1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2015, Joyent, Inc. All rights reserved.
26  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
27  * Copyright 2022 Garrett D'Amore
28  * Copyright 2024 Oxide Computer Company
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/kmem.h>
39 #include <sys/sysmacros.h>
40 #include <sys/vfs.h>
41 #include <sys/vfs_opreg.h>
42 #include <sys/vnode.h>
43 #include <sys/debug.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/file.h>
47 #include <sys/open.h>
48 #include <sys/user.h>
49 #include <sys/termios.h>
50 #include <sys/stream.h>
51 #include <sys/strsubr.h>
52 #include <sys/strsun.h>
53 #include <sys/esunddi.h>
54 #include <sys/flock.h>
55 #include <sys/modctl.h>
56 #include <sys/cmn_err.h>
57 #include <sys/mkdev.h>
58 #include <sys/pathname.h>
59 #include <sys/ddi.h>
60 #include <sys/stat.h>
61 #include <sys/fs/snode.h>
62 #include <sys/fs/dv_node.h>
63 #include <sys/zone.h>
64 
65 #include <sys/socket.h>
66 #include <sys/socketvar.h>
67 #include <netinet/in.h>
68 #include <sys/un.h>
69 #include <sys/ucred.h>
70 
71 #include <sys/tiuser.h>
72 #define	_SUN_TPI_VERSION	2
73 #include <sys/tihdr.h>
74 
75 #include <c2/audit.h>
76 
77 #include <fs/sockfs/sockcommon.h>
78 #include <fs/sockfs/sockfilter_impl.h>
79 #include <fs/sockfs/socktpi.h>
80 #include <fs/sockfs/socktpi_impl.h>
81 #include <fs/sockfs/sodirect.h>
82 
83 /*
84  * Macros that operate on struct cmsghdr.
85  * The CMSG_VALID macro does not assume that the last option buffer is padded.
86  */
87 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
88 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
89 #define	CMSG_VALID(cmsg, start, end)					\
90 	(ISALIGNED_cmsghdr(cmsg) &&					\
91 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
92 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
93 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
94 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
95 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
96 
97 dev_t sockdev;	/* For fsid in getattr */
98 
99 struct socklist socklist;
100 
101 struct kmem_cache *socket_cache;
102 
103 /*
104  * sockconf_lock protects the socket configuration (socket types and
105  * socket filters) which is changed via the sockconfig system call.
106  */
107 krwlock_t sockconf_lock;
108 
109 static int sockfs_update(kstat_t *, int);
110 static int sockfs_snapshot(kstat_t *, void *, int);
111 extern smod_info_t *sotpi_smod_create(void);
112 
113 extern void sendfile_init();
114 
115 extern int modrootloaded;
116 
117 /*
118  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
119  * Returns with the vnode held.
120  */
121 int
sogetvp(char * devpath,vnode_t ** vpp,int uioflag)122 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
123 {
124 	struct snode *csp;
125 	vnode_t *vp, *dvp;
126 	major_t maj;
127 	int error;
128 
129 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
130 
131 	/*
132 	 * Lookup the underlying filesystem vnode.
133 	 */
134 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
135 	if (error)
136 		return (error);
137 
138 	/* Check that it is the correct vnode */
139 	if (vp->v_type != VCHR) {
140 		VN_RELE(vp);
141 		return (ENOTSOCK);
142 	}
143 
144 	/*
145 	 * If devpath went through devfs, the device should already
146 	 * be configured. If devpath is a mknod file, however, we
147 	 * need to make sure the device is properly configured.
148 	 * To do this, we do something similar to spec_open()
149 	 * except that we resolve to the minor/leaf level since
150 	 * we need to return a vnode.
151 	 */
152 	csp = VTOS(VTOS(vp)->s_commonvp);
153 	if (!(csp->s_flag & SDIPSET)) {
154 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
155 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
156 		if (error == 0)
157 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
158 		VN_RELE(vp);
159 		kmem_free(pathname, MAXPATHLEN);
160 		if (error != 0)
161 			return (ENXIO);
162 		vp = dvp;	/* use the devfs vp */
163 	}
164 
165 	/* device is configured at this point */
166 	maj = getmajor(vp->v_rdev);
167 	if (!STREAMSTAB(maj)) {
168 		VN_RELE(vp);
169 		return (ENOSTR);
170 	}
171 
172 	*vpp = vp;
173 	return (0);
174 }
175 
176 /*
177  * Update the accessed, updated, or changed times in an sonode
178  * with the current time.
179  *
180  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
181  * attributes in a fstat call. (They return the current time and 0 for
182  * all timestamps, respectively.) We maintain the current timestamps
183  * here primarily so that should sockmod be popped the resulting
184  * file descriptor will behave like a stream w.r.t. the timestamps.
185  */
186 void
so_update_attrs(struct sonode * so,int flag)187 so_update_attrs(struct sonode *so, int flag)
188 {
189 	time_t now = gethrestime_sec();
190 
191 	if (SOCK_IS_NONSTR(so))
192 		return;
193 
194 	mutex_enter(&so->so_lock);
195 	so->so_flag |= flag;
196 	if (flag & SOACC)
197 		SOTOTPI(so)->sti_atime = now;
198 	if (flag & SOMOD)
199 		SOTOTPI(so)->sti_mtime = now;
200 	mutex_exit(&so->so_lock);
201 }
202 
203 extern so_create_func_t sock_comm_create_function;
204 extern so_destroy_func_t sock_comm_destroy_function;
205 /*
206  * Init function called when sockfs is loaded.
207  */
208 int
sockinit(int fstype,char * name)209 sockinit(int fstype, char *name)
210 {
211 	static const fs_operation_def_t sock_vfsops_template[] = {
212 		NULL, NULL
213 	};
214 	int error;
215 	major_t dev;
216 	char *err_str;
217 
218 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
219 	if (error != 0) {
220 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
221 		    "sockinit: bad vfs ops template");
222 		return (error);
223 	}
224 
225 	error = vn_make_ops(name, socket_vnodeops_template,
226 	    &socket_vnodeops);
227 	if (error != 0) {
228 		err_str = "sockinit: bad socket vnode ops template";
229 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
230 		socket_vnodeops = NULL;
231 		goto failure;
232 	}
233 
234 	socket_cache = kmem_cache_create("socket_cache",
235 	    sizeof (struct sonode), 0, sonode_constructor,
236 	    sonode_destructor, NULL, NULL, NULL, 0);
237 
238 	rw_init(&sockconf_lock, NULL, RW_DEFAULT, NULL);
239 
240 	error = socktpi_init();
241 	if (error != 0) {
242 		err_str = NULL;
243 		goto failure;
244 	}
245 
246 	error = sod_init();
247 	if (error != 0) {
248 		err_str = NULL;
249 		goto failure;
250 	}
251 
252 	/*
253 	 * Set up the default create and destroy functions
254 	 */
255 	sock_comm_create_function = socket_sonode_create;
256 	sock_comm_destroy_function = socket_sonode_destroy;
257 
258 	/*
259 	 * Build initial list mapping socket parameters to vnode.
260 	 */
261 	smod_init();
262 	smod_add(sotpi_smod_create());
263 
264 	sockparams_init();
265 
266 	/*
267 	 * If sockets are needed before init runs /sbin/soconfig
268 	 * it is possible to preload the sockparams list here using
269 	 * calls like:
270 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
271 	 */
272 
273 	/*
274 	 * Create a unique dev_t for use in so_fsid.
275 	 */
276 
277 	if ((dev = getudev()) == (major_t)-1)
278 		dev = 0;
279 	sockdev = makedevice(dev, 0);
280 
281 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
282 	sendfile_init();
283 
284 	/* Initialize socket filters */
285 	sof_init();
286 
287 	return (0);
288 
289 failure:
290 	(void) vfs_freevfsops_by_type(fstype);
291 	if (socket_vnodeops != NULL)
292 		vn_freevnodeops(socket_vnodeops);
293 	if (err_str != NULL)
294 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
295 	return (error);
296 }
297 
298 /*
299  * Caller must hold the mutex. Used to set SOLOCKED.
300  */
301 void
so_lock_single(struct sonode * so)302 so_lock_single(struct sonode *so)
303 {
304 	ASSERT(MUTEX_HELD(&so->so_lock));
305 
306 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
307 		cv_wait_stop(&so->so_single_cv, &so->so_lock,
308 		    SO_LOCK_WAKEUP_TIME);
309 	}
310 	so->so_flag |= SOLOCKED;
311 }
312 
313 /*
314  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
315  * Used to clear SOLOCKED or SOASYNC_UNBIND.
