xref: /openbsd/gnu/usr.bin/perl/pp_sort.c (revision 3d61058a)
1 /*    pp_sort.c
2  *
3  *    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4  *    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5  *
6  *    You may distribute under the terms of either the GNU General Public
7  *    License or the Artistic License, as specified in the README file.
8  *
9  */
10 
11 /*
12  *   ...they shuffled back towards the rear of the line.  'No, not at the
13  *   rear!' the slave-driver shouted.  'Three files up. And stay there...
14  *
15  *     [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
16  */
17 
18 /* This file contains pp ("push/pop") functions that
19  * execute the opcodes that make up a perl program. A typical pp function
20  * expects to find its arguments on the stack, and usually pushes its
21  * results onto the stack, hence the 'pp' terminology. Each OP structure
22  * contains a pointer to the relevant pp_foo() function.
23  *
24  * This particular file just contains pp_sort(), which is complex
25  * enough to merit its own file! See the other pp*.c files for the rest of
26  * the pp_ functions.
27  */
28 
29 #include "EXTERN.h"
30 #define PERL_IN_PP_SORT_C
31 #include "perl.h"
32 
33 #ifndef SMALLSORT
34 #define SMALLSORT (200)
35 #endif
36 
37 /*
38  * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
39  *
40  * The original code was written in conjunction with BSD Computer Software
41  * Research Group at University of California, Berkeley.
42  *
43  * See also: "Optimistic Sorting and Information Theoretic Complexity"
44  *           Peter McIlroy
45  *           SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
46  *           pp 467-474, Austin, Texas, 25-27 January 1993.
47  *
48  * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
49  *
50  * The code can be distributed under the same terms as Perl itself.
51  *
52  */
53 
54 
55 typedef char * aptr;            /* pointer for arithmetic on sizes */
56 typedef SV * gptr;              /* pointers in our lists */
57 
58 /* Binary merge internal sort, with a few special mods
59 ** for the special perl environment it now finds itself in.
60 **
61 ** Things that were once options have been hotwired
62 ** to values suitable for this use.  In particular, we'll always
63 ** initialize looking for natural runs, we'll always produce stable
64 ** output, and we'll always do Peter McIlroy's binary merge.
65 */
66 
67 /* Pointer types for arithmetic and storage and convenience casts */
68 
69 #define APTR(P) ((aptr)(P))
70 #define GPTP(P) ((gptr *)(P))
71 #define GPPP(P) ((gptr **)(P))
72 
73 
74 /* byte offset from pointer P to (larger) pointer Q */
75 #define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
76 
77 #define PSIZE sizeof(gptr)
78 
79 /* If PSIZE is power of 2, make PSHIFT that power, if that helps */
80 
81 #ifdef  PSHIFT
82 #define PNELEM(P, Q)    (BYTEOFF(P,Q) >> (PSHIFT))
83 #define PNBYTE(N)       ((N) << (PSHIFT))
84 #define PINDEX(P, N)    (GPTP(APTR(P) + PNBYTE(N)))
85 #else
86 /* Leave optimization to compiler */
87 #define PNELEM(P, Q)    (GPTP(Q) - GPTP(P))
88 #define PNBYTE(N)       ((N) * (PSIZE))
89 #define PINDEX(P, N)    (GPTP(P) + (N))
90 #endif
91 
92 /* Pointer into other corresponding to pointer into this */
93 #define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
94 
95 #define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
96 
97 
98 /* Runs are identified by a pointer in the auxiliary list.
99 ** The pointer is at the start of the list,
100 ** and it points to the start of the next list.
101 ** NEXT is used as an lvalue, too.
102 */
103 
104 #define NEXT(P)         (*GPPP(P))
105 
106 
107 /* PTHRESH is the minimum number of pairs with the same sense to justify
108 ** checking for a run and extending it.  Note that PTHRESH counts PAIRS,
109 ** not just elements, so PTHRESH == 8 means a run of 16.
110 */
111 
112 #define PTHRESH (8)
113 
114 /* RTHRESH is the number of elements in a run that must compare low
115 ** to the low element from the opposing run before we justify
116 ** doing a binary rampup instead of single stepping.
117 ** In random input, N in a row low should only happen with
118 ** probability 2^(1-N), so we can risk that we are dealing
119 ** with orderly input without paying much when we aren't.
120 */
121 
122 #define RTHRESH (6)
123 
124 
125 /*
126 ** Overview of algorithm and variables.
127 ** The array of elements at list1 will be organized into runs of length 2,
128 ** or runs of length >= 2 * PTHRESH.  We only try to form long runs when
129 ** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
130 **
131 ** Unless otherwise specified, pair pointers address the first of two elements.
132 **
133 ** b and b+1 are a pair that compare with sense "sense".
134 ** b is the "bottom" of adjacent pairs that might form a longer run.
135 **
136 ** p2 parallels b in the list2 array, where runs are defined by
137 ** a pointer chain.
138 **
139 ** t represents the "top" of the adjacent pairs that might extend
140 ** the run beginning at b.  Usually, t addresses a pair
141 ** that compares with opposite sense from (b,b+1).
142 ** However, it may also address a singleton element at the end of list1,
143 ** or it may be equal to "last", the first element beyond list1.
144 **
145 ** r addresses the Nth pair following b.  If this would be beyond t,
146 ** we back it off to t.  Only when r is less than t do we consider the
147 ** run long enough to consider checking.
148 **
149 ** q addresses a pair such that the pairs at b through q already form a run.
150 ** Often, q will equal b, indicating we only are sure of the pair itself.
151 ** However, a search on the previous cycle may have revealed a longer run,
152 ** so q may be greater than b.
153 **
154 ** p is used to work back from a candidate r, trying to reach q,
155 ** which would mean b through r would be a run.  If we discover such a run,
156 ** we start q at r and try to push it further towards t.
157 ** If b through r is NOT a run, we detect the wrong order at (p-1,p).
158 ** In any event, after the check (if any), we have two main cases.
159 **
160 ** 1) Short run.  b <= q < p <= r <= t.
161 **      b through q is a run (perhaps trivial)
162 **      q through p are uninteresting pairs
163 **      p through r is a run
164 **
165 ** 2) Long run.  b < r <= q < t.
166 **      b through q is a run (of length >= 2 * PTHRESH)
167 **
168 ** Note that degenerate cases are not only possible, but likely.
169 ** For example, if the pair following b compares with opposite sense,
170 ** then b == q < p == r == t.
171 */
172 
173 
174 PERL_STATIC_FORCE_INLINE IV __attribute__always_inline__
dynprep(pTHX_ gptr * list1,gptr * list2,size_t nmemb,const SVCOMPARE_t cmp)175 dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
176 {
177     I32 sense;
178     gptr *b, *p, *q, *t, *p2;
179     gptr *last, *r;
180     IV runs = 0;
181 
182     b = list1;
183     last = PINDEX(b, nmemb);
184     sense = (cmp(aTHX_ *b, *(b+1)) > 0);
185     for (p2 = list2; b < last; ) {
186         /* We just started, or just reversed sense.
