xref: /netbsd/external/cddl/osnet/dist/uts/common/fs/zfs/spa.c (revision c3cea132)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright 2013 Saso Kiselkov. All rights reserved.
29  * Copyright (c) 2014 Integros [integros.com]
30  * Copyright 2016 Toomas Soome <tsoome@me.com>
31  */
32 
33 /*
34  * SPA: Storage Pool Allocator
35  *
36  * This file contains all the routines used when modifying on-disk SPA state.
37  * This includes opening, importing, destroying, exporting a pool, and syncing a
38  * pool.
39  */
40 
41 #include <sys/zfs_context.h>
42 #include <sys/fm/fs/zfs.h>
43 #include <sys/spa_impl.h>
44 #include <sys/zio.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/dmu.h>
47 #include <sys/dmu_tx.h>
48 #include <sys/zap.h>
49 #include <sys/zil.h>
50 #include <sys/ddt.h>
51 #include <sys/vdev_impl.h>
52 #include <sys/metaslab.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/uberblock_impl.h>
55 #include <sys/txg.h>
56 #include <sys/avl.h>
57 #include <sys/dmu_traverse.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/unique.h>
60 #include <sys/dsl_pool.h>
61 #include <sys/dsl_dataset.h>
62 #include <sys/dsl_dir.h>
63 #include <sys/dsl_prop.h>
64 #include <sys/dsl_synctask.h>
65 #include <sys/fs/zfs.h>
66 #include <sys/arc.h>
67 #include <sys/callb.h>
68 #include <sys/spa_boot.h>
69 #include <sys/zfs_ioctl.h>
70 #include <sys/dsl_scan.h>
71 #include <sys/dmu_send.h>
72 #include <sys/dsl_destroy.h>
73 #include <sys/dsl_userhold.h>
74 #include <sys/zfeature.h>
75 #include <sys/zvol.h>
76 #include <sys/trim_map.h>
77 
78 #ifdef	_KERNEL
79 #include <sys/callb.h>
80 #ifndef __NetBSD__
81 #include <sys/cpupart.h>
82 #endif
83 #include <sys/zone.h>
84 #endif	/* _KERNEL */
85 
86 #include "zfs_prop.h"
87 #include "zfs_comutil.h"
88 
89 /* Check hostid on import? */
90 static int check_hostid = 1;
91 
92 /*
93  * The interval, in seconds, at which failed configuration cache file writes
94  * should be retried.
95  */
96 static int zfs_ccw_retry_interval = 300;
97 
98 SYSCTL_DECL(_vfs_zfs);
99 SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
100     "Check hostid on import?");
101 TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
102 SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
103     &zfs_ccw_retry_interval, 0,
104     "Configuration cache file write, retry after failure, interval (seconds)");
105 
106 typedef enum zti_modes {
107 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
108 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
109 	ZTI_MODE_NULL,			/* don't create a taskq */
110 	ZTI_NMODES
111 } zti_modes_t;
112 
113 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
114 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
115 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
116 
117 #define	ZTI_N(n)	ZTI_P(n, 1)
118 #define	ZTI_ONE		ZTI_N(1)
119 
120 typedef struct zio_taskq_info {
121 	zti_modes_t zti_mode;
122 	uint_t zti_value;
123 	uint_t zti_count;
124 } zio_taskq_info_t;
125 
126 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
127 	"issue", "issue_high", "intr", "intr_high"
128 };
129 
130 /*
131  * This table defines the taskq settings for each ZFS I/O type. When
132  * initializing a pool, we use this table to create an appropriately sized
133  * taskq. Some operations are low volume and therefore have a small, static
134  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
135  * macros. Other operations process a large amount of data; the ZTI_BATCH
136  * macro causes us to create a taskq oriented for throughput. Some operations
137  * are so high frequency and short-lived that the taskq itself can become a a
138  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
139  * additional degree of parallelism specified by the number of threads per-
140  * taskq and the number of taskqs; when dispatching an event in this case, the
141  * particular taskq is chosen at random.
142  *
143  * The different taskq priorities are to handle the different contexts (issue
144  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
145  * need to be handled with minimum delay.
