xref: /freebsd/sys/dev/sk/if_sk.c (revision 5b56413d)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_var.h>
105 #include <net/if_arp.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/if_vlan_var.h>
110 
111 #include <netinet/in.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/ip.h>
114 
115 #include <machine/bus.h>
116 #include <machine/in_cksum.h>
117 #include <machine/resource.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/brgphyreg.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #if 0
128 #define SK_USEIOSPACE
129 #endif
130 
131 #include <dev/sk/if_skreg.h>
132 #include <dev/sk/xmaciireg.h>
133 #include <dev/sk/yukonreg.h>
134 
135 MODULE_DEPEND(sk, pci, 1, 1, 1);
136 MODULE_DEPEND(sk, ether, 1, 1, 1);
137 MODULE_DEPEND(sk, miibus, 1, 1, 1);
138 
139 /* "device miibus" required.  See GENERIC if you get errors here. */
140 #include "miibus_if.h"
141 
142 static const struct sk_type sk_devs[] = {
143 	{
144 		VENDORID_SK,
145 		DEVICEID_SK_V1,
146 		"SysKonnect Gigabit Ethernet (V1.0)"
147 	},
148 	{
149 		VENDORID_SK,
150 		DEVICEID_SK_V2,
151 		"SysKonnect Gigabit Ethernet (V2.0)"
152 	},
153 	{
154 		VENDORID_MARVELL,
155 		DEVICEID_SK_V2,
156 		"Marvell Gigabit Ethernet"
157 	},
158 	{
159 		VENDORID_MARVELL,
160 		DEVICEID_BELKIN_5005,
161 		"Belkin F5D5005 Gigabit Ethernet"
162 	},
163 	{
164 		VENDORID_3COM,
165 		DEVICEID_3COM_3C940,
166 		"3Com 3C940 Gigabit Ethernet"
167 	},
168 	{
169 		VENDORID_LINKSYS,
170 		DEVICEID_LINKSYS_EG1032,
171 		"Linksys EG1032 Gigabit Ethernet"
172 	},
173 	{
174 		VENDORID_DLINK,
175 		DEVICEID_DLINK_DGE530T_A1,
176 		"D-Link DGE-530T Gigabit Ethernet"
177 	},
178 	{
179 		VENDORID_DLINK,
180 		DEVICEID_DLINK_DGE530T_B1,
181 		"D-Link DGE-530T Gigabit Ethernet"
182 	},
183 	{ 0, 0, NULL }
184 };
185 
186 static int skc_probe(device_t);
187 static int skc_attach(device_t);
188 static int skc_detach(device_t);
189 static int skc_shutdown(device_t);
190 static int skc_suspend(device_t);
191 static int skc_resume(device_t);
192 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
193 static int sk_detach(device_t);
194 static int sk_probe(device_t);
195 static int sk_attach(device_t);
196 static void sk_tick(void *);
197 static void sk_yukon_tick(void *);
198 static void sk_intr(void *);
199 static void sk_intr_xmac(struct sk_if_softc *);
200 static void sk_intr_bcom(struct sk_if_softc *);
201 static void sk_intr_yukon(struct sk_if_softc *);
202 static __inline void sk_rxcksum(if_t, struct mbuf *, u_int32_t);
203 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
204 static void sk_rxeof(struct sk_if_softc *);
205 static void sk_jumbo_rxeof(struct sk_if_softc *);
206 static void sk_txeof(struct sk_if_softc *);
207 static void sk_txcksum(if_t, struct mbuf *, struct sk_tx_desc *);
208 static int sk_encap(struct sk_if_softc *, struct mbuf **);
209 static void sk_start(if_t);
210 static void sk_start_locked(if_t);
211 static int sk_ioctl(if_t, u_long, caddr_t);
212 static void sk_init(void *);
213 static void sk_init_locked(struct sk_if_softc *);
214 static void sk_init_xmac(struct sk_if_softc *);
215 static void sk_init_yukon(struct sk_if_softc *);
216 static void sk_stop(struct sk_if_softc *);
217 static void sk_watchdog(void *);
218 static int sk_ifmedia_upd(if_t);
219 static void sk_ifmedia_sts(if_t, struct ifmediareq *);
220 static void sk_reset(struct sk_softc *);
221 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
222 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
223 static int sk_newbuf(struct sk_if_softc *, int);
224 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
225 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
226 static int sk_dma_alloc(struct sk_if_softc *);
227 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
228 static void sk_dma_free(struct sk_if_softc *);
229 static void sk_dma_jumbo_free(struct sk_if_softc *);
230 static int sk_init_rx_ring(struct sk_if_softc *);
231 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
232 static void sk_init_tx_ring(struct sk_if_softc *);
233 static u_int32_t sk_win_read_4(struct sk_softc *, int);
234 static u_int16_t sk_win_read_2(struct sk_softc *, int);
235 static u_int8_t sk_win_read_1(struct sk_softc *, int);
236 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
237 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
238 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
239 
240 static int sk_miibus_readreg(device_t, int, int);
241 static int sk_miibus_writereg(device_t, int, int, int);
242 static void sk_miibus_statchg(device_t);
243 
244 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
245 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
246 						int);
247 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
248 
249 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
250 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
251 						int);
252 static void sk_marv_miibus_statchg(struct sk_if_softc *);
253 
254 static uint32_t sk_xmchash(const uint8_t *);
255 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
256 static void sk_rxfilter(struct sk_if_softc *);
257 static void sk_rxfilter_genesis(struct sk_if_softc *);
258 static void sk_rxfilter_yukon(struct sk_if_softc *);
259 
260 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
261 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
262 
263 /* Tunables. */
264 static int jumbo_disable = 0;
265 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
266 
267 /*
268  * It seems that SK-NET GENESIS supports very simple checksum offload
269  * capability for Tx and I believe it can generate 0 checksum value for
270  * UDP packets in Tx as the hardware can't differenciate UDP packets from
271  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
272  * means sender didn't perforam checksum computation. For the safety I
273  * disabled UDP checksum offload capability at the moment.
274  */
275 #define SK_CSUM_FEATURES	(CSUM_TCP)
276 
277 /*
278  * Note that we have newbus methods for both the GEnesis controller
279  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
280  * the miibus code is a child of the XMACs. We need to do it this way
281  * so that the miibus drivers can access the PHY registers on the
282  * right PHY. It's not quite what I had in mind, but it's the only
283  * design that achieves the desired effect.
284  */
285 static device_method_t skc_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		skc_probe),
288 	DEVMETHOD(device_attach,	skc_attach),
289 	DEVMETHOD(device_detach,	skc_detach),
290 	DEVMETHOD(device_suspend,	skc_suspend),
291 	DEVMETHOD(device_resume,	skc_resume),
292 	DEVMETHOD(device_shutdown,	skc_shutdown),
293 
294 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
295 
296 	DEVMETHOD_END
297 };
298 
299 static driver_t skc_driver = {
300 	"skc",
301 	skc_methods,
302 	sizeof(struct sk_softc)
303 };
304 
305 static device_method_t sk_methods[] = {
306 	/* Device interface */
307 	DEVMETHOD(device_probe,		sk_probe),
308 	DEVMETHOD(device_attach,	sk_attach),
309 	DEVMETHOD(device_detach,	sk_detach),
310 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
311 
312 	/* MII interface */
313 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
314 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
315 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
316 
317 	DEVMETHOD_END
318 };
319 
320 static driver_t sk_driver = {
321 	"sk",
322 	sk_methods,
323 	sizeof(struct sk_if_softc)
324 };
325 
326 DRIVER_MODULE(skc, pci, skc_driver, NULL, NULL);
327 DRIVER_MODULE(sk, skc, sk_driver, NULL, NULL);
328 DRIVER_MODULE(miibus, sk, miibus_driver, NULL, NULL);
329 
330 static struct resource_spec sk_res_spec_io[] = {
331 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
332 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
333 	{ -1,			0,		0 }
334 };
335 
336 static struct resource_spec sk_res_spec_mem[] = {
337 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
338 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
339 	{ -1,			0,		0 }
340 };
341 
342 #define SK_SETBIT(sc, reg, x)		\
343 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
344 
345 #define SK_CLRBIT(sc, reg, x)		\
346 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
347 
348 #define SK_WIN_SETBIT_4(sc, reg, x)	\
349 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
350 
351 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
352 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
353 
354 #define SK_WIN_SETBIT_2(sc, reg, x)	\
355 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
356 
357 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
358 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
359 
360 static u_int32_t
sk_win_read_4(struct sk_softc * sc,int reg)361 sk_win_read_4(struct sk_softc *sc, int reg)
362 {
363 #ifdef SK_USEIOSPACE
364 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
365 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
366 #else
367 	return(CSR_READ_4(sc, reg));
368 #endif
369 }
370 
371 static u_int16_t
sk_win_read_2(struct sk_softc * sc,int reg)372 sk_win_read_2(struct sk_softc *sc, int reg)
373 {
374 #ifdef SK_USEIOSPACE
375 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
376 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
377 #else
378 	return(CSR_READ_2(sc, reg));
379 #endif
380 }
381 
382 static u_int8_t
sk_win_read_1(struct sk_softc * sc,int reg)383 sk_win_read_1(struct sk_softc *sc, int reg)
384 {
385 #ifdef SK_USEIOSPACE
386 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
387 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
388 #else
389 	return(CSR_READ_1(sc, reg));
390 #endif
391 }
392 
393 static void
sk_win_write_4(struct sk_softc * sc,int reg,u_int32_t val)394 sk_win_write_4(struct sk_softc *sc, int reg, u_int32_t val)
395 {
396 #ifdef SK_USEIOSPACE
397 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
398 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
399 #else
400 	CSR_WRITE_4(sc, reg, val);
401 #endif
402 	return;
403 }
404 
405 static void
sk_win_write_2(struct sk_softc * sc,int reg,u_int32_t val)406 sk_win_write_2(struct sk_softc *sc, int reg, u_int32_t val)
407 {
408 #ifdef SK_USEIOSPACE
409 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
410 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
411 #else
412 	CSR_WRITE_2(sc, reg, val);
413 #endif
414 	return;
415 }
416 
417 static void
sk_win_write_1(struct sk_softc * sc,int reg,u_int32_t val)418 sk_win_write_1(struct sk_softc *sc, int reg, u_int32_t val)
419 {
420 #ifdef SK_USEIOSPACE
421 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
422 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
423 #else
424 	CSR_WRITE_1(sc, reg, val);
425 #endif
426 	return;
427 }
428 
429 static int
sk_miibus_readreg(device_t dev,int phy,int reg)430 sk_miibus_readreg(device_t dev, int phy, int reg)
431 {
432 	struct sk_if_softc	*sc_if;
433 	int			v;
434 
435 	sc_if = device_get_softc(dev);
436 
437 	SK_IF_MII_LOCK(sc_if);
438 	switch(sc_if->sk_softc->sk_type) {
439 	case SK_GENESIS:
440 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
441 		break;
442 	case SK_YUKON:
443 	case SK_YUKON_LITE:
444 	case SK_YUKON_LP:
445 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
446 		break;
447 	default:
448 		v = 0;
449 		break;
450 	}
451 	SK_IF_MII_UNLOCK(sc_if);
452 
453 	return (v);
454 }
455 
456 static int
sk_miibus_writereg(device_t dev,int phy,int reg,int val)457 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
458 {
459 	struct sk_if_softc	*sc_if;
460 	int			v;
461 
462 	sc_if = device_get_softc(dev);
463 
464 	SK_IF_MII_LOCK(sc_if);
465 	switch(sc_if->sk_softc->sk_type) {
466 	case SK_GENESIS:
467 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
468 		break;
469 	case SK_YUKON:
470 	case SK_YUKON_LITE:
471 	case SK_YUKON_LP:
472 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
473 		break;
474 	default:
475 		v = 0;
476 		break;
477 	}
478 	SK_IF_MII_UNLOCK(sc_if);
479 
480 	return (v);
481 }
482 
483 static void
sk_miibus_statchg(device_t dev)484 sk_miibus_statchg(device_t dev)
485 {
486 	struct sk_if_softc	*sc_if;
487 
488 	sc_if = device_get_softc(dev);
489 
490 	SK_IF_MII_LOCK(sc_if);
491 	switch(sc_if->sk_softc->sk_type) {
492 	case SK_GENESIS:
493 		sk_xmac_miibus_statchg(sc_if);
494 		break;
495 	case SK_YUKON:
496 	case SK_YUKON_LITE:
497 	case SK_YUKON_LP:
498 		sk_marv_miibus_statchg(sc_if);
499 		break;
500 	}
501 	SK_IF_MII_UNLOCK(sc_if);
502 
503 	return;
504 }
505 
506 static int
sk_xmac_miibus_readreg(struct sk_if_softc * sc_if,int phy,int reg)507 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
508 {
509 	int			i;
510 
511 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
512 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
513 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
514 		for (i = 0; i < SK_TIMEOUT; i++) {
515 			DELAY(1);
516 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
517 			    XM_MMUCMD_PHYDATARDY)
518 				break;
519 		}
520 
521 		if (i == SK_TIMEOUT) {
522 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
523 			return(0);
524 		}
525 	}
526 	DELAY(1);
527 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
528 
529 	return(i);
530 }
531 
532 static int
sk_xmac_miibus_writereg(struct sk_if_softc * sc_if,int phy,int reg,int val)533 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
534 {
535 	int			i;
536 
537 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
538 	for (i = 0; i < SK_TIMEOUT; i++) {
539 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
540 			break;
541 	}
542 
543 	if (i == SK_TIMEOUT) {
544 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
545 		return (ETIMEDOUT);
546 	}
547 
548 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
549 	for (i = 0; i < SK_TIMEOUT; i++) {
550 		DELAY(1);
551 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
552 			break;
553 	}
554 	if (i == SK_TIMEOUT)
555 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
556 
557 	return(0);
558 }
559 
560 static void
sk_xmac_miibus_statchg(struct sk_if_softc * sc_if)561 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
562 {
563 	struct mii_data		*mii;
564 
565 	mii = device_get_softc(sc_if->sk_miibus);
566 
567 	/*
568 	 * If this is a GMII PHY, manually set the XMAC's
569 	 * duplex mode accordingly.
