xref: /openbsd/usr.bin/systat/pftop.c (revision 603ea060)
1 /* $OpenBSD: pftop.c,v 1.47 2024/04/22 14:19:48 jsg Exp $	 */
2 /*
3  * Copyright (c) 2001, 2007 Can Erkin Acar
4  * Copyright (c) 2001 Daniel Hartmeier
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *    - Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *    - Redistributions in binary form must reproduce the above
14  *      copyright notice, this list of conditions and the following
15  *      disclaimer in the documentation and/or other materials provided
16  *      with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/types.h>
34 #include <sys/ioctl.h>
35 #include <sys/socket.h>
36 
37 #include <net/if.h>
38 #include <netinet/in.h>
39 #include <netinet/tcp.h>
40 #include <netinet/tcp_fsm.h>
41 #include <net/pfvar.h>
42 #include <arpa/inet.h>
43 
44 #include <net/hfsc.h>
45 
46 #include <ctype.h>
47 #include <curses.h>
48 #include <err.h>
49 #include <errno.h>
50 #include <fcntl.h>
51 #include <netdb.h>
52 #include <signal.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <unistd.h>
57 #include <limits.h>
58 #include <stdarg.h>
59 
60 #include "systat.h"
61 #include "engine.h"
62 #include "cache.h"
63 
64 extern const char *tcpstates[];
65 
66 #define MIN_NUM_STATES 1024
67 #define NUM_STATE_INC  1024
68 
69 #define DEFAULT_CACHE_SIZE 10000
70 
71 /* XXX must also check type before use */
72 #define PT_ADDR(x) (&(x)->addr.v.a.addr)
73 
74 /* XXX must also check type before use */
75 #define PT_MASK(x) (&(x)->addr.v.a.mask)
76 
77 #define PT_NOROUTE(x) ((x)->addr.type == PF_ADDR_NOROUTE)
78 
79 /* view management */
80 int select_states(void);
81 int read_states(void);
82 void sort_states(void);
83 void print_states(void);
84 
85 int select_rules(void);
86 int read_rules(void);
87 void print_rules(void);
88 
89 int select_queues(void);
90 int read_queues(void);
91 void print_queues(void);
92 
93 void update_cache(void);
94 
95 /* qsort callbacks */
96 int sort_size_callback(const void *s1, const void *s2);
97 int sort_exp_callback(const void *s1, const void *s2);
98 int sort_pkt_callback(const void *s1, const void *s2);
99 int sort_age_callback(const void *s1, const void *s2);
100 int sort_sa_callback(const void *s1, const void *s2);
101 int sort_sp_callback(const void *s1, const void *s2);
102 int sort_da_callback(const void *s1, const void *s2);
103 int sort_dp_callback(const void *s1, const void *s2);
104 int sort_rate_callback(const void *s1, const void *s2);
105 int sort_peak_callback(const void *s1, const void *s2);
106 int pf_dev = -1;
107 
108 struct sc_ent **state_cache = NULL;
109 struct pfsync_state *state_buf = NULL;
110 size_t state_buf_len = 0;
111 size_t *state_ord = NULL;
112 size_t num_states = 0;
113 size_t num_states_all = 0;
114 u_int32_t num_rules = 0;
115 u_int32_t num_queues = 0;
116 int cachestates = 0;
117 
118 char *filter_string = NULL;
119 
120 #define MIN_LABEL_SIZE 5
121 #define ANCHOR_FLD_SIZE 12
122 
123 /* Define fields */
124 field_def fields[] = {
125 	{"SRC", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
126 	{"DEST", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
127 	{"GW", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
128 	{"STATE", 5, 23, 18, FLD_ALIGN_COLUMN, -1, 0, 0, 0},
129 	{"AGE", 5, 9, 4, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
130 	{"EXP", 5, 9, 4, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
131 	{"PR ", 4, 9, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
132 	{"DIR", 1, 3, 2, FLD_ALIGN_CENTER, -1, 0, 0, 0},
133 	{"PKTS", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
134 	{"BYTES", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
135 	{"RULE", 2, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
136 	{"LABEL", MIN_LABEL_SIZE, MIN_LABEL_SIZE, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
137 	{"STATES", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
138 	{"EVAL", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
139 	{"ACTION", 1, 8, 4, FLD_ALIGN_LEFT, -1, 0, 0, 0},
140 	{"LOG", 1, 3, 2, FLD_ALIGN_LEFT, -1, 0, 0, 0},
141 	{"QUICK", 1, 1, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
142 	{"KS", 1, 1, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
143 	{"IF", 4, 7, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
144 	{"INFO", 40, 80, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
145 	{"MAX", 3, 5, 2, FLD_ALIGN_RIGHT, -1, 0, 0},
146 	{"RATE", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
147 	{"AVG", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
148 	{"PEAK", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
149 	{"ANCHOR", 6, 16, 1, FLD_ALIGN_LEFT, -1, 0, 0},
150 	{"QUEUE", 15, 30, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
151 	{"BW/FL", 4, 5, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
152 	{"SCH", 3, 4, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
153 	{"DROP_P", 6, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
154 	{"DROP_B", 6, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
155 	{"QLEN", 4, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
156 	{"BORROW", 4, 6, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
157 	{"SUSPENDS", 4, 6, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
158 	{"P/S", 3, 7, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
159 	{"B/S", 4, 7, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0}
160 };
161 
162 
163 /* for states */
164 #define FLD_SRC     FIELD_ADDR(fields,0)
165 #define FLD_DEST    FIELD_ADDR(fields,1)
166 #define FLD_GW      FIELD_ADDR(fields,2)
167 #define FLD_STATE   FIELD_ADDR(fields,3)
168 #define FLD_AGE     FIELD_ADDR(fields,4)
169 #define FLD_EXP     FIELD_ADDR(fields,5)
170 /* common */
171 #define FLD_PROTO   FIELD_ADDR(fields,6)
172 #define FLD_DIR     FIELD_ADDR(fields,7)
173 #define FLD_PKTS    FIELD_ADDR(fields,8)
174 #define FLD_BYTES   FIELD_ADDR(fields,9)
175 #define FLD_RULE    FIELD_ADDR(fields,10)
176 /* for rules */
177 #define FLD_LABEL   FIELD_ADDR(fields,11)
178 #define FLD_STATS   FIELD_ADDR(fields,12)
179 #define FLD_EVAL    FIELD_ADDR(fields,13)
180 #define FLD_ACTION  FIELD_ADDR(fields,14)
181 #define FLD_LOG     FIELD_ADDR(fields,15)
182 #define FLD_QUICK   FIELD_ADDR(fields,16)
183 #define FLD_KST     FIELD_ADDR(fields,17)
184 #define FLD_IF      FIELD_ADDR(fields,18)
185 #define FLD_RINFO   FIELD_ADDR(fields,19)
186 #define FLD_STMAX   FIELD_ADDR(fields,20)
187 /* other */
188 #define FLD_SI      FIELD_ADDR(fields,21)    /* instantaneous speed */