146  */
147 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
148 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
149 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
150 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
151 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
152 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
153 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
154 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
155 };
156 
157 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
158 static void spa_event_post(sysevent_t *ev);
159 static void spa_sync_version(void *arg, dmu_tx_t *tx);
160 static void spa_sync_props(void *arg, dmu_tx_t *tx);
161 static boolean_t spa_has_active_shared_spare(spa_t *spa);
162 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
163     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
164     char **ereport);
165 static void spa_vdev_resilver_done(spa_t *spa);
166 
167 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
168 #ifdef PSRSET_BIND
169 id_t		zio_taskq_psrset_bind = PS_NONE;
170 #endif
171 #ifdef SYSDC
172 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
173 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
174 #endif
175 
176 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
177 extern int	zfs_sync_pass_deferred_free;
178 
179 /*
180  * This (illegal) pool name is used when temporarily importing a spa_t in order
181  * to get the vdev stats associated with the imported devices.
182  */
183 #define	TRYIMPORT_NAME	"$import"
184 
185 /*
186  * ==========================================================================
187  * SPA properties routines
188  * ==========================================================================
189  */
190 
191 /*
192  * Add a (source=src, propname=propval) list to an nvlist.
193  */
194 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)195 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
196     uint64_t intval, zprop_source_t src)
197 {
198 	const char *propname = zpool_prop_to_name(prop);
199 	nvlist_t *propval;
200 
201 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
202 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
203 
204 	if (strval != NULL)
205 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
206 	else
207 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
208 
209 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
210 	nvlist_free(propval);
211 }
212 
213 /*
214  * Get property values from the spa configuration.
215  */
216 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)217 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
218 {
219 	vdev_t *rvd = spa->spa_root_vdev;
220 	dsl_pool_t *pool = spa->spa_dsl_pool;
221 	uint64_t size, alloc, cap, version;
222 	zprop_source_t src = ZPROP_SRC_NONE;
223 	spa_config_dirent_t *dp;
224 	metaslab_class_t *mc = spa_normal_class(spa);
225 
226 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
227 
228 	if (rvd != NULL) {
229 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
230 		size = metaslab_class_get_space(spa_normal_class(spa));
231 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
233 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
234 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
235 		    size - alloc, src);
236 
237 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
238 		    metaslab_class_fragmentation(mc), src);
239 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
240 		    metaslab_class_expandable_space(mc), src);
241 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
242 		    (spa_mode(spa) == FREAD), src);
243 
244 		cap = (size == 0) ? 0 : (alloc * 100 / size);
245 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
246 
247 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
248 		    ddt_get_pool_dedup_ratio(spa), src);
249 
250 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
251 		    rvd->vdev_state, src);
252 
253 		version = spa_version(spa);
254 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
255 			src = ZPROP_SRC_DEFAULT;
256 		else
257 			src = ZPROP_SRC_LOCAL;
258 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
259 	}
260 
261 	if (pool != NULL) {
262 		/*
263 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
264 		 * when opening pools before this version freedir will be NULL.
265 		 */
266 		if (pool->dp_free_dir != NULL) {
267 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
268 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
269 			    src);
270 		} else {
271 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272 			    NULL, 0, src);
273 		}
274 
275 		if (pool->dp_leak_dir != NULL) {
276 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
277 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
278 			    src);
279 		} else {
280 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
281 			    NULL, 0, src);
282 		}
283 	}
284 
285 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
286 
287 	if (spa->spa_comment != NULL) {
288 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
289 		    0, ZPROP_SRC_LOCAL);
290 	}
291 
292 	if (spa->spa_root != NULL)
293 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
294 		    0, ZPROP_SRC_LOCAL);
295 
296 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
297 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
298 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
299 	} else {
300 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
301 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
302 	}
303 
304 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
305 		if (dp->scd_path == NULL) {
306 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
307 			    "none", 0, ZPROP_SRC_LOCAL);
308 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
309 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
310 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
311 		}
312 	}
313 }
314 
315 /*
316  * Get zpool property values.
