy or out of memory error caused by data copy attempt.
540  * The ctx field is used to track device context.
541  * The desc field is used to track userspace buffer index.
542  */
543 struct ubuf_info {
544 	const struct ubuf_info_ops *ops;
545 	refcount_t refcnt;
546 	u8 flags;
547 };
548 
549 struct ubuf_info_msgzc {
550 	struct ubuf_info ubuf;
551 
552 	union {
553 		struct {
554 			unsigned long desc;
555 			void *ctx;
556 		};
557 		struct {
558 			u32 id;
559 			u16 len;
560 			u16 zerocopy:1;
561 			u32 bytelen;
562 		};
563 	};
564 
565 	struct mmpin {
566 		struct user_struct *user;
567 		unsigned int num_pg;
568 	} mmp;
569 };
570 
571 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
572 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
573 					     ubuf)
574 
575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
576 void mm_unaccount_pinned_pages(struct mmpin *mmp);
577 
578 /* Preserve some data across TX submission and completion.
579  *
580  * Note, this state is stored in the driver. Extending the layout
581  * might need some special care.
582  */
583 struct xsk_tx_metadata_compl {
584 	__u64 *tx_timestamp;
585 };
586 
587 /* This data is invariant across clones and lives at
588  * the end of the header data, ie. at skb->end.
589  */
590 struct skb_shared_info {
591 	__u8		flags;
592 	__u8		meta_len;
593 	__u8		nr_frags;
594 	__u8		tx_flags;
595 	unsigned short	gso_size;
596 	/* Warning: this field is not always filled in (UFO)! */
597 	unsigned short	gso_segs;
598 	struct sk_buff	*frag_list;
599 	union {
600 		struct skb_shared_hwtstamps hwtstamps;
601 		struct xsk_tx_metadata_compl xsk_meta;
602 	};
603 	unsigned int	gso_type;
604 	u32		tskey;
605 
606 	/*
607 	 * Warning : all fields before dataref are cleared in __alloc_skb()
608 	 */
609 	atomic_t	dataref;
610 	unsigned int	xdp_frags_size;
611 
612 	/* Intermediate layers must ensure that destructor_arg
613 	 * remains valid until skb destructor */
614 	void *		destructor_arg;
615 
616 	/* must be last field, see pskb_expand_head() */
617 	skb_frag_t	frags[MAX_SKB_FRAGS];
618 };
619 
620 /**
621  * DOC: dataref and headerless skbs
622  *
623  * Transport layers send out clones of payload skbs they hold for
624  * retransmissions. To allow lower layers of the stack to prepend their headers
625  * we split &skb_shared_info.dataref into two halves.
626  * The lower 16 bits count the overall number of references.
627  * The higher 16 bits indicate how many of the references are payload-only.
628  * skb_header_cloned() checks if skb is allowed to add / write the headers.
629  *
630  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
631  * (via __skb_header_release()). Any clone created from marked skb will get
632  * &sk_buff.hdr_len populated with the available headroom.
633  * If there's the only clone in existence it's able to modify the headroom
634  * at will. The sequence of calls inside the transport layer is::
635  *
636  *  <alloc skb>
637  *  skb_reserve()
638  *  __skb_header_release()
639  *  skb_clone()
640  *  // send the clone down the stack
641  *
642  * This is not a very generic construct and it depends on the transport layers
643  * doing the right thing. In practice there's usually only one payload-only skb.
644  * Having multiple payload-only skbs with different lengths of hdr_len is not
645  * possible. The payload-only skbs should never leave their owner.
646  */
647 #define SKB_DATAREF_SHIFT 16
648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
649 
650 
651 enum {
652 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
653 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
654 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
655 };
656 
657 enum {
658 	SKB_GSO_TCPV4 = 1 << 0,
659 
660 	/* This indicates the skb is from an untrusted source. */
661 	SKB_GSO_DODGY = 1 << 1,
662 
663 	/* This indicates the tcp segment has CWR set. */
664 	SKB_GSO_TCP_ECN = 1 << 2,
665 
666 	SKB_GSO_TCP_FIXEDID = 1 << 3,
667 
668 	SKB_GSO_TCPV6 = 1 << 4,
669 
670 	SKB_GSO_FCOE = 1 << 5,
671 
672 	SKB_GSO_GRE = 1 << 6,
673 
674 	SKB_GSO_GRE_CSUM = 1 << 7,
675 
676 	SKB_GSO_IPXIP4 = 1 << 8,
677 
678 	SKB_GSO_IPXIP6 = 1 << 9,
679 
680 	SKB_GSO_UDP_TUNNEL = 1 << 10,
681 
682 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
683 
684 	SKB_GSO_PARTIAL = 1 << 12,
685 
686 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
687 
688 	SKB_GSO_SCTP = 1 << 14,
689 
690 	SKB_GSO_ESP = 1 << 15,
691 
692 	SKB_GSO_UDP = 1 << 16,
693 
694 	SKB_GSO_UDP_L4 = 1 << 17,
695 
696 	SKB_GSO_FRAGLIST = 1 << 18,
697 };
698 
699 #if BITS_PER_LONG > 32
700 #define NET_SKBUFF_DATA_USES_OFFSET 1
701 #endif
702 
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 typedef unsigned int sk_buff_data_t;
705 #else
706 typedef unsigned char *sk_buff_data_t;
707 #endif
708 
709 /**
710  * DOC: Basic sk_buff geometry
711  *
712  * struct sk_buff itself is a metadata structure and does not hold any packet
713  * data. All the data is held in associated buffers.
714  *
715  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
716  * into two parts:
717  *
718  *  - data buffer, containing headers and sometimes payload;
719  *    this is the part of the skb operated on by the common helpers
720  *    such as skb_put() or skb_pull();
721  *  - shared info (struct skb_shared_info) which holds an array of pointers
722  *    to read-only data in the (page, offset, length) format.
723  *
724  * Optionally &skb_shared_info.frag_list may point to another skb.
725  *
726  * Basic diagram may look like this::
727  *
728  *                                  ---------------
729  *                                 | sk_buff       |
730  *                                  ---------------
731  *     ,---------------------------  + head
732  *    /          ,-----------------  + data
733  *   /          /      ,-----------  + tail
734  *  |          |      |            , + end
735  *  |          |      |           |
736  *  v          v      v           v
737  *   -----------------------------------------------
738  *  | headroom | data |  tailroom | skb_shared_info |
739  *   -----------------------------------------------
740  *                                 + [page frag]
741  *                                 + [page frag]
742  *                                 + [page frag]
743  *                                 + [page frag]       ---------
744  *                                 + frag_list    --> | sk_buff |
745  *                                                     ---------
746  *
747  */
748 
749 /**
750  *	struct sk_buff - socket buffer
751  *	@next: Next buffer in list
752  *	@prev: Previous buffer in list
753  *	@tstamp: Time we arrived/left
754  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
755  *		for retransmit timer
756  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
757  *	@list: queue head
758  *	@ll_node: anchor in an llist (eg socket defer_list)
759  *	@sk: Socket we are owned by
760  *	@dev: Device we arrived on/are leaving by
761  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
762  *	@cb: Control buffer. Free for use by every layer. Put private vars here
763  *	@_skb_refdst: destination entry (with norefcount bit)
764  *	@len: Length of actual data
765  *	@data_len: Data length
766  *	@mac_len: Length of link layer header
767  *	@hdr_len: writable header length of cloned skb
768  *	@csum: Checksum (must include start/offset pair)
769  *	@csum_start: Offset from skb->head where checksumming should start
770  *	@csum_offset: Offset from csum_start where checksum should be stored
771  *	@priority: Packet queueing priority
772  *	@ignore_df: allow local fragmentation
773  *	@cloned: Head may be cloned (check refcnt to be sure)
774  *	@ip_summed: Driver fed us an IP checksum
775  *	@nohdr: Payload reference only, must not modify header
776  *	@pkt_type: Packet class
777  *	@fclone: skbuff clone status
778  *	@ipvs_property: skbuff is owned by ipvs
779  *	@inner_protocol_type: whether the inner protocol is
780  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
781  *	@remcsum_offload: remote checksum offload is enabled
782  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
783  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
784  *	@tc_skip_classify: do not classify packet. set by IFB device
785  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
786  *	@redirected: packet was redirected by packet classifier
787  *	@from_ingress: packet was redirected from the ingress path
788  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
789  *	@peeked: this packet has been seen already, so stats have been
790  *		done for it, don't do them again
791  *	@nf_trace: netfilter packet trace flag
792  *	@protocol: Packet protocol from driver
793  *	@destructor: Destruct function
794  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
795  *	@_sk_redir: socket redirection information for skmsg
796  *	@_nfct: Associated connection, if any (with nfctinfo bits)
797  *	@skb_iif: ifindex of device we arrived on
798  *	@tc_index: Traffic control index
799  *	@hash: the packet hash
800  *	@queue_mapping: Queue mapping for multiqueue devices
801  *	@head_frag: skb was allocated from page fragments,
802  *		not allocated by kmalloc() or vmalloc().
803  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
804  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
805  *		page_pool support on driver)
806  *	@active_extensions: active extensions (skb_ext_id types)
807  *	@ndisc_nodetype: router type (from link layer)
808  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
809  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
810  *		ports.
811  *	@sw_hash: indicates hash was computed in software stack
812  *	@wifi_acked_valid: wifi_acked was set
813  *	@wifi_acked: whether frame was acked on wifi or not
814  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
815  *	@encapsulation: indicates the inner headers in the skbuff are valid
816  *	@encap_hdr_csum: software checksum is needed
817  *	@csum_valid: checksum is already valid
818  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
819  *	@csum_complete_sw: checksum was completed by software
820  *	@csum_level: indicates the number of consecutive checksums found in
821  *		the packet minus one that have been verified as
822  *		CHECKSUM_UNNECESSARY (max 3)
823  *	@dst_pending_confirm: need to confirm neighbour
824  *	@decrypted: Decrypted SKB
825  *	@slow_gro: state present at GRO time, slower prepare step required
826  *	@mono_delivery_time: When set, skb->tstamp has the
827  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
828  *		skb->tstamp has the (rcv) timestamp at ingress and
829  *		delivery_time at egress.
830  *	@napi_id: id of the NAPI struct this skb came from
831  *	@sender_cpu: (aka @napi_id) source CPU in XPS
832  *	@alloc_cpu: CPU which did the skb allocation.
833  *	@secmark: security marking
834  *	@mark: Generic packet mark
835  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
836  *		at the tail of an sk_buff
837  *	@vlan_all: vlan fields (proto & tci)
838  *	@vlan_proto: vlan encapsulation protocol
839  *	@vlan_tci: vlan tag control information
840  *	@inner_protocol: Protocol (encapsulation)
841  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
842  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
843  *	@inner_transport_header: Inner transport layer header (encapsulation)
844  *	@inner_network_header: Network layer header (encapsulation)
845  *	@inner_mac_header: Link layer header (encapsulation)
846  *	@transport_header: Transport layer header
847  *	@network_header: Network layer header
848  *	@mac_header: Link layer header
849  *	@kcov_handle: KCOV remote handle for remote coverage collection
850  *	@tail: Tail pointer
851  *	@end: End pointer
852  *	@head: Head of buffer
853  *	@data: Data head pointer
854  *	@truesize: Buffer size
855  *	@users: User count - see {datagram,tcp}.c
856  *	@extensions: allocated extensions, valid if active_extensions is nonzero
857  */
858 
859 struct sk_buff {
860 	union {
861 		struct {
862 			/* These two members must be first to match sk_buff_head. */
863 			struct sk_buff		*next;
864 			struct sk_buff		*prev;
865 
866 			union {
867 				struct net_device	*dev;
868 				/* Some protocols might use this space to store information,
869 				 * while device pointer would be NULL.
870 				 * UDP receive path is one user.
871 				 */
872 				unsigned long		dev_scratch;
873 			};
874 		};
875 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
876 		struct list_head	list;
877 		struct llist_node	ll_node;
878 	};
879 
880 	struct sock		*sk;
881 
882 	union {
883 		ktime_t		tstamp;
884 		u64		skb_mstamp_ns; /* earliest departure time */
885 	};
886 	/*
887 	 * This is the control buffer. It is free to use for every
888 	 * layer. Please put your private variables there. If you
889 	 * want to keep them across layers you have to do a skb_clone()
890 	 * first. This is owned by whoever has the skb queued ATM.
891 	 */
892 	char			cb[48] __aligned(8);
893 
894 	union {
895 		struct {
896 			unsigned long	_skb_refdst;
897 			void		(*destructor)(struct sk_buff *skb);
898 		};
899 		struct list_head	tcp_tsorted_anchor;
900 #ifdef CONFIG_NET_SOCK_MSG
901 		unsigned long		_sk_redir;
902 #endif
903 	};
904 
905 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
906 	unsigned long		 _nfct;
907 #endif
908 	unsigned int		len,
909 				data_len;
910 	__u16			mac_len,
911 				hdr_len;
912 
913 	/* Following fields are _not_ copied in __copy_skb_header()
914 	 * Note that queue_mapping is here mostly to fill a hole.
915 	 */
916 	__u16			queue_mapping;
917 
918 /* if you move cloned around you also must adapt those constants */
919 #ifdef __BIG_ENDIAN_BITFIELD
920 #define CLONED_MASK	(1 << 7)
921 #else
922 #define CLONED_MASK	1
923 #endif
924 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
925 
926 	/* private: */
927 	__u8			__cloned_offset[0];
928 	/* public: */
929 	__u8			cloned:1,
930 				nohdr:1,
931 				fclone:2,
932 				peeked:1,
933 				head_frag:1,
934 				pfmemalloc:1,
935 				pp_recycle:1; /* page_pool recycle indicator */
936 #ifdef CONFIG_SKB_EXTENSIONS
937 	__u8			active_extensions;
938 #endif
939 
940 	/* Fields enclosed in headers group are copied
941 	 * using a single memcpy() in __copy_skb_header()
942 	 */
943 	struct_group(headers,
944 
945 	/* private: */
946 	__u8			__pkt_type_offset[0];
947 	/* public: */
948 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
949 	__u8			ignore_df:1;
950 	__u8			dst_pending_confirm:1;
951 	__u8			ip_summed:2;
952 	__u8			ooo_okay:1;
953 
954 	/* private: */
955 	__u8			__mono_tc_offset[0];
956 	/* public: */
957 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
958 #ifdef CONFIG_NET_XGRESS
959 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
960 	__u8			tc_skip_classify:1;
961 #endif
962 	__u8			remcsum_offload:1;
963 	__u8			csum_complete_sw:1;
964 	__u8			csum_level:2;
965 	__u8			inner_protocol_type:1;
966 
967 	__u8			l4_hash:1;
968 	__u8			sw_hash:1;
969 #ifdef CONFIG_WIRELESS
970 	__u8			wifi_acked_valid:1;
971 	__u8			wifi_acked:1;
972 #endif
973 	__u8			no_fcs:1;
974 	/* Indicates the inner headers are valid in the skbuff. */
975 	__u8			encapsulation:1;
976 	__u8			encap_hdr_csum:1;
977 	__u8			csum_valid:1;
978 #ifdef CONFIG_IPV6_NDISC_NODETYPE
979 	__u8			ndisc_nodetype:2;
980 #endif
981 
982 #if IS_ENABLED(CONFIG_IP_VS)
983 	__u8			ipvs_property:1;
984 #endif
985 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
986 	__u8			nf_trace:1;
987 #endif
988 #ifdef CONFIG_NET_SWITCHDEV
989 	__u8			offload_fwd_mark:1;
990 	__u8			offload_l3_fwd_mark:1;
991 #endif
992 	__u8			redirected:1;
993 #ifdef CONFIG_NET_REDIRECT
994 	__u8			from_ingress:1;
995 #endif
996 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
997 	__u8			nf_skip_egress:1;
998 #endif
999 #ifdef CONFIG_SKB_DECRYPTED
1000 	__u8			decrypted:1;
1001 #endif
1002 	__u8			slow_gro:1;
1003 #if IS_ENABLED(CONFIG_IP_SCTP)
1004 	__u8			csum_not_inet:1;
1005 #endif
1006 
1007 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1008 	__u16			tc_index;	/* traffic control index */
1009 #endif
1010 
1011 	u16			alloc_cpu;
1012 
1013 	union {
1014 		__wsum		csum;
1015 		struct {
1016 			__u16	csum_start;
1017 			__u16	csum_offset;
1018 		};
1019 	};
1020 	__u32			priority;
1021 	int			skb_iif;
1022 	__u32			hash;
1023 	union {
1024 		u32		vlan_all;
1025 		struct {
1026 			__be16	vlan_proto;
1027 			__u16	vlan_tci;
1028 		};
1029 	};
1030 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1031 	union {
1032 		unsigned int	napi_id;
1033 		unsigned int	sender_cpu;
1034 	};
1035 #endif
1036 #ifdef CONFIG_NETWORK_SECMARK
1037 	__u32		secmark;
1038 #endif
1039 
1040 	union {
1041 		__u32		mark;
1042 		__u32		reserved_tailroom;
1043 	};
1044 
1045 	union {
1046 		__be16		inner_protocol;
1047 		__u8		inner_ipproto;
1048 	};
1049 
1050 	__u16			inner_transport_header;
1051 	__u16			inner_network_header;
1052 	__u16			inner_mac_header;
1053 
1054 	__be16			protocol;
1055 	__u16			transport_header;
1056 	__u16			network_header;
1057 	__u16			mac_header;
1058 
1059 #ifdef CONFIG_KCOV
1060 	u64			kcov_handle;
1061 #endif
1062 
1063 	); /* end headers group */
1064 
1065 	/* These elements must be at the end, see alloc_skb() for details.  */
1066 	sk_buff_data_t		tail;
1067 	sk_buff_data_t		end;
1068 	unsigned char		*head,
1069 				*data;
1070 	unsigned int		truesize;
1071 	refcount_t		users;
1072 
1073 #ifdef CONFIG_SKB_EXTENSIONS
1074 	/* only usable after checking ->active_extensions != 0 */
1075 	struct skb_ext		*extensions;
1076 #endif
1077 };
1078 
1079 /* if you move pkt_type around you also must adapt those constants */
1080 #ifdef __BIG_ENDIAN_BITFIELD
1081 #define PKT_TYPE_MAX	(7 << 5)
1082 #else
1083 #define PKT_TYPE_MAX	7
1084 #endif
1085 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1086 
1087 /* if you move tc_at_ingress or mono_delivery_time
1088  * around, you also must adapt these constants.