316  */
317 void
so_unlock_single(struct sonode * so,int flag)318 so_unlock_single(struct sonode *so, int flag)
319 {
320 	ASSERT(MUTEX_HELD(&so->so_lock));
321 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
322 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
323 	ASSERT(so->so_flag & flag);
324 	/*
325 	 * Process the T_DISCON_IND on sti_discon_ind_mp.
326 	 *
327 	 * Call to so_drain_discon_ind will result in so_lock
328 	 * being dropped and re-acquired later.
329 	 */
330 	if (!SOCK_IS_NONSTR(so)) {
331 		sotpi_info_t *sti = SOTOTPI(so);
332 
333 		if (sti->sti_discon_ind_mp != NULL)
334 			so_drain_discon_ind(so);
335 	}
336 
337 	cv_signal(&so->so_single_cv);
338 	so->so_flag &= ~flag;
339 }
340 
341 /*
342  * Caller must hold the mutex. Used to set SOREADLOCKED.
343  * If the caller wants nonblocking behavior it should set fmode.
344  */
345 int
so_lock_read(struct sonode * so,int fmode)346 so_lock_read(struct sonode *so, int fmode)
347 {
348 	ASSERT(MUTEX_HELD(&so->so_lock));
349 
350 	while (so->so_flag & SOREADLOCKED) {
351 		if (fmode & (FNDELAY|FNONBLOCK))
352 			return (EWOULDBLOCK);
353 		cv_wait_stop(&so->so_read_cv, &so->so_lock,
354 		    SO_LOCK_WAKEUP_TIME);
355 	}
356 	so->so_flag |= SOREADLOCKED;
357 	return (0);
358 }
359 
360 /*
361  * Like so_lock_read above but allows signals.
362  */
363 int
so_lock_read_intr(struct sonode * so,int fmode)364 so_lock_read_intr(struct sonode *so, int fmode)
365 {
366 	ASSERT(MUTEX_HELD(&so->so_lock));
367 
368 	while (so->so_flag & SOREADLOCKED) {
369 		if (fmode & (FNDELAY|FNONBLOCK))
370 			return (EWOULDBLOCK);
371 		if (!cv_wait_sig(&so->so_read_cv, &so->so_lock))
372 			return (EINTR);
373 	}
374 	so->so_flag |= SOREADLOCKED;
375 	return (0);
376 }
377 
378 /*
379  * Caller must hold the mutex. Used to clear SOREADLOCKED,
380  * set in so_lock_read() or so_lock_read_intr().
381  */
382 void
so_unlock_read(struct sonode * so)383 so_unlock_read(struct sonode *so)
384 {
385 	ASSERT(MUTEX_HELD(&so->so_lock));
386 	ASSERT(so->so_flag & SOREADLOCKED);
387 
388 	cv_signal(&so->so_read_cv);
389 	so->so_flag &= ~SOREADLOCKED;
390 }
391 
392 /*
393  * Verify that the specified offset falls within the mblk and
394  * that the resulting pointer is aligned.
395  * Returns NULL if not.
396  */
397 void *
sogetoff(mblk_t * mp,t_uscalar_t offset,t_uscalar_t length,uint_t align_size)398 sogetoff(mblk_t *mp, t_uscalar_t offset,
399     t_uscalar_t length, uint_t align_size)
400 {
401 	uintptr_t ptr1, ptr2;
402 
403 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
404 	ptr1 = (uintptr_t)mp->b_rptr + offset;
405 	ptr2 = (uintptr_t)ptr1 + length;
406 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
407 		eprintline(0);
408 		return (NULL);
409 	}
410 	if ((ptr1 & (align_size - 1)) != 0) {
411 		eprintline(0);
412 		return (NULL);
413 	}
414 	return ((void *)ptr1);
415 }
416 
417 /*
418  * Return the AF_UNIX underlying filesystem vnode matching a given name.
419  * Makes sure the sending and the destination sonodes are compatible.
420  * The vnode is returned held.
421  *
422  * The underlying filesystem VSOCK vnode has a v_stream pointer that
423  * references the actual stream head (hence indirectly the actual sonode).
424  */
425 static int
so_ux_lookup(struct sonode * so,struct sockaddr_un * soun,int checkaccess,vnode_t ** vpp)426 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
427     vnode_t **vpp)
428 {
429 	vnode_t		*vp;	/* Underlying filesystem vnode */
430 	vnode_t		*rvp;	/* real vnode */
431 	vnode_t		*svp;	/* sockfs vnode */
432 	struct sonode	*so2;
433 	int		error;
434 
435 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
436 	    soun->sun_path));
437 
438 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
439 	if (error) {
440 		eprintsoline(so, error);
441 		return (error);
442 	}
443 
444 	/*
445 	 * Traverse lofs mounts get the real vnode
446 	 */
447 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
448 		VN_HOLD(rvp);		/* hold the real vnode */
449 		VN_RELE(vp);		/* release hold from lookup */
450 		vp = rvp;
451 	}
452 
453 	if (vp->v_type != VSOCK) {
454 		error = ENOTSOCK;
455 		eprintsoline(so, error);
456 		goto done2;
457 	}
458 
459 	if (checkaccess) {
460 		/*
461 		 * Check that we have permissions to access the destination
462 		 * vnode. This check is not done in BSD but it is required
463 		 * by X/Open.
464 		 */
465 		error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL);
466 		if (error != 0) {
467 			eprintsoline(so, error);
468 			goto done2;
469 		}
470 	}
471 
472 	/*
473 	 * Check if the remote socket has been closed.
474 	 *
475 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
476 	 * v_stream->sd_vnode.
477 	 */
478 	mutex_enter(&vp->v_lock);
479 	if (vp->v_stream == NULL) {
480 		mutex_exit(&vp->v_lock);
481 		if (so->so_type == SOCK_DGRAM)
482 			error = EDESTADDRREQ;
483 		else
484 			error = ECONNREFUSED;
485 
486 		eprintsoline(so, error);
487 		goto done2;
488 	}
489 	ASSERT(vp->v_stream->sd_vnode);
490 	svp = vp->v_stream->sd_vnode;
491 	/*
492 	 * holding v_lock on underlying filesystem vnode and acquiring
493 	 * it on sockfs vnode. Assumes that no code ever attempts to
494 	 * acquire these locks in the reverse order.
495 	 */
496 	VN_HOLD(svp);
497 	mutex_exit(&vp->v_lock);
498 
499 	if (svp->v_type != VSOCK) {
500 		error = ENOTSOCK;
501 		eprintsoline(so, error);
502 		goto done;
503 	}
504 
505 	so2 = VTOSO(svp);
506 
507 	if (so->so_type != so2->so_type) {
508 		error = EPROTOTYPE;
509 		eprintsoline(so, error);
510 		goto done;
511 	}
512 
513 	VN_RELE(svp);
514 	*vpp = vp;
515 	return (0);
516 
517 done:
518 	VN_RELE(svp);
519 done2:
520 	VN_RELE(vp);
521 	return (error);
522 }
523 
524 /*
525  * Verify peer address for connect and sendto/sendmsg.
526  * Since sendto/sendmsg would not get synchronous errors from the transport
527  * provider we have to do these ugly checks in the socket layer to
528  * preserve compatibility with SunOS 4.X.
529  */
530 int
so_addr_verify(struct sonode * so,const struct sockaddr * name,socklen_t namelen)531 so_addr_verify(struct sonode *so, const struct sockaddr *name,
532     socklen_t namelen)
533 {
534 	int		family;
535 
536 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
537 	    (void *)so, (void *)name, namelen));
538 
539 	ASSERT(name != NULL);
540 
541 	family = so->so_family;
542 	switch (family) {
543 	case AF_INET:
544 		if (name->sa_family != family) {
545 			eprintsoline(so, EAFNOSUPPORT);
546 			return (EAFNOSUPPORT);
547 		}
548 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
549 			eprintsoline(so, EINVAL);
550 			return (EINVAL);
551 		}
552 		break;
553 	case AF_INET6: {
554 #ifdef DEBUG
555 		struct sockaddr_in6 *sin6;
556 #endif /* DEBUG */
557 
558 		if (name->sa_family != family) {
559 			eprintsoline(so, EAFNOSUPPORT);
560 			return (EAFNOSUPPORT);
561 		}
562 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
563 			eprintsoline(so, EINVAL);
564 			return (EINVAL);
565 		}
566 #ifdef DEBUG
567 		/* Verify that apps don't forget to clear sin6_scope_id etc */
568 		sin6 = (struct sockaddr_in6 *)name;
569 		if (sin6->sin6_scope_id != 0 &&
570 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
571 			zcmn_err(getzoneid(), CE_WARN,
572 			    "connect/send* with uninitialized sin6_scope_id "
573 			    "(%d) on socket. Pid = %d\n",
574 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
575 		}
576 #endif /* DEBUG */
577 		break;
578 	}
579 	case AF_UNIX:
580 		if (SOTOTPI(so)->sti_faddr_noxlate) {
581 			return (0);
582 		}
583 		if (namelen < (socklen_t)sizeof (short)) {
584 			eprintsoline(so, ENOENT);
585 			return (ENOENT);
586 		}
587 		if (name->sa_family != family) {
588 			eprintsoline(so, EAFNOSUPPORT);
589 			return (EAFNOSUPPORT);
590 		}
591 		/* MAXPATHLEN + soun_family + nul termination */
592 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
593 			eprintsoline(so, ENAMETOOLONG);
594 			return (ENAMETOOLONG);
595 		}
596 
597 		break;
598 
599 	default:
600 		/*
601 		 * Default is don't do any length or sa_family check
602 		 * to allow non-sockaddr style addresses.