570 	 */
571 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
572 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
573 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
574 		} else {
575 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
576 		}
577 	}
578 }
579 
580 static int
sk_marv_miibus_readreg(struct sk_if_softc * sc_if,int phy,int reg)581 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
582 {
583 	u_int16_t		val;
584 	int			i;
585 
586 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
587 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
588 		return(0);
589 	}
590 
591         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
592 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
593 
594 	for (i = 0; i < SK_TIMEOUT; i++) {
595 		DELAY(1);
596 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
597 		if (val & YU_SMICR_READ_VALID)
598 			break;
599 	}
600 
601 	if (i == SK_TIMEOUT) {
602 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
603 		return(0);
604 	}
605 
606 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
607 
608 	return(val);
609 }
610 
611 static int
sk_marv_miibus_writereg(struct sk_if_softc * sc_if,int phy,int reg,int val)612 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
613 {
614 	int			i;
615 
616 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
617 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
618 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
619 
620 	for (i = 0; i < SK_TIMEOUT; i++) {
621 		DELAY(1);
622 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
623 			break;
624 	}
625 	if (i == SK_TIMEOUT)
626 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
627 
628 	return(0);
629 }
630 
631 static void
sk_marv_miibus_statchg(struct sk_if_softc * sc_if)632 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
633 {
634 	return;
635 }
636 
637 #define HASH_BITS		6
638 
639 static u_int32_t
sk_xmchash(const uint8_t * addr)640 sk_xmchash(const uint8_t *addr)
641 {
642 	uint32_t crc;
643 
644 	/* Compute CRC for the address value. */
645 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
646 
647 	return (~crc & ((1 << HASH_BITS) - 1));
648 }
649 
650 static void
sk_setfilt(struct sk_if_softc * sc_if,u_int16_t * addr,int slot)651 sk_setfilt(struct sk_if_softc *sc_if, u_int16_t *addr, int slot)
652 {
653 	int			base;
654 
655 	base = XM_RXFILT_ENTRY(slot);
656 
657 	SK_XM_WRITE_2(sc_if, base, addr[0]);
658 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
659 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
660 
661 	return;
662 }
663 
664 static void
sk_rxfilter(struct sk_if_softc * sc_if)665 sk_rxfilter(struct sk_if_softc *sc_if)
666 {
667 	struct sk_softc		*sc;
668 
669 	SK_IF_LOCK_ASSERT(sc_if);
670 
671 	sc = sc_if->sk_softc;
672 	if (sc->sk_type == SK_GENESIS)
673 		sk_rxfilter_genesis(sc_if);
674 	else
675 		sk_rxfilter_yukon(sc_if);
676 }
677 
678 struct sk_add_maddr_genesis_ctx {
679 	struct sk_if_softc *sc_if;
680 	uint32_t hashes[2];
681 	uint32_t mode;
682 };
683 
684 static u_int
sk_add_maddr_genesis(void * arg,struct sockaddr_dl * sdl,u_int cnt)685 sk_add_maddr_genesis(void *arg, struct sockaddr_dl *sdl, u_int cnt)
686 {
687 	struct sk_add_maddr_genesis_ctx *ctx = arg;
688 	int h;
689 
690 	/*
691 	 * Program the first XM_RXFILT_MAX multicast groups
692 	 * into the perfect filter.
693 	 */
694 	if (cnt + 1 < XM_RXFILT_MAX) {
695 		sk_setfilt(ctx->sc_if, (uint16_t *)LLADDR(sdl), cnt + 1);
696 		ctx->mode |= XM_MODE_RX_USE_PERFECT;
697 		return (1);
698 	}
699 	h = sk_xmchash((const uint8_t *)LLADDR(sdl));
700 	if (h < 32)
701 		ctx->hashes[0] |= (1 << h);
702 	else
703 		ctx->hashes[1] |= (1 << (h - 32));
704 	ctx->mode |= XM_MODE_RX_USE_HASH;
705 
706 	return (1);
707 }
708 
709 static void
sk_rxfilter_genesis(struct sk_if_softc * sc_if)710 sk_rxfilter_genesis(struct sk_if_softc *sc_if)
711 {
712 	if_t			ifp = sc_if->sk_ifp;
713 	struct sk_add_maddr_genesis_ctx ctx = { sc_if, { 0, 0 } };
714 	int			i;
715 	u_int16_t		dummy[] = { 0, 0, 0 };
716 
717 	SK_IF_LOCK_ASSERT(sc_if);
718 
719 	ctx.mode = SK_XM_READ_4(sc_if, XM_MODE);
720 	ctx.mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
721 	    XM_MODE_RX_USE_PERFECT);
722 	/* First, zot all the existing perfect filters. */
723 	for (i = 1; i < XM_RXFILT_MAX; i++)
724 		sk_setfilt(sc_if, dummy, i);
725 
726 	/* Now program new ones. */
727 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
728 		if (if_getflags(ifp) & IFF_ALLMULTI)
729 			ctx.mode |= XM_MODE_RX_USE_HASH;
730 		if (if_getflags(ifp) & IFF_PROMISC)
731 			ctx.mode |= XM_MODE_RX_PROMISC;
732 		ctx.hashes[0] = 0xFFFFFFFF;
733 		ctx.hashes[1] = 0xFFFFFFFF;
734 	} else
735 		/* XXX want to maintain reverse semantics */
736 		if_foreach_llmaddr(ifp, sk_add_maddr_genesis, &ctx);
737 
738 	SK_XM_WRITE_4(sc_if, XM_MODE, ctx.mode);
739 	SK_XM_WRITE_4(sc_if, XM_MAR0, ctx.hashes[0]);
740 	SK_XM_WRITE_4(sc_if, XM_MAR2, ctx.hashes[1]);
741 }
742 
743 static u_int
sk_hash_maddr_yukon(void * arg,struct sockaddr_dl * sdl,u_int cnt)744 sk_hash_maddr_yukon(void *arg, struct sockaddr_dl *sdl, u_int cnt)
745 {
746 	uint32_t crc, *hashes = arg;
747 
748 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
749 	/* Just want the 6 least significant bits. */
750 	crc &= 0x3f;
751 	/* Set the corresponding bit in the hash table. */
752 	hashes[crc >> 5] |= 1 << (crc & 0x1f);
753 
754 	return (1);
755 }
756 
757 static void
sk_rxfilter_yukon(struct sk_if_softc * sc_if)758 sk_rxfilter_yukon(struct sk_if_softc *sc_if)
759 {
760 	if_t			ifp;
761 	uint32_t		hashes[2] = { 0, 0 }, mode;
762 
763 	SK_IF_LOCK_ASSERT(sc_if);
764 
765 	ifp = sc_if->sk_ifp;
766 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
767 	if (if_getflags(ifp) & IFF_PROMISC)
768 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
769 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
770 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
771 		hashes[0] = 0xFFFFFFFF;
772 		hashes[1] = 0xFFFFFFFF;
773 	} else {
774 		mode |= YU_RCR_UFLEN;
775 		if_foreach_llmaddr(ifp, sk_hash_maddr_yukon, hashes);
776 		if (hashes[0] != 0 || hashes[1] != 0)
777 			mode |= YU_RCR_MUFLEN;
778 	}
779 
780 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
781 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
782 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
783 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
784 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
785 }
786 
787 static int
sk_init_rx_ring(struct sk_if_softc * sc_if)788 sk_init_rx_ring(struct sk_if_softc *sc_if)
789 {
790 	struct sk_ring_data	*rd;
791 	bus_addr_t		addr;
792 	u_int32_t		csum_start;
793 	int			i;
794 
795 	sc_if->sk_cdata.sk_rx_cons = 0;
796 
797 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
798 	    ETHER_HDR_LEN;
799 	rd = &sc_if->sk_rdata;
800 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
801 	for (i = 0; i < SK_RX_RING_CNT; i++) {
802 		if (sk_newbuf(sc_if, i) != 0)
803 			return (ENOBUFS);
804 		if (i == (SK_RX_RING_CNT - 1))
805 			addr = SK_RX_RING_ADDR(sc_if, 0);
806 		else
807 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
808 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
809 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
810 	}
811 
812 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
813 	    sc_if->sk_cdata.sk_rx_ring_map,
814 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815 
816 	return(0);
817 }
818 
819 static int
sk_init_jumbo_rx_ring(struct sk_if_softc * sc_if)820 sk_init_jumbo_rx_ring(struct sk_if_softc *sc_if)
821 {
822 	struct sk_ring_data	*rd;
823 	bus_addr_t		addr;
824 	u_int32_t		csum_start;
825 	int			i;
826 
827 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
828 
829 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
830 	    ETHER_HDR_LEN;
831 	rd = &sc_if->sk_rdata;
832 	bzero(rd->sk_jumbo_rx_ring,
833 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
834 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
835 		if (sk_jumbo_newbuf(sc_if, i) != 0)
836 			return (ENOBUFS);
837 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
838 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
839 		else
840 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
841 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
842 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
843 	}
844 
845 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
846 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
847 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
848 
849 	return (0);
850 }
851 
852 static void
sk_init_tx_ring(struct sk_if_softc * sc_if)853 sk_init_tx_ring(struct sk_if_softc *sc_if)
854 {
855 	struct sk_ring_data	*rd;
856 	struct sk_txdesc	*txd;
857 	bus_addr_t		addr;
858 	int			i;
859 
860 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
861 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
862 
863 	sc_if->sk_cdata.sk_tx_prod = 0;
864 	sc_if->sk_cdata.sk_tx_cons = 0;
865 	sc_if->sk_cdata.sk_tx_cnt = 0;
866 
867 	rd = &sc_if->sk_rdata;
868 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
869 	for (i = 0; i < SK_TX_RING_CNT; i++) {
870 		if (i == (SK_TX_RING_CNT - 1))
871 			addr = SK_TX_RING_ADDR(sc_if, 0);
872 		else
873 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
874 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
875 		txd = &sc_if->sk_cdata.sk_txdesc[i];
876 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
877 	}
878 
879 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
880 	    sc_if->sk_cdata.sk_tx_ring_map,
881 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
882 }
883 
884 static __inline void
sk_discard_rxbuf(struct sk_if_softc * sc_if,int idx)885 sk_discard_rxbuf(struct sk_if_softc *sc_if, int idx)
886 {
887 	struct sk_rx_desc	*r;
888 	struct sk_rxdesc	*rxd;
889 	struct mbuf		*m;
890 
891 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
892 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
893 	m = rxd->rx_m;
894 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
895 }
896 
897 static __inline void
sk_discard_jumbo_rxbuf(struct sk_if_softc * sc_if,int idx)898 sk_discard_jumbo_rxbuf(struct sk_if_softc *sc_if, int idx)
899 {
900 	struct sk_rx_desc	*r;
901 	struct sk_rxdesc	*rxd;
902 	struct mbuf		*m;
903 
904 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
905 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
906 	m = rxd->rx_m;
907 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
908 }
909 
910 static int
sk_newbuf(struct sk_if_softc * sc_if,int idx)911 sk_newbuf(struct sk_if_softc *sc_if, int idx)
912 {
913 	struct sk_rx_desc	*r;
914 	struct sk_rxdesc	*rxd;
915 	struct mbuf		*m;
916 	bus_dma_segment_t	segs[1];
917 	bus_dmamap_t		map;
918 	int			nsegs;
919 
920 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
921 	if (m == NULL)
922 		return (ENOBUFS);
923 	m->m_len = m->m_pkthdr.len = MCLBYTES;
924 	m_adj(m, ETHER_ALIGN);
925 
926 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
927 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
928 		m_freem(m);
929 		return (ENOBUFS);
930 	}
931 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
932 
933 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
934 	if (rxd->rx_m != NULL) {
935 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
936 		    BUS_DMASYNC_POSTREAD);
937 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
938 	}
939 	map = rxd->rx_dmamap;
940 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
941 	sc_if->sk_cdata.sk_rx_sparemap = map;
942 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
943 	    BUS_DMASYNC_PREREAD);
944 	rxd->rx_m = m;
945 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
946 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
947 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
948 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
949 
950 	return (0);
951 }
952 
953 static int
sk_jumbo_newbuf(struct sk_if_softc * sc_if,int idx)954 sk_jumbo_newbuf(struct sk_if_softc *sc_if, int idx)
955 {
956 	struct sk_rx_desc	*r;
957 	struct sk_rxdesc	*rxd;
958 	struct mbuf		*m;
959 	bus_dma_segment_t	segs[1];
960 	bus_dmamap_t		map;
961 	int			nsegs;
962 
963 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
964 	if (m == NULL)
965 		return (ENOBUFS);
966 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
967 	/*
968 	 * Adjust alignment so packet payload begins on a
969 	 * longword boundary. Mandatory for Alpha, useful on
970 	 * x86 too.
971 	 */
972 	m_adj(m, ETHER_ALIGN);
973 
974 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
975 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
976 		m_freem(m);
977 		return (ENOBUFS);
978 	}
979 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
980 
981 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
982 	if (rxd->rx_m != NULL) {
983 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
984 		    BUS_DMASYNC_POSTREAD);
985 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
986 		    rxd->rx_dmamap);
987 	}
988 	map = rxd->rx_dmamap;
989 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
990 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
991 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
992 	    BUS_DMASYNC_PREREAD);
993 	rxd->rx_m = m;
994 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
995 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
996 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
997 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
998 
999 	return (0);
1000 }
1001 
1002 /*
1003  * Set media options.
1004  */
1005 static int
sk_ifmedia_upd(if_t ifp)1006 sk_ifmedia_upd(if_t ifp)
1007 {
1008 	struct sk_if_softc	*sc_if = if_getsoftc(ifp);
1009 	struct mii_data		*mii;
1010 
1011 	mii = device_get_softc(sc_if->sk_miibus);
1012 	sk_init(sc_if);
1013 	mii_mediachg(mii);
1014 
1015 	return(0);
1016 }
1017 
1018 /*
1019  * Report current media status.
