xref: /openbsd/sys/kern/uipc_socket.c (revision dfc54264)
1 /*	$OpenBSD: uipc_socket.c,v 1.336 2024/06/14 08:32:22 mvs Exp $	*/
2 /*	$NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/event.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/unpcb.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51 #include <sys/rwlock.h>
52 #include <sys/time.h>
53 #include <sys/refcnt.h>
54 
55 #ifdef DDB
56 #include <machine/db_machdep.h>
57 #endif
58 
59 void	sbsync(struct sockbuf *, struct mbuf *);
60 
61 int	sosplice(struct socket *, int, off_t, struct timeval *);
62 void	sounsplice(struct socket *, struct socket *, int);
63 void	soidle(void *);
64 void	sotask(void *);
65 void	soreaper(void *);
66 void	soput(void *);
67 int	somove(struct socket *, int);
68 void	sorflush(struct socket *);
69 
70 void	filt_sordetach(struct knote *kn);
71 int	filt_soread(struct knote *kn, long hint);
72 void	filt_sowdetach(struct knote *kn);
73 int	filt_sowrite(struct knote *kn, long hint);
74 int	filt_soexcept(struct knote *kn, long hint);
75 
76 int	filt_sowmodify(struct kevent *kev, struct knote *kn);
77 int	filt_sowprocess(struct knote *kn, struct kevent *kev);
78 
79 int	filt_sormodify(struct kevent *kev, struct knote *kn);
80 int	filt_sorprocess(struct knote *kn, struct kevent *kev);
81 
82 const struct filterops soread_filtops = {
83 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
84 	.f_attach	= NULL,
85 	.f_detach	= filt_sordetach,
86 	.f_event	= filt_soread,
87 	.f_modify	= filt_sormodify,
88 	.f_process	= filt_sorprocess,
89 };
90 
91 const struct filterops sowrite_filtops = {
92 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
93 	.f_attach	= NULL,
94 	.f_detach	= filt_sowdetach,
95 	.f_event	= filt_sowrite,
96 	.f_modify	= filt_sowmodify,
97 	.f_process	= filt_sowprocess,
98 };
99 
100 const struct filterops soexcept_filtops = {
101 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
102 	.f_attach	= NULL,
103 	.f_detach	= filt_sordetach,
104 	.f_event	= filt_soexcept,
105 	.f_modify	= filt_sormodify,
106 	.f_process	= filt_sorprocess,
107 };
108 
109 #ifndef SOMINCONN
110 #define SOMINCONN 80
111 #endif /* SOMINCONN */
112 
113 int	somaxconn = SOMAXCONN;
114 int	sominconn = SOMINCONN;
115 
116 struct pool socket_pool;
117 #ifdef SOCKET_SPLICE
118 struct pool sosplice_pool;
119 struct taskq *sosplice_taskq;
120 struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk");
121 #endif
122 
123 void
soinit(void)124 soinit(void)
125 {
126 	pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0,
127 	    "sockpl", NULL);
128 #ifdef SOCKET_SPLICE
129 	pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0,
130 	    "sosppl", NULL);
131 #endif
132 }
133 
134 struct socket *
soalloc(const struct protosw * prp,int wait)135 soalloc(const struct protosw *prp, int wait)
136 {
137 	const struct domain *dp = prp->pr_domain;
138 	struct socket *so;
139 
140 	so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
141 	    PR_ZERO);
142 	if (so == NULL)
143 		return (NULL);
144 	rw_init_flags(&so->so_lock, dp->dom_name, RWL_DUPOK);
145 	refcnt_init(&so->so_refcnt);
146 	rw_init(&so->so_rcv.sb_lock, "sbufrcv");
147 	rw_init(&so->so_snd.sb_lock, "sbufsnd");
148 	mtx_init_flags(&so->so_rcv.sb_mtx, IPL_MPFLOOR, "sbrcv", 0);
149 	mtx_init_flags(&so->so_snd.sb_mtx, IPL_MPFLOOR, "sbsnd", 0);
150 	klist_init_mutex(&so->so_rcv.sb_klist, &so->so_rcv.sb_mtx);
151 	klist_init_mutex(&so->so_snd.sb_klist, &so->so_snd.sb_mtx);
152 	sigio_init(&so->so_sigio);
153 	TAILQ_INIT(&so->so_q0);
154 	TAILQ_INIT(&so->so_q);
155 
156 	switch (dp->dom_family) {
157 	case AF_INET:
158 	case AF_INET6:
159 		switch (prp->pr_type) {
160 		case SOCK_RAW:
161 			so->so_snd.sb_flags |= SB_MTXLOCK;
162 			/* FALLTHROUGH */
163 		case SOCK_DGRAM:
164 			so->so_rcv.sb_flags |= SB_MTXLOCK;
165 			break;
166 		}
167 		break;
168 	case AF_KEY:
169 	case AF_ROUTE:
170 	case AF_UNIX:
171 		so->so_snd.sb_flags |= SB_MTXLOCK;
172 		so->so_rcv.sb_flags |= SB_MTXLOCK;
173 		break;
174 	}
175 
176 	return (so);
177 }
178 
179 /*
180  * Socket operation routines.
181  * These routines are called by the routines in
182  * sys_socket.c or from a system process, and
183  * implement the semantics of socket operations by
184  * switching out to the protocol specific routines.
185  */
186 int
socreate(int dom,struct socket ** aso,int type,int proto)187 socreate(int dom, struct socket **aso, int type, int proto)
188 {
189 	struct proc *p = curproc;		/* XXX */
190 	const struct protosw *prp;
191 	struct socket *so;
192 	int error;
193 
194 	if (proto)
195 		prp = pffindproto(dom, proto, type);
196 	else
197 		prp = pffindtype(dom, type);
198 	if (prp == NULL || prp->pr_usrreqs == NULL)
199 		return (EPROTONOSUPPORT);
200 	if (prp->pr_type != type)
201 		return (EPROTOTYPE);
202 	so = soalloc(prp, M_WAIT);
203 	so->so_type = type;
204 	if (suser(p) == 0)
205 		so->so_state = SS_PRIV;
206 	so->so_ruid = p->p_ucred->cr_ruid;
207 	so->so_euid = p->p_ucred->cr_uid;
208 	so->so_rgid = p->p_ucred->cr_rgid;
209 	so->so_egid = p->p_ucred->cr_gid;
210 	so->so_cpid = p->p_p->ps_pid;
211 	so->so_proto = prp;
212 	so->so_snd.sb_timeo_nsecs = INFSLP;
213 	so->so_rcv.sb_timeo_nsecs = INFSLP;
214 
215 	solock(so);
216 	error = pru_attach(so, proto, M_WAIT);
217 	if (error) {
218 		so->so_state |= SS_NOFDREF;
219 		/* sofree() calls sounlock(). */
220 		sofree(so, 0);
221 		return (error);
222 	}
223 	sounlock(so);
224 	*aso = so;
225 	return (0);
226 }
227 
228 int
sobind(struct socket * so,struct mbuf * nam,struct proc * p)229 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
230 {
231 	soassertlocked(so);
232 	return pru_bind(so, nam, p);
233 }
234 
235 int
solisten(struct socket * so,int backlog)236 solisten(struct socket *so, int backlog)
237 {
238 	int somaxconn_local = READ_ONCE(somaxconn);
239 	int sominconn_local = READ_ONCE(sominconn);
240 	int error;
241 
242 	switch (so->so_type) {
243 	case SOCK_STREAM:
244 	case SOCK_SEQPACKET:
245 		break;
246 	default:
247 		return (EOPNOTSUPP);
248 	}
249 
250 	soassertlocked(so);
251 
252 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING))
253 		return (EINVAL);
254 #ifdef SOCKET_SPLICE
255 	if (isspliced(so) || issplicedback(so))
256 		return (EOPNOTSUPP);
257 #endif /* SOCKET_SPLICE */
258 	error = pru_listen(so);
259 	if (error)
260 		return (error);
261 	if (TAILQ_FIRST(&so->so_q) == NULL)
262 		so->so_options |= SO_ACCEPTCONN;
263 	if (backlog < 0 || backlog > somaxconn_local)
264 		backlog = somaxconn_local;
265 	if (backlog < sominconn_local)
266 		backlog = sominconn_local;
267 	so->so_qlimit = backlog;
268 	return (0);
269 }
270 
271 #define SOSP_FREEING_READ	1
272 #define SOSP_FREEING_WRITE	2
273 void
sofree(struct socket * so,int keep_lock)274 sofree(struct socket *so, int keep_lock)
275 {
276 	int persocket = solock_persocket(so);
277 
278 	soassertlocked(so);
279 
280 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
281 		if (!keep_lock)
282 			sounlock(so);
283 		return;
284 	}
285 	if (so->so_head) {
286 		struct socket *head = so->so_head;
287 
288 		/*
289 		 * We must not decommission a socket that's on the accept(2)
290 		 * queue.  If we do, then accept(2) may hang after select(2)
291 		 * indicated that the listening socket was ready.
292 		 */
293 		if (so->so_onq == &head->so_q) {
294 			if (!keep_lock)
295 				sounlock(so);
296 			return;
297 		}
298 
299 		if (persocket) {
300 			/*
301 			 * Concurrent close of `head' could
302 			 * abort `so' due to re-lock.
303 			 */
304 			soref(so);
305 			soref(head);
306 			sounlock(so);
307 			solock(head);
308 			solock(so);
309 
310 			if (so->so_onq != &head->so_q0) {
311 				sounlock(head);
312 				sounlock(so);
313 				sorele(head);
314 				sorele(so);
315 				return;
316 			}
317 
318 			sorele(head);
319 			sorele(so);
320 		}
321 
322 		soqremque(so, 0);
323 
324 		if (persocket)
325 			sounlock(head);
326 	}
327 
328 	if (persocket) {
329 		sounlock(so);
330 		refcnt_finalize(&so->so_refcnt, "sofinal");
331 		solock(so);
332 	}
333 
334 	sigio_free(&so->so_sigio);
335 	klist_free(&so->so_rcv.sb_klist);
336 	klist_free(&so->so_snd.sb_klist);
337 #ifdef SOCKET_SPLICE
338 	if (issplicedback(so)) {
339 		int freeing = SOSP_FREEING_WRITE;
340 
341 		if (so->so_sp->ssp_soback == so)
342 			freeing |= SOSP_FREEING_READ;
343 		sounsplice(so->so_sp->ssp_soback, so, freeing);
344 	}
345 	if (isspliced(so)) {
346 		int freeing = SOSP_FREEING_READ;
347 
348 		if (so == so->so_sp->ssp_socket)
349 			freeing |= SOSP_FREEING_WRITE;
350 		sounsplice(so, so->so_sp->ssp_socket, freeing);
351 	}
352 #endif /* SOCKET_SPLICE */
353 
354 	mtx_enter(&so->so_snd.sb_mtx);
355 	sbrelease(so, &so->so_snd);
356 	mtx_leave(&so->so_snd.sb_mtx);
357 
358 	/*
359 	 * Unlocked dispose and cleanup is safe. Socket is unlinked
360 	 * from everywhere. Even concurrent sotask() thread will not
361 	 * call somove().
