xref: /openbsd/sys/kern/uipc_socket.c (revision 9953a406)
1 /*	$OpenBSD: uipc_socket.c,v 1.335 2024/05/17 19:11:14 mvs Exp $	*/
2 /*	$NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/event.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/unpcb.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51 #include <sys/rwlock.h>
52 #include <sys/time.h>
53 #include <sys/refcnt.h>
54 
55 #ifdef DDB
56 #include <machine/db_machdep.h>
57 #endif
58 
59 void	sbsync(struct sockbuf *, struct mbuf *);
60 
61 int	sosplice(struct socket *, int, off_t, struct timeval *);
62 void	sounsplice(struct socket *, struct socket *, int);
63 void	soidle(void *);
64 void	sotask(void *);
65 void	soreaper(void *);
66 void	soput(void *);
67 int	somove(struct socket *, int);
68 void	sorflush(struct socket *);
69 
70 void	filt_sordetach(struct knote *kn);
71 int	filt_soread(struct knote *kn, long hint);
72 void	filt_sowdetach(struct knote *kn);
73 int	filt_sowrite(struct knote *kn, long hint);
74 int	filt_soexcept(struct knote *kn, long hint);
75 
76 int	filt_sowmodify(struct kevent *kev, struct knote *kn);
77 int	filt_sowprocess(struct knote *kn, struct kevent *kev);
78 
79 int	filt_sormodify(struct kevent *kev, struct knote *kn);
80 int	filt_sorprocess(struct knote *kn, struct kevent *kev);
81 
82 const struct filterops soread_filtops = {
83 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
84 	.f_attach	= NULL,
85 	.f_detach	= filt_sordetach,
86 	.f_event	= filt_soread,
87 	.f_modify	= filt_sormodify,
88 	.f_process	= filt_sorprocess,
89 };
90 
91 const struct filterops sowrite_filtops = {
92 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
93 	.f_attach	= NULL,
94 	.f_detach	= filt_sowdetach,
95 	.f_event	= filt_sowrite,
96 	.f_modify	= filt_sowmodify,
97 	.f_process	= filt_sowprocess,
98 };
99 
100 const struct filterops soexcept_filtops = {
101 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
102 	.f_attach	= NULL,
103 	.f_detach	= filt_sordetach,
104 	.f_event	= filt_soexcept,
105 	.f_modify	= filt_sormodify,
106 	.f_process	= filt_sorprocess,
107 };
108 
109 #ifndef SOMINCONN
110 #define SOMINCONN 80
111 #endif /* SOMINCONN */
112 
113 int	somaxconn = SOMAXCONN;
114 int	sominconn = SOMINCONN;
115 
116 struct pool socket_pool;
117 #ifdef SOCKET_SPLICE
118 struct pool sosplice_pool;
119 struct taskq *sosplice_taskq;
120 struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk");
121 #endif
122 
123 void
soinit(void)124 soinit(void)
125 {
126 	pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0,
127 	    "sockpl", NULL);
128 #ifdef SOCKET_SPLICE
129 	pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0,
130 	    "sosppl", NULL);
131 #endif
132 }
133 
134 struct socket *
soalloc(const struct protosw * prp,int wait)135 soalloc(const struct protosw *prp, int wait)
136 {
137 	const struct domain *dp = prp->pr_domain;
138 	struct socket *so;
139 
140 	so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
141 	    PR_ZERO);
142 	if (so == NULL)
143 		return (NULL);
144 	rw_init_flags(&so->so_lock, dp->dom_name, RWL_DUPOK);
145 	refcnt_init(&so->so_refcnt);
146 	rw_init(&so->so_rcv.sb_lock, "sbufrcv");
147 	rw_init(&so->so_snd.sb_lock, "sbufsnd");
148 	mtx_init_flags(&so->so_rcv.sb_mtx, IPL_MPFLOOR, "sbrcv", 0);
149 	mtx_init_flags(&so->so_snd.sb_mtx, IPL_MPFLOOR, "sbsnd", 0);
150 	klist_init_mutex(&so->so_rcv.sb_klist, &so->so_rcv.sb_mtx);
151 	klist_init_mutex(&so->so_snd.sb_klist, &so->so_snd.sb_mtx);
152 	sigio_init(&so->so_sigio);
153 	TAILQ_INIT(&so->so_q0);
154 	TAILQ_INIT(&so->so_q);
155 
156 	switch (dp->dom_family) {
157 	case AF_INET:
158 	case AF_INET6:
159 		switch (prp->pr_type) {
160 		case SOCK_RAW:
161 			so->so_snd.sb_flags |= SB_MTXLOCK;
162 			/* FALLTHROUGH */
163 		case SOCK_DGRAM:
164 			so->so_rcv.sb_flags |= SB_MTXLOCK;
165 			break;
166 		}
167 		break;
168 	case AF_KEY:
169 	case AF_UNIX:
170 		so->so_snd.sb_flags |= SB_MTXLOCK;
171 		so->so_rcv.sb_flags |= SB_MTXLOCK;
172 		break;
173 	}
174 
175 	return (so);
176 }
177 
178 /*
179  * Socket operation routines.
180  * These routines are called by the routines in
181  * sys_socket.c or from a system process, and
182  * implement the semantics of socket operations by
183  * switching out to the protocol specific routines.
184  */
185 int
socreate(int dom,struct socket ** aso,int type,int proto)186 socreate(int dom, struct socket **aso, int type, int proto)
187 {
188 	struct proc *p = curproc;		/* XXX */
189 	const struct protosw *prp;
190 	struct socket *so;
191 	int error;
192 
193 	if (proto)
194 		prp = pffindproto(dom, proto, type);
195 	else
196 		prp = pffindtype(dom, type);
197 	if (prp == NULL || prp->pr_usrreqs == NULL)
198 		return (EPROTONOSUPPORT);
199 	if (prp->pr_type != type)
200 		return (EPROTOTYPE);
201 	so = soalloc(prp, M_WAIT);
202 	so->so_type = type;
203 	if (suser(p) == 0)
204 		so->so_state = SS_PRIV;
205 	so->so_ruid = p->p_ucred->cr_ruid;
206 	so->so_euid = p->p_ucred->cr_uid;
207 	so->so_rgid = p->p_ucred->cr_rgid;
208 	so->so_egid = p->p_ucred->cr_gid;
209 	so->so_cpid = p->p_p->ps_pid;
210 	so->so_proto = prp;
211 	so->so_snd.sb_timeo_nsecs = INFSLP;
212 	so->so_rcv.sb_timeo_nsecs = INFSLP;
213 
214 	solock(so);
215 	error = pru_attach(so, proto, M_WAIT);
216 	if (error) {
217 		so->so_state |= SS_NOFDREF;
218 		/* sofree() calls sounlock(). */
219 		sofree(so, 0);
220 		return (error);
221 	}
222 	sounlock(so);
223 	*aso = so;
224 	return (0);
225 }
226 
227 int
sobind(struct socket * so,struct mbuf * nam,struct proc * p)228 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
229 {
230 	soassertlocked(so);
231 	return pru_bind(so, nam, p);
232 }
233 
234 int
solisten(struct socket * so,int backlog)235 solisten(struct socket *so, int backlog)
236 {
237 	int somaxconn_local = READ_ONCE(somaxconn);
238 	int sominconn_local = READ_ONCE(sominconn);
239 	int error;
240 
241 	switch (so->so_type) {
242 	case SOCK_STREAM:
243 	case SOCK_SEQPACKET:
244 		break;
245 	default:
246 		return (EOPNOTSUPP);
247 	}
248 
249 	soassertlocked(so);
250 
251 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING))
252 		return (EINVAL);
253 #ifdef SOCKET_SPLICE
254 	if (isspliced(so) || issplicedback(so))
255 		return (EOPNOTSUPP);
256 #endif /* SOCKET_SPLICE */
257 	error = pru_listen(so);
258 	if (error)
259 		return (error);
260 	if (TAILQ_FIRST(&so->so_q) == NULL)
261 		so->so_options |= SO_ACCEPTCONN;
262 	if (backlog < 0 || backlog > somaxconn_local)
263 		backlog = somaxconn_local;
264 	if (backlog < sominconn_local)
265 		backlog = sominconn_local;
266 	so->so_qlimit = backlog;
267 	return (0);
268 }
269 
270 #define SOSP_FREEING_READ	1
271 #define SOSP_FREEING_WRITE	2
272 void
sofree(struct socket * so,int keep_lock)273 sofree(struct socket *so, int keep_lock)
274 {
275 	int persocket = solock_persocket(so);
276 
277 	soassertlocked(so);
278 
279 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
280 		if (!keep_lock)
281 			sounlock(so);
282 		return;
283 	}
284 	if (so->so_head) {
285 		struct socket *head = so->so_head;
286 
287 		/*
288 		 * We must not decommission a socket that's on the accept(2)
289 		 * queue.  If we do, then accept(2) may hang after select(2)
290 		 * indicated that the listening socket was ready.
291 		 */
292 		if (so->so_onq == &head->so_q) {
293 			if (!keep_lock)
294 				sounlock(so);
295 			return;
296 		}
297 
298 		if (persocket) {
299 			/*
300 			 * Concurrent close of `head' could
301 			 * abort `so' due to re-lock.
302 			 */
303 			soref(so);
304 			soref(head);
305 			sounlock(so);
306 			solock(head);
307 			solock(so);
308 
309 			if (so->so_onq != &head->so_q0) {
310 				sounlock(head);
311 				sounlock(so);
312 				sorele(head);
313 				sorele(so);
314 				return;
315 			}
316 
317 			sorele(head);
318 			sorele(so);
319 		}
320 
321 		soqremque(so, 0);
322 
323 		if (persocket)
324 			sounlock(head);
325 	}
326 
327 	if (persocket) {
328 		sounlock(so);
329 		refcnt_finalize(&so->so_refcnt, "sofinal");
330 		solock(so);
331 	}
332 
333 	sigio_free(&so->so_sigio);
334 	klist_free(&so->so_rcv.sb_klist);
335 	klist_free(&so->so_snd.sb_klist);
336 #ifdef SOCKET_SPLICE
337 	if (issplicedback(so)) {
338 		int freeing = SOSP_FREEING_WRITE;
339 
340 		if (so->so_sp->ssp_soback == so)
341 			freeing |= SOSP_FREEING_READ;
342 		sounsplice(so->so_sp->ssp_soback, so, freeing);
343 	}
344 	if (isspliced(so)) {
345 		int freeing = SOSP_FREEING_READ;
346 
347 		if (so == so->so_sp->ssp_socket)
348 			freeing |= SOSP_FREEING_WRITE;
349 		sounsplice(so, so->so_sp->ssp_socket, freeing);
350 	}
351 #endif /* SOCKET_SPLICE */
352 
353 	mtx_enter(&so->so_snd.sb_mtx);
354 	sbrelease(so, &so->so_snd);
355 	mtx_leave(&so->so_snd.sb_mtx);
356 
357 	/*
358 	 * Unlocked dispose and cleanup is safe. Socket is unlinked
359 	 * from everywhere. Even concurrent sotask() thread will not
360 	 * call somove().