603 		 */
604 		break;
605 	}
606 
607 	return (0);
608 }
609 
610 
611 /*
612  * Translate an AF_UNIX sockaddr_un to the transport internal name.
613  * Assumes caller has called so_addr_verify first.  The translated
614  * (internal form) address is stored in sti->sti_ux_taddr.
615  */
616 /*ARGSUSED*/
617 int
so_ux_addr_xlate(struct sonode * so,struct sockaddr * name,socklen_t namelen,int checkaccess,void ** addrp,socklen_t * addrlenp)618 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
619     socklen_t namelen, int checkaccess,
620     void **addrp, socklen_t *addrlenp)
621 {
622 	int			error;
623 	struct sockaddr_un	*soun;
624 	vnode_t			*vp;
625 	void			*addr;
626 	socklen_t		addrlen;
627 	sotpi_info_t		*sti = SOTOTPI(so);
628 
629 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
630 	    (void *)so, (void *)name, namelen, checkaccess));
631 
632 	ASSERT(name != NULL);
633 	ASSERT(so->so_family == AF_UNIX);
634 	ASSERT(!sti->sti_faddr_noxlate);
635 	ASSERT(namelen >= (socklen_t)sizeof (short));
636 	ASSERT(name->sa_family == AF_UNIX);
637 	soun = (struct sockaddr_un *)name;
638 	/*
639 	 * Lookup vnode for the specified path name and verify that
640 	 * it is a socket.
641 	 */
642 	error = so_ux_lookup(so, soun, checkaccess, &vp);
643 	if (error) {
644 		eprintsoline(so, error);
645 		return (error);
646 	}
647 	/*
648 	 * Use the address of the peer vnode as the address to send
649 	 * to. We release the peer vnode here. In case it has been
650 	 * closed by the time the T_CONN_REQ or T_UNITDATA_REQ reaches the
651 	 * transport the message will get an error or be dropped.
652 	 * Note that that soua_vp is never dereferenced; it's just a
653 	 * convenient value by which we can identify the peer.
654 	 */
655 	sti->sti_ux_taddr.soua_vp = vp;
656 	sti->sti_ux_taddr.soua_magic = SOU_MAGIC_EXPLICIT;
657 	addr = &sti->sti_ux_taddr;
658 	addrlen = (socklen_t)sizeof (sti->sti_ux_taddr);
659 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
660 	    addrlen, (void *)vp));
661 	VN_RELE(vp);
662 	*addrp = addr;
663 	*addrlenp = (socklen_t)addrlen;
664 	return (0);
665 }
666 
667 /*
668  * Esballoc free function for messages that contain SO_FILEP option.
669  * Decrement the reference count on the file pointers using closef.
670  */
671 void
fdbuf_free(struct fdbuf * fdbuf)672 fdbuf_free(struct fdbuf *fdbuf)
673 {
674 	int	i;
675 	struct file *fp;
676 
677 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
678 	for (i = 0; i < fdbuf->fd_numfd; i++) {
679 		/*
680 		 * We need pointer size alignment for fd_fds. On a LP64
681 		 * kernel, the required alignment is 8 bytes while
682 		 * the option headers and values are only 4 bytes
683 		 * aligned. So its safer to do a bcopy compared to
684 		 * assigning fdbuf->fd_fds[i] to fp.
685 		 */
686 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
687 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
688 		(void) closef(fp);
689 	}
690 	if (fdbuf->fd_ebuf != NULL)
691 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
692 	kmem_free(fdbuf, fdbuf->fd_size);
693 }
694 
695 /*
696  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
697  * Waits if memory is not available.
698  */
699 mblk_t *
fdbuf_allocmsg(int size,struct fdbuf * fdbuf)700 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
701 {
702 	uchar_t	*buf;
703 	mblk_t	*mp;
704 
705 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
706 	buf = kmem_alloc(size, KM_SLEEP);
707 	fdbuf->fd_ebuf = (caddr_t)buf;
708 	fdbuf->fd_ebuflen = size;
709 	fdbuf->fd_frtn.free_func = fdbuf_free;
710 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
711 
712 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
713 	mp->b_datap->db_type = M_PROTO;
714 	return (mp);
715 }
716 
717 /*
718  * Extract file descriptors from a fdbuf.
719  * Return list in rights/rightslen.
720  */
721 /*ARGSUSED*/
722 static int
fdbuf_extract(struct fdbuf * fdbuf,void * rights,int rightslen,int msg_flags)723 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen, int msg_flags)
724 {
725 	int	i, fd;
726 	int	*rp;
727 	struct file *fp;
728 	int	numfd;
729 
730 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
731 	    fdbuf->fd_numfd, rightslen));
732 
733 	numfd = fdbuf->fd_numfd;
734 	ASSERT(rightslen == numfd * (int)sizeof (int));
735 
736 	/*
737 	 * Allocate a file descriptor and increment the f_count.
738 	 * The latter is needed since we always call fdbuf_free
739 	 * which performs a closef.
740 	 */
741 	rp = (int *)rights;
742 	for (i = 0; i < numfd; i++) {
743 		if ((fd = ufalloc(0)) == -1)
744 			goto cleanup;
745 		/*
746 		 * We need pointer size alignment for fd_fds. On a LP64
747 		 * kernel, the required alignment is 8 bytes while
748 		 * the option headers and values are only 4 bytes
749 		 * aligned. So its safer to do a bcopy compared to
750 		 * assigning fdbuf->fd_fds[i] to fp.
751 		 */
752 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
753 		mutex_enter(&fp->f_tlock);
754 		fp->f_count++;
755 		mutex_exit(&fp->f_tlock);
756 		setf(fd, fp);
757 		if ((msg_flags & MSG_CMSG_CLOEXEC) != 0) {
758 			f_setfd_or(fd, FD_CLOEXEC);
759 		}
760 		if ((msg_flags & MSG_CMSG_CLOFORK) != 0) {
761 			f_setfd_or(fd, FD_CLOFORK);
762 		}
763 		*rp++ = fd;
764 		if (AU_AUDITING())
765 			audit_fdrecv(fd, fp);
766 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
767 		    i, fd, (void *)fp, fp->f_count));
768 	}
769 	return (0);
770 
771 cleanup:
772 	/*
773 	 * Undo whatever partial work the loop above has done.
774 	 */
775 	{
776 		int j;
777 
778 		rp = (int *)rights;
779 		for (j = 0; j < i; j++) {
780 			dprint(0,
781 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
782 			(void) closeandsetf(*rp++, NULL);
783 		}
784 	}
785 
786 	return (EMFILE);
787 }
788 
789 /*
790  * Insert file descriptors into an fdbuf.
791  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
792  * by calling fdbuf_free().