362 	 */
363 	if (so->so_proto->pr_flags & PR_RIGHTS &&
364 	    so->so_proto->pr_domain->dom_dispose)
365 		(*so->so_proto->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
366 	m_purge(so->so_rcv.sb_mb);
367 
368 	if (!keep_lock)
369 		sounlock(so);
370 
371 #ifdef SOCKET_SPLICE
372 	if (so->so_sp) {
373 		/* Reuse splice idle, sounsplice() has been called before. */
374 		timeout_set_proc(&so->so_sp->ssp_idleto, soreaper, so);
375 		timeout_add(&so->so_sp->ssp_idleto, 0);
376 	} else
377 #endif /* SOCKET_SPLICE */
378 	{
379 		pool_put(&socket_pool, so);
380 	}
381 }
382 
383 static inline uint64_t
solinger_nsec(struct socket * so)384 solinger_nsec(struct socket *so)
385 {
386 	if (so->so_linger == 0)
387 		return INFSLP;
388 
389 	return SEC_TO_NSEC(so->so_linger);
390 }
391 
392 /*
393  * Close a socket on last file table reference removal.
394  * Initiate disconnect if connected.
395  * Free socket when disconnect complete.
396  */
397 int
soclose(struct socket * so,int flags)398 soclose(struct socket *so, int flags)
399 {
400 	struct socket *so2;
401 	int error = 0;
402 
403 	solock(so);
404 	/* Revoke async IO early. There is a final revocation in sofree(). */
405 	sigio_free(&so->so_sigio);
406 	if (so->so_state & SS_ISCONNECTED) {
407 		if (so->so_pcb == NULL)
408 			goto discard;
409 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
410 			error = sodisconnect(so);
411 			if (error)
412 				goto drop;
413 		}
414 		if (so->so_options & SO_LINGER) {
415 			if ((so->so_state & SS_ISDISCONNECTING) &&
416 			    (flags & MSG_DONTWAIT))
417 				goto drop;
418 			while (so->so_state & SS_ISCONNECTED) {
419 				error = sosleep_nsec(so, &so->so_timeo,
420 				    PSOCK | PCATCH, "netcls",
421 				    solinger_nsec(so));
422 				if (error)
423 					break;
424 			}
425 		}
426 	}
427 drop:
428 	if (so->so_pcb) {
429 		int error2;
430 		error2 = pru_detach(so);
431 		if (error == 0)
432 			error = error2;
433 	}
434 	if (so->so_options & SO_ACCEPTCONN) {
435 		int persocket = solock_persocket(so);
436 
437 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) {
438 			if (persocket)
439 				solock(so2);
440 			(void) soqremque(so2, 0);
441 			if (persocket)
442 				sounlock(so);
443 			soabort(so2);
444 			if (persocket)
445 				solock(so);
446 		}
447 		while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) {
448 			if (persocket)
449 				solock(so2);
450 			(void) soqremque(so2, 1);
451 			if (persocket)
452 				sounlock(so);
453 			soabort(so2);
454 			if (persocket)
455 				solock(so);
456 		}
457 	}
458 discard:
459 	if (so->so_state & SS_NOFDREF)
460 		panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type);
461 	so->so_state |= SS_NOFDREF;
462 	/* sofree() calls sounlock(). */
463 	sofree(so, 0);
464 	return (error);
465 }
466 
467 void
soabort(struct socket * so)468 soabort(struct socket *so)
469 {
470 	soassertlocked(so);
471 	pru_abort(so);
472 }
473 
474 int
soaccept(struct socket * so,struct mbuf * nam)475 soaccept(struct socket *so, struct mbuf *nam)
476 {
477 	int error = 0;
478 
479 	soassertlocked(so);
480 
481 	if ((so->so_state & SS_NOFDREF) == 0)
482 		panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type);
483 	so->so_state &= ~SS_NOFDREF;
484 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
485 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
486 		error = pru_accept(so, nam);
487 	else
488 		error = ECONNABORTED;
489 	return (error);
490 }
491 
492 int
soconnect(struct socket * so,struct mbuf * nam)493 soconnect(struct socket *so, struct mbuf *nam)
494 {
495 	int error;
496 
497 	soassertlocked(so);
498 
499 	if (so->so_options & SO_ACCEPTCONN)
500 		return (EOPNOTSUPP);
501 	/*
502 	 * If protocol is connection-based, can only connect once.
503 	 * Otherwise, if connected, try to disconnect first.
504 	 * This allows user to disconnect by connecting to, e.g.,
505 	 * a null address.
506 	 */
507 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
508 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
509 	    (error = sodisconnect(so))))
510 		error = EISCONN;
511 	else
512 		error = pru_connect(so, nam);
513 	return (error);
514 }
515 
516 int
soconnect2(struct socket * so1,struct socket * so2)517 soconnect2(struct socket *so1, struct socket *so2)
518 {
519 	int persocket, error;
520 
521 	if ((persocket = solock_persocket(so1)))
522 		solock_pair(so1, so2);
523 	else
524 		solock(so1);
525 
526 	error = pru_connect2(so1, so2);
527 
528 	if (persocket)
529 		sounlock(so2);
530 	sounlock(so1);
531 	return (error);
532 }
533 
534 int
sodisconnect(struct socket * so)535 sodisconnect(struct socket *so)
536 {
537 	int error;
538 
539 	soassertlocked(so);
540 
541 	if ((so->so_state & SS_ISCONNECTED) == 0)
542 		return (ENOTCONN);
543 	if (so->so_state & SS_ISDISCONNECTING)
544 		return (EALREADY);
545 	error = pru_disconnect(so);
546 	return (error);
547 }
548 
549 int m_getuio(struct mbuf **, int, long, struct uio *);
550 
551 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
552 /*
553  * Send on a socket.
554  * If send must go all at once and message is larger than
555  * send buffering, then hard error.
556  * Lock against other senders.
557  * If must go all at once and not enough room now, then
558  * inform user that this would block and do nothing.
559  * Otherwise, if nonblocking, send as much as possible.
560  * The data to be sent is described by "uio" if nonzero,
561  * otherwise by the mbuf chain "top" (which must be null
562  * if uio is not).  Data provided in mbuf chain must be small
563  * enough to send all at once.
564  *
565  * Returns nonzero on error, timeout or signal; callers
566  * must check for short counts if EINTR/ERESTART are returned.
567  * Data and control buffers are freed on return.
568  */
569 int
sosend(struct socket * so,struct mbuf * addr,struct uio * uio,struct mbuf * top,struct mbuf * control,int flags)570 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
571     struct mbuf *control, int flags)
572 {
573 	long space, clen = 0;
574 	size_t resid;
575 	int error;
576 	int atomic = sosendallatonce(so) || top;
577 	int dosolock = ((so->so_snd.sb_flags & SB_MTXLOCK) == 0);
578 
579 	if (uio)
580 		resid = uio->uio_resid;
581 	else
582 		resid = top->m_pkthdr.len;
583 	/* MSG_EOR on a SOCK_STREAM socket is invalid. */
584 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
585 		m_freem(top);
586 		m_freem(control);
587 		return (EINVAL);
588 	}
589 	if (uio && uio->uio_procp)
590 		uio->uio_procp->p_ru.ru_msgsnd++;
591 	if (control) {
592 		/*
593 		 * In theory clen should be unsigned (since control->m_len is).
594 		 * However, space must be signed, as it might be less than 0
595 		 * if we over-committed, and we must use a signed comparison
596 		 * of space and clen.
597 		 */
598 		clen = control->m_len;
599 		/* reserve extra space for AF_UNIX's internalize */
600 		if (so->so_proto->pr_domain->dom_family == AF_UNIX &&
601 		    clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) &&
602 		    mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
603 			clen = CMSG_SPACE(
604 			    (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) *
605 			    (sizeof(struct fdpass) / sizeof(int)));
606 	}
607 
608 #define	snderr(errno)	{ error = errno; goto release; }
609 
610 restart:
611 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
612 		goto out;
613 	if (dosolock)
614 		solock_shared(so);
615 	sb_mtx_lock(&so->so_snd);
616 	so->so_snd.sb_state |= SS_ISSENDING;
617 	do {
618 		if (so->so_snd.sb_state & SS_CANTSENDMORE)
619 			snderr(EPIPE);
620 		if ((error = READ_ONCE(so->so_error))) {
621 			so->so_error = 0;
622 			snderr(error);
623 		}
624 		if ((so->so_state & SS_ISCONNECTED) == 0) {
625 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
626 				if (!(resid == 0 && clen != 0))
627 					snderr(ENOTCONN);
628 			} else if (addr == NULL)
629 				snderr(EDESTADDRREQ);
630 		}
631 		space = sbspace(so, &so->so_snd);
632 		if (flags & MSG_OOB)
633 			space += 1024;
634 		if (so->so_proto->pr_domain->dom_family == AF_UNIX) {
635 			if (atomic && resid > so->so_snd.sb_hiwat)
636 				snderr(EMSGSIZE);
637 		} else {
638 			if (clen > so->so_snd.sb_hiwat ||
639 			    (atomic && resid > so->so_snd.sb_hiwat - clen))
640 				snderr(EMSGSIZE);
641 		}
642 		if (space < clen ||
643 		    (space - clen < resid &&
644 		    (atomic || space < so->so_snd.sb_lowat))) {
645 			if (flags & MSG_DONTWAIT)
646 				snderr(EWOULDBLOCK);
647 			sbunlock(&so->so_snd);
648 			error = sbwait(so, &so->so_snd);
649 			so->so_snd.sb_state &= ~SS_ISSENDING;
650 			sb_mtx_unlock(&so->so_snd);
651 			if (dosolock)
652 				sounlock_shared(so);
653 			if (error)
654 				goto out;
655 			goto restart;
656 		}
657 		space -= clen;
658 		do {
659 			if (uio == NULL) {
660 				/*
661 				 * Data is prepackaged in "top".
662 				 */
663 				resid = 0;
664 				if (flags & MSG_EOR)
665 					top->m_flags |= M_EOR;
666 			} else {
667 				sb_mtx_unlock(&so->so_snd);
668 				if (dosolock)
669 					sounlock_shared(so);
670 				error = m_getuio(&top, atomic, space, uio);
671 				if (dosolock)
672 					solock_shared(so);
673 				sb_mtx_lock(&so->so_snd);
674 				if (error)
675 					goto release;
676 				space -= top->m_pkthdr.len;
677 				resid = uio->uio_resid;
678 				if (flags & MSG_EOR)
679 					top->m_flags |= M_EOR;
680 			}
681 			if (resid == 0)
682 				so->so_snd.sb_state &= ~SS_ISSENDING;
683 			if (top && so->so_options & SO_ZEROIZE)
684 				top->m_flags |= M_ZEROIZE;
685 			sb_mtx_unlock(&so->so_snd);
686 			if (!dosolock)
687 				solock_shared(so);
688 			if (flags & MSG_OOB)
689 				error = pru_sendoob(so, top, addr, control);
690 			else
691 				error = pru_send(so, top, addr, control);
692 			if (!dosolock)
693 				sounlock_shared(so);
694 			sb_mtx_lock(&so->so_snd);
695 			clen = 0;
696 			control = NULL;
697 			top = NULL;
698 			if (error)
699 				goto release;
700 		} while (resid && space > 0);
701 	} while (resid);
702 
703 release:
704 	so->so_snd.sb_state &= ~SS_ISSENDING;
705 	sb_mtx_unlock(&so->so_snd);
706 	if (dosolock)
707 		sounlock_shared(so);
708 	sbunlock(&so->so_snd);
709 out:
710 	m_freem(top);
711 	m_freem(control);
712 	return (error);
713 }
714 
715 int
m_getuio(struct mbuf ** mp,int atomic,long space,struct uio * uio)716 m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio)
717 {
718 	struct mbuf *m, *top = NULL;
719 	struct mbuf **nextp = &top;
720 	u_long len, mlen;
721 	size_t resid = uio->uio_resid;
722 	int error;
723 
724 	do {
725 		if (top == NULL) {
726 			MGETHDR(m, M_WAIT, MT_DATA);
727 			mlen = MHLEN;
728 			m->m_pkthdr.len = 0;
729 			m->m_pkthdr.ph_ifidx = 0;
730 		} else {
731 			MGET(m, M_WAIT, MT_DATA);
732 			mlen = MLEN;
733 		}
734 		/* chain mbuf together */
735 		*nextp = m;
736 		nextp = &m->m_next;
737 
738 		resid = ulmin(resid, space);
739 		if (resid >= MINCLSIZE) {
740 			MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES));
741 			if ((m->m_flags & M_EXT) == 0)
742 				MCLGETL(m, M_NOWAIT, MCLBYTES);
743 			if ((m->m_flags & M_EXT) == 0)
744 				goto nopages;
745 			mlen = m->m_ext.ext_size;
746 			len = ulmin(mlen, resid);
747 			/*
748 			 * For datagram protocols, leave room
749 			 * for protocol headers in first mbuf.