361 	 */
362 	if (so->so_proto->pr_flags & PR_RIGHTS &&
363 	    so->so_proto->pr_domain->dom_dispose)
364 		(*so->so_proto->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
365 	m_purge(so->so_rcv.sb_mb);
366 
367 	if (!keep_lock)
368 		sounlock(so);
369 
370 #ifdef SOCKET_SPLICE
371 	if (so->so_sp) {
372 		/* Reuse splice idle, sounsplice() has been called before. */
373 		timeout_set_proc(&so->so_sp->ssp_idleto, soreaper, so);
374 		timeout_add(&so->so_sp->ssp_idleto, 0);
375 	} else
376 #endif /* SOCKET_SPLICE */
377 	{
378 		pool_put(&socket_pool, so);
379 	}
380 }
381 
382 static inline uint64_t
solinger_nsec(struct socket * so)383 solinger_nsec(struct socket *so)
384 {
385 	if (so->so_linger == 0)
386 		return INFSLP;
387 
388 	return SEC_TO_NSEC(so->so_linger);
389 }
390 
391 /*
392  * Close a socket on last file table reference removal.
393  * Initiate disconnect if connected.
394  * Free socket when disconnect complete.
395  */
396 int
soclose(struct socket * so,int flags)397 soclose(struct socket *so, int flags)
398 {
399 	struct socket *so2;
400 	int error = 0;
401 
402 	solock(so);
403 	/* Revoke async IO early. There is a final revocation in sofree(). */
404 	sigio_free(&so->so_sigio);
405 	if (so->so_state & SS_ISCONNECTED) {
406 		if (so->so_pcb == NULL)
407 			goto discard;
408 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
409 			error = sodisconnect(so);
410 			if (error)
411 				goto drop;
412 		}
413 		if (so->so_options & SO_LINGER) {
414 			if ((so->so_state & SS_ISDISCONNECTING) &&
415 			    (flags & MSG_DONTWAIT))
416 				goto drop;
417 			while (so->so_state & SS_ISCONNECTED) {
418 				error = sosleep_nsec(so, &so->so_timeo,
419 				    PSOCK | PCATCH, "netcls",
420 				    solinger_nsec(so));
421 				if (error)
422 					break;
423 			}
424 		}
425 	}
426 drop:
427 	if (so->so_pcb) {
428 		int error2;
429 		error2 = pru_detach(so);
430 		if (error == 0)
431 			error = error2;
432 	}
433 	if (so->so_options & SO_ACCEPTCONN) {
434 		int persocket = solock_persocket(so);
435 
436 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) {
437 			if (persocket)
438 				solock(so2);
439 			(void) soqremque(so2, 0);
440 			if (persocket)
441 				sounlock(so);
442 			soabort(so2);
443 			if (persocket)
444 				solock(so);
445 		}
446 		while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) {
447 			if (persocket)
448 				solock(so2);
449 			(void) soqremque(so2, 1);
450 			if (persocket)
451 				sounlock(so);
452 			soabort(so2);
453 			if (persocket)
454 				solock(so);
455 		}
456 	}
457 discard:
458 	if (so->so_state & SS_NOFDREF)
459 		panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type);
460 	so->so_state |= SS_NOFDREF;
461 	/* sofree() calls sounlock(). */
462 	sofree(so, 0);
463 	return (error);
464 }
465 
466 void
soabort(struct socket * so)467 soabort(struct socket *so)
468 {
469 	soassertlocked(so);
470 	pru_abort(so);
471 }
472 
473 int
soaccept(struct socket * so,struct mbuf * nam)474 soaccept(struct socket *so, struct mbuf *nam)
475 {
476 	int error = 0;
477 
478 	soassertlocked(so);
479 
480 	if ((so->so_state & SS_NOFDREF) == 0)
481 		panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type);
482 	so->so_state &= ~SS_NOFDREF;
483 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
484 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
485 		error = pru_accept(so, nam);
486 	else
487 		error = ECONNABORTED;
488 	return (error);
489 }
490 
491 int
soconnect(struct socket * so,struct mbuf * nam)492 soconnect(struct socket *so, struct mbuf *nam)
493 {
494 	int error;
495 
496 	soassertlocked(so);
497 
498 	if (so->so_options & SO_ACCEPTCONN)
499 		return (EOPNOTSUPP);
500 	/*
501 	 * If protocol is connection-based, can only connect once.
502 	 * Otherwise, if connected, try to disconnect first.
503 	 * This allows user to disconnect by connecting to, e.g.,
504 	 * a null address.
505 	 */
506 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
507 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
508 	    (error = sodisconnect(so))))
509 		error = EISCONN;
510 	else
511 		error = pru_connect(so, nam);
512 	return (error);
513 }
514 
515 int
soconnect2(struct socket * so1,struct socket * so2)516 soconnect2(struct socket *so1, struct socket *so2)
517 {
518 	int persocket, error;
519 
520 	if ((persocket = solock_persocket(so1)))
521 		solock_pair(so1, so2);
522 	else
523 		solock(so1);
524 
525 	error = pru_connect2(so1, so2);
526 
527 	if (persocket)
528 		sounlock(so2);
529 	sounlock(so1);
530 	return (error);
531 }
532 
533 int
sodisconnect(struct socket * so)534 sodisconnect(struct socket *so)
535 {
536 	int error;
537 
538 	soassertlocked(so);
539 
540 	if ((so->so_state & SS_ISCONNECTED) == 0)
541 		return (ENOTCONN);
542 	if (so->so_state & SS_ISDISCONNECTING)
543 		return (EALREADY);
544 	error = pru_disconnect(so);
545 	return (error);
546 }
547 
548 int m_getuio(struct mbuf **, int, long, struct uio *);
549 
550 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
551 /*
552  * Send on a socket.
553  * If send must go all at once and message is larger than
554  * send buffering, then hard error.
555  * Lock against other senders.
556  * If must go all at once and not enough room now, then
557  * inform user that this would block and do nothing.
558  * Otherwise, if nonblocking, send as much as possible.
559  * The data to be sent is described by "uio" if nonzero,
560  * otherwise by the mbuf chain "top" (which must be null
561  * if uio is not).  Data provided in mbuf chain must be small
562  * enough to send all at once.
563  *
564  * Returns nonzero on error, timeout or signal; callers
565  * must check for short counts if EINTR/ERESTART are returned.
566  * Data and control buffers are freed on return.
567  */
568 int
sosend(struct socket * so,struct mbuf * addr,struct uio * uio,struct mbuf * top,struct mbuf * control,int flags)569 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
570     struct mbuf *control, int flags)
571 {
572 	long space, clen = 0;
573 	size_t resid;
574 	int error;
575 	int atomic = sosendallatonce(so) || top;
576 	int dosolock = ((so->so_snd.sb_flags & SB_MTXLOCK) == 0);
577 
578 	if (uio)
579 		resid = uio->uio_resid;
580 	else
581 		resid = top->m_pkthdr.len;
582 	/* MSG_EOR on a SOCK_STREAM socket is invalid. */
583 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
584 		m_freem(top);
585 		m_freem(control);
586 		return (EINVAL);
587 	}
588 	if (uio && uio->uio_procp)
589 		uio->uio_procp->p_ru.ru_msgsnd++;
590 	if (control) {
591 		/*
592 		 * In theory clen should be unsigned (since control->m_len is).
593 		 * However, space must be signed, as it might be less than 0
594 		 * if we over-committed, and we must use a signed comparison
595 		 * of space and clen.
596 		 */
597 		clen = control->m_len;
598 		/* reserve extra space for AF_UNIX's internalize */
599 		if (so->so_proto->pr_domain->dom_family == AF_UNIX &&
600 		    clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) &&
601 		    mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
602 			clen = CMSG_SPACE(
603 			    (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) *
604 			    (sizeof(struct fdpass) / sizeof(int)));
605 	}
606 
607 #define	snderr(errno)	{ error = errno; goto release; }
608 
609 restart:
610 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
611 		goto out;
612 	if (dosolock)
613 		solock_shared(so);
614 	sb_mtx_lock(&so->so_snd);
615 	so->so_snd.sb_state |= SS_ISSENDING;
616 	do {
617 		if (so->so_snd.sb_state & SS_CANTSENDMORE)
618 			snderr(EPIPE);
619 		if ((error = READ_ONCE(so->so_error))) {
620 			so->so_error = 0;
621 			snderr(error);
622 		}
623 		if ((so->so_state & SS_ISCONNECTED) == 0) {
624 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
625 				if (!(resid == 0 && clen != 0))
626 					snderr(ENOTCONN);
627 			} else if (addr == NULL)
628 				snderr(EDESTADDRREQ);
629 		}
630 		space = sbspace(so, &so->so_snd);
631 		if (flags & MSG_OOB)
632 			space += 1024;
633 		if (so->so_proto->pr_domain->dom_family == AF_UNIX) {
634 			if (atomic && resid > so->so_snd.sb_hiwat)
635 				snderr(EMSGSIZE);
636 		} else {
637 			if (clen > so->so_snd.sb_hiwat ||
638 			    (atomic && resid > so->so_snd.sb_hiwat - clen))
639 				snderr(EMSGSIZE);
640 		}
641 		if (space < clen ||
642 		    (space - clen < resid &&
643 		    (atomic || space < so->so_snd.sb_lowat))) {
644 			if (flags & MSG_DONTWAIT)
645 				snderr(EWOULDBLOCK);
646 			sbunlock(&so->so_snd);
647 			error = sbwait(so, &so->so_snd);
648 			so->so_snd.sb_state &= ~SS_ISSENDING;
649 			sb_mtx_unlock(&so->so_snd);
650 			if (dosolock)
651 				sounlock_shared(so);
652 			if (error)
653 				goto out;
654 			goto restart;
655 		}
656 		space -= clen;
657 		do {
658 			if (uio == NULL) {
659 				/*
660 				 * Data is prepackaged in "top".
661 				 */
662 				resid = 0;
663 				if (flags & MSG_EOR)
664 					top->m_flags |= M_EOR;
665 			} else {
666 				sb_mtx_unlock(&so->so_snd);
667 				if (dosolock)
668 					sounlock_shared(so);
669 				error = m_getuio(&top, atomic, space, uio);
670 				if (dosolock)
671 					solock_shared(so);
672 				sb_mtx_lock(&so->so_snd);
673 				if (error)
674 					goto release;
675 				space -= top->m_pkthdr.len;
676 				resid = uio->uio_resid;
677 				if (flags & MSG_EOR)
678 					top->m_flags |= M_EOR;
679 			}
680 			if (resid == 0)
681 				so->so_snd.sb_state &= ~SS_ISSENDING;
682 			if (top && so->so_options & SO_ZEROIZE)
683 				top->m_flags |= M_ZEROIZE;
684 			sb_mtx_unlock(&so->so_snd);
685 			if (!dosolock)
686 				solock_shared(so);
687 			if (flags & MSG_OOB)
688 				error = pru_sendoob(so, top, addr, control);
689 			else
690 				error = pru_send(so, top, addr, control);
691 			if (!dosolock)
692 				sounlock_shared(so);
693 			sb_mtx_lock(&so->so_snd);
694 			clen = 0;
695 			control = NULL;
696 			top = NULL;
697 			if (error)
698 				goto release;
699 		} while (resid && space > 0);
700 	} while (resid);
701 
702 release:
703 	so->so_snd.sb_state &= ~SS_ISSENDING;
704 	sb_mtx_unlock(&so->so_snd);
705 	if (dosolock)
706 		sounlock_shared(so);
707 	sbunlock(&so->so_snd);
708 out:
709 	m_freem(top);
710 	m_freem(control);
711 	return (error);
712 }
713 
714 int
m_getuio(struct mbuf ** mp,int atomic,long space,struct uio * uio)715 m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio)
716 {
717 	struct mbuf *m, *top = NULL;
718 	struct mbuf **nextp = &top;
719 	u_long len, mlen;
720 	size_t resid = uio->uio_resid;
721 	int error;
722 
723 	do {
724 		if (top == NULL) {
725 			MGETHDR(m, M_WAIT, MT_DATA);
726 			mlen = MHLEN;
727 			m->m_pkthdr.len = 0;
728 			m->m_pkthdr.ph_ifidx = 0;
729 		} else {
730 			MGET(m, M_WAIT, MT_DATA);
731 			mlen = MLEN;
732 		}
733 		/* chain mbuf together */
734 		*nextp = m;
735 		nextp = &m->m_next;
736 
737 		resid = ulmin(resid, space);
738 		if (resid >= MINCLSIZE) {
739 			MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES));
740 			if ((m->m_flags & M_EXT) == 0)
741 				MCLGETL(m, M_NOWAIT, MCLBYTES);
742 			if ((m->m_flags & M_EXT) == 0)
743 				goto nopages;
744 			mlen = m->m_ext.ext_size;
745 			len = ulmin(mlen, resid);
746 			/*
747 			 * For datagram protocols, leave room
748 			 * for protocol headers in first mbuf.