1089  */
1090 #ifdef __BIG_ENDIAN_BITFIELD
1091 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1092 #define TC_AT_INGRESS_MASK		(1 << 6)
1093 #else
1094 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1095 #define TC_AT_INGRESS_MASK		(1 << 1)
1096 #endif
1097 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1098 
1099 #ifdef __KERNEL__
1100 /*
1101  *	Handling routines are only of interest to the kernel
1102  */
1103 
1104 #define SKB_ALLOC_FCLONE	0x01
1105 #define SKB_ALLOC_RX		0x02
1106 #define SKB_ALLOC_NAPI		0x04
1107 
1108 /**
1109  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1110  * @skb: buffer
1111  */
skb_pfmemalloc(const struct sk_buff * skb)1112 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1113 {
1114 	return unlikely(skb->pfmemalloc);
1115 }
1116 
1117 /*
1118  * skb might have a dst pointer attached, refcounted or not.
1119  * _skb_refdst low order bit is set if refcount was _not_ taken
1120  */
1121 #define SKB_DST_NOREF	1UL
1122 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1123 
1124 /**
1125  * skb_dst - returns skb dst_entry
1126  * @skb: buffer
1127  *
1128  * Returns skb dst_entry, regardless of reference taken or not.
1129  */
skb_dst(const struct sk_buff * skb)1130 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1131 {
1132 	/* If refdst was not refcounted, check we still are in a
1133 	 * rcu_read_lock section
1134 	 */
1135 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1136 		!rcu_read_lock_held() &&
1137 		!rcu_read_lock_bh_held());
1138 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1139 }
1140 
1141 /**
1142  * skb_dst_set - sets skb dst
1143  * @skb: buffer
1144  * @dst: dst entry
1145  *
1146  * Sets skb dst, assuming a reference was taken on dst and should
1147  * be released by skb_dst_drop()
1148  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1149 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1150 {
1151 	skb->slow_gro |= !!dst;
1152 	skb->_skb_refdst = (unsigned long)dst;
1153 }
1154 
1155 /**
1156  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1157  * @skb: buffer
1158  * @dst: dst entry
1159  *
1160  * Sets skb dst, assuming a reference was not taken on dst.
1161  * If dst entry is cached, we do not take reference and dst_release
1162  * will be avoided by refdst_drop. If dst entry is not cached, we take
1163  * reference, so that last dst_release can destroy the dst immediately.
1164  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1165 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1166 {
1167 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1168 	skb->slow_gro |= !!dst;
1169 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1170 }
1171 
1172 /**
1173  * skb_dst_is_noref - Test if skb dst isn't refcounted
1174  * @skb: buffer
1175  */
skb_dst_is_noref(const struct sk_buff * skb)1176 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1177 {
1178 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1179 }
1180 
1181 /* For mangling skb->pkt_type from user space side from applications
1182  * such as nft, tc, etc, we only allow a conservative subset of
1183  * possible pkt_types to be set.
1184 */
skb_pkt_type_ok(u32 ptype)1185 static inline bool skb_pkt_type_ok(u32 ptype)
1186 {
1187 	return ptype <= PACKET_OTHERHOST;
1188 }
1189 
1190 /**
1191  * skb_napi_id - Returns the skb's NAPI id
1192  * @skb: buffer
1193  */
skb_napi_id(const struct sk_buff * skb)1194 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1195 {
1196 #ifdef CONFIG_NET_RX_BUSY_POLL
1197 	return skb->napi_id;
1198 #else
1199 	return 0;
1200 #endif
1201 }
1202 
skb_wifi_acked_valid(const struct sk_buff * skb)1203 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1204 {
1205 #ifdef CONFIG_WIRELESS
1206 	return skb->wifi_acked_valid;
1207 #else
1208 	return 0;
1209 #endif
1210 }
1211 
1212 /**
1213  * skb_unref - decrement the skb's reference count
1214  * @skb: buffer
1215  *
1216  * Returns true if we can free the skb.
1217  */
skb_unref(struct sk_buff * skb)1218 static inline bool skb_unref(struct sk_buff *skb)
1219 {
1220 	if (unlikely(!skb))
1221 		return false;
1222 	if (likely(refcount_read(&skb->users) == 1))
1223 		smp_rmb();
1224 	else if (likely(!refcount_dec_and_test(&skb->users)))
1225 		return false;
1226 
1227 	return true;
1228 }
1229 
skb_data_unref(const struct sk_buff * skb,struct skb_shared_info * shinfo)1230 static inline bool skb_data_unref(const struct sk_buff *skb,
1231 				  struct skb_shared_info *shinfo)
1232 {
1233 	int bias;
1234 
1235 	if (!skb->cloned)
1236 		return true;
1237 
1238 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1239 
1240 	if (atomic_read(&shinfo->dataref) == bias)
1241 		smp_rmb();
1242 	else if (atomic_sub_return(bias, &shinfo->dataref))
1243 		return false;
1244 
1245 	return true;
1246 }
1247 
1248 void __fix_address
1249 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1250 
1251 /**
1252  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1253  *	@skb: buffer to free
1254  */
kfree_skb(struct sk_buff * skb)1255 static inline void kfree_skb(struct sk_buff *skb)
1256 {
1257 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1258 }
1259 
1260 void skb_release_head_state(struct sk_buff *skb);
1261 void kfree_skb_list_reason(struct sk_buff *segs,
1262 			   enum skb_drop_reason reason);
1263 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1264 void skb_tx_error(struct sk_buff *skb);
1265 
kfree_skb_list(struct sk_buff * segs)1266 static inline void kfree_skb_list(struct sk_buff *segs)
1267 {
1268 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1269 }
1270 
1271 #ifdef CONFIG_TRACEPOINTS
1272 void consume_skb(struct sk_buff *skb);
1273 #else
consume_skb(struct sk_buff * skb)1274 static inline void consume_skb(struct sk_buff *skb)
1275 {
1276 	return kfree_skb(skb);
1277 }
1278 #endif
1279 
1280 void __consume_stateless_skb(struct sk_buff *skb);
1281 void  __kfree_skb(struct sk_buff *skb);
1282 
1283 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1284 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1285 		      bool *fragstolen, int *delta_truesize);
1286 
1287 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1288 			    int node);
1289 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1290 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1291 struct sk_buff *build_skb_around(struct sk_buff *skb,
1292 				 void *data, unsigned int frag_size);
1293 void skb_attempt_defer_free(struct sk_buff *skb);
1294 
1295 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1296 struct sk_buff *slab_build_skb(void *data);
1297 
1298 /**
1299  * alloc_skb - allocate a network buffer
1300  * @size: size to allocate
1301  * @priority: allocation mask
1302  *
1303  * This function is a convenient wrapper around __alloc_skb().
1304  */
alloc_skb(unsigned int size,gfp_t priority)1305 static inline struct sk_buff *alloc_skb(unsigned int size,
1306 					gfp_t priority)
1307 {
1308 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1309 }
1310 
1311 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1312 				     unsigned long data_len,
1313 				     int max_page_order,
1314 				     int *errcode,
1315 				     gfp_t gfp_mask);
1316 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1317 
1318 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1319 struct sk_buff_fclones {
1320 	struct sk_buff	skb1;
1321 
1322 	struct sk_buff	skb2;
1323 
1324 	refcount_t	fclone_ref;
1325 };
1326 
1327 /**
1328  *	skb_fclone_busy - check if fclone is busy
1329  *	@sk: socket
1330  *	@skb: buffer
1331  *
1332  * Returns true if skb is a fast clone, and its clone is not freed.
1333  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1334  * so we also check that didn't happen.
1335  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1336 static inline bool skb_fclone_busy(const struct sock *sk,
1337 				   const struct sk_buff *skb)
1338 {
1339 	const struct sk_buff_fclones *fclones;
1340 
1341 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1342 
1343 	return skb->fclone == SKB_FCLONE_ORIG &&
1344 	       refcount_read(&fclones->fclone_ref) > 1 &&
1345 	       READ_ONCE(fclones->skb2.sk) == sk;
1346 }
1347 
1348 /**
1349  * alloc_skb_fclone - allocate a network buffer from fclone cache
1350  * @size: size to allocate
1351  * @priority: allocation mask
1352  *
1353  * This function is a convenient wrapper around __alloc_skb().
1354  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1355 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1356 					       gfp_t priority)
1357 {
1358 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1359 }
1360 
1361 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1362 void skb_headers_offset_update(struct sk_buff *skb, int off);
1363 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1364 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1365 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1366 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1367 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1368 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1369 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1370 					  gfp_t gfp_mask)
1371 {
1372 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1373 }
1374 
1375 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1376 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1377 				     unsigned int headroom);
1378 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1379 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1380 				int newtailroom, gfp_t priority);
1381 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1382 				     int offset, int len);
1383 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1384 			      int offset, int len);
1385 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1386 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1387 
1388 /**
1389  *	skb_pad			-	zero pad the tail of an skb
1390  *	@skb: buffer to pad
1391  *	@pad: space to pad
1392  *
1393  *	Ensure that a buffer is followed by a padding area that is zero
1394  *	filled. Used by network drivers which may DMA or transfer data
1395  *	beyond the buffer end onto the wire.
1396  *
1397  *	May return error in out of memory cases. The skb is freed on error.
1398  */
skb_pad(struct sk_buff * skb,int pad)1399 static inline int skb_pad(struct sk_buff *skb, int pad)
1400 {
1401 	return __skb_pad(skb, pad, true);
1402 }
1403 #define dev_kfree_skb(a)	consume_skb(a)
1404 
1405 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1406 			 int offset, size_t size, size_t max_frags);
1407 
1408 struct skb_seq_state {
1409 	__u32		lower_offset;
1410 	__u32		upper_offset;
1411 	__u32		frag_idx;
1412 	__u32		stepped_offset;
1413 	struct sk_buff	*root_skb;
1414 	struct sk_buff	*cur_skb;
1415 	__u8		*frag_data;
1416 	__u32		frag_off;
1417 };
1418 
1419 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1420 			  unsigned int to, struct skb_seq_state *st);
1421 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1422 			  struct skb_seq_state *st);
1423 void skb_abort_seq_read(struct skb_seq_state *st);
1424 
1425 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1426 			   unsigned int to, struct ts_config *config);
1427 
1428 /*
1429  * Packet hash types specify the type of hash in skb_set_hash.
1430  *
1431  * Hash types refer to the protocol layer addresses which are used to
1432  * construct a packet's hash. The hashes are used to differentiate or identify
1433  * flows of the protocol layer for the hash type. Hash types are either
1434  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1435  *
1436  * Properties of hashes:
1437  *
1438  * 1) Two packets in different flows have different hash values
1439  * 2) Two packets in the same flow should have the same hash value
1440  *
1441  * A hash at a higher layer is considered to be more specific. A driver should
1442  * set the most specific hash possible.
1443  *
1444  * A driver cannot indicate a more specific hash than the layer at which a hash
1445  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1446  *
1447  * A driver may indicate a hash level which is less specific than the
1448  * actual layer the hash was computed on. For instance, a hash computed
1449  * at L4 may be considered an L3 hash. This should only be done if the
1450  * driver can't unambiguously determine that the HW computed the hash at
1451  * the higher layer. Note that the "should" in the second property above
1452  * permits this.
1453  */
1454 enum pkt_hash_types {
1455 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1456 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1457 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1458 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1459 };
1460 
skb_clear_hash(struct sk_buff * skb)1461 static inline void skb_clear_hash(struct sk_buff *skb)
1462 {
1463 	skb->hash = 0;
1464 	skb->sw_hash = 0;
1465 	skb->l4_hash = 0;
1466 }
1467 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1468 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1469 {
1470 	if (!skb->l4_hash)
1471 		skb_clear_hash(skb);
1472 }
1473 
1474 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1475 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1476 {
1477 	skb->l4_hash = is_l4;
1478 	skb->sw_hash = is_sw;
1479 	skb->hash = hash;
1480 }
1481 
1482 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1483 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1484 {
1485 	/* Used by drivers to set hash from HW */
1486 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1487 }
1488 
1489 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1490 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1491 {
1492 	__skb_set_hash(skb, hash, true, is_l4);
1493 }
1494 
1495 void __skb_get_hash(struct sk_buff *skb);
1496 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1497 u32 skb_get_poff(const struct sk_buff *skb);
1498 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1499 		   const struct flow_keys_basic *keys, int hlen);
1500 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1501 			    const void *data, int hlen_proto);
1502 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1503 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1504 					int thoff, u8 ip_proto)
1505 {
1506 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1507 }
1508 
1509 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1510 			     const struct flow_dissector_key *key,
1511 			     unsigned int key_count);
1512 
1513 struct bpf_flow_dissector;
1514 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1515 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1516 
1517 bool __skb_flow_dissect(const struct net *net,
1518 			const struct sk_buff *skb,
1519 			struct flow_dissector *flow_dissector,
1520 			void *target_container, const void *data,
1521 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1522 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1523 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1524 				    struct flow_dissector *flow_dissector,
1525 				    void *target_container, unsigned int flags)
1526 {
1527 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1528 				  target_container, NULL, 0, 0, 0, flags);
1529 }
1530 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1531 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1532 					      struct flow_keys *flow,
1533 					      unsigned int flags)
1534 {
1535 	memset(flow, 0, sizeof(*flow));
1536 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1537 				  flow, NULL, 0, 0, 0, flags);
1538 }
1539 
1540 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1541 skb_flow_dissect_flow_keys_basic(const struct net *net,
1542 				 const struct sk_buff *skb,
1543 				 struct flow_keys_basic *flow,
1544 				 const void *data, __be16 proto,
1545 				 int nhoff, int hlen, unsigned int flags)
1546 {
1547 	memset(flow, 0, sizeof(*flow));
1548 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1549 				  data, proto, nhoff, hlen, flags);
1550 }
1551 
1552 void skb_flow_dissect_meta(const struct sk_buff *skb,
1553 			   struct flow_dissector *flow_dissector,
1554 			   void *target_container);
1555 
1556 /* Gets a skb connection tracking info, ctinfo map should be a
1557  * map of mapsize to translate enum ip_conntrack_info states
1558  * to user states.