187         ** Set t at end of pairs with the prevailing sense.
188         */
189         for (p = b+2, t = p; ++p < last; t = ++p) {
190             if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
191         }
192         q = b;
193         /* Having laid out the playing field, look for long runs */
194         do {
195             p = r = b + (2 * PTHRESH);
196             if (r >= t) p = r = t;      /* too short to care about */
197             else {
198                 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
199                        ((p -= 2) > q)) {}
200                 if (p <= q) {
201                     /* b through r is a (long) run.
202                     ** Extend it as far as possible.
203                     */
204                     p = q = r;
205                     while (((p += 2) < t) &&
206                            ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
207                     r = p = q + 2;      /* no simple pairs, no after-run */
208                 }
209             }
210             if (q > b) {                /* run of greater than 2 at b */
211                 gptr *savep = p;
212 
213                 p = q += 2;
214                 /* pick up singleton, if possible */
215                 if ((p == t) &&
216                     ((t + 1) == last) &&
217                     ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
218                     savep = r = p = q = last;
219                 p2 = NEXT(p2) = p2 + (p - b); ++runs;
220                 if (sense)
221                     while (b < --p) {
222                         const gptr c = *b;
223                         *b++ = *p;
224                         *p = c;
225                     }
226                 p = savep;
227             }
228             while (q < p) {             /* simple pairs */
229                 p2 = NEXT(p2) = p2 + 2; ++runs;
230                 if (sense) {
231                     const gptr c = *q++;
232                     *(q-1) = *q;
233                     *q++ = c;
234                 } else q += 2;
235             }
236             if (((b = p) == t) && ((t+1) == last)) {
237                 NEXT(p2) = p2 + 1; ++runs;
238                 b++;
239             }
240             q = r;
241         } while (b < t);
242         sense = !sense;
243     }
244     return runs;
245 }
246 
247 
248 /* The original merge sort, in use since 5.7, was as fast as, or faster than,
249  * qsort on many platforms, but slower than qsort, conspicuously so,
250  * on others.  The most likely explanation was platform-specific
251  * differences in cache sizes and relative speeds.
252  *
253  * The quicksort divide-and-conquer algorithm guarantees that, as the
254  * problem is subdivided into smaller and smaller parts, the parts
255  * fit into smaller (and faster) caches.  So it doesn't matter how
256  * many levels of cache exist, quicksort will "find" them, and,
257  * as long as smaller is faster, take advantage of them.
258  *
259  * By contrast, consider how the original mergesort algorithm worked.
260  * Suppose we have five runs (each typically of length 2 after dynprep).
261  *
262  * pass               base                        aux
263  *  0              1 2 3 4 5
264  *  1                                           12 34 5
265  *  2                1234 5
266  *  3                                            12345
267  *  4                 12345
268  *
269  * Adjacent pairs are merged in "grand sweeps" through the input.
270  * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
271  * runs 3 and 4 are merged and the runs from run 5 have been copied.
272  * The only cache that matters is one large enough to hold *all* the input.
273  * On some platforms, this may be many times slower than smaller caches.
274  *
275  * The following pseudo-code uses the same basic merge algorithm,
276  * but in a divide-and-conquer way.
277  *
278  * # merge $runs runs at offset $offset of list $list1 into $list2.
279  * # all unmerged runs ($runs == 1) originate in list $base.
280  * sub mgsort2 {
281  *     my ($offset, $runs, $base, $list1, $list2) = @_;
282  *
283  *     if ($runs == 1) {
284  *         if ($list1 is $base) copy run to $list2
285  *         return offset of end of list (or copy)
286  *     } else {
287  *         $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
288  *         mgsort2($off2, $runs/2, $base, $list2, $list1)
289  *         merge the adjacent runs at $offset of $list1 into $list2
290  *         return the offset of the end of the merged runs
291  *     }
292  * }
293  * mgsort2(0, $runs, $base, $aux, $base);
294  *
295  * For our 5 runs, the tree of calls looks like
296  *
297  *           5
298  *      3        2
299  *   2     1   1   1
300  * 1   1
301  *
302  * 1   2   3   4   5
303  *
304  * and the corresponding activity looks like
305  *
306  * copy runs 1 and 2 from base to aux
307  * merge runs 1 and 2 from aux to base
308  * (run 3 is where it belongs, no copy needed)
309  * merge runs 12 and 3 from base to aux
310  * (runs 4 and 5 are where they belong, no copy needed)
311  * merge runs 4 and 5 from base to aux
312  * merge runs 123 and 45 from aux to base
313  *
314  * Note that we merge runs 1 and 2 immediately after copying them,
315  * while they are still likely to be in fast cache.  Similarly,
316  * run 3 is merged with run 12 while it still may be lingering in cache.
317  * This implementation should therefore enjoy much of the cache-friendly
318  * behavior that quicksort does.  In addition, it does less copying
319  * than the original mergesort implementation (only runs 1 and 2 are copied)
320  * and the "balancing" of merges is better (merged runs comprise more nearly
321  * equal numbers of original runs).
322  *
323  * The actual cache-friendly implementation will use a pseudo-stack
324  * to avoid recursion, and will unroll processing of runs of length 2,
325  * but it is otherwise similar to the recursive implementation.
326  */
327 
328 typedef struct {
329     IV  offset;         /* offset of 1st of 2 runs at this level */
330     IV  runs;           /* how many runs must be combined into 1 */
331 } off_runs;             /* pseudo-stack element */
332 
333 PERL_STATIC_FORCE_INLINE void
S_sortsv_flags_impl(pTHX_ gptr * base,size_t nmemb,SVCOMPARE_t cmp,U32 flags)334 S_sortsv_flags_impl(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
335 {
336     IV i, run, offset;
337     I32 sense, level;
338     gptr *f1, *f2, *t, *b, *p;
339     int iwhich;
340     gptr *aux;
341     gptr *p1;
342     gptr small[SMALLSORT];
343     gptr *which[3];
344     off_runs stack[60], *stackp;
345 
346     PERL_UNUSED_ARG(flags);
347     PERL_ARGS_ASSERT_SORTSV_FLAGS_IMPL;
348     if (nmemb <= 1) return;                     /* sorted trivially */
349 
350     if (nmemb <= SMALLSORT) aux = small;        /* use stack for aux array */
351     else { Newx(aux,nmemb,gptr); }              /* allocate auxiliary array */
352     level = 0;
353     stackp = stack;
354     stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
355     stackp->offset = offset = 0;
356     which[0] = which[2] = base;
357     which[1] = aux;
358     for (;;) {
359         /* On levels where both runs have be constructed (stackp->runs == 0),
360          * merge them, and note the offset of their end, in case the offset
361          * is needed at the next level up.  Hop up a level, and,
362          * as long as stackp->runs is 0, keep merging.