317  */
318 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)319 spa_prop_get(spa_t *spa, nvlist_t **nvp)
320 {
321 	objset_t *mos = spa->spa_meta_objset;
322 	zap_cursor_t zc;
323 	zap_attribute_t za;
324 	int err;
325 
326 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
327 
328 	mutex_enter(&spa->spa_props_lock);
329 
330 	/*
331 	 * Get properties from the spa config.
332 	 */
333 	spa_prop_get_config(spa, nvp);
334 
335 	/* If no pool property object, no more prop to get. */
336 	if (mos == NULL || spa->spa_pool_props_object == 0) {
337 		mutex_exit(&spa->spa_props_lock);
338 		return (0);
339 	}
340 
341 	/*
342 	 * Get properties from the MOS pool property object.
343 	 */
344 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
345 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
346 	    zap_cursor_advance(&zc)) {
347 		uint64_t intval = 0;
348 		char *strval = NULL;
349 		zprop_source_t src = ZPROP_SRC_DEFAULT;
350 		zpool_prop_t prop;
351 
352 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
353 			continue;
354 
355 		switch (za.za_integer_length) {
356 		case 8:
357 			/* integer property */
358 			if (za.za_first_integer !=
359 			    zpool_prop_default_numeric(prop))
360 				src = ZPROP_SRC_LOCAL;
361 
362 			if (prop == ZPOOL_PROP_BOOTFS) {
363 				dsl_pool_t *dp;
364 				dsl_dataset_t *ds = NULL;
365 
366 				dp = spa_get_dsl(spa);
367 				dsl_pool_config_enter(dp, FTAG);
368 				if (err = dsl_dataset_hold_obj(dp,
369 				    za.za_first_integer, FTAG, &ds)) {
370 					dsl_pool_config_exit(dp, FTAG);
371 					break;
372 				}
373 
374 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
375 				    KM_SLEEP);
376 				dsl_dataset_name(ds, strval);
377 				dsl_dataset_rele(ds, FTAG);
378 				dsl_pool_config_exit(dp, FTAG);
379 			} else {
380 				strval = NULL;
381 				intval = za.za_first_integer;
382 			}
383 
384 			spa_prop_add_list(*nvp, prop, strval, intval, src);
385 
386 			if (strval != NULL)
387 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
388 
389 			break;
390 
391 		case 1:
392 			/* string property */
393 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
394 			err = zap_lookup(mos, spa->spa_pool_props_object,
395 			    za.za_name, 1, za.za_num_integers, strval);
396 			if (err) {
397 				kmem_free(strval, za.za_num_integers);
398 				break;
399 			}
400 			spa_prop_add_list(*nvp, prop, strval, 0, src);
401 			kmem_free(strval, za.za_num_integers);
402 			break;
403 
404 		default:
405 			break;
406 		}
407 	}
408 	zap_cursor_fini(&zc);
409 	mutex_exit(&spa->spa_props_lock);
410 out:
411 	if (err && err != ENOENT) {
412 		nvlist_free(*nvp);
413 		*nvp = NULL;
414 		return (err);
415 	}
416 
417 	return (0);
418 }
419 
420 /*
421  * Validate the given pool properties nvlist and modify the list
422  * for the property values to be set.
423  */
424 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)425 spa_prop_validate(spa_t *spa, nvlist_t *props)
426 {
427 	nvpair_t *elem;
428 	int error = 0, reset_bootfs = 0;
429 	uint64_t objnum = 0;
430 	boolean_t has_feature = B_FALSE;
431 
432 	elem = NULL;
433 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
434 		uint64_t intval;
435 		char *strval, *slash, *check, *fname;
436 		const char *propname = nvpair_name(elem);
437 		zpool_prop_t prop = zpool_name_to_prop(propname);
438 
439 		switch (prop) {
440 		case ZPROP_INVAL:
441 			if (!zpool_prop_feature(propname)) {
442 				error = SET_ERROR(EINVAL);
443 				break;
444 			}
445 
446 			/*
447 			 * Sanitize the input.