793  */
794 int
fdbuf_create(void * rights,int rightslen,struct fdbuf ** fdbufp)795 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
796 {
797 	int		numfd, i;
798 	int		*fds;
799 	struct file	*fp;
800 	struct fdbuf	*fdbuf;
801 	int		fdbufsize;
802 
803 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
804 
805 	numfd = rightslen / (int)sizeof (int);
806 
807 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
808 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
809 	fdbuf->fd_size = fdbufsize;
810 	fdbuf->fd_numfd = 0;
811 	fdbuf->fd_ebuf = NULL;
812 	fdbuf->fd_ebuflen = 0;
813 	fds = (int *)rights;
814 	for (i = 0; i < numfd; i++) {
815 		if ((fp = getf(fds[i])) == NULL) {
816 			fdbuf_free(fdbuf);
817 			return (EBADF);
818 		}
819 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
820 		    i, fds[i], (void *)fp, fp->f_count));
821 		mutex_enter(&fp->f_tlock);
822 		fp->f_count++;
823 		mutex_exit(&fp->f_tlock);
824 		/*
825 		 * The maximum alignment for fdbuf (or any option header
826 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
827 		 * is not sufficient for pointers (fd_fds in this case). Since
828 		 * we just did a kmem_alloc (we get a double word alignment),
829 		 * we don't need to do anything on the send side (we loose
830 		 * the double word alignment because fdbuf goes after an
831 		 * option header (eg T_unitdata_req) which is only 4 byte
832 		 * aligned). We take care of this when we extract the file
833 		 * descriptor in fdbuf_extract or fdbuf_free.
834 		 */
835 		fdbuf->fd_fds[i] = fp;
836 		fdbuf->fd_numfd++;
837 		releasef(fds[i]);
838 		if (AU_AUDITING())
839 			audit_fdsend(fds[i], fp, 0);
840 	}
841 	*fdbufp = fdbuf;
842 	return (0);
843 }
844 
845 static int
fdbuf_optlen(int rightslen)846 fdbuf_optlen(int rightslen)
847 {
848 	int numfd;
849 
850 	numfd = rightslen / (int)sizeof (int);
851 
852 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
853 }
854 
855 static t_uscalar_t
fdbuf_cmsglen(int fdbuflen)856 fdbuf_cmsglen(int fdbuflen)
857 {
858 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
859 	    (int)sizeof (struct file *) * (int)sizeof (int));
860 }
861 
862 
863 /*
864  * Return non-zero if the mblk and fdbuf are consistent.
865  */
866 static int
fdbuf_verify(mblk_t * mp,struct fdbuf * fdbuf,int fdbuflen)867 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
868 {
869 	if (fdbuflen >= FDBUF_HDRSIZE &&
870 	    fdbuflen == fdbuf->fd_size) {
871 		frtn_t *frp = mp->b_datap->db_frtnp;
872 		/*
873 		 * Check that the SO_FILEP portion of the
874 		 * message has not been modified by
875 		 * the loopback transport. The sending sockfs generates
876 		 * a message that is esballoc'ed with the free function
877 		 * being fdbuf_free() and where free_arg contains the
878 		 * identical information as the SO_FILEP content.
879 		 *
880 		 * If any of these constraints are not satisfied we
881 		 * silently ignore the option.
882 		 */
883 		ASSERT(mp);
884 		if (frp != NULL &&
885 		    frp->free_func == fdbuf_free &&
886 		    frp->free_arg != NULL &&
887 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
888 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
889 			    (void *)fdbuf, fdbuflen));
890 			return (1);
891 		} else {
892 			zcmn_err(getzoneid(), CE_WARN,
893 			    "sockfs: mismatched fdbuf content (%p)",
894 			    (void *)mp);
895 			return (0);
896 		}
897 	} else {
898 		zcmn_err(getzoneid(), CE_WARN,
899 		    "sockfs: mismatched fdbuf len %d, %d\n",
900 		    fdbuflen, fdbuf->fd_size);
901 		return (0);
902 	}
903 }
904 
905 /*
906  * When the file descriptors returned by sorecvmsg can not be passed
907  * to the application this routine will cleanup the references on
908  * the files. Start at startoff bytes into the buffer.
909  */
910 static void
close_fds(void * fdbuf,int fdbuflen,int startoff)911 close_fds(void *fdbuf, int fdbuflen, int startoff)
912 {
913 	int *fds = (int *)fdbuf;
914 	int numfd = fdbuflen / (int)sizeof (int);
915 	int i;
916 
917 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
918 
919 	for (i = 0; i < numfd; i++) {
920 		if (startoff < 0)
921 			startoff = 0;
922 		if (startoff < (int)sizeof (int)) {
923 			/*
924 			 * This file descriptor is partially or fully after
925 			 * the offset
926 			 */
927 			dprint(0,
928 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
929 			(void) closeandsetf(fds[i], NULL);
930 		}
931 		startoff -= (int)sizeof (int);
932 	}
933 }
934 
935 /*
936  * Close all file descriptors contained in the control part starting at
937  * the startoffset.
938  */
939 void
so_closefds(void * control,t_uscalar_t controllen,int oldflg,int startoff)940 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
941     int startoff)
942 {
943 	struct cmsghdr *cmsg;
944 
945 	if (control == NULL)
946 		return;
947 
948 	if (oldflg) {
949 		close_fds(control, controllen, startoff);
950 		return;
951 	}
952 	/* Scan control part for file descriptors. */
953 	for (cmsg = (struct cmsghdr *)control;
954 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
955 	    cmsg = CMSG_NEXT(cmsg)) {
956 		if (cmsg->cmsg_level == SOL_SOCKET &&
957 		    cmsg->cmsg_type == SCM_RIGHTS) {
958 			close_fds(CMSG_CONTENT(cmsg),
959 			    (int)CMSG_CONTENTLEN(cmsg),
960 			    startoff - (int)sizeof (struct cmsghdr));
961 		}
962 		startoff -= ROUNDUP_cmsglen(cmsg->cmsg_len);
963 	}
964 }
965 
966 /*
967  * Handle truncation of a cmsg when the receive buffer is not big enough.
968  * Adjust the cmsg_len header field in the last cmsg that will be included in
969  * the buffer to reflect the number of bytes included.
970  */
971 void
so_truncatecmsg(void * control,t_uscalar_t controllen,uint_t maxlen)972 so_truncatecmsg(void *control, t_uscalar_t controllen, uint_t maxlen)
973 {
974 	struct cmsghdr *cmsg;
975 	uint_t len = 0;
976 
977 	if (control == NULL)
978 		return;
979 
980 	for (cmsg = control;
981 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
982 	    cmsg = CMSG_NEXT(cmsg)) {
983 
984 		len += ROUNDUP_cmsglen(cmsg->cmsg_len);
985 
986 		if (len > maxlen) {
987 			/*
988 			 * This cmsg is the last one that will be included in
989 			 * the truncated buffer.
990 			 */
991 			socklen_t diff = len - maxlen;
992 
993 			if (diff < CMSG_CONTENTLEN(cmsg)) {
994 				dprint(1, ("so_truncatecmsg: %d -> %d\n",
995 				    cmsg->cmsg_len, cmsg->cmsg_len - diff));
996 				cmsg->cmsg_len -= diff;
997 			} else {
998 				cmsg->cmsg_len = sizeof (struct cmsghdr);
999 			}
1000 			break;
1001 		}
1002 	}
1003 }
1004 
1005 /*
1006  * Returns a pointer/length for the file descriptors contained
1007  * in the control buffer. Returns with *fdlenp == -1 if there are no
1008  * file descriptor options present. This is different than there being
1009  * a zero-length file descriptor option.
1010  * Fail if there are multiple SCM_RIGHT cmsgs.
1011  */
1012 int
so_getfdopt(void * control,t_uscalar_t controllen,int oldflg,void ** fdsp,int * fdlenp)1013 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
1014     void **fdsp, int *fdlenp)
1015 {
1016 	struct cmsghdr *cmsg;
1017 	void *fds;
1018 	int fdlen;
1019 
1020 	if (control == NULL) {
1021 		*fdsp = NULL;
1022 		*fdlenp = -1;
1023 		return (0);
1024 	}
1025 
1026 	if (oldflg) {
1027 		*fdsp = control;
1028 		if (controllen == 0)
1029 			*fdlenp = -1;
1030 		else
1031 			*fdlenp = controllen;
1032 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1033 		return (0);
1034 	}
1035 
1036 	fds = NULL;
1037 	fdlen = 0;
1038 
1039 	for (cmsg = (struct cmsghdr *)control;
1040 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1041 	    cmsg = CMSG_NEXT(cmsg)) {
1042 		if (cmsg->cmsg_level == SOL_SOCKET &&
1043 		    cmsg->cmsg_type == SCM_RIGHTS) {
1044 			if (fds != NULL)
1045 				return (EINVAL);
1046 			fds = CMSG_CONTENT(cmsg);
1047 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1048 			dprint(1, ("so_getfdopt: new %lu\n",
1049 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1050 		}
1051 	}
1052 	if (fds == NULL) {
1053 		dprint(1, ("so_getfdopt: NONE\n"));
1054 		*fdlenp = -1;
1055 	} else
1056 		*fdlenp = fdlen;
1057 	*fdsp = fds;
1058 	return (0);
1059 }
1060 
1061 /*
1062  * Return the length of the options including any file descriptor options.
