xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 0a713948)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * Implementation of sleep queues used to hold queue of threads blocked on
30  * a wait channel.  Sleep queues are different from turnstiles in that wait
31  * channels are not owned by anyone, so there is no priority propagation.
32  * Sleep queues can also provide a timeout and can also be interrupted by
33  * signals.  That said, there are several similarities between the turnstile
34  * and sleep queue implementations.  (Note: turnstiles were implemented
35  * first.)  For example, both use a hash table of the same size where each
36  * bucket is referred to as a "chain" that contains both a spin lock and
37  * a linked list of queues.  An individual queue is located by using a hash
38  * to pick a chain, locking the chain, and then walking the chain searching
39  * for the queue.  This means that a wait channel object does not need to
40  * embed its queue head just as locks do not embed their turnstile queue
41  * head.  Threads also carry around a sleep queue that they lend to the
42  * wait channel when blocking.  Just as in turnstiles, the queue includes
43  * a free list of the sleep queues of other threads blocked on the same
44  * wait channel in the case of multiple waiters.
45  *
46  * Some additional functionality provided by sleep queues include the
47  * ability to set a timeout.  The timeout is managed using a per-thread
48  * callout that resumes a thread if it is asleep.  A thread may also
49  * catch signals while it is asleep (aka an interruptible sleep).  The
50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51  * sleep queues also provide some extra assertions.  One is not allowed to
52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53  * must consistently use the same lock to synchronize with a wait channel,
54  * though this check is currently only a warning for sleep/wakeup due to
55  * pre-existing abuse of that API.  The same lock must also be held when
56  * awakening threads, though that is currently only enforced for condition
57  * variables.
58  */
59 
60 #include <sys/cdefs.h>
61 #include "opt_sleepqueue_profiling.h"
62 #include "opt_ddb.h"
63 #include "opt_sched.h"
64 #include "opt_stack.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/lock.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/sbuf.h>
74 #include <sys/sched.h>
75 #include <sys/sdt.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/stack.h>
79 #include <sys/sysctl.h>
80 #include <sys/time.h>
81 #ifdef EPOCH_TRACE
82 #include <sys/epoch.h>
83 #endif
84 
85 #include <machine/atomic.h>
86 
87 #include <vm/uma.h>
88 
89 #ifdef DDB
90 #include <ddb/ddb.h>
91 #endif
92 
93 /*
94  * Constants for the hash table of sleep queue chains.
95  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96  */
97 #ifndef SC_TABLESIZE
98 #define	SC_TABLESIZE	256
99 #endif
100 CTASSERT(powerof2(SC_TABLESIZE));
101 #define	SC_MASK		(SC_TABLESIZE - 1)
102 #define	SC_SHIFT	8
103 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
104 			    SC_MASK)
105 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
106 #define NR_SLEEPQS      2
107 /*
108  * There are two different lists of sleep queues.  Both lists are connected
109  * via the sq_hash entries.  The first list is the sleep queue chain list
110  * that a sleep queue is on when it is attached to a wait channel.  The
111  * second list is the free list hung off of a sleep queue that is attached
112  * to a wait channel.
113  *
114  * Each sleep queue also contains the wait channel it is attached to, the
115  * list of threads blocked on that wait channel, flags specific to the
116  * wait channel, and the lock used to synchronize with a wait channel.
117  * The flags are used to catch mismatches between the various consumers
118  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
119  * The lock pointer is only used when invariants are enabled for various
120  * debugging checks.
121  *
122  * Locking key:
123  *  c - sleep queue chain lock
124  */
125 struct sleepqueue {
126 	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
127 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
128 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
129 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
130 	const void	*sq_wchan;		/* (c) Wait channel. */
131 	int	sq_type;			/* (c) Queue type. */
132 #ifdef INVARIANTS
133 	struct lock_object *sq_lock;		/* (c) Associated lock. */
134 #endif
135 };
136 
137 struct sleepqueue_chain {
138 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
139 	struct mtx sc_lock;			/* Spin lock for this chain. */
140 #ifdef SLEEPQUEUE_PROFILING
141 	u_int	sc_depth;			/* Length of sc_queues. */
142 	u_int	sc_max_depth;			/* Max length of sc_queues. */
143 #endif
144 } __aligned(CACHE_LINE_SIZE);
145 
146 #ifdef SLEEPQUEUE_PROFILING
147 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
148     "sleepq profiling");
149 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains,
150     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
151     "sleepq chain stats");
152 static u_int sleepq_max_depth;
153 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
154     0, "maxmimum depth achieved of a single chain");
155 
156 static void	sleepq_profile(const char *wmesg);
157 static int	prof_enabled;
158 #endif
159 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
160 static uma_zone_t sleepq_zone;
161 
162 /*
163  * Prototypes for non-exported routines.
164  */
165 static int	sleepq_catch_signals(const void *wchan, int pri);
166 static inline int sleepq_check_signals(void);
167 static inline int sleepq_check_timeout(void);
168 #ifdef INVARIANTS
169 static void	sleepq_dtor(void *mem, int size, void *arg);
170 #endif
171 static int	sleepq_init(void *mem, int size, int flags);
172 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
173 		    int pri, int srqflags);
174 static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
175 static void	sleepq_switch(const void *wchan, int pri);
176 static void	sleepq_timeout(void *arg);
177 
178 SDT_PROBE_DECLARE(sched, , , sleep);
179 SDT_PROBE_DECLARE(sched, , , wakeup);
180 
181 /*
182  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
183  * Note that it must happen after sleepinit() has been fully executed, so
184  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
185  */
186 #ifdef SLEEPQUEUE_PROFILING
187 static void
init_sleepqueue_profiling(void)188 init_sleepqueue_profiling(void)
189 {
190 	char chain_name[10];
191 	struct sysctl_oid *chain_oid;
192 	u_int i;
193 
194 	for (i = 0; i < SC_TABLESIZE; i++) {
195 		snprintf(chain_name, sizeof(chain_name), "%u", i);
196 		chain_oid = SYSCTL_ADD_NODE(NULL,
197 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
198 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
199 		    "sleepq chain stats");
200 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
201 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
202 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
203 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
204 		    NULL);
205 	}
206 }
207 
208 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
209     init_sleepqueue_profiling, NULL);
210 #endif
211 
212 /*
213  * Early initialization of sleep queues that is called from the sleepinit()
214  * SYSINIT.