1559  */
1560 void
1561 skb_flow_dissect_ct(const struct sk_buff *skb,
1562 		    struct flow_dissector *flow_dissector,
1563 		    void *target_container,
1564 		    u16 *ctinfo_map, size_t mapsize,
1565 		    bool post_ct, u16 zone);
1566 void
1567 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1568 			     struct flow_dissector *flow_dissector,
1569 			     void *target_container);
1570 
1571 void skb_flow_dissect_hash(const struct sk_buff *skb,
1572 			   struct flow_dissector *flow_dissector,
1573 			   void *target_container);
1574 
skb_get_hash(struct sk_buff * skb)1575 static inline __u32 skb_get_hash(struct sk_buff *skb)
1576 {
1577 	if (!skb->l4_hash && !skb->sw_hash)
1578 		__skb_get_hash(skb);
1579 
1580 	return skb->hash;
1581 }
1582 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1583 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1584 {
1585 	if (!skb->l4_hash && !skb->sw_hash) {
1586 		struct flow_keys keys;
1587 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1588 
1589 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1590 	}
1591 
1592 	return skb->hash;
1593 }
1594 
1595 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1596 			   const siphash_key_t *perturb);
1597 
skb_get_hash_raw(const struct sk_buff * skb)1598 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1599 {
1600 	return skb->hash;
1601 }
1602 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1603 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1604 {
1605 	to->hash = from->hash;
1606 	to->sw_hash = from->sw_hash;
1607 	to->l4_hash = from->l4_hash;
1608 };
1609 
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1610 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1611 				    const struct sk_buff *skb2)
1612 {
1613 #ifdef CONFIG_SKB_DECRYPTED
1614 	return skb2->decrypted - skb1->decrypted;
1615 #else
1616 	return 0;
1617 #endif
1618 }
1619 
skb_is_decrypted(const struct sk_buff * skb)1620 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1621 {
1622 #ifdef CONFIG_SKB_DECRYPTED
1623 	return skb->decrypted;
1624 #else
1625 	return false;
1626 #endif
1627 }
1628 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1629 static inline void skb_copy_decrypted(struct sk_buff *to,
1630 				      const struct sk_buff *from)
1631 {
1632 #ifdef CONFIG_SKB_DECRYPTED
1633 	to->decrypted = from->decrypted;
1634 #endif
1635 }
1636 
1637 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1638 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1639 {
1640 	return skb->head + skb->end;
1641 }
1642 
skb_end_offset(const struct sk_buff * skb)1643 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1644 {
1645 	return skb->end;
1646 }
1647 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1648 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1649 {
1650 	skb->end = offset;
1651 }
1652 #else
skb_end_pointer(const struct sk_buff * skb)1653 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1654 {
1655 	return skb->end;
1656 }
1657 
skb_end_offset(const struct sk_buff * skb)1658 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1659 {
1660 	return skb->end - skb->head;
1661 }
1662 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1663 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1664 {
1665 	skb->end = skb->head + offset;
1666 }
1667 #endif
1668 
1669 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1670 
1671 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1672 				       struct ubuf_info *uarg);
1673 
1674 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1675 
1676 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1677 			    struct sk_buff *skb, struct iov_iter *from,
1678 			    size_t length);
1679 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1680 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1681 					  struct msghdr *msg, int len)
1682 {
1683 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1684 }
1685 
1686 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1687 			     struct msghdr *msg, int len,
1688 			     struct ubuf_info *uarg);
1689 
1690 /* Internal */
1691 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1692 
skb_hwtstamps(struct sk_buff * skb)1693 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1694 {
1695 	return &skb_shinfo(skb)->hwtstamps;
1696 }
1697 
skb_zcopy(struct sk_buff * skb)1698 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1699 {
1700 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1701 
1702 	return is_zcopy ? skb_uarg(skb) : NULL;
1703 }
1704 
skb_zcopy_pure(const struct sk_buff * skb)1705 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1706 {
1707 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1708 }
1709 
skb_zcopy_managed(const struct sk_buff * skb)1710 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1711 {
1712 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1713 }
1714 
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1715 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1716 				       const struct sk_buff *skb2)
1717 {
1718 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1719 }
1720 
net_zcopy_get(struct ubuf_info * uarg)1721 static inline void net_zcopy_get(struct ubuf_info *uarg)
1722 {
1723 	refcount_inc(&uarg->refcnt);
1724 }
1725 
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1726 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1727 {
1728 	skb_shinfo(skb)->destructor_arg = uarg;
1729 	skb_shinfo(skb)->flags |= uarg->flags;
1730 }
1731 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1732 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1733 				 bool *have_ref)
1734 {
1735 	if (skb && uarg && !skb_zcopy(skb)) {
1736 		if (unlikely(have_ref && *have_ref))
1737 			*have_ref = false;
1738 		else
1739 			net_zcopy_get(uarg);
1740 		skb_zcopy_init(skb, uarg);
1741 	}
1742 }
1743 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1744 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1745 {
1746 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1747 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1748 }
1749 
skb_zcopy_is_nouarg(struct sk_buff * skb)1750 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1751 {
1752 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1753 }
1754 
skb_zcopy_get_nouarg(struct sk_buff * skb)1755 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1756 {
1757 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1758 }
1759 
net_zcopy_put(struct ubuf_info * uarg)1760 static inline void net_zcopy_put(struct ubuf_info *uarg)
1761 {
1762 	if (uarg)
1763 		uarg->ops->complete(NULL, uarg, true);
1764 }
1765 
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1766 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1767 {
1768 	if (uarg) {
1769 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1770 			msg_zerocopy_put_abort(uarg, have_uref);
1771 		else if (have_uref)
1772 			net_zcopy_put(uarg);
1773 	}
1774 }
1775 
1776 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1777 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1778 {
1779 	struct ubuf_info *uarg = skb_zcopy(skb);
1780 
1781 	if (uarg) {
1782 		if (!skb_zcopy_is_nouarg(skb))
1783 			uarg->ops->complete(skb, uarg, zerocopy_success);
1784 
1785 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1786 	}
1787 }
1788 
1789 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1790 
skb_zcopy_downgrade_managed(struct sk_buff * skb)1791 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1792 {
1793 	if (unlikely(skb_zcopy_managed(skb)))
1794 		__skb_zcopy_downgrade_managed(skb);
1795 }
1796 
skb_mark_not_on_list(struct sk_buff * skb)1797 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1798 {
1799 	skb->next = NULL;
1800 }
1801 
skb_poison_list(struct sk_buff * skb)1802 static inline void skb_poison_list(struct sk_buff *skb)
1803 {
1804 #ifdef CONFIG_DEBUG_NET
1805 	skb->next = SKB_LIST_POISON_NEXT;
1806 #endif
1807 }
1808 
1809 /* Iterate through singly-linked GSO fragments of an skb. */
1810 #define skb_list_walk_safe(first, skb, next_skb)                               \
1811 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1812 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1813 
skb_list_del_init(struct sk_buff * skb)1814 static inline void skb_list_del_init(struct sk_buff *skb)
1815 {
1816 	__list_del_entry(&skb->list);
1817 	skb_mark_not_on_list(skb);
1818 }
1819 
1820 /**
1821  *	skb_queue_empty - check if a queue is empty
1822  *	@list: queue head
1823  *
1824  *	Returns true if the queue is empty, false otherwise.
1825  */
skb_queue_empty(const struct sk_buff_head * list)1826 static inline int skb_queue_empty(const struct sk_buff_head *list)
1827 {
1828 	return list->next == (const struct sk_buff *) list;
1829 }
1830 
1831 /**
1832  *	skb_queue_empty_lockless - check if a queue is empty
1833  *	@list: queue head
1834  *
1835  *	Returns true if the queue is empty, false otherwise.
1836  *	This variant can be used in lockless contexts.
1837  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1838 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1839 {
1840 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1841 }
1842 
1843 
1844 /**
1845  *	skb_queue_is_last - check if skb is the last entry in the queue
1846  *	@list: queue head
1847  *	@skb: buffer
1848  *
1849  *	Returns true if @skb is the last buffer on the list.
1850  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1851 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1852 				     const struct sk_buff *skb)
1853 {
1854 	return skb->next == (const struct sk_buff *) list;
1855 }
1856 
1857 /**
1858  *	skb_queue_is_first - check if skb is the first entry in the queue
1859  *	@list: queue head
1860  *	@skb: buffer
1861  *
1862  *	Returns true if @skb is the first buffer on the list.
1863  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1864 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1865 				      const struct sk_buff *skb)
1866 {
1867 	return skb->prev == (const struct sk_buff *) list;
1868 }
1869 
1870 /**
1871  *	skb_queue_next - return the next packet in the queue
1872  *	@list: queue head
1873  *	@skb: current buffer
1874  *
1875  *	Return the next packet in @list after @skb.  It is only valid to
1876  *	call this if skb_queue_is_last() evaluates to false.
1877  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1878 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1879 					     const struct sk_buff *skb)
1880 {
1881 	/* This BUG_ON may seem severe, but if we just return then we
1882 	 * are going to dereference garbage.
1883 	 */
1884 	BUG_ON(skb_queue_is_last(list, skb));
1885 	return skb->next;
1886 }
1887 
1888 /**
1889  *	skb_queue_prev - return the prev packet in the queue
1890  *	@list: queue head
1891  *	@skb: current buffer
1892  *
1893  *	Return the prev packet in @list before @skb.  It is only valid to
1894  *	call this if skb_queue_is_first() evaluates to false.
1895  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1896 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1897 					     const struct sk_buff *skb)
1898 {
1899 	/* This BUG_ON may seem severe, but if we just return then we
1900 	 * are going to dereference garbage.
1901 	 */
1902 	BUG_ON(skb_queue_is_first(list, skb));
1903 	return skb->prev;
1904 }
1905 
1906 /**
1907  *	skb_get - reference buffer
1908  *	@skb: buffer to reference
1909  *
1910  *	Makes another reference to a socket buffer and returns a pointer
1911  *	to the buffer.
1912  */
skb_get(struct sk_buff * skb)1913 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1914 {
1915 	refcount_inc(&skb->users);
1916 	return skb;
1917 }
1918 
1919 /*
1920  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1921  */
1922 
1923 /**
1924  *	skb_cloned - is the buffer a clone
1925  *	@skb: buffer to check
1926  *
1927  *	Returns true if the buffer was generated with skb_clone() and is
1928  *	one of multiple shared copies of the buffer. Cloned buffers are
1929  *	shared data so must not be written to under normal circumstances.
1930  */
skb_cloned(const struct sk_buff * skb)1931 static inline int skb_cloned(const struct sk_buff *skb)
1932 {
1933 	return skb->cloned &&
1934 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1935 }
1936 
skb_unclone(struct sk_buff * skb,gfp_t pri)1937 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1938 {
1939 	might_sleep_if(gfpflags_allow_blocking(pri));
1940 
1941 	if (skb_cloned(skb))
1942 		return pskb_expand_head(skb, 0, 0, pri);
1943 
1944 	return 0;
1945 }
1946 
1947 /* This variant of skb_unclone() makes sure skb->truesize
1948  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1949  *
1950  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1951  * when various debugging features are in place.
1952  */
1953 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1954 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1955 {
1956 	might_sleep_if(gfpflags_allow_blocking(pri));
1957 
1958 	if (skb_cloned(skb))
1959 		return __skb_unclone_keeptruesize(skb, pri);
1960 	return 0;
1961 }
1962 
1963 /**
1964  *	skb_header_cloned - is the header a clone
1965  *	@skb: buffer to check
1966  *
1967  *	Returns true if modifying the header part of the buffer requires
1968  *	the data to be copied.
1969  */
skb_header_cloned(const struct sk_buff * skb)1970 static inline int skb_header_cloned(const struct sk_buff *skb)
1971 {
1972 	int dataref;
1973 
1974 	if (!skb->cloned)
1975 		return 0;
1976 
1977 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1978 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1979 	return dataref != 1;
1980 }
1981 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1982 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1983 {
1984 	might_sleep_if(gfpflags_allow_blocking(pri));
1985 
1986 	if (skb_header_cloned(skb))
1987 		return pskb_expand_head(skb, 0, 0, pri);
1988 
1989 	return 0;
1990 }
1991 
1992 /**
1993  * __skb_header_release() - allow clones to use the headroom
1994  * @skb: buffer to operate on
1995  *
1996  * See "DOC: dataref and headerless skbs".
1997  */
__skb_header_release(struct sk_buff * skb)1998 static inline void __skb_header_release(struct sk_buff *skb)
1999 {
2000 	skb->nohdr = 1;
2001 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2002 }
2003 
2004 
2005 /**
2006  *	skb_shared - is the buffer shared
2007  *	@skb: buffer to check
2008  *
2009  *	Returns true if more than one person has a reference to this
2010  *	buffer.
2011  */
skb_shared(const struct sk_buff * skb)2012 static inline int skb_shared(const struct sk_buff *skb)
2013 {
2014 	return refcount_read(&skb->users) != 1;
2015 }
2016 
2017 /**
2018  *	skb_share_check - check if buffer is shared and if so clone it
2019  *	@skb: buffer to check
2020  *	@pri: priority for memory allocation
2021  *
2022  *	If the buffer is shared the buffer is cloned and the old copy
2023  *	drops a reference. A new clone with a single reference is returned.
2024  *	If the buffer is not shared the original buffer is returned. When
2025  *	being called from interrupt status or with spinlocks held pri must
2026  *	be GFP_ATOMIC.
2027  *
2028  *	NULL is returned on a memory allocation failure.
2029  */
skb_share_check(struct sk_buff * skb,gfp_t pri)2030 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2031 {
2032 	might_sleep_if(gfpflags_allow_blocking(pri));
2033 	if (skb_shared(skb)) {
2034 		struct sk_buff *nskb = skb_clone(skb, pri);
2035 
2036 		if (likely(nskb))
2037 			consume_skb(skb);
2038 		else
2039 			kfree_skb(skb);
2040 		skb = nskb;
2041 	}
2042 	return skb;
2043 }
2044 
2045 /*
2046  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2047  *	packets to handle cases where we have a local reader and forward
2048  *	and a couple of other messy ones. The normal one is tcpdumping
2049  *	a packet that's being forwarded.
2050  */
2051 
2052 /**
2053  *	skb_unshare - make a copy of a shared buffer
2054  *	@skb: buffer to check
2055  *	@pri: priority for memory allocation
2056  *
2057  *	If the socket buffer is a clone then this function creates a new
2058  *	copy of the data, drops a reference count on the old copy and returns
2059  *	the new copy with the reference count at 1. If the buffer is not a clone
2060  *	the original buffer is returned. When called with a spinlock held or
2061  *	from interrupt state @pri must be %GFP_ATOMIC
2062  *
2063  *	%NULL is returned on a memory allocation failure.
2064  */
skb_unshare(struct sk_buff * skb,gfp_t pri)2065 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2066 					  gfp_t pri)
2067 {
2068 	might_sleep_if(gfpflags_allow_blocking(pri));
2069 	if (skb_cloned(skb)) {
2070 		struct sk_buff *nskb = skb_copy(skb, pri);
2071 
2072 		/* Free our shared copy */
2073 		if (likely(nskb))
2074 			consume_skb(skb);
2075 		else
2076 			kfree_skb(skb);
2077 		skb = nskb;
2078 	}
2079 	return skb;
2080 }
2081 
2082 /**
2083  *	skb_peek - peek at the head of an &sk_buff_head
2084  *	@list_: list to peek at
2085  *
2086  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2087  *	be careful with this one. A peek leaves the buffer on the
2088  *	list and someone else may run off with it. You must hold
2089  *	the appropriate locks or have a private queue to do this.
2090  *
2091  *	Returns %NULL for an empty list or a pointer to the head element.
2092  *	The reference count is not incremented and the reference is therefore
2093  *	volatile. Use with caution.
2094  */
skb_peek(const struct sk_buff_head * list_)2095 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2096 {
2097 	struct sk_buff *skb = list_->next;
2098 
2099 	if (skb == (struct sk_buff *)list_)
2100 		skb = NULL;
2101 	return skb;
2102 }
2103 
2104 /**
2105  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2106  *	@list_: list to peek at
2107  *
2108  *	Like skb_peek(), but the caller knows that the list is not empty.
2109  */
__skb_peek(const struct sk_buff_head * list_)2110 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2111 {
2112 	return list_->next;
2113 }
2114 
2115 /**
2116  *	skb_peek_next - peek skb following the given one from a queue
2117  *	@skb: skb to start from
2118  *	@list_: list to peek at
2119  *
2120  *	Returns %NULL when the end of the list is met or a pointer to the
2121  *	next element. The reference count is not incremented and the
2122  *	reference is therefore volatile. Use with caution.
2123  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2124 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2125 		const struct sk_buff_head *list_)
2126 {
2127 	struct sk_buff *next = skb->next;
2128 
2129 	if (next == (struct sk_buff *)list_)
2130 		next = NULL;
2131 	return next;
2132 }
2133 
2134 /**
2135  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2136  *	@list_: list to peek at
2137  *
2138  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2139  *	be careful with this one. A peek leaves the buffer on the
2140  *	list and someone else may run off with it. You must hold
2141  *	the appropriate locks or have a private queue to do this.
2142  *
2143  *	Returns %NULL for an empty list or a pointer to the tail element.
2144  *	The reference count is not incremented and the reference is therefore
2145  *	volatile. Use with caution.
2146  */
skb_peek_tail(const struct sk_buff_head * list_)2147 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2148 {
2149 	struct sk_buff *skb = READ_ONCE(list_->prev);
2150 
2151 	if (skb == (struct sk_buff *)list_)
2152 		skb = NULL;
2153 	return skb;
2154 
2155 }
2156 
2157 /**
2158  *	skb_queue_len	- get queue length
2159  *	@list_: list to measure
2160  *
2161  *	Return the length of an &sk_buff queue.
2162  */
skb_queue_len(const struct sk_buff_head * list_)2163 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2164 {
2165 	return list_->qlen;
2166 }
2167 
2168 /**
2169  *	skb_queue_len_lockless	- get queue length
2170  *	@list_: list to measure
2171  *
2172  *	Return the length of an &sk_buff queue.
2173  *	This variant can be used in lockless contexts.
2174  */
skb_queue_len_lockless(const struct sk_buff_head * list_)2175 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2176 {
2177 	return READ_ONCE(list_->qlen);
2178 }
2179 
2180 /**
2181  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2182  *	@list: queue to initialize
2183  *
2184  *	This initializes only the list and queue length aspects of
2185  *	an sk_buff_head object.  This allows to initialize the list
2186  *	aspects of an sk_buff_head without reinitializing things like
2187  *	the spinlock.  It can also be used for on-stack sk_buff_head
2188  *	objects where the spinlock is known to not be used.