1063  */
1064 t_uscalar_t
so_optlen(void * control,t_uscalar_t controllen,int oldflg)1065 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1066 {
1067 	struct cmsghdr *cmsg;
1068 	t_uscalar_t optlen = 0;
1069 	t_uscalar_t len;
1070 
1071 	if (control == NULL)
1072 		return (0);
1073 
1074 	if (oldflg)
1075 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1076 		    fdbuf_optlen(controllen)));
1077 
1078 	for (cmsg = (struct cmsghdr *)control;
1079 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1080 	    cmsg = CMSG_NEXT(cmsg)) {
1081 		if (cmsg->cmsg_level == SOL_SOCKET &&
1082 		    cmsg->cmsg_type == SCM_RIGHTS) {
1083 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1084 		} else {
1085 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1086 		}
1087 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1088 		    sizeof (struct T_opthdr));
1089 	}
1090 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1091 	    controllen, oldflg, optlen));
1092 	return (optlen);
1093 }
1094 
1095 /*
1096  * Copy options from control to the mblk. Skip any file descriptor options.
1097  */
1098 void
so_cmsg2opt(void * control,t_uscalar_t controllen,int oldflg,mblk_t * mp)1099 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1100 {
1101 	struct T_opthdr toh;
1102 	struct cmsghdr *cmsg;
1103 
1104 	if (control == NULL)
1105 		return;
1106 
1107 	if (oldflg) {
1108 		/* No real options - caller has handled file descriptors */
1109 		return;
1110 	}
1111 	for (cmsg = (struct cmsghdr *)control;
1112 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1113 	    cmsg = CMSG_NEXT(cmsg)) {
1114 		/*
1115 		 * Note: The caller handles file descriptors prior
1116 		 * to calling this function.
1117 		 */
1118 		t_uscalar_t len;
1119 
1120 		if (cmsg->cmsg_level == SOL_SOCKET &&
1121 		    cmsg->cmsg_type == SCM_RIGHTS)
1122 			continue;
1123 
1124 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1125 		toh.level = cmsg->cmsg_level;
1126 		toh.name = cmsg->cmsg_type;
1127 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1128 		toh.status = 0;
1129 
1130 		soappendmsg(mp, &toh, sizeof (toh));
1131 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1132 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1133 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1134 	}
1135 }
1136 
1137 /*
1138  * Return the length of the control message derived from the options.
1139  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1140  * When oldflg is set only include SO_FILEP.
1141  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1142  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1143  * also be checked for any possible impacts.
1144  */
1145 t_uscalar_t
so_cmsglen(mblk_t * mp,void * opt,t_uscalar_t optlen,int oldflg)1146 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1147 {
1148 	t_uscalar_t cmsglen = 0;
1149 	struct T_opthdr *tohp;
1150 	t_uscalar_t len;
1151 	t_uscalar_t last_roundup = 0;
1152 
1153 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1154 
1155 	for (tohp = (struct T_opthdr *)opt;
1156 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1157 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1158 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1159 		    tohp->level, tohp->name, tohp->len));
1160 		if (tohp->level == SOL_SOCKET &&
1161 		    (tohp->name == SO_SRCADDR ||
1162 		    tohp->name == SO_UNIX_CLOSE)) {
1163 			continue;
1164 		}
1165 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1166 			struct fdbuf *fdbuf;
1167 			int fdbuflen;
1168 
1169 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1170 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1171 
1172 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1173 				continue;
1174 			if (oldflg) {
1175 				cmsglen += fdbuf_cmsglen(fdbuflen);
1176 				continue;
1177 			}
1178 			len = fdbuf_cmsglen(fdbuflen);
1179 		} else if (tohp->level == SOL_SOCKET &&
1180 		    tohp->name == SCM_TIMESTAMP) {
1181 			if (oldflg)
1182 				continue;
1183 
1184 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1185 				len = sizeof (struct timeval);
1186 			} else {
1187 				len = sizeof (struct timeval32);
1188 			}
1189 		} else {
1190 			if (oldflg)
1191 				continue;
1192 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1193 		}
1194 		/*
1195 		 * Exclude roundup for last option to not set
1196 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1197 		 */
1198 		last_roundup = (t_uscalar_t)
1199 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1200 		    (len + (int)sizeof (struct cmsghdr)));
1201 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1202 		    last_roundup;
1203 	}
1204 	cmsglen -= last_roundup;
1205 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1206 	    optlen, oldflg, cmsglen));
1207 	return (cmsglen);
1208 }
1209 
1210 /*
1211  * Copy options from options to the control. Convert SO_FILEP to
1212  * file descriptors.
1213  * Returns errno or zero.
1214  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1215  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1216  * also be checked for any possible impacts.
1217  */
1218 int
so_opt2cmsg(mblk_t * mp,void * opt,t_uscalar_t optlen,int msg_flags,void * control,t_uscalar_t controllen)1219 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int msg_flags,
1220     void *control, t_uscalar_t controllen)
1221 {
1222 	struct T_opthdr *tohp;
1223 	struct cmsghdr *cmsg;
1224 	struct fdbuf *fdbuf;
1225 	int fdbuflen;
1226 	int error;
1227 	int oldflg = (msg_flags & MSG_XPG4_2) == 0;
1228 #if defined(DEBUG) || defined(__lint)
1229 	struct cmsghdr *cend = (struct cmsghdr *)
1230 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1231 #endif
1232 	cmsg = (struct cmsghdr *)control;
1233 
1234 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1235 
1236 	for (tohp = (struct T_opthdr *)opt;
1237 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1238 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1239 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1240 		    tohp->level, tohp->name, tohp->len));
1241 
1242 		if (tohp->level == SOL_SOCKET &&
1243 		    (tohp->name == SO_SRCADDR ||
1244 		    tohp->name == SO_UNIX_CLOSE)) {
1245 			continue;
1246 		}
1247 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1248 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1249 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1250 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1251 
1252 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1253 				return (EPROTO);
1254 			if (oldflg) {
1255 				error = fdbuf_extract(fdbuf, control,
1256 				    (int)controllen, msg_flags);
1257 				if (error != 0)
1258 					return (error);
1259 				continue;
1260 			} else {
1261 				int fdlen;
1262 
1263 				fdlen = (int)fdbuf_cmsglen(
1264 				    (int)_TPI_TOPT_DATALEN(tohp));
1265 
1266 				cmsg->cmsg_level = tohp->level;
1267 				cmsg->cmsg_type = SCM_RIGHTS;
1268 				cmsg->cmsg_len = (socklen_t)(fdlen +
1269 				    sizeof (struct cmsghdr));
1270 
1271 				error = fdbuf_extract(fdbuf,
1272 				    CMSG_CONTENT(cmsg), fdlen, msg_flags);
1273 				if (error != 0)
1274 					return (error);
1275 			}
1276 		} else if (tohp->level == SOL_SOCKET &&
1277 		    tohp->name == SCM_TIMESTAMP) {
1278 			timestruc_t *timestamp;
1279 
1280 			if (oldflg)
1281 				continue;
1282 
1283 			cmsg->cmsg_level = tohp->level;
1284 			cmsg->cmsg_type = tohp->name;
1285 
1286 			timestamp =
1287 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1288 			    sizeof (intptr_t));
1289 
1290 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1291 				struct timeval tv;
1292 
1293 				cmsg->cmsg_len = sizeof (struct timeval) +
1294 				    sizeof (struct cmsghdr);
1295 				tv.tv_sec = timestamp->tv_sec;
1296 				tv.tv_usec = timestamp->tv_nsec /
1297 				    (NANOSEC / MICROSEC);
1298 				/*
1299 				 * on LP64 systems, the struct timeval in
1300 				 * the destination will not be 8-byte aligned,
1301 				 * so use bcopy to avoid alignment trouble
1302 				 */
1303 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1304 			} else {
1305 				struct timeval32 *time32;
1306 
1307 				cmsg->cmsg_len = sizeof (struct timeval32) +
1308 				    sizeof (struct cmsghdr);
1309 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1310 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1311 				time32->tv_usec =
1312 				    (int32_t)(timestamp->tv_nsec /
1313 				    (NANOSEC / MICROSEC));
1314 			}
1315 
1316 		} else {
1317 			if (oldflg)
1318 				continue;
1319 
1320 			cmsg->cmsg_level = tohp->level;
1321 			cmsg->cmsg_type = tohp->name;
1322 			cmsg->cmsg_len = (socklen_t)sizeof (struct cmsghdr);
1323 			if (tohp->level == IPPROTO_IP &&
1324 			    (tohp->name == IP_RECVTOS ||
1325 			    tohp->name == IP_RECVTTL)) {
1326 				/*
1327 				 * The data for these is a uint8_t but, in
1328 				 * order to maintain alignment for any
1329 				 * following TPI primitives in the message,
1330 				 * there will be some trailing padding bytes
1331 				 * which are included in the TPI_TOPT_DATALEN.