750 			 */
751 			if (atomic && m == top && len < mlen - max_hdr)
752 				m->m_data += max_hdr;
753 		} else {
754 nopages:
755 			len = ulmin(mlen, resid);
756 			/*
757 			 * For datagram protocols, leave room
758 			 * for protocol headers in first mbuf.
759 			 */
760 			if (atomic && m == top && len < mlen - max_hdr)
761 				m_align(m, len);
762 		}
763 
764 		error = uiomove(mtod(m, caddr_t), len, uio);
765 		if (error) {
766 			m_freem(top);
767 			return (error);
768 		}
769 
770 		/* adjust counters */
771 		resid = uio->uio_resid;
772 		space -= len;
773 		m->m_len = len;
774 		top->m_pkthdr.len += len;
775 
776 		/* Is there more space and more data? */
777 	} while (space > 0 && resid > 0);
778 
779 	*mp = top;
780 	return 0;
781 }
782 
783 /*
784  * Following replacement or removal of the first mbuf on the first
785  * mbuf chain of a socket buffer, push necessary state changes back
786  * into the socket buffer so that other consumers see the values
787  * consistently.  'nextrecord' is the callers locally stored value of
788  * the original value of sb->sb_mb->m_nextpkt which must be restored
789  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
790  */
791 void
sbsync(struct sockbuf * sb,struct mbuf * nextrecord)792 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
793 {
794 
795 	/*
796 	 * First, update for the new value of nextrecord.  If necessary,
797 	 * make it the first record.
798 	 */
799 	if (sb->sb_mb != NULL)
800 		sb->sb_mb->m_nextpkt = nextrecord;
801 	else
802 		sb->sb_mb = nextrecord;
803 
804 	/*
805 	 * Now update any dependent socket buffer fields to reflect
806 	 * the new state.  This is an inline of SB_EMPTY_FIXUP, with
807 	 * the addition of a second clause that takes care of the
808 	 * case where sb_mb has been updated, but remains the last
809 	 * record.
810 	 */
811 	if (sb->sb_mb == NULL) {
812 		sb->sb_mbtail = NULL;
813 		sb->sb_lastrecord = NULL;
814 	} else if (sb->sb_mb->m_nextpkt == NULL)
815 		sb->sb_lastrecord = sb->sb_mb;
816 }
817 
818 /*
819  * Implement receive operations on a socket.
820  * We depend on the way that records are added to the sockbuf
821  * by sbappend*.  In particular, each record (mbufs linked through m_next)
822  * must begin with an address if the protocol so specifies,
823  * followed by an optional mbuf or mbufs containing ancillary data,
824  * and then zero or more mbufs of data.
825  * In order to avoid blocking network for the entire time here, we release
826  * the solock() while doing the actual copy to user space.
827  * Although the sockbuf is locked, new data may still be appended,
828  * and thus we must maintain consistency of the sockbuf during that time.
829  *
830  * The caller may receive the data as a single mbuf chain by supplying
831  * an mbuf **mp0 for use in returning the chain.  The uio is then used
832  * only for the count in uio_resid.
833  */
834 int
soreceive(struct socket * so,struct mbuf ** paddr,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp,socklen_t controllen)835 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
836     struct mbuf **mp0, struct mbuf **controlp, int *flagsp,
837     socklen_t controllen)
838 {
839 	struct mbuf *m, **mp;
840 	struct mbuf *cm;
841 	u_long len, offset, moff;
842 	int flags, error, error2, type, uio_error = 0;
843 	const struct protosw *pr = so->so_proto;
844 	struct mbuf *nextrecord;
845 	size_t resid, orig_resid = uio->uio_resid;
846 	int dosolock = ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0);
847 
848 	mp = mp0;
849 	if (paddr)
850 		*paddr = NULL;
851 	if (controlp)
852 		*controlp = NULL;
853 	if (flagsp)
854 		flags = *flagsp &~ MSG_EOR;
855 	else
856 		flags = 0;
857 	if (flags & MSG_OOB) {
858 		m = m_get(M_WAIT, MT_DATA);
859 		solock(so);
860 		error = pru_rcvoob(so, m, flags & MSG_PEEK);
861 		sounlock(so);
862 		if (error)
863 			goto bad;
864 		do {
865 			error = uiomove(mtod(m, caddr_t),
866 			    ulmin(uio->uio_resid, m->m_len), uio);
867 			m = m_free(m);
868 		} while (uio->uio_resid && error == 0 && m);
869 bad:
870 		m_freem(m);
871 		return (error);
872 	}
873 	if (mp)
874 		*mp = NULL;
875 
876 restart:
877 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
878 		return (error);
879 	if (dosolock)
880 		solock_shared(so);
881 	sb_mtx_lock(&so->so_rcv);
882 
883 	m = so->so_rcv.sb_mb;
884 #ifdef SOCKET_SPLICE
885 	if (isspliced(so))
886 		m = NULL;
887 #endif /* SOCKET_SPLICE */
888 	/*
889 	 * If we have less data than requested, block awaiting more
890 	 * (subject to any timeout) if:
891 	 *   1. the current count is less than the low water mark,
892 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
893 	 *	receive operation at once if we block (resid <= hiwat), or
894 	 *   3. MSG_DONTWAIT is not set.
895 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
896 	 * we have to do the receive in sections, and thus risk returning
897 	 * a short count if a timeout or signal occurs after we start.
898 	 */
899 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
900 	    so->so_rcv.sb_cc < uio->uio_resid) &&
901 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
902 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
903 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
904 #ifdef DIAGNOSTIC
905 		if (m == NULL && so->so_rcv.sb_cc)
906 #ifdef SOCKET_SPLICE
907 		    if (!isspliced(so))
908 #endif /* SOCKET_SPLICE */
909 			panic("receive 1: so %p, so_type %d, sb_cc %lu",
910 			    so, so->so_type, so->so_rcv.sb_cc);
911 #endif
912 		if ((error2 = READ_ONCE(so->so_error))) {
913 			if (m)
914 				goto dontblock;
915 			error = error2;
916 			if ((flags & MSG_PEEK) == 0)
917 				so->so_error = 0;
918 			goto release;
919 		}
920 		if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
921 			if (m)
922 				goto dontblock;
923 			else if (so->so_rcv.sb_cc == 0)
924 				goto release;
925 		}
926 		for (; m; m = m->m_next)
927 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
928 				m = so->so_rcv.sb_mb;
929 				goto dontblock;
930 			}
931 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
932 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
933 			error = ENOTCONN;
934 			goto release;
935 		}
936 		if (uio->uio_resid == 0 && controlp == NULL)
937 			goto release;
938 		if (flags & MSG_DONTWAIT) {
939 			error = EWOULDBLOCK;
940 			goto release;
941 		}
942 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
943 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
944 
945 		sbunlock(&so->so_rcv);
946 		error = sbwait(so, &so->so_rcv);
947 		sb_mtx_unlock(&so->so_rcv);
948 		if (dosolock)
949 			sounlock_shared(so);
950 		if (error)
951 			return (error);
952 		goto restart;
953 	}
954 dontblock:
955 	/*
956 	 * On entry here, m points to the first record of the socket buffer.
957 	 * From this point onward, we maintain 'nextrecord' as a cache of the
958 	 * pointer to the next record in the socket buffer.  We must keep the
959 	 * various socket buffer pointers and local stack versions of the
960 	 * pointers in sync, pushing out modifications before operations that
961 	 * may sleep, and re-reading them afterwards.
962 	 *
963 	 * Otherwise, we will race with the network stack appending new data
964 	 * or records onto the socket buffer by using inconsistent/stale
965 	 * versions of the field, possibly resulting in socket buffer
966 	 * corruption.
967 	 */
968 	if (uio->uio_procp)
969 		uio->uio_procp->p_ru.ru_msgrcv++;
970 	KASSERT(m == so->so_rcv.sb_mb);
971 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
972 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
973 	nextrecord = m->m_nextpkt;
974 	if (pr->pr_flags & PR_ADDR) {
975 #ifdef DIAGNOSTIC
976 		if (m->m_type != MT_SONAME)
977 			panic("receive 1a: so %p, so_type %d, m %p, m_type %d",
978 			    so, so->so_type, m, m->m_type);
979 #endif
980 		orig_resid = 0;
981 		if (flags & MSG_PEEK) {
982 			if (paddr)
983 				*paddr = m_copym(m, 0, m->m_len, M_NOWAIT);
984 			m = m->m_next;
985 		} else {
986 			sbfree(so, &so->so_rcv, m);
987 			if (paddr) {
988 				*paddr = m;
989 				so->so_rcv.sb_mb = m->m_next;
990 				m->m_next = NULL;
991 				m = so->so_rcv.sb_mb;
992 			} else {
993 				so->so_rcv.sb_mb = m_free(m);
994 				m = so->so_rcv.sb_mb;
995 			}
996 			sbsync(&so->so_rcv, nextrecord);
997 		}
998 	}
999 	while (m && m->m_type == MT_CONTROL && error == 0) {
1000 		int skip = 0;
1001 		if (flags & MSG_PEEK) {
1002 			if (mtod(m, struct cmsghdr *)->cmsg_type ==
1003 			    SCM_RIGHTS) {
1004 				/* don't leak internalized SCM_RIGHTS msgs */
1005 				skip = 1;
1006 			} else if (controlp)
1007 				*controlp = m_copym(m, 0, m->m_len, M_NOWAIT);
1008 			m = m->m_next;
1009 		} else {
1010 			sbfree(so, &so->so_rcv, m);
1011 			so->so_rcv.sb_mb = m->m_next;
1012 			m->m_nextpkt = m->m_next = NULL;
1013 			cm = m;
1014 			m = so->so_rcv.sb_mb;
1015 			sbsync(&so->so_rcv, nextrecord);
1016 			if (controlp) {
1017 				if (pr->pr_domain->dom_externalize) {
1018 					sb_mtx_unlock(&so->so_rcv);
1019 					if (dosolock)
1020 						sounlock_shared(so);
1021 					error =
1022 					    (*pr->pr_domain->dom_externalize)
1023 					    (cm, controllen, flags);
1024 					if (dosolock)
1025 						solock_shared(so);
1026 					sb_mtx_lock(&so->so_rcv);
1027 				}
1028 				*controlp = cm;
1029 			} else {
1030 				/*
1031 				 * Dispose of any SCM_RIGHTS message that went
1032 				 * through the read path rather than recv.