363          */
364         IV runs = stackp->runs;
365         if (runs == 0) {
366             gptr *list1, *list2;
367             iwhich = level & 1;
368             list1 = which[iwhich];              /* area where runs are now */
369             list2 = which[++iwhich];            /* area for merged runs */
370             do {
371                 gptr *l1, *l2, *tp2;
372                 offset = stackp->offset;
373                 f1 = p1 = list1 + offset;               /* start of first run */
374                 p = tp2 = list2 + offset;       /* where merged run will go */
375                 t = NEXT(p);                    /* where first run ends */
376                 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
377                 t = NEXT(t);                    /* where second runs ends */
378                 l2 = POTHER(t, list2, list1);   /* ... on the other side */
379                 offset = PNELEM(list2, t);
380                 while (f1 < l1 && f2 < l2) {
381                     /* If head 1 is larger than head 2, find ALL the elements
382                     ** in list 2 strictly less than head1, write them all,
383                     ** then head 1.  Then compare the new heads, and repeat,
384                     ** until one or both lists are exhausted.
385                     **
386                     ** In all comparisons (after establishing
387                     ** which head to merge) the item to merge
388                     ** (at pointer q) is the first operand of
389                     ** the comparison.  When we want to know
390                     ** if "q is strictly less than the other",
391                     ** we can't just do
392                     **    cmp(q, other) < 0
393                     ** because stability demands that we treat equality
394                     ** as high when q comes from l2, and as low when
395                     ** q was from l1.  So we ask the question by doing
396                     **    cmp(q, other) <= sense
397                     ** and make sense == 0 when equality should look low,
398                     ** and -1 when equality should look high.
399                     */
400 
401                     gptr *q;
402                     if (cmp(aTHX_ *f1, *f2) <= 0) {
403                         q = f2; b = f1; t = l1;
404                         sense = -1;
405                     } else {
406                         q = f1; b = f2; t = l2;
407                         sense = 0;
408                     }
409 
410 
411                     /* ramp up
412                     **
413                     ** Leave t at something strictly
414                     ** greater than q (or at the end of the list),
415                     ** and b at something strictly less than q.
416                     */
417                     for (i = 1, run = 0 ;;) {
418                         if ((p = PINDEX(b, i)) >= t) {
419                             /* off the end */
420                             if (((p = PINDEX(t, -1)) > b) &&
421                                 (cmp(aTHX_ *q, *p) <= sense))
422                                  t = p;
423                             else b = p;
424                             break;
425                         } else if (cmp(aTHX_ *q, *p) <= sense) {
426                             t = p;
427                             break;
428                         } else b = p;
429                         if (++run >= RTHRESH) i += i;
430                     }
431 
432 
433                     /* q is known to follow b and must be inserted before t.
434                     ** Increment b, so the range of possibilities is [b,t).
435                     ** Round binary split down, to favor early appearance.
436                     ** Adjust b and t until q belongs just before t.
437                     */
438 
439                     b++;
440                     while (b < t) {
441                         p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
442                         if (cmp(aTHX_ *q, *p) <= sense) {
443                             t = p;
444                         } else b = p + 1;
445                     }
446 
447 
448                     /* Copy all the strictly low elements */
449 
450                     if (q == f1) {
451                         FROMTOUPTO(f2, tp2, t);
452                         *tp2++ = *f1++;
453                     } else {
454                         FROMTOUPTO(f1, tp2, t);
455                         *tp2++ = *f2++;
456                     }
457                 }
458 
459 
460                 /* Run out remaining list */
461                 if (f1 == l1) {
462                        if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
463                 } else              FROMTOUPTO(f1, tp2, l1);
464                 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
465 
466                 if (--level == 0) goto done;
467                 --stackp;
468                 t = list1; list1 = list2; list2 = t;    /* swap lists */
469             } while ((runs = stackp->runs) == 0);
470         }
471 
472 
473         stackp->runs = 0;               /* current run will finish level */
474         /* While there are more than 2 runs remaining,
475          * turn them into exactly 2 runs (at the "other" level),
476          * each made up of approximately half the runs.
477          * Stack the second half for later processing,
478          * and set about producing the first half now.
479          */
480         while (runs > 2) {
481             ++level;
482             ++stackp;
483             stackp->offset = offset;
484             runs -= stackp->runs = runs / 2;
485         }
486         /* We must construct a single run from 1 or 2 runs.
487          * All the original runs are in which[0] == base.
488          * The run we construct must end up in which[level&1].
489          */
490         iwhich = level & 1;
491         if (runs == 1) {
492             /* Constructing a single run from a single run.
493              * If it's where it belongs already, there's nothing to do.
494              * Otherwise, copy it to where it belongs.
495              * A run of 1 is either a singleton at level 0,
496              * or the second half of a split 3.  In neither event
497              * is it necessary to set offset.  It will be set by the merge
498              * that immediately follows.
499              */
500             if (iwhich) {       /* Belongs in aux, currently in base */
501                 f1 = b = PINDEX(base, offset);  /* where list starts */
502                 f2 = PINDEX(aux, offset);       /* where list goes */
503                 t = NEXT(f2);                   /* where list will end */
504                 offset = PNELEM(aux, t);        /* offset thereof */
505                 t = PINDEX(base, offset);       /* where it currently ends */
506                 FROMTOUPTO(f1, f2, t);          /* copy */
507                 NEXT(b) = t;                    /* set up parallel pointer */
508             } else if (level == 0) goto done;   /* single run at level 0 */
509         } else {
510             /* Constructing a single run from two runs.
511              * The merge code at the top will do that.
512              * We need only make sure the two runs are in the "other" array,
513              * so they'll end up in the correct array after the merge.
514              */
515             ++level;
516             ++stackp;
517             stackp->offset = offset;
518             stackp->runs = 0;   /* take care of both runs, trigger merge */
519             if (!iwhich) {      /* Merged runs belong in aux, copy 1st */
520                 f1 = b = PINDEX(base, offset);  /* where first run starts */
521                 f2 = PINDEX(aux, offset);       /* where it will be copied */
522                 t = NEXT(f2);                   /* where first run will end */
523                 offset = PNELEM(aux, t);        /* offset thereof */
524                 p = PINDEX(base, offset);       /* end of first run */
525                 t = NEXT(t);                    /* where second run will end */
526                 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
527                 FROMTOUPTO(f1, f2, t);          /* copy both runs */
528                 NEXT(b) = p;                    /* paralleled pointer for 1st */
529                 NEXT(p) = t;                    /* ... and for second */
530             }
531         }
532     }
533   done:
534     if (aux != small) Safefree(aux);    /* free iff allocated */
535 
536     return;
537 }
538 
539 /*
540 =for apidoc sortsv_flags
541 
542 In-place sort an array of SV pointers with the given comparison routine,
543 with various SORTf_* flag options.