189 #define FLD_SA      FIELD_ADDR(fields,22)    /* average speed */
190 #define FLD_SP      FIELD_ADDR(fields,23)    /* peak speed */
191 #define FLD_ANCHOR  FIELD_ADDR(fields,24)
192 /* for queues */
193 #define FLD_QUEUE   FIELD_ADDR(fields,25)
194 #define FLD_BANDW   FIELD_ADDR(fields,26)
195 #define FLD_SCHED   FIELD_ADDR(fields,27)
196 #define FLD_DROPP   FIELD_ADDR(fields,28)
197 #define FLD_DROPB   FIELD_ADDR(fields,29)
198 #define FLD_QLEN    FIELD_ADDR(fields,30)
199 #define FLD_BORR    FIELD_ADDR(fields,31)
200 #define FLD_SUSP    FIELD_ADDR(fields,32)
201 #define FLD_PKTSPS  FIELD_ADDR(fields,33)
202 #define FLD_BYTESPS FIELD_ADDR(fields,34)
203 
204 /* Define views */
205 field_def *view0[] = {
206 	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_STATE,
207 	FLD_AGE, FLD_EXP, FLD_PKTS, FLD_BYTES, NULL
208 };
209 
210 field_def *view1[] = {
211 	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_GW, FLD_STATE, FLD_AGE,
212 	FLD_EXP, FLD_PKTS, FLD_BYTES, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, NULL
213 };
214 
215 field_def *view2[] = {
216 	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_STATE, FLD_AGE, FLD_EXP,
217 	FLD_PKTS, FLD_BYTES, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
218 };
219 
220 field_def *view3[] = {
221 	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_AGE, FLD_EXP, FLD_PKTS,
222 	FLD_BYTES, FLD_STATE, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
223 };
224 
225 field_def *view4[] = {
226 	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_PKTS, FLD_BYTES, FLD_STATE,
227 	FLD_AGE, FLD_EXP, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
228 };
229 
230 field_def *view5[] = {
231 	FLD_RULE, FLD_ANCHOR, FLD_ACTION, FLD_DIR, FLD_LOG, FLD_QUICK, FLD_IF,
232 	FLD_PROTO, FLD_KST, FLD_PKTS, FLD_BYTES, FLD_STATS, FLD_STMAX,
233 	FLD_RINFO, NULL
234 };
235 
236 field_def *view6[] = {
237 	FLD_RULE, FLD_LABEL, FLD_PKTS, FLD_BYTES, FLD_STATS, FLD_STMAX,
238 	FLD_ACTION, FLD_DIR, FLD_LOG, FLD_QUICK, FLD_IF, FLD_PROTO,
239 	FLD_ANCHOR, FLD_KST, NULL
240 };
241 
242 field_def *view7[] = {
243 	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST,  FLD_SI, FLD_SP, FLD_SA,
244 	FLD_BYTES, FLD_STATE, FLD_PKTS, FLD_AGE, FLD_EXP, FLD_RULE, FLD_GW, NULL
245 };
246 
247 field_def *view8[] = {
248 	FLD_QUEUE, FLD_BANDW, FLD_SCHED, FLD_PKTS, FLD_BYTES,
249 	FLD_DROPP, FLD_DROPB, FLD_QLEN, FLD_BORR, FLD_SUSP, FLD_PKTSPS,
250 	FLD_BYTESPS, NULL
251 };
252 
253 /* Define orderings */
254 order_type order_list[] = {
255 	{"none", "none", 'N', NULL},
256 	{"bytes", "bytes", 'B', sort_size_callback},
257 	{"expiry", "exp", 'E', sort_exp_callback},
258 	{"packets", "pkt", 'P', sort_pkt_callback},
259 	{"age", "age", 'A', sort_age_callback},
260 	{"source addr", "src", 'F', sort_sa_callback},
261 	{"dest. addr", "dest", 'T', sort_da_callback},
262 	{"source port", "sport", 'S', sort_sp_callback},
263 	{"dest. port", "dport", 'D', sort_dp_callback},
264 	{"rate", "rate", 'R', sort_rate_callback},
265 	{"peak", "peak", 'K', sort_peak_callback},
266 	{NULL, NULL, 0, NULL}
267 };
268 
269 /* Define view managers */
270 struct view_manager state_mgr = {
271 	"States", select_states, read_states, sort_states, print_header,
272 	print_states, keyboard_callback, order_list, order_list
273 };
274 
275 struct view_manager rule_mgr = {
276 	"Rules", select_rules, read_rules, NULL, print_header,
277 	print_rules, keyboard_callback, NULL, NULL
278 };
279 
280 struct view_manager queue_mgr = {
281 	"Queues", select_queues, read_queues, NULL, print_header,
282 	print_queues, keyboard_callback, NULL, NULL
283 };
284 
285 field_view views[] = {
286 	{view2, "states", '8', &state_mgr},
287 	{view5, "rules", '9', &rule_mgr},
288 	{view8, "queues", 'Q', &queue_mgr},
289 	{NULL, NULL, 0, NULL}
290 };
291 
292 /* queue structures from pfctl */
293 
294 struct queue_stats {
295 	struct hfsc_class_stats	 data;
296 	int			 valid;
297 	struct timeval		 timestamp;
298 };
299 
300 struct pfctl_queue_node {
301 	TAILQ_ENTRY(pfctl_queue_node)	entries;
302 	struct pf_queuespec		qs;
303 	struct queue_stats		qstats;
304 	struct queue_stats		qstats_last;
305 	int				depth;
306 };
307 TAILQ_HEAD(qnodes, pfctl_queue_node) qnodes = TAILQ_HEAD_INITIALIZER(qnodes);
308 
309 /* ordering functions */
310 
311 int
sort_size_callback(const void * s1,const void * s2)312 sort_size_callback(const void *s1, const void *s2)
313 {
314 	u_int64_t b1 = COUNTER(state_buf[* (size_t *) s1].bytes[0]) +
315 		COUNTER(state_buf[* (size_t *) s1].bytes[1]);
316 	u_int64_t b2 = COUNTER(state_buf[* (size_t *) s2].bytes[0]) +
317 		COUNTER(state_buf[* (size_t *) s2].bytes[1]);
318 	if (b2 > b1)
319 		return sortdir;
320 	if (b2 < b1)
321 		return -sortdir;
322 	return 0;
323 }
324 
325 int
sort_pkt_callback(const void * s1,const void * s2)326 sort_pkt_callback(const void *s1, const void *s2)
327 {
328 	u_int64_t p1 = COUNTER(state_buf[* (size_t *) s1].packets[0]) +
329 		COUNTER(state_buf[* (size_t *) s1].packets[1]);
330 	u_int64_t p2 = COUNTER(state_buf[* (size_t *) s2].packets[0]) +
331 		COUNTER(state_buf[* (size_t *) s2].packets[1]);
332 	if (p2 > p1)
333 		return sortdir;
334 	if (p2 < p1)
335 		return -sortdir;
336 	return 0;
337 }
338 
339 int
sort_age_callback(const void * s1,const void * s2)340 sort_age_callback(const void *s1, const void *s2)
341 {
342 	if (ntohl(state_buf[* (size_t *) s2].creation) >
343 	    ntohl(state_buf[* (size_t *) s1].creation))
344 		return sortdir;
345 	if (ntohl(state_buf[* (size_t *) s2].creation) <
346 	    ntohl(state_buf[* (size_t *) s1].creation))
347 		return -sortdir;
348 	return 0;
349 }
350 
351 int
sort_exp_callback(const void * s1,const void * s2)352 sort_exp_callback(const void *s1, const void *s2)
353 {
354 	if (ntohl(state_buf[* (size_t *) s2].expire) >
355 	    ntohl(state_buf[* (size_t *) s1].expire))
356 		return sortdir;
357 	if (ntohl(state_buf[* (size_t *) s2].expire) <
358 	    ntohl(state_buf[* (size_t *) s1].expire))
359 		return -sortdir;
360 	return 0;
361 }
362 
363 int
sort_rate_callback(const void * s1,const void * s2)364 sort_rate_callback(const void *s1, const void *s2)
365 {
366 	struct sc_ent *e1 = state_cache[* (u_int32_t *) s1];
367 	struct sc_ent *e2 = state_cache[* (u_int32_t *) s2];
368 
369 	if (e1 == NULL)
370 		return sortdir;
371 	if (e2 == NULL)
372 		return -sortdir;
373 
374 	if (e2->rate > e1 -> rate)
375 		return sortdir;
376 	if (e2->rate < e1 -> rate)
377 		return -sortdir;
378 	return 0;
379 }
380 
381 int
sort_peak_callback(const void * s1,const void * s2)382 sort_peak_callback(const void *s1, const void *s2)