1033 				 */
1034 				if (pr->pr_domain->dom_dispose) {
1035 					sb_mtx_unlock(&so->so_rcv);
1036 					pr->pr_domain->dom_dispose(cm);
1037 					sb_mtx_lock(&so->so_rcv);
1038 				}
1039 				m_free(cm);
1040 			}
1041 		}
1042 		if (m != NULL)
1043 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1044 		else
1045 			nextrecord = so->so_rcv.sb_mb;
1046 		if (controlp && !skip)
1047 			controlp = &(*controlp)->m_next;
1048 		orig_resid = 0;
1049 	}
1050 
1051 	/* If m is non-NULL, we have some data to read. */
1052 	if (m) {
1053 		type = m->m_type;
1054 		if (type == MT_OOBDATA)
1055 			flags |= MSG_OOB;
1056 		if (m->m_flags & M_BCAST)
1057 			flags |= MSG_BCAST;
1058 		if (m->m_flags & M_MCAST)
1059 			flags |= MSG_MCAST;
1060 	}
1061 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1062 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1063 
1064 	moff = 0;
1065 	offset = 0;
1066 	while (m && uio->uio_resid > 0 && error == 0) {
1067 		if (m->m_type == MT_OOBDATA) {
1068 			if (type != MT_OOBDATA)
1069 				break;
1070 		} else if (type == MT_OOBDATA) {
1071 			break;
1072 		} else if (m->m_type == MT_CONTROL) {
1073 			/*
1074 			 * If there is more than one control message in the
1075 			 * stream, we do a short read.  Next can be received
1076 			 * or disposed by another system call.
1077 			 */
1078 			break;
1079 #ifdef DIAGNOSTIC
1080 		} else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1081 			panic("receive 3: so %p, so_type %d, m %p, m_type %d",
1082 			    so, so->so_type, m, m->m_type);
1083 #endif
1084 		}
1085 		so->so_rcv.sb_state &= ~SS_RCVATMARK;
1086 		len = uio->uio_resid;
1087 		if (so->so_oobmark && len > so->so_oobmark - offset)
1088 			len = so->so_oobmark - offset;
1089 		if (len > m->m_len - moff)
1090 			len = m->m_len - moff;
1091 		/*
1092 		 * If mp is set, just pass back the mbufs.
1093 		 * Otherwise copy them out via the uio, then free.
1094 		 * Sockbuf must be consistent here (points to current mbuf,
1095 		 * it points to next record) when we drop priority;
1096 		 * we must note any additions to the sockbuf when we
1097 		 * block interrupts again.
1098 		 */
1099 		if (mp == NULL && uio_error == 0) {
1100 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1101 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1102 			resid = uio->uio_resid;
1103 			sb_mtx_unlock(&so->so_rcv);
1104 			if (dosolock)
1105 				sounlock_shared(so);
1106 			uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1107 			if (dosolock)
1108 				solock_shared(so);
1109 			sb_mtx_lock(&so->so_rcv);
1110 			if (uio_error)
1111 				uio->uio_resid = resid - len;
1112 		} else
1113 			uio->uio_resid -= len;
1114 		if (len == m->m_len - moff) {
1115 			if (m->m_flags & M_EOR)
1116 				flags |= MSG_EOR;
1117 			if (flags & MSG_PEEK) {
1118 				m = m->m_next;
1119 				moff = 0;
1120 				orig_resid = 0;
1121 			} else {
1122 				nextrecord = m->m_nextpkt;
1123 				sbfree(so, &so->so_rcv, m);
1124 				if (mp) {
1125 					*mp = m;
1126 					mp = &m->m_next;
1127 					so->so_rcv.sb_mb = m = m->m_next;
1128 					*mp = NULL;
1129 				} else {
1130 					so->so_rcv.sb_mb = m_free(m);
1131 					m = so->so_rcv.sb_mb;
1132 				}
1133 				/*
1134 				 * If m != NULL, we also know that
1135 				 * so->so_rcv.sb_mb != NULL.
1136 				 */
1137 				KASSERT(so->so_rcv.sb_mb == m);
1138 				if (m) {
1139 					m->m_nextpkt = nextrecord;
1140 					if (nextrecord == NULL)
1141 						so->so_rcv.sb_lastrecord = m;
1142 				} else {
1143 					so->so_rcv.sb_mb = nextrecord;
1144 					SB_EMPTY_FIXUP(&so->so_rcv);
1145 				}
1146 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1147 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1148 			}
1149 		} else {
1150 			if (flags & MSG_PEEK) {
1151 				moff += len;
1152 				orig_resid = 0;
1153 			} else {
1154 				if (mp)
1155 					*mp = m_copym(m, 0, len, M_WAIT);
1156 				m->m_data += len;
1157 				m->m_len -= len;
1158 				so->so_rcv.sb_cc -= len;
1159 				so->so_rcv.sb_datacc -= len;
1160 			}
1161 		}
1162 		if (so->so_oobmark) {
1163 			if ((flags & MSG_PEEK) == 0) {
1164 				so->so_oobmark -= len;
1165 				if (so->so_oobmark == 0) {
1166 					so->so_rcv.sb_state |= SS_RCVATMARK;
1167 					break;
1168 				}
1169 			} else {
1170 				offset += len;
1171 				if (offset == so->so_oobmark)
1172 					break;
1173 			}
1174 		}
1175 		if (flags & MSG_EOR)
1176 			break;
1177 		/*
1178 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1179 		 * we must not quit until "uio->uio_resid == 0" or an error
1180 		 * termination.  If a signal/timeout occurs, return
1181 		 * with a short count but without error.
1182 		 * Keep sockbuf locked against other readers.
1183 		 */
1184 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1185 		    !sosendallatonce(so) && !nextrecord) {
1186 			if (so->so_rcv.sb_state & SS_CANTRCVMORE ||
1187 			    so->so_error)
1188 				break;
1189 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1190 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1191 			if (sbwait(so, &so->so_rcv)) {
1192 				sb_mtx_unlock(&so->so_rcv);
1193 				if (dosolock)
1194 					sounlock_shared(so);
1195 				sbunlock(&so->so_rcv);
1196 				return (0);
1197 			}
1198 			if ((m = so->so_rcv.sb_mb) != NULL)
1199 				nextrecord = m->m_nextpkt;
1200 		}
1201 	}
1202 
1203 	if (m && pr->pr_flags & PR_ATOMIC) {
1204 		flags |= MSG_TRUNC;
1205 		if ((flags & MSG_PEEK) == 0)
1206 			(void) sbdroprecord(so, &so->so_rcv);
1207 	}
1208 	if ((flags & MSG_PEEK) == 0) {
1209 		if (m == NULL) {
1210 			/*
1211 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1212 			 * part makes sure sb_lastrecord is up-to-date if
1213 			 * there is still data in the socket buffer.
1214 			 */
1215 			so->so_rcv.sb_mb = nextrecord;
1216 			if (so->so_rcv.sb_mb == NULL) {
1217 				so->so_rcv.sb_mbtail = NULL;
1218 				so->so_rcv.sb_lastrecord = NULL;
1219 			} else if (nextrecord->m_nextpkt == NULL)
1220 				so->so_rcv.sb_lastrecord = nextrecord;
1221 		}
1222 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1223 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1224 		if (pr->pr_flags & PR_WANTRCVD) {
1225 			sb_mtx_unlock(&so->so_rcv);
1226 			if (!dosolock)
1227 				solock_shared(so);
1228 			pru_rcvd(so);
1229 			if (!dosolock)
1230 				sounlock_shared(so);
1231 			sb_mtx_lock(&so->so_rcv);
1232 		}
1233 	}
1234 	if (orig_resid == uio->uio_resid && orig_resid &&
1235 	    (flags & MSG_EOR) == 0 &&
1236 	    (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) {
1237 		sb_mtx_unlock(&so->so_rcv);
1238 		sbunlock(&so->so_rcv);
1239 		goto restart;
1240 	}
1241 
1242 	if (uio_error)
1243 		error = uio_error;
1244 
1245 	if (flagsp)
1246 		*flagsp |= flags;
1247 release:
1248 	sb_mtx_unlock(&so->so_rcv);
1249 	if (dosolock)
1250 		sounlock_shared(so);
1251 	sbunlock(&so->so_rcv);
1252 	return (error);
1253 }
1254 
1255 int
soshutdown(struct socket * so,int how)1256 soshutdown(struct socket *so, int how)
1257 {
1258 	int error = 0;
1259 
1260 	switch (how) {
1261 	case SHUT_RD:
1262 		sorflush(so);
1263 		break;
1264 	case SHUT_RDWR:
1265 		sorflush(so);
1266 		/* FALLTHROUGH */
1267 	case SHUT_WR:
1268 		solock(so);
1269 		error = pru_shutdown(so);
1270 		sounlock(so);
1271 		break;
1272 	default:
1273 		error = EINVAL;
1274 		break;
1275 	}
1276 
1277 	return (error);
1278 }
1279 
1280 void
sorflush(struct socket * so)1281 sorflush(struct socket *so)
1282 {
1283 	struct sockbuf *sb = &so->so_rcv;
1284 	struct mbuf *m;
1285 	const struct protosw *pr = so->so_proto;
1286 	int error;
1287 
1288 	error = sblock(sb, SBL_WAIT | SBL_NOINTR);
1289 	/* with SBL_WAIT and SLB_NOINTR sblock() must not fail */
1290 	KASSERT(error == 0);
1291 
1292 	solock_shared(so);
1293 	socantrcvmore(so);
1294 	mtx_enter(&sb->sb_mtx);
1295 	m = sb->sb_mb;
1296 	memset(&sb->sb_startzero, 0,
1297 	     (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero);
1298 	sb->sb_timeo_nsecs = INFSLP;
1299 	mtx_leave(&sb->sb_mtx);
1300 	sounlock_shared(so);
1301 	sbunlock(sb);
1302 
1303 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1304 		(*pr->pr_domain->dom_dispose)(m);
1305 	m_purge(m);
1306 }
1307 
1308 #ifdef SOCKET_SPLICE
1309 
1310 #define so_splicelen	so_sp->ssp_len
1311 #define so_splicemax	so_sp->ssp_max
1312 #define so_idletv	so_sp->ssp_idletv
1313 #define so_idleto	so_sp->ssp_idleto
1314 #define so_splicetask	so_sp->ssp_task
1315 
1316 int
sosplice(struct socket * so,int fd,off_t max,struct timeval * tv)1317 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv)
1318 {
1319 	struct file	*fp;
1320 	struct socket	*sosp;
1321 	struct taskq	*tq;
1322 	int		 error = 0;
1323 
1324 	if ((so->so_proto->pr_flags & PR_SPLICE) == 0)
1325 		return (EPROTONOSUPPORT);
1326 	if (max && max < 0)
1327 		return (EINVAL);
1328 	if (tv && (tv->tv_sec < 0 || !timerisvalid(tv)))