544 
545 =cut
546 */
547 void
Perl_sortsv_flags(pTHX_ gptr * base,size_t nmemb,SVCOMPARE_t cmp,U32 flags)548 Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
549 {
550     PERL_ARGS_ASSERT_SORTSV_FLAGS;
551 
552     sortsv_flags_impl(base, nmemb, cmp, flags);
553 }
554 
555 /*
556  * Each of sortsv_* functions contains an inlined copy of
557  * sortsv_flags_impl() with an inlined comparator. Basically, we are
558  * emulating C++ templates by using __attribute__((always_inline)).
559  *
560  * The purpose of that is to avoid the function call overhead inside
561  * the sorting routine, which calls the comparison function multiple
562  * times per sorted item.
563  */
564 
565 static void
sortsv_amagic_i_ncmp(pTHX_ gptr * base,size_t nmemb,U32 flags)566 sortsv_amagic_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
567 {
568     sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp, flags);
569 }
570 
571 static void
sortsv_amagic_i_ncmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)572 sortsv_amagic_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
573 {
574     sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp_desc, flags);
575 }
576 
577 static void
sortsv_i_ncmp(pTHX_ gptr * base,size_t nmemb,U32 flags)578 sortsv_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
579 {
580     sortsv_flags_impl(base, nmemb, S_sv_i_ncmp, flags);
581 }
582 
583 static void
sortsv_i_ncmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)584 sortsv_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
585 {
586     sortsv_flags_impl(base, nmemb, S_sv_i_ncmp_desc, flags);
587 }
588 
589 static void
sortsv_amagic_ncmp(pTHX_ gptr * base,size_t nmemb,U32 flags)590 sortsv_amagic_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
591 {
592     sortsv_flags_impl(base, nmemb, S_amagic_ncmp, flags);
593 }
594 
595 static void
sortsv_amagic_ncmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)596 sortsv_amagic_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
597 {
598     sortsv_flags_impl(base, nmemb, S_amagic_ncmp_desc, flags);
599 }
600 
601 static void
sortsv_ncmp(pTHX_ gptr * base,size_t nmemb,U32 flags)602 sortsv_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
603 {
604     sortsv_flags_impl(base, nmemb, S_sv_ncmp, flags);
605 }
606 
607 static void
sortsv_ncmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)608 sortsv_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
609 {
610     sortsv_flags_impl(base, nmemb, S_sv_ncmp_desc, flags);
611 }
612 
613 static void
sortsv_amagic_cmp(pTHX_ gptr * base,size_t nmemb,U32 flags)614 sortsv_amagic_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
615 {
616     sortsv_flags_impl(base, nmemb, S_amagic_cmp, flags);
617 }
618 
619 static void
sortsv_amagic_cmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)620 sortsv_amagic_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
621 {
622     sortsv_flags_impl(base, nmemb, S_amagic_cmp_desc, flags);
623 }
624 
625 static void
sortsv_cmp(pTHX_ gptr * base,size_t nmemb,U32 flags)626 sortsv_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
627 {
628     sortsv_flags_impl(base, nmemb, Perl_sv_cmp, flags);
629 }
630 
631 static void
sortsv_cmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)632 sortsv_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
633 {
634     sortsv_flags_impl(base, nmemb, S_cmp_desc, flags);
635 }
636 
637 #ifdef USE_LOCALE_COLLATE
638 
639 static void
sortsv_amagic_cmp_locale(pTHX_ gptr * base,size_t nmemb,U32 flags)640 sortsv_amagic_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
641 {
642     sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale, flags);
643 }
644 
645 static void
sortsv_amagic_cmp_locale_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)646 sortsv_amagic_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
647 {
648     sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale_desc, flags);
649 }
650 
651 static void
sortsv_cmp_locale(pTHX_ gptr * base,size_t nmemb,U32 flags)652 sortsv_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
653 {
654     sortsv_flags_impl(base, nmemb, Perl_sv_cmp_locale, flags);
655 }
656 
657 static void
sortsv_cmp_locale_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)658 sortsv_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
659 {
660     sortsv_flags_impl(base, nmemb, S_cmp_locale_desc, flags);
661 }
662 
663 #endif
664 
665 /*
666 
667 =for apidoc sortsv
668 
669 In-place sort an array of SV pointers with the given comparison routine.
670 
671 Currently this always uses mergesort.  See C<L</sortsv_flags>> for a more
672 flexible routine.
673 
674 =cut
675 */
676 
677 void
Perl_sortsv(pTHX_ SV ** array,size_t nmemb,SVCOMPARE_t cmp)678 Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
679 {
680     PERL_ARGS_ASSERT_SORTSV;
681 
682     sortsv_flags(array, nmemb, cmp, 0);
683 }
684 
685 #define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
686 #define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
687 #define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
688 
PP(pp_sort)689 PP(pp_sort)
690 {
691     dMARK; dORIGMARK;
692     SV **p1 = ORIGMARK+1, **p2;
693     SSize_t max, i;
694     AV* av = NULL;
695     GV *gv;
696     CV *cv = NULL;
697     U8 gimme = GIMME_V;
698     OP* const nextop = PL_op->op_next;
699     I32 overloading = 0;
700     bool hasargs = FALSE; /* the sort sub has proto($$)?  */
701     bool copytmps;
702     I32 is_xsub = 0;
703     const U8 priv = PL_op->op_private;
704     const U8 flags = PL_op->op_flags;
705     U32 sort_flags = 0;
706     I32 all_SIVs = 1, descending = 0;
707 
708     if ((priv & OPpSORT_DESCEND) != 0)
709         descending = 1;
710 
711     if (gimme != G_LIST) {
712         rpp_popfree_to_NN(mark);
713         rpp_xpush_IMM(&PL_sv_undef);
714         return NORMAL;
715     }
716 
717     ENTER;
718     SAVEVPTR(PL_sortcop);
719 
720     /* Important flag meanings:
721      *
722      *  OPf_STACKED        sort <function_name> args
723      *
724      * (OPf_STACKED
725      * |OPf_SPECIAL)       sort { <block> } args
726      *
727      *  ----               standard block; e.g. sort { $a <=> $b } args
728      *
729      *
730      *  OPpSORT_NUMERIC    { $a <=> $b } (as opposed to $a cmp $b)
731      *  OPpSORT_INTEGER    ditto in scope of 'use integer'
732      *  OPpSORT_DESCEND    { $b <=> $a }
733      *  OPpSORT_REVERSE    @a= reverse sort ....;
734      *  OPpSORT_INPLACE    @a = sort @a;
735      */
736 
737     if (flags & OPf_STACKED) {
738         if (flags & OPf_SPECIAL) {
739             OP *nullop = OpSIBLING(cLISTOP->op_first);  /* pass pushmark */
740             assert(nullop->op_type == OP_NULL);
741             PL_sortcop = nullop->op_next;
742         }
743         else {
744             /* sort <function_name> list */
745             GV *autogv = NULL;
746             HV *stash;
747             SV *fn = *++MARK;
748             cv = sv_2cv(fn, &stash, &gv, GV_ADD);
749 
750             /* want to remove the function name from the stack,
751              * but mustn't trigger cv being freed at the same time.