1332 				 * For these types, we set the cmsg_len
1333 				 * explicitly to the correct value.
1334 				 */
1335 				cmsg->cmsg_len += (socklen_t)sizeof (uint8_t);
1336 			} else {
1337 				cmsg->cmsg_len +=
1338 				    (socklen_t)(_TPI_TOPT_DATALEN(tohp));
1339 			}
1340 
1341 			/* copy content to control data part */
1342 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1343 			    CMSG_CONTENTLEN(cmsg));
1344 		}
1345 		/* move to next CMSG structure! */
1346 		cmsg = CMSG_NEXT(cmsg);
1347 	}
1348 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1349 	    control, controllen, (void *)cend, (void *)cmsg));
1350 	ASSERT(cmsg <= cend);
1351 	return (0);
1352 }
1353 
1354 /*
1355  * Extract the SO_SRCADDR option value if present.
1356  */
1357 void
so_getopt_srcaddr(void * opt,t_uscalar_t optlen,void ** srcp,t_uscalar_t * srclenp)1358 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1359     t_uscalar_t *srclenp)
1360 {
1361 	struct T_opthdr		*tohp;
1362 
1363 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1364 
1365 	ASSERT(srcp != NULL && srclenp != NULL);
1366 	*srcp = NULL;
1367 	*srclenp = 0;
1368 
1369 	for (tohp = (struct T_opthdr *)opt;
1370 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1371 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1372 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1373 		    tohp->level, tohp->name, tohp->len));
1374 		if (tohp->level == SOL_SOCKET &&
1375 		    tohp->name == SO_SRCADDR) {
1376 			*srcp = _TPI_TOPT_DATA(tohp);
1377 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1378 		}
1379 	}
1380 }
1381 
1382 /*
1383  * Verify if the SO_UNIX_CLOSE option is present.
1384  */
1385 int
so_getopt_unix_close(void * opt,t_uscalar_t optlen)1386 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1387 {
1388 	struct T_opthdr		*tohp;
1389 
1390 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1391 
1392 	for (tohp = (struct T_opthdr *)opt;
1393 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1394 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1395 		dprint(1,
1396 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1397 		    tohp->level, tohp->name, tohp->len));
1398 		if (tohp->level == SOL_SOCKET &&
1399 		    tohp->name == SO_UNIX_CLOSE)
1400 			return (1);
1401 	}
1402 	return (0);
1403 }
1404 
1405 /*
1406  * Allocate an M_PROTO message.
1407  *
1408  * If allocation fails the behavior depends on sleepflg:
1409  *	_ALLOC_NOSLEEP	fail immediately
1410  *	_ALLOC_INTR	sleep for memory until a signal is caught
1411  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1412  */
1413 mblk_t *
soallocproto(size_t size,int sleepflg,cred_t * cr)1414 soallocproto(size_t size, int sleepflg, cred_t *cr)
1415 {
1416 	mblk_t	*mp;
1417 
1418 	/* Round up size for reuse */
1419 	size = MAX(size, 64);
1420 	if (cr != NULL)
1421 		mp = allocb_cred(size, cr, curproc->p_pid);
1422 	else
1423 		mp = allocb(size, BPRI_MED);
1424 
1425 	if (mp == NULL) {
1426 		int error;	/* Dummy - error not returned to caller */
1427 
1428 		switch (sleepflg) {
1429 		case _ALLOC_SLEEP:
1430 			if (cr != NULL) {
1431 				mp = allocb_cred_wait(size, STR_NOSIG, &error,
1432 				    cr, curproc->p_pid);
1433 			} else {
1434 				mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1435 				    &error);
1436 			}
1437 			ASSERT(mp);
1438 			break;
1439 		case _ALLOC_INTR:
1440 			if (cr != NULL) {
1441 				mp = allocb_cred_wait(size, 0, &error, cr,
1442 				    curproc->p_pid);
1443 			} else {
1444 				mp = allocb_wait(size, BPRI_MED, 0, &error);
1445 			}
1446 			if (mp == NULL) {
1447 				/* Caught signal while sleeping for memory */
1448 				eprintline(ENOBUFS);
1449 				return (NULL);
1450 			}
1451 			break;
1452 		case _ALLOC_NOSLEEP:
1453 		default:
1454 			eprintline(ENOBUFS);
1455 			return (NULL);
1456 		}
1457 	}
1458 	DB_TYPE(mp) = M_PROTO;
1459 	return (mp);
1460 }
1461 
1462 /*
1463  * Allocate an M_PROTO message with a single component.
1464  * len is the length of buf. size is the amount to allocate.
1465  *
1466  * buf can be NULL with a non-zero len.
1467  * This results in a bzero'ed chunk being placed the message.
1468  */
1469 mblk_t *
soallocproto1(const void * buf,ssize_t len,ssize_t size,int sleepflg,cred_t * cr)1470 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1471     cred_t *cr)
1472 {
1473 	mblk_t	*mp;
1474 
1475 	if (size == 0)
1476 		size = len;
1477 
1478 	ASSERT(size >= len);
1479 	/* Round up size for reuse */
1480 	size = MAX(size, 64);
1481 	mp = soallocproto(size, sleepflg, cr);
1482 	if (mp == NULL)
1483 		return (NULL);
1484 	mp->b_datap->db_type = M_PROTO;
1485 	if (len != 0) {
1486 		if (buf != NULL)
1487 			bcopy(buf, mp->b_wptr, len);
1488 		else
1489 			bzero(mp->b_wptr, len);
1490 		mp->b_wptr += len;
1491 	}
1492 	return (mp);
1493 }
1494 
1495 /*
1496  * Append buf/len to mp.
1497  * The caller has to ensure that there is enough room in the mblk.
1498  *
1499  * buf can be NULL with a non-zero len.
1500  * This results in a bzero'ed chunk being placed the message.
1501  */
1502 void
soappendmsg(mblk_t * mp,const void * buf,ssize_t len)1503 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1504 {
1505 	ASSERT(mp);
1506 
1507 	if (len != 0) {
1508 		/* Assert for room left */
1509 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1510 		if (buf != NULL)
1511 			bcopy(buf, mp->b_wptr, len);
1512 		else
1513 			bzero(mp->b_wptr, len);
1514 	}
1515 	mp->b_wptr += len;
1516 }
1517 
1518 /*
1519  * Create a message using two kernel buffers.
1520  * If size is set that will determine the allocation size (e.g. for future
1521  * soappendmsg calls). If size is zero it is derived from the buffer
1522  * lengths.
1523  */
1524 mblk_t *
soallocproto2(const void * buf1,ssize_t len1,const void * buf2,ssize_t len2,ssize_t size,int sleepflg,cred_t * cr)1525 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1526     ssize_t size, int sleepflg, cred_t *cr)
1527 {
1528 	mblk_t *mp;
1529 
1530 	if (size == 0)
1531 		size = len1 + len2;
1532 	ASSERT(size >= len1 + len2);
1533 
1534 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1535 	if (mp)
1536 		soappendmsg(mp, buf2, len2);
1537 	return (mp);
1538 }
1539 
1540 /*
1541  * Create a message using three kernel buffers.
1542  * If size is set that will determine the allocation size (for future
1543  * soappendmsg calls). If size is zero it is derived from the buffer
1544  * lengths.