1329 		return (EINVAL);
1330 
1331 	/* If no fd is given, unsplice by removing existing link. */
1332 	if (fd < 0) {
1333 		if ((error = sblock(&so->so_rcv, SBL_WAIT)) != 0)
1334 			return (error);
1335 		solock(so);
1336 		if (so->so_options & SO_ACCEPTCONN) {
1337 			error = EOPNOTSUPP;
1338 			goto out;
1339 		}
1340 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1341 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1342 			error = ENOTCONN;
1343 			goto out;
1344 		}
1345 
1346 		if (so->so_sp && so->so_sp->ssp_socket)
1347 			sounsplice(so, so->so_sp->ssp_socket, 0);
1348  out:
1349 		sounlock(so);
1350 		sbunlock(&so->so_rcv);
1351 		return (error);
1352 	}
1353 
1354 	if (sosplice_taskq == NULL) {
1355 		rw_enter_write(&sosplice_lock);
1356 		if (sosplice_taskq == NULL) {
1357 			tq = taskq_create("sosplice", 1, IPL_SOFTNET,
1358 			    TASKQ_MPSAFE);
1359 			if (tq == NULL) {
1360 				rw_exit_write(&sosplice_lock);
1361 				return (ENOMEM);
1362 			}
1363 			/* Ensure the taskq is fully visible to other CPUs. */
1364 			membar_producer();
1365 			sosplice_taskq = tq;
1366 		}
1367 		rw_exit_write(&sosplice_lock);
1368 	} else {
1369 		/* Ensure the taskq is fully visible on this CPU. */
1370 		membar_consumer();
1371 	}
1372 
1373 	/* Find sosp, the drain socket where data will be spliced into. */
1374 	if ((error = getsock(curproc, fd, &fp)) != 0)
1375 		return (error);
1376 	sosp = fp->f_data;
1377 
1378 	if (sosp->so_proto->pr_usrreqs->pru_send !=
1379 	    so->so_proto->pr_usrreqs->pru_send) {
1380 		error = EPROTONOSUPPORT;
1381 		goto frele;
1382 	}
1383 
1384 	if ((error = sblock(&so->so_rcv, SBL_WAIT)) != 0)
1385 		goto frele;
1386 	if ((error = sblock(&sosp->so_snd, SBL_WAIT)) != 0) {
1387 		sbunlock(&so->so_rcv);
1388 		goto frele;
1389 	}
1390 	solock(so);
1391 
1392 	if ((so->so_options & SO_ACCEPTCONN) ||
1393 	    (sosp->so_options & SO_ACCEPTCONN)) {
1394 		error = EOPNOTSUPP;
1395 		goto release;
1396 	}
1397 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1398 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1399 		error = ENOTCONN;
1400 		goto release;
1401 	}
1402 	if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) {
1403 		error = ENOTCONN;
1404 		goto release;
1405 	}
1406 	if (so->so_sp == NULL)
1407 		so->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1408 	if (sosp->so_sp == NULL)
1409 		sosp->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1410 	if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) {
1411 		error = EBUSY;
1412 		goto release;
1413 	}
1414 
1415 	/* Splice so and sosp together. */
1416 	mtx_enter(&so->so_rcv.sb_mtx);
1417 	so->so_sp->ssp_socket = sosp;
1418 	sosp->so_sp->ssp_soback = so;
1419 	mtx_leave(&so->so_rcv.sb_mtx);
1420 	so->so_splicelen = 0;
1421 	so->so_splicemax = max;
1422 	if (tv)
1423 		so->so_idletv = *tv;
1424 	else
1425 		timerclear(&so->so_idletv);
1426 	timeout_set_proc(&so->so_idleto, soidle, so);
1427 	task_set(&so->so_splicetask, sotask, so);
1428 
1429 	/*
1430 	 * To prevent softnet interrupt from calling somove() while
1431 	 * we sleep, the socket buffers are not marked as spliced yet.
1432 	 */
1433 	if (somove(so, M_WAIT)) {
1434 		mtx_enter(&so->so_rcv.sb_mtx);
1435 		so->so_rcv.sb_flags |= SB_SPLICE;
1436 		mtx_leave(&so->so_rcv.sb_mtx);
1437 		sosp->so_snd.sb_flags |= SB_SPLICE;
1438 	}
1439 
1440  release:
1441 	sounlock(so);
1442 	sbunlock(&sosp->so_snd);
1443 	sbunlock(&so->so_rcv);
1444  frele:
1445 	FRELE(fp, curproc);
1446 
1447 	return (error);
1448 }
1449 
1450 void
sounsplice(struct socket * so,struct socket * sosp,int freeing)1451 sounsplice(struct socket *so, struct socket *sosp, int freeing)
1452 {
1453 	soassertlocked(so);
1454 
1455 	task_del(sosplice_taskq, &so->so_splicetask);
1456 	timeout_del(&so->so_idleto);
1457 	sosp->so_snd.sb_flags &= ~SB_SPLICE;
1458 
1459 	mtx_enter(&so->so_rcv.sb_mtx);
1460 	so->so_rcv.sb_flags &= ~SB_SPLICE;
1461 	so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL;
1462 	mtx_leave(&so->so_rcv.sb_mtx);
1463 
1464 	/* Do not wakeup a socket that is about to be freed. */
1465 	if ((freeing & SOSP_FREEING_READ) == 0 && soreadable(so))
1466 		sorwakeup(so);
1467 	if ((freeing & SOSP_FREEING_WRITE) == 0 && sowriteable(sosp))
1468 		sowwakeup(sosp);
1469 }
1470 
1471 void
soidle(void * arg)1472 soidle(void *arg)
1473 {
1474 	struct socket *so = arg;
1475 
1476 	solock(so);
1477 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1478 		so->so_error = ETIMEDOUT;
1479 		sounsplice(so, so->so_sp->ssp_socket, 0);
1480 	}
1481 	sounlock(so);
1482 }
1483 
1484 void
sotask(void * arg)1485 sotask(void *arg)
1486 {
1487 	struct socket *so = arg;
1488 
1489 	solock(so);
1490 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1491 		/*
1492 		 * We may not sleep here as sofree() and unsplice() may be
1493 		 * called from softnet interrupt context.  This would remove
1494 		 * the socket during somove().
1495 		 */
1496 		somove(so, M_DONTWAIT);
1497 	}
1498 	sounlock(so);
1499 
1500 	/* Avoid user land starvation. */
1501 	yield();
1502 }
1503 
1504 /*
1505  * The socket splicing task or idle timeout may sleep while grabbing the net
1506  * lock.  As sofree() can be called anytime, sotask() or soidle() could access
1507  * the socket memory of a freed socket after wakeup.  So delay the pool_put()
1508  * after all pending socket splicing tasks or timeouts have finished.  Do this
1509  * by scheduling it on the same threads.
1510  */
1511 void
soreaper(void * arg)1512 soreaper(void *arg)
1513 {
1514 	struct socket *so = arg;
1515 
1516 	/* Reuse splice task, sounsplice() has been called before. */
1517 	task_set(&so->so_sp->ssp_task, soput, so);
1518 	task_add(sosplice_taskq, &so->so_sp->ssp_task);
1519 }
1520 
1521 void
soput(void * arg)1522 soput(void *arg)
1523 {
1524 	struct socket *so = arg;
1525 
1526 	pool_put(&sosplice_pool, so->so_sp);
1527 	pool_put(&socket_pool, so);
1528 }
1529 
1530 /*
1531  * Move data from receive buffer of spliced source socket to send
1532  * buffer of drain socket.  Try to move as much as possible in one
1533  * big chunk.  It is a TCP only implementation.
1534  * Return value 0 means splicing has been finished, 1 continue.
1535  */
1536 int
somove(struct socket * so,int wait)1537 somove(struct socket *so, int wait)
1538 {
1539 	struct socket	*sosp = so->so_sp->ssp_socket;
1540 	struct mbuf	*m, **mp, *nextrecord;
1541 	u_long		 len, off, oobmark;
1542 	long		 space;
1543 	int		 error = 0, maxreached = 0;
1544 	unsigned int	 rcvstate;
1545 
1546 	soassertlocked(so);
1547 
1548  nextpkt:
1549 	if (so->so_error) {
1550 		error = so->so_error;
1551 		goto release;
1552 	}
1553 	if (sosp->so_snd.sb_state & SS_CANTSENDMORE) {
1554 		error = EPIPE;
1555 		goto release;
1556 	}
1557 	if (sosp->so_error && sosp->so_error != ETIMEDOUT &&
1558 	    sosp->so_error != EFBIG && sosp->so_error != ELOOP) {
1559 		error = sosp->so_error;
1560 		goto release;
1561 	}
1562 	if ((sosp->so_state & SS_ISCONNECTED) == 0)
1563 		goto release;
1564 
1565 	/* Calculate how many bytes can be copied now. */
1566 	len = so->so_rcv.sb_datacc;
1567 	if (so->so_splicemax) {
1568 		KASSERT(so->so_splicelen < so->so_splicemax);
1569 		if (so->so_splicemax <= so->so_splicelen + len) {
1570 			len = so->so_splicemax - so->so_splicelen;
1571 			maxreached = 1;
1572 		}
1573 	}
1574 	space = sbspace(sosp, &sosp->so_snd);
1575 	if (so->so_oobmark && so->so_oobmark < len &&
1576 	    so->so_oobmark < space + 1024)
1577 		space += 1024;
1578 	if (space <= 0) {
1579 		maxreached = 0;
1580 		goto release;
1581 	}
1582 	if (space < len) {
1583 		maxreached = 0;
1584 		if (space < sosp->so_snd.sb_lowat)
1585 			goto release;
1586 		len = space;
1587 	}
1588 	sosp->so_snd.sb_state |= SS_ISSENDING;
1589 
1590 	SBLASTRECORDCHK(&so->so_rcv, "somove 1");
1591 	SBLASTMBUFCHK(&so->so_rcv, "somove 1");
1592 	m = so->so_rcv.sb_mb;
1593 	if (m == NULL)
1594 		goto release;
1595 	nextrecord = m->m_nextpkt;
1596 
1597 	/* Drop address and control information not used with splicing. */
1598 	if (so->so_proto->pr_flags & PR_ADDR) {
1599 #ifdef DIAGNOSTIC
1600 		if (m->m_type != MT_SONAME)
1601 			panic("somove soname: so %p, so_type %d, m %p, "
1602 			    "m_type %d", so, so->so_type, m, m->m_type);
1603 #endif
1604 		m = m->m_next;
1605 	}
1606 	while (m && m->m_type == MT_CONTROL)
1607 		m = m->m_next;
1608 	if (m == NULL) {
1609 		sbdroprecord(so, &so->so_rcv);
1610 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1611 			pru_rcvd(so);
1612 		goto nextpkt;
1613 	}
1614 
1615 	/*
1616 	 * By splicing sockets connected to localhost, userland might create a
1617 	 * loop.  Dissolve splicing with error if loop is detected by counter.
1618 	 *
1619 	 * If we deal with looped broadcast/multicast packet we bail out with
1620 	 * no error to suppress splice termination.