448 			 */
449 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
450 				error = SET_ERROR(EINVAL);
451 				break;
452 			}
453 
454 			if (nvpair_value_uint64(elem, &intval) != 0) {
455 				error = SET_ERROR(EINVAL);
456 				break;
457 			}
458 
459 			if (intval != 0) {
460 				error = SET_ERROR(EINVAL);
461 				break;
462 			}
463 
464 			fname = strchr(propname, '@') + 1;
465 			if (zfeature_lookup_name(fname, NULL) != 0) {
466 				error = SET_ERROR(EINVAL);
467 				break;
468 			}
469 
470 			has_feature = B_TRUE;
471 			break;
472 
473 		case ZPOOL_PROP_VERSION:
474 			error = nvpair_value_uint64(elem, &intval);
475 			if (!error &&
476 			    (intval < spa_version(spa) ||
477 			    intval > SPA_VERSION_BEFORE_FEATURES ||
478 			    has_feature))
479 				error = SET_ERROR(EINVAL);
480 			break;
481 
482 		case ZPOOL_PROP_DELEGATION:
483 		case ZPOOL_PROP_AUTOREPLACE:
484 		case ZPOOL_PROP_LISTSNAPS:
485 		case ZPOOL_PROP_AUTOEXPAND:
486 			error = nvpair_value_uint64(elem, &intval);
487 			if (!error && intval > 1)
488 				error = SET_ERROR(EINVAL);
489 			break;
490 
491 		case ZPOOL_PROP_BOOTFS:
492 			/*
493 			 * If the pool version is less than SPA_VERSION_BOOTFS,
494 			 * or the pool is still being created (version == 0),
495 			 * the bootfs property cannot be set.
496 			 */
497 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
498 				error = SET_ERROR(ENOTSUP);
499 				break;
500 			}
501 
502 			/*
503 			 * Make sure the vdev config is bootable
504 			 */
505 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
506 				error = SET_ERROR(ENOTSUP);
507 				break;
508 			}
509 
510 			reset_bootfs = 1;
511 
512 			error = nvpair_value_string(elem, &strval);
513 
514 			if (!error) {
515 				objset_t *os;
516 				uint64_t propval;
517 
518 				if (strval == NULL || strval[0] == '\0') {
519 					objnum = zpool_prop_default_numeric(
520 					    ZPOOL_PROP_BOOTFS);
521 					break;
522 				}
523 
524 				if (error = dmu_objset_hold(strval, FTAG, &os))
525 					break;
526 
527 				/*
528 				 * Must be ZPL, and its property settings
529 				 * must be supported by GRUB (compression
530 				 * is not gzip, and large blocks are not used).
531 				 */
532 
533 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
534 					error = SET_ERROR(ENOTSUP);
535 				} else if ((error =
536 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
537 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
538 				    &propval)) == 0 &&
539 				    !BOOTFS_COMPRESS_VALID(propval)) {
540 					error = SET_ERROR(ENOTSUP);
541 				} else {
542 					objnum = dmu_objset_id(os);
543 				}
544 				dmu_objset_rele(os, FTAG);
545 			}
546 			break;
547 
548 		case ZPOOL_PROP_FAILUREMODE:
549 			error = nvpair_value_uint64(elem, &intval);
550 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
551 			    intval > ZIO_FAILURE_MODE_PANIC))
552 				error = SET_ERROR(EINVAL);
553 
554 			/*
555 			 * This is a special case which only occurs when
556 			 * the pool has completely failed. This allows
557 			 * the user to change the in-core failmode property
558 			 * without syncing it out to disk (I/Os might
559 			 * currently be blocked). We do this by returning
560 			 * EIO to the caller (spa_prop_set) to trick it
561 			 * into thinking we encountered a property validation
562 			 * error.