749 			 */
750 			if (atomic && m == top && len < mlen - max_hdr)
751 				m->m_data += max_hdr;
752 		} else {
753 nopages:
754 			len = ulmin(mlen, resid);
755 			/*
756 			 * For datagram protocols, leave room
757 			 * for protocol headers in first mbuf.
758 			 */
759 			if (atomic && m == top && len < mlen - max_hdr)
760 				m_align(m, len);
761 		}
762 
763 		error = uiomove(mtod(m, caddr_t), len, uio);
764 		if (error) {
765 			m_freem(top);
766 			return (error);
767 		}
768 
769 		/* adjust counters */
770 		resid = uio->uio_resid;
771 		space -= len;
772 		m->m_len = len;
773 		top->m_pkthdr.len += len;
774 
775 		/* Is there more space and more data? */
776 	} while (space > 0 && resid > 0);
777 
778 	*mp = top;
779 	return 0;
780 }
781 
782 /*
783  * Following replacement or removal of the first mbuf on the first
784  * mbuf chain of a socket buffer, push necessary state changes back
785  * into the socket buffer so that other consumers see the values
786  * consistently.  'nextrecord' is the callers locally stored value of
787  * the original value of sb->sb_mb->m_nextpkt which must be restored
788  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
789  */
790 void
sbsync(struct sockbuf * sb,struct mbuf * nextrecord)791 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
792 {
793 
794 	/*
795 	 * First, update for the new value of nextrecord.  If necessary,
796 	 * make it the first record.
797 	 */
798 	if (sb->sb_mb != NULL)
799 		sb->sb_mb->m_nextpkt = nextrecord;
800 	else
801 		sb->sb_mb = nextrecord;
802 
803 	/*
804 	 * Now update any dependent socket buffer fields to reflect
805 	 * the new state.  This is an inline of SB_EMPTY_FIXUP, with
806 	 * the addition of a second clause that takes care of the
807 	 * case where sb_mb has been updated, but remains the last
808 	 * record.
809 	 */
810 	if (sb->sb_mb == NULL) {
811 		sb->sb_mbtail = NULL;
812 		sb->sb_lastrecord = NULL;
813 	} else if (sb->sb_mb->m_nextpkt == NULL)
814 		sb->sb_lastrecord = sb->sb_mb;
815 }
816 
817 /*
818  * Implement receive operations on a socket.
819  * We depend on the way that records are added to the sockbuf
820  * by sbappend*.  In particular, each record (mbufs linked through m_next)
821  * must begin with an address if the protocol so specifies,
822  * followed by an optional mbuf or mbufs containing ancillary data,
823  * and then zero or more mbufs of data.
824  * In order to avoid blocking network for the entire time here, we release
825  * the solock() while doing the actual copy to user space.
826  * Although the sockbuf is locked, new data may still be appended,
827  * and thus we must maintain consistency of the sockbuf during that time.
828  *
829  * The caller may receive the data as a single mbuf chain by supplying
830  * an mbuf **mp0 for use in returning the chain.  The uio is then used
831  * only for the count in uio_resid.
832  */
833 int
soreceive(struct socket * so,struct mbuf ** paddr,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp,socklen_t controllen)834 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
835     struct mbuf **mp0, struct mbuf **controlp, int *flagsp,
836     socklen_t controllen)
837 {
838 	struct mbuf *m, **mp;
839 	struct mbuf *cm;
840 	u_long len, offset, moff;
841 	int flags, error, error2, type, uio_error = 0;
842 	const struct protosw *pr = so->so_proto;
843 	struct mbuf *nextrecord;
844 	size_t resid, orig_resid = uio->uio_resid;
845 	int dosolock = ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0);
846 
847 	mp = mp0;
848 	if (paddr)
849 		*paddr = NULL;
850 	if (controlp)
851 		*controlp = NULL;
852 	if (flagsp)
853 		flags = *flagsp &~ MSG_EOR;
854 	else
855 		flags = 0;
856 	if (flags & MSG_OOB) {
857 		m = m_get(M_WAIT, MT_DATA);
858 		solock(so);
859 		error = pru_rcvoob(so, m, flags & MSG_PEEK);
860 		sounlock(so);
861 		if (error)
862 			goto bad;
863 		do {
864 			error = uiomove(mtod(m, caddr_t),
865 			    ulmin(uio->uio_resid, m->m_len), uio);
866 			m = m_free(m);
867 		} while (uio->uio_resid && error == 0 && m);
868 bad:
869 		m_freem(m);
870 		return (error);
871 	}
872 	if (mp)
873 		*mp = NULL;
874 
875 restart:
876 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
877 		return (error);
878 	if (dosolock)
879 		solock_shared(so);
880 	sb_mtx_lock(&so->so_rcv);
881 
882 	m = so->so_rcv.sb_mb;
883 #ifdef SOCKET_SPLICE
884 	if (isspliced(so))
885 		m = NULL;
886 #endif /* SOCKET_SPLICE */
887 	/*
888 	 * If we have less data than requested, block awaiting more
889 	 * (subject to any timeout) if:
890 	 *   1. the current count is less than the low water mark,
891 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
892 	 *	receive operation at once if we block (resid <= hiwat), or
893 	 *   3. MSG_DONTWAIT is not set.
894 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
895 	 * we have to do the receive in sections, and thus risk returning
896 	 * a short count if a timeout or signal occurs after we start.
897 	 */
898 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
899 	    so->so_rcv.sb_cc < uio->uio_resid) &&
900 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
901 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
902 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
903 #ifdef DIAGNOSTIC
904 		if (m == NULL && so->so_rcv.sb_cc)
905 #ifdef SOCKET_SPLICE
906 		    if (!isspliced(so))
907 #endif /* SOCKET_SPLICE */
908 			panic("receive 1: so %p, so_type %d, sb_cc %lu",
909 			    so, so->so_type, so->so_rcv.sb_cc);
910 #endif
911 		if ((error2 = READ_ONCE(so->so_error))) {
912 			if (m)
913 				goto dontblock;
914 			error = error2;
915 			if ((flags & MSG_PEEK) == 0)
916 				so->so_error = 0;
917 			goto release;
918 		}
919 		if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
920 			if (m)
921 				goto dontblock;
922 			else if (so->so_rcv.sb_cc == 0)
923 				goto release;
924 		}
925 		for (; m; m = m->m_next)
926 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
927 				m = so->so_rcv.sb_mb;
928 				goto dontblock;
929 			}
930 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
931 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
932 			error = ENOTCONN;
933 			goto release;
934 		}
935 		if (uio->uio_resid == 0 && controlp == NULL)
936 			goto release;
937 		if (flags & MSG_DONTWAIT) {
938 			error = EWOULDBLOCK;
939 			goto release;
940 		}
941 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
942 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
943 
944 		sbunlock(&so->so_rcv);
945 		error = sbwait(so, &so->so_rcv);
946 		sb_mtx_unlock(&so->so_rcv);
947 		if (dosolock)
948 			sounlock_shared(so);
949 		if (error)
950 			return (error);
951 		goto restart;
952 	}
953 dontblock:
954 	/*
955 	 * On entry here, m points to the first record of the socket buffer.
956 	 * From this point onward, we maintain 'nextrecord' as a cache of the
957 	 * pointer to the next record in the socket buffer.  We must keep the
958 	 * various socket buffer pointers and local stack versions of the
959 	 * pointers in sync, pushing out modifications before operations that
960 	 * may sleep, and re-reading them afterwards.
961 	 *
962 	 * Otherwise, we will race with the network stack appending new data
963 	 * or records onto the socket buffer by using inconsistent/stale
964 	 * versions of the field, possibly resulting in socket buffer
965 	 * corruption.
966 	 */
967 	if (uio->uio_procp)
968 		uio->uio_procp->p_ru.ru_msgrcv++;
969 	KASSERT(m == so->so_rcv.sb_mb);
970 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
971 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
972 	nextrecord = m->m_nextpkt;
973 	if (pr->pr_flags & PR_ADDR) {
974 #ifdef DIAGNOSTIC
975 		if (m->m_type != MT_SONAME)
976 			panic("receive 1a: so %p, so_type %d, m %p, m_type %d",
977 			    so, so->so_type, m, m->m_type);
978 #endif
979 		orig_resid = 0;
980 		if (flags & MSG_PEEK) {
981 			if (paddr)
982 				*paddr = m_copym(m, 0, m->m_len, M_NOWAIT);
983 			m = m->m_next;
984 		} else {
985 			sbfree(so, &so->so_rcv, m);
986 			if (paddr) {
987 				*paddr = m;
988 				so->so_rcv.sb_mb = m->m_next;
989 				m->m_next = NULL;
990 				m = so->so_rcv.sb_mb;
991 			} else {
992 				so->so_rcv.sb_mb = m_free(m);
993 				m = so->so_rcv.sb_mb;
994 			}
995 			sbsync(&so->so_rcv, nextrecord);
996 		}
997 	}
998 	while (m && m->m_type == MT_CONTROL && error == 0) {
999 		int skip = 0;
1000 		if (flags & MSG_PEEK) {
1001 			if (mtod(m, struct cmsghdr *)->cmsg_type ==
1002 			    SCM_RIGHTS) {
1003 				/* don't leak internalized SCM_RIGHTS msgs */
1004 				skip = 1;
1005 			} else if (controlp)
1006 				*controlp = m_copym(m, 0, m->m_len, M_NOWAIT);
1007 			m = m->m_next;
1008 		} else {
1009 			sbfree(so, &so->so_rcv, m);
1010 			so->so_rcv.sb_mb = m->m_next;
1011 			m->m_nextpkt = m->m_next = NULL;
1012 			cm = m;
1013 			m = so->so_rcv.sb_mb;
1014 			sbsync(&so->so_rcv, nextrecord);
1015 			if (controlp) {
1016 				if (pr->pr_domain->dom_externalize) {
1017 					sb_mtx_unlock(&so->so_rcv);
1018 					if (dosolock)
1019 						sounlock_shared(so);
1020 					error =
1021 					    (*pr->pr_domain->dom_externalize)
1022 					    (cm, controllen, flags);
1023 					if (dosolock)
1024 						solock_shared(so);
1025 					sb_mtx_lock(&so->so_rcv);
1026 				}
1027 				*controlp = cm;
1028 			} else {
1029 				/*
1030 				 * Dispose of any SCM_RIGHTS message that went
1031 				 * through the read path rather than recv.