215  */
216 void
init_sleepqueues(void)217 init_sleepqueues(void)
218 {
219 	int i;
220 
221 	for (i = 0; i < SC_TABLESIZE; i++) {
222 		LIST_INIT(&sleepq_chains[i].sc_queues);
223 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
224 		    MTX_SPIN);
225 	}
226 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
227 #ifdef INVARIANTS
228 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
229 #else
230 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
231 #endif
232 
233 	thread0.td_sleepqueue = sleepq_alloc();
234 }
235 
236 /*
237  * Get a sleep queue for a new thread.
238  */
239 struct sleepqueue *
sleepq_alloc(void)240 sleepq_alloc(void)
241 {
242 
243 	return (uma_zalloc(sleepq_zone, M_WAITOK));
244 }
245 
246 /*
247  * Free a sleep queue when a thread is destroyed.
248  */
249 void
sleepq_free(struct sleepqueue * sq)250 sleepq_free(struct sleepqueue *sq)
251 {
252 
253 	uma_zfree(sleepq_zone, sq);
254 }
255 
256 /*
257  * Lock the sleep queue chain associated with the specified wait channel.
258  */
259 void
sleepq_lock(const void * wchan)260 sleepq_lock(const void *wchan)
261 {
262 	struct sleepqueue_chain *sc;
263 
264 	sc = SC_LOOKUP(wchan);
265 	mtx_lock_spin(&sc->sc_lock);
266 }
267 
268 /*
269  * Look up the sleep queue associated with a given wait channel in the hash
270  * table locking the associated sleep queue chain.  If no queue is found in
271  * the table, NULL is returned.
272  */
273 struct sleepqueue *
sleepq_lookup(const void * wchan)274 sleepq_lookup(const void *wchan)
275 {
276 	struct sleepqueue_chain *sc;
277 	struct sleepqueue *sq;
278 
279 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
280 	sc = SC_LOOKUP(wchan);
281 	mtx_assert(&sc->sc_lock, MA_OWNED);
282 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
283 		if (sq->sq_wchan == wchan)
284 			return (sq);
285 	return (NULL);
286 }
287 
288 /*
289  * Unlock the sleep queue chain associated with a given wait channel.
290  */
291 void
sleepq_release(const void * wchan)292 sleepq_release(const void *wchan)
293 {
294 	struct sleepqueue_chain *sc;
295 
296 	sc = SC_LOOKUP(wchan);
297 	mtx_unlock_spin(&sc->sc_lock);
298 }
299 
300 /*
301  * Places the current thread on the sleep queue for the specified wait
302  * channel.  If INVARIANTS is enabled, then it associates the passed in
303  * lock with the sleepq to make sure it is held when that sleep queue is
304  * woken up.
305  */
306 void
sleepq_add(const void * wchan,struct lock_object * lock,const char * wmesg,int flags,int queue)307 sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg,
308     int flags, int queue)
309 {
310 	struct sleepqueue_chain *sc;
311 	struct sleepqueue *sq;
312 	struct thread *td;
313 
314 	td = curthread;
315 	sc = SC_LOOKUP(wchan);
316 	mtx_assert(&sc->sc_lock, MA_OWNED);
317 	MPASS(td->td_sleepqueue != NULL);
318 	MPASS(wchan != NULL);
319 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
320 
321 	/* If this thread is not allowed to sleep, die a horrible death. */
322 	if (__predict_false(!THREAD_CAN_SLEEP())) {
323 #ifdef EPOCH_TRACE
324 		epoch_trace_list(curthread);
325 #endif
326 		KASSERT(0,
327 		    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
328 		    __func__, td, wchan));
329 	}
330 
331 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
332 	sq = sleepq_lookup(wchan);
333 
334 	/*
335 	 * If the wait channel does not already have a sleep queue, use
336 	 * this thread's sleep queue.  Otherwise, insert the current thread
337 	 * into the sleep queue already in use by this wait channel.
338 	 */
339 	if (sq == NULL) {
340 #ifdef INVARIANTS
341 		int i;
342 
343 		sq = td->td_sleepqueue;
344 		for (i = 0; i < NR_SLEEPQS; i++) {
345 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
346 			    ("thread's sleep queue %d is not empty", i));
347 			KASSERT(sq->sq_blockedcnt[i] == 0,
348 			    ("thread's sleep queue %d count mismatches", i));
349 		}
350 		KASSERT(LIST_EMPTY(&sq->sq_free),
351 		    ("thread's sleep queue has a non-empty free list"));
352 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
353 		sq->sq_lock = lock;
354 #endif
355 #ifdef SLEEPQUEUE_PROFILING
356 		sc->sc_depth++;
357 		if (sc->sc_depth > sc->sc_max_depth) {
358 			sc->sc_max_depth = sc->sc_depth;
359 			if (sc->sc_max_depth > sleepq_max_depth)
360 				sleepq_max_depth = sc->sc_max_depth;
361 		}
362 #endif
363 		sq = td->td_sleepqueue;
364 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
365 		sq->sq_wchan = wchan;
366 		sq->sq_type = flags & SLEEPQ_TYPE;
367 	} else {
368 		MPASS(wchan == sq->sq_wchan);
369 		MPASS(lock == sq->sq_lock);
370 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
371 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
372 	}
373 	thread_lock(td);
374 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
375 	sq->sq_blockedcnt[queue]++;
376 	td->td_sleepqueue = NULL;
377 	td->td_sqqueue = queue;
378 	td->td_wchan = wchan;
379 	td->td_wmesg = wmesg;
380 	if (flags & SLEEPQ_INTERRUPTIBLE) {
381 		td->td_intrval = 0;
382 		td->td_flags |= TDF_SINTR;
383 	}
384 	td->td_flags &= ~TDF_TIMEOUT;
385 	thread_unlock(td);
386 }
387 
388 /*
389  * Sets a timeout that will remove the current thread from the
390  * specified sleep queue at the specified time if the thread has not
391  * already been awakened.  Flags are from C_* (callout) namespace.