563 			 */
564 			if (!error && spa_suspended(spa)) {
565 				spa->spa_failmode = intval;
566 				error = SET_ERROR(EIO);
567 			}
568 			break;
569 
570 		case ZPOOL_PROP_CACHEFILE:
571 			if ((error = nvpair_value_string(elem, &strval)) != 0)
572 				break;
573 
574 			if (strval[0] == '\0')
575 				break;
576 
577 			if (strcmp(strval, "none") == 0)
578 				break;
579 
580 			if (strval[0] != '/') {
581 				error = SET_ERROR(EINVAL);
582 				break;
583 			}
584 
585 			slash = strrchr(strval, '/');
586 			ASSERT(slash != NULL);
587 
588 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
589 			    strcmp(slash, "/..") == 0)
590 				error = SET_ERROR(EINVAL);
591 			break;
592 
593 		case ZPOOL_PROP_COMMENT:
594 			if ((error = nvpair_value_string(elem, &strval)) != 0)
595 				break;
596 			for (check = strval; *check != '\0'; check++) {
597 				/*
598 				 * The kernel doesn't have an easy isprint()
599 				 * check.  For this kernel check, we merely
600 				 * check ASCII apart from DEL.  Fix this if
601 				 * there is an easy-to-use kernel isprint().
602 				 */
603 				if (*check >= 0x7f) {
604 					error = SET_ERROR(EINVAL);
605 					break;
606 				}
607 			}
608 			if (strlen(strval) > ZPROP_MAX_COMMENT)
609 				error = E2BIG;
610 			break;
611 
612 		case ZPOOL_PROP_DEDUPDITTO:
613 			if (spa_version(spa) < SPA_VERSION_DEDUP)
614 				error = SET_ERROR(ENOTSUP);
615 			else
616 				error = nvpair_value_uint64(elem, &intval);
617 			if (error == 0 &&
618 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
619 				error = SET_ERROR(EINVAL);
620 			break;
621 		}
622 
623 		if (error)
624 			break;
625 	}
626 
627 	if (!error && reset_bootfs) {
628 		error = nvlist_remove(props,
629 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
630 
631 		if (!error) {
632 			error = nvlist_add_uint64(props,
633 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
634 		}
635 	}
636 
637 	return (error);
638 }
639 
640 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)641 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
642 {
643 	char *cachefile;
644 	spa_config_dirent_t *dp;
645 
646 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
647 	    &cachefile) != 0)
648 		return;
649 
650 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
651 	    KM_SLEEP);
652 
653 	if (cachefile[0] == '\0')
654 		dp->scd_path = spa_strdup(spa_config_path);
655 	else if (strcmp(cachefile, "none") == 0)
656 		dp->scd_path = NULL;
657 	else
658 		dp->scd_path = spa_strdup(cachefile);
659 
660 	list_insert_head(&spa->spa_config_list, dp);
661 	if (need_sync)
662 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
663 }
664 
665 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)666 spa_prop_set(spa_t *spa, nvlist_t *nvp)
667 {
668 	int error;
669 	nvpair_t *elem = NULL;
670 	boolean_t need_sync = B_FALSE;
671 
672 	if ((error = spa_prop_validate(spa, nvp)) != 0)
673 		return (error);
674 
675 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
676 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
677 
678 		if (prop == ZPOOL_PROP_CACHEFILE ||
679 		    prop == ZPOOL_PROP_ALTROOT ||
680 		    prop == ZPOOL_PROP_READONLY)
681 			continue;
682 
683 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
684 			uint64_t ver;
685 
686 			if (prop == ZPOOL_PROP_VERSION) {
687 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
688 			} else {
689 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
690 				ver = SPA_VERSION_FEATURES;
691 				need_sync = B_TRUE;
692 			}
693 
694 			/* Save time if the version is already set. */
695 			if (ver == spa_version(spa))
696 				continue;
697 
698 			/*
699 			 * In addition to the pool directory object, we might
700 			 * create the pool properties object, the features for
701 			 * read object, the features for write object, or the
702 			 * feature descriptions object.
703 			 */
704 			error = dsl_sync_task(spa->spa_name, NULL,
705 			    spa_sync_version, &ver,
706 			    6, ZFS_SPACE_CHECK_RESERVED);
707 			if (error)
708 				return (error);
709 			continue;
710 		}
711 
712 		need_sync = B_TRUE;
713 		break;
714 	}
715 
716 	if (need_sync) {
717 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
718 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
719 	}
720 
721 	return (0);
722 }
723 
724 /*
725  * If the bootfs property value is dsobj, clear it.