2189  */
__skb_queue_head_init(struct sk_buff_head * list)2190 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2191 {
2192 	list->prev = list->next = (struct sk_buff *)list;
2193 	list->qlen = 0;
2194 }
2195 
2196 /*
2197  * This function creates a split out lock class for each invocation;
2198  * this is needed for now since a whole lot of users of the skb-queue
2199  * infrastructure in drivers have different locking usage (in hardirq)
2200  * than the networking core (in softirq only). In the long run either the
2201  * network layer or drivers should need annotation to consolidate the
2202  * main types of usage into 3 classes.
2203  */
skb_queue_head_init(struct sk_buff_head * list)2204 static inline void skb_queue_head_init(struct sk_buff_head *list)
2205 {
2206 	spin_lock_init(&list->lock);
2207 	__skb_queue_head_init(list);
2208 }
2209 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2210 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2211 		struct lock_class_key *class)
2212 {
2213 	skb_queue_head_init(list);
2214 	lockdep_set_class(&list->lock, class);
2215 }
2216 
2217 /*
2218  *	Insert an sk_buff on a list.
2219  *
2220  *	The "__skb_xxxx()" functions are the non-atomic ones that
2221  *	can only be called with interrupts disabled.
2222  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2223 static inline void __skb_insert(struct sk_buff *newsk,
2224 				struct sk_buff *prev, struct sk_buff *next,
2225 				struct sk_buff_head *list)
2226 {
2227 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2228 	 * for the opposite READ_ONCE()
2229 	 */
2230 	WRITE_ONCE(newsk->next, next);
2231 	WRITE_ONCE(newsk->prev, prev);
2232 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2233 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2234 	WRITE_ONCE(list->qlen, list->qlen + 1);
2235 }
2236 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2237 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2238 				      struct sk_buff *prev,
2239 				      struct sk_buff *next)
2240 {
2241 	struct sk_buff *first = list->next;
2242 	struct sk_buff *last = list->prev;
2243 
2244 	WRITE_ONCE(first->prev, prev);
2245 	WRITE_ONCE(prev->next, first);
2246 
2247 	WRITE_ONCE(last->next, next);
2248 	WRITE_ONCE(next->prev, last);
2249 }
2250 
2251 /**
2252  *	skb_queue_splice - join two skb lists, this is designed for stacks
2253  *	@list: the new list to add
2254  *	@head: the place to add it in the first list
2255  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2256 static inline void skb_queue_splice(const struct sk_buff_head *list,
2257 				    struct sk_buff_head *head)
2258 {
2259 	if (!skb_queue_empty(list)) {
2260 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2261 		head->qlen += list->qlen;
2262 	}
2263 }
2264 
2265 /**
2266  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2267  *	@list: the new list to add
2268  *	@head: the place to add it in the first list
2269  *
2270  *	The list at @list is reinitialised
2271  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2272 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2273 					 struct sk_buff_head *head)
2274 {
2275 	if (!skb_queue_empty(list)) {
2276 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2277 		head->qlen += list->qlen;
2278 		__skb_queue_head_init(list);
2279 	}
2280 }
2281 
2282 /**
2283  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2284  *	@list: the new list to add
2285  *	@head: the place to add it in the first list
2286  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2287 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2288 					 struct sk_buff_head *head)
2289 {
2290 	if (!skb_queue_empty(list)) {
2291 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2292 		head->qlen += list->qlen;
2293 	}
2294 }
2295 
2296 /**
2297  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2298  *	@list: the new list to add
2299  *	@head: the place to add it in the first list
2300  *
2301  *	Each of the lists is a queue.
2302  *	The list at @list is reinitialised
2303  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2304 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2305 					      struct sk_buff_head *head)
2306 {
2307 	if (!skb_queue_empty(list)) {
2308 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2309 		head->qlen += list->qlen;
2310 		__skb_queue_head_init(list);
2311 	}
2312 }
2313 
2314 /**
2315  *	__skb_queue_after - queue a buffer at the list head
2316  *	@list: list to use
2317  *	@prev: place after this buffer
2318  *	@newsk: buffer to queue
2319  *
2320  *	Queue a buffer int the middle of a list. This function takes no locks
2321  *	and you must therefore hold required locks before calling it.
2322  *
2323  *	A buffer cannot be placed on two lists at the same time.
2324  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2325 static inline void __skb_queue_after(struct sk_buff_head *list,
2326 				     struct sk_buff *prev,
2327 				     struct sk_buff *newsk)
2328 {
2329 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2330 }
2331 
2332 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2333 		struct sk_buff_head *list);
2334 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2335 static inline void __skb_queue_before(struct sk_buff_head *list,
2336 				      struct sk_buff *next,
2337 				      struct sk_buff *newsk)
2338 {
2339 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2340 }
2341 
2342 /**
2343  *	__skb_queue_head - queue a buffer at the list head
2344  *	@list: list to use
2345  *	@newsk: buffer to queue
2346  *
2347  *	Queue a buffer at the start of a list. This function takes no locks
2348  *	and you must therefore hold required locks before calling it.
2349  *
2350  *	A buffer cannot be placed on two lists at the same time.
2351  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2352 static inline void __skb_queue_head(struct sk_buff_head *list,
2353 				    struct sk_buff *newsk)
2354 {
2355 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2356 }
2357 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2358 
2359 /**
2360  *	__skb_queue_tail - queue a buffer at the list tail
2361  *	@list: list to use
2362  *	@newsk: buffer to queue
2363  *
2364  *	Queue a buffer at the end of a list. This function takes no locks
2365  *	and you must therefore hold required locks before calling it.
2366  *
2367  *	A buffer cannot be placed on two lists at the same time.
2368  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2369 static inline void __skb_queue_tail(struct sk_buff_head *list,
2370 				   struct sk_buff *newsk)
2371 {
2372 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2373 }
2374 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2375 
2376 /*
2377  * remove sk_buff from list. _Must_ be called atomically, and with
2378  * the list known..
2379  */
2380 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2381 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2382 {
2383 	struct sk_buff *next, *prev;
2384 
2385 	WRITE_ONCE(list->qlen, list->qlen - 1);
2386 	next	   = skb->next;
2387 	prev	   = skb->prev;
2388 	skb->next  = skb->prev = NULL;
2389 	WRITE_ONCE(next->prev, prev);
2390 	WRITE_ONCE(prev->next, next);
2391 }
2392 
2393 /**
2394  *	__skb_dequeue - remove from the head of the queue
2395  *	@list: list to dequeue from
2396  *
2397  *	Remove the head of the list. This function does not take any locks
2398  *	so must be used with appropriate locks held only. The head item is
2399  *	returned or %NULL if the list is empty.
2400  */
__skb_dequeue(struct sk_buff_head * list)2401 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2402 {
2403 	struct sk_buff *skb = skb_peek(list);
2404 	if (skb)
2405 		__skb_unlink(skb, list);
2406 	return skb;
2407 }
2408 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2409 
2410 /**
2411  *	__skb_dequeue_tail - remove from the tail of the queue
2412  *	@list: list to dequeue from
2413  *
2414  *	Remove the tail of the list. This function does not take any locks
2415  *	so must be used with appropriate locks held only. The tail item is
2416  *	returned or %NULL if the list is empty.
2417  */
__skb_dequeue_tail(struct sk_buff_head * list)2418 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2419 {
2420 	struct sk_buff *skb = skb_peek_tail(list);
2421 	if (skb)
2422 		__skb_unlink(skb, list);
2423 	return skb;
2424 }
2425 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2426 
2427 
skb_is_nonlinear(const struct sk_buff * skb)2428 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2429 {
2430 	return skb->data_len;
2431 }
2432 
skb_headlen(const struct sk_buff * skb)2433 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2434 {
2435 	return skb->len - skb->data_len;
2436 }
2437 
__skb_pagelen(const struct sk_buff * skb)2438 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2439 {
2440 	unsigned int i, len = 0;
2441 
2442 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2443 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2444 	return len;
2445 }
2446 
skb_pagelen(const struct sk_buff * skb)2447 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2448 {
2449 	return skb_headlen(skb) + __skb_pagelen(skb);
2450 }
2451 
skb_frag_fill_netmem_desc(skb_frag_t * frag,netmem_ref netmem,int off,int size)2452 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2453 					     netmem_ref netmem, int off,
2454 					     int size)
2455 {
2456 	frag->netmem = netmem;
2457 	frag->offset = off;
2458 	skb_frag_size_set(frag, size);
2459 }
2460 
skb_frag_fill_page_desc(skb_frag_t * frag,struct page * page,int off,int size)2461 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2462 					   struct page *page,
2463 					   int off, int size)
2464 {
2465 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2466 }
2467 
__skb_fill_netmem_desc_noacc(struct skb_shared_info * shinfo,int i,netmem_ref netmem,int off,int size)2468 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2469 						int i, netmem_ref netmem,
2470 						int off, int size)
2471 {
2472 	skb_frag_t *frag = &shinfo->frags[i];
2473 
2474 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2475 }
2476 
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2477 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2478 					      int i, struct page *page,
2479 					      int off, int size)
2480 {
2481 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2482 				     size);
2483 }
2484 
2485 /**
2486  * skb_len_add - adds a number to len fields of skb
2487  * @skb: buffer to add len to
2488  * @delta: number of bytes to add
2489  */
skb_len_add(struct sk_buff * skb,int delta)2490 static inline void skb_len_add(struct sk_buff *skb, int delta)
2491 {
2492 	skb->len += delta;
2493 	skb->data_len += delta;
2494 	skb->truesize += delta;
2495 }
2496 
2497 /**
2498  * __skb_fill_netmem_desc - initialise a fragment in an skb
2499  * @skb: buffer containing fragment to be initialised
2500  * @i: fragment index to initialise
2501  * @netmem: the netmem to use for this fragment
2502  * @off: the offset to the data with @page
2503  * @size: the length of the data
2504  *
2505  * Initialises the @i'th fragment of @skb to point to &size bytes at
2506  * offset @off within @page.
2507  *
2508  * Does not take any additional reference on the fragment.
2509  */
__skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2510 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2511 					  netmem_ref netmem, int off, int size)
2512 {
2513 	struct page *page = netmem_to_page(netmem);
2514 
2515 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2516 
2517 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2518 	 * that not all callers have unique ownership of the page but rely
2519 	 * on page_is_pfmemalloc doing the right thing(tm).
2520 	 */
2521 	page = compound_head(page);
2522 	if (page_is_pfmemalloc(page))
2523 		skb->pfmemalloc = true;
2524 }
2525 
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2526 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2527 					struct page *page, int off, int size)
2528 {
2529 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2530 }
2531 
skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2532 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2533 					netmem_ref netmem, int off, int size)
2534 {
2535 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2536 	skb_shinfo(skb)->nr_frags = i + 1;
2537 }
2538 
2539 /**
2540  * skb_fill_page_desc - initialise a paged fragment in an skb
2541  * @skb: buffer containing fragment to be initialised
2542  * @i: paged fragment index to initialise
2543  * @page: the page to use for this fragment
2544  * @off: the offset to the data with @page
2545  * @size: the length of the data
2546  *
2547  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2548  * @skb to point to @size bytes at offset @off within @page. In
2549  * addition updates @skb such that @i is the last fragment.
2550  *
2551  * Does not take any additional reference on the fragment.
2552  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2553 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2554 				      struct page *page, int off, int size)
2555 {
2556 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2557 }
2558 
2559 /**
2560  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2561  * @skb: buffer containing fragment to be initialised
2562  * @i: paged fragment index to initialise
2563  * @page: the page to use for this fragment
2564  * @off: the offset to the data with @page
2565  * @size: the length of the data
2566  *
2567  * Variant of skb_fill_page_desc() which does not deal with
2568  * pfmemalloc, if page is not owned by us.
2569  */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2570 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2571 					    struct page *page, int off,
2572 					    int size)
2573 {
2574 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2575 
2576 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2577 	shinfo->nr_frags = i + 1;
2578 }
2579 
2580 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2581 			    int off, int size, unsigned int truesize);
2582 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)2583 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2584 				   struct page *page, int off, int size,
2585 				   unsigned int truesize)
2586 {
2587 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2588 			       truesize);
2589 }
2590 
2591 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2592 			  unsigned int truesize);
2593 
2594 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2595 
2596 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2597 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2598 {
2599 	return skb->head + skb->tail;
2600 }
2601 
skb_reset_tail_pointer(struct sk_buff * skb)2602 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2603 {
2604 	skb->tail = skb->data - skb->head;
2605 }
2606 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2607 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2608 {
2609 	skb_reset_tail_pointer(skb);
2610 	skb->tail += offset;
2611 }
2612 
2613 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2614 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2615 {
2616 	return skb->tail;
2617 }
2618 
skb_reset_tail_pointer(struct sk_buff * skb)2619 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2620 {
2621 	skb->tail = skb->data;
2622 }
2623 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2624 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2625 {
2626 	skb->tail = skb->data + offset;
2627 }
2628 
2629 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2630 
skb_assert_len(struct sk_buff * skb)2631 static inline void skb_assert_len(struct sk_buff *skb)
2632 {
2633 #ifdef CONFIG_DEBUG_NET
2634 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2635 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2636 #endif /* CONFIG_DEBUG_NET */
2637 }
2638 
2639 /*
2640  *	Add data to an sk_buff
2641  */
2642 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2643 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2644 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2645 {
2646 	void *tmp = skb_tail_pointer(skb);
2647 	SKB_LINEAR_ASSERT(skb);
2648 	skb->tail += len;
2649 	skb->len  += len;
2650 	return tmp;
2651 }
2652 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2653 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2654 {
2655 	void *tmp = __skb_put(skb, len);
2656 
2657 	memset(tmp, 0, len);
2658 	return tmp;
2659 }
2660 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2661 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2662 				   unsigned int len)
2663 {
2664 	void *tmp = __skb_put(skb, len);
2665 
2666 	memcpy(tmp, data, len);
2667 	return tmp;
2668 }
2669 
__skb_put_u8(struct sk_buff * skb,u8 val)2670 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2671 {
2672 	*(u8 *)__skb_put(skb, 1) = val;
2673 }
2674 
skb_put_zero(struct sk_buff * skb,unsigned int len)2675 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2676 {
2677 	void *tmp = skb_put(skb, len);
2678 
2679 	memset(tmp, 0, len);
2680 
2681 	return tmp;
2682 }
2683 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2684 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2685 				 unsigned int len)
2686 {
2687 	void *tmp = skb_put(skb, len);
2688 
2689 	memcpy(tmp, data, len);
2690 
2691 	return tmp;
2692 }
2693 
skb_put_u8(struct sk_buff * skb,u8 val)2694 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2695 {
2696 	*(u8 *)skb_put(skb, 1) = val;
2697 }
2698 
2699 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2700 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2701 {
2702 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2703 
2704 	skb->data -= len;
2705 	skb->len  += len;
2706 	return skb->data;
2707 }
2708 
2709 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2710 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2711 {
2712 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2713 
2714 	skb->len -= len;
2715 	if (unlikely(skb->len < skb->data_len)) {
2716 #if defined(CONFIG_DEBUG_NET)
2717 		skb->len += len;
2718 		pr_err("__skb_pull(len=%u)\n", len);
2719 		skb_dump(KERN_ERR, skb, false);
2720 #endif
2721 		BUG();
2722 	}
2723 	return skb->data += len;
2724 }
2725 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2726 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2727 {
2728 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2729 }
2730 
2731 void *skb_pull_data(struct sk_buff *skb, size_t len);
2732 
2733 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2734 
2735 static inline enum skb_drop_reason
pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2736 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2737 {
2738 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2739 
2740 	if (likely(len <= skb_headlen(skb)))
2741 		return SKB_NOT_DROPPED_YET;
2742 
2743 	if (unlikely(len > skb->len))
2744 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2745 
2746 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2747 		return SKB_DROP_REASON_NOMEM;
2748 
2749 	return SKB_NOT_DROPPED_YET;
2750 }
2751 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2752 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2753 {
2754 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2755 }
2756 
pskb_pull(struct sk_buff * skb,unsigned int len)2757 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2758 {
2759 	if (!pskb_may_pull(skb, len))
2760 		return NULL;
2761 
2762 	skb->len -= len;
2763 	return skb->data += len;
2764 }
2765 
2766 void skb_condense(struct sk_buff *skb);
2767 
2768 /**
2769  *	skb_headroom - bytes at buffer head
2770  *	@skb: buffer to check
2771  *
2772  *	Return the number of bytes of free space at the head of an &sk_buff.