392  */
393 void
sleepq_set_timeout_sbt(const void * wchan,sbintime_t sbt,sbintime_t pr,int flags)394 sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr,
395     int flags)
396 {
397 	struct sleepqueue_chain *sc __unused;
398 	struct thread *td;
399 	sbintime_t pr1;
400 
401 	td = curthread;
402 	sc = SC_LOOKUP(wchan);
403 	mtx_assert(&sc->sc_lock, MA_OWNED);
404 	MPASS(TD_ON_SLEEPQ(td));
405 	MPASS(td->td_sleepqueue == NULL);
406 	MPASS(wchan != NULL);
407 	if (cold && td == &thread0)
408 		panic("timed sleep before timers are working");
409 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
410 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
411 	thread_lock(td);
412 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
413 	thread_unlock(td);
414 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
415 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
416 	    C_DIRECT_EXEC);
417 }
418 
419 /*
420  * Return the number of actual sleepers for the specified queue.
421  */
422 u_int
sleepq_sleepcnt(const void * wchan,int queue)423 sleepq_sleepcnt(const void *wchan, int queue)
424 {
425 	struct sleepqueue *sq;
426 
427 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
428 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
429 	sq = sleepq_lookup(wchan);
430 	if (sq == NULL)
431 		return (0);
432 	return (sq->sq_blockedcnt[queue]);
433 }
434 
435 static int
sleepq_check_ast_sc_locked(struct thread * td,struct sleepqueue_chain * sc)436 sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc)
437 {
438 	struct proc *p;
439 	int ret;
440 
441 	mtx_assert(&sc->sc_lock, MA_OWNED);
442 
443 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
444 		td->td_pflags &= ~TDP_WAKEUP;
445 		thread_lock(td);
446 		return (EINTR);
447 	}
448 
449 	/*
450 	 * See if there are any pending signals or suspension requests for this
451 	 * thread.  If not, we can switch immediately.
452 	 */
453 	thread_lock(td);
454 	if (!td_ast_pending(td, TDA_SIG) && !td_ast_pending(td, TDA_SUSPEND))
455 		return (0);
456 
457 	thread_unlock(td);
458 	mtx_unlock_spin(&sc->sc_lock);
459 
460 	p = td->td_proc;
461 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
462 	    (void *)td, (long)p->p_pid, td->td_name);
463 	PROC_LOCK(p);
464 
465 	/*
466 	 * Check for suspension first. Checking for signals and then
467 	 * suspending could result in a missed signal, since a signal
468 	 * can be delivered while this thread is suspended.
469 	 */
470 	ret = sig_ast_checksusp(td);
471 	if (ret != 0) {
472 		PROC_UNLOCK(p);
473 		mtx_lock_spin(&sc->sc_lock);
474 		thread_lock(td);
475 		return (ret);
476 	}
477 
478 	ret = sig_ast_needsigchk(td);
479 
480 	/*
481 	 * Lock the per-process spinlock prior to dropping the
482 	 * PROC_LOCK to avoid a signal delivery race.
483 	 * PROC_LOCK, PROC_SLOCK, and thread_lock() are
484 	 * currently held in tdsendsignal() and thread_single().
485 	 */
486 	PROC_SLOCK(p);
487 	mtx_lock_spin(&sc->sc_lock);
488 	PROC_UNLOCK(p);
489 	thread_lock(td);
490 	PROC_SUNLOCK(p);
491 
492 	return (ret);
493 }
494 
495 /*
496  * Marks the pending sleep of the current thread as interruptible and
497  * makes an initial check for pending signals before putting a thread
498  * to sleep. Enters and exits with the thread lock held.  Thread lock
499  * may have transitioned from the sleepq lock to a run lock.
500  */
501 static int
sleepq_catch_signals(const void * wchan,int pri)502 sleepq_catch_signals(const void *wchan, int pri)
503 {
504 	struct thread *td;
505 	struct sleepqueue_chain *sc;
506 	struct sleepqueue *sq;
507 	int ret;
508 
509 	sc = SC_LOOKUP(wchan);
510 	mtx_assert(&sc->sc_lock, MA_OWNED);
511 	MPASS(wchan != NULL);
512 	td = curthread;
513 
514 	ret = sleepq_check_ast_sc_locked(td, sc);
515 	THREAD_LOCK_ASSERT(td, MA_OWNED);
516 	mtx_assert(&sc->sc_lock, MA_OWNED);
517 
518 	if (ret == 0) {
519 		/*
520 		 * No pending signals and no suspension requests found.
521 		 * Switch the thread off the cpu.
522 		 */
523 		sleepq_switch(wchan, pri);
524 	} else {
525 		/*
526 		 * There were pending signals and this thread is still
527 		 * on the sleep queue, remove it from the sleep queue.
528 		 */
529 		if (TD_ON_SLEEPQ(td)) {
530 			sq = sleepq_lookup(wchan);
531 			sleepq_remove_thread(sq, td);
532 		}
533 		MPASS(td->td_lock != &sc->sc_lock);
534 		mtx_unlock_spin(&sc->sc_lock);
535 		thread_unlock(td);
536 	}
537 	return (ret);
538 }
539 
540 /*
541  * Switches to another thread if we are still asleep on a sleep queue.
542  * Returns with thread lock.
543  */
544 static void
sleepq_switch(const void * wchan,int pri)545 sleepq_switch(const void *wchan, int pri)
546 {
547 	struct sleepqueue_chain *sc;
548 	struct sleepqueue *sq;
549 	struct thread *td;
550 	bool rtc_changed;
551 
552 	td = curthread;
553 	sc = SC_LOOKUP(wchan);
554 	mtx_assert(&sc->sc_lock, MA_OWNED);
555 	THREAD_LOCK_ASSERT(td, MA_OWNED);
556 
557 	/*
558 	 * If we have a sleep queue, then we've already been woken up, so
559 	 * just return.
560 	 */
561 	if (td->td_sleepqueue != NULL) {
562 		mtx_unlock_spin(&sc->sc_lock);
563 		thread_unlock(td);
564 		return;
565 	}
566 
567 	/*
568 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
569 	 * already but we are still on the sleep queue, so dequeue the
570 	 * thread and return.
571 	 *
572 	 * Do the same if the real-time clock has been adjusted since this
573 	 * thread calculated its timeout based on that clock.  This handles
574 	 * the following race:
575 	 * - The Ts thread needs to sleep until an absolute real-clock time.
576 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
577 	 *   reads the RTC, and calculates a sleep duration based on that time.
578 	 *   See umtxq_sleep() for an example.
579 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
580 	 *   threads that are sleeping until an absolute real-clock time.
581 	 *   See tc_setclock() and the POSIX specification of clock_settime().