726  */
727 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)728 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
729 {
730 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
731 		VERIFY(zap_remove(spa->spa_meta_objset,
732 		    spa->spa_pool_props_object,
733 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
734 		spa->spa_bootfs = 0;
735 	}
736 }
737 
738 /*ARGSUSED*/
739 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)740 spa_change_guid_check(void *arg, dmu_tx_t *tx)
741 {
742 	uint64_t *newguid = arg;
743 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
744 	vdev_t *rvd = spa->spa_root_vdev;
745 	uint64_t vdev_state;
746 
747 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
748 	vdev_state = rvd->vdev_state;
749 	spa_config_exit(spa, SCL_STATE, FTAG);
750 
751 	if (vdev_state != VDEV_STATE_HEALTHY)
752 		return (SET_ERROR(ENXIO));
753 
754 	ASSERT3U(spa_guid(spa), !=, *newguid);
755 
756 	return (0);
757 }
758 
759 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)760 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
761 {
762 	uint64_t *newguid = arg;
763 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
764 	uint64_t oldguid;
765 	vdev_t *rvd = spa->spa_root_vdev;
766 
767 	oldguid = spa_guid(spa);
768 
769 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
770 	rvd->vdev_guid = *newguid;
771 	rvd->vdev_guid_sum += (*newguid - oldguid);
772 	vdev_config_dirty(rvd);
773 	spa_config_exit(spa, SCL_STATE, FTAG);
774 
775 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
776 	    oldguid, *newguid);
777 }
778 
779 /*
780  * Change the GUID for the pool.  This is done so that we can later
781  * re-import a pool built from a clone of our own vdevs.  We will modify
782  * the root vdev's guid, our own pool guid, and then mark all of our
783  * vdevs dirty.  Note that we must make sure that all our vdevs are
784  * online when we do this, or else any vdevs that weren't present
785  * would be orphaned from our pool.  We are also going to issue a
786  * sysevent to update any watchers.
787  */
788 int
spa_change_guid(spa_t * spa)789 spa_change_guid(spa_t *spa)
790 {
791 	int error;
792 	uint64_t guid;
793 
794 	mutex_enter(&spa->spa_vdev_top_lock);
795 	mutex_enter(&spa_namespace_lock);
796 	guid = spa_generate_guid(NULL);
797 
798 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
799 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
800 
801 	if (error == 0) {
802 		spa_config_sync(spa, B_FALSE, B_TRUE);
803 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
804 	}
805 
806 	mutex_exit(&spa_namespace_lock);
807 	mutex_exit(&spa->spa_vdev_top_lock);
808 
809 	return (error);
810 }
811 
812 /*
813  * ==========================================================================
814  * SPA state manipulation (open/create/destroy/import/export)
815  * ==========================================================================
816  */
817 
818 static int
spa_error_entry_compare(const void * a,const void * b)819 spa_error_entry_compare(const void *a, const void *b)
820 {
821 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
822 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
823 	int ret;
824 
825 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
826 	    sizeof (zbookmark_phys_t));
827 
828 	if (ret < 0)
829 		return (-1);
830 	else if (ret > 0)
831 		return (1);
832 	else
833 		return (0);
834 }
835 
836 /*
837  * Utility function which retrieves copies of the current logs and
838  * re-initializes them in the process.