1032 				 */
1033 				if (pr->pr_domain->dom_dispose) {
1034 					sb_mtx_unlock(&so->so_rcv);
1035 					pr->pr_domain->dom_dispose(cm);
1036 					sb_mtx_lock(&so->so_rcv);
1037 				}
1038 				m_free(cm);
1039 			}
1040 		}
1041 		if (m != NULL)
1042 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1043 		else
1044 			nextrecord = so->so_rcv.sb_mb;
1045 		if (controlp && !skip)
1046 			controlp = &(*controlp)->m_next;
1047 		orig_resid = 0;
1048 	}
1049 
1050 	/* If m is non-NULL, we have some data to read. */
1051 	if (m) {
1052 		type = m->m_type;
1053 		if (type == MT_OOBDATA)
1054 			flags |= MSG_OOB;
1055 		if (m->m_flags & M_BCAST)
1056 			flags |= MSG_BCAST;
1057 		if (m->m_flags & M_MCAST)
1058 			flags |= MSG_MCAST;
1059 	}
1060 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1061 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1062 
1063 	moff = 0;
1064 	offset = 0;
1065 	while (m && uio->uio_resid > 0 && error == 0) {
1066 		if (m->m_type == MT_OOBDATA) {
1067 			if (type != MT_OOBDATA)
1068 				break;
1069 		} else if (type == MT_OOBDATA) {
1070 			break;
1071 		} else if (m->m_type == MT_CONTROL) {
1072 			/*
1073 			 * If there is more than one control message in the
1074 			 * stream, we do a short read.  Next can be received
1075 			 * or disposed by another system call.
1076 			 */
1077 			break;
1078 #ifdef DIAGNOSTIC
1079 		} else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1080 			panic("receive 3: so %p, so_type %d, m %p, m_type %d",
1081 			    so, so->so_type, m, m->m_type);
1082 #endif
1083 		}
1084 		so->so_rcv.sb_state &= ~SS_RCVATMARK;
1085 		len = uio->uio_resid;
1086 		if (so->so_oobmark && len > so->so_oobmark - offset)
1087 			len = so->so_oobmark - offset;
1088 		if (len > m->m_len - moff)
1089 			len = m->m_len - moff;
1090 		/*
1091 		 * If mp is set, just pass back the mbufs.
1092 		 * Otherwise copy them out via the uio, then free.
1093 		 * Sockbuf must be consistent here (points to current mbuf,
1094 		 * it points to next record) when we drop priority;
1095 		 * we must note any additions to the sockbuf when we
1096 		 * block interrupts again.
1097 		 */
1098 		if (mp == NULL && uio_error == 0) {
1099 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1100 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1101 			resid = uio->uio_resid;
1102 			sb_mtx_unlock(&so->so_rcv);
1103 			if (dosolock)
1104 				sounlock_shared(so);
1105 			uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1106 			if (dosolock)
1107 				solock_shared(so);
1108 			sb_mtx_lock(&so->so_rcv);
1109 			if (uio_error)
1110 				uio->uio_resid = resid - len;
1111 		} else
1112 			uio->uio_resid -= len;
1113 		if (len == m->m_len - moff) {
1114 			if (m->m_flags & M_EOR)
1115 				flags |= MSG_EOR;
1116 			if (flags & MSG_PEEK) {
1117 				m = m->m_next;
1118 				moff = 0;
1119 				orig_resid = 0;
1120 			} else {
1121 				nextrecord = m->m_nextpkt;
1122 				sbfree(so, &so->so_rcv, m);
1123 				if (mp) {
1124 					*mp = m;
1125 					mp = &m->m_next;
1126 					so->so_rcv.sb_mb = m = m->m_next;
1127 					*mp = NULL;
1128 				} else {
1129 					so->so_rcv.sb_mb = m_free(m);
1130 					m = so->so_rcv.sb_mb;
1131 				}
1132 				/*
1133 				 * If m != NULL, we also know that
1134 				 * so->so_rcv.sb_mb != NULL.
1135 				 */
1136 				KASSERT(so->so_rcv.sb_mb == m);
1137 				if (m) {
1138 					m->m_nextpkt = nextrecord;
1139 					if (nextrecord == NULL)
1140 						so->so_rcv.sb_lastrecord = m;
1141 				} else {
1142 					so->so_rcv.sb_mb = nextrecord;
1143 					SB_EMPTY_FIXUP(&so->so_rcv);
1144 				}
1145 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1146 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1147 			}
1148 		} else {
1149 			if (flags & MSG_PEEK) {
1150 				moff += len;
1151 				orig_resid = 0;
1152 			} else {
1153 				if (mp)
1154 					*mp = m_copym(m, 0, len, M_WAIT);
1155 				m->m_data += len;
1156 				m->m_len -= len;
1157 				so->so_rcv.sb_cc -= len;
1158 				so->so_rcv.sb_datacc -= len;
1159 			}
1160 		}
1161 		if (so->so_oobmark) {
1162 			if ((flags & MSG_PEEK) == 0) {
1163 				so->so_oobmark -= len;
1164 				if (so->so_oobmark == 0) {
1165 					so->so_rcv.sb_state |= SS_RCVATMARK;
1166 					break;
1167 				}
1168 			} else {
1169 				offset += len;
1170 				if (offset == so->so_oobmark)
1171 					break;
1172 			}
1173 		}
1174 		if (flags & MSG_EOR)
1175 			break;
1176 		/*
1177 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1178 		 * we must not quit until "uio->uio_resid == 0" or an error
1179 		 * termination.  If a signal/timeout occurs, return
1180 		 * with a short count but without error.
1181 		 * Keep sockbuf locked against other readers.
1182 		 */
1183 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1184 		    !sosendallatonce(so) && !nextrecord) {
1185 			if (so->so_rcv.sb_state & SS_CANTRCVMORE ||
1186 			    so->so_error)
1187 				break;
1188 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1189 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1190 			if (sbwait(so, &so->so_rcv)) {
1191 				sb_mtx_unlock(&so->so_rcv);
1192 				if (dosolock)
1193 					sounlock_shared(so);
1194 				sbunlock(&so->so_rcv);
1195 				return (0);
1196 			}
1197 			if ((m = so->so_rcv.sb_mb) != NULL)
1198 				nextrecord = m->m_nextpkt;
1199 		}
1200 	}
1201 
1202 	if (m && pr->pr_flags & PR_ATOMIC) {
1203 		flags |= MSG_TRUNC;
1204 		if ((flags & MSG_PEEK) == 0)
1205 			(void) sbdroprecord(so, &so->so_rcv);
1206 	}
1207 	if ((flags & MSG_PEEK) == 0) {
1208 		if (m == NULL) {
1209 			/*
1210 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1211 			 * part makes sure sb_lastrecord is up-to-date if
1212 			 * there is still data in the socket buffer.
1213 			 */
1214 			so->so_rcv.sb_mb = nextrecord;
1215 			if (so->so_rcv.sb_mb == NULL) {
1216 				so->so_rcv.sb_mbtail = NULL;
1217 				so->so_rcv.sb_lastrecord = NULL;
1218 			} else if (nextrecord->m_nextpkt == NULL)
1219 				so->so_rcv.sb_lastrecord = nextrecord;
1220 		}
1221 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1222 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1223 		if (pr->pr_flags & PR_WANTRCVD) {
1224 			sb_mtx_unlock(&so->so_rcv);
1225 			if (!dosolock)
1226 				solock_shared(so);
1227 			pru_rcvd(so);
1228 			if (!dosolock)
1229 				sounlock_shared(so);
1230 			sb_mtx_lock(&so->so_rcv);
1231 		}
1232 	}
1233 	if (orig_resid == uio->uio_resid && orig_resid &&
1234 	    (flags & MSG_EOR) == 0 &&
1235 	    (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) {
1236 		sb_mtx_unlock(&so->so_rcv);
1237 		sbunlock(&so->so_rcv);
1238 		goto restart;
1239 	}
1240 
1241 	if (uio_error)
1242 		error = uio_error;
1243 
1244 	if (flagsp)
1245 		*flagsp |= flags;
1246 release:
1247 	sb_mtx_unlock(&so->so_rcv);
1248 	if (dosolock)
1249 		sounlock_shared(so);
1250 	sbunlock(&so->so_rcv);
1251 	return (error);
1252 }
1253 
1254 int
soshutdown(struct socket * so,int how)1255 soshutdown(struct socket *so, int how)
1256 {
1257 	int error = 0;
1258 
1259 	switch (how) {
1260 	case SHUT_RD:
1261 		sorflush(so);
1262 		break;
1263 	case SHUT_RDWR:
1264 		sorflush(so);
1265 		/* FALLTHROUGH */
1266 	case SHUT_WR:
1267 		solock(so);
1268 		error = pru_shutdown(so);
1269 		sounlock(so);
1270 		break;
1271 	default:
1272 		error = EINVAL;
1273 		break;
1274 	}
1275 
1276 	return (error);
1277 }
1278 
1279 void
sorflush(struct socket * so)1280 sorflush(struct socket *so)
1281 {
1282 	struct sockbuf *sb = &so->so_rcv;
1283 	struct mbuf *m;
1284 	const struct protosw *pr = so->so_proto;
1285 	int error;
1286 
1287 	error = sblock(sb, SBL_WAIT | SBL_NOINTR);
1288 	/* with SBL_WAIT and SLB_NOINTR sblock() must not fail */
1289 	KASSERT(error == 0);
1290 
1291 	solock_shared(so);
1292 	socantrcvmore(so);
1293 	mtx_enter(&sb->sb_mtx);
1294 	m = sb->sb_mb;
1295 	memset(&sb->sb_startzero, 0,
1296 	     (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero);
1297 	sb->sb_timeo_nsecs = INFSLP;
1298 	mtx_leave(&sb->sb_mtx);
1299 	sounlock_shared(so);
1300 	sbunlock(sb);
1301 
1302 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1303 		(*pr->pr_domain->dom_dispose)(m);
1304 	m_purge(m);
1305 }
1306 
1307 #ifdef SOCKET_SPLICE
1308 
1309 #define so_splicelen	so_sp->ssp_len
1310 #define so_splicemax	so_sp->ssp_max
1311 #define so_idletv	so_sp->ssp_idletv
1312 #define so_idleto	so_sp->ssp_idleto
1313 #define so_splicetask	so_sp->ssp_task
1314 
1315 int
sosplice(struct socket * so,int fd,off_t max,struct timeval * tv)1316 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv)
1317 {
1318 	struct file	*fp;
1319 	struct socket	*sosp;
1320 	struct taskq	*tq;
1321 	int		 error = 0;
1322 
1323 	if ((so->so_proto->pr_flags & PR_SPLICE) == 0)
1324 		return (EPROTONOSUPPORT);
1325 	if (max && max < 0)
1326 		return (EINVAL);
1327 	if (tv && (tv->tv_sec < 0 || !timerisvalid(tv)))