752              * Normally the name is a PV while cv is CV (duh!) but
753              * for lexical subs, fn can already be the CV (but is kept
754              * alive by a reference from the pad */
755 #ifdef PERL_RC_STACK
756             assert(fn != (SV*)cv || SvREFCNT(fn) > 1);
757             SvREFCNT_dec(fn);
758 #endif
759             *MARK = NULL;
760 
761           check_cv:
762             if (cv && SvPOK(cv)) {
763                 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
764                 if (proto && strEQ(proto, "$$")) {
765                     hasargs = TRUE;
766                 }
767             }
768             if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
769                 is_xsub = 1;
770             }
771             else if (!(cv && CvROOT(cv))) {
772                 if (gv) {
773                     goto autoload;
774                 }
775                 else if (!CvANON(cv) && (gv = CvGV(cv))) {
776                     if (cv != GvCV(gv)) cv = GvCV(gv);
777                   autoload:
778                     if (!autogv && (
779                         autogv = gv_autoload_pvn(
780                             GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
781                             GvNAMEUTF8(gv) ? SVf_UTF8 : 0
782                         )
783                     )) {
784                         cv = GvCVu(autogv);
785                         goto check_cv;
786                     }
787                     else {
788                         SV *tmpstr = sv_newmortal();
789                         gv_efullname3(tmpstr, gv, NULL);
790                         DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called",
791                             SVfARG(tmpstr));
792                     }
793                 }
794                 else {
795                     DIE(aTHX_ "Undefined subroutine in sort");
796                 }
797             }
798 
799             if (is_xsub)
800                 PL_sortcop = (OP*)cv;
801             else
802                 PL_sortcop = CvSTART(cv);
803         }
804     }
805     else {
806         PL_sortcop = NULL;
807     }
808 
809     /* optimiser converts "@a = sort @a" to "sort \@a".  In this case,
810      * push (@a) onto stack, then assign result back to @a at the end of
811      * this function */
812     if (priv & OPpSORT_INPLACE) {
813         assert(    MARK+1 == PL_stack_sp
814                 && *PL_stack_sp
815                 && SvTYPE(*PL_stack_sp) == SVt_PVAV);
816         (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
817         av = MUTABLE_AV((*PL_stack_sp));
818         if (SvREADONLY(av))
819             Perl_croak_no_modify();
820         max = AvFILL(av) + 1;
821 
822         I32 oldmark = MARK - PL_stack_base;
823         rpp_extend(max);
824         MARK = PL_stack_base + oldmark;
825 
826         if (SvMAGICAL(av)) {
827             for (i=0; i < max; i++) {
828                 SV **svp = av_fetch(av, i, FALSE);
829                 SV *sv;
830                 if (svp) {
831                     sv = *svp;
832 #ifdef PERL_RC_STACK
833                     SvREFCNT_inc_simple_void_NN(sv);
834 #endif
835                 }
836                 else
837                     sv = NULL;
838                 *++PL_stack_sp = sv;
839             }
840         }
841         else {
842             SV **svp = AvARRAY(av);
843             assert(svp || max == 0);
844             for (i = 0; i < max; i++) {
845                 SV *sv = *svp++;
846 #ifdef PERL_RC_STACK
847                 SvREFCNT_inc_simple_void(sv);
848 #endif
849                 *++PL_stack_sp = sv;
850             }
851         }
852         p1 = p2 = PL_stack_sp - (max-1);
853         /* we've kept av on the stacck (just below the pushed contents) so
854          * that a reference-counted stack keeps a reference to it for now
855          */
856         assert((SV*)av == p1[-1]);
857     }
858     else {
859         p2 = MARK+1;
860         max = PL_stack_sp - MARK;
861     }
862 
863     /* shuffle stack down, removing optional initial cv (p1!=p2), plus
864      * any nulls; also stringify or converting to integer or number as
865      * required any args */
866 
867     /* no ref-counted SVs at base to be overwritten */
868     assert(p1 == p2 || (p1+1 == p2 && !*p1));
869 
870     copytmps = cBOOL(PL_sortcop);
871     for (i=max; i > 0 ; i--) {
872         SV *sv = *p2++;
873         if (sv) {                    /* Weed out nulls. */
874             if (copytmps && SvPADTMP(sv)) {
875                 SV *nsv = sv_mortalcopy(sv);
876 #ifdef PERL_RC_STACK
877                 SvREFCNT_dec_NN(sv);
878                 SvREFCNT_inc_simple_void_NN(nsv);
879 #endif
880                 sv = nsv;
881             }
882             SvTEMP_off(sv);
883             if (!PL_sortcop) {
884                 if (priv & OPpSORT_NUMERIC) {
885                     if (priv & OPpSORT_INTEGER) {
886                         if (!SvIOK(sv))
887                             (void)sv_2iv_flags(sv, SV_GMAGIC|SV_SKIP_OVERLOAD);
888                     }
889                     else {
890                         if (!SvNSIOK(sv))
891                             (void)sv_2nv_flags(sv, SV_GMAGIC|SV_SKIP_OVERLOAD);
892                         if (all_SIVs && !SvSIOK(sv))
893                             all_SIVs = 0;
894                     }
895                 }
896                 else {
897                     if (!SvPOK(sv))
898                         (void)sv_2pv_flags(sv, 0,
899                             SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
900                 }
901                 if (SvAMAGIC(sv))
902                     overloading = 1;
903             }
904             *p1++ = sv;
905         }
906         else
907             max--;
908     }
909 
910     if (max > 1) {
911         SV **start;
912         if (PL_sortcop) {
913             PERL_CONTEXT *cx;
914             const bool oldcatch = CATCH_GET;
915             I32 old_savestack_ix = PL_savestack_ix;
916 
917             SAVEOP();
918 
919             CATCH_SET(TRUE);
920             push_stackinfo(PERLSI_SORT, 1);
921 
922             if (!hasargs && !is_xsub) {
923                 /* standard perl sub with values passed as $a and $b */
924                 SAVEGENERICSV(PL_firstgv);
925                 SAVEGENERICSV(PL_secondgv);
926                 PL_firstgv = MUTABLE_GV(SvREFCNT_inc(
927                     gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
928                 ));
929                 PL_secondgv = MUTABLE_GV(SvREFCNT_inc(
930                     gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
931                 ));
932                 /* make sure the GP isn't removed out from under us for
933                  * the SAVESPTR() */
934                 save_gp(PL_firstgv, 0);
935                 save_gp(PL_secondgv, 0);
936                 /* we don't want modifications localized */
937                 GvINTRO_off(PL_firstgv);
938                 GvINTRO_off(PL_secondgv);
939                 SAVEGENERICSV(GvSV(PL_firstgv));
940                 SvREFCNT_inc(GvSV(PL_firstgv));
941                 SAVEGENERICSV(GvSV(PL_secondgv));