582 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
583 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
584 	 * (The declaration of td_rtcgen refers to this comment.)
585 	 */
586 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
587 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
588 		if (rtc_changed) {
589 			td->td_rtcgen = 0;
590 		}
591 		MPASS(TD_ON_SLEEPQ(td));
592 		sq = sleepq_lookup(wchan);
593 		sleepq_remove_thread(sq, td);
594 		mtx_unlock_spin(&sc->sc_lock);
595 		thread_unlock(td);
596 		return;
597 	}
598 #ifdef SLEEPQUEUE_PROFILING
599 	if (prof_enabled)
600 		sleepq_profile(td->td_wmesg);
601 #endif
602 	MPASS(td->td_sleepqueue == NULL);
603 	sched_sleep(td, pri);
604 	thread_lock_set(td, &sc->sc_lock);
605 	SDT_PROBE0(sched, , , sleep);
606 	TD_SET_SLEEPING(td);
607 	mi_switch(SW_VOL | SWT_SLEEPQ);
608 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
609 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
610 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
611 }
612 
613 /*
614  * Check to see if we timed out.
615  */
616 static inline int
sleepq_check_timeout(void)617 sleepq_check_timeout(void)
618 {
619 	struct thread *td;
620 	int res;
621 
622 	res = 0;
623 	td = curthread;
624 	if (td->td_sleeptimo != 0) {
625 		if (td->td_sleeptimo <= sbinuptime())
626 			res = EWOULDBLOCK;
627 		td->td_sleeptimo = 0;
628 	}
629 	return (res);
630 }
631 
632 /*
633  * Check to see if we were awoken by a signal.
634  */
635 static inline int
sleepq_check_signals(void)636 sleepq_check_signals(void)
637 {
638 	struct thread *td;
639 
640 	td = curthread;
641 	KASSERT((td->td_flags & TDF_SINTR) == 0,
642 	    ("thread %p still in interruptible sleep?", td));
643 
644 	return (td->td_intrval);
645 }
646 
647 /*
648  * Block the current thread until it is awakened from its sleep queue.
649  */
650 void
sleepq_wait(const void * wchan,int pri)651 sleepq_wait(const void *wchan, int pri)
652 {
653 	struct thread *td;
654 
655 	td = curthread;
656 	MPASS(!(td->td_flags & TDF_SINTR));
657 	thread_lock(td);
658 	sleepq_switch(wchan, pri);
659 }
660 
661 /*
662  * Block the current thread until it is awakened from its sleep queue
663  * or it is interrupted by a signal.
664  */
665 int
sleepq_wait_sig(const void * wchan,int pri)666 sleepq_wait_sig(const void *wchan, int pri)
667 {
668 	int rcatch;
669 
670 	rcatch = sleepq_catch_signals(wchan, pri);
671 	if (rcatch)
672 		return (rcatch);
673 	return (sleepq_check_signals());
674 }
675 
676 /*
677  * Block the current thread until it is awakened from its sleep queue
678  * or it times out while waiting.
679  */
680 int
sleepq_timedwait(const void * wchan,int pri)681 sleepq_timedwait(const void *wchan, int pri)
682 {
683 	struct thread *td;
684 
685 	td = curthread;
686 	MPASS(!(td->td_flags & TDF_SINTR));
687 
688 	thread_lock(td);
689 	sleepq_switch(wchan, pri);
690 
691 	return (sleepq_check_timeout());
692 }
693 
694 /*
695  * Block the current thread until it is awakened from its sleep queue,
696  * it is interrupted by a signal, or it times out waiting to be awakened.
697  */
698 int
sleepq_timedwait_sig(const void * wchan,int pri)699 sleepq_timedwait_sig(const void *wchan, int pri)
700 {
701 	int rcatch, rvalt, rvals;
702 
703 	rcatch = sleepq_catch_signals(wchan, pri);
704 	/* We must always call check_timeout() to clear sleeptimo. */
705 	rvalt = sleepq_check_timeout();
706 	rvals = sleepq_check_signals();
707 	if (rcatch)
708 		return (rcatch);
709 	if (rvals)
710 		return (rvals);
711 	return (rvalt);
712 }
713 
714 /*
715  * Returns the type of sleepqueue given a waitchannel.
716  */
717 int
sleepq_type(const void * wchan)718 sleepq_type(const void *wchan)
719 {
720 	struct sleepqueue *sq;
721 	int type;
722 
723 	MPASS(wchan != NULL);
724 
725 	sq = sleepq_lookup(wchan);
726 	if (sq == NULL)
727 		return (-1);
728 	type = sq->sq_type;
729 
730 	return (type);
731 }
732 
733 /*
734  * Removes a thread from a sleep queue and makes it
735  * runnable.
736  *
737  * Requires the sc chain locked on entry.  If SRQ_HOLD is specified it will
738  * be locked on return.  Returns without the thread lock held.
739  */
740 static int
sleepq_resume_thread(struct sleepqueue * sq,struct thread * td,int pri,int srqflags)741 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri,
742     int srqflags)
743 {
744 	struct sleepqueue_chain *sc;
745 	bool drop;
746 
747 	MPASS(td != NULL);
748 	MPASS(sq->sq_wchan != NULL);
749 	MPASS(td->td_wchan == sq->sq_wchan);
750 
751 	sc = SC_LOOKUP(sq->sq_wchan);
752 	mtx_assert(&sc->sc_lock, MA_OWNED);
753 
754 	/*
755 	 * Avoid recursing on the chain lock.  If the locks don't match we
756 	 * need to acquire the thread lock which setrunnable will drop for
757 	 * us.  In this case we need to drop the chain lock afterwards.
758 	 *
759 	 * There is no race that will make td_lock equal to sc_lock because
760 	 * we hold sc_lock.
761 	 */
762 	drop = false;
763 	if (!TD_IS_SLEEPING(td)) {
764 		thread_lock(td);
765 		drop = true;
766 	} else
767 		thread_lock_block_wait(td);
768 
769 	/* Remove thread from the sleepq. */
770 	sleepq_remove_thread(sq, td);
771 
772 	/* If we're done with the sleepqueue release it. */
773 	if ((srqflags & SRQ_HOLD) == 0 && drop)
774 		mtx_unlock_spin(&sc->sc_lock);
775 
776 	/* Adjust priority if requested. */
777 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
778 	if (pri != 0 && td->td_priority > pri &&
779 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
780 		sched_prio(td, pri);
781 
782 	/*
783 	 * Note that thread td might not be sleeping if it is running
784 	 * sleepq_catch_signals() on another CPU or is blocked on its
785 	 * proc lock to check signals.  There's no need to mark the
786 	 * thread runnable in that case.