2773  */
skb_headroom(const struct sk_buff * skb)2774 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2775 {
2776 	return skb->data - skb->head;
2777 }
2778 
2779 /**
2780  *	skb_tailroom - bytes at buffer end
2781  *	@skb: buffer to check
2782  *
2783  *	Return the number of bytes of free space at the tail of an sk_buff
2784  */
skb_tailroom(const struct sk_buff * skb)2785 static inline int skb_tailroom(const struct sk_buff *skb)
2786 {
2787 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2788 }
2789 
2790 /**
2791  *	skb_availroom - bytes at buffer end
2792  *	@skb: buffer to check
2793  *
2794  *	Return the number of bytes of free space at the tail of an sk_buff
2795  *	allocated by sk_stream_alloc()
2796  */
skb_availroom(const struct sk_buff * skb)2797 static inline int skb_availroom(const struct sk_buff *skb)
2798 {
2799 	if (skb_is_nonlinear(skb))
2800 		return 0;
2801 
2802 	return skb->end - skb->tail - skb->reserved_tailroom;
2803 }
2804 
2805 /**
2806  *	skb_reserve - adjust headroom
2807  *	@skb: buffer to alter
2808  *	@len: bytes to move
2809  *
2810  *	Increase the headroom of an empty &sk_buff by reducing the tail
2811  *	room. This is only allowed for an empty buffer.
2812  */
skb_reserve(struct sk_buff * skb,int len)2813 static inline void skb_reserve(struct sk_buff *skb, int len)
2814 {
2815 	skb->data += len;
2816 	skb->tail += len;
2817 }
2818 
2819 /**
2820  *	skb_tailroom_reserve - adjust reserved_tailroom
2821  *	@skb: buffer to alter
2822  *	@mtu: maximum amount of headlen permitted
2823  *	@needed_tailroom: minimum amount of reserved_tailroom
2824  *
2825  *	Set reserved_tailroom so that headlen can be as large as possible but
2826  *	not larger than mtu and tailroom cannot be smaller than
2827  *	needed_tailroom.
2828  *	The required headroom should already have been reserved before using
2829  *	this function.
2830  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2831 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2832 					unsigned int needed_tailroom)
2833 {
2834 	SKB_LINEAR_ASSERT(skb);
2835 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2836 		/* use at most mtu */
2837 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2838 	else
2839 		/* use up to all available space */
2840 		skb->reserved_tailroom = needed_tailroom;
2841 }
2842 
2843 #define ENCAP_TYPE_ETHER	0
2844 #define ENCAP_TYPE_IPPROTO	1
2845 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2846 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2847 					  __be16 protocol)
2848 {
2849 	skb->inner_protocol = protocol;
2850 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2851 }
2852 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2853 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2854 					 __u8 ipproto)
2855 {
2856 	skb->inner_ipproto = ipproto;
2857 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2858 }
2859 
skb_reset_inner_headers(struct sk_buff * skb)2860 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2861 {
2862 	skb->inner_mac_header = skb->mac_header;
2863 	skb->inner_network_header = skb->network_header;
2864 	skb->inner_transport_header = skb->transport_header;
2865 }
2866 
skb_reset_mac_len(struct sk_buff * skb)2867 static inline void skb_reset_mac_len(struct sk_buff *skb)
2868 {
2869 	skb->mac_len = skb->network_header - skb->mac_header;
2870 }
2871 
skb_inner_transport_header(const struct sk_buff * skb)2872 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2873 							*skb)
2874 {
2875 	return skb->head + skb->inner_transport_header;
2876 }
2877 
skb_inner_transport_offset(const struct sk_buff * skb)2878 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2879 {
2880 	return skb_inner_transport_header(skb) - skb->data;
2881 }
2882 
skb_reset_inner_transport_header(struct sk_buff * skb)2883 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2884 {
2885 	skb->inner_transport_header = skb->data - skb->head;
2886 }
2887 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2888 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2889 						   const int offset)
2890 {
2891 	skb_reset_inner_transport_header(skb);
2892 	skb->inner_transport_header += offset;
2893 }
2894 
skb_inner_network_header(const struct sk_buff * skb)2895 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2896 {
2897 	return skb->head + skb->inner_network_header;
2898 }
2899 
skb_reset_inner_network_header(struct sk_buff * skb)2900 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2901 {
2902 	skb->inner_network_header = skb->data - skb->head;
2903 }
2904 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2905 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2906 						const int offset)
2907 {
2908 	skb_reset_inner_network_header(skb);
2909 	skb->inner_network_header += offset;
2910 }
2911 
skb_inner_network_header_was_set(const struct sk_buff * skb)2912 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2913 {
2914 	return skb->inner_network_header > 0;
2915 }
2916 
skb_inner_mac_header(const struct sk_buff * skb)2917 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2918 {
2919 	return skb->head + skb->inner_mac_header;
2920 }
2921 
skb_reset_inner_mac_header(struct sk_buff * skb)2922 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2923 {
2924 	skb->inner_mac_header = skb->data - skb->head;
2925 }
2926 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2927 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2928 					    const int offset)
2929 {
2930 	skb_reset_inner_mac_header(skb);
2931 	skb->inner_mac_header += offset;
2932 }
skb_transport_header_was_set(const struct sk_buff * skb)2933 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2934 {
2935 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2936 }
2937 
skb_transport_header(const struct sk_buff * skb)2938 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2939 {
2940 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2941 	return skb->head + skb->transport_header;
2942 }
2943 
skb_reset_transport_header(struct sk_buff * skb)2944 static inline void skb_reset_transport_header(struct sk_buff *skb)
2945 {
2946 	skb->transport_header = skb->data - skb->head;
2947 }
2948 
skb_set_transport_header(struct sk_buff * skb,const int offset)2949 static inline void skb_set_transport_header(struct sk_buff *skb,
2950 					    const int offset)
2951 {
2952 	skb_reset_transport_header(skb);
2953 	skb->transport_header += offset;
2954 }
2955 
skb_network_header(const struct sk_buff * skb)2956 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2957 {
2958 	return skb->head + skb->network_header;
2959 }
2960 
skb_reset_network_header(struct sk_buff * skb)2961 static inline void skb_reset_network_header(struct sk_buff *skb)
2962 {
2963 	skb->network_header = skb->data - skb->head;
2964 }
2965 
skb_set_network_header(struct sk_buff * skb,const int offset)2966 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2967 {
2968 	skb_reset_network_header(skb);
2969 	skb->network_header += offset;
2970 }
2971 
skb_mac_header_was_set(const struct sk_buff * skb)2972 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2973 {
2974 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2975 }
2976 
skb_mac_header(const struct sk_buff * skb)2977 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2978 {
2979 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2980 	return skb->head + skb->mac_header;
2981 }
2982 
skb_mac_offset(const struct sk_buff * skb)2983 static inline int skb_mac_offset(const struct sk_buff *skb)
2984 {
2985 	return skb_mac_header(skb) - skb->data;
2986 }
2987 
skb_mac_header_len(const struct sk_buff * skb)2988 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2989 {
2990 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2991 	return skb->network_header - skb->mac_header;
2992 }
2993 
skb_unset_mac_header(struct sk_buff * skb)2994 static inline void skb_unset_mac_header(struct sk_buff *skb)
2995 {
2996 	skb->mac_header = (typeof(skb->mac_header))~0U;
2997 }
2998 
skb_reset_mac_header(struct sk_buff * skb)2999 static inline void skb_reset_mac_header(struct sk_buff *skb)
3000 {
3001 	skb->mac_header = skb->data - skb->head;
3002 }
3003 
skb_set_mac_header(struct sk_buff * skb,const int offset)3004 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3005 {
3006 	skb_reset_mac_header(skb);
3007 	skb->mac_header += offset;
3008 }
3009 
skb_pop_mac_header(struct sk_buff * skb)3010 static inline void skb_pop_mac_header(struct sk_buff *skb)
3011 {
3012 	skb->mac_header = skb->network_header;
3013 }
3014 
skb_probe_transport_header(struct sk_buff * skb)3015 static inline void skb_probe_transport_header(struct sk_buff *skb)
3016 {
3017 	struct flow_keys_basic keys;
3018 
3019 	if (skb_transport_header_was_set(skb))
3020 		return;
3021 
3022 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3023 					     NULL, 0, 0, 0, 0))
3024 		skb_set_transport_header(skb, keys.control.thoff);
3025 }
3026 
skb_mac_header_rebuild(struct sk_buff * skb)3027 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3028 {
3029 	if (skb_mac_header_was_set(skb)) {
3030 		const unsigned char *old_mac = skb_mac_header(skb);
3031 
3032 		skb_set_mac_header(skb, -skb->mac_len);
3033 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3034 	}
3035 }
3036 
3037 /* Move the full mac header up to current network_header.
3038  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3039  * Must be provided the complete mac header length.
3040  */
skb_mac_header_rebuild_full(struct sk_buff * skb,u32 full_mac_len)3041 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3042 {
3043 	if (skb_mac_header_was_set(skb)) {
3044 		const unsigned char *old_mac = skb_mac_header(skb);
3045 
3046 		skb_set_mac_header(skb, -full_mac_len);
3047 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3048 		__skb_push(skb, full_mac_len - skb->mac_len);
3049 	}
3050 }
3051 
skb_checksum_start_offset(const struct sk_buff * skb)3052 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3053 {
3054 	return skb->csum_start - skb_headroom(skb);
3055 }
3056 
skb_checksum_start(const struct sk_buff * skb)3057 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3058 {
3059 	return skb->head + skb->csum_start;
3060 }
3061 
skb_transport_offset(const struct sk_buff * skb)3062 static inline int skb_transport_offset(const struct sk_buff *skb)
3063 {
3064 	return skb_transport_header(skb) - skb->data;
3065 }
3066 
skb_network_header_len(const struct sk_buff * skb)3067 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3068 {
3069 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3070 	return skb->transport_header - skb->network_header;
3071 }
3072 
skb_inner_network_header_len(const struct sk_buff * skb)3073 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3074 {
3075 	return skb->inner_transport_header - skb->inner_network_header;
3076 }
3077 
skb_network_offset(const struct sk_buff * skb)3078 static inline int skb_network_offset(const struct sk_buff *skb)
3079 {
3080 	return skb_network_header(skb) - skb->data;
3081 }
3082 
skb_inner_network_offset(const struct sk_buff * skb)3083 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3084 {
3085 	return skb_inner_network_header(skb) - skb->data;
3086 }
3087 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3088 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3089 {
3090 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3091 }
3092 
3093 /*
3094  * CPUs often take a performance hit when accessing unaligned memory
3095  * locations. The actual performance hit varies, it can be small if the
3096  * hardware handles it or large if we have to take an exception and fix it
3097  * in software.
3098  *
3099  * Since an ethernet header is 14 bytes network drivers often end up with
3100  * the IP header at an unaligned offset. The IP header can be aligned by
3101  * shifting the start of the packet by 2 bytes. Drivers should do this
3102  * with:
3103  *
3104  * skb_reserve(skb, NET_IP_ALIGN);
3105  *
3106  * The downside to this alignment of the IP header is that the DMA is now
3107  * unaligned. On some architectures the cost of an unaligned DMA is high
3108  * and this cost outweighs the gains made by aligning the IP header.
3109  *
3110  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3111  * to be overridden.
3112  */
3113 #ifndef NET_IP_ALIGN
3114 #define NET_IP_ALIGN	2
3115 #endif
3116 
3117 /*
3118  * The networking layer reserves some headroom in skb data (via
3119  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3120  * the header has to grow. In the default case, if the header has to grow
3121  * 32 bytes or less we avoid the reallocation.
3122  *
3123  * Unfortunately this headroom changes the DMA alignment of the resulting
3124  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3125  * on some architectures. An architecture can override this value,
3126  * perhaps setting it to a cacheline in size (since that will maintain
3127  * cacheline alignment of the DMA). It must be a power of 2.
3128  *
3129  * Various parts of the networking layer expect at least 32 bytes of
3130  * headroom, you should not reduce this.
3131  *
3132  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3133  * to reduce average number of cache lines per packet.
3134  * get_rps_cpu() for example only access one 64 bytes aligned block :
3135  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3136  */
3137 #ifndef NET_SKB_PAD
3138 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3139 #endif
3140 
3141 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3142 
__skb_set_length(struct sk_buff * skb,unsigned int len)3143 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3144 {
3145 	if (WARN_ON(skb_is_nonlinear(skb)))
3146 		return;
3147 	skb->len = len;
3148 	skb_set_tail_pointer(skb, len);
3149 }
3150 
__skb_trim(struct sk_buff * skb,unsigned int len)3151 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3152 {
3153 	__skb_set_length(skb, len);
3154 }
3155 
3156 void skb_trim(struct sk_buff *skb, unsigned int len);
3157 
__pskb_trim(struct sk_buff * skb,unsigned int len)3158 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3159 {
3160 	if (skb->data_len)
3161 		return ___pskb_trim(skb, len);
3162 	__skb_trim(skb, len);
3163 	return 0;
3164 }
3165 
pskb_trim(struct sk_buff * skb,unsigned int len)3166 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3167 {
3168 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3169 }
3170 
3171 /**
3172  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3173  *	@skb: buffer to alter
3174  *	@len: new length
3175  *
3176  *	This is identical to pskb_trim except that the caller knows that
3177  *	the skb is not cloned so we should never get an error due to out-
3178  *	of-memory.
3179  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3180 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3181 {
3182 	int err = pskb_trim(skb, len);
3183 	BUG_ON(err);
3184 }
3185 
__skb_grow(struct sk_buff * skb,unsigned int len)3186 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3187 {
3188 	unsigned int diff = len - skb->len;
3189 
3190 	if (skb_tailroom(skb) < diff) {
3191 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3192 					   GFP_ATOMIC);
3193 		if (ret)
3194 			return ret;
3195 	}
3196 	__skb_set_length(skb, len);
3197 	return 0;
3198 }
3199 
3200 /**
3201  *	skb_orphan - orphan a buffer
3202  *	@skb: buffer to orphan
3203  *
3204  *	If a buffer currently has an owner then we call the owner's
3205  *	destructor function and make the @skb unowned. The buffer continues
3206  *	to exist but is no longer charged to its former owner.
3207  */
skb_orphan(struct sk_buff * skb)3208 static inline void skb_orphan(struct sk_buff *skb)
3209 {
3210 	if (skb->destructor) {
3211 		skb->destructor(skb);
3212 		skb->destructor = NULL;
3213 		skb->sk		= NULL;
3214 	} else {
3215 		BUG_ON(skb->sk);
3216 	}
3217 }
3218 
3219 /**
3220  *	skb_orphan_frags - orphan the frags contained in a buffer
3221  *	@skb: buffer to orphan frags from
3222  *	@gfp_mask: allocation mask for replacement pages
3223  *
3224  *	For each frag in the SKB which needs a destructor (i.e. has an
3225  *	owner) create a copy of that frag and release the original
3226  *	page by calling the destructor.
3227  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3228 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3229 {
3230 	if (likely(!skb_zcopy(skb)))
3231 		return 0;
3232 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3233 		return 0;
3234 	return skb_copy_ubufs(skb, gfp_mask);
3235 }
3236 
3237 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3238 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3239 {
3240 	if (likely(!skb_zcopy(skb)))
3241 		return 0;
3242 	return skb_copy_ubufs(skb, gfp_mask);
3243 }
3244 
3245 /**
3246  *	__skb_queue_purge_reason - empty a list
3247  *	@list: list to empty
3248  *	@reason: drop reason
3249  *
3250  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3251  *	the list and one reference dropped. This function does not take the
3252  *	list lock and the caller must hold the relevant locks to use it.
3253  */
__skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3254 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3255 					    enum skb_drop_reason reason)
3256 {
3257 	struct sk_buff *skb;
3258 
3259 	while ((skb = __skb_dequeue(list)) != NULL)
3260 		kfree_skb_reason(skb, reason);
3261 }
3262 
__skb_queue_purge(struct sk_buff_head * list)3263 static inline void __skb_queue_purge(struct sk_buff_head *list)
3264 {
3265 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3266 }
3267 
3268 void skb_queue_purge_reason(struct sk_buff_head *list,
3269 			    enum skb_drop_reason reason);
3270 
skb_queue_purge(struct sk_buff_head * list)3271 static inline void skb_queue_purge(struct sk_buff_head *list)
3272 {
3273 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3274 }
3275 
3276 unsigned int skb_rbtree_purge(struct rb_root *root);
3277 void skb_errqueue_purge(struct sk_buff_head *list);
3278 
3279 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3280 
3281 /**
3282  * netdev_alloc_frag - allocate a page fragment
3283  * @fragsz: fragment size
3284  *
3285  * Allocates a frag from a page for receive buffer.
3286  * Uses GFP_ATOMIC allocations.
3287  */
netdev_alloc_frag(unsigned int fragsz)3288 static inline void *netdev_alloc_frag(unsigned int fragsz)
3289 {
3290 	return __netdev_alloc_frag_align(fragsz, ~0u);
3291 }
3292 
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3293 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3294 					    unsigned int align)
3295 {
3296 	WARN_ON_ONCE(!is_power_of_2(align));
3297 	return __netdev_alloc_frag_align(fragsz, -align);
3298 }
3299 
3300 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3301 				   gfp_t gfp_mask);
3302 
3303 /**
3304  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3305  *	@dev: network device to receive on
3306  *	@length: length to allocate
3307  *
3308  *	Allocate a new &sk_buff and assign it a usage count of one. The
3309  *	buffer has unspecified headroom built in. Users should allocate
3310  *	the headroom they think they need without accounting for the
3311  *	built in space. The built in space is used for optimisations.