1328 		return (EINVAL);
1329 
1330 	/* If no fd is given, unsplice by removing existing link. */
1331 	if (fd < 0) {
1332 		if ((error = sblock(&so->so_rcv, SBL_WAIT)) != 0)
1333 			return (error);
1334 		solock(so);
1335 		if (so->so_options & SO_ACCEPTCONN) {
1336 			error = EOPNOTSUPP;
1337 			goto out;
1338 		}
1339 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1340 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1341 			error = ENOTCONN;
1342 			goto out;
1343 		}
1344 
1345 		if (so->so_sp && so->so_sp->ssp_socket)
1346 			sounsplice(so, so->so_sp->ssp_socket, 0);
1347  out:
1348 		sounlock(so);
1349 		sbunlock(&so->so_rcv);
1350 		return (error);
1351 	}
1352 
1353 	if (sosplice_taskq == NULL) {
1354 		rw_enter_write(&sosplice_lock);
1355 		if (sosplice_taskq == NULL) {
1356 			tq = taskq_create("sosplice", 1, IPL_SOFTNET,
1357 			    TASKQ_MPSAFE);
1358 			if (tq == NULL) {
1359 				rw_exit_write(&sosplice_lock);
1360 				return (ENOMEM);
1361 			}
1362 			/* Ensure the taskq is fully visible to other CPUs. */
1363 			membar_producer();
1364 			sosplice_taskq = tq;
1365 		}
1366 		rw_exit_write(&sosplice_lock);
1367 	} else {
1368 		/* Ensure the taskq is fully visible on this CPU. */
1369 		membar_consumer();
1370 	}
1371 
1372 	/* Find sosp, the drain socket where data will be spliced into. */
1373 	if ((error = getsock(curproc, fd, &fp)) != 0)
1374 		return (error);
1375 	sosp = fp->f_data;
1376 
1377 	if (sosp->so_proto->pr_usrreqs->pru_send !=
1378 	    so->so_proto->pr_usrreqs->pru_send) {
1379 		error = EPROTONOSUPPORT;
1380 		goto frele;
1381 	}
1382 
1383 	if ((error = sblock(&so->so_rcv, SBL_WAIT)) != 0)
1384 		goto frele;
1385 	if ((error = sblock(&sosp->so_snd, SBL_WAIT)) != 0) {
1386 		sbunlock(&so->so_rcv);
1387 		goto frele;
1388 	}
1389 	solock(so);
1390 
1391 	if ((so->so_options & SO_ACCEPTCONN) ||
1392 	    (sosp->so_options & SO_ACCEPTCONN)) {
1393 		error = EOPNOTSUPP;
1394 		goto release;
1395 	}
1396 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1397 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1398 		error = ENOTCONN;
1399 		goto release;
1400 	}
1401 	if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) {
1402 		error = ENOTCONN;
1403 		goto release;
1404 	}
1405 	if (so->so_sp == NULL)
1406 		so->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1407 	if (sosp->so_sp == NULL)
1408 		sosp->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1409 	if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) {
1410 		error = EBUSY;
1411 		goto release;
1412 	}
1413 
1414 	/* Splice so and sosp together. */
1415 	mtx_enter(&so->so_rcv.sb_mtx);
1416 	so->so_sp->ssp_socket = sosp;
1417 	sosp->so_sp->ssp_soback = so;
1418 	mtx_leave(&so->so_rcv.sb_mtx);
1419 	so->so_splicelen = 0;
1420 	so->so_splicemax = max;
1421 	if (tv)
1422 		so->so_idletv = *tv;
1423 	else
1424 		timerclear(&so->so_idletv);
1425 	timeout_set_proc(&so->so_idleto, soidle, so);
1426 	task_set(&so->so_splicetask, sotask, so);
1427 
1428 	/*
1429 	 * To prevent softnet interrupt from calling somove() while
1430 	 * we sleep, the socket buffers are not marked as spliced yet.
1431 	 */
1432 	if (somove(so, M_WAIT)) {
1433 		mtx_enter(&so->so_rcv.sb_mtx);
1434 		so->so_rcv.sb_flags |= SB_SPLICE;
1435 		mtx_leave(&so->so_rcv.sb_mtx);
1436 		sosp->so_snd.sb_flags |= SB_SPLICE;
1437 	}
1438 
1439  release:
1440 	sounlock(so);
1441 	sbunlock(&sosp->so_snd);
1442 	sbunlock(&so->so_rcv);
1443  frele:
1444 	FRELE(fp, curproc);
1445 
1446 	return (error);
1447 }
1448 
1449 void
sounsplice(struct socket * so,struct socket * sosp,int freeing)1450 sounsplice(struct socket *so, struct socket *sosp, int freeing)
1451 {
1452 	soassertlocked(so);
1453 
1454 	task_del(sosplice_taskq, &so->so_splicetask);
1455 	timeout_del(&so->so_idleto);
1456 	sosp->so_snd.sb_flags &= ~SB_SPLICE;
1457 
1458 	mtx_enter(&so->so_rcv.sb_mtx);
1459 	so->so_rcv.sb_flags &= ~SB_SPLICE;
1460 	so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL;
1461 	mtx_leave(&so->so_rcv.sb_mtx);
1462 
1463 	/* Do not wakeup a socket that is about to be freed. */
1464 	if ((freeing & SOSP_FREEING_READ) == 0 && soreadable(so))
1465 		sorwakeup(so);
1466 	if ((freeing & SOSP_FREEING_WRITE) == 0 && sowriteable(sosp))
1467 		sowwakeup(sosp);
1468 }
1469 
1470 void
soidle(void * arg)1471 soidle(void *arg)
1472 {
1473 	struct socket *so = arg;
1474 
1475 	solock(so);
1476 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1477 		so->so_error = ETIMEDOUT;
1478 		sounsplice(so, so->so_sp->ssp_socket, 0);
1479 	}
1480 	sounlock(so);
1481 }
1482 
1483 void
sotask(void * arg)1484 sotask(void *arg)
1485 {
1486 	struct socket *so = arg;
1487 
1488 	solock(so);
1489 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1490 		/*
1491 		 * We may not sleep here as sofree() and unsplice() may be
1492 		 * called from softnet interrupt context.  This would remove
1493 		 * the socket during somove().
1494 		 */
1495 		somove(so, M_DONTWAIT);
1496 	}
1497 	sounlock(so);
1498 
1499 	/* Avoid user land starvation. */
1500 	yield();
1501 }
1502 
1503 /*
1504  * The socket splicing task or idle timeout may sleep while grabbing the net
1505  * lock.  As sofree() can be called anytime, sotask() or soidle() could access
1506  * the socket memory of a freed socket after wakeup.  So delay the pool_put()
1507  * after all pending socket splicing tasks or timeouts have finished.  Do this
1508  * by scheduling it on the same threads.
1509  */
1510 void
soreaper(void * arg)1511 soreaper(void *arg)
1512 {
1513 	struct socket *so = arg;
1514 
1515 	/* Reuse splice task, sounsplice() has been called before. */
1516 	task_set(&so->so_sp->ssp_task, soput, so);
1517 	task_add(sosplice_taskq, &so->so_sp->ssp_task);
1518 }
1519 
1520 void
soput(void * arg)1521 soput(void *arg)
1522 {
1523 	struct socket *so = arg;
1524 
1525 	pool_put(&sosplice_pool, so->so_sp);
1526 	pool_put(&socket_pool, so);
1527 }
1528 
1529 /*
1530  * Move data from receive buffer of spliced source socket to send
1531  * buffer of drain socket.  Try to move as much as possible in one
1532  * big chunk.  It is a TCP only implementation.
1533  * Return value 0 means splicing has been finished, 1 continue.
1534  */
1535 int
somove(struct socket * so,int wait)1536 somove(struct socket *so, int wait)
1537 {
1538 	struct socket	*sosp = so->so_sp->ssp_socket;
1539 	struct mbuf	*m, **mp, *nextrecord;
1540 	u_long		 len, off, oobmark;
1541 	long		 space;
1542 	int		 error = 0, maxreached = 0;
1543 	unsigned int	 rcvstate;
1544 
1545 	soassertlocked(so);
1546 
1547  nextpkt:
1548 	if (so->so_error) {
1549 		error = so->so_error;
1550 		goto release;
1551 	}
1552 	if (sosp->so_snd.sb_state & SS_CANTSENDMORE) {
1553 		error = EPIPE;
1554 		goto release;
1555 	}
1556 	if (sosp->so_error && sosp->so_error != ETIMEDOUT &&
1557 	    sosp->so_error != EFBIG && sosp->so_error != ELOOP) {
1558 		error = sosp->so_error;
1559 		goto release;
1560 	}
1561 	if ((sosp->so_state & SS_ISCONNECTED) == 0)
1562 		goto release;
1563 
1564 	/* Calculate how many bytes can be copied now. */
1565 	len = so->so_rcv.sb_datacc;
1566 	if (so->so_splicemax) {
1567 		KASSERT(so->so_splicelen < so->so_splicemax);
1568 		if (so->so_splicemax <= so->so_splicelen + len) {
1569 			len = so->so_splicemax - so->so_splicelen;
1570 			maxreached = 1;
1571 		}
1572 	}
1573 	space = sbspace(sosp, &sosp->so_snd);
1574 	if (so->so_oobmark && so->so_oobmark < len &&
1575 	    so->so_oobmark < space + 1024)
1576 		space += 1024;
1577 	if (space <= 0) {
1578 		maxreached = 0;
1579 		goto release;
1580 	}
1581 	if (space < len) {
1582 		maxreached = 0;
1583 		if (space < sosp->so_snd.sb_lowat)
1584 			goto release;
1585 		len = space;
1586 	}
1587 	sosp->so_snd.sb_state |= SS_ISSENDING;
1588 
1589 	SBLASTRECORDCHK(&so->so_rcv, "somove 1");
1590 	SBLASTMBUFCHK(&so->so_rcv, "somove 1");
1591 	m = so->so_rcv.sb_mb;
1592 	if (m == NULL)
1593 		goto release;
1594 	nextrecord = m->m_nextpkt;
1595 
1596 	/* Drop address and control information not used with splicing. */
1597 	if (so->so_proto->pr_flags & PR_ADDR) {
1598 #ifdef DIAGNOSTIC
1599 		if (m->m_type != MT_SONAME)
1600 			panic("somove soname: so %p, so_type %d, m %p, "
1601 			    "m_type %d", so, so->so_type, m, m->m_type);
1602 #endif
1603 		m = m->m_next;
1604 	}
1605 	while (m && m->m_type == MT_CONTROL)
1606 		m = m->m_next;
1607 	if (m == NULL) {
1608 		sbdroprecord(so, &so->so_rcv);
1609 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1610 			pru_rcvd(so);
1611 		goto nextpkt;
1612 	}
1613 
1614 	/*
1615 	 * By splicing sockets connected to localhost, userland might create a
1616 	 * loop.  Dissolve splicing with error if loop is detected by counter.
1617 	 *
1618 	 * If we deal with looped broadcast/multicast packet we bail out with
1619 	 * no error to suppress splice termination.