1020  */
1021 static void
sk_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)1022 sk_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1023 {
1024 	struct sk_if_softc	*sc_if;
1025 	struct mii_data		*mii;
1026 
1027 	sc_if = if_getsoftc(ifp);
1028 	mii = device_get_softc(sc_if->sk_miibus);
1029 
1030 	mii_pollstat(mii);
1031 	ifmr->ifm_active = mii->mii_media_active;
1032 	ifmr->ifm_status = mii->mii_media_status;
1033 
1034 	return;
1035 }
1036 
1037 static int
sk_ioctl(if_t ifp,u_long command,caddr_t data)1038 sk_ioctl(if_t ifp, u_long command, caddr_t data)
1039 {
1040 	struct sk_if_softc	*sc_if = if_getsoftc(ifp);
1041 	struct ifreq		*ifr = (struct ifreq *) data;
1042 	int			error, mask;
1043 	struct mii_data		*mii;
1044 
1045 	error = 0;
1046 	switch(command) {
1047 	case SIOCSIFMTU:
1048 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1049 			error = EINVAL;
1050 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1051 			if (sc_if->sk_jumbo_disable != 0 &&
1052 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1053 				error = EINVAL;
1054 			else {
1055 				SK_IF_LOCK(sc_if);
1056 				if_setmtu(ifp, ifr->ifr_mtu);
1057 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1058 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1059 					sk_init_locked(sc_if);
1060 				}
1061 				SK_IF_UNLOCK(sc_if);
1062 			}
1063 		}
1064 		break;
1065 	case SIOCSIFFLAGS:
1066 		SK_IF_LOCK(sc_if);
1067 		if (if_getflags(ifp) & IFF_UP) {
1068 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1069 				if ((if_getflags(ifp) ^ sc_if->sk_if_flags)
1070 				    & (IFF_PROMISC | IFF_ALLMULTI))
1071 					sk_rxfilter(sc_if);
1072 			} else
1073 				sk_init_locked(sc_if);
1074 		} else {
1075 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1076 				sk_stop(sc_if);
1077 		}
1078 		sc_if->sk_if_flags = if_getflags(ifp);
1079 		SK_IF_UNLOCK(sc_if);
1080 		break;
1081 	case SIOCADDMULTI:
1082 	case SIOCDELMULTI:
1083 		SK_IF_LOCK(sc_if);
1084 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1085 			sk_rxfilter(sc_if);
1086 		SK_IF_UNLOCK(sc_if);
1087 		break;
1088 	case SIOCGIFMEDIA:
1089 	case SIOCSIFMEDIA:
1090 		mii = device_get_softc(sc_if->sk_miibus);
1091 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1092 		break;
1093 	case SIOCSIFCAP:
1094 		SK_IF_LOCK(sc_if);
1095 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1096 			SK_IF_UNLOCK(sc_if);
1097 			break;
1098 		}
1099 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1100 		if ((mask & IFCAP_TXCSUM) != 0 &&
1101 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
1102 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1103 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1104 				if_sethwassistbits(ifp, SK_CSUM_FEATURES, 0);
1105 			else
1106 				if_sethwassistbits(ifp, 0, SK_CSUM_FEATURES);
1107 		}
1108 		if ((mask & IFCAP_RXCSUM) != 0 &&
1109 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
1110 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1111 		SK_IF_UNLOCK(sc_if);
1112 		break;
1113 	default:
1114 		error = ether_ioctl(ifp, command, data);
1115 		break;
1116 	}
1117 
1118 	return (error);
1119 }
1120 
1121 /*
1122  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1123  * IDs against our list and return a device name if we find a match.
1124  */
1125 static int
skc_probe(device_t dev)1126 skc_probe(device_t dev)
1127 {
1128 	const struct sk_type	*t = sk_devs;
1129 
1130 	while(t->sk_name != NULL) {
1131 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1132 		    (pci_get_device(dev) == t->sk_did)) {
1133 			/*
1134 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1135 			 * Rev. 3 is supported by re(4).
1136 			 */
1137 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1138 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1139 				(pci_get_subdevice(dev) !=
1140 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1141 				t++;
1142 				continue;
1143 			}
1144 			device_set_desc(dev, t->sk_name);
1145 			return (BUS_PROBE_DEFAULT);
1146 		}
1147 		t++;
1148 	}
1149 
1150 	return(ENXIO);
1151 }
1152 
1153 /*
1154  * Force the GEnesis into reset, then bring it out of reset.
1155  */
1156 static void
sk_reset(struct sk_softc * sc)1157 sk_reset(struct sk_softc *sc)
1158 {
1159 
1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1161 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1162 	if (SK_YUKON_FAMILY(sc->sk_type))
1163 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1164 
1165 	DELAY(1000);
1166 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1167 	DELAY(2);
1168 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1169 	if (SK_YUKON_FAMILY(sc->sk_type))
1170 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1171 
1172 	if (sc->sk_type == SK_GENESIS) {
1173 		/* Configure packet arbiter */
1174 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1175 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 	}
1180 
1181 	/* Enable RAM interface */
1182 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1183 
1184 	/*
1185          * Configure interrupt moderation. The moderation timer
1186 	 * defers interrupts specified in the interrupt moderation
1187 	 * timer mask based on the timeout specified in the interrupt
1188 	 * moderation timer init register. Each bit in the timer
1189 	 * register represents one tick, so to specify a timeout in
1190 	 * microseconds, we have to multiply by the correct number of
1191 	 * ticks-per-microsecond.
1192 	 */
1193 	switch (sc->sk_type) {
1194 	case SK_GENESIS:
1195 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1196 		break;
1197 	default:
1198 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1199 		break;
1200 	}
1201 	if (bootverbose)
1202 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1203 		    sc->sk_int_mod);
1204 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1205 	    sc->sk_int_ticks));
1206 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1207 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1208 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1209 
1210 	return;
1211 }
1212 
1213 static int
sk_probe(device_t dev)1214 sk_probe(device_t dev)
1215 {
1216 	struct sk_softc		*sc;
1217 
1218 	sc = device_get_softc(device_get_parent(dev));
1219 
1220 	/*
1221 	 * Not much to do here. We always know there will be
1222 	 * at least one XMAC present, and if there are two,
1223 	 * skc_attach() will create a second device instance
1224 	 * for us.
1225 	 */
1226 	switch (sc->sk_type) {
1227 	case SK_GENESIS:
1228 		device_set_desc(dev, "XaQti Corp. XMAC II");
1229 		break;
1230 	case SK_YUKON:
1231 	case SK_YUKON_LITE:
1232 	case SK_YUKON_LP:
1233 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1234 		break;
1235 	}
1236 
1237 	return (BUS_PROBE_DEFAULT);
1238 }
1239 
1240 /*
1241  * Each XMAC chip is attached as a separate logical IP interface.
1242  * Single port cards will have only one logical interface of course.
1243  */
1244 static int
sk_attach(device_t dev)1245 sk_attach(device_t dev)
1246 {
1247 	struct sk_softc		*sc;
1248 	struct sk_if_softc	*sc_if;
1249 	if_t			ifp;
1250 	u_int32_t		r;
1251 	int			error, i, phy, port;
1252 	u_char			eaddr[6];
1253 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1254 
1255 	if (dev == NULL)
1256 		return(EINVAL);
1257 
1258 	error = 0;
1259 	sc_if = device_get_softc(dev);
1260 	sc = device_get_softc(device_get_parent(dev));
1261 	port = *(int *)device_get_ivars(dev);
1262 
1263 	sc_if->sk_if_dev = dev;
1264 	sc_if->sk_port = port;
1265 	sc_if->sk_softc = sc;
1266 	sc->sk_if[port] = sc_if;
1267 	if (port == SK_PORT_A)
1268 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1269 	if (port == SK_PORT_B)
1270 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1271 
1272 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1273 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1274 
1275 	if (sk_dma_alloc(sc_if) != 0) {
1276 		error = ENOMEM;
1277 		goto fail;
1278 	}
1279 	sk_dma_jumbo_alloc(sc_if);
1280 
1281 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1282 	if_setsoftc(ifp, sc_if);
1283 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1284 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1285 	/*
1286 	 * SK_GENESIS has a bug in checksum offload - From linux.
1287 	 */
1288 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1289 		if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM);
1290 		if_sethwassist(ifp, 0);
1291 	} else {
1292 		if_setcapabilities(ifp, 0);
1293 		if_sethwassist(ifp, 0);
1294 	}
1295 	if_setcapenable(ifp, if_getcapabilities(ifp));
1296 	/*
1297 	 * Some revision of Yukon controller generates corrupted
1298 	 * frame when TX checksum offloading is enabled.  The
1299 	 * frame has a valid checksum value so payload might be
1300 	 * modified during TX checksum calculation. Disable TX
1301 	 * checksum offloading but give users chance to enable it
1302 	 * when they know their controller works without problems
1303 	 * with TX checksum offloading.
1304 	 */
1305 	if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
1306 	if_setioctlfn(ifp, sk_ioctl);
1307 	if_setstartfn(ifp, sk_start);
1308 	if_setinitfn(ifp, sk_init);
1309 	if_setsendqlen(ifp, SK_TX_RING_CNT - 1);
1310 	if_setsendqready(ifp);
1311 
1312 	/*
1313 	 * Get station address for this interface. Note that
1314 	 * dual port cards actually come with three station
1315 	 * addresses: one for each port, plus an extra. The
1316 	 * extra one is used by the SysKonnect driver software
1317 	 * as a 'virtual' station address for when both ports
1318 	 * are operating in failover mode. Currently we don't
1319 	 * use this extra address.
1320 	 */
1321 	SK_IF_LOCK(sc_if);
1322 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1323 		eaddr[i] =
1324 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1325 
1326 	/* Verify whether the station address is invalid or not. */
1327 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1328 		device_printf(sc_if->sk_if_dev,
1329 		    "Generating random ethernet address\n");
1330 		r = arc4random();
1331 		/*
1332 		 * Set OUI to convenient locally assigned address.  'b'
1333 		 * is 0x62, which has the locally assigned bit set, and
1334 		 * the broadcast/multicast bit clear.
1335 		 */
1336 		eaddr[0] = 'b';
1337 		eaddr[1] = 's';
1338 		eaddr[2] = 'd';
1339 		eaddr[3] = (r >> 16) & 0xff;
1340 		eaddr[4] = (r >>  8) & 0xff;
1341 		eaddr[5] = (r >>  0) & 0xff;
1342 	}
1343 	/*
1344 	 * Set up RAM buffer addresses. The NIC will have a certain
1345 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1346 	 * need to divide this up a) between the transmitter and
1347  	 * receiver and b) between the two XMACs, if this is a
1348 	 * dual port NIC. Our algotithm is to divide up the memory
1349 	 * evenly so that everyone gets a fair share.
1350 	 *
1351 	 * Just to be contrary, Yukon2 appears to have separate memory
1352 	 * for each MAC.
1353 	 */
1354 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1355 		u_int32_t		chunk, val;
1356 
1357 		chunk = sc->sk_ramsize / 2;
1358 		val = sc->sk_rboff / sizeof(u_int64_t);
1359 		sc_if->sk_rx_ramstart = val;
1360 		val += (chunk / sizeof(u_int64_t));
1361 		sc_if->sk_rx_ramend = val - 1;
1362 		sc_if->sk_tx_ramstart = val;
1363 		val += (chunk / sizeof(u_int64_t));
1364 		sc_if->sk_tx_ramend = val - 1;
1365 	} else {
1366 		u_int32_t		chunk, val;
1367 
1368 		chunk = sc->sk_ramsize / 4;
1369 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1370 		    sizeof(u_int64_t);
1371 		sc_if->sk_rx_ramstart = val;
1372 		val += (chunk / sizeof(u_int64_t));
1373 		sc_if->sk_rx_ramend = val - 1;
1374 		sc_if->sk_tx_ramstart = val;
1375 		val += (chunk / sizeof(u_int64_t));
1376 		sc_if->sk_tx_ramend = val - 1;
1377 	}
1378 
1379 	/* Read and save PHY type and set PHY address */
1380 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1381 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1382 		switch(sc_if->sk_phytype) {
1383 		case SK_PHYTYPE_XMAC:
1384 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1385 			break;
1386 		case SK_PHYTYPE_BCOM:
1387 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1388 			break;
1389 		default:
1390 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1391 			    sc_if->sk_phytype);
1392 			error = ENODEV;
1393 			SK_IF_UNLOCK(sc_if);
1394 			goto fail;
1395 		}
1396 	} else {
1397 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1398 		    sc->sk_pmd != 'S') {
1399 			/* not initialized, punt */
1400 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1401 			sc->sk_coppertype = 1;
1402 		}
1403 
1404 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1405 
1406 		if (!(sc->sk_coppertype))
1407 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1408 	}
1409 
1410 	/*
1411 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1412 	 */
1413 	SK_IF_UNLOCK(sc_if);
1414 	ether_ifattach(ifp, eaddr);
1415 	SK_IF_LOCK(sc_if);
1416 
1417 	/*
1418 	 * The hardware should be ready for VLAN_MTU by default:
1419 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1420 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1421 	 *
1422 	 */
1423         if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1424         if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
1425 	/*
1426 	 * Tell the upper layer(s) we support long frames.
1427 	 * Must appear after the call to ether_ifattach() because
1428 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1429 	 */
1430         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1431 
1432 	/*
1433 	 * Do miibus setup.
1434 	 */
1435 	phy = MII_PHY_ANY;
1436 	switch (sc->sk_type) {
1437 	case SK_GENESIS:
1438 		sk_init_xmac(sc_if);
1439 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1440 			phy = 0;
1441 		break;
1442 	case SK_YUKON:
1443 	case SK_YUKON_LITE:
1444 	case SK_YUKON_LP:
1445 		sk_init_yukon(sc_if);
1446 		phy = 0;
1447 		break;
1448 	}
1449 
1450 	SK_IF_UNLOCK(sc_if);
1451 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1452 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1453 	if (error != 0) {
1454 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1455 		ether_ifdetach(ifp);
1456 		goto fail;
1457 	}
1458 
1459 fail:
1460 	if (error) {
1461 		/* Access should be ok even though lock has been dropped */
1462 		sc->sk_if[port] = NULL;
1463 		sk_detach(dev);
1464 	}
1465 
1466 	return(error);
1467 }
1468 
1469 /*
1470  * Attach the interface. Allocate softc structures, do ifmedia
1471  * setup and ethernet/BPF attach.