383 {
384 	struct sc_ent *e1 = state_cache[* (u_int32_t *) s1];
385 	struct sc_ent *e2 = state_cache[* (u_int32_t *) s2];
386 
387 	if (e2 == NULL)
388 		return -sortdir;
389 	if (e1 == NULL || e2 == NULL)
390 		return 0;
391 
392 	if (e2->peak > e1 -> peak)
393 		return sortdir;
394 	if (e2->peak < e1 -> peak)
395 		return -sortdir;
396 	return 0;
397 }
398 
399 int
compare_addr(int af,const struct pf_addr * a,const struct pf_addr * b)400 compare_addr(int af, const struct pf_addr *a, const struct pf_addr *b)
401 {
402 	switch (af) {
403 	case AF_INET:
404 		if (ntohl(a->addr32[0]) > ntohl(b->addr32[0]))
405 			return 1;
406 		if (a->addr32[0] != b->addr32[0])
407 			return -1;
408 		break;
409 	case AF_INET6:
410 		if (ntohl(a->addr32[0]) > ntohl(b->addr32[0]))
411 			return 1;
412 		if (a->addr32[0] != b->addr32[0])
413 			return -1;
414 		if (ntohl(a->addr32[1]) > ntohl(b->addr32[1]))
415 			return 1;
416 		if (a->addr32[1] != b->addr32[1])
417 			return -1;
418 		if (ntohl(a->addr32[2]) > ntohl(b->addr32[2]))
419 			return 1;
420 		if (a->addr32[2] != b->addr32[2])
421 			return -1;
422 		if (ntohl(a->addr32[3]) > ntohl(b->addr32[3]))
423 			return 1;
424 		if (a->addr32[3] != b->addr32[3])
425 			return -1;
426 		break;
427 	}
428 
429 	return 0;
430 }
431 
432 static __inline int
sort_addr_callback(const struct pfsync_state * s1,const struct pfsync_state * s2,int dir)433 sort_addr_callback(const struct pfsync_state *s1,
434 		   const struct pfsync_state *s2, int dir)
435 {
436 	const struct pf_addr *aa, *ab;
437 	u_int16_t pa, pb;
438 	int af, side, ret, ii, io;
439 
440 	side = s1->direction == PF_IN ? PF_SK_STACK : PF_SK_WIRE;
441 
442 	if (s1->key[side].af > s2->key[side].af)
443 		return sortdir;
444 	if (s1->key[side].af < s2->key[side].af)
445 		return -sortdir;
446 
447 	ii = io = 0;
448 
449 	if (dir == PF_OUT)	/* looking for source addr */
450 		io = 1;
451 	else			/* looking for dest addr */
452 		ii = 1;
453 
454 	if (s1->key[PF_SK_STACK].af != s1->key[PF_SK_WIRE].af) {
455 		dir = PF_OUT;
456 		side = PF_SK_STACK;
457 	} else {
458 		dir = s1->direction;
459 		side = PF_SK_WIRE;
460 	}
461 
462 	if (dir == PF_IN) {
463 		aa = &s1->key[PF_SK_STACK].addr[ii];
464 		pa =  s1->key[PF_SK_STACK].port[ii];
465 		af = s1->key[PF_SK_STACK].af;
466 	} else {
467 		aa = &s1->key[side].addr[io];
468 		pa =  s1->key[side].port[io];
469 		af = s1->key[side].af;
470 	}
471 
472 	if (s2->key[PF_SK_STACK].af != s2->key[PF_SK_WIRE].af) {
473 		dir = PF_OUT;
474 		side = PF_SK_STACK;
475 	} else {
476 		dir = s2->direction;
477 		side = PF_SK_WIRE;
478 	}
479 
480 	if (dir == PF_IN) {
481 		ab = &s2->key[PF_SK_STACK].addr[ii];
482 		pb =  s2->key[PF_SK_STACK].port[ii];
483 		af = s1->key[PF_SK_STACK].af;
484 	} else {
485 		ab = &s2->key[side].addr[io];
486 		pb =  s2->key[side].port[io];
487 		af = s1->key[side].af;
488 	}
489 
490 	ret = compare_addr(af, aa, ab);
491 	if (ret)
492 		return ret * sortdir;
493 
494 	if (ntohs(pa) > ntohs(pb))
495 		return sortdir;
496 	return -sortdir;
497 }
498 
499 static __inline int
sort_port_callback(const struct pfsync_state * s1,const struct pfsync_state * s2,int dir)500 sort_port_callback(const struct pfsync_state *s1,
501 		   const struct pfsync_state *s2, int dir)
502 {
503 	const struct pf_addr *aa, *ab;
504 	u_int16_t pa, pb;
505 	int af, side, ret, ii, io;
506 
507 	side = s1->direction == PF_IN ? PF_SK_STACK : PF_SK_WIRE;
508 
509 	if (s1->key[side].af > s2->key[side].af)
510 		return sortdir;
511 	if (s1->key[side].af < s2->key[side].af)
512 		return -sortdir;
513 
514 	ii = io = 0;
515 
516 	if (dir == PF_OUT)	/* looking for source addr */
517 		io = 1;
518 	else			/* looking for dest addr */
519 		ii = 1;
520 
521 	if (s1->key[PF_SK_STACK].af != s1->key[PF_SK_WIRE].af) {
522 		dir = PF_OUT;
523 		side = PF_SK_STACK;
524 	} else {
525 		dir = s1->direction;
526 		side = PF_SK_WIRE;
527 	}
528 
529 	if (dir == PF_IN) {
530 		aa = &s1->key[PF_SK_STACK].addr[ii];
531 		pa =  s1->key[PF_SK_STACK].port[ii];
532 		af = s1->key[PF_SK_STACK].af;
533 	} else {
534 		aa = &s1->key[side].addr[io];
535 		pa =  s1->key[side].port[io];
536 		af = s1->key[side].af;
537 	}
538 
539 	if (s2->key[PF_SK_STACK].af != s2->key[PF_SK_WIRE].af) {
540 		dir = PF_OUT;
541 		side = PF_SK_STACK;
542 	} else {
543 		dir = s2->direction;
544 		side = PF_SK_WIRE;
545 	}
546 
547 	if (dir == PF_IN) {
548 		ab = &s2->key[PF_SK_STACK].addr[ii];
549 		pb =  s2->key[PF_SK_STACK].port[ii];
550 		af = s1->key[PF_SK_STACK].af;
551 	} else {
552 		ab = &s2->key[side].addr[io];
553 		pb =  s2->key[side].port[io];
554 		af = s1->key[side].af;
555 	}
556 
557 
558 	if (ntohs(pa) > ntohs(pb))
559 		return sortdir;
560 	if (ntohs(pa) < ntohs(pb))
561 		return - sortdir;
562 
563 	ret = compare_addr(af, aa, ab);
564 	if (ret)
565 		return ret * sortdir;
566 	return -sortdir;
567 }
568 
569 int
sort_sa_callback(const void * p1,const void * p2)570 sort_sa_callback(const void *p1, const void *p2)
571 {
572 	struct pfsync_state *s1 = state_buf + (* (size_t *) p1);
573 	struct pfsync_state *s2 = state_buf + (* (size_t *) p2);
574 	return sort_addr_callback(s1, s2, PF_OUT);
575 }
576 
577 int
sort_da_callback(const void * p1,const void * p2)578 sort_da_callback(const void *p1, const void *p2)
579 {
580 	struct pfsync_state *s1 = state_buf + (* (size_t *) p1);
581 	struct pfsync_state *s2 = state_buf + (* (size_t *) p2);
582 	return sort_addr_callback(s1, s2, PF_IN);
583 }
584 
585 int
sort_sp_callback(const void * p1,const void * p2)586 sort_sp_callback(const void *p1, const void *p2)
587 {
588 	struct pfsync_state *s1 = state_buf + (* (size_t *) p1);
589 	struct pfsync_state *s2 = state_buf + (* (size_t *) p2);
590 	return sort_port_callback(s1, s2, PF_OUT);
591 }
592 
593 int
sort_dp_callback(const void * p1,const void * p2)594 sort_dp_callback(const void *p1, const void *p2)
595 {
596 	struct pfsync_state *s1 = state_buf + (* (size_t *) p1);
597 	struct pfsync_state *s2 = state_buf + (* (size_t *) p2);
598 	return sort_port_callback(s1, s2, PF_IN);
599 }
600 
601 void
sort_states(void)602 sort_states(void)
603 {
604 	order_type *ordering;
605 
606 	if (curr_mgr == NULL)
607 		return;
608 
609 	ordering = curr_mgr->order_curr;
610 
611 	if (ordering == NULL)
612 		return;
613 	if (ordering->func == NULL)
614 		return;
615 	if (state_buf == NULL)
616 		return;
617 	if (num_states <= 0)
618 		return;
619 
620 	mergesort(state_ord, num_states, sizeof(size_t), ordering->func);
621 }