1545  */
1546 mblk_t *
soallocproto3(const void * buf1,ssize_t len1,const void * buf2,ssize_t len2,const void * buf3,ssize_t len3,ssize_t size,int sleepflg,cred_t * cr)1547 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1548     const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1549 {
1550 	mblk_t *mp;
1551 
1552 	if (size == 0)
1553 		size = len1 + len2 +len3;
1554 	ASSERT(size >= len1 + len2 + len3);
1555 
1556 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1557 	if (mp != NULL) {
1558 		soappendmsg(mp, buf2, len2);
1559 		soappendmsg(mp, buf3, len3);
1560 	}
1561 	return (mp);
1562 }
1563 
1564 #ifdef DEBUG
1565 char *
pr_state(uint_t state,uint_t mode)1566 pr_state(uint_t state, uint_t mode)
1567 {
1568 	static char buf[1024];
1569 
1570 	buf[0] = 0;
1571 	if (state & SS_ISCONNECTED)
1572 		(void) strcat(buf, "ISCONNECTED ");
1573 	if (state & SS_ISCONNECTING)
1574 		(void) strcat(buf, "ISCONNECTING ");
1575 	if (state & SS_ISDISCONNECTING)
1576 		(void) strcat(buf, "ISDISCONNECTING ");
1577 	if (state & SS_CANTSENDMORE)
1578 		(void) strcat(buf, "CANTSENDMORE ");
1579 
1580 	if (state & SS_CANTRCVMORE)
1581 		(void) strcat(buf, "CANTRCVMORE ");
1582 	if (state & SS_ISBOUND)
1583 		(void) strcat(buf, "ISBOUND ");
1584 	if (state & SS_NDELAY)
1585 		(void) strcat(buf, "NDELAY ");
1586 	if (state & SS_NONBLOCK)
1587 		(void) strcat(buf, "NONBLOCK ");
1588 
1589 	if (state & SS_ASYNC)
1590 		(void) strcat(buf, "ASYNC ");
1591 	if (state & SS_ACCEPTCONN)
1592 		(void) strcat(buf, "ACCEPTCONN ");
1593 	if (state & SS_SAVEDEOR)
1594 		(void) strcat(buf, "SAVEDEOR ");
1595 
1596 	if (state & SS_RCVATMARK)
1597 		(void) strcat(buf, "RCVATMARK ");
1598 	if (state & SS_OOBPEND)
1599 		(void) strcat(buf, "OOBPEND ");
1600 	if (state & SS_HAVEOOBDATA)
1601 		(void) strcat(buf, "HAVEOOBDATA ");
1602 	if (state & SS_HADOOBDATA)
1603 		(void) strcat(buf, "HADOOBDATA ");
1604 
1605 	if (mode & SM_PRIV)
1606 		(void) strcat(buf, "PRIV ");
1607 	if (mode & SM_ATOMIC)
1608 		(void) strcat(buf, "ATOMIC ");
1609 	if (mode & SM_ADDR)
1610 		(void) strcat(buf, "ADDR ");
1611 	if (mode & SM_CONNREQUIRED)
1612 		(void) strcat(buf, "CONNREQUIRED ");
1613 
1614 	if (mode & SM_FDPASSING)
1615 		(void) strcat(buf, "FDPASSING ");
1616 	if (mode & SM_EXDATA)
1617 		(void) strcat(buf, "EXDATA ");
1618 	if (mode & SM_OPTDATA)
1619 		(void) strcat(buf, "OPTDATA ");
1620 	if (mode & SM_BYTESTREAM)
1621 		(void) strcat(buf, "BYTESTREAM ");
1622 	return (buf);
1623 }
1624 
1625 char *
pr_addr(int family,struct sockaddr * addr,t_uscalar_t addrlen)1626 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1627 {
1628 	static char buf[1024];
1629 
1630 	if (addr == NULL || addrlen == 0) {
1631 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1632 		return (buf);
1633 	}
1634 	switch (family) {
1635 	case AF_INET: {
1636 		struct sockaddr_in sin;
1637 
1638 		bcopy(addr, &sin, sizeof (sin));
1639 
1640 		(void) sprintf(buf, "(len %d) %x/%d",
1641 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1642 		break;
1643 	}
1644 	case AF_INET6: {
1645 		struct sockaddr_in6 sin6;
1646 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1647 
1648 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1649 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1650 		    addrlen,
1651 		    ntohs(piece[0]), ntohs(piece[1]),
1652 		    ntohs(piece[2]), ntohs(piece[3]),
1653 		    ntohs(piece[4]), ntohs(piece[5]),
1654 		    ntohs(piece[6]), ntohs(piece[7]),
1655 		    ntohs(sin6.sin6_port));
1656 		break;
1657 	}
1658 	case AF_UNIX: {
1659 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1660 
1661 		(void) sprintf(buf, "(len %d) %s", addrlen,
1662 		    (soun == NULL) ? "(none)" : soun->sun_path);
1663 		break;
1664 	}
1665 	default:
1666 		(void) sprintf(buf, "(unknown af %d)", family);
1667 		break;
1668 	}
1669 	return (buf);
1670 }
1671 
1672 /* The logical equivalence operator (a if-and-only-if b) */
1673 #define	EQUIVALENT(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1674 
1675 /*
1676  * Verify limitations and invariants on oob state.
1677  * Return 1 if OK, otherwise 0 so that it can be used as
1678  *	ASSERT(verify_oobstate(so));
1679  */
1680 int
so_verify_oobstate(struct sonode * so)1681 so_verify_oobstate(struct sonode *so)
1682 {
1683 	boolean_t havemark;
1684 
1685 	ASSERT(MUTEX_HELD(&so->so_lock));
1686 
1687 	/*
1688 	 * The possible state combinations are:
1689 	 *	0
1690 	 *	SS_OOBPEND
1691 	 *	SS_OOBPEND|SS_HAVEOOBDATA
1692 	 *	SS_OOBPEND|SS_HADOOBDATA
1693 	 *	SS_HADOOBDATA
1694 	 */
1695 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1696 	case 0:
1697 	case SS_OOBPEND:
1698 	case SS_OOBPEND|SS_HAVEOOBDATA:
1699 	case SS_OOBPEND|SS_HADOOBDATA:
1700 	case SS_HADOOBDATA:
1701 		break;
1702 	default:
1703 		printf("Bad oob state 1 (%p): state %s\n",
1704 		    (void *)so, pr_state(so->so_state, so->so_mode));
1705 		return (0);
1706 	}
1707 
1708 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1709 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1710 		printf("Bad oob state 2 (%p): state %s\n",
1711 		    (void *)so, pr_state(so->so_state, so->so_mode));
1712 		return (0);
1713 	}
1714 
1715 	/*
1716 	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1717 	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1718 	 */
1719 	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1720 	    SOTOTPI(so)->sti_oobsigcnt > 0;
1721 
1722 	if (!EQUIVALENT(havemark || (so->so_state & SS_RCVATMARK),
1723 	    so->so_state & SS_OOBPEND)) {
1724 		printf("Bad oob state 3 (%p): state %s\n",
1725 		    (void *)so, pr_state(so->so_state, so->so_mode));
1726 		return (0);
1727 	}
1728 
1729 	/*
1730 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1731 	 */
1732 	if (!(so->so_options & SO_OOBINLINE) &&
1733 	    !EQUIVALENT(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1734 		printf("Bad oob state 4 (%p): state %s\n",
1735 		    (void *)so, pr_state(so->so_state, so->so_mode));
1736 		return (0);
1737 	}
1738 
1739 	if (!SOCK_IS_NONSTR(so) &&
1740 	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1741 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1742 		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1743 		    SOTOTPI(so)->sti_oobcnt,
1744 		    pr_state(so->so_state, so->so_mode));
1745 		return (0);
1746 	}
1747 
1748 	return (1);
1749 }
1750 #undef	EQUIVALENT
1751 #endif /* DEBUG */
1752 
1753 /* initialize sockfs zone specific kstat related items			*/
1754 void *
sock_kstat_init(zoneid_t zoneid)1755 sock_kstat_init(zoneid_t zoneid)
1756 {
1757 	kstat_t	*ksp;
1758 
1759 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1760 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1761 
1762 	if (ksp != NULL) {
1763 		ksp->ks_update = sockfs_update;
1764 		ksp->ks_snapshot = sockfs_snapshot;
1765 		ksp->ks_lock = &socklist.sl_lock;
1766 		ksp->ks_private = (void *)(uintptr_t)zoneid;
1767 		kstat_install(ksp);
1768 	}
1769 
1770 	return (ksp);
1771 }
1772 
1773 /* tear down sockfs zone specific kstat related items			*/
1774 /*ARGSUSED*/
1775 void
sock_kstat_fini(zoneid_t zoneid,void * arg)1776 sock_kstat_fini(zoneid_t zoneid, void *arg)
1777 {
1778 	kstat_t *ksp = (kstat_t *)arg;
1779 
1780 	if (ksp != NULL) {
1781 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1782 		kstat_delete(ksp);
1783 	}
1784 }
1785 
1786 /*
1787  * Zones:
1788  * Note that nactive is going to be different for each zone.