3312  *
3313  *	%NULL is returned if there is no free memory. Although this function
3314  *	allocates memory it can be called from an interrupt.
3315  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3316 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3317 					       unsigned int length)
3318 {
3319 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3320 }
3321 
3322 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3323 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3324 					      gfp_t gfp_mask)
3325 {
3326 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3327 }
3328 
3329 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3330 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3331 {
3332 	return netdev_alloc_skb(NULL, length);
3333 }
3334 
3335 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3336 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3337 		unsigned int length, gfp_t gfp)
3338 {
3339 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3340 
3341 	if (NET_IP_ALIGN && skb)
3342 		skb_reserve(skb, NET_IP_ALIGN);
3343 	return skb;
3344 }
3345 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3346 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3347 		unsigned int length)
3348 {
3349 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3350 }
3351 
skb_free_frag(void * addr)3352 static inline void skb_free_frag(void *addr)
3353 {
3354 	page_frag_free(addr);
3355 }
3356 
3357 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3358 
napi_alloc_frag(unsigned int fragsz)3359 static inline void *napi_alloc_frag(unsigned int fragsz)
3360 {
3361 	return __napi_alloc_frag_align(fragsz, ~0u);
3362 }
3363 
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3364 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3365 					  unsigned int align)
3366 {
3367 	WARN_ON_ONCE(!is_power_of_2(align));
3368 	return __napi_alloc_frag_align(fragsz, -align);
3369 }
3370 
3371 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3372 void napi_consume_skb(struct sk_buff *skb, int budget);
3373 
3374 void napi_skb_free_stolen_head(struct sk_buff *skb);
3375 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3376 
3377 /**
3378  * __dev_alloc_pages - allocate page for network Rx
3379  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3380  * @order: size of the allocation
3381  *
3382  * Allocate a new page.
3383  *
3384  * %NULL is returned if there is no free memory.
3385 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3386 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3387 					     unsigned int order)
3388 {
3389 	/* This piece of code contains several assumptions.
3390 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3391 	 * 2.  The expectation is the user wants a compound page.
3392 	 * 3.  If requesting a order 0 page it will not be compound
3393 	 *     due to the check to see if order has a value in prep_new_page
3394 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3395 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3396 	 */
3397 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3398 
3399 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3400 }
3401 
dev_alloc_pages(unsigned int order)3402 static inline struct page *dev_alloc_pages(unsigned int order)
3403 {
3404 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3405 }
3406 
3407 /**
3408  * __dev_alloc_page - allocate a page for network Rx
3409  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3410  *
3411  * Allocate a new page.
3412  *
3413  * %NULL is returned if there is no free memory.
3414  */
__dev_alloc_page(gfp_t gfp_mask)3415 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3416 {
3417 	return __dev_alloc_pages(gfp_mask, 0);
3418 }
3419 
dev_alloc_page(void)3420 static inline struct page *dev_alloc_page(void)
3421 {
3422 	return dev_alloc_pages(0);
3423 }
3424 
3425 /**
3426  * dev_page_is_reusable - check whether a page can be reused for network Rx
3427  * @page: the page to test
3428  *
3429  * A page shouldn't be considered for reusing/recycling if it was allocated
3430  * under memory pressure or at a distant memory node.
3431  *
3432  * Returns false if this page should be returned to page allocator, true
3433  * otherwise.
3434  */
dev_page_is_reusable(const struct page * page)3435 static inline bool dev_page_is_reusable(const struct page *page)
3436 {
3437 	return likely(page_to_nid(page) == numa_mem_id() &&
3438 		      !page_is_pfmemalloc(page));
3439 }
3440 
3441 /**
3442  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3443  *	@page: The page that was allocated from skb_alloc_page
3444  *	@skb: The skb that may need pfmemalloc set
3445  */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3446 static inline void skb_propagate_pfmemalloc(const struct page *page,
3447 					    struct sk_buff *skb)
3448 {
3449 	if (page_is_pfmemalloc(page))
3450 		skb->pfmemalloc = true;
3451 }
3452 
3453 /**
3454  * skb_frag_off() - Returns the offset of a skb fragment
3455  * @frag: the paged fragment
3456  */
skb_frag_off(const skb_frag_t * frag)3457 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3458 {
3459 	return frag->offset;
3460 }
3461 
3462 /**
3463  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3464  * @frag: skb fragment
3465  * @delta: value to add
3466  */
skb_frag_off_add(skb_frag_t * frag,int delta)3467 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3468 {
3469 	frag->offset += delta;
3470 }
3471 
3472 /**
3473  * skb_frag_off_set() - Sets the offset of a skb fragment
3474  * @frag: skb fragment
3475  * @offset: offset of fragment
3476  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3477 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3478 {
3479 	frag->offset = offset;
3480 }
3481 
3482 /**
3483  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3484  * @fragto: skb fragment where offset is set
3485  * @fragfrom: skb fragment offset is copied from
3486  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3487 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3488 				     const skb_frag_t *fragfrom)
3489 {
3490 	fragto->offset = fragfrom->offset;
3491 }
3492 
3493 /**
3494  * skb_frag_page - retrieve the page referred to by a paged fragment
3495  * @frag: the paged fragment
3496  *
3497  * Returns the &struct page associated with @frag.
3498  */
skb_frag_page(const skb_frag_t * frag)3499 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3500 {
3501 	return netmem_to_page(frag->netmem);
3502 }
3503 
3504 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3505 		    unsigned int headroom);
3506 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3507 			 struct bpf_prog *prog);
3508 /**
3509  * skb_frag_address - gets the address of the data contained in a paged fragment
3510  * @frag: the paged fragment buffer
3511  *
3512  * Returns the address of the data within @frag. The page must already
3513  * be mapped.
3514  */
skb_frag_address(const skb_frag_t * frag)3515 static inline void *skb_frag_address(const skb_frag_t *frag)
3516 {
3517 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3518 }
3519 
3520 /**
3521  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3522  * @frag: the paged fragment buffer
3523  *
3524  * Returns the address of the data within @frag. Checks that the page
3525  * is mapped and returns %NULL otherwise.
3526  */
skb_frag_address_safe(const skb_frag_t * frag)3527 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3528 {
3529 	void *ptr = page_address(skb_frag_page(frag));
3530 	if (unlikely(!ptr))
3531 		return NULL;
3532 
3533 	return ptr + skb_frag_off(frag);
3534 }
3535 
3536 /**
3537  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3538  * @fragto: skb fragment where page is set
3539  * @fragfrom: skb fragment page is copied from
3540  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3541 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3542 				      const skb_frag_t *fragfrom)
3543 {
3544 	fragto->netmem = fragfrom->netmem;
3545 }
3546 
3547 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3548 
3549 /**
3550  * skb_frag_dma_map - maps a paged fragment via the DMA API
3551  * @dev: the device to map the fragment to
3552  * @frag: the paged fragment to map
3553  * @offset: the offset within the fragment (starting at the
3554  *          fragment's own offset)
3555  * @size: the number of bytes to map
3556  * @dir: the direction of the mapping (``PCI_DMA_*``)
3557  *
3558  * Maps the page associated with @frag to @device.
3559  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3560 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3561 					  const skb_frag_t *frag,
3562 					  size_t offset, size_t size,
3563 					  enum dma_data_direction dir)
3564 {
3565 	return dma_map_page(dev, skb_frag_page(frag),
3566 			    skb_frag_off(frag) + offset, size, dir);
3567 }
3568 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3569 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3570 					gfp_t gfp_mask)
3571 {
3572 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3573 }
3574 
3575 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3576 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3577 						  gfp_t gfp_mask)
3578 {
3579 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3580 }
3581 
3582 
3583 /**
3584  *	skb_clone_writable - is the header of a clone writable
3585  *	@skb: buffer to check
3586  *	@len: length up to which to write
3587  *
3588  *	Returns true if modifying the header part of the cloned buffer
3589  *	does not requires the data to be copied.
3590  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3591 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3592 {
3593 	return !skb_header_cloned(skb) &&
3594 	       skb_headroom(skb) + len <= skb->hdr_len;
3595 }
3596 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3597 static inline int skb_try_make_writable(struct sk_buff *skb,
3598 					unsigned int write_len)
3599 {
3600 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3601 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3602 }
3603 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3604 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3605 			    int cloned)
3606 {
3607 	int delta = 0;
3608 
3609 	if (headroom > skb_headroom(skb))
3610 		delta = headroom - skb_headroom(skb);
3611 
3612 	if (delta || cloned)
3613 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3614 					GFP_ATOMIC);
3615 	return 0;
3616 }
3617 
3618 /**
3619  *	skb_cow - copy header of skb when it is required
3620  *	@skb: buffer to cow
3621  *	@headroom: needed headroom
3622  *
3623  *	If the skb passed lacks sufficient headroom or its data part
3624  *	is shared, data is reallocated. If reallocation fails, an error
3625  *	is returned and original skb is not changed.
3626  *
3627  *	The result is skb with writable area skb->head...skb->tail
3628  *	and at least @headroom of space at head.
3629  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3630 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3631 {
3632 	return __skb_cow(skb, headroom, skb_cloned(skb));
3633 }
3634 
3635 /**
3636  *	skb_cow_head - skb_cow but only making the head writable
3637  *	@skb: buffer to cow
3638  *	@headroom: needed headroom
3639  *
3640  *	This function is identical to skb_cow except that we replace the
3641  *	skb_cloned check by skb_header_cloned.  It should be used when
3642  *	you only need to push on some header and do not need to modify
3643  *	the data.
3644  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3645 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3646 {
3647 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3648 }
3649 
3650 /**
3651  *	skb_padto	- pad an skbuff up to a minimal size
3652  *	@skb: buffer to pad
3653  *	@len: minimal length
3654  *
3655  *	Pads up a buffer to ensure the trailing bytes exist and are
3656  *	blanked. If the buffer already contains sufficient data it
3657  *	is untouched. Otherwise it is extended. Returns zero on
3658  *	success. The skb is freed on error.
3659  */
skb_padto(struct sk_buff * skb,unsigned int len)3660 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3661 {
3662 	unsigned int size = skb->len;
3663 	if (likely(size >= len))
3664 		return 0;
3665 	return skb_pad(skb, len - size);
3666 }
3667 
3668 /**
3669  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3670  *	@skb: buffer to pad
3671  *	@len: minimal length
3672  *	@free_on_error: free buffer on error
3673  *
3674  *	Pads up a buffer to ensure the trailing bytes exist and are
3675  *	blanked. If the buffer already contains sufficient data it
3676  *	is untouched. Otherwise it is extended. Returns zero on
3677  *	success. The skb is freed on error if @free_on_error is true.
3678  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3679 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3680 					       unsigned int len,
3681 					       bool free_on_error)
3682 {
3683 	unsigned int size = skb->len;
3684 
3685 	if (unlikely(size < len)) {
3686 		len -= size;
3687 		if (__skb_pad(skb, len, free_on_error))
3688 			return -ENOMEM;
3689 		__skb_put(skb, len);
3690 	}
3691 	return 0;
3692 }
3693 
3694 /**
3695  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3696  *	@skb: buffer to pad
3697  *	@len: minimal length
3698  *
3699  *	Pads up a buffer to ensure the trailing bytes exist and are
3700  *	blanked. If the buffer already contains sufficient data it
3701  *	is untouched. Otherwise it is extended. Returns zero on
3702  *	success. The skb is freed on error.
3703  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3704 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3705 {
3706 	return __skb_put_padto(skb, len, true);
3707 }
3708 
3709 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3710 	__must_check;
3711 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3712 static inline int skb_add_data(struct sk_buff *skb,
3713 			       struct iov_iter *from, int copy)
3714 {
3715 	const int off = skb->len;
3716 
3717 	if (skb->ip_summed == CHECKSUM_NONE) {
3718 		__wsum csum = 0;
3719 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3720 					         &csum, from)) {
3721 			skb->csum = csum_block_add(skb->csum, csum, off);
3722 			return 0;
3723 		}
3724 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3725 		return 0;
3726 
3727 	__skb_trim(skb, off);
3728 	return -EFAULT;
3729 }
3730 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3731 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3732 				    const struct page *page, int off)
3733 {
3734 	if (skb_zcopy(skb))
3735 		return false;
3736 	if (i) {
3737 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3738 
3739 		return page == skb_frag_page(frag) &&
3740 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3741 	}
3742 	return false;
3743 }
3744 
__skb_linearize(struct sk_buff * skb)3745 static inline int __skb_linearize(struct sk_buff *skb)
3746 {
3747 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3748 }
3749 
3750 /**
3751  *	skb_linearize - convert paged skb to linear one
3752  *	@skb: buffer to linarize
3753  *
3754  *	If there is no free memory -ENOMEM is returned, otherwise zero
3755  *	is returned and the old skb data released.
3756  */
skb_linearize(struct sk_buff * skb)3757 static inline int skb_linearize(struct sk_buff *skb)
3758 {
3759 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3760 }
3761 
3762 /**
3763  * skb_has_shared_frag - can any frag be overwritten
3764  * @skb: buffer to test
3765  *
3766  * Return true if the skb has at least one frag that might be modified
3767  * by an external entity (as in vmsplice()/sendfile())
3768  */
skb_has_shared_frag(const struct sk_buff * skb)3769 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3770 {
3771 	return skb_is_nonlinear(skb) &&
3772 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3773 }
3774 
3775 /**
3776  *	skb_linearize_cow - make sure skb is linear and writable
3777  *	@skb: buffer to process
3778  *
3779  *	If there is no free memory -ENOMEM is returned, otherwise zero
3780  *	is returned and the old skb data released.
3781  */
skb_linearize_cow(struct sk_buff * skb)3782 static inline int skb_linearize_cow(struct sk_buff *skb)
3783 {
3784 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3785 	       __skb_linearize(skb) : 0;
3786 }
3787 
3788 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3789 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3790 		     unsigned int off)
3791 {
3792 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3793 		skb->csum = csum_block_sub(skb->csum,
3794 					   csum_partial(start, len, 0), off);
3795 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3796 		 skb_checksum_start_offset(skb) < 0)
3797 		skb->ip_summed = CHECKSUM_NONE;
3798 }
3799 
3800 /**
3801  *	skb_postpull_rcsum - update checksum for received skb after pull
3802  *	@skb: buffer to update
3803  *	@start: start of data before pull
3804  *	@len: length of data pulled
3805  *
3806  *	After doing a pull on a received packet, you need to call this to
3807  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3808  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3809  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3810 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3811 				      const void *start, unsigned int len)
3812 {
3813 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3814 		skb->csum = wsum_negate(csum_partial(start, len,
3815 						     wsum_negate(skb->csum)));
3816 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3817 		 skb_checksum_start_offset(skb) < 0)
3818 		skb->ip_summed = CHECKSUM_NONE;
3819 }
3820 
3821 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3822 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3823 		     unsigned int off)
3824 {
3825 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3826 		skb->csum = csum_block_add(skb->csum,
3827 					   csum_partial(start, len, 0), off);
3828 }
3829 
3830 /**
3831  *	skb_postpush_rcsum - update checksum for received skb after push
3832  *	@skb: buffer to update
3833  *	@start: start of data after push
3834  *	@len: length of data pushed
3835  *
3836  *	After doing a push on a received packet, you need to call this to
3837  *	update the CHECKSUM_COMPLETE checksum.
3838  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3839 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3840 				      const void *start, unsigned int len)
3841 {
3842 	__skb_postpush_rcsum(skb, start, len, 0);
3843 }
3844 
3845 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3846 
3847 /**
3848  *	skb_push_rcsum - push skb and update receive checksum
3849  *	@skb: buffer to update
3850  *	@len: length of data pulled
3851  *
3852  *	This function performs an skb_push on the packet and updates
3853  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3854  *	receive path processing instead of skb_push unless you know
3855  *	that the checksum difference is zero (e.g., a valid IP header)
3856  *	or you are setting ip_summed to CHECKSUM_NONE.
3857  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3858 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3859 {
3860 	skb_push(skb, len);
3861 	skb_postpush_rcsum(skb, skb->data, len);
3862 	return skb->data;
3863 }
3864 
3865 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3866 /**
3867  *	pskb_trim_rcsum - trim received skb and update checksum
3868  *	@skb: buffer to trim
3869  *	@len: new length
3870  *
3871  *	This is exactly the same as pskb_trim except that it ensures the
3872  *	checksum of received packets are still valid after the operation.
3873  *	It can change skb pointers.