787 	 */
788 	if (TD_IS_SLEEPING(td)) {
789 		MPASS(!drop);
790 		TD_CLR_SLEEPING(td);
791 		return (setrunnable(td, srqflags));
792 	}
793 	MPASS(drop);
794 	thread_unlock(td);
795 
796 	return (0);
797 }
798 
799 static void
sleepq_remove_thread(struct sleepqueue * sq,struct thread * td)800 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
801 {
802 	struct sleepqueue_chain *sc __unused;
803 
804 	MPASS(td != NULL);
805 	MPASS(sq->sq_wchan != NULL);
806 	MPASS(td->td_wchan == sq->sq_wchan);
807 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
808 	THREAD_LOCK_ASSERT(td, MA_OWNED);
809 	sc = SC_LOOKUP(sq->sq_wchan);
810 	mtx_assert(&sc->sc_lock, MA_OWNED);
811 
812 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
813 
814 	/* Remove the thread from the queue. */
815 	sq->sq_blockedcnt[td->td_sqqueue]--;
816 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
817 
818 	/*
819 	 * Get a sleep queue for this thread.  If this is the last waiter,
820 	 * use the queue itself and take it out of the chain, otherwise,
821 	 * remove a queue from the free list.
822 	 */
823 	if (LIST_EMPTY(&sq->sq_free)) {
824 		td->td_sleepqueue = sq;
825 #ifdef INVARIANTS
826 		sq->sq_wchan = NULL;
827 #endif
828 #ifdef SLEEPQUEUE_PROFILING
829 		sc->sc_depth--;
830 #endif
831 	} else
832 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
833 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
834 
835 	if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0 &&
836 	    td->td_lock == &sc->sc_lock) {
837 		/*
838 		 * We ignore the situation where timeout subsystem was
839 		 * unable to stop our callout.  The struct thread is
840 		 * type-stable, the callout will use the correct
841 		 * memory when running.  The checks of the
842 		 * td_sleeptimo value in this function and in
843 		 * sleepq_timeout() ensure that the thread does not
844 		 * get spurious wakeups, even if the callout was reset
845 		 * or thread reused.
846 		 *
847 		 * We also cannot safely stop the callout if a scheduler
848 		 * lock is held since softclock_thread() forces a lock
849 		 * order of callout lock -> scheduler lock.  The thread
850 		 * lock will be a scheduler lock only if the thread is
851 		 * preparing to go to sleep, so this is hopefully a rare
852 		 * scenario.
853 		 */
854 		callout_stop(&td->td_slpcallout);
855 	}
856 
857 	td->td_wmesg = NULL;
858 	td->td_wchan = NULL;
859 	td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT);
860 
861 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
862 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
863 }
864 
865 void
sleepq_remove_nested(struct thread * td)866 sleepq_remove_nested(struct thread *td)
867 {
868 	struct sleepqueue_chain *sc;
869 	struct sleepqueue *sq;
870 	const void *wchan;
871 
872 	MPASS(TD_ON_SLEEPQ(td));
873 
874 	wchan = td->td_wchan;
875 	sc = SC_LOOKUP(wchan);
876 	mtx_lock_spin(&sc->sc_lock);
877 	sq = sleepq_lookup(wchan);
878 	MPASS(sq != NULL);
879 	thread_lock(td);
880 	sleepq_remove_thread(sq, td);
881 	mtx_unlock_spin(&sc->sc_lock);
882 	/* Returns with the thread lock owned. */
883 }
884 
885 #ifdef INVARIANTS
886 /*
887  * UMA zone item deallocator.
888  */
889 static void
sleepq_dtor(void * mem,int size,void * arg)890 sleepq_dtor(void *mem, int size, void *arg)
891 {
892 	struct sleepqueue *sq;
893 	int i;
894 
895 	sq = mem;
896 	for (i = 0; i < NR_SLEEPQS; i++) {
897 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
898 		MPASS(sq->sq_blockedcnt[i] == 0);
899 	}
900 }
901 #endif
902 
903 /*
904  * UMA zone item initializer.
905  */
906 static int
sleepq_init(void * mem,int size,int flags)907 sleepq_init(void *mem, int size, int flags)
908 {
909 	struct sleepqueue *sq;
910 	int i;
911 
912 	bzero(mem, size);
913 	sq = mem;
914 	for (i = 0; i < NR_SLEEPQS; i++) {
915 		TAILQ_INIT(&sq->sq_blocked[i]);
916 		sq->sq_blockedcnt[i] = 0;
917 	}
918 	LIST_INIT(&sq->sq_free);
919 	return (0);
920 }
921 
922 /*
923  * Find thread sleeping on a wait channel and resume it.
924  */
925 int
sleepq_signal(const void * wchan,int flags,int pri,int queue)926 sleepq_signal(const void *wchan, int flags, int pri, int queue)
927 {
928 	struct sleepqueue_chain *sc;
929 	struct sleepqueue *sq;
930 	struct threadqueue *head;
931 	struct thread *td, *besttd;
932 	int wakeup_swapper;
933 
934 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
935 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
936 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
937 	sq = sleepq_lookup(wchan);
938 	if (sq == NULL) {
939 		if (flags & SLEEPQ_DROP)
940 			sleepq_release(wchan);
941 		return (0);
942 	}
943 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
944 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
945 
946 	head = &sq->sq_blocked[queue];
947 	if (flags & SLEEPQ_UNFAIR) {
948 		/*
949 		 * Find the most recently sleeping thread, but try to
950 		 * skip threads still in process of context switch to
951 		 * avoid spinning on the thread lock.
952 		 */
953 		sc = SC_LOOKUP(wchan);
954 		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
955 		while (besttd->td_lock != &sc->sc_lock) {
956 			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
957 			if (td == NULL)
958 				break;
959 			besttd = td;
960 		}
961 	} else {
962 		/*
963 		 * Find the highest priority thread on the queue.  If there
964 		 * is a tie, use the thread that first appears in the queue
965 		 * as it has been sleeping the longest since threads are
966 		 * always added to the tail of sleep queues.