1789  * This means we require kstat to call sockfs_update and then sockfs_snapshot
1790  * for the same zone, or sockfs_snapshot will be taken into the wrong size
1791  * buffer. This is safe, but if the buffer is too small, user will not be
1792  * given details of all sockets. However, as this kstat has a ks_lock, kstat
1793  * driver will keep it locked between the update and the snapshot, so no
1794  * other process (zone) can currently get inbetween resulting in a wrong size
1795  * buffer allocation.
1796  */
1797 static int
sockfs_update(kstat_t * ksp,int rw)1798 sockfs_update(kstat_t *ksp, int rw)
1799 {
1800 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1801 	struct sonode	*so;		/* current sonode on socklist	*/
1802 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1803 
1804 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1805 
1806 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1807 		return (EACCES);
1808 	}
1809 
1810 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1811 		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1812 			nactive++;
1813 		}
1814 	}
1815 	ksp->ks_ndata = nactive;
1816 	ksp->ks_data_size = nactive * sizeof (struct sockinfo);
1817 
1818 	return (0);
1819 }
1820 
1821 static int
sockfs_snapshot(kstat_t * ksp,void * buf,int rw)1822 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1823 {
1824 	int			ns;	/* # of sonodes we've copied	*/
1825 	struct sonode		*so;	/* current sonode on socklist	*/
1826 	struct sockinfo		*psi;	/* where we put sockinfo data	*/
1827 	t_uscalar_t		sn_len;	/* soa_len			*/
1828 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1829 	sotpi_info_t		*sti;
1830 
1831 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1832 
1833 	ksp->ks_snaptime = gethrtime();
1834 
1835 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1836 		return (EACCES);
1837 	}
1838 
1839 	/*
1840 	 * For each sonode on the socklist, we massage the important
1841 	 * info into buf, in sockinfo format.
1842 	 */
1843 	psi = (struct sockinfo *)buf;
1844 	ns = 0;
1845 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1846 		vattr_t attr;
1847 
1848 		/* only stuff active sonodes and the same zone:		*/
1849 		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1850 			continue;
1851 		}
1852 
1853 		/*
1854 		 * If the sonode was activated between the update and the
1855 		 * snapshot, we're done - as this is only a snapshot.
1856 		 */
1857 		if ((caddr_t)(psi) >= (caddr_t)buf + ksp->ks_data_size) {
1858 			break;
1859 		}
1860 
1861 		sti = SOTOTPI(so);
1862 		/* copy important info into buf:			*/
1863 		psi->si_size = sizeof (struct sockinfo);
1864 		psi->si_family = so->so_family;
1865 		psi->si_type = so->so_type;
1866 		psi->si_flag = so->so_flag;
1867 		psi->si_state = so->so_state;
1868 		psi->si_serv_type = sti->sti_serv_type;
1869 		psi->si_ux_laddr_sou_magic = sti->sti_ux_laddr.soua_magic;
1870 		psi->si_ux_faddr_sou_magic = sti->sti_ux_faddr.soua_magic;
1871 		psi->si_laddr_soa_len = sti->sti_laddr.soa_len;
1872 		psi->si_faddr_soa_len = sti->sti_faddr.soa_len;
1873 		psi->si_szoneid = so->so_zoneid;
1874 		psi->si_faddr_noxlate = sti->sti_faddr_noxlate;
1875 
1876 		/*
1877 		 * Grab the inode, if possible.
1878 		 * This must be done before entering so_lock as VOP_GETATTR
1879 		 * will acquire it.
1880 		 */
1881 		if (so->so_vnode == NULL ||
1882 		    VOP_GETATTR(so->so_vnode, &attr, 0, CRED(), NULL) != 0)
1883 			attr.va_nodeid = 0;
1884 
1885 		psi->si_inode = attr.va_nodeid;
1886 
1887 		mutex_enter(&so->so_lock);
1888 
1889 		if (sti->sti_laddr_sa != NULL) {
1890 			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1891 			sn_len = sti->sti_laddr_len;
1892 			ASSERT(sn_len <= sizeof (short) +
1893 			    sizeof (psi->si_laddr_sun_path));
1894 
1895 			psi->si_laddr_family =
1896 			    sti->sti_laddr_sa->sa_family;
1897 			if (sn_len != 0) {
1898 				/* AF_UNIX socket names are NULL terminated */
1899 				(void) strncpy(psi->si_laddr_sun_path,
1900 				    sti->sti_laddr_sa->sa_data,
1901 				    sizeof (psi->si_laddr_sun_path));
1902 				sn_len = strlen(psi->si_laddr_sun_path);
1903 			}
1904 			psi->si_laddr_sun_path[sn_len] = 0;
1905 		}
1906 
1907 		if (sti->sti_faddr_sa != NULL) {
1908 			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1909 			sn_len = sti->sti_faddr_len;
1910 			ASSERT(sn_len <= sizeof (short) +
1911 			    sizeof (psi->si_faddr_sun_path));
1912 
1913 			psi->si_faddr_family =
1914 			    sti->sti_faddr_sa->sa_family;
1915 			if (sn_len != 0) {
1916 				(void) strncpy(psi->si_faddr_sun_path,
1917 				    sti->sti_faddr_sa->sa_data,
1918 				    sizeof (psi->si_faddr_sun_path));
1919 				sn_len = strlen(psi->si_faddr_sun_path);
1920 			}
1921 			psi->si_faddr_sun_path[sn_len] = 0;
1922 		}
1923 
1924 		mutex_exit(&so->so_lock);
1925 
1926 		(void) snprintf(psi->si_son_straddr,
1927 		    sizeof (psi->si_son_straddr), "%p", (void *)so);
1928 		(void) snprintf(psi->si_lvn_straddr,
1929 		    sizeof (psi->si_lvn_straddr), "%p",
1930 		    (void *)sti->sti_ux_laddr.soua_vp);
1931 		(void) snprintf(psi->si_fvn_straddr,
1932 		    sizeof (psi->si_fvn_straddr), "%p",
1933 		    (void *)sti->sti_ux_faddr.soua_vp);
1934 
1935 		ns++;
1936 		psi++;
1937 	}
1938 
1939 	ksp->ks_ndata = ns;
1940 	return (0);
1941 }
1942 
1943 ssize_t
soreadfile(file_t * fp,uchar_t * buf,u_offset_t fileoff,int * err,size_t size)1944 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1945 {
1946 	struct uio auio;
1947 	struct iovec aiov[1];
1948 	register vnode_t *vp;
1949 	int ioflag, rwflag;
1950 	ssize_t cnt;
1951 	int error = 0;
1952 	int iovcnt = 0;
1953 	short fflag;
1954 
1955 	vp = fp->f_vnode;
1956 	fflag = fp->f_flag;
1957 
1958 	rwflag = 0;
1959 	aiov[0].iov_base = (caddr_t)buf;
1960 	aiov[0].iov_len = size;
1961 	iovcnt = 1;
1962 	cnt = (ssize_t)size;
1963 	(void) VOP_RWLOCK(vp, rwflag, NULL);
1964 
1965 	auio.uio_loffset = fileoff;
1966 	auio.uio_iov = aiov;
1967 	auio.uio_iovcnt = iovcnt;
1968 	auio.uio_resid = cnt;
1969 	auio.uio_segflg = UIO_SYSSPACE;
1970 	auio.uio_llimit = MAXOFFSET_T;
1971 	auio.uio_fmode = fflag;
1972 	auio.uio_extflg = UIO_COPY_CACHED;
1973 
1974 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1975 
1976 	/* If read sync is not asked for, filter sync flags */
1977 	if ((ioflag & FRSYNC) == 0)
1978 		ioflag &= ~(FSYNC|FDSYNC);
1979 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1980 	cnt -= auio.uio_resid;
1981 
1982 	VOP_RWUNLOCK(vp, rwflag, NULL);
1983 
1984 	if (error == EINTR && cnt != 0)
1985 		error = 0;
1986 
1987 	if (error != 0) {
1988 		*err = error;
1989 		return (0);
1990 	} else {
1991 		*err = 0;
1992 		return (cnt);
1993 	}
1994 }
1995 
1996 int
so_copyin(const void * from,void * to,size_t size,int fromkernel)1997 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1998 {
1999 	if (fromkernel) {
2000 		bcopy(from, to, size);
2001 		return (0);
2002 	}
2003 	return (xcopyin(from, to, size));
2004 }
2005 
2006 int
so_copyout(const void * from,void * to,size_t size,int tokernel)2007 so_copyout(const void *from, void *to, size_t size, int tokernel)
2008 {
2009 	if (tokernel) {
2010 		bcopy(from, to, size);
2011 		return (0);
2012 	}
2013 	return (xcopyout(from, to, size));
2014 }
2015