1472  */
1473 static int
skc_attach(device_t dev)1474 skc_attach(device_t dev)
1475 {
1476 	struct sk_softc		*sc;
1477 	int			error = 0, *port;
1478 	uint8_t			skrs;
1479 	const char		*pname = NULL;
1480 	char			*revstr;
1481 
1482 	sc = device_get_softc(dev);
1483 	sc->sk_dev = dev;
1484 
1485 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1486 	    MTX_DEF);
1487 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1488 	/*
1489 	 * Map control/status registers.
1490 	 */
1491 	pci_enable_busmaster(dev);
1492 
1493 	/* Allocate resources */
1494 #ifdef SK_USEIOSPACE
1495 	sc->sk_res_spec = sk_res_spec_io;
1496 #else
1497 	sc->sk_res_spec = sk_res_spec_mem;
1498 #endif
1499 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1500 	if (error) {
1501 		if (sc->sk_res_spec == sk_res_spec_mem)
1502 			sc->sk_res_spec = sk_res_spec_io;
1503 		else
1504 			sc->sk_res_spec = sk_res_spec_mem;
1505 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1506 		if (error) {
1507 			device_printf(dev, "couldn't allocate %s resources\n",
1508 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1509 			    "I/O");
1510 			goto fail;
1511 		}
1512 	}
1513 
1514 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1515 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1516 
1517 	/* Bail out if chip is not recognized. */
1518 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1519 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1520 		    sc->sk_type, sc->sk_rev);
1521 		error = ENXIO;
1522 		goto fail;
1523 	}
1524 
1525 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1526 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1527 		OID_AUTO, "int_mod",
1528 		CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1529 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1530 		"SK interrupt moderation");
1531 
1532 	/* Pull in device tunables. */
1533 	sc->sk_int_mod = SK_IM_DEFAULT;
1534 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1535 		"int_mod", &sc->sk_int_mod);
1536 	if (error == 0) {
1537 		if (sc->sk_int_mod < SK_IM_MIN ||
1538 		    sc->sk_int_mod > SK_IM_MAX) {
1539 			device_printf(dev, "int_mod value out of range; "
1540 			    "using default: %d\n", SK_IM_DEFAULT);
1541 			sc->sk_int_mod = SK_IM_DEFAULT;
1542 		}
1543 	}
1544 
1545 	/* Reset the adapter. */
1546 	sk_reset(sc);
1547 
1548 	skrs = sk_win_read_1(sc, SK_EPROM0);
1549 	if (sc->sk_type == SK_GENESIS) {
1550 		/* Read and save RAM size and RAMbuffer offset */
1551 		switch(skrs) {
1552 		case SK_RAMSIZE_512K_64:
1553 			sc->sk_ramsize = 0x80000;
1554 			sc->sk_rboff = SK_RBOFF_0;
1555 			break;
1556 		case SK_RAMSIZE_1024K_64:
1557 			sc->sk_ramsize = 0x100000;
1558 			sc->sk_rboff = SK_RBOFF_80000;
1559 			break;
1560 		case SK_RAMSIZE_1024K_128:
1561 			sc->sk_ramsize = 0x100000;
1562 			sc->sk_rboff = SK_RBOFF_0;
1563 			break;
1564 		case SK_RAMSIZE_2048K_128:
1565 			sc->sk_ramsize = 0x200000;
1566 			sc->sk_rboff = SK_RBOFF_0;
1567 			break;
1568 		default:
1569 			device_printf(dev, "unknown ram size: %d\n", skrs);
1570 			error = ENXIO;
1571 			goto fail;
1572 		}
1573 	} else { /* SK_YUKON_FAMILY */
1574 		if (skrs == 0x00)
1575 			sc->sk_ramsize = 0x20000;
1576 		else
1577 			sc->sk_ramsize = skrs * (1<<12);
1578 		sc->sk_rboff = SK_RBOFF_0;
1579 	}
1580 
1581 	/* Read and save physical media type */
1582 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1583 
1584 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1585 		 sc->sk_coppertype = 1;
1586 	 else
1587 		 sc->sk_coppertype = 0;
1588 
1589 	/* Determine whether to name it with VPD PN or just make it up.
1590 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1591 	switch (pci_get_device(dev)) {
1592 	case DEVICEID_SK_V1:
1593 	case DEVICEID_BELKIN_5005:
1594 	case DEVICEID_3COM_3C940:
1595 	case DEVICEID_LINKSYS_EG1032:
1596 	case DEVICEID_DLINK_DGE530T_A1:
1597 	case DEVICEID_DLINK_DGE530T_B1:
1598 		/* Stay with VPD PN. */
1599 		(void) pci_get_vpd_ident(dev, &pname);
1600 		break;
1601 	case DEVICEID_SK_V2:
1602 		/* YUKON VPD PN might bear no resemblance to reality. */
1603 		switch (sc->sk_type) {
1604 		case SK_GENESIS:
1605 			/* Stay with VPD PN. */
1606 			(void) pci_get_vpd_ident(dev, &pname);
1607 			break;
1608 		case SK_YUKON:
1609 			pname = "Marvell Yukon Gigabit Ethernet";
1610 			break;
1611 		case SK_YUKON_LITE:
1612 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1613 			break;
1614 		case SK_YUKON_LP:
1615 			pname = "Marvell Yukon LP Gigabit Ethernet";
1616 			break;
1617 		default:
1618 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1619 			break;
1620 		}
1621 
1622 		/* Yukon Lite Rev. A0 needs special test. */
1623 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1624 			u_int32_t far;
1625 			u_int8_t testbyte;
1626 
1627 			/* Save flash address register before testing. */
1628 			far = sk_win_read_4(sc, SK_EP_ADDR);
1629 
1630 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1631 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1632 
1633 			if (testbyte != 0x00) {
1634 				/* Yukon Lite Rev. A0 detected. */
1635 				sc->sk_type = SK_YUKON_LITE;
1636 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1637 				/* Restore flash address register. */
1638 				sk_win_write_4(sc, SK_EP_ADDR, far);
1639 			}
1640 		}
1641 		break;
1642 	default:
1643 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1644 			"chipver=%02x, rev=%x\n",
1645 			pci_get_vendor(dev), pci_get_device(dev),
1646 			sc->sk_type, sc->sk_rev);
1647 		error = ENXIO;
1648 		goto fail;
1649 	}
1650 
1651 	if (sc->sk_type == SK_YUKON_LITE) {
1652 		switch (sc->sk_rev) {
1653 		case SK_YUKON_LITE_REV_A0:
1654 			revstr = "A0";
1655 			break;
1656 		case SK_YUKON_LITE_REV_A1:
1657 			revstr = "A1";
1658 			break;
1659 		case SK_YUKON_LITE_REV_A3:
1660 			revstr = "A3";
1661 			break;
1662 		default:
1663 			revstr = "";
1664 			break;
1665 		}
1666 	} else {
1667 		revstr = "";
1668 	}
1669 
1670 	/* Announce the product name and more VPD data if there. */
1671 	if (pname != NULL)
1672 		device_printf(dev, "%s rev. %s(0x%x)\n",
1673 			pname, revstr, sc->sk_rev);
1674 
1675 	if (bootverbose) {
1676 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1677 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1678 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1679 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1680 	}
1681 
1682 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", DEVICE_UNIT_ANY);
1683 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1684 		device_printf(dev, "failed to add child for PORT_A\n");
1685 		error = ENXIO;
1686 		goto fail;
1687 	}
1688 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1689 	if (port == NULL) {
1690 		device_printf(dev, "failed to allocate memory for "
1691 		    "ivars of PORT_A\n");
1692 		error = ENXIO;
1693 		goto fail;
1694 	}
1695 	*port = SK_PORT_A;
1696 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1697 
1698 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1699 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", DEVICE_UNIT_ANY);
1700 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1701 			device_printf(dev, "failed to add child for PORT_B\n");
1702 			error = ENXIO;
1703 			goto fail;
1704 		}
1705 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1706 		if (port == NULL) {
1707 			device_printf(dev, "failed to allocate memory for "
1708 			    "ivars of PORT_B\n");
1709 			error = ENXIO;
1710 			goto fail;
1711 		}
1712 		*port = SK_PORT_B;
1713 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1714 	}
1715 
1716 	/* Turn on the 'driver is loaded' LED. */
1717 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1718 
1719 	error = bus_generic_attach(dev);
1720 	if (error) {
1721 		device_printf(dev, "failed to attach port(s)\n");
1722 		goto fail;
1723 	}
1724 
1725 	/* Hook interrupt last to avoid having to lock softc */
1726 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1727 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1728 
1729 	if (error) {
1730 		device_printf(dev, "couldn't set up irq\n");
1731 		goto fail;
1732 	}
1733 
1734 fail:
1735 	if (error)
1736 		skc_detach(dev);
1737 
1738 	return(error);
1739 }
1740 
1741 /*
1742  * Shutdown hardware and free up resources. This can be called any
1743  * time after the mutex has been initialized. It is called in both
1744  * the error case in attach and the normal detach case so it needs
1745  * to be careful about only freeing resources that have actually been
1746  * allocated.
1747  */
1748 static int
sk_detach(device_t dev)1749 sk_detach(device_t dev)
1750 {
1751 	struct sk_if_softc	*sc_if;
1752 	if_t			ifp;
1753 
1754 	sc_if = device_get_softc(dev);
1755 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1756 	    ("sk mutex not initialized in sk_detach"));
1757 	SK_IF_LOCK(sc_if);
1758 
1759 	ifp = sc_if->sk_ifp;
1760 	/* These should only be active if attach_xmac succeeded */
1761 	if (device_is_attached(dev)) {
1762 		sk_stop(sc_if);
1763 		/* Can't hold locks while calling detach */
1764 		SK_IF_UNLOCK(sc_if);
1765 		callout_drain(&sc_if->sk_tick_ch);
1766 		callout_drain(&sc_if->sk_watchdog_ch);
1767 		ether_ifdetach(ifp);
1768 		SK_IF_LOCK(sc_if);
1769 	}
1770 	/*
1771 	 * We're generally called from skc_detach() which is using
1772 	 * device_delete_child() to get to here. It's already trashed
1773 	 * miibus for us, so don't do it here or we'll panic.
1774 	 */
1775 	/*
1776 	if (sc_if->sk_miibus != NULL)
1777 		device_delete_child(dev, sc_if->sk_miibus);
1778 	*/
1779 	bus_generic_detach(dev);
1780 	sk_dma_jumbo_free(sc_if);
1781 	sk_dma_free(sc_if);
1782 	SK_IF_UNLOCK(sc_if);
1783 	if (ifp)
1784 		if_free(ifp);
1785 
1786 	return(0);
1787 }
1788 
1789 static int
skc_detach(device_t dev)1790 skc_detach(device_t dev)
1791 {
1792 	struct sk_softc		*sc;
1793 
1794 	sc = device_get_softc(dev);
1795 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1796 
1797 	if (device_is_alive(dev)) {
1798 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1799 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1800 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1801 		}
1802 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1803 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1804 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1805 		}
1806 		bus_generic_detach(dev);
1807 	}
1808 
1809 	if (sc->sk_intrhand)
1810 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1811 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1812 
1813 	mtx_destroy(&sc->sk_mii_mtx);
1814 	mtx_destroy(&sc->sk_mtx);
1815 
1816 	return(0);
1817 }
1818 
1819 static bus_dma_tag_t
skc_get_dma_tag(device_t bus,device_t child __unused)1820 skc_get_dma_tag(device_t bus, device_t child __unused)
1821 {
1822 
1823 	return (bus_get_dma_tag(bus));
1824 }
1825 
1826 struct sk_dmamap_arg {
1827 	bus_addr_t	sk_busaddr;
1828 };
1829 
1830 static void
sk_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)1831 sk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1832 {
1833 	struct sk_dmamap_arg	*ctx;
1834 
1835 	if (error != 0)
1836 		return;
1837 
1838 	ctx = arg;
1839 	ctx->sk_busaddr = segs[0].ds_addr;
1840 }
1841 
1842 /*
1843  * Allocate jumbo buffer storage. The SysKonnect adapters support
1844  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1845  * use them in their drivers. In order for us to use them, we need
1846  * large 9K receive buffers, however standard mbuf clusters are only
1847  * 2048 bytes in size. Consequently, we need to allocate and manage
1848  * our own jumbo buffer pool. Fortunately, this does not require an
1849  * excessive amount of additional code.
1850  */
1851 static int
sk_dma_alloc(struct sk_if_softc * sc_if)1852 sk_dma_alloc(struct sk_if_softc *sc_if)
1853 {
1854 	struct sk_dmamap_arg	ctx;
1855 	struct sk_txdesc	*txd;
1856 	struct sk_rxdesc	*rxd;
1857 	int			error, i;
1858 
1859 	/* create parent tag */
1860 	/*
1861 	 * XXX
1862 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1863 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1864 	 * However bz@ reported that it does not work on amd64 with > 4GB
1865 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1866 	 * by limiting DMA address to be in 32bit address space.