1620 	 */
1621 	if ((m->m_flags & M_PKTHDR) &&
1622 	    ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) ||
1623 	    ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) {
1624 		error = ELOOP;
1625 		goto release;
1626 	}
1627 
1628 	if (so->so_proto->pr_flags & PR_ATOMIC) {
1629 		if ((m->m_flags & M_PKTHDR) == 0)
1630 			panic("somove !PKTHDR: so %p, so_type %d, m %p, "
1631 			    "m_type %d", so, so->so_type, m, m->m_type);
1632 		if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) {
1633 			error = EMSGSIZE;
1634 			goto release;
1635 		}
1636 		if (len < m->m_pkthdr.len)
1637 			goto release;
1638 		if (m->m_pkthdr.len < len) {
1639 			maxreached = 0;
1640 			len = m->m_pkthdr.len;
1641 		}
1642 		/*
1643 		 * Throw away the name mbuf after it has been assured
1644 		 * that the whole first record can be processed.
1645 		 */
1646 		m = so->so_rcv.sb_mb;
1647 		sbfree(so, &so->so_rcv, m);
1648 		so->so_rcv.sb_mb = m_free(m);
1649 		sbsync(&so->so_rcv, nextrecord);
1650 	}
1651 	/*
1652 	 * Throw away the control mbufs after it has been assured
1653 	 * that the whole first record can be processed.
1654 	 */
1655 	m = so->so_rcv.sb_mb;
1656 	while (m && m->m_type == MT_CONTROL) {
1657 		sbfree(so, &so->so_rcv, m);
1658 		so->so_rcv.sb_mb = m_free(m);
1659 		m = so->so_rcv.sb_mb;
1660 		sbsync(&so->so_rcv, nextrecord);
1661 	}
1662 
1663 	SBLASTRECORDCHK(&so->so_rcv, "somove 2");
1664 	SBLASTMBUFCHK(&so->so_rcv, "somove 2");
1665 
1666 	/* Take at most len mbufs out of receive buffer. */
1667 	for (off = 0, mp = &m; off <= len && *mp;
1668 	    off += (*mp)->m_len, mp = &(*mp)->m_next) {
1669 		u_long size = len - off;
1670 
1671 #ifdef DIAGNOSTIC
1672 		if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER)
1673 			panic("somove type: so %p, so_type %d, m %p, "
1674 			    "m_type %d", so, so->so_type, *mp, (*mp)->m_type);
1675 #endif
1676 		if ((*mp)->m_len > size) {
1677 			/*
1678 			 * Move only a partial mbuf at maximum splice length or
1679 			 * if the drain buffer is too small for this large mbuf.
1680 			 */
1681 			if (!maxreached && so->so_snd.sb_datacc > 0) {
1682 				len -= size;
1683 				break;
1684 			}
1685 			*mp = m_copym(so->so_rcv.sb_mb, 0, size, wait);
1686 			if (*mp == NULL) {
1687 				len -= size;
1688 				break;
1689 			}
1690 			so->so_rcv.sb_mb->m_data += size;
1691 			so->so_rcv.sb_mb->m_len -= size;
1692 			so->so_rcv.sb_cc -= size;
1693 			so->so_rcv.sb_datacc -= size;
1694 		} else {
1695 			*mp = so->so_rcv.sb_mb;
1696 			sbfree(so, &so->so_rcv, *mp);
1697 			so->so_rcv.sb_mb = (*mp)->m_next;
1698 			sbsync(&so->so_rcv, nextrecord);
1699 		}
1700 	}
1701 	*mp = NULL;
1702 
1703 	SBLASTRECORDCHK(&so->so_rcv, "somove 3");
1704 	SBLASTMBUFCHK(&so->so_rcv, "somove 3");
1705 	SBCHECK(so, &so->so_rcv);
1706 	if (m == NULL)
1707 		goto release;
1708 	m->m_nextpkt = NULL;
1709 	if (m->m_flags & M_PKTHDR) {
1710 		m_resethdr(m);
1711 		m->m_pkthdr.len = len;
1712 	}
1713 
1714 	/* Send window update to source peer as receive buffer has changed. */
1715 	if (so->so_proto->pr_flags & PR_WANTRCVD)
1716 		pru_rcvd(so);
1717 
1718 	/* Receive buffer did shrink by len bytes, adjust oob. */
1719 	mtx_enter(&so->so_rcv.sb_mtx);
1720 	rcvstate = so->so_rcv.sb_state;
1721 	so->so_rcv.sb_state &= ~SS_RCVATMARK;
1722 	oobmark = so->so_oobmark;
1723 	so->so_oobmark = oobmark > len ? oobmark - len : 0;
1724 	if (oobmark) {
1725 		if (oobmark == len)
1726 			so->so_rcv.sb_state |= SS_RCVATMARK;
1727 		if (oobmark >= len)
1728 			oobmark = 0;
1729 	}
1730 	mtx_leave(&so->so_rcv.sb_mtx);
1731 
1732 	/*
1733 	 * Handle oob data.  If any malloc fails, ignore error.
1734 	 * TCP urgent data is not very reliable anyway.
1735 	 */
1736 	while (((rcvstate & SS_RCVATMARK) || oobmark) &&
1737 	    (so->so_options & SO_OOBINLINE)) {
1738 		struct mbuf *o = NULL;
1739 
1740 		if (rcvstate & SS_RCVATMARK) {
1741 			o = m_get(wait, MT_DATA);
1742 			rcvstate &= ~SS_RCVATMARK;
1743 		} else if (oobmark) {
1744 			o = m_split(m, oobmark, wait);
1745 			if (o) {
1746 				error = pru_send(sosp, m, NULL, NULL);
1747 				if (error) {
1748 					if (sosp->so_snd.sb_state &
1749 					    SS_CANTSENDMORE)
1750 						error = EPIPE;
1751 					m_freem(o);
1752 					goto release;
1753 				}
1754 				len -= oobmark;
1755 				so->so_splicelen += oobmark;
1756 				m = o;
1757 				o = m_get(wait, MT_DATA);
1758 			}
1759 			oobmark = 0;
1760 		}
1761 		if (o) {
1762 			o->m_len = 1;
1763 			*mtod(o, caddr_t) = *mtod(m, caddr_t);
1764 			error = pru_sendoob(sosp, o, NULL, NULL);
1765 			if (error) {
1766 				if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1767 					error = EPIPE;
1768 				m_freem(m);
1769 				goto release;
1770 			}
1771 			len -= 1;
1772 			so->so_splicelen += 1;
1773 			if (oobmark) {
1774 				oobmark -= 1;
1775 				if (oobmark == 0)
1776 					rcvstate |= SS_RCVATMARK;
1777 			}
1778 			m_adj(m, 1);
1779 		}
1780 	}
1781 
1782 	/* Append all remaining data to drain socket. */
1783 	if (so->so_rcv.sb_cc == 0 || maxreached)
1784 		sosp->so_snd.sb_state &= ~SS_ISSENDING;
1785 	error = pru_send(sosp, m, NULL, NULL);
1786 	if (error) {
1787 		if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1788 			error = EPIPE;
1789 		goto release;
1790 	}
1791 	so->so_splicelen += len;
1792 
1793 	/* Move several packets if possible. */
1794 	if (!maxreached && nextrecord)
1795 		goto nextpkt;
1796 
1797  release:
1798 	sosp->so_snd.sb_state &= ~SS_ISSENDING;
1799 	if (!error && maxreached && so->so_splicemax == so->so_splicelen)
1800 		error = EFBIG;
1801 	if (error)
1802 		so->so_error = error;
1803 	if (((so->so_rcv.sb_state & SS_CANTRCVMORE) &&
1804 	    so->so_rcv.sb_cc == 0) ||
1805 	    (sosp->so_snd.sb_state & SS_CANTSENDMORE) ||
1806 	    maxreached || error) {
1807 		sounsplice(so, sosp, 0);
1808 		return (0);
1809 	}
1810 	if (timerisset(&so->so_idletv))
1811 		timeout_add_tv(&so->so_idleto, &so->so_idletv);
1812 	return (1);
1813 }
1814 
1815 #endif /* SOCKET_SPLICE */
1816 
1817 void
sorwakeup(struct socket * so)1818 sorwakeup(struct socket *so)
1819 {
1820 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1821 		soassertlocked_readonly(so);
1822 
1823 #ifdef SOCKET_SPLICE
1824 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1825 		/*
1826 		 * TCP has a sendbuffer that can handle multiple packets
1827 		 * at once.  So queue the stream a bit to accumulate data.
1828 		 * The sosplice thread will call somove() later and send
1829 		 * the packets calling tcp_output() only once.
1830 		 * In the UDP case, send out the packets immediately.
1831 		 * Using a thread would make things slower.
1832 		 */
1833 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1834 			task_add(sosplice_taskq, &so->so_splicetask);
1835 		else
1836 			somove(so, M_DONTWAIT);
1837 	}
1838 	if (isspliced(so))
1839 		return;
1840 #endif
1841 	sowakeup(so, &so->so_rcv);
1842 	if (so->so_upcall)
1843 		(*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT);
1844 }
1845 
1846 void
sowwakeup(struct socket * so)1847 sowwakeup(struct socket *so)
1848 {
1849 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
1850 		soassertlocked_readonly(so);
1851 
1852 #ifdef SOCKET_SPLICE
1853 	if (so->so_snd.sb_flags & SB_SPLICE)
1854 		task_add(sosplice_taskq, &so->so_sp->ssp_soback->so_splicetask);
1855 	if (issplicedback(so))
1856 		return;
1857 #endif
1858 	sowakeup(so, &so->so_snd);
1859 }
1860 
1861 int
sosetopt(struct socket * so,int level,int optname,struct mbuf * m)1862 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1863 {
1864 	int error = 0;
1865 
1866 	if (level != SOL_SOCKET) {
1867 		if (so->so_proto->pr_ctloutput) {
1868 			solock(so);
1869 			error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so,
1870 			    level, optname, m);
1871 			sounlock(so);
1872 			return (error);
1873 		}
1874 		error = ENOPROTOOPT;
1875 	} else {
1876 		switch (optname) {
1877 
1878 		case SO_LINGER:
1879 			if (m == NULL || m->m_len != sizeof (struct linger) ||
1880 			    mtod(m, struct linger *)->l_linger < 0 ||
1881 			    mtod(m, struct linger *)->l_linger > SHRT_MAX)
1882 				return (EINVAL);
1883 
1884 			solock(so);
1885 			so->so_linger = mtod(m, struct linger *)->l_linger;
1886 			if (*mtod(m, int *))
1887 				so->so_options |= optname;
1888 			else
1889 				so->so_options &= ~optname;
1890 			sounlock(so);
1891 
1892 			break;
1893 		case SO_BINDANY:
1894 			if ((error = suser(curproc)) != 0)	/* XXX */
1895 				return (error);
1896 			/* FALLTHROUGH */
1897 
1898 		case SO_DEBUG:
1899 		case SO_KEEPALIVE:
1900 		case SO_USELOOPBACK:
1901 		case SO_BROADCAST:
1902 		case SO_REUSEADDR:
1903 		case SO_REUSEPORT:
1904 		case SO_OOBINLINE:
1905 		case SO_TIMESTAMP:
1906 		case SO_ZEROIZE:
1907 			if (m == NULL || m->m_len < sizeof (int))
1908 				return (EINVAL);
1909 
1910 			solock(so);
1911 			if (*mtod(m, int *))
1912 				so->so_options |= optname;
1913 			else
1914 				so->so_options &= ~optname;
1915 			sounlock(so);
1916 
1917 			break;
1918 		case SO_DONTROUTE:
1919 			if (m == NULL || m->m_len < sizeof (int))
1920 				return (EINVAL);
1921 			if (*mtod(m, int *))
1922 				error = EOPNOTSUPP;
1923 			break;
1924 
1925 		case SO_SNDBUF:
1926 		case SO_RCVBUF:
1927 		case SO_SNDLOWAT:
1928 		case SO_RCVLOWAT:
1929 		    {
1930 			struct sockbuf *sb = (optname == SO_SNDBUF ||
1931 			    optname == SO_SNDLOWAT ?