622 
623 /* state management functions */
624 
625 void
alloc_buf(size_t ns)626 alloc_buf(size_t ns)
627 {
628 	size_t len;
629 
630 	if (ns < MIN_NUM_STATES)
631 		ns = MIN_NUM_STATES;
632 
633 	len = ns;
634 
635 	if (len >= state_buf_len) {
636 		len += NUM_STATE_INC;
637 		state_buf = reallocarray(state_buf, len,
638 		    sizeof(struct pfsync_state));
639 		state_ord = reallocarray(state_ord, len, sizeof(size_t));
640 		state_cache = reallocarray(state_cache, len,
641 		    sizeof(struct sc_ent *));
642 		if (state_buf == NULL || state_ord == NULL ||
643 		    state_cache == NULL)
644 			err(1, "realloc");
645 		state_buf_len = len;
646 	}
647 }
648 
649 int
select_states(void)650 select_states(void)
651 {
652 	num_disp = num_states;
653 	return (0);
654 }
655 
656 int
read_states(void)657 read_states(void)
658 {
659 	struct pfioc_states ps;
660 	size_t n;
661 
662 	if (pf_dev == -1)
663 		return -1;
664 
665 	for (;;) {
666 		size_t sbytes = state_buf_len * sizeof(struct pfsync_state);
667 
668 		ps.ps_len = sbytes;
669 		ps.ps_states = state_buf;
670 
671 		if (ioctl(pf_dev, DIOCGETSTATES, &ps) == -1) {
672 			error("DIOCGETSTATES");
673 		}
674 		num_states_all = ps.ps_len / sizeof(struct pfsync_state);
675 
676 		if (ps.ps_len < sbytes)
677 			break;
678 
679 		alloc_buf(num_states_all);
680 	}
681 
682 	num_states = num_states_all;
683 	for (n = 0; n < num_states_all; n++)
684 		state_ord[n] = n;
685 
686 	if (cachestates) {
687 		for (n = 0; n < num_states; n++)
688 			state_cache[n] = cache_state(state_buf + n);
689 		cache_endupdate();
690 	}
691 
692 	num_disp = num_states;
693 	return 0;
694 }
695 
696 int
unmask(struct pf_addr * m)697 unmask(struct pf_addr * m)
698 {
699 	int i = 31, j = 0, b = 0;
700 	u_int32_t tmp;
701 
702 	while (j < 4 && m->addr32[j] == 0xffffffff) {
703 		b += 32;
704 		j++;
705 	}
706 	if (j < 4) {
707 		tmp = ntohl(m->addr32[j]);
708 		for (i = 31; tmp & (1 << i); --i)
709 			b++;
710 	}
711 	return (b);
712 }
713 
714 /* display functions */
715 
716 void
tb_print_addr(struct pf_addr * addr,struct pf_addr * mask,int af)717 tb_print_addr(struct pf_addr * addr, struct pf_addr * mask, int af)
718 {
719 	switch (af) {
720 	case AF_INET:
721 		tbprintf("%s", inetname(addr->v4));
722 		break;
723 	case AF_INET6:
724 		tbprintf("%s", inet6name(&addr->v6));
725 		break;
726 	}
727 
728 	if (mask != NULL) {
729 		if (!PF_AZERO(mask, af))
730 			tbprintf("/%u", unmask(mask));
731 	}
732 }
733 
734 void
print_fld_host2(field_def * fld,struct pfsync_state_key * ks,struct pfsync_state_key * kn,int idx)735 print_fld_host2(field_def *fld, struct pfsync_state_key *ks,
736 		struct pfsync_state_key *kn, int idx)
737 {
738 	struct pf_addr *as = &ks->addr[idx];
739 	struct pf_addr *an = &kn->addr[idx];
740 
741 	u_int16_t ps = ntohs(ks->port[idx]);
742 	u_int16_t pn = ntohs(kn->port[idx]);
743 
744 	int asf = ks->af;
745 	int anf = kn->af;
746 
747 	if (fld == NULL)
748 		return;
749 
750 	if (fld->width < 3) {
751 		print_fld_str(fld, "*");
752 		return;
753 	}
754 
755 	tb_start();
756 	tb_print_addr(as, NULL, asf);
757 
758 	if (asf == AF_INET)
759 		tbprintf(":%u", ps);
760 	else
761 		tbprintf("[%u]", ps);
762 
763 	print_fld_tb(fld);
764 
765 	if (asf != anf || PF_ANEQ(as, an, asf) || ps != pn) {
766 		tb_start();
767 		tb_print_addr(an, NULL, anf);
768 
769 		if (anf == AF_INET)
770 			tbprintf(":%u", pn);
771 		else
772 			tbprintf("[%u]", pn);
773 		print_fld_tb(FLD_GW);
774 	}
775 
776 }
777 
778 void
print_fld_state(field_def * fld,unsigned int proto,unsigned int s1,unsigned int s2)779 print_fld_state(field_def *fld, unsigned int proto,
780 		unsigned int s1, unsigned int s2)
781 {
782 	int len;
783 
784 	if (fld == NULL)
785 		return;
786 
787 	len = fld->width;
788 	if (len < 1)
789 		return;
790 
791 	tb_start();
792 
793 	if (proto == IPPROTO_TCP) {
794 		if (s1 <= TCPS_TIME_WAIT && s2 <= TCPS_TIME_WAIT)
795 			tbprintf("%s:%s", tcpstates[s1], tcpstates[s2]);
796 #ifdef PF_TCPS_PROXY_SRC
797 		else if (s1 == PF_TCPS_PROXY_SRC ||
798 			   s2 == PF_TCPS_PROXY_SRC)
799 			tbprintf("PROXY:SRC\n");
800 		else if (s1 == PF_TCPS_PROXY_DST ||
801 			 s2 == PF_TCPS_PROXY_DST)
802 			tbprintf("PROXY:DST\n");
803 #endif
804 		else
805 			tbprintf("<BAD STATE LEVELS>");
806 	} else if (proto == IPPROTO_UDP && s1 < PFUDPS_NSTATES &&
807 		   s2 < PFUDPS_NSTATES) {
808 		const char *states[] = PFUDPS_NAMES;
809 		tbprintf("%s:%s", states[s1], states[s2]);
810 	} else if (proto != IPPROTO_ICMP && s1 < PFOTHERS_NSTATES &&
811 		   s2 < PFOTHERS_NSTATES) {
812 		/* XXX ICMP doesn't really have state levels */
813 		const char *states[] = PFOTHERS_NAMES;
814 		tbprintf("%s:%s", states[s1], states[s2]);
815 	} else {
816 		tbprintf("%u:%u", s1, s2);
817 	}
818 
819 	if (strlen(tmp_buf) > len) {
820 		tb_start();
821 		tbprintf("%u:%u", s1, s2);
822 	}
823 
824 	print_fld_tb(fld);
825 }
826 
827 int
print_state(struct pfsync_state * s,struct sc_ent * ent)828 print_state(struct pfsync_state * s, struct sc_ent * ent)
829 {
830 	struct pfsync_state_peer *src, *dst;
831 	struct protoent *p;
832 	u_int64_t sz;
833 	int afto, dir;
834 
835 	afto = s->key[PF_SK_STACK].af == s->key[PF_SK_WIRE].af ? 0 : 1;
836 	dir = afto ? PF_OUT : s->direction;
837 
838 	if (dir == PF_OUT) {
839 		src = &s->src;
840 		dst = &s->dst;
841 	} else {
842 		src = &s->dst;
843 		dst = &s->src;
844 	}
845 
846 	p = getprotobynumber(s->proto);
847 
848 	if (p != NULL)
849 		print_fld_str(FLD_PROTO, p->p_name);
850 	else
851 		print_fld_uint(FLD_PROTO, s->proto);
852 
853 	if (dir == PF_OUT) {
854 		print_fld_host2(FLD_SRC,
855 		    &s->key[afto ? PF_SK_STACK : PF_SK_WIRE],
856 		    &s->key[PF_SK_STACK], 1);
857 		print_fld_host2(FLD_DEST,
858 		    &s->key[afto ? PF_SK_STACK : PF_SK_WIRE],
859 		    &s->key[afto ? PF_SK_WIRE : PF_SK_STACK], 0);
860 	} else {
861 		print_fld_host2(FLD_SRC, &s->key[PF_SK_STACK],
862 		    &s->key[PF_SK_WIRE], 0);
863 		print_fld_host2(FLD_DEST, &s->key[PF_SK_STACK],
864 		    &s->key[PF_SK_WIRE], 1);
865 	}
866 
867 	if (dir == PF_OUT)
868 		print_fld_str(FLD_DIR, "Out");
869 	else
870 		print_fld_str(FLD_DIR, "In");
871 
872 	print_fld_state(FLD_STATE, s->proto, src->state, dst->state);
873 	print_fld_age(FLD_AGE, ntohl(s->creation));
874 	print_fld_age(FLD_EXP, ntohl(s->expire));
875 
876 	sz = COUNTER(s->bytes[0]) + COUNTER(s->bytes[1]);
877 
878 	print_fld_size(FLD_PKTS, COUNTER(s->packets[0]) +
879 		       COUNTER(s->packets[1]));
880 	print_fld_size(FLD_BYTES, sz);
881 	print_fld_rate(FLD_SA, (s->creation) ?