942                 SvREFCNT_inc(GvSV(PL_secondgv));
943             }
944 
945             gimme = G_SCALAR;
946             cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
947             if (!(flags & OPf_SPECIAL)) {
948                 cx->cx_type = CXt_SUB|CXp_MULTICALL;
949                 cx_pushsub(cx, cv, NULL, hasargs);
950                 if (!is_xsub) {
951                     PADLIST * const padlist = CvPADLIST(cv);
952 
953                     if (++CvDEPTH(cv) >= 2)
954                         pad_push(padlist, CvDEPTH(cv));
955                     PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
956 
957                     if (hasargs) {
958                         /* This is mostly copied from pp_entersub */
959                         AV * const av0 = MUTABLE_AV(PAD_SVl(0));
960 
961                         cx->blk_sub.savearray = GvAV(PL_defgv);
962                         GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av0));
963                     }
964 
965                 }
966             }
967 
968             start = p1 - max;
969             Perl_sortsv_flags(aTHX_ start, max,
970                     (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
971                     sort_flags);
972 
973             /* Reset cx, in case the context stack has been reallocated. */
974             cx = CX_CUR();
975 
976             /* the code used to think this could be > 0 */
977             assert(cx->blk_oldsp == 0);
978 
979             rpp_popfree_to_NN(PL_stack_base);
980 
981             CX_LEAVE_SCOPE(cx);
982             if (!(flags & OPf_SPECIAL)) {
983                 assert(CxTYPE(cx) == CXt_SUB);
984                 cx_popsub(cx);
985             }
986             else
987                 assert(CxTYPE(cx) == CXt_NULL);
988                 /* there isn't a POPNULL ! */
989 
990             cx_popblock(cx);
991             CX_POP(cx);
992             pop_stackinfo();
993             CATCH_SET(oldcatch);
994         }
995         else {
996             /* call one of the built-in sort functions */
997 
998             /* XXX this extend has been here since perl5.000. With safe
999              * signals, I don't think it's needed any more - DAPM.
1000             MEXTEND(SP, 20); Can't afford stack realloc on signal.
1001             */
1002             start = p1 - max;
1003             if (priv & OPpSORT_NUMERIC) {
1004                 if ((priv & OPpSORT_INTEGER) || all_SIVs) {
1005                     if (overloading)
1006                         if (descending)
1007                             sortsv_amagic_i_ncmp_desc(aTHX_ start, max, sort_flags);
1008                         else
1009                             sortsv_amagic_i_ncmp(aTHX_ start, max, sort_flags);
1010                     else
1011                         if (descending)
1012                             sortsv_i_ncmp_desc(aTHX_ start, max, sort_flags);
1013                         else
1014                             sortsv_i_ncmp(aTHX_ start, max, sort_flags);
1015                 }
1016                 else {
1017                     if (overloading)
1018                         if (descending)
1019                             sortsv_amagic_ncmp_desc(aTHX_ start, max, sort_flags);
1020                         else
1021                             sortsv_amagic_ncmp(aTHX_ start, max, sort_flags);
1022                     else
1023                         if (descending)
1024                             sortsv_ncmp_desc(aTHX_ start, max, sort_flags);
1025                         else
1026                             sortsv_ncmp(aTHX_ start, max, sort_flags);
1027                 }
1028             }
1029 #ifdef USE_LOCALE_COLLATE
1030             else if(IN_LC_RUNTIME(LC_COLLATE)) {
1031                 if (overloading)
1032                     if (descending)
1033                         sortsv_amagic_cmp_locale_desc(aTHX_ start, max, sort_flags);
1034                     else
1035                         sortsv_amagic_cmp_locale(aTHX_ start, max, sort_flags);
1036                 else
1037                     if (descending)
1038                         sortsv_cmp_locale_desc(aTHX_ start, max, sort_flags);
1039                     else
1040                         sortsv_cmp_locale(aTHX_ start, max, sort_flags);
1041             }
1042 #endif
1043             else {
1044                 if (overloading)
1045                     if (descending)
1046                         sortsv_amagic_cmp_desc(aTHX_ start, max, sort_flags);
1047                     else
1048                         sortsv_amagic_cmp(aTHX_ start, max, sort_flags);
1049                 else
1050                     if (descending)
1051                         sortsv_cmp_desc(aTHX_ start, max, sort_flags);
1052                     else
1053                         sortsv_cmp(aTHX_ start, max, sort_flags);
1054             }
1055         }
1056         if ((priv & OPpSORT_REVERSE) != 0) {
1057             SV **q = start+max-1;
1058             while (start < q) {
1059                 SV * const tmp = *start;
1060                 *start++ = *q;
1061                 *q-- = tmp;
1062             }
1063         }
1064     }
1065 
1066     if (!av) {
1067         LEAVE;
1068         PL_stack_sp = ORIGMARK +  max;
1069         return nextop;
1070     }
1071 
1072     /* OPpSORT_INPLACE: copy back result to the array */
1073     {
1074         SV** const base = MARK+2;
1075         SSize_t max_minus_one = max - 1; /* attempt to work around mingw bug */
1076 
1077         /* we left the AV there so on a refcounted stack it wouldn't be
1078          * prematurely freed */
1079         assert(base[-1] == (SV*)av);
1080 
1081         if (SvMAGICAL(av)) {
1082             for (i = 0; i <= max_minus_one; i++) {
1083                 SV *sv = base[i];
1084                 base[i] = newSVsv(sv);
1085 #ifdef PERL_RC_STACK
1086                 SvREFCNT_dec_NN(sv);
1087 #endif
1088             }
1089             av_clear(av);
1090             if (max_minus_one >= 0)
1091                 av_extend(av, max_minus_one);
1092             for (i=0; i <= max_minus_one; i++) {
1093                 SV * const sv = base[i];
1094                 SV ** const didstore = av_store(av, i, sv);
1095                 if (SvSMAGICAL(sv))
1096                     mg_set(sv);
1097 #ifdef PERL_RC_STACK
1098                 if (didstore)
1099                     SvREFCNT_inc_simple_void_NN(sv);
1100 #else
1101                 if (!didstore)
1102                     sv_2mortal(sv);
1103 #endif
1104             }
1105         }
1106         else {
1107             /* the elements of av are likely to be the same as the
1108              * (non-refcounted) elements on the stack, just in a different
1109              * order. However, its possible that someone's messed with av
1110              * in the meantime.
1111              * So to avoid freeing most/all the stack elements when
1112              * doing av_clear(), first bump the count on each element.
1113              * In addition, normally a *copy* of each sv should be
1114              * assigned to each array element; but if the only reference
1115              * to that sv was from the array, then we can skip the copy.