1621 	 */
1622 	if ((m->m_flags & M_PKTHDR) &&
1623 	    ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) ||
1624 	    ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) {
1625 		error = ELOOP;
1626 		goto release;
1627 	}
1628 
1629 	if (so->so_proto->pr_flags & PR_ATOMIC) {
1630 		if ((m->m_flags & M_PKTHDR) == 0)
1631 			panic("somove !PKTHDR: so %p, so_type %d, m %p, "
1632 			    "m_type %d", so, so->so_type, m, m->m_type);
1633 		if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) {
1634 			error = EMSGSIZE;
1635 			goto release;
1636 		}
1637 		if (len < m->m_pkthdr.len)
1638 			goto release;
1639 		if (m->m_pkthdr.len < len) {
1640 			maxreached = 0;
1641 			len = m->m_pkthdr.len;
1642 		}
1643 		/*
1644 		 * Throw away the name mbuf after it has been assured
1645 		 * that the whole first record can be processed.
1646 		 */
1647 		m = so->so_rcv.sb_mb;
1648 		sbfree(so, &so->so_rcv, m);
1649 		so->so_rcv.sb_mb = m_free(m);
1650 		sbsync(&so->so_rcv, nextrecord);
1651 	}
1652 	/*
1653 	 * Throw away the control mbufs after it has been assured
1654 	 * that the whole first record can be processed.
1655 	 */
1656 	m = so->so_rcv.sb_mb;
1657 	while (m && m->m_type == MT_CONTROL) {
1658 		sbfree(so, &so->so_rcv, m);
1659 		so->so_rcv.sb_mb = m_free(m);
1660 		m = so->so_rcv.sb_mb;
1661 		sbsync(&so->so_rcv, nextrecord);
1662 	}
1663 
1664 	SBLASTRECORDCHK(&so->so_rcv, "somove 2");
1665 	SBLASTMBUFCHK(&so->so_rcv, "somove 2");
1666 
1667 	/* Take at most len mbufs out of receive buffer. */
1668 	for (off = 0, mp = &m; off <= len && *mp;
1669 	    off += (*mp)->m_len, mp = &(*mp)->m_next) {
1670 		u_long size = len - off;
1671 
1672 #ifdef DIAGNOSTIC
1673 		if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER)
1674 			panic("somove type: so %p, so_type %d, m %p, "
1675 			    "m_type %d", so, so->so_type, *mp, (*mp)->m_type);
1676 #endif
1677 		if ((*mp)->m_len > size) {
1678 			/*
1679 			 * Move only a partial mbuf at maximum splice length or
1680 			 * if the drain buffer is too small for this large mbuf.
1681 			 */
1682 			if (!maxreached && so->so_snd.sb_datacc > 0) {
1683 				len -= size;
1684 				break;
1685 			}
1686 			*mp = m_copym(so->so_rcv.sb_mb, 0, size, wait);
1687 			if (*mp == NULL) {
1688 				len -= size;
1689 				break;
1690 			}
1691 			so->so_rcv.sb_mb->m_data += size;
1692 			so->so_rcv.sb_mb->m_len -= size;
1693 			so->so_rcv.sb_cc -= size;
1694 			so->so_rcv.sb_datacc -= size;
1695 		} else {
1696 			*mp = so->so_rcv.sb_mb;
1697 			sbfree(so, &so->so_rcv, *mp);
1698 			so->so_rcv.sb_mb = (*mp)->m_next;
1699 			sbsync(&so->so_rcv, nextrecord);
1700 		}
1701 	}
1702 	*mp = NULL;
1703 
1704 	SBLASTRECORDCHK(&so->so_rcv, "somove 3");
1705 	SBLASTMBUFCHK(&so->so_rcv, "somove 3");
1706 	SBCHECK(so, &so->so_rcv);
1707 	if (m == NULL)
1708 		goto release;
1709 	m->m_nextpkt = NULL;
1710 	if (m->m_flags & M_PKTHDR) {
1711 		m_resethdr(m);
1712 		m->m_pkthdr.len = len;
1713 	}
1714 
1715 	/* Send window update to source peer as receive buffer has changed. */
1716 	if (so->so_proto->pr_flags & PR_WANTRCVD)
1717 		pru_rcvd(so);
1718 
1719 	/* Receive buffer did shrink by len bytes, adjust oob. */
1720 	mtx_enter(&so->so_rcv.sb_mtx);
1721 	rcvstate = so->so_rcv.sb_state;
1722 	so->so_rcv.sb_state &= ~SS_RCVATMARK;
1723 	oobmark = so->so_oobmark;
1724 	so->so_oobmark = oobmark > len ? oobmark - len : 0;
1725 	if (oobmark) {
1726 		if (oobmark == len)
1727 			so->so_rcv.sb_state |= SS_RCVATMARK;
1728 		if (oobmark >= len)
1729 			oobmark = 0;
1730 	}
1731 	mtx_leave(&so->so_rcv.sb_mtx);
1732 
1733 	/*
1734 	 * Handle oob data.  If any malloc fails, ignore error.
1735 	 * TCP urgent data is not very reliable anyway.
1736 	 */
1737 	while (((rcvstate & SS_RCVATMARK) || oobmark) &&
1738 	    (so->so_options & SO_OOBINLINE)) {
1739 		struct mbuf *o = NULL;
1740 
1741 		if (rcvstate & SS_RCVATMARK) {
1742 			o = m_get(wait, MT_DATA);
1743 			rcvstate &= ~SS_RCVATMARK;
1744 		} else if (oobmark) {
1745 			o = m_split(m, oobmark, wait);
1746 			if (o) {
1747 				error = pru_send(sosp, m, NULL, NULL);
1748 				if (error) {
1749 					if (sosp->so_snd.sb_state &
1750 					    SS_CANTSENDMORE)
1751 						error = EPIPE;
1752 					m_freem(o);
1753 					goto release;
1754 				}
1755 				len -= oobmark;
1756 				so->so_splicelen += oobmark;
1757 				m = o;
1758 				o = m_get(wait, MT_DATA);
1759 			}
1760 			oobmark = 0;
1761 		}
1762 		if (o) {
1763 			o->m_len = 1;
1764 			*mtod(o, caddr_t) = *mtod(m, caddr_t);
1765 			error = pru_sendoob(sosp, o, NULL, NULL);
1766 			if (error) {
1767 				if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1768 					error = EPIPE;
1769 				m_freem(m);
1770 				goto release;
1771 			}
1772 			len -= 1;
1773 			so->so_splicelen += 1;
1774 			if (oobmark) {
1775 				oobmark -= 1;
1776 				if (oobmark == 0)
1777 					rcvstate |= SS_RCVATMARK;
1778 			}
1779 			m_adj(m, 1);
1780 		}
1781 	}
1782 
1783 	/* Append all remaining data to drain socket. */
1784 	if (so->so_rcv.sb_cc == 0 || maxreached)
1785 		sosp->so_snd.sb_state &= ~SS_ISSENDING;
1786 	error = pru_send(sosp, m, NULL, NULL);
1787 	if (error) {
1788 		if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1789 			error = EPIPE;
1790 		goto release;
1791 	}
1792 	so->so_splicelen += len;
1793 
1794 	/* Move several packets if possible. */
1795 	if (!maxreached && nextrecord)
1796 		goto nextpkt;
1797 
1798  release:
1799 	sosp->so_snd.sb_state &= ~SS_ISSENDING;
1800 	if (!error && maxreached && so->so_splicemax == so->so_splicelen)
1801 		error = EFBIG;
1802 	if (error)
1803 		so->so_error = error;
1804 	if (((so->so_rcv.sb_state & SS_CANTRCVMORE) &&
1805 	    so->so_rcv.sb_cc == 0) ||
1806 	    (sosp->so_snd.sb_state & SS_CANTSENDMORE) ||
1807 	    maxreached || error) {
1808 		sounsplice(so, sosp, 0);
1809 		return (0);
1810 	}
1811 	if (timerisset(&so->so_idletv))
1812 		timeout_add_tv(&so->so_idleto, &so->so_idletv);
1813 	return (1);
1814 }
1815 
1816 #endif /* SOCKET_SPLICE */
1817 
1818 void
sorwakeup(struct socket * so)1819 sorwakeup(struct socket *so)
1820 {
1821 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1822 		soassertlocked_readonly(so);
1823 
1824 #ifdef SOCKET_SPLICE
1825 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1826 		/*
1827 		 * TCP has a sendbuffer that can handle multiple packets
1828 		 * at once.  So queue the stream a bit to accumulate data.
1829 		 * The sosplice thread will call somove() later and send
1830 		 * the packets calling tcp_output() only once.
1831 		 * In the UDP case, send out the packets immediately.
1832 		 * Using a thread would make things slower.
1833 		 */
1834 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1835 			task_add(sosplice_taskq, &so->so_splicetask);
1836 		else
1837 			somove(so, M_DONTWAIT);
1838 	}
1839 	if (isspliced(so))
1840 		return;
1841 #endif
1842 	sowakeup(so, &so->so_rcv);
1843 	if (so->so_upcall)
1844 		(*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT);
1845 }
1846 
1847 void
sowwakeup(struct socket * so)1848 sowwakeup(struct socket *so)
1849 {
1850 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
1851 		soassertlocked_readonly(so);
1852 
1853 #ifdef SOCKET_SPLICE
1854 	if (so->so_snd.sb_flags & SB_SPLICE)
1855 		task_add(sosplice_taskq, &so->so_sp->ssp_soback->so_splicetask);
1856 	if (issplicedback(so))
1857 		return;
1858 #endif
1859 	sowakeup(so, &so->so_snd);
1860 }
1861 
1862 int
sosetopt(struct socket * so,int level,int optname,struct mbuf * m)1863 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1864 {
1865 	int error = 0;
1866 
1867 	if (level != SOL_SOCKET) {
1868 		if (so->so_proto->pr_ctloutput) {
1869 			solock(so);
1870 			error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so,
1871 			    level, optname, m);
1872 			sounlock(so);
1873 			return (error);
1874 		}
1875 		error = ENOPROTOOPT;
1876 	} else {
1877 		switch (optname) {
1878 
1879 		case SO_LINGER:
1880 			if (m == NULL || m->m_len != sizeof (struct linger) ||
1881 			    mtod(m, struct linger *)->l_linger < 0 ||
1882 			    mtod(m, struct linger *)->l_linger > SHRT_MAX)
1883 				return (EINVAL);
1884 
1885 			solock(so);
1886 			so->so_linger = mtod(m, struct linger *)->l_linger;
1887 			if (*mtod(m, int *))
1888 				so->so_options |= optname;
1889 			else
1890 				so->so_options &= ~optname;
1891 			sounlock(so);
1892 
1893 			break;
1894 		case SO_BINDANY:
1895 			if ((error = suser(curproc)) != 0)	/* XXX */
1896 				return (error);
1897 			/* FALLTHROUGH */
1898 
1899 		case SO_DEBUG:
1900 		case SO_KEEPALIVE:
1901 		case SO_USELOOPBACK:
1902 		case SO_BROADCAST:
1903 		case SO_REUSEADDR:
1904 		case SO_REUSEPORT:
1905 		case SO_OOBINLINE:
1906 		case SO_TIMESTAMP:
1907 		case SO_ZEROIZE:
1908 			if (m == NULL || m->m_len < sizeof (int))
1909 				return (EINVAL);
1910 
1911 			solock(so);
1912 			if (*mtod(m, int *))
1913 				so->so_options |= optname;
1914 			else
1915 				so->so_options &= ~optname;
1916 			sounlock(so);
1917 
1918 			break;
1919 		case SO_DONTROUTE:
1920 			if (m == NULL || m->m_len < sizeof (int))
1921 				return (EINVAL);
1922 			if (*mtod(m, int *))
1923 				error = EOPNOTSUPP;
1924 			break;
1925 
1926 		case SO_SNDBUF:
1927 		case SO_RCVBUF:
1928 		case SO_SNDLOWAT:
1929 		case SO_RCVLOWAT:
1930 		    {
1931 			struct sockbuf *sb = (optname == SO_SNDBUF ||
1932 			    optname == SO_SNDLOWAT ?