882 		       ((double)sz/(double)ntohl(s->creation)) : -1);
883 
884 	print_fld_uint(FLD_RULE, ntohl(s->rule));
885 	if (cachestates && ent != NULL) {
886 		print_fld_rate(FLD_SI, ent->rate);
887 		print_fld_rate(FLD_SP, ent->peak);
888 	}
889 
890 	end_line();
891 	return 1;
892 }
893 
894 void
print_states(void)895 print_states(void)
896 {
897 	int n, count = 0;
898 
899 	for (n = dispstart; n < num_disp; n++) {
900 		count += print_state(state_buf + state_ord[n],
901 				     state_cache[state_ord[n]]);
902 		if (maxprint > 0 && count >= maxprint)
903 			break;
904 	}
905 }
906 
907 /* rule display */
908 
909 struct pf_rule *rules = NULL;
910 u_int32_t alloc_rules = 0;
911 
912 int
select_rules(void)913 select_rules(void)
914 {
915 	num_disp = num_rules;
916 	return (0);
917 }
918 
919 
920 void
add_rule_alloc(u_int32_t nr)921 add_rule_alloc(u_int32_t nr)
922 {
923 	if (nr == 0)
924 		return;
925 
926 	num_rules += nr;
927 
928 	if (rules == NULL) {
929 		rules = reallocarray(NULL, num_rules, sizeof(struct pf_rule));
930 		if (rules == NULL)
931 			err(1, "malloc");
932 		alloc_rules = num_rules;
933 	} else if (num_rules > alloc_rules) {
934 		rules = reallocarray(rules, num_rules, sizeof(struct pf_rule));
935 		if (rules == NULL)
936 			err(1, "realloc");
937 		alloc_rules = num_rules;
938 	}
939 }
940 
941 int label_length;
942 
943 void
close_pf_trans(u_int32_t ticket)944 close_pf_trans(u_int32_t ticket)
945 {
946 	if (ioctl(pf_dev, DIOCXEND, &ticket) == -1)
947 		error("DIOCXEND: %s", strerror(errno));
948 }
949 
950 int
read_anchor_rules(char * anchor)951 read_anchor_rules(char *anchor)
952 {
953 	struct pfioc_rule pr;
954 	u_int32_t nr, num, off;
955 	int len;
956 
957 	if (pf_dev < 0)
958 		return (-1);
959 
960 	memset(&pr, 0, sizeof(pr));
961 	strlcpy(pr.anchor, anchor, sizeof(pr.anchor));
962 
963 	if (ioctl(pf_dev, DIOCGETRULES, &pr) == -1) {
964 		error("anchor %s: %s", anchor, strerror(errno));
965 		return (-1);
966 	}
967 
968 	off = num_rules;
969 	num = pr.nr;
970 	add_rule_alloc(num);
971 
972 	for (nr = 0; nr < num; ++nr) {
973 		pr.nr = nr;
974 		if (ioctl(pf_dev, DIOCGETRULE, &pr) == -1) {
975 			error("DIOCGETRULE: %s", strerror(errno));
976 			close_pf_trans(pr.ticket);
977 			return (-1);
978 		}
979 		/* XXX overload pr.anchor, to store a pointer to
980 		 * anchor name */
981 		pr.rule.anchor = (struct pf_anchor *) anchor;
982 		len = strlen(pr.rule.label);
983 		if (len > label_length)
984 			label_length = len;
985 		rules[off + nr] = pr.rule;
986 	}
987 
988 	close_pf_trans(pr.ticket);
989 
990 	return (num);
991 }
992 
993 struct anchor_name {
994 	char name[PATH_MAX];
995 	struct anchor_name *next;
996 	u_int32_t ref;
997 };
998 
999 struct anchor_name *anchor_root = NULL;
1000 struct anchor_name *anchor_end = NULL;
1001 struct anchor_name *anchor_free = NULL;
1002 
1003 struct anchor_name*
alloc_anchor_name(const char * path)1004 alloc_anchor_name(const char *path)
1005 {
1006 	struct anchor_name *a;
1007 
1008 	a = anchor_free;
1009 	if (a == NULL) {
1010 		a = malloc(sizeof(struct anchor_name));
1011 		if (a == NULL)
1012 			return (NULL);
1013 	} else
1014 		anchor_free = a->next;
1015 
1016 	if (anchor_root == NULL)
1017 		anchor_end = a;
1018 
1019 	a->next = anchor_root;
1020 	anchor_root = a;
1021 
1022 	a->ref = 0;
1023 	strlcpy(a->name, path, sizeof(a->name));
1024 	return (a);
1025 }
1026 
1027 void
reset_anchor_names(void)1028 reset_anchor_names(void)
1029 {
1030 	if (anchor_end == NULL)
1031 		return;
1032 
1033 	anchor_end->next = anchor_free;
1034 	anchor_free = anchor_root;
1035 	anchor_root = anchor_end = NULL;
1036 }
1037 
1038 struct pfioc_ruleset ruleset;
1039 char *rs_end = NULL;
1040 
1041 int
read_rulesets(const char * path)1042 read_rulesets(const char *path)
1043 {
1044 	char *pre;
1045 	struct anchor_name *a;
1046 	u_int32_t nr, ns;
1047 	int len;
1048 
1049 	if (path == NULL)
1050 		ruleset.path[0] = '\0';
1051 	else if (strlcpy(ruleset.path, path, sizeof(ruleset.path)) >=
1052 	    sizeof(ruleset.path))
1053 		 return (-1);
1054 
1055 	/* a persistent storage for anchor names */
1056 	a = alloc_anchor_name(ruleset.path);
1057 	if (a == NULL)
1058 		return (-1);
1059 
1060 	len = read_anchor_rules(a->name);
1061 	if (len < 0)
1062 		return (-1);
1063 
1064 	a->ref += len;
1065 
1066 	if (ioctl(pf_dev, DIOCGETRULESETS, &ruleset) == -1) {
1067 		error("DIOCGETRULESETS: %s", strerror(errno));
1068 		return (-1);
1069 	}
1070 
1071 	ns = ruleset.nr;
1072 
1073 	if (rs_end == NULL)
1074 		rs_end = ruleset.path + sizeof(ruleset.path);
1075 
1076 	/* 'pre' tracks the previous level on the anchor */
1077 	pre = strchr(ruleset.path, 0);
1078 	len = rs_end - pre;
1079 	if (len < 1)
1080 		return (-1);
1081 	--len;
1082 
1083 	for (nr = 0; nr < ns; ++nr) {
1084 		ruleset.nr = nr;
1085 		if (ioctl(pf_dev, DIOCGETRULESET, &ruleset) == -1) {
1086 			error("DIOCGETRULESET: %s", strerror(errno));
1087 			return (-1);
1088 		}
1089 		*pre = '/';
1090 		if (strlcpy(pre + 1, ruleset.name, len) < len)
1091 			read_rulesets(ruleset.path);
1092 		*pre = '\0';
1093 	}
1094 
1095 	return (0);
1096 }
1097 
1098 void
compute_anchor_field(void)1099 compute_anchor_field(void)
1100 {
1101 	struct anchor_name *a;
1102 	int sum, cnt, mx, nx;
1103 	sum = cnt = mx = 0;
1104 
1105 	for (a = anchor_root; a != NULL; a = a->next, cnt++) {
1106 		int len;
1107 		if (a->ref == 0)
1108 			continue;
1109 		len = strlen(a->name);
1110 		sum += len;
1111 		if (len > mx)
1112 			mx = len;
1113 	}
1114 
1115 	nx = sum/cnt;
1116 	if (nx < ANCHOR_FLD_SIZE)
1117 		nx = (mx < ANCHOR_FLD_SIZE) ? mx : ANCHOR_FLD_SIZE;
1118 
1119 	if (FLD_ANCHOR->max_width != mx ||
1120 	    FLD_ANCHOR->norm_width != nx) {
1121 		FLD_ANCHOR->max_width = mx;
1122 		FLD_ANCHOR->norm_width = nx;
1123 		field_setup();
1124 		need_update = 1;
1125 	}
1126 }
1127 
1128 int
read_rules(void)1129 read_rules(void)