1116              *
1117              * For a refcounted stack, it's not necessary to bump the
1118              * refcounts initially, as the stack itself keeps the
1119              * elements alive during av_clear().
1120              *
1121              */
1122             for (i = 0; i <= max_minus_one; i++) {
1123                 SV *sv = base[i];
1124                 assert(sv);
1125 #ifdef PERL_RC_STACK
1126                 if (SvREFCNT(sv) > 2) {
1127                     base[i] = newSVsv(sv);
1128                     SvREFCNT_dec_NN(sv);
1129                 }
1130 #else
1131                 if (SvREFCNT(sv) > 1)
1132                     base[i] = newSVsv(sv);
1133                 else
1134                     SvREFCNT_inc_simple_void_NN(sv);
1135 #endif
1136             }
1137             av_clear(av);
1138             if (max_minus_one >= 0) {
1139                 av_extend(av, max_minus_one);
1140                 Copy(base, AvARRAY(av), max, SV*);
1141             }
1142             AvFILLp(av) = max_minus_one;
1143             AvREIFY_off(av);
1144             AvREAL_on(av);
1145         }
1146         /* sort is only ever optimised with OPpSORT_INPLACE when the
1147          * (@a = sort @a) is in void context. (As an aside: the context
1148          * flag aught to be copied to the sort op: then we could assert
1149          * here that it's void).
1150          * Thus we can simply discard the stack elements now: their
1151          * reference counts have already claimed by av - hence not using
1152          * rpp_popfree_to() here.
1153          */
1154         PL_stack_sp = ORIGMARK;
1155 #ifdef PERL_RC_STACK
1156         SvREFCNT_dec_NN(av);
1157 #endif
1158         LEAVE;
1159         return nextop;
1160     }
1161 }
1162 
1163 
1164 /* call a traditional perl compare function, setting $a and $b */
1165 
1166 static I32
S_sortcv(pTHX_ SV * const a,SV * const b)1167 S_sortcv(pTHX_ SV *const a, SV *const b)
1168 {
1169     const I32 oldsaveix = PL_savestack_ix;
1170     I32 result;
1171     PMOP * const pm = PL_curpm;
1172     COP * const cop = PL_curcop;
1173     SV *olda, *oldb;
1174 
1175     PERL_ARGS_ASSERT_SORTCV;
1176 
1177 #ifdef PERL_RC_STACK
1178     assert(rpp_stack_is_rc());
1179 #endif
1180 
1181     olda = GvSV(PL_firstgv);
1182     GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a);
1183     SvREFCNT_dec(olda);
1184     oldb = GvSV(PL_secondgv);
1185     GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b);
1186     SvREFCNT_dec(oldb);
1187     assert(PL_stack_sp == PL_stack_base);
1188     PL_op = PL_sortcop;
1189     CALLRUNOPS(aTHX);
1190     PL_curcop = cop;
1191     /* entry zero of a stack is always PL_sv_undef, which
1192      * simplifies converting a '()' return into undef in scalar context */
1193     assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1194     result = SvIV(*PL_stack_sp);
1195     rpp_popfree_to_NN(PL_stack_base);
1196 
1197     LEAVE_SCOPE(oldsaveix);
1198     PL_curpm = pm;
1199     return result;
1200 }
1201 
1202 
1203 /* call a perl compare function that has a ($$) prototype, setting @_ */
1204 
1205 static I32
S_sortcv_stacked(pTHX_ SV * const a,SV * const b)1206 S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
1207 {
1208     const I32 oldsaveix = PL_savestack_ix;
1209     I32 result;
1210     AV * const av = GvAV(PL_defgv);
1211     PMOP * const pm = PL_curpm;
1212     COP * const cop = PL_curcop;
1213 
1214     PERL_ARGS_ASSERT_SORTCV_STACKED;
1215 
1216 #ifdef PERL_RC_STACK
1217     assert(rpp_stack_is_rc());
1218 #endif
1219 
1220 #ifdef PERL_RC_STACK
1221     assert(AvREAL(av));
1222     av_clear(av);
1223 #else
1224     if (AvREAL(av)) {
1225         av_clear(av);
1226         AvREAL_off(av);
1227         AvREIFY_on(av);
1228     }
1229 #endif
1230 
1231     if (AvMAX(av) < 1) {
1232         SV **ary = AvALLOC(av);
1233         if (AvARRAY(av) != ary) {
1234             AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1235             AvARRAY(av) = ary;
1236         }
1237         if (AvMAX(av) < 1) {
1238             Renew(ary,2,SV*);
1239             AvMAX(av) = 1;
1240             AvARRAY(av) = ary;
1241             AvALLOC(av) = ary;
1242         }
1243     }
1244     AvFILLp(av) = 1;
1245 
1246     AvARRAY(av)[0] = a;
1247     AvARRAY(av)[1] = b;
1248 #ifdef PERL_RC_STACK
1249     SvREFCNT_inc_simple_void_NN(a);
1250     SvREFCNT_inc_simple_void_NN(b);
1251 #endif
1252     assert(PL_stack_sp == PL_stack_base);
1253     PL_op = PL_sortcop;
1254     CALLRUNOPS(aTHX);
1255     PL_curcop = cop;
1256     /* entry zero of a stack is always PL_sv_undef, which
1257      * simplifies converting a '()' return into undef in scalar context */
1258     assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1259     result = SvIV(*PL_stack_sp);
1260     rpp_popfree_to_NN(PL_stack_base);
1261 
1262     LEAVE_SCOPE(oldsaveix);
1263     PL_curpm = pm;
1264     return result;
1265 }
1266 
1267 
1268 /* call an XS compare function. (The two args are always passed on the
1269  * stack, regardless of whether it has a ($$) prototype or not.) */
1270 
1271 static I32
S_sortcv_xsub(pTHX_ SV * const a,SV * const b)1272 S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
1273 {
1274     const I32 oldsaveix = PL_savestack_ix;
1275     CV * const cv=MUTABLE_CV(PL_sortcop);
1276     I32 result;
1277     PMOP * const pm = PL_curpm;
1278 
1279     PERL_ARGS_ASSERT_SORTCV_XSUB;
1280 
1281 #ifdef PERL_RC_STACK
1282     assert(rpp_stack_is_rc());
1283 #endif
1284 
1285     assert(PL_stack_sp == PL_stack_base);
1286     PUSHMARK(PL_stack_sp);
1287     rpp_xpush_2(a, b);
1288 
1289     rpp_invoke_xs(cv);
1290 
1291     /* entry zero of a stack is always PL_sv_undef, which
1292      * simplifies converting a '()' return into undef in scalar context */
1293     assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1294     result = SvIV(*PL_stack_sp);