839  */
840 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)841 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
842 {
843 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
844 
845 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
846 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
847 
848 	avl_create(&spa->spa_errlist_scrub,
849 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
850 	    offsetof(spa_error_entry_t, se_avl));
851 	avl_create(&spa->spa_errlist_last,
852 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
853 	    offsetof(spa_error_entry_t, se_avl));
854 }
855 
856 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)857 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
858 {
859 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
860 	enum zti_modes mode = ztip->zti_mode;
861 	uint_t value = ztip->zti_value;
862 	uint_t count = ztip->zti_count;
863 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
864 	char name[32];
865 	uint_t flags = 0;
866 	boolean_t batch = B_FALSE;
867 
868 	if (mode == ZTI_MODE_NULL) {
869 		tqs->stqs_count = 0;
870 		tqs->stqs_taskq = NULL;
871 		return;
872 	}
873 
874 	ASSERT3U(count, >, 0);
875 
876 	tqs->stqs_count = count;
877 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
878 
879 	switch (mode) {
880 	case ZTI_MODE_FIXED:
881 		ASSERT3U(value, >=, 1);
882 		value = MAX(value, 1);
883 		break;
884 
885 	case ZTI_MODE_BATCH:
886 		batch = B_TRUE;
887 		flags |= TASKQ_THREADS_CPU_PCT;
888 		value = zio_taskq_batch_pct;
889 		break;
890 
891 	default:
892 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
893 		    "spa_activate()",
894 		    zio_type_name[t], zio_taskq_types[q], mode, value);
895 		break;
896 	}
897 
898 	for (uint_t i = 0; i < count; i++) {
899 		taskq_t *tq;
900 
901 		if (count > 1) {
902 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
903 			    zio_type_name[t], zio_taskq_types[q], i);
904 		} else {
905 			(void) snprintf(name, sizeof (name), "%s_%s",
906 			    zio_type_name[t], zio_taskq_types[q]);
907 		}
908 
909 #ifdef SYSDC
910 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
911 			if (batch)
912 				flags |= TASKQ_DC_BATCH;
913 
914 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
915 			    spa->spa_proc, zio_taskq_basedc, flags);
916 		} else {
917 #endif
918 			pri_t pri = maxclsyspri;
919 			/*
920 			 * The write issue taskq can be extremely CPU
921 			 * intensive.  Run it at slightly lower priority
922 			 * than the other taskqs.
923 			 * FreeBSD notes:
924 			 * - numerically higher priorities are lower priorities;
925 			 * - if priorities divided by four (RQ_PPQ) are equal
926 			 *   then a difference between them is insignificant.
927 			 */
928 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
929 #if defined(illumos) || defined(__NetBSD__)
930 				pri--;
931 #else
932 				pri += 4;
933 #endif
934 
935 			tq = taskq_create_proc(name, value, pri, 50,
936 			    INT_MAX, spa->spa_proc, flags);
937 #ifdef SYSDC
938 		}
939 #endif
940 
941 		tqs->stqs_taskq[i] = tq;
942 	}
943 }
944 
945 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)946 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
947 {
948 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949 
950 	if (tqs->stqs_taskq == NULL) {
951 		ASSERT0(tqs->stqs_count);
952 		return;
953 	}
954 
955 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
956 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
957 		taskq_destroy(tqs->stqs_taskq[i]);
958 	}
959 
960 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
961 	tqs->stqs_taskq = NULL;
962 }
963 
964 /*
965  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
966  * Note that a type may have multiple discrete taskqs to avoid lock contention
967  * on the taskq itself. In that case we choose which taskq at random by using
968  * the low bits of gethrtime().