3874  */
3875 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3876 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3877 {
3878 	if (likely(len >= skb->len))
3879 		return 0;
3880 	return pskb_trim_rcsum_slow(skb, len);
3881 }
3882 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3883 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3884 {
3885 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3886 		skb->ip_summed = CHECKSUM_NONE;
3887 	__skb_trim(skb, len);
3888 	return 0;
3889 }
3890 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3891 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3892 {
3893 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3894 		skb->ip_summed = CHECKSUM_NONE;
3895 	return __skb_grow(skb, len);
3896 }
3897 
3898 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3899 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3900 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3901 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3902 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3903 
3904 #define skb_queue_walk(queue, skb) \
3905 		for (skb = (queue)->next;					\
3906 		     skb != (struct sk_buff *)(queue);				\
3907 		     skb = skb->next)
3908 
3909 #define skb_queue_walk_safe(queue, skb, tmp)					\
3910 		for (skb = (queue)->next, tmp = skb->next;			\
3911 		     skb != (struct sk_buff *)(queue);				\
3912 		     skb = tmp, tmp = skb->next)
3913 
3914 #define skb_queue_walk_from(queue, skb)						\
3915 		for (; skb != (struct sk_buff *)(queue);			\
3916 		     skb = skb->next)
3917 
3918 #define skb_rbtree_walk(skb, root)						\
3919 		for (skb = skb_rb_first(root); skb != NULL;			\
3920 		     skb = skb_rb_next(skb))
3921 
3922 #define skb_rbtree_walk_from(skb)						\
3923 		for (; skb != NULL;						\
3924 		     skb = skb_rb_next(skb))
3925 
3926 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3927 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3928 		     skb = tmp)
3929 
3930 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3931 		for (tmp = skb->next;						\
3932 		     skb != (struct sk_buff *)(queue);				\
3933 		     skb = tmp, tmp = skb->next)
3934 
3935 #define skb_queue_reverse_walk(queue, skb) \
3936 		for (skb = (queue)->prev;					\
3937 		     skb != (struct sk_buff *)(queue);				\
3938 		     skb = skb->prev)
3939 
3940 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3941 		for (skb = (queue)->prev, tmp = skb->prev;			\
3942 		     skb != (struct sk_buff *)(queue);				\
3943 		     skb = tmp, tmp = skb->prev)
3944 
3945 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3946 		for (tmp = skb->prev;						\
3947 		     skb != (struct sk_buff *)(queue);				\
3948 		     skb = tmp, tmp = skb->prev)
3949 
skb_has_frag_list(const struct sk_buff * skb)3950 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3951 {
3952 	return skb_shinfo(skb)->frag_list != NULL;
3953 }
3954 
skb_frag_list_init(struct sk_buff * skb)3955 static inline void skb_frag_list_init(struct sk_buff *skb)
3956 {
3957 	skb_shinfo(skb)->frag_list = NULL;
3958 }
3959 
3960 #define skb_walk_frags(skb, iter)	\
3961 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3962 
3963 
3964 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3965 				int *err, long *timeo_p,
3966 				const struct sk_buff *skb);
3967 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3968 					  struct sk_buff_head *queue,
3969 					  unsigned int flags,
3970 					  int *off, int *err,
3971 					  struct sk_buff **last);
3972 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3973 					struct sk_buff_head *queue,
3974 					unsigned int flags, int *off, int *err,
3975 					struct sk_buff **last);
3976 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3977 				    struct sk_buff_head *sk_queue,
3978 				    unsigned int flags, int *off, int *err);
3979 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3980 __poll_t datagram_poll(struct file *file, struct socket *sock,
3981 			   struct poll_table_struct *wait);
3982 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3983 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3984 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3985 					struct msghdr *msg, int size)
3986 {
3987 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3988 }
3989 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3990 				   struct msghdr *msg);
3991 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3992 			   struct iov_iter *to, int len,
3993 			   struct ahash_request *hash);
3994 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3995 				 struct iov_iter *from, int len);
3996 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3997 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3998 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3999 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4000 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4001 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4002 			      int len);
4003 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4004 		    struct pipe_inode_info *pipe, unsigned int len,
4005 		    unsigned int flags);
4006 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4007 			 int len);
4008 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4009 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4010 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4011 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4012 		 int len, int hlen);
4013 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4014 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4015 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4016 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4017 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4018 				 unsigned int offset);
4019 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4020 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4021 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4022 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4023 int skb_vlan_pop(struct sk_buff *skb);
4024 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4025 int skb_eth_pop(struct sk_buff *skb);
4026 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4027 		 const unsigned char *src);
4028 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4029 		  int mac_len, bool ethernet);
4030 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4031 		 bool ethernet);
4032 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4033 int skb_mpls_dec_ttl(struct sk_buff *skb);
4034 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4035 			     gfp_t gfp);
4036 
memcpy_from_msg(void * data,struct msghdr * msg,int len)4037 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4038 {
4039 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4040 }
4041 
memcpy_to_msg(struct msghdr * msg,void * data,int len)4042 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4043 {
4044 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4045 }
4046 
4047 struct skb_checksum_ops {
4048 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4049 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4050 };
4051 
4052 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4053 
4054 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4055 		      __wsum csum, const struct skb_checksum_ops *ops);
4056 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4057 		    __wsum csum);
4058 
4059 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4060 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4061 		     const void *data, int hlen, void *buffer)
4062 {
4063 	if (likely(hlen - offset >= len))
4064 		return (void *)data + offset;
4065 
4066 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4067 		return NULL;
4068 
4069 	return buffer;
4070 }
4071 
4072 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4073 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4074 {
4075 	return __skb_header_pointer(skb, offset, len, skb->data,
4076 				    skb_headlen(skb), buffer);
4077 }
4078 
4079 static inline void * __must_check
skb_pointer_if_linear(const struct sk_buff * skb,int offset,int len)4080 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4081 {
4082 	if (likely(skb_headlen(skb) - offset >= len))
4083 		return skb->data + offset;
4084 	return NULL;
4085 }
4086 
4087 /**
4088  *	skb_needs_linearize - check if we need to linearize a given skb
4089  *			      depending on the given device features.
4090  *	@skb: socket buffer to check
4091  *	@features: net device features
4092  *
4093  *	Returns true if either:
4094  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4095  *	2. skb is fragmented and the device does not support SG.
4096  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4097 static inline bool skb_needs_linearize(struct sk_buff *skb,
4098 				       netdev_features_t features)
4099 {
4100 	return skb_is_nonlinear(skb) &&
4101 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4102 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4103 }
4104 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4105 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4106 					     void *to,
4107 					     const unsigned int len)
4108 {
4109 	memcpy(to, skb->data, len);
4110 }
4111 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4112 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4113 						    const int offset, void *to,
4114 						    const unsigned int len)
4115 {
4116 	memcpy(to, skb->data + offset, len);
4117 }
4118 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4119 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4120 					   const void *from,
4121 					   const unsigned int len)
4122 {
4123 	memcpy(skb->data, from, len);
4124 }
4125 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4126 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4127 						  const int offset,
4128 						  const void *from,
4129 						  const unsigned int len)
4130 {
4131 	memcpy(skb->data + offset, from, len);
4132 }
4133 
4134 void skb_init(void);
4135 
skb_get_ktime(const struct sk_buff * skb)4136 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4137 {
4138 	return skb->tstamp;
4139 }
4140 
4141 /**
4142  *	skb_get_timestamp - get timestamp from a skb
4143  *	@skb: skb to get stamp from
4144  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4145  *
4146  *	Timestamps are stored in the skb as offsets to a base timestamp.
4147  *	This function converts the offset back to a struct timeval and stores
4148  *	it in stamp.
4149  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4150 static inline void skb_get_timestamp(const struct sk_buff *skb,
4151 				     struct __kernel_old_timeval *stamp)
4152 {
4153 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4154 }
4155 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4156 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4157 					 struct __kernel_sock_timeval *stamp)
4158 {
4159 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4160 
4161 	stamp->tv_sec = ts.tv_sec;
4162 	stamp->tv_usec = ts.tv_nsec / 1000;
4163 }
4164 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4165 static inline void skb_get_timestampns(const struct sk_buff *skb,
4166 				       struct __kernel_old_timespec *stamp)
4167 {
4168 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4169 
4170 	stamp->tv_sec = ts.tv_sec;
4171 	stamp->tv_nsec = ts.tv_nsec;
4172 }
4173 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4174 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4175 					   struct __kernel_timespec *stamp)
4176 {
4177 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4178 
4179 	stamp->tv_sec = ts.tv_sec;
4180 	stamp->tv_nsec = ts.tv_nsec;
4181 }
4182 
__net_timestamp(struct sk_buff * skb)4183 static inline void __net_timestamp(struct sk_buff *skb)
4184 {
4185 	skb->tstamp = ktime_get_real();
4186 	skb->mono_delivery_time = 0;
4187 }
4188 
net_timedelta(ktime_t t)4189 static inline ktime_t net_timedelta(ktime_t t)
4190 {
4191 	return ktime_sub(ktime_get_real(), t);
4192 }
4193 
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4194 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4195 					 bool mono)
4196 {
4197 	skb->tstamp = kt;
4198 	skb->mono_delivery_time = kt && mono;
4199 }
4200 
4201 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4202 
4203 /* It is used in the ingress path to clear the delivery_time.
4204  * If needed, set the skb->tstamp to the (rcv) timestamp.
4205  */
skb_clear_delivery_time(struct sk_buff * skb)4206 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4207 {
4208 	if (skb->mono_delivery_time) {
4209 		skb->mono_delivery_time = 0;
4210 		if (static_branch_unlikely(&netstamp_needed_key))
4211 			skb->tstamp = ktime_get_real();
4212 		else
4213 			skb->tstamp = 0;
4214 	}
4215 }
4216 
skb_clear_tstamp(struct sk_buff * skb)4217 static inline void skb_clear_tstamp(struct sk_buff *skb)
4218 {
4219 	if (skb->mono_delivery_time)
4220 		return;
4221 
4222 	skb->tstamp = 0;
4223 }
4224 
skb_tstamp(const struct sk_buff * skb)4225 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4226 {
4227 	if (skb->mono_delivery_time)
4228 		return 0;
4229 
4230 	return skb->tstamp;
4231 }
4232 
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4233 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4234 {
4235 	if (!skb->mono_delivery_time && skb->tstamp)
4236 		return skb->tstamp;
4237 
4238 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4239 		return ktime_get_real();
4240 
4241 	return 0;
4242 }
4243 
skb_metadata_len(const struct sk_buff * skb)4244 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4245 {
4246 	return skb_shinfo(skb)->meta_len;
4247 }
4248 
skb_metadata_end(const struct sk_buff * skb)4249 static inline void *skb_metadata_end(const struct sk_buff *skb)
4250 {
4251 	return skb_mac_header(skb);
4252 }
4253 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4254 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4255 					  const struct sk_buff *skb_b,
4256 					  u8 meta_len)
4257 {
4258 	const void *a = skb_metadata_end(skb_a);
4259 	const void *b = skb_metadata_end(skb_b);
4260 	u64 diffs = 0;
4261 
4262 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4263 	    BITS_PER_LONG != 64)
4264 		goto slow;
4265 
4266 	/* Using more efficient variant than plain call to memcmp(). */
4267 	switch (meta_len) {
4268 #define __it(x, op) (x -= sizeof(u##op))
4269 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4270 	case 32: diffs |= __it_diff(a, b, 64);
4271 		fallthrough;
4272 	case 24: diffs |= __it_diff(a, b, 64);
4273 		fallthrough;
4274 	case 16: diffs |= __it_diff(a, b, 64);
4275 		fallthrough;
4276 	case  8: diffs |= __it_diff(a, b, 64);
4277 		break;
4278 	case 28: diffs |= __it_diff(a, b, 64);
4279 		fallthrough;
4280 	case 20: diffs |= __it_diff(a, b, 64);
4281 		fallthrough;
4282 	case 12: diffs |= __it_diff(a, b, 64);
4283 		fallthrough;
4284 	case  4: diffs |= __it_diff(a, b, 32);
4285 		break;
4286 	default:
4287 slow:
4288 		return memcmp(a - meta_len, b - meta_len, meta_len);
4289 	}
4290 	return diffs;
4291 }
4292 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4293 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4294 					const struct sk_buff *skb_b)
4295 {
4296 	u8 len_a = skb_metadata_len(skb_a);
4297 	u8 len_b = skb_metadata_len(skb_b);
4298 
4299 	if (!(len_a | len_b))
4300 		return false;
4301 
4302 	return len_a != len_b ?
4303 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4304 }
4305 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4306 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4307 {
4308 	skb_shinfo(skb)->meta_len = meta_len;
4309 }
4310 
skb_metadata_clear(struct sk_buff * skb)4311 static inline void skb_metadata_clear(struct sk_buff *skb)
4312 {
4313 	skb_metadata_set(skb, 0);
4314 }
4315 
4316 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4317 
4318 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4319 
4320 void skb_clone_tx_timestamp(struct sk_buff *skb);
4321 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4322 
4323 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4324 
skb_clone_tx_timestamp(struct sk_buff * skb)4325 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4326 {
4327 }
4328 
skb_defer_rx_timestamp(struct sk_buff * skb)4329 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4330 {
4331 	return false;
4332 }
4333 
4334 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4335 
4336 /**
4337  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4338  *
4339  * PHY drivers may accept clones of transmitted packets for
4340  * timestamping via their phy_driver.txtstamp method. These drivers
4341  * must call this function to return the skb back to the stack with a
4342  * timestamp.
4343  *
4344  * @skb: clone of the original outgoing packet
4345  * @hwtstamps: hardware time stamps
4346  *
4347  */
4348 void skb_complete_tx_timestamp(struct sk_buff *skb,
4349 			       struct skb_shared_hwtstamps *hwtstamps);
4350 
4351 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4352 		     struct skb_shared_hwtstamps *hwtstamps,
4353 		     struct sock *sk, int tstype);
4354 
4355 /**
4356  * skb_tstamp_tx - queue clone of skb with send time stamps
4357  * @orig_skb:	the original outgoing packet
4358  * @hwtstamps:	hardware time stamps, may be NULL if not available
4359  *
4360  * If the skb has a socket associated, then this function clones the
4361  * skb (thus sharing the actual data and optional structures), stores
4362  * the optional hardware time stamping information (if non NULL) or
4363  * generates a software time stamp (otherwise), then queues the clone
4364  * to the error queue of the socket.  Errors are silently ignored.
4365  */
4366 void skb_tstamp_tx(struct sk_buff *orig_skb,
4367 		   struct skb_shared_hwtstamps *hwtstamps);
4368 
4369 /**
4370  * skb_tx_timestamp() - Driver hook for transmit timestamping
4371  *
4372  * Ethernet MAC Drivers should call this function in their hard_xmit()
4373  * function immediately before giving the sk_buff to the MAC hardware.
4374  *
4375  * Specifically, one should make absolutely sure that this function is
4376  * called before TX completion of this packet can trigger.  Otherwise
4377  * the packet could potentially already be freed.
4378  *
4379  * @skb: A socket buffer.
4380  */
skb_tx_timestamp(struct sk_buff * skb)4381 static inline void skb_tx_timestamp(struct sk_buff *skb)
4382 {
4383 	skb_clone_tx_timestamp(skb);
4384 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4385 		skb_tstamp_tx(skb, NULL);
4386 }
4387 
4388 /**
4389  * skb_complete_wifi_ack - deliver skb with wifi status
4390  *
4391  * @skb: the original outgoing packet
4392  * @acked: ack status
4393  *
4394  */
4395 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4396 
4397 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4398 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4399 
skb_csum_unnecessary(const struct sk_buff * skb)4400 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4401 {
4402 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4403 		skb->csum_valid ||
4404 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4405 		 skb_checksum_start_offset(skb) >= 0));
4406 }
4407 
4408 /**
4409  *	skb_checksum_complete - Calculate checksum of an entire packet
4410  *	@skb: packet to process
4411  *
4412  *	This function calculates the checksum over the entire packet plus
4413  *	the value of skb->csum.  The latter can be used to supply the
4414  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4415  *	checksum.
4416  *
4417  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4418  *	this function can be used to verify that checksum on received
4419  *	packets.  In that case the function should return zero if the
4420  *	checksum is correct.  In particular, this function will return zero
4421  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4422  *	hardware has already verified the correctness of the checksum.
4423  */
skb_checksum_complete(struct sk_buff * skb)4424 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4425 {
4426 	return skb_csum_unnecessary(skb) ?
4427 	       0 : __skb_checksum_complete(skb);
4428 }
4429 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4430 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4431 {
4432 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4433 		if (skb->csum_level == 0)
4434 			skb->ip_summed = CHECKSUM_NONE;
4435 		else
4436 			skb->csum_level--;
4437 	}
4438 }
4439 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4440 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4441 {
4442 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4443 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4444 			skb->csum_level++;
4445 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4446 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4447 		skb->csum_level = 0;
4448 	}
4449 }
4450 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4451 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4452 {
4453 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4454 		skb->ip_summed = CHECKSUM_NONE;
4455 		skb->csum_level = 0;
4456 	}
4457 }
4458 
4459 /* Check if we need to perform checksum complete validation.
4460  *
4461  * Returns true if checksum complete is needed, false otherwise
4462  * (either checksum is unnecessary or zero checksum is allowed).
4463  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4464 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4465 						  bool zero_okay,
4466 						  __sum16 check)
4467 {
4468 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4469 		skb->csum_valid = 1;
4470 		__skb_decr_checksum_unnecessary(skb);
4471 		return false;
4472 	}
4473 
4474 	return true;
4475 }
4476 
4477 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4478  * in checksum_init.