967 		 */
968 		besttd = td = TAILQ_FIRST(head);
969 		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
970 			if (td->td_priority < besttd->td_priority)
971 				besttd = td;
972 		}
973 	}
974 	MPASS(besttd != NULL);
975 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri,
976 	    (flags & SLEEPQ_DROP) ? 0 : SRQ_HOLD);
977 	return (wakeup_swapper);
978 }
979 
980 static bool
match_any(struct thread * td __unused)981 match_any(struct thread *td __unused)
982 {
983 
984 	return (true);
985 }
986 
987 /*
988  * Resume all threads sleeping on a specified wait channel.
989  */
990 int
sleepq_broadcast(const void * wchan,int flags,int pri,int queue)991 sleepq_broadcast(const void *wchan, int flags, int pri, int queue)
992 {
993 	struct sleepqueue *sq;
994 
995 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
996 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
997 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
998 	sq = sleepq_lookup(wchan);
999 	if (sq == NULL)
1000 		return (0);
1001 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
1002 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
1003 
1004 	return (sleepq_remove_matching(sq, queue, match_any, pri));
1005 }
1006 
1007 /*
1008  * Resume threads on the sleep queue that match the given predicate.
1009  */
1010 int
sleepq_remove_matching(struct sleepqueue * sq,int queue,bool (* matches)(struct thread *),int pri)1011 sleepq_remove_matching(struct sleepqueue *sq, int queue,
1012     bool (*matches)(struct thread *), int pri)
1013 {
1014 	struct thread *td, *tdn;
1015 	int wakeup_swapper;
1016 
1017 	/*
1018 	 * The last thread will be given ownership of sq and may
1019 	 * re-enqueue itself before sleepq_resume_thread() returns,
1020 	 * so we must cache the "next" queue item at the beginning
1021 	 * of the final iteration.
1022 	 */
1023 	wakeup_swapper = 0;
1024 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
1025 		if (matches(td))
1026 			wakeup_swapper |= sleepq_resume_thread(sq, td, pri,
1027 			    SRQ_HOLD);
1028 	}
1029 
1030 	return (wakeup_swapper);
1031 }
1032 
1033 /*
1034  * Time sleeping threads out.  When the timeout expires, the thread is
1035  * removed from the sleep queue and made runnable if it is still asleep.
1036  */
1037 static void
sleepq_timeout(void * arg)1038 sleepq_timeout(void *arg)
1039 {
1040 	struct sleepqueue_chain *sc __unused;
1041 	struct sleepqueue *sq;
1042 	struct thread *td;
1043 	const void *wchan;
1044 	int wakeup_swapper;
1045 
1046 	td = arg;
1047 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1048 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1049 
1050 	thread_lock(td);
1051 	if (td->td_sleeptimo == 0 ||
1052 	    td->td_sleeptimo > td->td_slpcallout.c_time) {
1053 		/*
1054 		 * The thread does not want a timeout (yet).
1055 		 */
1056 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1057 		/*
1058 		 * See if the thread is asleep and get the wait
1059 		 * channel if it is.
1060 		 */
1061 		wchan = td->td_wchan;
1062 		sc = SC_LOOKUP(wchan);
1063 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1064 		sq = sleepq_lookup(wchan);
1065 		MPASS(sq != NULL);
1066 		td->td_flags |= TDF_TIMEOUT;
1067 		wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1068 		if (wakeup_swapper)
1069 			kick_proc0();
1070 		return;
1071 	} else if (TD_ON_SLEEPQ(td)) {
1072 		/*
1073 		 * If the thread is on the SLEEPQ but isn't sleeping
1074 		 * yet, it can either be on another CPU in between
1075 		 * sleepq_add() and one of the sleepq_*wait*()
1076 		 * routines or it can be in sleepq_catch_signals().
1077 		 */
1078 		td->td_flags |= TDF_TIMEOUT;
1079 	}
1080 	thread_unlock(td);
1081 }
1082 
1083 /*
1084  * Resumes a specific thread from the sleep queue associated with a specific
1085  * wait channel if it is on that queue.
1086  */
1087 void
sleepq_remove(struct thread * td,const void * wchan)1088 sleepq_remove(struct thread *td, const void *wchan)
1089 {
1090 	struct sleepqueue_chain *sc;
1091 	struct sleepqueue *sq;
1092 	int wakeup_swapper;
1093 
1094 	/*
1095 	 * Look up the sleep queue for this wait channel, then re-check
1096 	 * that the thread is asleep on that channel, if it is not, then
1097 	 * bail.
1098 	 */
1099 	MPASS(wchan != NULL);
1100 	sc = SC_LOOKUP(wchan);
1101 	mtx_lock_spin(&sc->sc_lock);
1102 	/*
1103 	 * We can not lock the thread here as it may be sleeping on a
1104 	 * different sleepq.  However, holding the sleepq lock for this
1105 	 * wchan can guarantee that we do not miss a wakeup for this
1106 	 * channel.  The asserts below will catch any false positives.
1107 	 */
1108 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1109 		mtx_unlock_spin(&sc->sc_lock);
1110 		return;
1111 	}
1112 
1113 	/* Thread is asleep on sleep queue sq, so wake it up. */
1114 	sq = sleepq_lookup(wchan);
1115 	MPASS(sq != NULL);
1116 	MPASS(td->td_wchan == wchan);
1117 	wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1118 	if (wakeup_swapper)
1119 		kick_proc0();
1120 }
1121 
1122 /*
1123  * Abort a thread as if an interrupt had occurred.  Only abort
1124  * interruptible waits (unfortunately it isn't safe to abort others).
1125  *
1126  * Requires thread lock on entry, releases on return.
1127  */
1128 int
sleepq_abort(struct thread * td,int intrval)1129 sleepq_abort(struct thread *td, int intrval)
1130 {
1131 	struct sleepqueue *sq;
1132 	const void *wchan;
1133 
1134 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1135 	MPASS(TD_ON_SLEEPQ(td));
1136 	MPASS(td->td_flags & TDF_SINTR);
1137 	MPASS((intrval == 0 && (td->td_flags & TDF_SIGWAIT) != 0) ||
1138 	    intrval == EINTR || intrval == ERESTART);
1139 
1140 	/*
1141 	 * If the TDF_TIMEOUT flag is set, just leave. A
1142 	 * timeout is scheduled anyhow.