1867 	 */
1868 	error = bus_dma_tag_create(
1869 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1870 		    1, 0,			/* algnmnt, boundary */
1871 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1872 		    BUS_SPACE_MAXADDR,		/* highaddr */
1873 		    NULL, NULL,			/* filter, filterarg */
1874 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1875 		    0,				/* nsegments */
1876 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1877 		    0,				/* flags */
1878 		    NULL, NULL,			/* lockfunc, lockarg */
1879 		    &sc_if->sk_cdata.sk_parent_tag);
1880 	if (error != 0) {
1881 		device_printf(sc_if->sk_if_dev,
1882 		    "failed to create parent DMA tag\n");
1883 		goto fail;
1884 	}
1885 
1886 	/* create tag for Tx ring */
1887 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1888 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1889 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1890 		    BUS_SPACE_MAXADDR,		/* highaddr */
1891 		    NULL, NULL,			/* filter, filterarg */
1892 		    SK_TX_RING_SZ,		/* maxsize */
1893 		    1,				/* nsegments */
1894 		    SK_TX_RING_SZ,		/* maxsegsize */
1895 		    0,				/* flags */
1896 		    NULL, NULL,			/* lockfunc, lockarg */
1897 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1898 	if (error != 0) {
1899 		device_printf(sc_if->sk_if_dev,
1900 		    "failed to allocate Tx ring DMA tag\n");
1901 		goto fail;
1902 	}
1903 
1904 	/* create tag for Rx ring */
1905 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1906 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1907 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1908 		    BUS_SPACE_MAXADDR,		/* highaddr */
1909 		    NULL, NULL,			/* filter, filterarg */
1910 		    SK_RX_RING_SZ,		/* maxsize */
1911 		    1,				/* nsegments */
1912 		    SK_RX_RING_SZ,		/* maxsegsize */
1913 		    0,				/* flags */
1914 		    NULL, NULL,			/* lockfunc, lockarg */
1915 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1916 	if (error != 0) {
1917 		device_printf(sc_if->sk_if_dev,
1918 		    "failed to allocate Rx ring DMA tag\n");
1919 		goto fail;
1920 	}
1921 
1922 	/* create tag for Tx buffers */
1923 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1924 		    1, 0,			/* algnmnt, boundary */
1925 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1926 		    BUS_SPACE_MAXADDR,		/* highaddr */
1927 		    NULL, NULL,			/* filter, filterarg */
1928 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
1929 		    SK_MAXTXSEGS,		/* nsegments */
1930 		    MCLBYTES,			/* maxsegsize */
1931 		    0,				/* flags */
1932 		    NULL, NULL,			/* lockfunc, lockarg */
1933 		    &sc_if->sk_cdata.sk_tx_tag);
1934 	if (error != 0) {
1935 		device_printf(sc_if->sk_if_dev,
1936 		    "failed to allocate Tx DMA tag\n");
1937 		goto fail;
1938 	}
1939 
1940 	/* create tag for Rx buffers */
1941 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1942 		    1, 0,			/* algnmnt, boundary */
1943 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1944 		    BUS_SPACE_MAXADDR,		/* highaddr */
1945 		    NULL, NULL,			/* filter, filterarg */
1946 		    MCLBYTES,			/* maxsize */
1947 		    1,				/* nsegments */
1948 		    MCLBYTES,			/* maxsegsize */
1949 		    0,				/* flags */
1950 		    NULL, NULL,			/* lockfunc, lockarg */
1951 		    &sc_if->sk_cdata.sk_rx_tag);
1952 	if (error != 0) {
1953 		device_printf(sc_if->sk_if_dev,
1954 		    "failed to allocate Rx DMA tag\n");
1955 		goto fail;
1956 	}
1957 
1958 	/* allocate DMA'able memory and load the DMA map for Tx ring */
1959 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
1960 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
1961 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
1962 	if (error != 0) {
1963 		device_printf(sc_if->sk_if_dev,
1964 		    "failed to allocate DMA'able memory for Tx ring\n");
1965 		goto fail;
1966 	}
1967 
1968 	ctx.sk_busaddr = 0;
1969 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
1970 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
1971 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1972 	if (error != 0) {
1973 		device_printf(sc_if->sk_if_dev,
1974 		    "failed to load DMA'able memory for Tx ring\n");
1975 		goto fail;
1976 	}
1977 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
1978 
1979 	/* allocate DMA'able memory and load the DMA map for Rx ring */
1980 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
1981 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
1982 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
1983 	if (error != 0) {
1984 		device_printf(sc_if->sk_if_dev,
1985 		    "failed to allocate DMA'able memory for Rx ring\n");
1986 		goto fail;
1987 	}
1988 
1989 	ctx.sk_busaddr = 0;
1990 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
1991 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
1992 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1993 	if (error != 0) {
1994 		device_printf(sc_if->sk_if_dev,
1995 		    "failed to load DMA'able memory for Rx ring\n");
1996 		goto fail;
1997 	}
1998 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
1999 
2000 	/* create DMA maps for Tx buffers */
2001 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2002 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2003 		txd->tx_m = NULL;
2004 		txd->tx_dmamap = NULL;
2005 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2006 		    &txd->tx_dmamap);
2007 		if (error != 0) {
2008 			device_printf(sc_if->sk_if_dev,
2009 			    "failed to create Tx dmamap\n");
2010 			goto fail;
2011 		}
2012 	}
2013 
2014 	/* create DMA maps for Rx buffers */
2015 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2016 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2017 		device_printf(sc_if->sk_if_dev,
2018 		    "failed to create spare Rx dmamap\n");
2019 		goto fail;
2020 	}
2021 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2022 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2023 		rxd->rx_m = NULL;
2024 		rxd->rx_dmamap = NULL;
2025 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2026 		    &rxd->rx_dmamap);
2027 		if (error != 0) {
2028 			device_printf(sc_if->sk_if_dev,
2029 			    "failed to create Rx dmamap\n");
2030 			goto fail;
2031 		}
2032 	}
2033 
2034 fail:
2035 	return (error);
2036 }
2037 
2038 static int
sk_dma_jumbo_alloc(struct sk_if_softc * sc_if)2039 sk_dma_jumbo_alloc(struct sk_if_softc *sc_if)
2040 {
2041 	struct sk_dmamap_arg	ctx;
2042 	struct sk_rxdesc	*jrxd;
2043 	int			error, i;
2044 
2045 	if (jumbo_disable != 0) {
2046 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2047 		sc_if->sk_jumbo_disable = 1;
2048 		return (0);
2049 	}
2050 	/* create tag for jumbo Rx ring */
2051 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2052 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2053 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2054 		    BUS_SPACE_MAXADDR,		/* highaddr */
2055 		    NULL, NULL,			/* filter, filterarg */
2056 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2057 		    1,				/* nsegments */
2058 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2059 		    0,				/* flags */
2060 		    NULL, NULL,			/* lockfunc, lockarg */
2061 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2062 	if (error != 0) {
2063 		device_printf(sc_if->sk_if_dev,
2064 		    "failed to allocate jumbo Rx ring DMA tag\n");
2065 		goto jumbo_fail;
2066 	}
2067 
2068 	/* create tag for jumbo Rx buffers */
2069 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2070 		    1, 0,			/* algnmnt, boundary */
2071 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2072 		    BUS_SPACE_MAXADDR,		/* highaddr */
2073 		    NULL, NULL,			/* filter, filterarg */
2074 		    MJUM9BYTES,			/* maxsize */
2075 		    1,				/* nsegments */
2076 		    MJUM9BYTES,			/* maxsegsize */
2077 		    0,				/* flags */
2078 		    NULL, NULL,			/* lockfunc, lockarg */
2079 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2080 	if (error != 0) {
2081 		device_printf(sc_if->sk_if_dev,
2082 		    "failed to allocate jumbo Rx DMA tag\n");
2083 		goto jumbo_fail;
2084 	}
2085 
2086 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2087 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2088 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2089 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2090 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2091 	if (error != 0) {
2092 		device_printf(sc_if->sk_if_dev,
2093 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2094 		goto jumbo_fail;
2095 	}
2096 
2097 	ctx.sk_busaddr = 0;
2098 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2099 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2100 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2101 	    &ctx, BUS_DMA_NOWAIT);
2102 	if (error != 0) {
2103 		device_printf(sc_if->sk_if_dev,
2104 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2105 		goto jumbo_fail;
2106 	}
2107 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2108 
2109 	/* create DMA maps for jumbo Rx buffers */
2110 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2111 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2112 		device_printf(sc_if->sk_if_dev,
2113 		    "failed to create spare jumbo Rx dmamap\n");
2114 		goto jumbo_fail;
2115 	}
2116 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2117 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2118 		jrxd->rx_m = NULL;
2119 		jrxd->rx_dmamap = NULL;
2120 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2121 		    &jrxd->rx_dmamap);
2122 		if (error != 0) {
2123 			device_printf(sc_if->sk_if_dev,
2124 			    "failed to create jumbo Rx dmamap\n");
2125 			goto jumbo_fail;
2126 		}
2127 	}
2128 
2129 	return (0);
2130 
2131 jumbo_fail:
2132 	sk_dma_jumbo_free(sc_if);
2133 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2134 	    "resource shortage\n");
2135 	sc_if->sk_jumbo_disable = 1;
2136 	return (0);
2137 }
2138 
2139 static void
sk_dma_free(struct sk_if_softc * sc_if)2140 sk_dma_free(struct sk_if_softc *sc_if)
2141 {
2142 	struct sk_txdesc	*txd;
2143 	struct sk_rxdesc	*rxd;
2144 	int			i;
2145 
2146 	/* Tx ring */
2147 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2148 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2149 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2150 			    sc_if->sk_cdata.sk_tx_ring_map);
2151 		if (sc_if->sk_rdata.sk_tx_ring)
2152 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2153 			    sc_if->sk_rdata.sk_tx_ring,
2154 			    sc_if->sk_cdata.sk_tx_ring_map);
2155 		sc_if->sk_rdata.sk_tx_ring = NULL;
2156 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2157 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2158 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2159 	}
2160 	/* Rx ring */
2161 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2162 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2163 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2164 			    sc_if->sk_cdata.sk_rx_ring_map);
2165 		if (sc_if->sk_rdata.sk_rx_ring)
2166 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2167 			    sc_if->sk_rdata.sk_rx_ring,
2168 			    sc_if->sk_cdata.sk_rx_ring_map);
2169 		sc_if->sk_rdata.sk_rx_ring = NULL;
2170 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2171 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2172 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2173 	}
2174 	/* Tx buffers */
2175 	if (sc_if->sk_cdata.sk_tx_tag) {
2176 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2177 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2178 			if (txd->tx_dmamap) {
2179 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2180 				    txd->tx_dmamap);
2181 				txd->tx_dmamap = NULL;
2182 			}
2183 		}
2184 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2185 		sc_if->sk_cdata.sk_tx_tag = NULL;
2186 	}
2187 	/* Rx buffers */
2188 	if (sc_if->sk_cdata.sk_rx_tag) {
2189 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2190 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2191 			if (rxd->rx_dmamap) {
2192 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2193 				    rxd->rx_dmamap);
2194 				rxd->rx_dmamap = NULL;
2195 			}
2196 		}
2197 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2198 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2199 			    sc_if->sk_cdata.sk_rx_sparemap);
2200 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2201 		}
2202 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2203 		sc_if->sk_cdata.sk_rx_tag = NULL;
2204 	}
2205 
2206 	if (sc_if->sk_cdata.sk_parent_tag) {
2207 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2208 		sc_if->sk_cdata.sk_parent_tag = NULL;
2209 	}
2210 }
2211 
2212 static void
sk_dma_jumbo_free(struct sk_if_softc * sc_if)2213 sk_dma_jumbo_free(struct sk_if_softc *sc_if)
2214 {
2215 	struct sk_rxdesc	*jrxd;
2216 	int			i;
2217 
2218 	/* jumbo Rx ring */
2219 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2220 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2221 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2222 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2223 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2224 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2225 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2226 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2227 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2228 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2229 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2230 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2231 	}
2232 
2233 	/* jumbo Rx buffers */
2234 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2235 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2236 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2237 			if (jrxd->rx_dmamap) {
2238 				bus_dmamap_destroy(
2239 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2240 				    jrxd->rx_dmamap);
2241 				jrxd->rx_dmamap = NULL;
2242 			}
2243 		}
2244 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2245 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2246 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2247 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2248 		}
2249 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2250 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2251 	}
2252 }
2253 
2254 static void
sk_txcksum(if_t ifp,struct mbuf * m,struct sk_tx_desc * f)2255 sk_txcksum(if_t ifp, struct mbuf *m, struct sk_tx_desc *f)
2256 {
2257 	struct ip		*ip;
2258 	u_int16_t		offset;
2259 	u_int8_t 		*p;
2260 
2261 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2262 	for(; m && m->m_len == 0; m = m->m_next)
2263 		;
2264 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2265 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2266 		/* checksum may be corrupted */
2267 		goto sendit;
2268 	}
2269 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2270 		if (m->m_len != ETHER_HDR_LEN) {
2271 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2272 			    __func__);
2273 			/* checksum may be corrupted */
2274 			goto sendit;
2275 		}
2276 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2277 			;
2278 		if (m == NULL) {
2279 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2280 			/* checksum may be corrupted */
2281 			goto sendit;
2282 		}
2283 		ip = mtod(m, struct ip *);
2284 	} else {
2285 		p = mtod(m, u_int8_t *);
2286 		p += ETHER_HDR_LEN;
2287 		ip = (struct ip *)p;
2288 	}
2289 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2290 
2291 sendit:
2292 	f->sk_csum_startval = 0;
2293 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2294 	    (offset << 16));
2295 }
2296 
2297 static int
sk_encap(struct sk_if_softc * sc_if,struct mbuf ** m_head)2298 sk_encap(struct sk_if_softc *sc_if, struct mbuf **m_head)
2299 {
2300 	struct sk_txdesc	*txd;
2301 	struct sk_tx_desc	*f = NULL;
2302 	struct mbuf		*m;
2303 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2304 	u_int32_t		cflags, frag, si, sk_ctl;
2305 	int			error, i, nseg;
2306 
2307 	SK_IF_LOCK_ASSERT(sc_if);
2308 
2309 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2310 		return (ENOBUFS);
2311 
2312 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2313 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2314 	if (error == EFBIG) {
2315 		m = m_defrag(*m_head, M_NOWAIT);
2316 		if (m == NULL) {
2317 			m_freem(*m_head);
2318 			*m_head = NULL;
2319 			return (ENOMEM);
2320 		}
2321 		*m_head = m;
2322 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2323 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2324 		if (error != 0) {
2325 			m_freem(*m_head);
2326 			*m_head = NULL;
2327 			return (error);
2328 		}
2329 	} else if (error != 0)
2330 		return (error);
2331 	if (nseg == 0) {
2332 		m_freem(*m_head);
2333 		*m_head = NULL;
2334 		return (EIO);
2335 	}
2336 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2337 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2338 		return (ENOBUFS);
2339 	}
2340 
2341 	m = *m_head;
2342 	if ((m->m_pkthdr.csum_flags & if_gethwassist(sc_if->sk_ifp)) != 0)
2343 		cflags = SK_OPCODE_CSUM;
2344 	else
2345 		cflags = SK_OPCODE_DEFAULT;
2346 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2347 	for (i = 0; i < nseg; i++) {
2348 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2349 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2350 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2351 		sk_ctl = txsegs[i].ds_len | cflags;
2352 		if (i == 0) {
2353 			if (cflags == SK_OPCODE_CSUM)
2354 				sk_txcksum(sc_if->sk_ifp, m, f);
2355 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2356 		} else
2357 			sk_ctl |= SK_TXCTL_OWN;
2358 		f->sk_ctl = htole32(sk_ctl);
2359 		sc_if->sk_cdata.sk_tx_cnt++;
2360 		SK_INC(frag, SK_TX_RING_CNT);
2361 	}
2362 	sc_if->sk_cdata.sk_tx_prod = frag;
2363 
2364 	/* set EOF on the last descriptor */
2365 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2366 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2367 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2368 
2369 	/* turn the first descriptor ownership to NIC */
2370 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2371 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2372 
2373 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2374 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2375 	txd->tx_m = m;
2376 
2377 	/* sync descriptors */
2378 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2379 	    BUS_DMASYNC_PREWRITE);
2380 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2381 	    sc_if->sk_cdata.sk_tx_ring_map,
2382 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2383 
2384 	return (0);
2385 }
2386 
2387 static void
sk_start(if_t ifp)2388 sk_start(if_t ifp)
2389 {
2390 	struct sk_if_softc *sc_if;
2391 
2392 	sc_if = if_getsoftc(ifp);
2393 
2394 	SK_IF_LOCK(sc_if);
2395 	sk_start_locked(ifp);
2396 	SK_IF_UNLOCK(sc_if);
2397 
2398 	return;
2399 }
2400 
2401 static void
sk_start_locked(if_t ifp)2402 sk_start_locked(if_t ifp)
2403 {
2404         struct sk_softc		*sc;
2405         struct sk_if_softc	*sc_if;
2406         struct mbuf		*m_head;
2407 	int			enq;
2408 
2409 	sc_if = if_getsoftc(ifp);
2410 	sc = sc_if->sk_softc;
2411 
2412 	SK_IF_LOCK_ASSERT(sc_if);
2413 
2414 	for (enq = 0; !if_sendq_empty(ifp) &&
2415 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2416 		m_head = if_dequeue(ifp);
2417 		if (m_head == NULL)
2418 			break;
2419 
2420 		/*
2421 		 * Pack the data into the transmit ring. If we
2422 		 * don't have room, set the OACTIVE flag and wait
2423 		 * for the NIC to drain the ring.