1933 			    &so->so_snd : &so->so_rcv);
1934 			u_long cnt;
1935 
1936 			if (m == NULL || m->m_len < sizeof (int))
1937 				return (EINVAL);
1938 			cnt = *mtod(m, int *);
1939 			if ((long)cnt <= 0)
1940 				cnt = 1;
1941 
1942 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
1943 				solock(so);
1944 			mtx_enter(&sb->sb_mtx);
1945 
1946 			switch (optname) {
1947 			case SO_SNDBUF:
1948 			case SO_RCVBUF:
1949 				if (sb->sb_state &
1950 				    (SS_CANTSENDMORE | SS_CANTRCVMORE)) {
1951 					error = EINVAL;
1952 					break;
1953 				}
1954 				if (sbcheckreserve(cnt, sb->sb_wat) ||
1955 				    sbreserve(so, sb, cnt)) {
1956 					error = ENOBUFS;
1957 					break;
1958 				}
1959 				sb->sb_wat = cnt;
1960 				break;
1961 			case SO_SNDLOWAT:
1962 			case SO_RCVLOWAT:
1963 				sb->sb_lowat = (cnt > sb->sb_hiwat) ?
1964 				    sb->sb_hiwat : cnt;
1965 				break;
1966 			}
1967 
1968 			mtx_leave(&sb->sb_mtx);
1969 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
1970 				sounlock(so);
1971 
1972 			break;
1973 		    }
1974 
1975 		case SO_SNDTIMEO:
1976 		case SO_RCVTIMEO:
1977 		    {
1978 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
1979 			    &so->so_snd : &so->so_rcv);
1980 			struct timeval tv;
1981 			uint64_t nsecs;
1982 
1983 			if (m == NULL || m->m_len < sizeof (tv))
1984 				return (EINVAL);
1985 			memcpy(&tv, mtod(m, struct timeval *), sizeof tv);
1986 			if (!timerisvalid(&tv))
1987 				return (EINVAL);
1988 			nsecs = TIMEVAL_TO_NSEC(&tv);
1989 			if (nsecs == UINT64_MAX)
1990 				return (EDOM);
1991 			if (nsecs == 0)
1992 				nsecs = INFSLP;
1993 
1994 			mtx_enter(&sb->sb_mtx);
1995 			sb->sb_timeo_nsecs = nsecs;
1996 			mtx_leave(&sb->sb_mtx);
1997 			break;
1998 		    }
1999 
2000 		case SO_RTABLE:
2001 			if (so->so_proto->pr_domain &&
2002 			    so->so_proto->pr_domain->dom_protosw &&
2003 			    so->so_proto->pr_ctloutput) {
2004 				const struct domain *dom =
2005 				    so->so_proto->pr_domain;
2006 
2007 				level = dom->dom_protosw->pr_protocol;
2008 				solock(so);
2009 				error = (*so->so_proto->pr_ctloutput)
2010 				    (PRCO_SETOPT, so, level, optname, m);
2011 				sounlock(so);
2012 			} else
2013 				error = ENOPROTOOPT;
2014 			break;
2015 #ifdef SOCKET_SPLICE
2016 		case SO_SPLICE:
2017 			if (m == NULL) {
2018 				error = sosplice(so, -1, 0, NULL);
2019 			} else if (m->m_len < sizeof(int)) {
2020 				error = EINVAL;
2021 			} else if (m->m_len < sizeof(struct splice)) {
2022 				error = sosplice(so, *mtod(m, int *), 0, NULL);
2023 			} else {
2024 				error = sosplice(so,
2025 				    mtod(m, struct splice *)->sp_fd,
2026 				    mtod(m, struct splice *)->sp_max,
2027 				   &mtod(m, struct splice *)->sp_idle);
2028 			}
2029 			break;
2030 #endif /* SOCKET_SPLICE */
2031 
2032 		default:
2033 			error = ENOPROTOOPT;
2034 			break;
2035 		}
2036 	}
2037 
2038 	return (error);
2039 }
2040 
2041 int
sogetopt(struct socket * so,int level,int optname,struct mbuf * m)2042 sogetopt(struct socket *so, int level, int optname, struct mbuf *m)
2043 {
2044 	int error = 0;
2045 
2046 	if (level != SOL_SOCKET) {
2047 		if (so->so_proto->pr_ctloutput) {
2048 			m->m_len = 0;
2049 
2050 			solock(so);
2051 			error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so,
2052 			    level, optname, m);
2053 			sounlock(so);
2054 			return (error);
2055 		} else
2056 			return (ENOPROTOOPT);
2057 	} else {
2058 		m->m_len = sizeof (int);
2059 
2060 		switch (optname) {
2061 
2062 		case SO_LINGER:
2063 			m->m_len = sizeof (struct linger);
2064 			solock_shared(so);
2065 			mtod(m, struct linger *)->l_onoff =
2066 				so->so_options & SO_LINGER;
2067 			mtod(m, struct linger *)->l_linger = so->so_linger;
2068 			sounlock_shared(so);
2069 			break;
2070 
2071 		case SO_BINDANY:
2072 		case SO_USELOOPBACK:
2073 		case SO_DEBUG:
2074 		case SO_KEEPALIVE:
2075 		case SO_REUSEADDR:
2076 		case SO_REUSEPORT:
2077 		case SO_BROADCAST:
2078 		case SO_OOBINLINE:
2079 		case SO_ACCEPTCONN:
2080 		case SO_TIMESTAMP:
2081 		case SO_ZEROIZE:
2082 			*mtod(m, int *) = so->so_options & optname;
2083 			break;
2084 
2085 		case SO_DONTROUTE:
2086 			*mtod(m, int *) = 0;
2087 			break;
2088 
2089 		case SO_TYPE:
2090 			*mtod(m, int *) = so->so_type;
2091 			break;
2092 
2093 		case SO_ERROR:
2094 			solock(so);
2095 			*mtod(m, int *) = so->so_error;
2096 			so->so_error = 0;
2097 			sounlock(so);
2098 
2099 			break;
2100 
2101 		case SO_DOMAIN:
2102 			*mtod(m, int *) = so->so_proto->pr_domain->dom_family;
2103 			break;
2104 
2105 		case SO_PROTOCOL:
2106 			*mtod(m, int *) = so->so_proto->pr_protocol;
2107 			break;
2108 
2109 		case SO_SNDBUF:
2110 			*mtod(m, int *) = so->so_snd.sb_hiwat;
2111 			break;
2112 
2113 		case SO_RCVBUF:
2114 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
2115 			break;
2116 
2117 		case SO_SNDLOWAT:
2118 			*mtod(m, int *) = so->so_snd.sb_lowat;
2119 			break;
2120 
2121 		case SO_RCVLOWAT:
2122 			*mtod(m, int *) = so->so_rcv.sb_lowat;
2123 			break;
2124 
2125 		case SO_SNDTIMEO:
2126 		case SO_RCVTIMEO:
2127 		    {
2128 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2129 			    &so->so_snd : &so->so_rcv);
2130 			struct timeval tv;
2131 			uint64_t nsecs;
2132 
2133 			mtx_enter(&sb->sb_mtx);
2134 			nsecs = sb->sb_timeo_nsecs;
2135 			mtx_leave(&sb->sb_mtx);
2136 
2137 			m->m_len = sizeof(struct timeval);
2138 			memset(&tv, 0, sizeof(tv));
2139 			if (nsecs != INFSLP)
2140 				NSEC_TO_TIMEVAL(nsecs, &tv);
2141 			memcpy(mtod(m, struct timeval *), &tv, sizeof tv);
2142 			break;
2143 		    }
2144 
2145 		case SO_RTABLE:
2146 			if (so->so_proto->pr_domain &&
2147 			    so->so_proto->pr_domain->dom_protosw &&
2148 			    so->so_proto->pr_ctloutput) {
2149 				const struct domain *dom =
2150 				    so->so_proto->pr_domain;
2151 
2152 				level = dom->dom_protosw->pr_protocol;
2153 				solock(so);
2154 				error = (*so->so_proto->pr_ctloutput)
2155 				    (PRCO_GETOPT, so, level, optname, m);
2156 				sounlock(so);
2157 				if (error)
2158 					return (error);
2159 				break;
2160 			}
2161 			return (ENOPROTOOPT);
2162 
2163 #ifdef SOCKET_SPLICE
2164 		case SO_SPLICE:
2165 		    {
2166 			off_t len;
2167 
2168 			m->m_len = sizeof(off_t);
2169 			solock_shared(so);
2170 			len = so->so_sp ? so->so_sp->ssp_len : 0;
2171 			sounlock_shared(so);
2172 			memcpy(mtod(m, off_t *), &len, sizeof(off_t));
2173 			break;
2174 		    }
2175 #endif /* SOCKET_SPLICE */
2176 
2177 		case SO_PEERCRED:
2178 			if (so->so_proto->pr_protocol == AF_UNIX) {
2179 				struct unpcb *unp = sotounpcb(so);
2180 
2181 				solock(so);
2182 				if (unp->unp_flags & UNP_FEIDS) {
2183 					m->m_len = sizeof(unp->unp_connid);
2184 					memcpy(mtod(m, caddr_t),
2185 					    &(unp->unp_connid), m->m_len);
2186 					sounlock(so);
2187 					break;
2188 				}
2189 				sounlock(so);
2190 
2191 				return (ENOTCONN);
2192 			}
2193 			return (EOPNOTSUPP);
2194 
2195 		default:
2196 			return (ENOPROTOOPT);
2197 		}
2198 		return (0);
2199 	}
2200 }
2201 
2202 void
sohasoutofband(struct socket * so)2203 sohasoutofband(struct socket *so)
2204 {
2205 	pgsigio(&so->so_sigio, SIGURG, 0);
2206 	knote(&so->so_rcv.sb_klist, 0);
2207 }
2208 
2209 void
sofilt_lock(struct socket * so,struct sockbuf * sb)2210 sofilt_lock(struct socket *so, struct sockbuf *sb)
2211 {
2212 	switch (so->so_proto->pr_domain->dom_family) {
2213 	case PF_INET:
2214 	case PF_INET6:
2215 		NET_LOCK_SHARED();
2216 		break;
2217 	default:
2218 		rw_enter_write(&so->so_lock);
2219 		break;
2220 	}
2221 
2222 	mtx_enter(&sb->sb_mtx);
2223 }
2224 
2225 void
sofilt_unlock(struct socket * so,struct sockbuf * sb)2226 sofilt_unlock(struct socket *so, struct sockbuf *sb)
2227 {
2228 	mtx_leave(&sb->sb_mtx);
2229 
2230 	switch (so->so_proto->pr_domain->dom_family) {
2231 	case PF_INET:
2232 	case PF_INET6:
2233 		NET_UNLOCK_SHARED();
2234 		break;
2235 	default:
2236 		rw_exit_write(&so->so_lock);
2237 		break;
2238 	}
2239 }
2240 
2241 int
soo_kqfilter(struct file * fp,struct knote * kn)2242 soo_kqfilter(struct file *fp, struct knote *kn)
2243 {
2244 	struct socket *so = kn->kn_fp->f_data;
2245 	struct sockbuf *sb;
2246 
2247 	switch (kn->kn_filter) {
2248 	case EVFILT_READ:
2249 		kn->kn_fop = &soread_filtops;
2250 		sb = &so->so_rcv;
2251 		break;
2252 	case EVFILT_WRITE:
2253 		kn->kn_fop = &sowrite_filtops;
2254 		sb = &so->so_snd;
2255 		break;
2256 	case EVFILT_EXCEPT:
2257 		kn->kn_fop = &soexcept_filtops;
2258 		sb = &so->so_rcv;
2259 		break;