1143 	 */
1144 	if (td->td_flags & TDF_TIMEOUT) {
1145 		thread_unlock(td);
1146 		return (0);
1147 	}
1148 
1149 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1150 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1151 	td->td_intrval = intrval;
1152 
1153 	/*
1154 	 * If the thread has not slept yet it will find the signal in
1155 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1156 	 * we have to do it here.
1157 	 */
1158 	if (!TD_IS_SLEEPING(td)) {
1159 		thread_unlock(td);
1160 		return (0);
1161 	}
1162 	wchan = td->td_wchan;
1163 	MPASS(wchan != NULL);
1164 	sq = sleepq_lookup(wchan);
1165 	MPASS(sq != NULL);
1166 
1167 	/* Thread is asleep on sleep queue sq, so wake it up. */
1168 	return (sleepq_resume_thread(sq, td, 0, 0));
1169 }
1170 
1171 void
sleepq_chains_remove_matching(bool (* matches)(struct thread *))1172 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1173 {
1174 	struct sleepqueue_chain *sc;
1175 	struct sleepqueue *sq, *sq1;
1176 	int i, wakeup_swapper;
1177 
1178 	wakeup_swapper = 0;
1179 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1180 		if (LIST_EMPTY(&sc->sc_queues)) {
1181 			continue;
1182 		}
1183 		mtx_lock_spin(&sc->sc_lock);
1184 		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1185 			for (i = 0; i < NR_SLEEPQS; ++i) {
1186 				wakeup_swapper |= sleepq_remove_matching(sq, i,
1187 				    matches, 0);
1188 			}
1189 		}
1190 		mtx_unlock_spin(&sc->sc_lock);
1191 	}
1192 	if (wakeup_swapper) {
1193 		kick_proc0();
1194 	}
1195 }
1196 
1197 /*
1198  * Prints the stacks of all threads presently sleeping on wchan/queue to
1199  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1200  * printed.  Typically, this will equal the number of threads sleeping on the
1201  * queue, but may be less if sb overflowed before all stacks were printed.
1202  */
1203 #ifdef STACK
1204 int
sleepq_sbuf_print_stacks(struct sbuf * sb,const void * wchan,int queue,int * count_stacks_printed)1205 sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue,
1206     int *count_stacks_printed)
1207 {
1208 	struct thread *td, *td_next;
1209 	struct sleepqueue *sq;
1210 	struct stack **st;
1211 	struct sbuf **td_infos;
1212 	int i, stack_idx, error, stacks_to_allocate;
1213 	bool finished;
1214 
1215 	error = 0;
1216 	finished = false;
1217 
1218 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1219 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1220 
1221 	stacks_to_allocate = 10;
1222 	for (i = 0; i < 3 && !finished ; i++) {
1223 		/* We cannot malloc while holding the queue's spinlock, so
1224 		 * we do our mallocs now, and hope it is enough.  If it
1225 		 * isn't, we will free these, drop the lock, malloc more,
1226 		 * and try again, up to a point.  After that point we will
1227 		 * give up and report ENOMEM. We also cannot write to sb
1228 		 * during this time since the client may have set the
1229 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1230 		 * malloc as we print to it.  So we defer actually printing
1231 		 * to sb until after we drop the spinlock.
1232 		 */
1233 
1234 		/* Where we will store the stacks. */
1235 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1236 		    M_TEMP, M_WAITOK);
1237 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1238 		    stack_idx++)
1239 			st[stack_idx] = stack_create(M_WAITOK);
1240 
1241 		/* Where we will store the td name, tid, etc. */
1242 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1243 		    M_TEMP, M_WAITOK);
1244 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1245 		    stack_idx++)
1246 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1247 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1248 			    SBUF_FIXEDLEN);
1249 
1250 		sleepq_lock(wchan);
1251 		sq = sleepq_lookup(wchan);
1252 		if (sq == NULL) {
1253 			/* This sleepq does not exist; exit and return ENOENT. */
1254 			error = ENOENT;
1255 			finished = true;
1256 			sleepq_release(wchan);
1257 			goto loop_end;
1258 		}
1259 
1260 		stack_idx = 0;
1261 		/* Save thread info */
1262 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1263 		    td_next) {
1264 			if (stack_idx >= stacks_to_allocate)
1265 				goto loop_end;
1266 
1267 			/* Note the td_lock is equal to the sleepq_lock here. */
1268 			(void)stack_save_td(st[stack_idx], td);
1269 
1270 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1271 			    td->td_tid, td->td_name, td);
1272 
1273 			++stack_idx;
1274 		}
1275 
1276 		finished = true;
1277 		sleepq_release(wchan);
1278 
1279 		/* Print the stacks */
1280 		for (i = 0; i < stack_idx; i++) {
1281 			sbuf_finish(td_infos[i]);
1282 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1283 			stack_sbuf_print(sb, st[i]);
1284 			sbuf_putc(sb, '\n');
1285 
1286 			error = sbuf_error(sb);
1287 			if (error == 0)
1288 				*count_stacks_printed = stack_idx;
1289 		}
1290 
1291 loop_end:
1292 		if (!finished)
1293 			sleepq_release(wchan);
1294 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1295 		    stack_idx++)
1296 			stack_destroy(st[stack_idx]);
1297 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1298 		    stack_idx++)
1299 			sbuf_delete(td_infos[stack_idx]);
1300 		free(st, M_TEMP);
1301 		free(td_infos, M_TEMP);
1302 		stacks_to_allocate *= 10;
1303 	}
1304 
1305 	if (!finished && error == 0)
1306 		error = ENOMEM;
1307 
1308 	return (error);
1309 }
1310 #endif
1311 
1312 #ifdef SLEEPQUEUE_PROFILING
1313 #define	SLEEPQ_PROF_LOCATIONS	1024
1314 #define	SLEEPQ_SBUFSIZE		512
1315 struct sleepq_prof {
1316 	LIST_ENTRY(sleepq_prof) sp_link;
1317 	const char	*sp_wmesg;
1318 	long		sp_count;
1319 };
1320 
1321 LIST_HEAD(sqphead, sleepq_prof);
1322 
1323 struct sqphead sleepq_prof_free;
1324 struct sqphead sleepq_hash[SC_TABLESIZE];
1325 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1326 static struct mtx sleepq_prof_lock;
1327 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1328 