2424 		 */
2425 		if (sk_encap(sc_if, &m_head)) {
2426 			if (m_head == NULL)
2427 				break;
2428 			if_sendq_prepend(ifp, m_head);
2429 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2430 			break;
2431 		}
2432 
2433 		enq++;
2434 		/*
2435 		 * If there's a BPF listener, bounce a copy of this frame
2436 		 * to him.
2437 		 */
2438 		BPF_MTAP(ifp, m_head);
2439 	}
2440 
2441 	if (enq > 0) {
2442 		/* Transmit */
2443 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2444 
2445 		/* Set a timeout in case the chip goes out to lunch. */
2446 		sc_if->sk_watchdog_timer = 5;
2447 	}
2448 }
2449 
2450 static void
sk_watchdog(void * arg)2451 sk_watchdog(void *arg)
2452 {
2453 	struct sk_if_softc	*sc_if;
2454 	if_t			ifp;
2455 
2456 	ifp = arg;
2457 	sc_if = if_getsoftc(ifp);
2458 
2459 	SK_IF_LOCK_ASSERT(sc_if);
2460 
2461 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2462 		goto done;
2463 
2464 	/*
2465 	 * Reclaim first as there is a possibility of losing Tx completion
2466 	 * interrupts.
2467 	 */
2468 	sk_txeof(sc_if);
2469 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2470 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2471 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2472 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2473 		sk_init_locked(sc_if);
2474 	}
2475 
2476 done:
2477 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2478 
2479 	return;
2480 }
2481 
2482 static int
skc_shutdown(device_t dev)2483 skc_shutdown(device_t dev)
2484 {
2485 	struct sk_softc		*sc;
2486 
2487 	sc = device_get_softc(dev);
2488 	SK_LOCK(sc);
2489 
2490 	/* Turn off the 'driver is loaded' LED. */
2491 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2492 
2493 	/*
2494 	 * Reset the GEnesis controller. Doing this should also
2495 	 * assert the resets on the attached XMAC(s).
2496 	 */
2497 	sk_reset(sc);
2498 	SK_UNLOCK(sc);
2499 
2500 	return (0);
2501 }
2502 
2503 static int
skc_suspend(device_t dev)2504 skc_suspend(device_t dev)
2505 {
2506 	struct sk_softc		*sc;
2507 	struct sk_if_softc	*sc_if0, *sc_if1;
2508 	if_t			ifp0 = NULL, ifp1 = NULL;
2509 
2510 	sc = device_get_softc(dev);
2511 
2512 	SK_LOCK(sc);
2513 
2514 	sc_if0 = sc->sk_if[SK_PORT_A];
2515 	sc_if1 = sc->sk_if[SK_PORT_B];
2516 	if (sc_if0 != NULL)
2517 		ifp0 = sc_if0->sk_ifp;
2518 	if (sc_if1 != NULL)
2519 		ifp1 = sc_if1->sk_ifp;
2520 	if (ifp0 != NULL)
2521 		sk_stop(sc_if0);
2522 	if (ifp1 != NULL)
2523 		sk_stop(sc_if1);
2524 	sc->sk_suspended = 1;
2525 
2526 	SK_UNLOCK(sc);
2527 
2528 	return (0);
2529 }
2530 
2531 static int
skc_resume(device_t dev)2532 skc_resume(device_t dev)
2533 {
2534 	struct sk_softc		*sc;
2535 	struct sk_if_softc	*sc_if0, *sc_if1;
2536 	if_t			ifp0 = NULL, ifp1 = NULL;
2537 
2538 	sc = device_get_softc(dev);
2539 
2540 	SK_LOCK(sc);
2541 
2542 	sc_if0 = sc->sk_if[SK_PORT_A];
2543 	sc_if1 = sc->sk_if[SK_PORT_B];
2544 	if (sc_if0 != NULL)
2545 		ifp0 = sc_if0->sk_ifp;
2546 	if (sc_if1 != NULL)
2547 		ifp1 = sc_if1->sk_ifp;
2548 	if (ifp0 != NULL && if_getflags(ifp0) & IFF_UP)
2549 		sk_init_locked(sc_if0);
2550 	if (ifp1 != NULL && if_getflags(ifp1) & IFF_UP)
2551 		sk_init_locked(sc_if1);
2552 	sc->sk_suspended = 0;
2553 
2554 	SK_UNLOCK(sc);
2555 
2556 	return (0);
2557 }
2558 
2559 /*
2560  * According to the data sheet from SK-NET GENESIS the hardware can compute
2561  * two Rx checksums at the same time(Each checksum start position is
2562  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2563  * does not work at least on my Yukon hardware. I tried every possible ways
2564  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2565  * checksum offload was disabled at the moment and only IP checksum offload
2566  * was enabled.
2567  * As normal IP header size is 20 bytes I can't expect it would give an
2568  * increase in throughput. However it seems it doesn't hurt performance in
2569  * my testing. If there is a more detailed information for checksum secret
2570  * of the hardware in question please contact yongari@FreeBSD.org to add
2571  * TCP/UDP checksum offload support.
2572  */
2573 static __inline void
sk_rxcksum(if_t ifp,struct mbuf * m,u_int32_t csum)2574 sk_rxcksum(if_t ifp, struct mbuf *m, u_int32_t csum)
2575 {
2576 	struct ether_header	*eh;
2577 	struct ip		*ip;
2578 	int32_t			hlen, len, pktlen;
2579 	u_int16_t		csum1, csum2, ipcsum;
2580 
2581 	pktlen = m->m_pkthdr.len;
2582 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2583 		return;
2584 	eh = mtod(m, struct ether_header *);
2585 	if (eh->ether_type != htons(ETHERTYPE_IP))
2586 		return;
2587 	ip = (struct ip *)(eh + 1);
2588 	if (ip->ip_v != IPVERSION)
2589 		return;
2590 	hlen = ip->ip_hl << 2;
2591 	pktlen -= sizeof(struct ether_header);
2592 	if (hlen < sizeof(struct ip))
2593 		return;
2594 	if (ntohs(ip->ip_len) < hlen)
2595 		return;
2596 	if (ntohs(ip->ip_len) != pktlen)
2597 		return;
2598 
2599 	csum1 = htons(csum & 0xffff);
2600 	csum2 = htons((csum >> 16) & 0xffff);
2601 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2602 	/* checksum fixup for IP options */
2603 	len = hlen - sizeof(struct ip);
2604 	if (len > 0) {
2605 		/*
2606 		 * If the second checksum value is correct we can compute IP
2607 		 * checksum with simple math. Unfortunately the second checksum
2608 		 * value is wrong so we can't verify the checksum from the
2609 		 * value(It seems there is some magic here to get correct
2610 		 * value). If the second checksum value is correct it also
2611 		 * means we can get TCP/UDP checksum) here. However, it still
2612 		 * needs pseudo header checksum calculation due to hardware
2613 		 * limitations.
2614 		 */
2615 		return;
2616 	}
2617 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2618 	if (ipcsum == 0xffff)
2619 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2620 }
2621 
2622 static __inline int
sk_rxvalid(struct sk_softc * sc,u_int32_t stat,u_int32_t len)2623 sk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
2624 {
2625 
2626 	if (sc->sk_type == SK_GENESIS) {
2627 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2628 		    XM_RXSTAT_BYTES(stat) != len)
2629 			return (0);
2630 	} else {
2631 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2632 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2633 		    YU_RXSTAT_JABBER)) != 0 ||
2634 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2635 		    YU_RXSTAT_BYTES(stat) != len)
2636 			return (0);
2637 	}
2638 
2639 	return (1);
2640 }
2641 
2642 static void
sk_rxeof(struct sk_if_softc * sc_if)2643 sk_rxeof(struct sk_if_softc *sc_if)
2644 {
2645 	struct sk_softc		*sc;
2646 	struct mbuf		*m;
2647 	if_t			ifp;
2648 	struct sk_rx_desc	*cur_rx;
2649 	struct sk_rxdesc	*rxd;
2650 	int			cons, prog;
2651 	u_int32_t		csum, rxstat, sk_ctl;
2652 
2653 	sc = sc_if->sk_softc;
2654 	ifp = sc_if->sk_ifp;
2655 
2656 	SK_IF_LOCK_ASSERT(sc_if);
2657 
2658 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2659 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2660 
2661 	prog = 0;
2662 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2663 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2664 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2665 		sk_ctl = le32toh(cur_rx->sk_ctl);
2666 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2667 			break;
2668 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2669 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2670 
2671 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2672 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2673 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2674 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2675 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2676 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2677 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2678 			sk_discard_rxbuf(sc_if, cons);
2679 			continue;
2680 		}
2681 
2682 		m = rxd->rx_m;
2683 		csum = le32toh(cur_rx->sk_csum);
2684 		if (sk_newbuf(sc_if, cons) != 0) {
2685 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2686 			/* reuse old buffer */
2687 			sk_discard_rxbuf(sc_if, cons);
2688 			continue;
2689 		}
2690 		m->m_pkthdr.rcvif = ifp;
2691 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2692 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2693 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2694 			sk_rxcksum(ifp, m, csum);
2695 		SK_IF_UNLOCK(sc_if);
2696 		if_input(ifp, m);
2697 		SK_IF_LOCK(sc_if);
2698 	}
2699 
2700 	if (prog > 0) {
2701 		sc_if->sk_cdata.sk_rx_cons = cons;
2702 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2703 		    sc_if->sk_cdata.sk_rx_ring_map,
2704 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2705 	}
2706 }
2707 
2708 static void
sk_jumbo_rxeof(struct sk_if_softc * sc_if)2709 sk_jumbo_rxeof(struct sk_if_softc *sc_if)
2710 {
2711 	struct sk_softc		*sc;
2712 	struct mbuf		*m;
2713 	if_t			ifp;
2714 	struct sk_rx_desc	*cur_rx;
2715 	struct sk_rxdesc	*jrxd;
2716 	int			cons, prog;
2717 	u_int32_t		csum, rxstat, sk_ctl;
2718 
2719 	sc = sc_if->sk_softc;
2720 	ifp = sc_if->sk_ifp;
2721 
2722 	SK_IF_LOCK_ASSERT(sc_if);
2723 
2724 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2725 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2726 
2727 	prog = 0;
2728 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2729 	    prog < SK_JUMBO_RX_RING_CNT;
2730 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2731 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2732 		sk_ctl = le32toh(cur_rx->sk_ctl);
2733 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2734 			break;
2735 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2736 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2737 
2738 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2739 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2740 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2741 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2742 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2743 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2744 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2745 			sk_discard_jumbo_rxbuf(sc_if, cons);
2746 			continue;
2747 		}
2748 
2749 		m = jrxd->rx_m;
2750 		csum = le32toh(cur_rx->sk_csum);
2751 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2752 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2753 			/* reuse old buffer */
2754 			sk_discard_jumbo_rxbuf(sc_if, cons);
2755 			continue;
2756 		}
2757 		m->m_pkthdr.rcvif = ifp;
2758 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2759 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2760 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2761 			sk_rxcksum(ifp, m, csum);
2762 		SK_IF_UNLOCK(sc_if);
2763 		if_input(ifp, m);
2764 		SK_IF_LOCK(sc_if);
2765 	}
2766 
2767 	if (prog > 0) {
2768 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2769 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2770 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2771 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2772 	}
2773 }
2774 
2775 static void
sk_txeof(struct sk_if_softc * sc_if)2776 sk_txeof(struct sk_if_softc *sc_if)
2777 {
2778 	struct sk_txdesc	*txd;
2779 	struct sk_tx_desc	*cur_tx;
2780 	if_t			ifp;
2781 	u_int32_t		idx, sk_ctl;
2782 
2783 	ifp = sc_if->sk_ifp;
2784 
2785 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2786 	if (txd == NULL)
2787 		return;
2788 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2789 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2790 	/*
2791 	 * Go through our tx ring and free mbufs for those
2792 	 * frames that have been sent.