1130 {
1131 	int ret, nw, mw;
1132 	num_rules = 0;
1133 
1134 	if (pf_dev == -1)
1135 		return (-1);
1136 
1137 	label_length = MIN_LABEL_SIZE;
1138 
1139 	reset_anchor_names();
1140 	ret = read_rulesets(NULL);
1141 	compute_anchor_field();
1142 
1143 	nw = mw = label_length;
1144 	if (nw > 16)
1145 		nw = 16;
1146 
1147 	if (FLD_LABEL->norm_width != nw ||
1148 	    FLD_LABEL->max_width != mw) {
1149 		FLD_LABEL->norm_width = nw;
1150 		FLD_LABEL->max_width = mw;
1151 		field_setup();
1152 		need_update = 1;
1153 	}
1154 
1155 	num_disp = num_rules;
1156 	return (ret);
1157 }
1158 
1159 void
tb_print_addrw(struct pf_addr_wrap * addr,struct pf_addr * mask,u_int8_t af)1160 tb_print_addrw(struct pf_addr_wrap *addr, struct pf_addr *mask, u_int8_t af)
1161 {
1162 	switch (addr->type) {
1163 	case PF_ADDR_ADDRMASK:
1164 		tb_print_addr(&addr->v.a.addr, mask, af);
1165 		break;
1166 	case  PF_ADDR_NOROUTE:
1167 		tbprintf("noroute");
1168 		break;
1169 	case PF_ADDR_DYNIFTL:
1170 		tbprintf("(%s)", addr->v.ifname);
1171 		break;
1172 	case PF_ADDR_TABLE:
1173 		tbprintf("<%s>", addr->v.tblname);
1174 		break;
1175 	default:
1176 		tbprintf("UNKNOWN");
1177 		break;
1178 	}
1179 }
1180 
1181 void
tb_print_op(u_int8_t op,const char * a1,const char * a2)1182 tb_print_op(u_int8_t op, const char *a1, const char *a2)
1183 {
1184 	if (op == PF_OP_IRG)
1185 		tbprintf("%s >< %s ", a1, a2);
1186 	else if (op == PF_OP_XRG)
1187 		tbprintf("%s <> %s ", a1, a2);
1188 	else if (op == PF_OP_RRG)
1189 		tbprintf("%s:%s ", a1, a2);
1190 	else if (op == PF_OP_EQ)
1191 		tbprintf("= %s ", a1);
1192 	else if (op == PF_OP_NE)
1193 		tbprintf("!= %s ", a1);
1194 	else if (op == PF_OP_LT)
1195 		tbprintf("< %s ", a1);
1196 	else if (op == PF_OP_LE)
1197 		tbprintf("<= %s ", a1);
1198 	else if (op == PF_OP_GT)
1199 		tbprintf("> %s ", a1);
1200 	else if (op == PF_OP_GE)
1201 		tbprintf(">= %s ", a1);
1202 }
1203 
1204 void
tb_print_port(u_int8_t op,u_int16_t p1,u_int16_t p2,char * proto)1205 tb_print_port(u_int8_t op, u_int16_t p1, u_int16_t p2, char *proto)
1206 {
1207 	char a1[6], a2[6];
1208 	struct servent *s = getservbyport(p1, proto);
1209 
1210 	p1 = ntohs(p1);
1211 	p2 = ntohs(p2);
1212 	snprintf(a1, sizeof(a1), "%u", p1);
1213 	snprintf(a2, sizeof(a2), "%u", p2);
1214 	tbprintf("port ");
1215 	if (s != NULL && (op == PF_OP_EQ || op == PF_OP_NE))
1216 		tb_print_op(op, s->s_name, a2);
1217 	else
1218 		tb_print_op(op, a1, a2);
1219 }
1220 
1221 void
tb_print_fromto(struct pf_rule_addr * src,struct pf_rule_addr * dst,u_int8_t af,u_int8_t proto)1222 tb_print_fromto(struct pf_rule_addr *src, struct pf_rule_addr *dst,
1223 		u_int8_t af, u_int8_t proto)
1224 {
1225 	if (
1226 	    PF_AZERO(PT_ADDR(src), AF_INET6) &&
1227 	    PF_AZERO(PT_ADDR(dst), AF_INET6) &&
1228 	    ! PT_NOROUTE(src) && ! PT_NOROUTE(dst) &&
1229 	    PF_AZERO(PT_MASK(src), AF_INET6) &&
1230 	    PF_AZERO(PT_MASK(dst), AF_INET6) &&
1231 	    !src->port_op && !dst->port_op)
1232 		tbprintf("all ");
1233 	else {
1234 		tbprintf("from ");
1235 		if (PT_NOROUTE(src))
1236 			tbprintf("no-route ");
1237 		else if (PF_AZERO(PT_ADDR(src), AF_INET6) &&
1238 			 PF_AZERO(PT_MASK(src), AF_INET6))
1239 			tbprintf("any ");
1240 		else {
1241 			if (src->neg)
1242 				tbprintf("! ");
1243 			tb_print_addrw(&src->addr, PT_MASK(src), af);
1244 			tbprintf(" ");
1245 		}
1246 		if (src->port_op)
1247 			tb_print_port(src->port_op, src->port[0],
1248 				      src->port[1],
1249 				      proto == IPPROTO_TCP ? "tcp" : "udp");
1250 
1251 		tbprintf("to ");
1252 		if (PT_NOROUTE(dst))
1253 			tbprintf("no-route ");
1254 		else if (PF_AZERO(PT_ADDR(dst), AF_INET6) &&
1255 			 PF_AZERO(PT_MASK(dst), AF_INET6))
1256 			tbprintf("any ");
1257 		else {
1258 			if (dst->neg)
1259 				tbprintf("! ");
1260 			tb_print_addrw(&dst->addr, PT_MASK(dst), af);
1261 			tbprintf(" ");
1262 		}
1263 		if (dst->port_op)
1264 			tb_print_port(dst->port_op, dst->port[0],
1265 				      dst->port[1],
1266 				      proto == IPPROTO_TCP ? "tcp" : "udp");
1267 	}
1268 }
1269 
1270 void
tb_print_ugid(u_int8_t op,id_t i1,id_t i2,const char * t)1271 tb_print_ugid(u_int8_t op, id_t i1, id_t i2, const char *t)
1272 {
1273 	char	a1[11], a2[11];
1274 
1275 	snprintf(a1, sizeof(a1), "%u", i1);
1276 	snprintf(a2, sizeof(a2), "%u", i2);
1277 
1278 	tbprintf("%s ", t);
1279 	if (i1 == -1 && (op == PF_OP_EQ || op == PF_OP_NE))
1280 		tb_print_op(op, "unknown", a2);
1281 	else
1282 		tb_print_op(op, a1, a2);
1283 }
1284 
1285 void
tb_print_flags(u_int8_t f)1286 tb_print_flags(u_int8_t f)
1287 {
1288 	const char *tcpflags = "FSRPAUEW";
1289 	int i;
1290 
1291 	for (i = 0; tcpflags[i]; ++i)
1292 		if (f & (1 << i))
1293 			tbprintf("%c", tcpflags[i]);
1294 }
1295 
1296 void
print_rule(struct pf_rule * pr)1297 print_rule(struct pf_rule *pr)
1298 {
1299 	static const char *actiontypes[] = { "Pass", "Block", "Scrub",
1300 	    "no Scrub", "Nat", "no Nat", "Binat", "no Binat", "Rdr",
1301 	    "no Rdr", "SynProxy Block", "Defer", "Match" };
1302 	int numact = sizeof(actiontypes) / sizeof(char *);
1303 
1304 	static const char *routetypes[] = { "", "fastroute", "route-to",
1305 	    "dup-to", "reply-to" };
1306 
1307 	int numroute = sizeof(routetypes) / sizeof(char *);
1308 
1309 	if (pr == NULL) return;
1310 
1311 	print_fld_str(FLD_LABEL, pr->label);
1312 	print_fld_size(FLD_STATS, pr->states_tot);
1313 
1314 	print_fld_size(FLD_PKTS, pr->packets[0] + pr->packets[1]);
1315 	print_fld_size(FLD_BYTES, pr->bytes[0] + pr->bytes[1]);
1316 
1317 	print_fld_uint(FLD_RULE, pr->nr);
1318 	if (pr->direction == PF_OUT)
1319 		print_fld_str(FLD_DIR, "Out");
1320 	else if (pr->direction == PF_IN)
1321 		print_fld_str(FLD_DIR, "In");
1322 	else
1323 		print_fld_str(FLD_DIR, "Any");
1324 
1325 	if (pr->quick)
1326 		print_fld_str(FLD_QUICK, "Quick");
1327 
1328 	if (pr->keep_state == PF_STATE_NORMAL)
1329 		print_fld_str(FLD_KST, "Keep");