1295     rpp_popfree_to_NN(PL_stack_base);
1296 
1297     LEAVE_SCOPE(oldsaveix);
1298     PL_curpm = pm;
1299     return result;
1300 }
1301 
1302 
1303 PERL_STATIC_FORCE_INLINE I32
S_sv_ncmp(pTHX_ SV * const a,SV * const b)1304 S_sv_ncmp(pTHX_ SV *const a, SV *const b)
1305 {
1306     I32 cmp = do_ncmp(a, b);
1307 
1308     PERL_ARGS_ASSERT_SV_NCMP;
1309 
1310     if (cmp == 2) {
1311         if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1312         return 0;
1313     }
1314 
1315     return cmp;
1316 }
1317 
1318 PERL_STATIC_FORCE_INLINE I32
S_sv_ncmp_desc(pTHX_ SV * const a,SV * const b)1319 S_sv_ncmp_desc(pTHX_ SV *const a, SV *const b)
1320 {
1321     PERL_ARGS_ASSERT_SV_NCMP_DESC;
1322 
1323     return -S_sv_ncmp(aTHX_ a, b);
1324 }
1325 
1326 PERL_STATIC_FORCE_INLINE I32
S_sv_i_ncmp(pTHX_ SV * const a,SV * const b)1327 S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
1328 {
1329     const IV iv1 = SvIV(a);
1330     const IV iv2 = SvIV(b);
1331 
1332     PERL_ARGS_ASSERT_SV_I_NCMP;
1333 
1334     return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1335 }
1336 
1337 PERL_STATIC_FORCE_INLINE I32
S_sv_i_ncmp_desc(pTHX_ SV * const a,SV * const b)1338 S_sv_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1339 {
1340     PERL_ARGS_ASSERT_SV_I_NCMP_DESC;
1341 
1342     return -S_sv_i_ncmp(aTHX_ a, b);
1343 }
1344 
1345 #define tryCALL_AMAGICbin(left,right,meth) \
1346     (SvAMAGIC(left)||SvAMAGIC(right)) \
1347         ? amagic_call(left, right, meth, 0) \
1348         : NULL;
1349 
1350 #define SORT_NORMAL_RETURN_VALUE(val)  (((val) > 0) ? 1 : ((val) ? -1 : 0))
1351 
1352 PERL_STATIC_FORCE_INLINE I32
S_amagic_ncmp(pTHX_ SV * const a,SV * const b)1353 S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
1354 {
1355     SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1356 
1357     PERL_ARGS_ASSERT_AMAGIC_NCMP;
1358 
1359     if (tmpsv) {
1360         if (SvIOK(tmpsv)) {
1361             const I32 i = SvIVX(tmpsv);
1362             return SORT_NORMAL_RETURN_VALUE(i);
1363         }
1364         else {
1365             const NV d = SvNV(tmpsv);
1366             return SORT_NORMAL_RETURN_VALUE(d);
1367         }
1368      }
1369      return S_sv_ncmp(aTHX_ a, b);
1370 }
1371 
1372 PERL_STATIC_FORCE_INLINE I32
S_amagic_ncmp_desc(pTHX_ SV * const a,SV * const b)1373 S_amagic_ncmp_desc(pTHX_ SV *const a, SV *const b)
1374 {
1375     PERL_ARGS_ASSERT_AMAGIC_NCMP_DESC;
1376 
1377     return -S_amagic_ncmp(aTHX_ a, b);
1378 }
1379 
1380 PERL_STATIC_FORCE_INLINE I32
S_amagic_i_ncmp(pTHX_ SV * const a,SV * const b)1381 S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
1382 {
1383     SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1384 
1385     PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1386 
1387     if (tmpsv) {
1388         if (SvIOK(tmpsv)) {
1389             const I32 i = SvIVX(tmpsv);
1390             return SORT_NORMAL_RETURN_VALUE(i);
1391         }
1392         else {
1393             const NV d = SvNV(tmpsv);
1394             return SORT_NORMAL_RETURN_VALUE(d);
1395         }
1396     }
1397     return S_sv_i_ncmp(aTHX_ a, b);
1398 }
1399 
1400 PERL_STATIC_FORCE_INLINE I32
S_amagic_i_ncmp_desc(pTHX_ SV * const a,SV * const b)1401 S_amagic_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1402 {
1403     PERL_ARGS_ASSERT_AMAGIC_I_NCMP_DESC;
1404 
1405     return -S_amagic_i_ncmp(aTHX_ a, b);
1406 }
1407 
1408 PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp(pTHX_ SV * const str1,SV * const str2)1409 S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
1410 {
1411     SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1412 
1413     PERL_ARGS_ASSERT_AMAGIC_CMP;
1414 
1415     if (tmpsv) {
1416         if (SvIOK(tmpsv)) {
1417             const I32 i = SvIVX(tmpsv);
1418             return SORT_NORMAL_RETURN_VALUE(i);
1419         }
1420         else {
1421             const NV d = SvNV(tmpsv);
1422             return SORT_NORMAL_RETURN_VALUE(d);
1423         }
1424     }
1425     return sv_cmp(str1, str2);
1426 }
1427 
1428 PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_desc(pTHX_ SV * const str1,SV * const str2)1429 S_amagic_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1430 {
1431     PERL_ARGS_ASSERT_AMAGIC_CMP_DESC;
1432 
1433     return -S_amagic_cmp(aTHX_ str1, str2);
1434 }
1435 
1436 PERL_STATIC_FORCE_INLINE I32
S_cmp_desc(pTHX_ SV * const str1,SV * const str2)1437 S_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1438 {
1439     PERL_ARGS_ASSERT_CMP_DESC;
1440 
1441     return -sv_cmp(str1, str2);
1442 }
1443 
1444 #ifdef USE_LOCALE_COLLATE
1445 
1446 PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_locale(pTHX_ SV * const str1,SV * const str2)1447 S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
1448 {
1449     SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1450 
1451     PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
1452 
1453     if (tmpsv) {
1454         if (SvIOK(tmpsv)) {
1455             const I32 i = SvIVX(tmpsv);
1456             return SORT_NORMAL_RETURN_VALUE(i);
1457         }
1458         else {
1459             const NV d = SvNV(tmpsv);
1460             return SORT_NORMAL_RETURN_VALUE(d);
1461         }
1462     }
1463     return sv_cmp_locale(str1, str2);
1464 }
1465 
1466 PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_locale_desc(pTHX_ SV * const str1,SV * const str2)1467 S_amagic_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1468 {
1469     PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE_DESC;
1470 
1471     return -S_amagic_cmp_locale(aTHX_ str1, str2);
1472 }
1473 
1474 PERL_STATIC_FORCE_INLINE I32
S_cmp_locale_desc(pTHX_ SV * const str1,SV * const str2)1475 S_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1476 {
1477     PERL_ARGS_ASSERT_CMP_LOCALE_DESC;
1478 
1479     return -sv_cmp_locale(str1, str2);
1480 }
1481 
1482 #endif
1483 
1484 /*
1485  * ex: set ts=8 sts=4 sw=4 et:
1486  */
1487