2793 	 */
2794 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2795 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2796 			break;
2797 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2798 		sk_ctl = le32toh(cur_tx->sk_ctl);
2799 		if (sk_ctl & SK_TXCTL_OWN)
2800 			break;
2801 		sc_if->sk_cdata.sk_tx_cnt--;
2802 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2803 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2804 			continue;
2805 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2806 		    BUS_DMASYNC_POSTWRITE);
2807 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2808 
2809 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2810 		m_freem(txd->tx_m);
2811 		txd->tx_m = NULL;
2812 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2813 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2814 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2815 	}
2816 	sc_if->sk_cdata.sk_tx_cons = idx;
2817 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2818 
2819 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2820 	    sc_if->sk_cdata.sk_tx_ring_map,
2821 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2822 }
2823 
2824 static void
sk_tick(void * xsc_if)2825 sk_tick(void *xsc_if)
2826 {
2827 	struct sk_if_softc	*sc_if;
2828 	struct mii_data		*mii;
2829 	if_t			ifp;
2830 	int			i;
2831 
2832 	sc_if = xsc_if;
2833 	ifp = sc_if->sk_ifp;
2834 	mii = device_get_softc(sc_if->sk_miibus);
2835 
2836 	if (!(if_getflags(ifp) & IFF_UP))
2837 		return;
2838 
2839 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2840 		sk_intr_bcom(sc_if);
2841 		return;
2842 	}
2843 
2844 	/*
2845 	 * According to SysKonnect, the correct way to verify that
2846 	 * the link has come back up is to poll bit 0 of the GPIO
2847 	 * register three times. This pin has the signal from the
2848 	 * link_sync pin connected to it; if we read the same link
2849 	 * state 3 times in a row, we know the link is up.
2850 	 */
2851 	for (i = 0; i < 3; i++) {
2852 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2853 			break;
2854 	}
2855 
2856 	if (i != 3) {
2857 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2858 		return;
2859 	}
2860 
2861 	/* Turn the GP0 interrupt back on. */
2862 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2863 	SK_XM_READ_2(sc_if, XM_ISR);
2864 	mii_tick(mii);
2865 	callout_stop(&sc_if->sk_tick_ch);
2866 }
2867 
2868 static void
sk_yukon_tick(void * xsc_if)2869 sk_yukon_tick(void *xsc_if)
2870 {
2871 	struct sk_if_softc	*sc_if;
2872 	struct mii_data		*mii;
2873 
2874 	sc_if = xsc_if;
2875 	mii = device_get_softc(sc_if->sk_miibus);
2876 
2877 	mii_tick(mii);
2878 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2879 }
2880 
2881 static void
sk_intr_bcom(struct sk_if_softc * sc_if)2882 sk_intr_bcom(struct sk_if_softc *sc_if)
2883 {
2884 	struct mii_data		*mii;
2885 	if_t			ifp;
2886 	int			status;
2887 	mii = device_get_softc(sc_if->sk_miibus);
2888 	ifp = sc_if->sk_ifp;
2889 
2890 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2891 
2892 	/*
2893 	 * Read the PHY interrupt register to make sure
2894 	 * we clear any pending interrupts.
2895 	 */
2896 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2897 
2898 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
2899 		sk_init_xmac(sc_if);
2900 		return;
2901 	}
2902 
2903 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2904 		int			lstat;
2905 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2906 		    BRGPHY_MII_AUXSTS);
2907 
2908 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2909 			mii_mediachg(mii);
2910 			/* Turn off the link LED. */
2911 			SK_IF_WRITE_1(sc_if, 0,
2912 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2913 			sc_if->sk_link = 0;
2914 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2915 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2916 	    		    BRGPHY_MII_IMR, 0xFF00);
2917 			mii_tick(mii);
2918 			sc_if->sk_link = 1;
2919 			/* Turn on the link LED. */
2920 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2921 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2922 			    SK_LINKLED_BLINK_OFF);
2923 		} else {
2924 			mii_tick(mii);
2925 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2926 		}
2927 	}
2928 
2929 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2930 
2931 	return;
2932 }
2933 
2934 static void
sk_intr_xmac(struct sk_if_softc * sc_if)2935 sk_intr_xmac(struct sk_if_softc *sc_if)
2936 {
2937 	u_int16_t		status;
2938 
2939 	status = SK_XM_READ_2(sc_if, XM_ISR);
2940 
2941 	/*
2942 	 * Link has gone down. Start MII tick timeout to
2943 	 * watch for link resync.
2944 	 */
2945 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2946 		if (status & XM_ISR_GP0_SET) {
2947 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2948 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2949 		}
2950 
2951 		if (status & XM_ISR_AUTONEG_DONE) {
2952 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2953 		}
2954 	}
2955 
2956 	if (status & XM_IMR_TX_UNDERRUN)
2957 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2958 
2959 	if (status & XM_IMR_RX_OVERRUN)
2960 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2961 
2962 	status = SK_XM_READ_2(sc_if, XM_ISR);
2963 
2964 	return;
2965 }
2966 
2967 static void
sk_intr_yukon(struct sk_if_softc * sc_if)2968 sk_intr_yukon(struct sk_if_softc *sc_if)
2969 {
2970 	u_int8_t status;
2971 
2972 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2973 	/* RX overrun */
2974 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2975 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2976 		    SK_RFCTL_RX_FIFO_OVER);
2977 	}
2978 	/* TX underrun */
2979 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2980 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2981 		    SK_TFCTL_TX_FIFO_UNDER);
2982 	}
2983 }
2984 
2985 static void
sk_intr(void * xsc)2986 sk_intr(void *xsc)
2987 {
2988 	struct sk_softc		*sc = xsc;
2989 	struct sk_if_softc	*sc_if0, *sc_if1;
2990 	if_t			ifp0 = NULL, ifp1 = NULL;
2991 	u_int32_t		status;
2992 
2993 	SK_LOCK(sc);
2994 
2995 	status = CSR_READ_4(sc, SK_ISSR);
2996 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
2997 		goto done_locked;
2998 
2999 	sc_if0 = sc->sk_if[SK_PORT_A];
3000 	sc_if1 = sc->sk_if[SK_PORT_B];
3001 
3002 	if (sc_if0 != NULL)
3003 		ifp0 = sc_if0->sk_ifp;
3004 	if (sc_if1 != NULL)
3005 		ifp1 = sc_if1->sk_ifp;
3006 
3007 	for (; (status &= sc->sk_intrmask) != 0;) {
3008 		/* Handle receive interrupts first. */
3009 		if (status & SK_ISR_RX1_EOF) {
3010 			if (if_getmtu(ifp0) > SK_MAX_FRAMELEN)
3011 				sk_jumbo_rxeof(sc_if0);
3012 			else
3013 				sk_rxeof(sc_if0);
3014 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3015 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3016 		}
3017 		if (status & SK_ISR_RX2_EOF) {
3018 			if (if_getflags(ifp1) > SK_MAX_FRAMELEN)
3019 				sk_jumbo_rxeof(sc_if1);
3020 			else
3021 				sk_rxeof(sc_if1);
3022 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3023 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3024 		}
3025 
3026 		/* Then transmit interrupts. */
3027 		if (status & SK_ISR_TX1_S_EOF) {
3028 			sk_txeof(sc_if0);
3029 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3030 		}
3031 		if (status & SK_ISR_TX2_S_EOF) {
3032 			sk_txeof(sc_if1);
3033 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3034 		}
3035 
3036 		/* Then MAC interrupts. */
3037 		if (status & SK_ISR_MAC1 &&
3038 		    if_getdrvflags(ifp0) & IFF_DRV_RUNNING) {
3039 			if (sc->sk_type == SK_GENESIS)
3040 				sk_intr_xmac(sc_if0);
3041 			else
3042 				sk_intr_yukon(sc_if0);
3043 		}
3044 
3045 		if (status & SK_ISR_MAC2 &&
3046 		    if_getdrvflags(ifp1) & IFF_DRV_RUNNING) {
3047 			if (sc->sk_type == SK_GENESIS)
3048 				sk_intr_xmac(sc_if1);
3049 			else
3050 				sk_intr_yukon(sc_if1);
3051 		}
3052 
3053 		if (status & SK_ISR_EXTERNAL_REG) {
3054 			if (ifp0 != NULL &&
3055 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3056 				sk_intr_bcom(sc_if0);
3057 			if (ifp1 != NULL &&
3058 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3059 				sk_intr_bcom(sc_if1);
3060 		}
3061 		status = CSR_READ_4(sc, SK_ISSR);
3062 	}
3063 
3064 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3065 
3066 	if (ifp0 != NULL && !if_sendq_empty(ifp0))
3067 		sk_start_locked(ifp0);
3068 	if (ifp1 != NULL && !if_sendq_empty(ifp1))
3069 		sk_start_locked(ifp1);
3070 
3071 done_locked:
3072 	SK_UNLOCK(sc);
3073 }
3074 
3075 static void
sk_init_xmac(struct sk_if_softc * sc_if)3076 sk_init_xmac(struct sk_if_softc *sc_if)
3077 {
3078 	struct sk_softc		*sc;
3079 	if_t			ifp;
3080 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3081 	static const struct sk_bcom_hack bhack[] = {
3082 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3083 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3084 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3085 	{ 0, 0 } };
3086 
3087 	SK_IF_LOCK_ASSERT(sc_if);
3088 
3089 	sc = sc_if->sk_softc;
3090 	ifp = sc_if->sk_ifp;
3091 
3092 	/* Unreset the XMAC. */
3093 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3094 	DELAY(1000);
3095 
3096 	/* Reset the XMAC's internal state. */
3097 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3098 
3099 	/* Save the XMAC II revision */
3100 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3101 
3102 	/*
3103 	 * Perform additional initialization for external PHYs,
3104 	 * namely for the 1000baseTX cards that use the XMAC's
3105 	 * GMII mode.
3106 	 */
3107 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3108 		int			i = 0;
3109 		u_int32_t		val;
3110 
3111 		/* Take PHY out of reset. */
3112 		val = sk_win_read_4(sc, SK_GPIO);
3113 		if (sc_if->sk_port == SK_PORT_A)
3114 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3115 		else
3116 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3117 		sk_win_write_4(sc, SK_GPIO, val);
3118 
3119 		/* Enable GMII mode on the XMAC. */
3120 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3121 
3122 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3123 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3124 		DELAY(10000);
3125 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3126 		    BRGPHY_MII_IMR, 0xFFF0);
3127 
3128 		/*
3129 		 * Early versions of the BCM5400 apparently have
3130 		 * a bug that requires them to have their reserved
3131 		 * registers initialized to some magic values. I don't
3132 		 * know what the numbers do, I'm just the messenger.
3133 		 */
3134 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3135 		    == 0x6041) {
3136 			while(bhack[i].reg) {
3137 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3138 				    bhack[i].reg, bhack[i].val);
3139 				i++;
3140 			}
3141 		}
3142 	}
3143 
3144 	/* Set station address */
3145 	bcopy(if_getlladdr(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3146 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3147 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3148 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3149 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3150 
3151 	if (if_getflags(ifp) & IFF_BROADCAST) {
3152 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3153 	} else {
3154 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3155 	}
3156 
3157 	/* We don't need the FCS appended to the packet. */
3158 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3159 
3160 	/* We want short frames padded to 60 bytes. */
3161 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3162 
3163 	/*
3164 	 * Enable the reception of all error frames. This is is
3165 	 * a necessary evil due to the design of the XMAC. The
3166 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3167 	 * frames can be up to 9000 bytes in length. When bad
3168 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3169 	 * in 'store and forward' mode. For this to work, the
3170 	 * entire frame has to fit into the FIFO, but that means
3171 	 * that jumbo frames larger than 8192 bytes will be
3172 	 * truncated. Disabling all bad frame filtering causes
3173 	 * the RX FIFO to operate in streaming mode, in which
3174 	 * case the XMAC will start transferring frames out of the
3175 	 * RX FIFO as soon as the FIFO threshold is reached.
3176 	 */
3177 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN) {
3178 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3179 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3180 		    XM_MODE_RX_INRANGELEN);
3181 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3182 	} else
3183 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3184 
3185 	/*
3186 	 * Bump up the transmit threshold. This helps hold off transmit
3187 	 * underruns when we're blasting traffic from both ports at once.