4479  */
4480 #define CHECKSUM_BREAK 76
4481 
4482 /* Unset checksum-complete
4483  *
4484  * Unset checksum complete can be done when packet is being modified
4485  * (uncompressed for instance) and checksum-complete value is
4486  * invalidated.
4487  */
skb_checksum_complete_unset(struct sk_buff * skb)4488 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4489 {
4490 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4491 		skb->ip_summed = CHECKSUM_NONE;
4492 }
4493 
4494 /* Validate (init) checksum based on checksum complete.
4495  *
4496  * Return values:
4497  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4498  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4499  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4500  *   non-zero: value of invalid checksum
4501  *
4502  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4503 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4504 						       bool complete,
4505 						       __wsum psum)
4506 {
4507 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4508 		if (!csum_fold(csum_add(psum, skb->csum))) {
4509 			skb->csum_valid = 1;
4510 			return 0;
4511 		}
4512 	}
4513 
4514 	skb->csum = psum;
4515 
4516 	if (complete || skb->len <= CHECKSUM_BREAK) {
4517 		__sum16 csum;
4518 
4519 		csum = __skb_checksum_complete(skb);
4520 		skb->csum_valid = !csum;
4521 		return csum;
4522 	}
4523 
4524 	return 0;
4525 }
4526 
null_compute_pseudo(struct sk_buff * skb,int proto)4527 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4528 {
4529 	return 0;
4530 }
4531 
4532 /* Perform checksum validate (init). Note that this is a macro since we only
4533  * want to calculate the pseudo header which is an input function if necessary.
4534  * First we try to validate without any computation (checksum unnecessary) and
4535  * then calculate based on checksum complete calling the function to compute
4536  * pseudo header.
4537  *
4538  * Return values:
4539  *   0: checksum is validated or try to in skb_checksum_complete
4540  *   non-zero: value of invalid checksum
4541  */
4542 #define __skb_checksum_validate(skb, proto, complete,			\
4543 				zero_okay, check, compute_pseudo)	\
4544 ({									\
4545 	__sum16 __ret = 0;						\
4546 	skb->csum_valid = 0;						\
4547 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4548 		__ret = __skb_checksum_validate_complete(skb,		\
4549 				complete, compute_pseudo(skb, proto));	\
4550 	__ret;								\
4551 })
4552 
4553 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4554 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4555 
4556 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4557 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4558 
4559 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4560 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4561 
4562 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4563 					 compute_pseudo)		\
4564 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4565 
4566 #define skb_checksum_simple_validate(skb)				\
4567 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4568 
__skb_checksum_convert_check(struct sk_buff * skb)4569 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4570 {
4571 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4572 }
4573 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4574 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4575 {
4576 	skb->csum = ~pseudo;
4577 	skb->ip_summed = CHECKSUM_COMPLETE;
4578 }
4579 
4580 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4581 do {									\
4582 	if (__skb_checksum_convert_check(skb))				\
4583 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4584 } while (0)
4585 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4586 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4587 					      u16 start, u16 offset)
4588 {
4589 	skb->ip_summed = CHECKSUM_PARTIAL;
4590 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4591 	skb->csum_offset = offset - start;
4592 }
4593 
4594 /* Update skbuf and packet to reflect the remote checksum offload operation.
4595  * When called, ptr indicates the starting point for skb->csum when
4596  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4597  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4598  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4599 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4600 				       int start, int offset, bool nopartial)
4601 {
4602 	__wsum delta;
4603 
4604 	if (!nopartial) {
4605 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4606 		return;
4607 	}
4608 
4609 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4610 		__skb_checksum_complete(skb);
4611 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4612 	}
4613 
4614 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4615 
4616 	/* Adjust skb->csum since we changed the packet */
4617 	skb->csum = csum_add(skb->csum, delta);
4618 }
4619 
skb_nfct(const struct sk_buff * skb)4620 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4621 {
4622 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4623 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4624 #else
4625 	return NULL;
4626 #endif
4627 }
4628 
skb_get_nfct(const struct sk_buff * skb)4629 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4630 {
4631 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4632 	return skb->_nfct;
4633 #else
4634 	return 0UL;
4635 #endif
4636 }
4637 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4638 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4639 {
4640 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4641 	skb->slow_gro |= !!nfct;
4642 	skb->_nfct = nfct;
4643 #endif
4644 }
4645 
4646 #ifdef CONFIG_SKB_EXTENSIONS
4647 enum skb_ext_id {
4648 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4649 	SKB_EXT_BRIDGE_NF,
4650 #endif
4651 #ifdef CONFIG_XFRM
4652 	SKB_EXT_SEC_PATH,
4653 #endif
4654 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4655 	TC_SKB_EXT,
4656 #endif
4657 #if IS_ENABLED(CONFIG_MPTCP)
4658 	SKB_EXT_MPTCP,
4659 #endif
4660 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4661 	SKB_EXT_MCTP,
4662 #endif
4663 	SKB_EXT_NUM, /* must be last */
4664 };
4665 
4666 /**
4667  *	struct skb_ext - sk_buff extensions
4668  *	@refcnt: 1 on allocation, deallocated on 0
4669  *	@offset: offset to add to @data to obtain extension address
4670  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4671  *	@data: start of extension data, variable sized
4672  *
4673  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4674  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4675  */
4676 struct skb_ext {
4677 	refcount_t refcnt;
4678 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4679 	u8 chunks;		/* same */
4680 	char data[] __aligned(8);
4681 };
4682 
4683 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4684 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4685 		    struct skb_ext *ext);
4686 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4687 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4688 void __skb_ext_put(struct skb_ext *ext);
4689 
skb_ext_put(struct sk_buff * skb)4690 static inline void skb_ext_put(struct sk_buff *skb)
4691 {
4692 	if (skb->active_extensions)
4693 		__skb_ext_put(skb->extensions);
4694 }
4695 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4696 static inline void __skb_ext_copy(struct sk_buff *dst,
4697 				  const struct sk_buff *src)
4698 {
4699 	dst->active_extensions = src->active_extensions;
4700 
4701 	if (src->active_extensions) {
4702 		struct skb_ext *ext = src->extensions;
4703 
4704 		refcount_inc(&ext->refcnt);
4705 		dst->extensions = ext;
4706 	}
4707 }
4708 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4709 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4710 {
4711 	skb_ext_put(dst);
4712 	__skb_ext_copy(dst, src);
4713 }
4714 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4715 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4716 {
4717 	return !!ext->offset[i];
4718 }
4719 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4720 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4721 {
4722 	return skb->active_extensions & (1 << id);
4723 }
4724 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4725 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4726 {
4727 	if (skb_ext_exist(skb, id))
4728 		__skb_ext_del(skb, id);
4729 }
4730 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4731 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4732 {
4733 	if (skb_ext_exist(skb, id)) {
4734 		struct skb_ext *ext = skb->extensions;
4735 
4736 		return (void *)ext + (ext->offset[id] << 3);
4737 	}
4738 
4739 	return NULL;
4740 }
4741 
skb_ext_reset(struct sk_buff * skb)4742 static inline void skb_ext_reset(struct sk_buff *skb)
4743 {
4744 	if (unlikely(skb->active_extensions)) {
4745 		__skb_ext_put(skb->extensions);
4746 		skb->active_extensions = 0;
4747 	}
4748 }
4749 
skb_has_extensions(struct sk_buff * skb)4750 static inline bool skb_has_extensions(struct sk_buff *skb)
4751 {
4752 	return unlikely(skb->active_extensions);
4753 }
4754 #else
skb_ext_put(struct sk_buff * skb)4755 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4756 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4757 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4758 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4759 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4760 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4761 #endif /* CONFIG_SKB_EXTENSIONS */
4762 
nf_reset_ct(struct sk_buff * skb)4763 static inline void nf_reset_ct(struct sk_buff *skb)
4764 {
4765 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4766 	nf_conntrack_put(skb_nfct(skb));
4767 	skb->_nfct = 0;
4768 #endif
4769 }
4770 
nf_reset_trace(struct sk_buff * skb)4771 static inline void nf_reset_trace(struct sk_buff *skb)
4772 {
4773 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4774 	skb->nf_trace = 0;
4775 #endif
4776 }
4777 
ipvs_reset(struct sk_buff * skb)4778 static inline void ipvs_reset(struct sk_buff *skb)
4779 {
4780 #if IS_ENABLED(CONFIG_IP_VS)
4781 	skb->ipvs_property = 0;
4782 #endif
4783 }
4784 
4785 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4786 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4787 			     bool copy)
4788 {
4789 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4790 	dst->_nfct = src->_nfct;
4791 	nf_conntrack_get(skb_nfct(src));
4792 #endif
4793 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4794 	if (copy)
4795 		dst->nf_trace = src->nf_trace;
4796 #endif
4797 }
4798 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4799 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4800 {
4801 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4802 	nf_conntrack_put(skb_nfct(dst));
4803 #endif
4804 	dst->slow_gro = src->slow_gro;
4805 	__nf_copy(dst, src, true);
4806 }
4807 
4808 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4809 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4810 {
4811 	to->secmark = from->secmark;
4812 }
4813 
skb_init_secmark(struct sk_buff * skb)4814 static inline void skb_init_secmark(struct sk_buff *skb)
4815 {
4816 	skb->secmark = 0;
4817 }
4818 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4819 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4820 { }
4821 
skb_init_secmark(struct sk_buff * skb)4822 static inline void skb_init_secmark(struct sk_buff *skb)
4823 { }
4824 #endif
4825 
secpath_exists(const struct sk_buff * skb)4826 static inline int secpath_exists(const struct sk_buff *skb)
4827 {
4828 #ifdef CONFIG_XFRM
4829 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4830 #else
4831 	return 0;
4832 #endif
4833 }
4834 
skb_irq_freeable(const struct sk_buff * skb)4835 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4836 {
4837 	return !skb->destructor &&
4838 		!secpath_exists(skb) &&
4839 		!skb_nfct(skb) &&
4840 		!skb->_skb_refdst &&
4841 		!skb_has_frag_list(skb);
4842 }
4843 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4844 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4845 {
4846 	skb->queue_mapping = queue_mapping;
4847 }
4848 
skb_get_queue_mapping(const struct sk_buff * skb)4849 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4850 {
4851 	return skb->queue_mapping;
4852 }
4853 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4854 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4855 {
4856 	to->queue_mapping = from->queue_mapping;
4857 }
4858 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4859 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4860 {
4861 	skb->queue_mapping = rx_queue + 1;
4862 }
4863 
skb_get_rx_queue(const struct sk_buff * skb)4864 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4865 {
4866 	return skb->queue_mapping - 1;
4867 }
4868 
skb_rx_queue_recorded(const struct sk_buff * skb)4869 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4870 {
4871 	return skb->queue_mapping != 0;
4872 }
4873 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4874 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4875 {
4876 	skb->dst_pending_confirm = val;
4877 }
4878 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4879 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4880 {
4881 	return skb->dst_pending_confirm != 0;
4882 }
4883 
skb_sec_path(const struct sk_buff * skb)4884 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4885 {
4886 #ifdef CONFIG_XFRM
4887 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4888 #else
4889 	return NULL;
4890 #endif
4891 }
4892 
skb_is_gso(const struct sk_buff * skb)4893 static inline bool skb_is_gso(const struct sk_buff *skb)
4894 {
4895 	return skb_shinfo(skb)->gso_size;
4896 }
4897 
4898 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4899 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4900 {
4901 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4902 }
4903 
4904 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4905 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4906 {
4907 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4908 }
4909 
4910 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4911 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4912 {
4913 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4914 }
4915 
skb_gso_reset(struct sk_buff * skb)4916 static inline void skb_gso_reset(struct sk_buff *skb)
4917 {
4918 	skb_shinfo(skb)->gso_size = 0;
4919 	skb_shinfo(skb)->gso_segs = 0;
4920 	skb_shinfo(skb)->gso_type = 0;
4921 }
4922 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4923 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4924 					 u16 increment)
4925 {
4926 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4927 		return;
4928 	shinfo->gso_size += increment;
4929 }
4930 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4931 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4932 					 u16 decrement)
4933 {
4934 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4935 		return;
4936 	shinfo->gso_size -= decrement;
4937 }
4938 
4939 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4940 
skb_warn_if_lro(const struct sk_buff * skb)4941 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4942 {
4943 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4944 	 * wanted then gso_type will be set. */
4945 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4946 
4947 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4948 	    unlikely(shinfo->gso_type == 0)) {
4949 		__skb_warn_lro_forwarding(skb);
4950 		return true;
4951 	}
4952 	return false;
4953 }
4954 
skb_forward_csum(struct sk_buff * skb)4955 static inline void skb_forward_csum(struct sk_buff *skb)
4956 {
4957 	/* Unfortunately we don't support this one.  Any brave souls? */
4958 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4959 		skb->ip_summed = CHECKSUM_NONE;
4960 }
4961 
4962 /**
4963  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4964  * @skb: skb to check
4965  *
4966  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4967  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4968  * use this helper, to document places where we make this assertion.
4969  */
skb_checksum_none_assert(const struct sk_buff * skb)4970 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4971 {
4972 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4973 }
4974 
4975 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4976 
4977 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4978 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4979 				     unsigned int transport_len,
4980 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4981 
4982 /**
4983  * skb_head_is_locked - Determine if the skb->head is locked down
4984  * @skb: skb to check
4985  *
4986  * The head on skbs build around a head frag can be removed if they are
4987  * not cloned.  This function returns true if the skb head is locked down
4988  * due to either being allocated via kmalloc, or by being a clone with
4989  * multiple references to the head.
4990  */
skb_head_is_locked(const struct sk_buff * skb)4991 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4992 {
4993 	return !skb->head_frag || skb_cloned(skb);
4994 }
4995 
4996 /* Local Checksum Offload.
4997  * Compute outer checksum based on the assumption that the
4998  * inner checksum will be offloaded later.
4999  * See Documentation/networking/checksum-offloads.rst for
5000  * explanation of how this works.
5001  * Fill in outer checksum adjustment (e.g. with sum of outer
5002  * pseudo-header) before calling.
5003  * Also ensure that inner checksum is in linear data area.
5004  */
lco_csum(struct sk_buff * skb)5005 static inline __wsum lco_csum(struct sk_buff *skb)
5006 {
5007 	unsigned char *csum_start = skb_checksum_start(skb);
5008 	unsigned char *l4_hdr = skb_transport_header(skb);
5009 	__wsum partial;
5010 
5011 	/* Start with complement of inner checksum adjustment */
5012 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5013 						    skb->csum_offset));
5014 
5015 	/* Add in checksum of our headers (incl. outer checksum
5016 	 * adjustment filled in by caller) and return result.
5017 	 */
5018 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5019 }
5020 
skb_is_redirected(const struct sk_buff * skb)5021 static inline bool skb_is_redirected(const struct sk_buff *skb)
5022 {
5023 	return skb->redirected;
5024 }
5025 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5026 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5027 {
5028 	skb->redirected = 1;
5029 #ifdef CONFIG_NET_REDIRECT
5030 	skb->from_ingress = from_ingress;
5031 	if (skb->from_ingress)
5032 		skb_clear_tstamp(skb);
5033 #endif
5034 }
5035 
skb_reset_redirect(struct sk_buff * skb)5036 static inline void skb_reset_redirect(struct sk_buff *skb)
5037 {
5038 	skb->redirected = 0;
5039 }
5040 
skb_set_redirected_noclear(struct sk_buff * skb,bool from_ingress)5041 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5042 					      bool from_ingress)
5043 {
5044 	skb->redirected = 1;
5045 #ifdef CONFIG_NET_REDIRECT
5046 	skb->from_ingress = from_ingress;
5047 #endif
5048 }
5049 
skb_csum_is_sctp(struct sk_buff * skb)5050 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5051 {
5052 #if IS_ENABLED(CONFIG_IP_SCTP)
5053 	return skb->csum_not_inet;
5054 #else
5055 	return 0;
5056 #endif
5057 }
5058 
skb_reset_csum_not_inet(struct sk_buff * skb)5059 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5060 {
5061 	skb->ip_summed = CHECKSUM_NONE;
5062 #if IS_ENABLED(CONFIG_IP_SCTP)
5063 	skb->csum_not_inet = 0;
5064 #endif
5065 }
5066 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5067 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5068 				       const u64 kcov_handle)
5069 {
5070 #ifdef CONFIG_KCOV
5071 	skb->kcov_handle = kcov_handle;
5072 #endif
5073 }
5074 
skb_get_kcov_handle(struct sk_buff * skb)5075 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5076 {
5077 #ifdef CONFIG_KCOV
5078 	return skb->kcov_handle;
5079 #else
5080 	return 0;
5081 #endif
5082 }
5083 
skb_mark_for_recycle(struct sk_buff * skb)5084 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5085 {
5086 #ifdef CONFIG_PAGE_POOL
5087 	skb->pp_recycle = 1;
5088 #endif
5089 }
5090 
5091 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5092 			     ssize_t maxsize, gfp_t gfp);
5093 
5094 #endif	/* __KERNEL__ */
5095 #endif	/* _LINUX_SKBUFF_H */
5096