1330 	else if (pr->keep_state == PF_STATE_MODULATE)
1331 		print_fld_str(FLD_KST, "Mod");
1332 	else if (pr->keep_state == PF_STATE_SYNPROXY)
1333 		print_fld_str(FLD_KST, "Syn");
1334 	if (pr->log == 1)
1335 		print_fld_str(FLD_LOG, "Log");
1336 	else if (pr->log == 2)
1337 		print_fld_str(FLD_LOG, "All");
1338 
1339 	if (pr->action >= numact)
1340 		print_fld_uint(FLD_ACTION, pr->action);
1341 	else print_fld_str(FLD_ACTION, actiontypes[pr->action]);
1342 
1343 	if (pr->proto) {
1344 		struct protoent *p = getprotobynumber(pr->proto);
1345 
1346 		if (p != NULL)
1347 			print_fld_str(FLD_PROTO, p->p_name);
1348 		else
1349 			print_fld_uint(FLD_PROTO, pr->proto);
1350 	}
1351 
1352 	if (pr->ifname[0]) {
1353 		tb_start();
1354 		if (pr->ifnot)
1355 			tbprintf("!");
1356 		tbprintf("%s", pr->ifname);
1357 		print_fld_tb(FLD_IF);
1358 	}
1359 	if (pr->max_states)
1360 		print_fld_uint(FLD_STMAX, pr->max_states);
1361 
1362 	/* print info field */
1363 
1364 	tb_start();
1365 
1366 	if (pr->action == PF_DROP) {
1367 		if (pr->rule_flag & PFRULE_RETURNRST)
1368 			tbprintf("return-rst ");
1369 #ifdef PFRULE_RETURN
1370 		else if (pr->rule_flag & PFRULE_RETURN)
1371 			tbprintf("return ");
1372 #endif
1373 #ifdef PFRULE_RETURNICMP
1374 		else if (pr->rule_flag & PFRULE_RETURNICMP)
1375 			tbprintf("return-icmp ");
1376 #endif
1377 		else
1378 			tbprintf("drop ");
1379 	}
1380 
1381 	if (pr->rt > 0 && pr->rt < numroute) {
1382 		tbprintf("%s ", routetypes[pr->rt]);
1383 	}
1384 
1385 	if (pr->af) {
1386 		if (pr->af == AF_INET)
1387 			tbprintf("inet ");
1388 		else
1389 			tbprintf("inet6 ");
1390 	}
1391 
1392 	tb_print_fromto(&pr->src, &pr->dst, pr->af, pr->proto);
1393 
1394 	if (pr->uid.op)
1395 		tb_print_ugid(pr->uid.op, pr->uid.uid[0], pr->uid.uid[1],
1396 		        "user");
1397 	if (pr->gid.op)
1398 		tb_print_ugid(pr->gid.op, pr->gid.gid[0], pr->gid.gid[1],
1399 		        "group");
1400 
1401 	if (pr->action == PF_PASS &&
1402 	    (pr->proto == 0 || pr->proto == IPPROTO_TCP) &&
1403 	    (pr->flags != TH_SYN || pr->flagset != (TH_SYN | TH_ACK) )) {
1404 		tbprintf("flags ");
1405 		if (pr->flags || pr->flagset) {
1406 			tb_print_flags(pr->flags);
1407 			tbprintf("/");
1408 			tb_print_flags(pr->flagset);
1409 		} else
1410 			tbprintf("any ");
1411 	}
1412 
1413 	tbprintf(" ");
1414 
1415 	if (pr->tos)
1416 		tbprintf("tos 0x%2.2x ", pr->tos);
1417 #ifdef PFRULE_FRAGMENT
1418 	if (pr->rule_flag & PFRULE_FRAGMENT)
1419 		tbprintf("fragment ");
1420 #endif
1421 #ifdef PFRULE_NODF
1422 	if (pr->rule_flag & PFRULE_NODF)
1423 		tbprintf("no-df ");
1424 #endif
1425 #ifdef PFRULE_RANDOMID
1426 	if (pr->rule_flag & PFRULE_RANDOMID)
1427 		tbprintf("random-id ");
1428 #endif
1429 	if (pr->min_ttl)
1430 		tbprintf("min-ttl %d ", pr->min_ttl);
1431 	if (pr->max_mss)
1432 		tbprintf("max-mss %d ", pr->max_mss);
1433 	if (pr->allow_opts)
1434 		tbprintf("allow-opts ");
1435 
1436 	/* XXX more missing */
1437 
1438 	if (pr->qname[0] && pr->pqname[0])
1439 		tbprintf("queue(%s, %s) ", pr->qname, pr->pqname);
1440 	else if (pr->qname[0])
1441 		tbprintf("queue %s ", pr->qname);
1442 
1443 	if (pr->tagname[0])
1444 		tbprintf("tag %s ", pr->tagname);
1445 	if (pr->match_tagname[0]) {
1446 		if (pr->match_tag_not)
1447 			tbprintf("! ");
1448 		tbprintf("tagged %s ", pr->match_tagname);
1449 	}
1450 
1451 	print_fld_tb(FLD_RINFO);
1452 
1453 	/* XXX anchor field overloaded with anchor name */
1454 	print_fld_str(FLD_ANCHOR, (char *)pr->anchor);
1455 	tb_end();
1456 
1457 	end_line();
1458 }
1459 
1460 void
print_rules(void)1461 print_rules(void)
1462 {
1463 	u_int32_t n, count = 0;
1464 
1465 	for (n = dispstart; n < num_rules; n++) {
1466 		print_rule(rules + n);
1467 		count ++;
1468 		if (maxprint > 0 && count >= maxprint)
1469 			break;
1470 	}
1471 }
1472 
1473 /* queue display */
1474 struct pfctl_queue_node *
pfctl_find_queue_node(const char * qname,const char * ifname)1475 pfctl_find_queue_node(const char *qname, const char *ifname)
1476 {
1477 	struct pfctl_queue_node	*node;
1478 
1479 	TAILQ_FOREACH(node, &qnodes, entries)
1480 		if (!strcmp(node->qs.qname, qname)
1481 		    && !(strcmp(node->qs.ifname, ifname)))
1482 			return (node);
1483 	return (NULL);
1484 }
1485 
1486 void
pfctl_insert_queue_node(const struct pf_queuespec qs,const struct queue_stats qstats)1487 pfctl_insert_queue_node(const struct pf_queuespec qs,
1488     const struct queue_stats qstats)
1489 {
1490 	struct pfctl_queue_node	*node, *parent;
1491 
1492 	node = calloc(1, sizeof(struct pfctl_queue_node));
1493 	if (node == NULL)
1494 		err(1, "pfctl_insert_queue_node: calloc");
1495 	memcpy(&node->qs, &qs, sizeof(qs));
1496 	memcpy(&node->qstats, &qstats, sizeof(qstats));
1497 
1498 	if (node->qs.parent[0]) {
1499 		parent = pfctl_find_queue_node(node->qs.parent,
1500 		    node->qs.ifname);
1501 		if (parent)
1502 			node->depth = parent->depth + 1;
1503 	}
1504 
1505 	TAILQ_INSERT_TAIL(&qnodes, node, entries);
1506 }
1507 
1508 int
pfctl_update_qstats(void)1509 pfctl_update_qstats(void)
1510 {
1511 	struct pfctl_queue_node	*node;
1512 	struct pfioc_queue	 pq;
1513 	struct pfioc_qstats	 pqs;
1514 	u_int32_t		 mnr, nr;
1515 	struct queue_stats	 qstats;
1516 	static u_int32_t	 last_ticket;
1517 
1518 	memset(&pq, 0, sizeof(pq));
1519 	memset(&pqs, 0, sizeof(pqs));
1520 	memset(&qstats, 0, sizeof(qstats));
1521 
1522 	if (pf_dev < 0)
1523 		return (-1);
1524 
1525 	if (ioctl(pf_dev, DIOCGETQUEUES, &pq) == -1) {
1526 		error("DIOCGETQUEUES: %s", strerror(errno));
1527 		return (-1);
1528 	}
1529 
1530 	/* if a new set is found, start over */
1531 	if (pq.ticket != last_ticket)
1532 		while ((node = TAILQ_FIRST(&qnodes)) != NULL) {
1533 			TAILQ_REMOVE(&qnodes, node, entries);
1534 			free(node);
1535 		}
1536 	last_ticket = pq.ticket;
1537 
1538 	num_queues = mnr = pq.nr;
1539 	for (nr = 0; nr < mnr; ++nr) {