3188 	 */
3189 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3190 
3191 	/* Set Rx filter */
3192 	sk_rxfilter_genesis(sc_if);
3193 
3194 	/* Clear and enable interrupts */
3195 	SK_XM_READ_2(sc_if, XM_ISR);
3196 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3197 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3198 	else
3199 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3200 
3201 	/* Configure MAC arbiter */
3202 	switch(sc_if->sk_xmac_rev) {
3203 	case XM_XMAC_REV_B2:
3204 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3205 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3206 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3207 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3208 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3209 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3210 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3211 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3212 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3213 		break;
3214 	case XM_XMAC_REV_C1:
3215 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3216 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3217 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3218 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3219 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3220 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3221 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3222 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3223 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3224 		break;
3225 	default:
3226 		break;
3227 	}
3228 	sk_win_write_2(sc, SK_MACARB_CTL,
3229 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3230 
3231 	sc_if->sk_link = 1;
3232 
3233 	return;
3234 }
3235 
3236 static void
sk_init_yukon(struct sk_if_softc * sc_if)3237 sk_init_yukon(struct sk_if_softc *sc_if)
3238 {
3239 	u_int32_t		phy, v;
3240 	u_int16_t		reg;
3241 	struct sk_softc		*sc;
3242 	if_t			ifp;
3243 	u_int8_t		*eaddr;
3244 	int			i;
3245 
3246 	SK_IF_LOCK_ASSERT(sc_if);
3247 
3248 	sc = sc_if->sk_softc;
3249 	ifp = sc_if->sk_ifp;
3250 
3251 	if (sc->sk_type == SK_YUKON_LITE &&
3252 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3253 		/*
3254 		 * Workaround code for COMA mode, set PHY reset.
3255 		 * Otherwise it will not correctly take chip out of
3256 		 * powerdown (coma)
3257 		 */
3258 		v = sk_win_read_4(sc, SK_GPIO);
3259 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3260 		sk_win_write_4(sc, SK_GPIO, v);
3261 	}
3262 
3263 	/* GMAC and GPHY Reset */
3264 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3265 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3266 	DELAY(1000);
3267 
3268 	if (sc->sk_type == SK_YUKON_LITE &&
3269 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3270 		/*
3271 		 * Workaround code for COMA mode, clear PHY reset
3272 		 */
3273 		v = sk_win_read_4(sc, SK_GPIO);
3274 		v |= SK_GPIO_DIR9;
3275 		v &= ~SK_GPIO_DAT9;
3276 		sk_win_write_4(sc, SK_GPIO, v);
3277 	}
3278 
3279 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3280 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3281 
3282 	if (sc->sk_coppertype)
3283 		phy |= SK_GPHY_COPPER;
3284 	else
3285 		phy |= SK_GPHY_FIBER;
3286 
3287 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3288 	DELAY(1000);
3289 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3290 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3291 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3292 
3293 	/* unused read of the interrupt source register */
3294 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3295 
3296 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3297 
3298 	/* MIB Counter Clear Mode set */
3299 	reg |= YU_PAR_MIB_CLR;
3300 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3301 
3302 	/* MIB Counter Clear Mode clear */
3303 	reg &= ~YU_PAR_MIB_CLR;
3304 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3305 
3306 	/* receive control reg */
3307 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3308 
3309 	/* transmit parameter register */
3310 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3311 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3312 
3313 	/* serial mode register */
3314 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3315 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN)
3316 		reg |= YU_SMR_MFL_JUMBO;
3317 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3318 
3319 	/* Setup Yukon's station address */
3320 	eaddr = if_getlladdr(sc_if->sk_ifp);
3321 	for (i = 0; i < 3; i++)
3322 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3323 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3324 	/* Set GMAC source address of flow control. */
3325 	for (i = 0; i < 3; i++)
3326 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3327 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3328 	/* Set GMAC virtual address. */
3329 	for (i = 0; i < 3; i++)
3330 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3331 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3332 
3333 	/* Set Rx filter */
3334 	sk_rxfilter_yukon(sc_if);
3335 
3336 	/* enable interrupt mask for counter overflows */
3337 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3338 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3339 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3340 
3341 	/* Configure RX MAC FIFO Flush Mask */
3342 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3343 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3344 	    YU_RXSTAT_JABBER;
3345 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3346 
3347 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3348 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3349 		v = SK_TFCTL_OPERATION_ON;
3350 	else
3351 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3352 	/* Configure RX MAC FIFO */
3353 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3354 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3355 
3356 	/* Increase flush threshould to 64 bytes */
3357 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3358 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3359 
3360 	/* Configure TX MAC FIFO */
3361 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3362 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3363 }
3364 
3365 /*
3366  * Note that to properly initialize any part of the GEnesis chip,
3367  * you first have to take it out of reset mode.
3368  */
3369 static void
sk_init(void * xsc)3370 sk_init(void *xsc)
3371 {
3372 	struct sk_if_softc	*sc_if = xsc;
3373 
3374 	SK_IF_LOCK(sc_if);
3375 	sk_init_locked(sc_if);
3376 	SK_IF_UNLOCK(sc_if);
3377 
3378 	return;
3379 }
3380 
3381 static void
sk_init_locked(struct sk_if_softc * sc_if)3382 sk_init_locked(struct sk_if_softc *sc_if)
3383 {
3384 	struct sk_softc		*sc;
3385 	if_t			ifp;
3386 	struct mii_data		*mii;
3387 	u_int16_t		reg;
3388 	u_int32_t		imr;
3389 	int			error;
3390 
3391 	SK_IF_LOCK_ASSERT(sc_if);
3392 
3393 	ifp = sc_if->sk_ifp;
3394 	sc = sc_if->sk_softc;
3395 	mii = device_get_softc(sc_if->sk_miibus);
3396 
3397 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3398 		return;
3399 
3400 	/* Cancel pending I/O and free all RX/TX buffers. */
3401 	sk_stop(sc_if);
3402 
3403 	if (sc->sk_type == SK_GENESIS) {
3404 		/* Configure LINK_SYNC LED */
3405 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3406 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3407 			SK_LINKLED_LINKSYNC_ON);
3408 
3409 		/* Configure RX LED */
3410 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3411 			SK_RXLEDCTL_COUNTER_START);
3412 
3413 		/* Configure TX LED */
3414 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3415 			SK_TXLEDCTL_COUNTER_START);
3416 	}
3417 
3418 	/*
3419 	 * Configure descriptor poll timer
3420 	 *
3421 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3422 	 * transmit command due to CPU/cache related interim storage problems
3423 	 * under certain conditions. The document recommends a polling
3424 	 * mechanism to send a Start transmit command to initiate transfer
3425 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3426 	 * enables descriptor poll timer to initiate descriptor processing
3427 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3428 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3429 	 * command instead of waiting for next descriptor polling time.
3430 	 * The same rule may apply to Rx side too but it seems that is not
3431 	 * needed at the moment.
3432 	 * Since sk(4) uses descriptor polling as a last resort there is no
3433 	 * need to set smaller polling time than maximum allowable one.
3434 	 */
3435 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3436 
3437 	/* Configure I2C registers */
3438 
3439 	/* Configure XMAC(s) */
3440 	switch (sc->sk_type) {
3441 	case SK_GENESIS:
3442 		sk_init_xmac(sc_if);
3443 		break;
3444 	case SK_YUKON:
3445 	case SK_YUKON_LITE:
3446 	case SK_YUKON_LP:
3447 		sk_init_yukon(sc_if);
3448 		break;
3449 	}
3450 	mii_mediachg(mii);
3451 
3452 	if (sc->sk_type == SK_GENESIS) {
3453 		/* Configure MAC FIFOs */
3454 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3455 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3456 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3457 
3458 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3459 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3460 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3461 	}
3462 
3463 	/* Configure transmit arbiter(s) */
3464 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3465 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3466 
3467 	/* Configure RAMbuffers */
3468 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3469 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3470 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3471 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3472 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3473 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3474 
3475 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3476 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3477 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3478 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3479 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3480 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3481 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3482 
3483 	/* Configure BMUs */
3484 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3485 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN) {
3486 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3487 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3488 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3489 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3490 	} else {
3491 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3492 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3493 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3494 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3495 	}
3496 
3497 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3498 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3499 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3500 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3501 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3502 
3503 	/* Init descriptors */
3504 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN)
3505 		error = sk_init_jumbo_rx_ring(sc_if);
3506 	else
3507 		error = sk_init_rx_ring(sc_if);
3508 	if (error != 0) {
3509 		device_printf(sc_if->sk_if_dev,
3510 		    "initialization failed: no memory for rx buffers\n");
3511 		sk_stop(sc_if);
3512 		return;
3513 	}
3514 	sk_init_tx_ring(sc_if);
3515 
3516 	/* Set interrupt moderation if changed via sysctl. */
3517 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3518 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3519 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3520 		    sc->sk_int_ticks));
3521 		if (bootverbose)
3522 			device_printf(sc_if->sk_if_dev,
3523 			    "interrupt moderation is %d us.\n",
3524 			    sc->sk_int_mod);
3525 	}
3526 
3527 	/* Configure interrupt handling */
3528 	CSR_READ_4(sc, SK_ISSR);
3529 	if (sc_if->sk_port == SK_PORT_A)
3530 		sc->sk_intrmask |= SK_INTRS1;
3531 	else
3532 		sc->sk_intrmask |= SK_INTRS2;
3533 
3534 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3535 
3536 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3537 
3538 	/* Start BMUs. */
3539 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3540 
3541 	switch(sc->sk_type) {
3542 	case SK_GENESIS:
3543 		/* Enable XMACs TX and RX state machines */
3544 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3545 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3546 		break;
3547 	case SK_YUKON:
3548 	case SK_YUKON_LITE:
3549 	case SK_YUKON_LP:
3550 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3551 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3552 #if 0
3553 		/* XXX disable 100Mbps and full duplex mode? */
3554 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3555 #endif
3556 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3557 	}
3558 
3559 	/* Activate descriptor polling timer */
3560 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3561 	/* start transfer of Tx descriptors */
3562 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3563 
3564 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3565 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3566 
3567 	switch (sc->sk_type) {
3568 	case SK_YUKON:
3569 	case SK_YUKON_LITE:
3570 	case SK_YUKON_LP:
3571 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3572 		break;
3573 	}
3574 
3575 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3576 
3577 	return;
3578 }
3579 
3580 static void
sk_stop(struct sk_if_softc * sc_if)3581 sk_stop(struct sk_if_softc *sc_if)
3582 {
3583 	int			i;
3584 	struct sk_softc		*sc;
3585 	struct sk_txdesc	*txd;
3586 	struct sk_rxdesc	*rxd;
3587 	struct sk_rxdesc	*jrxd;
3588 	if_t			ifp;
3589 	u_int32_t		val;
3590 
3591 	SK_IF_LOCK_ASSERT(sc_if);
3592 	sc = sc_if->sk_softc;
3593 	ifp = sc_if->sk_ifp;
3594 
3595 	callout_stop(&sc_if->sk_tick_ch);
3596 	callout_stop(&sc_if->sk_watchdog_ch);
3597 
3598 	/* stop Tx descriptor polling timer */
3599 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3600 	/* stop transfer of Tx descriptors */
3601 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3602 	for (i = 0; i < SK_TIMEOUT; i++) {
3603 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3604 		if ((val & SK_TXBMU_TX_STOP) == 0)
3605 			break;
3606 		DELAY(1);
3607 	}
3608 	if (i == SK_TIMEOUT)
3609 		device_printf(sc_if->sk_if_dev,
3610 		    "can not stop transfer of Tx descriptor\n");
3611 	/* stop transfer of Rx descriptors */
3612 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3613 	for (i = 0; i < SK_TIMEOUT; i++) {
3614 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3615 		if ((val & SK_RXBMU_RX_STOP) == 0)
3616 			break;
3617 		DELAY(1);
3618 	}
3619 	if (i == SK_TIMEOUT)
3620 		device_printf(sc_if->sk_if_dev,
3621 		    "can not stop transfer of Rx descriptor\n");
3622 
3623 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3624 		/* Put PHY back into reset. */
3625 		val = sk_win_read_4(sc, SK_GPIO);
3626 		if (sc_if->sk_port == SK_PORT_A) {
3627 			val |= SK_GPIO_DIR0;
3628 			val &= ~SK_GPIO_DAT0;
3629 		} else {
3630 			val |= SK_GPIO_DIR2;
3631 			val &= ~SK_GPIO_DAT2;
3632 		}
3633 		sk_win_write_4(sc, SK_GPIO, val);
3634 	}
3635 
3636 	/* Turn off various components of this interface. */
3637 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3638 	switch (sc->sk_type) {
3639 	case SK_GENESIS:
3640 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3641 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3642 		break;
3643 	case SK_YUKON:
3644 	case SK_YUKON_LITE:
3645 	case SK_YUKON_LP:
3646 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3647 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3648 		break;
3649 	}
3650 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3651 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3652 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3653 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3654 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3655 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3656 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3657 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3658 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3659 
3660 	/* Disable interrupts */
3661 	if (sc_if->sk_port == SK_PORT_A)
3662 		sc->sk_intrmask &= ~SK_INTRS1;
3663 	else
3664 		sc->sk_intrmask &= ~SK_INTRS2;
3665 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3666 
3667 	SK_XM_READ_2(sc_if, XM_ISR);
3668 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3669 
3670 	/* Free RX and TX mbufs still in the queues. */
3671 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3672 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3673 		if (rxd->rx_m != NULL) {
3674 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3675 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3676 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3677 			    rxd->rx_dmamap);
3678 			m_freem(rxd->rx_m);
3679 			rxd->rx_m = NULL;
3680 		}
3681 	}
3682 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3683 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3684 		if (jrxd->rx_m != NULL) {
3685 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3686 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3687 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3688 			    jrxd->rx_dmamap);
3689 			m_freem(jrxd->rx_m);
3690 			jrxd->rx_m = NULL;
3691 		}
3692 	}
3693 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3694 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3695 		if (txd->tx_m != NULL) {
3696 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3697 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3698 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3699 			    txd->tx_dmamap);
3700 			m_freem(txd->tx_m);
3701 			txd->tx_m = NULL;
3702 		}
3703 	}
3704 
3705 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING|IFF_DRV_OACTIVE));
3706 
3707 	return;
3708 }
3709 
3710 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)3711 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3712 {
3713 	int error, value;
3714 
3715 	if (!arg1)
3716 		return (EINVAL);
3717 	value = *(int *)arg1;
3718 	error = sysctl_handle_int(oidp, &value, 0, req);
3719 	if (error || !req->newptr)
3720 		return (error);
3721 	if (value < low || value > high)
3722 		return (EINVAL);
3723 	*(int *)arg1 = value;
3724 	return (0);
3725 }
3726 
3727 static int
sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)3728 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3729 {
3730 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3731 }
3732