1932 			    &so->so_snd : &so->so_rcv);
1933 			u_long cnt;
1934 
1935 			if (m == NULL || m->m_len < sizeof (int))
1936 				return (EINVAL);
1937 			cnt = *mtod(m, int *);
1938 			if ((long)cnt <= 0)
1939 				cnt = 1;
1940 
1941 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
1942 				solock(so);
1943 			mtx_enter(&sb->sb_mtx);
1944 
1945 			switch (optname) {
1946 			case SO_SNDBUF:
1947 			case SO_RCVBUF:
1948 				if (sb->sb_state &
1949 				    (SS_CANTSENDMORE | SS_CANTRCVMORE)) {
1950 					error = EINVAL;
1951 					break;
1952 				}
1953 				if (sbcheckreserve(cnt, sb->sb_wat) ||
1954 				    sbreserve(so, sb, cnt)) {
1955 					error = ENOBUFS;
1956 					break;
1957 				}
1958 				sb->sb_wat = cnt;
1959 				break;
1960 			case SO_SNDLOWAT:
1961 			case SO_RCVLOWAT:
1962 				sb->sb_lowat = (cnt > sb->sb_hiwat) ?
1963 				    sb->sb_hiwat : cnt;
1964 				break;
1965 			}
1966 
1967 			mtx_leave(&sb->sb_mtx);
1968 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
1969 				sounlock(so);
1970 
1971 			break;
1972 		    }
1973 
1974 		case SO_SNDTIMEO:
1975 		case SO_RCVTIMEO:
1976 		    {
1977 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
1978 			    &so->so_snd : &so->so_rcv);
1979 			struct timeval tv;
1980 			uint64_t nsecs;
1981 
1982 			if (m == NULL || m->m_len < sizeof (tv))
1983 				return (EINVAL);
1984 			memcpy(&tv, mtod(m, struct timeval *), sizeof tv);
1985 			if (!timerisvalid(&tv))
1986 				return (EINVAL);
1987 			nsecs = TIMEVAL_TO_NSEC(&tv);
1988 			if (nsecs == UINT64_MAX)
1989 				return (EDOM);
1990 			if (nsecs == 0)
1991 				nsecs = INFSLP;
1992 
1993 			mtx_enter(&sb->sb_mtx);
1994 			sb->sb_timeo_nsecs = nsecs;
1995 			mtx_leave(&sb->sb_mtx);
1996 			break;
1997 		    }
1998 
1999 		case SO_RTABLE:
2000 			if (so->so_proto->pr_domain &&
2001 			    so->so_proto->pr_domain->dom_protosw &&
2002 			    so->so_proto->pr_ctloutput) {
2003 				const struct domain *dom =
2004 				    so->so_proto->pr_domain;
2005 
2006 				level = dom->dom_protosw->pr_protocol;
2007 				solock(so);
2008 				error = (*so->so_proto->pr_ctloutput)
2009 				    (PRCO_SETOPT, so, level, optname, m);
2010 				sounlock(so);
2011 			} else
2012 				error = ENOPROTOOPT;
2013 			break;
2014 #ifdef SOCKET_SPLICE
2015 		case SO_SPLICE:
2016 			if (m == NULL) {
2017 				error = sosplice(so, -1, 0, NULL);
2018 			} else if (m->m_len < sizeof(int)) {
2019 				error = EINVAL;
2020 			} else if (m->m_len < sizeof(struct splice)) {
2021 				error = sosplice(so, *mtod(m, int *), 0, NULL);
2022 			} else {
2023 				error = sosplice(so,
2024 				    mtod(m, struct splice *)->sp_fd,
2025 				    mtod(m, struct splice *)->sp_max,
2026 				   &mtod(m, struct splice *)->sp_idle);
2027 			}
2028 			break;
2029 #endif /* SOCKET_SPLICE */
2030 
2031 		default:
2032 			error = ENOPROTOOPT;
2033 			break;
2034 		}
2035 	}
2036 
2037 	return (error);
2038 }
2039 
2040 int
sogetopt(struct socket * so,int level,int optname,struct mbuf * m)2041 sogetopt(struct socket *so, int level, int optname, struct mbuf *m)
2042 {
2043 	int error = 0;
2044 
2045 	if (level != SOL_SOCKET) {
2046 		if (so->so_proto->pr_ctloutput) {
2047 			m->m_len = 0;
2048 
2049 			solock(so);
2050 			error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so,
2051 			    level, optname, m);
2052 			sounlock(so);
2053 			return (error);
2054 		} else
2055 			return (ENOPROTOOPT);
2056 	} else {
2057 		m->m_len = sizeof (int);
2058 
2059 		switch (optname) {
2060 
2061 		case SO_LINGER:
2062 			m->m_len = sizeof (struct linger);
2063 			solock_shared(so);
2064 			mtod(m, struct linger *)->l_onoff =
2065 				so->so_options & SO_LINGER;
2066 			mtod(m, struct linger *)->l_linger = so->so_linger;
2067 			sounlock_shared(so);
2068 			break;
2069 
2070 		case SO_BINDANY:
2071 		case SO_USELOOPBACK:
2072 		case SO_DEBUG:
2073 		case SO_KEEPALIVE:
2074 		case SO_REUSEADDR:
2075 		case SO_REUSEPORT:
2076 		case SO_BROADCAST:
2077 		case SO_OOBINLINE:
2078 		case SO_ACCEPTCONN:
2079 		case SO_TIMESTAMP:
2080 		case SO_ZEROIZE:
2081 			*mtod(m, int *) = so->so_options & optname;
2082 			break;
2083 
2084 		case SO_DONTROUTE:
2085 			*mtod(m, int *) = 0;
2086 			break;
2087 
2088 		case SO_TYPE:
2089 			*mtod(m, int *) = so->so_type;
2090 			break;
2091 
2092 		case SO_ERROR:
2093 			solock(so);
2094 			*mtod(m, int *) = so->so_error;
2095 			so->so_error = 0;
2096 			sounlock(so);
2097 
2098 			break;
2099 
2100 		case SO_DOMAIN:
2101 			*mtod(m, int *) = so->so_proto->pr_domain->dom_family;
2102 			break;
2103 
2104 		case SO_PROTOCOL:
2105 			*mtod(m, int *) = so->so_proto->pr_protocol;
2106 			break;
2107 
2108 		case SO_SNDBUF:
2109 			*mtod(m, int *) = so->so_snd.sb_hiwat;
2110 			break;
2111 
2112 		case SO_RCVBUF:
2113 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
2114 			break;
2115 
2116 		case SO_SNDLOWAT:
2117 			*mtod(m, int *) = so->so_snd.sb_lowat;
2118 			break;
2119 
2120 		case SO_RCVLOWAT:
2121 			*mtod(m, int *) = so->so_rcv.sb_lowat;
2122 			break;
2123 
2124 		case SO_SNDTIMEO:
2125 		case SO_RCVTIMEO:
2126 		    {
2127 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2128 			    &so->so_snd : &so->so_rcv);
2129 			struct timeval tv;
2130 			uint64_t nsecs;
2131 
2132 			mtx_enter(&sb->sb_mtx);
2133 			nsecs = sb->sb_timeo_nsecs;
2134 			mtx_leave(&sb->sb_mtx);
2135 
2136 			m->m_len = sizeof(struct timeval);
2137 			memset(&tv, 0, sizeof(tv));
2138 			if (nsecs != INFSLP)
2139 				NSEC_TO_TIMEVAL(nsecs, &tv);
2140 			memcpy(mtod(m, struct timeval *), &tv, sizeof tv);
2141 			break;
2142 		    }
2143 
2144 		case SO_RTABLE:
2145 			if (so->so_proto->pr_domain &&
2146 			    so->so_proto->pr_domain->dom_protosw &&
2147 			    so->so_proto->pr_ctloutput) {
2148 				const struct domain *dom =
2149 				    so->so_proto->pr_domain;
2150 
2151 				level = dom->dom_protosw->pr_protocol;
2152 				solock(so);
2153 				error = (*so->so_proto->pr_ctloutput)
2154 				    (PRCO_GETOPT, so, level, optname, m);
2155 				sounlock(so);
2156 				if (error)
2157 					return (error);
2158 				break;
2159 			}
2160 			return (ENOPROTOOPT);
2161 
2162 #ifdef SOCKET_SPLICE
2163 		case SO_SPLICE:
2164 		    {
2165 			off_t len;
2166 
2167 			m->m_len = sizeof(off_t);
2168 			solock_shared(so);
2169 			len = so->so_sp ? so->so_sp->ssp_len : 0;
2170 			sounlock_shared(so);
2171 			memcpy(mtod(m, off_t *), &len, sizeof(off_t));
2172 			break;
2173 		    }
2174 #endif /* SOCKET_SPLICE */
2175 
2176 		case SO_PEERCRED:
2177 			if (so->so_proto->pr_protocol == AF_UNIX) {
2178 				struct unpcb *unp = sotounpcb(so);
2179 
2180 				solock(so);
2181 				if (unp->unp_flags & UNP_FEIDS) {
2182 					m->m_len = sizeof(unp->unp_connid);
2183 					memcpy(mtod(m, caddr_t),
2184 					    &(unp->unp_connid), m->m_len);
2185 					sounlock(so);
2186 					break;
2187 				}
2188 				sounlock(so);
2189 
2190 				return (ENOTCONN);
2191 			}
2192 			return (EOPNOTSUPP);
2193 
2194 		default:
2195 			return (ENOPROTOOPT);
2196 		}
2197 		return (0);
2198 	}
2199 }
2200 
2201 void
sohasoutofband(struct socket * so)2202 sohasoutofband(struct socket *so)
2203 {
2204 	pgsigio(&so->so_sigio, SIGURG, 0);
2205 	knote(&so->so_rcv.sb_klist, 0);
2206 }
2207 
2208 void
sofilt_lock(struct socket * so,struct sockbuf * sb)2209 sofilt_lock(struct socket *so, struct sockbuf *sb)
2210 {
2211 	switch (so->so_proto->pr_domain->dom_family) {
2212 	case PF_INET:
2213 	case PF_INET6:
2214 		NET_LOCK_SHARED();
2215 		break;
2216 	default:
2217 		rw_enter_write(&so->so_lock);
2218 		break;
2219 	}
2220 
2221 	mtx_enter(&sb->sb_mtx);
2222 }
2223 
2224 void
sofilt_unlock(struct socket * so,struct sockbuf * sb)2225 sofilt_unlock(struct socket *so, struct sockbuf *sb)
2226 {
2227 	mtx_leave(&sb->sb_mtx);
2228 
2229 	switch (so->so_proto->pr_domain->dom_family) {
2230 	case PF_INET:
2231 	case PF_INET6:
2232 		NET_UNLOCK_SHARED();
2233 		break;
2234 	default:
2235 		rw_exit_write(&so->so_lock);
2236 		break;
2237 	}
2238 }
2239 
2240 int
soo_kqfilter(struct file * fp,struct knote * kn)2241 soo_kqfilter(struct file *fp, struct knote *kn)
2242 {
2243 	struct socket *so = kn->kn_fp->f_data;
2244 	struct sockbuf *sb;
2245 
2246 	switch (kn->kn_filter) {
2247 	case EVFILT_READ:
2248 		kn->kn_fop = &soread_filtops;
2249 		sb = &so->so_rcv;
2250 		break;
2251 	case EVFILT_WRITE:
2252 		kn->kn_fop = &sowrite_filtops;
2253 		sb = &so->so_snd;
2254 		break;
2255 	case EVFILT_EXCEPT:
2256 		kn->kn_fop = &soexcept_filtops;
2257 		sb = &so->so_rcv;
2258 		break;