1329 static void
sleepq_profile(const char * wmesg)1330 sleepq_profile(const char *wmesg)
1331 {
1332 	struct sleepq_prof *sp;
1333 
1334 	mtx_lock_spin(&sleepq_prof_lock);
1335 	if (prof_enabled == 0)
1336 		goto unlock;
1337 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1338 		if (sp->sp_wmesg == wmesg)
1339 			goto done;
1340 	sp = LIST_FIRST(&sleepq_prof_free);
1341 	if (sp == NULL)
1342 		goto unlock;
1343 	sp->sp_wmesg = wmesg;
1344 	LIST_REMOVE(sp, sp_link);
1345 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1346 done:
1347 	sp->sp_count++;
1348 unlock:
1349 	mtx_unlock_spin(&sleepq_prof_lock);
1350 	return;
1351 }
1352 
1353 static void
sleepq_prof_reset(void)1354 sleepq_prof_reset(void)
1355 {
1356 	struct sleepq_prof *sp;
1357 	int enabled;
1358 	int i;
1359 
1360 	mtx_lock_spin(&sleepq_prof_lock);
1361 	enabled = prof_enabled;
1362 	prof_enabled = 0;
1363 	for (i = 0; i < SC_TABLESIZE; i++)
1364 		LIST_INIT(&sleepq_hash[i]);
1365 	LIST_INIT(&sleepq_prof_free);
1366 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1367 		sp = &sleepq_profent[i];
1368 		sp->sp_wmesg = NULL;
1369 		sp->sp_count = 0;
1370 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1371 	}
1372 	prof_enabled = enabled;
1373 	mtx_unlock_spin(&sleepq_prof_lock);
1374 }
1375 
1376 static int
enable_sleepq_prof(SYSCTL_HANDLER_ARGS)1377 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1378 {
1379 	int error, v;
1380 
1381 	v = prof_enabled;
1382 	error = sysctl_handle_int(oidp, &v, v, req);
1383 	if (error)
1384 		return (error);
1385 	if (req->newptr == NULL)
1386 		return (error);
1387 	if (v == prof_enabled)
1388 		return (0);
1389 	if (v == 1)
1390 		sleepq_prof_reset();
1391 	mtx_lock_spin(&sleepq_prof_lock);
1392 	prof_enabled = !!v;
1393 	mtx_unlock_spin(&sleepq_prof_lock);
1394 
1395 	return (0);
1396 }
1397 
1398 static int
reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)1399 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1400 {
1401 	int error, v;
1402 
1403 	v = 0;
1404 	error = sysctl_handle_int(oidp, &v, 0, req);
1405 	if (error)
1406 		return (error);
1407 	if (req->newptr == NULL)
1408 		return (error);
1409 	if (v == 0)
1410 		return (0);
1411 	sleepq_prof_reset();
1412 
1413 	return (0);
1414 }
1415 
1416 static int
dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)1417 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1418 {
1419 	struct sleepq_prof *sp;
1420 	struct sbuf *sb;
1421 	int enabled;
1422 	int error;
1423 	int i;
1424 
1425 	error = sysctl_wire_old_buffer(req, 0);
1426 	if (error != 0)
1427 		return (error);
1428 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1429 	sbuf_cat(sb, "\nwmesg\tcount\n");
1430 	enabled = prof_enabled;
1431 	mtx_lock_spin(&sleepq_prof_lock);
1432 	prof_enabled = 0;
1433 	mtx_unlock_spin(&sleepq_prof_lock);
1434 	for (i = 0; i < SC_TABLESIZE; i++) {
1435 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1436 			sbuf_printf(sb, "%s\t%ld\n",
1437 			    sp->sp_wmesg, sp->sp_count);
1438 		}
1439 	}
1440 	mtx_lock_spin(&sleepq_prof_lock);
1441 	prof_enabled = enabled;
1442 	mtx_unlock_spin(&sleepq_prof_lock);
1443 
1444 	error = sbuf_finish(sb);
1445 	sbuf_delete(sb);
1446 	return (error);
1447 }
1448 
1449 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats,
1450     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
1451     dump_sleepq_prof_stats, "A",
1452     "Sleepqueue profiling statistics");
1453 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset,
1454     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1455     reset_sleepq_prof_stats, "I",
1456     "Reset sleepqueue profiling statistics");
1457 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable,
1458     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1459     enable_sleepq_prof, "I",
1460     "Enable sleepqueue profiling");
1461 #endif
1462 
1463 #ifdef DDB
DB_SHOW_COMMAND(sleepq,db_show_sleepqueue)1464 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1465 {
1466 	struct sleepqueue_chain *sc;
1467 	struct sleepqueue *sq;
1468 #ifdef INVARIANTS
1469 	struct lock_object *lock;
1470 #endif
1471 	struct thread *td;
1472 	void *wchan;
1473 	int i;
1474 
1475 	if (!have_addr)
1476 		return;
1477 
1478 	/*
1479 	 * First, see if there is an active sleep queue for the wait channel
1480 	 * indicated by the address.
1481 	 */
1482 	wchan = (void *)addr;
1483 	sc = SC_LOOKUP(wchan);
1484 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1485 		if (sq->sq_wchan == wchan)
1486 			goto found;
1487 
1488 	/*
1489 	 * Second, see if there is an active sleep queue at the address
1490 	 * indicated.
1491 	 */
1492 	for (i = 0; i < SC_TABLESIZE; i++)
1493 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1494 			if (sq == (struct sleepqueue *)addr)
1495 				goto found;
1496 		}
1497 
1498 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1499 	return;
1500 found:
1501 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1502 	db_printf("Queue type: %d\n", sq->sq_type);
1503 #ifdef INVARIANTS
1504 	if (sq->sq_lock) {
1505 		lock = sq->sq_lock;
1506 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1507 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1508 	}
1509 #endif
1510 	db_printf("Blocked threads:\n");
1511 	for (i = 0; i < NR_SLEEPQS; i++) {
1512 		db_printf("\nQueue[%d]:\n", i);
1513 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1514 			db_printf("\tempty\n");
1515 		else
1516 			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1517 				      td_slpq) {
1518 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1519 					  td->td_tid, td->td_proc->p_pid,
1520 					  td->td_name);
1521 			}
1522 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1523 	}
1524 }
1525 
1526 /* Alias 'show sleepqueue' to 'show sleepq'. */
1527 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1528 #endif
1529