1540 		pqs.nr = nr;
1541 		pqs.ticket = pq.ticket;
1542 		pqs.buf = &qstats.data;
1543 		pqs.nbytes = sizeof(qstats.data);
1544 		if (ioctl(pf_dev, DIOCGETQSTATS, &pqs) == -1) {
1545 			error("DIOCGETQSTATS: %s", strerror(errno));
1546 			return (-1);
1547 		}
1548 		qstats.valid = 1;
1549 		gettimeofday(&qstats.timestamp, NULL);
1550 		if ((node = pfctl_find_queue_node(pqs.queue.qname,
1551 		    pqs.queue.ifname)) != NULL) {
1552 			memcpy(&node->qstats_last, &node->qstats,
1553 			    sizeof(struct queue_stats));
1554 			memcpy(&node->qstats, &qstats,
1555 			    sizeof(struct queue_stats));
1556 		} else {
1557 			pfctl_insert_queue_node(pqs.queue, qstats);
1558 		}
1559 	}
1560 	return (0);
1561 }
1562 
1563 int
select_queues(void)1564 select_queues(void)
1565 {
1566 	num_disp = num_queues;
1567 	return (0);
1568 }
1569 
1570 int
read_queues(void)1571 read_queues(void)
1572 {
1573 	num_disp = num_queues = 0;
1574 
1575 	if (pfctl_update_qstats() < 0)
1576 		return (-1);
1577 	num_disp = num_queues;
1578 
1579 	return(0);
1580 }
1581 
1582 double
calc_interval(struct timeval * cur_time,struct timeval * last_time)1583 calc_interval(struct timeval *cur_time, struct timeval *last_time)
1584 {
1585 	double	sec;
1586 
1587 	sec = (double)(cur_time->tv_sec - last_time->tv_sec) +
1588 	    (double)(cur_time->tv_usec - last_time->tv_usec) / 1000000;
1589 
1590 	return (sec);
1591 }
1592 
1593 double
calc_rate(u_int64_t new_bytes,u_int64_t last_bytes,double interval)1594 calc_rate(u_int64_t new_bytes, u_int64_t last_bytes, double interval)
1595 {
1596 	double	rate;
1597 
1598 	rate = (double)(new_bytes - last_bytes) / interval;
1599 	return (rate);
1600 }
1601 
1602 double
calc_pps(u_int64_t new_pkts,u_int64_t last_pkts,double interval)1603 calc_pps(u_int64_t new_pkts, u_int64_t last_pkts, double interval)
1604 {
1605 	double	pps;
1606 
1607 	pps = (double)(new_pkts - last_pkts) / interval;
1608 	return (pps);
1609 }
1610 
1611 void
print_queue_node(struct pfctl_queue_node * node)1612 print_queue_node(struct pfctl_queue_node *node)
1613 {
1614 	u_int	rate, rtmp;
1615 	int 	i;
1616 	double	interval, pps, bps;
1617 	static const char unit[] = " KMG";
1618 
1619 	tb_start();
1620 	for (i = 0; i < node->depth; i++)
1621 		tbprintf(" ");
1622 	tbprintf("%s", node->qs.qname);
1623 	if (i == 0 && node->qs.ifname[0])
1624 		tbprintf(" on %s ", node->qs.ifname);
1625 	print_fld_tb(FLD_QUEUE);
1626 
1627 	// XXX: missing min, max, burst
1628 	tb_start();
1629 	rate = node->qs.linkshare.m2.absolute;
1630 	for (i = 0; rate > 9999 && i <= 3; i++) {
1631 		rtmp = rate / 1000;
1632 		if (rtmp <= 9999)
1633 			rtmp += (rate % 1000) / 500;
1634 		rate = rtmp;
1635 	}
1636 	if (rate == 0 && (node->qs.flags & PFQS_FLOWQUEUE)) {
1637 		/*
1638 		 * XXX We're abusing the fact that 'flows' in
1639 		 * the fqcodel_stats structure is at the same
1640 		 * spot as the 'period' in hfsc_class_stats.
1641 		 */
1642 		tbprintf("%u", node->qstats.data.period);
1643 	} else
1644 		tbprintf("%u%c", rate, unit[i]);
1645 	print_fld_tb(FLD_BANDW);
1646 
1647 	print_fld_str(FLD_SCHED, node->qs.flags & PFQS_FLOWQUEUE ?
1648 	    "flow" : "fifo");
1649 
1650 	if (node->qstats.valid && node->qstats_last.valid)
1651 		interval = calc_interval(&node->qstats.timestamp,
1652 		    &node->qstats_last.timestamp);
1653 	else
1654 		interval = 0;
1655 
1656 	print_fld_size(FLD_PKTS, node->qstats.data.xmit_cnt.packets);
1657 	print_fld_size(FLD_BYTES, node->qstats.data.xmit_cnt.bytes);
1658 	print_fld_size(FLD_DROPP, node->qstats.data.drop_cnt.packets);
1659 	print_fld_size(FLD_DROPB, node->qstats.data.drop_cnt.bytes);
1660 	print_fld_size(FLD_QLEN, node->qstats.data.qlength);
1661 
1662 	if (interval > 0) {
1663 		pps = calc_pps(node->qstats.data.xmit_cnt.packets,
1664 		    node->qstats_last.data.xmit_cnt.packets, interval);
1665 		bps = calc_rate(node->qstats.data.xmit_cnt.bytes,
1666 		    node->qstats_last.data.xmit_cnt.bytes, interval);
1667 
1668 		tb_start();
1669 		if (pps > 0 && pps < 1)
1670 			tbprintf("%-3.1lf", pps);
1671 		else
1672 			tbprintf("%u", (unsigned int)pps);
1673 
1674 		print_fld_tb(FLD_PKTSPS);
1675 		print_fld_bw(FLD_BYTESPS, bps);
1676 	}
1677 }
1678 
1679 void
print_queues(void)1680 print_queues(void)
1681 {
1682 	uint32_t n, count, start;
1683 	struct pfctl_queue_node *node;
1684 
1685 	n = count = 0;
1686 	start = dispstart;
1687 
1688 	TAILQ_FOREACH(node, &qnodes, entries) {
1689 		if (n < start) {
1690 			n++;
1691 			continue;
1692 		}
1693 		print_queue_node(node);
1694 		end_line();
1695 		count++;
1696 		if (maxprint > 0 && count >= maxprint)
1697 			return;
1698 	}
1699 }
1700 
1701 /* main program functions */
1702 
1703 void
update_cache(void)1704 update_cache(void)
1705 {
1706 	static int pstate = -1;
1707 	if (pstate == cachestates)
1708 		return;
1709 
1710 	pstate = cachestates;
1711 	if (cachestates) {
1712 		show_field(FLD_SI);
1713 		show_field(FLD_SP);
1714 		gotsig_alarm = 1;
1715 	} else {
1716 		hide_field(FLD_SI);
1717 		hide_field(FLD_SP);
1718 		need_update = 1;
1719 	}
1720 	field_setup();
1721 }
1722 
1723 int
initpftop(void)1724 initpftop(void)
1725 {
1726 	struct pf_status status;
1727 	field_view *v;
1728 	int cachesize = DEFAULT_CACHE_SIZE;
1729 
1730 	v = views;
1731 	while(v->name != NULL)
1732 		add_view(v++);
1733 
1734 	pf_dev = open("/dev/pf", O_RDONLY);
1735 	if (pf_dev == -1) {
1736 		alloc_buf(0);
1737 	} else if (ioctl(pf_dev, DIOCGETSTATUS, &status) == -1) {
1738 		warn("DIOCGETSTATUS");
1739 		alloc_buf(0);
1740 	} else
1741 		alloc_buf(status.states);
1742 
1743 	/* initialize cache with given size */
1744 	if (cache_init(cachesize))
1745 		warnx("Failed to initialize cache.");
1746 	else if (interactive && cachesize > 0)
1747 		cachestates = 1;
1748 
1749 	update_cache();
1750 
1751 	show_field(FLD_STMAX);
1752 	show_field(FLD_ANCHOR);
1753 
1754 	return (1);
1755 }
1756