2259 	default:
2260 		return (EINVAL);
2261 	}
2262 
2263 	klist_insert(&sb->sb_klist, kn);
2264 
2265 	return (0);
2266 }
2267 
2268 void
filt_sordetach(struct knote * kn)2269 filt_sordetach(struct knote *kn)
2270 {
2271 	struct socket *so = kn->kn_fp->f_data;
2272 
2273 	klist_remove(&so->so_rcv.sb_klist, kn);
2274 }
2275 
2276 int
filt_soread(struct knote * kn,long hint)2277 filt_soread(struct knote *kn, long hint)
2278 {
2279 	struct socket *so = kn->kn_fp->f_data;
2280 	int rv = 0;
2281 
2282 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2283 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2284 		soassertlocked_readonly(so);
2285 
2286 	if (so->so_options & SO_ACCEPTCONN) {
2287 		if (so->so_rcv.sb_flags & SB_MTXLOCK)
2288 			soassertlocked_readonly(so);
2289 
2290 		kn->kn_data = so->so_qlen;
2291 		rv = (kn->kn_data != 0);
2292 
2293 		if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) {
2294 			if (so->so_state & SS_ISDISCONNECTED) {
2295 				kn->kn_flags |= __EV_HUP;
2296 				rv = 1;
2297 			} else {
2298 				rv = soreadable(so);
2299 			}
2300 		}
2301 
2302 		return rv;
2303 	}
2304 
2305 	kn->kn_data = so->so_rcv.sb_cc;
2306 #ifdef SOCKET_SPLICE
2307 	if (isspliced(so)) {
2308 		rv = 0;
2309 	} else
2310 #endif /* SOCKET_SPLICE */
2311 	if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
2312 		kn->kn_flags |= EV_EOF;
2313 		if (kn->kn_flags & __EV_POLL) {
2314 			if (so->so_state & SS_ISDISCONNECTED)
2315 				kn->kn_flags |= __EV_HUP;
2316 		}
2317 		kn->kn_fflags = so->so_error;
2318 		rv = 1;
2319 	} else if (so->so_error) {
2320 		rv = 1;
2321 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2322 		rv = (kn->kn_data >= kn->kn_sdata);
2323 	} else {
2324 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2325 	}
2326 
2327 	return rv;
2328 }
2329 
2330 void
filt_sowdetach(struct knote * kn)2331 filt_sowdetach(struct knote *kn)
2332 {
2333 	struct socket *so = kn->kn_fp->f_data;
2334 
2335 	klist_remove(&so->so_snd.sb_klist, kn);
2336 }
2337 
2338 int
filt_sowrite(struct knote * kn,long hint)2339 filt_sowrite(struct knote *kn, long hint)
2340 {
2341 	struct socket *so = kn->kn_fp->f_data;
2342 	int rv;
2343 
2344 	MUTEX_ASSERT_LOCKED(&so->so_snd.sb_mtx);
2345 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
2346 		soassertlocked_readonly(so);
2347 
2348 	kn->kn_data = sbspace(so, &so->so_snd);
2349 	if (so->so_snd.sb_state & SS_CANTSENDMORE) {
2350 		kn->kn_flags |= EV_EOF;
2351 		if (kn->kn_flags & __EV_POLL) {
2352 			if (so->so_state & SS_ISDISCONNECTED)
2353 				kn->kn_flags |= __EV_HUP;
2354 		}
2355 		kn->kn_fflags = so->so_error;
2356 		rv = 1;
2357 	} else if (so->so_error) {
2358 		rv = 1;
2359 	} else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2360 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
2361 		rv = 0;
2362 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2363 		rv = (kn->kn_data >= kn->kn_sdata);
2364 	} else {
2365 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
2366 	}
2367 
2368 	return (rv);
2369 }
2370 
2371 int
filt_soexcept(struct knote * kn,long hint)2372 filt_soexcept(struct knote *kn, long hint)
2373 {
2374 	struct socket *so = kn->kn_fp->f_data;
2375 	int rv = 0;
2376 
2377 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2378 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2379 		soassertlocked_readonly(so);
2380 
2381 #ifdef SOCKET_SPLICE
2382 	if (isspliced(so)) {
2383 		rv = 0;
2384 	} else
2385 #endif /* SOCKET_SPLICE */
2386 	if (kn->kn_sfflags & NOTE_OOB) {
2387 		if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) {
2388 			kn->kn_fflags |= NOTE_OOB;
2389 			kn->kn_data -= so->so_oobmark;
2390 			rv = 1;
2391 		}
2392 	}
2393 
2394 	if (kn->kn_flags & __EV_POLL) {
2395 		if (so->so_state & SS_ISDISCONNECTED) {
2396 			kn->kn_flags |= __EV_HUP;
2397 			rv = 1;
2398 		}
2399 	}
2400 
2401 	return rv;
2402 }
2403 
2404 int
filt_sowmodify(struct kevent * kev,struct knote * kn)2405 filt_sowmodify(struct kevent *kev, struct knote *kn)
2406 {
2407 	struct socket *so = kn->kn_fp->f_data;
2408 	int rv;
2409 
2410 	sofilt_lock(so, &so->so_snd);
2411 	rv = knote_modify(kev, kn);
2412 	sofilt_unlock(so, &so->so_snd);
2413 
2414 	return (rv);
2415 }
2416 
2417 int
filt_sowprocess(struct knote * kn,struct kevent * kev)2418 filt_sowprocess(struct knote *kn, struct kevent *kev)
2419 {
2420 	struct socket *so = kn->kn_fp->f_data;
2421 	int rv;
2422 
2423 	sofilt_lock(so, &so->so_snd);
2424 	rv = knote_process(kn, kev);
2425 	sofilt_unlock(so, &so->so_snd);
2426 
2427 	return (rv);
2428 }
2429 
2430 int
filt_sormodify(struct kevent * kev,struct knote * kn)2431 filt_sormodify(struct kevent *kev, struct knote *kn)
2432 {
2433 	struct socket *so = kn->kn_fp->f_data;
2434 	int rv;
2435 
2436 	sofilt_lock(so, &so->so_rcv);
2437 	rv = knote_modify(kev, kn);
2438 	sofilt_unlock(so, &so->so_rcv);
2439 
2440 	return (rv);
2441 }
2442 
2443 int
filt_sorprocess(struct knote * kn,struct kevent * kev)2444 filt_sorprocess(struct knote *kn, struct kevent *kev)
2445 {
2446 	struct socket *so = kn->kn_fp->f_data;
2447 	int rv;
2448 
2449 	sofilt_lock(so, &so->so_rcv);
2450 	rv = knote_process(kn, kev);
2451 	sofilt_unlock(so, &so->so_rcv);
2452 
2453 	return (rv);
2454 }
2455 
2456 #ifdef DDB
2457 void
2458 sobuf_print(struct sockbuf *,
2459     int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))));
2460 
2461 void
sobuf_print(struct sockbuf * sb,int (* pr)(const char *,...))2462 sobuf_print(struct sockbuf *sb,
2463     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2464 {
2465 	(*pr)("\tsb_cc: %lu\n", sb->sb_cc);
2466 	(*pr)("\tsb_datacc: %lu\n", sb->sb_datacc);
2467 	(*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat);
2468 	(*pr)("\tsb_wat: %lu\n", sb->sb_wat);
2469 	(*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt);
2470 	(*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax);
2471 	(*pr)("\tsb_lowat: %ld\n", sb->sb_lowat);
2472 	(*pr)("\tsb_mb: %p\n", sb->sb_mb);
2473 	(*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail);
2474 	(*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord);
2475 	(*pr)("\tsb_sel: ...\n");
2476 	(*pr)("\tsb_flags: %04x\n", sb->sb_flags);
2477 	(*pr)("\tsb_state: %04x\n", sb->sb_state);
2478 	(*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs);
2479 }
2480 
2481 void
so_print(void * v,int (* pr)(const char *,...))2482 so_print(void *v,
2483     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2484 {
2485 	struct socket *so = v;
2486 
2487 	(*pr)("socket %p\n", so);
2488 	(*pr)("so_type: %i\n", so->so_type);
2489 	(*pr)("so_options: 0x%04x\n", so->so_options); /* %b */
2490 	(*pr)("so_linger: %i\n", so->so_linger);
2491 	(*pr)("so_state: 0x%04x\n", so->so_state);
2492 	(*pr)("so_pcb: %p\n", so->so_pcb);
2493 	(*pr)("so_proto: %p\n", so->so_proto);
2494 	(*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio);
2495 
2496 	(*pr)("so_head: %p\n", so->so_head);
2497 	(*pr)("so_onq: %p\n", so->so_onq);
2498 	(*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0));
2499 	(*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q));
2500 	(*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe));
2501 	(*pr)("so_q0len: %i\n", so->so_q0len);
2502 	(*pr)("so_qlen: %i\n", so->so_qlen);
2503 	(*pr)("so_qlimit: %i\n", so->so_qlimit);
2504 	(*pr)("so_timeo: %i\n", so->so_timeo);
2505 	(*pr)("so_obmark: %lu\n", so->so_oobmark);
2506 
2507 	(*pr)("so_sp: %p\n", so->so_sp);
2508 	if (so->so_sp != NULL) {
2509 		(*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket);
2510 		(*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback);
2511 		(*pr)("\tssp_len: %lld\n",
2512 		    (unsigned long long)so->so_sp->ssp_len);
2513 		(*pr)("\tssp_max: %lld\n",
2514 		    (unsigned long long)so->so_sp->ssp_max);
2515 		(*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec,
2516 		    so->so_sp->ssp_idletv.tv_usec);
2517 		(*pr)("\tssp_idleto: %spending (@%i)\n",
2518 		    timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ",
2519 		    so->so_sp->ssp_idleto.to_time);
2520 	}
2521 
2522 	(*pr)("so_rcv:\n");
2523 	sobuf_print(&so->so_rcv, pr);
2524 	(*pr)("so_snd:\n");
2525 	sobuf_print(&so->so_snd, pr);
2526 
2527 	(*pr)("so_upcall: %p so_upcallarg: %p\n",
2528 	    so->so_upcall, so->so_upcallarg);
2529 
2530 	(*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid);
2531 	(*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid);
2532 	(*pr)("so_cpid: %d\n", so->so_cpid);
2533 }
2534 #endif
2535