2260 	default:
2261 		return (EINVAL);
2262 	}
2263 
2264 	klist_insert(&sb->sb_klist, kn);
2265 
2266 	return (0);
2267 }
2268 
2269 void
filt_sordetach(struct knote * kn)2270 filt_sordetach(struct knote *kn)
2271 {
2272 	struct socket *so = kn->kn_fp->f_data;
2273 
2274 	klist_remove(&so->so_rcv.sb_klist, kn);
2275 }
2276 
2277 int
filt_soread(struct knote * kn,long hint)2278 filt_soread(struct knote *kn, long hint)
2279 {
2280 	struct socket *so = kn->kn_fp->f_data;
2281 	int rv = 0;
2282 
2283 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2284 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2285 		soassertlocked_readonly(so);
2286 
2287 	if (so->so_options & SO_ACCEPTCONN) {
2288 		if (so->so_rcv.sb_flags & SB_MTXLOCK)
2289 			soassertlocked_readonly(so);
2290 
2291 		kn->kn_data = so->so_qlen;
2292 		rv = (kn->kn_data != 0);
2293 
2294 		if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) {
2295 			if (so->so_state & SS_ISDISCONNECTED) {
2296 				kn->kn_flags |= __EV_HUP;
2297 				rv = 1;
2298 			} else {
2299 				rv = soreadable(so);
2300 			}
2301 		}
2302 
2303 		return rv;
2304 	}
2305 
2306 	kn->kn_data = so->so_rcv.sb_cc;
2307 #ifdef SOCKET_SPLICE
2308 	if (isspliced(so)) {
2309 		rv = 0;
2310 	} else
2311 #endif /* SOCKET_SPLICE */
2312 	if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
2313 		kn->kn_flags |= EV_EOF;
2314 		if (kn->kn_flags & __EV_POLL) {
2315 			if (so->so_state & SS_ISDISCONNECTED)
2316 				kn->kn_flags |= __EV_HUP;
2317 		}
2318 		kn->kn_fflags = so->so_error;
2319 		rv = 1;
2320 	} else if (so->so_error) {
2321 		rv = 1;
2322 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2323 		rv = (kn->kn_data >= kn->kn_sdata);
2324 	} else {
2325 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2326 	}
2327 
2328 	return rv;
2329 }
2330 
2331 void
filt_sowdetach(struct knote * kn)2332 filt_sowdetach(struct knote *kn)
2333 {
2334 	struct socket *so = kn->kn_fp->f_data;
2335 
2336 	klist_remove(&so->so_snd.sb_klist, kn);
2337 }
2338 
2339 int
filt_sowrite(struct knote * kn,long hint)2340 filt_sowrite(struct knote *kn, long hint)
2341 {
2342 	struct socket *so = kn->kn_fp->f_data;
2343 	int rv;
2344 
2345 	MUTEX_ASSERT_LOCKED(&so->so_snd.sb_mtx);
2346 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
2347 		soassertlocked_readonly(so);
2348 
2349 	kn->kn_data = sbspace(so, &so->so_snd);
2350 	if (so->so_snd.sb_state & SS_CANTSENDMORE) {
2351 		kn->kn_flags |= EV_EOF;
2352 		if (kn->kn_flags & __EV_POLL) {
2353 			if (so->so_state & SS_ISDISCONNECTED)
2354 				kn->kn_flags |= __EV_HUP;
2355 		}
2356 		kn->kn_fflags = so->so_error;
2357 		rv = 1;
2358 	} else if (so->so_error) {
2359 		rv = 1;
2360 	} else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2361 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
2362 		rv = 0;
2363 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2364 		rv = (kn->kn_data >= kn->kn_sdata);
2365 	} else {
2366 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
2367 	}
2368 
2369 	return (rv);
2370 }
2371 
2372 int
filt_soexcept(struct knote * kn,long hint)2373 filt_soexcept(struct knote *kn, long hint)
2374 {
2375 	struct socket *so = kn->kn_fp->f_data;
2376 	int rv = 0;
2377 
2378 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2379 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2380 		soassertlocked_readonly(so);
2381 
2382 #ifdef SOCKET_SPLICE
2383 	if (isspliced(so)) {
2384 		rv = 0;
2385 	} else
2386 #endif /* SOCKET_SPLICE */
2387 	if (kn->kn_sfflags & NOTE_OOB) {
2388 		if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) {
2389 			kn->kn_fflags |= NOTE_OOB;
2390 			kn->kn_data -= so->so_oobmark;
2391 			rv = 1;
2392 		}
2393 	}
2394 
2395 	if (kn->kn_flags & __EV_POLL) {
2396 		if (so->so_state & SS_ISDISCONNECTED) {
2397 			kn->kn_flags |= __EV_HUP;
2398 			rv = 1;
2399 		}
2400 	}
2401 
2402 	return rv;
2403 }
2404 
2405 int
filt_sowmodify(struct kevent * kev,struct knote * kn)2406 filt_sowmodify(struct kevent *kev, struct knote *kn)
2407 {
2408 	struct socket *so = kn->kn_fp->f_data;
2409 	int rv;
2410 
2411 	sofilt_lock(so, &so->so_snd);
2412 	rv = knote_modify(kev, kn);
2413 	sofilt_unlock(so, &so->so_snd);
2414 
2415 	return (rv);
2416 }
2417 
2418 int
filt_sowprocess(struct knote * kn,struct kevent * kev)2419 filt_sowprocess(struct knote *kn, struct kevent *kev)
2420 {
2421 	struct socket *so = kn->kn_fp->f_data;
2422 	int rv;
2423 
2424 	sofilt_lock(so, &so->so_snd);
2425 	rv = knote_process(kn, kev);
2426 	sofilt_unlock(so, &so->so_snd);
2427 
2428 	return (rv);
2429 }
2430 
2431 int
filt_sormodify(struct kevent * kev,struct knote * kn)2432 filt_sormodify(struct kevent *kev, struct knote *kn)
2433 {
2434 	struct socket *so = kn->kn_fp->f_data;
2435 	int rv;
2436 
2437 	sofilt_lock(so, &so->so_rcv);
2438 	rv = knote_modify(kev, kn);
2439 	sofilt_unlock(so, &so->so_rcv);
2440 
2441 	return (rv);
2442 }
2443 
2444 int
filt_sorprocess(struct knote * kn,struct kevent * kev)2445 filt_sorprocess(struct knote *kn, struct kevent *kev)
2446 {
2447 	struct socket *so = kn->kn_fp->f_data;
2448 	int rv;
2449 
2450 	sofilt_lock(so, &so->so_rcv);
2451 	rv = knote_process(kn, kev);
2452 	sofilt_unlock(so, &so->so_rcv);
2453 
2454 	return (rv);
2455 }
2456 
2457 #ifdef DDB
2458 void
2459 sobuf_print(struct sockbuf *,
2460     int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))));
2461 
2462 void
sobuf_print(struct sockbuf * sb,int (* pr)(const char *,...))2463 sobuf_print(struct sockbuf *sb,
2464     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2465 {
2466 	(*pr)("\tsb_cc: %lu\n", sb->sb_cc);
2467 	(*pr)("\tsb_datacc: %lu\n", sb->sb_datacc);
2468 	(*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat);
2469 	(*pr)("\tsb_wat: %lu\n", sb->sb_wat);
2470 	(*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt);
2471 	(*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax);
2472 	(*pr)("\tsb_lowat: %ld\n", sb->sb_lowat);
2473 	(*pr)("\tsb_mb: %p\n", sb->sb_mb);
2474 	(*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail);
2475 	(*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord);
2476 	(*pr)("\tsb_sel: ...\n");
2477 	(*pr)("\tsb_flags: %04x\n", sb->sb_flags);
2478 	(*pr)("\tsb_state: %04x\n", sb->sb_state);
2479 	(*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs);
2480 }
2481 
2482 void
so_print(void * v,int (* pr)(const char *,...))2483 so_print(void *v,
2484     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2485 {
2486 	struct socket *so = v;
2487 
2488 	(*pr)("socket %p\n", so);
2489 	(*pr)("so_type: %i\n", so->so_type);
2490 	(*pr)("so_options: 0x%04x\n", so->so_options); /* %b */
2491 	(*pr)("so_linger: %i\n", so->so_linger);
2492 	(*pr)("so_state: 0x%04x\n", so->so_state);
2493 	(*pr)("so_pcb: %p\n", so->so_pcb);
2494 	(*pr)("so_proto: %p\n", so->so_proto);
2495 	(*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio);
2496 
2497 	(*pr)("so_head: %p\n", so->so_head);
2498 	(*pr)("so_onq: %p\n", so->so_onq);
2499 	(*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0));
2500 	(*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q));
2501 	(*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe));
2502 	(*pr)("so_q0len: %i\n", so->so_q0len);
2503 	(*pr)("so_qlen: %i\n", so->so_qlen);
2504 	(*pr)("so_qlimit: %i\n", so->so_qlimit);
2505 	(*pr)("so_timeo: %i\n", so->so_timeo);
2506 	(*pr)("so_obmark: %lu\n", so->so_oobmark);
2507 
2508 	(*pr)("so_sp: %p\n", so->so_sp);
2509 	if (so->so_sp != NULL) {
2510 		(*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket);
2511 		(*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback);
2512 		(*pr)("\tssp_len: %lld\n",
2513 		    (unsigned long long)so->so_sp->ssp_len);
2514 		(*pr)("\tssp_max: %lld\n",
2515 		    (unsigned long long)so->so_sp->ssp_max);
2516 		(*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec,
2517 		    so->so_sp->ssp_idletv.tv_usec);
2518 		(*pr)("\tssp_idleto: %spending (@%i)\n",
2519 		    timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ",
2520 		    so->so_sp->ssp_idleto.to_time);
2521 	}
2522 
2523 	(*pr)("so_rcv:\n");
2524 	sobuf_print(&so->so_rcv, pr);
2525 	(*pr)("so_snd:\n");
2526 	sobuf_print(&so->so_snd, pr);
2527 
2528 	(*pr)("so_upcall: %p so_upcallarg: %p\n",
2529 	    so->so_upcall, so->so_upcallarg);
2530 
2531 	(*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid);
2532 	(*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid);
2533 	(*pr)("so_cpid: %d\n", so->so_cpid);
2534 }
2535 #endif
2536