969  */
970 void
spa_taskq_dispatch_ent(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,void * arg,uint_t flags,taskq_ent_t * ent)971 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
972     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
973 {
974 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
975 	taskq_t *tq;
976 
977 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
978 	ASSERT3U(tqs->stqs_count, !=, 0);
979 
980 	if (tqs->stqs_count == 1) {
981 		tq = tqs->stqs_taskq[0];
982 	} else {
983 #if defined(__FreeBSD__) && defined(_KERNEL)
984 		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
985 #else
986 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
987 #endif
988 	}
989 
990 	taskq_dispatch_ent(tq, func, arg, flags, ent);
991 }
992 
993 static void
spa_create_zio_taskqs(spa_t * spa)994 spa_create_zio_taskqs(spa_t *spa)
995 {
996 	for (int t = 0; t < ZIO_TYPES; t++) {
997 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
998 			spa_taskqs_init(spa, t, q);
999 		}
1000 	}
1001 }
1002 
1003 #ifdef _KERNEL
1004 #ifdef SPA_PROCESS
1005 static void
spa_thread(void * arg)1006 spa_thread(void *arg)
1007 {
1008 	callb_cpr_t cprinfo;
1009 
1010 	spa_t *spa = arg;
1011 	user_t *pu = PTOU(curproc);
1012 
1013 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1014 	    spa->spa_name);
1015 
1016 	ASSERT(curproc != &p0);
1017 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1018 	    "zpool-%s", spa->spa_name);
1019 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1020 
1021 #ifdef PSRSET_BIND
1022 	/* bind this thread to the requested psrset */
1023 	if (zio_taskq_psrset_bind != PS_NONE) {
1024 		pool_lock();
1025 		mutex_enter(&cpu_lock);
1026 		mutex_enter(&pidlock);
1027 		mutex_enter(&curproc->p_lock);
1028 
1029 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1030 		    0, NULL, NULL) == 0)  {
1031 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1032 		} else {
1033 			cmn_err(CE_WARN,
1034 			    "Couldn't bind process for zfs pool \"%s\" to "
1035 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1036 		}
1037 
1038 		mutex_exit(&curproc->p_lock);
1039 		mutex_exit(&pidlock);
1040 		mutex_exit(&cpu_lock);
1041 		pool_unlock();
1042 	}
1043 #endif
1044 
1045 #ifdef SYSDC
1046 	if (zio_taskq_sysdc) {
1047 		sysdc_thread_enter(curthread, 100, 0);
1048 	}
1049 #endif
1050 
1051 	spa->spa_proc = curproc;
1052 	spa->spa_did = curthread->t_did;
1053 
1054 	spa_create_zio_taskqs(spa);
1055 
1056 	mutex_enter(&spa->spa_proc_lock);
1057 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1058 
1059 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1060 	cv_broadcast(&spa->spa_proc_cv);
1061 
1062 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1063 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1064 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1065 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1066 
1067 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1068 	spa->spa_proc_state = SPA_PROC_GONE;
1069 	spa->spa_proc = &p0;
1070 	cv_broadcast(&spa->spa_proc_cv);
1071 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1072 
1073 	mutex_enter(&curproc->p_lock);
1074 	lwp_exit();
1075 }
1076 #endif	/* SPA_PROCESS */
1077 #endif
1078 
1079 /*
1080  * Activate an uninitialized pool.
1081  */
1082 static void
spa_activate(spa_t * spa,int mode)1083 spa_activate(spa_t *spa, int mode)
1084 {
1085 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1086 
1087 	spa->spa_state = POOL_STATE_ACTIVE;
1088 	spa->spa_mode = mode;
1089 
1090 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1092 
1093 	/* Try to create a covering process */
1094 	mutex_enter(&spa->spa_proc_lock);
1095 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1096 	ASSERT(spa->spa_proc == &p0);
1097 	spa->spa_did = 0;
1098 
1099 #ifdef SPA_PROCESS
1100 	/* Only create a process if we're going to be around a while. */
1101 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1102 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1103 		    NULL, 0) == 0) {
1104 			spa->spa_proc_state = SPA_PROC_CREATED;
1105 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1106 				cv_wait(&spa->spa_proc_cv,
1107 				    &spa->spa_proc_lock);
1108 			}
1109 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1110 			ASSERT(spa->spa_proc != &p0);
1111 			ASSERT(spa->spa_did != 0);
1112 		} else {
1113 #ifdef _KERNEL
1114 			cmn_err(CE_WARN,
1115 			    "Couldn't create process for zfs pool \"%s\"\n",
1116 			    spa->spa_name);
1117 #endif
1118 		}
1119 	}
1120 #endif	/* SPA_PROCESS */
1121 	mutex_exit(&spa->spa_proc_lock);
1122 
1123 	/* If we didn't create a process, we need to create our taskqs. */
1124 	ASSERT(spa->spa_proc == &p0);
1125 	if (spa->spa_proc == &p0) {
1126 		spa_create_zio_taskqs(spa);
1127 	}
1128 
1129 	/*
1130 	 * Start TRIM thread.
1131 	 */
1132 	trim_thread_create(spa);
1133 
1134 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1135 	    offsetof(vdev_t, vdev_config_dirty_node));
1136 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1137 	    offsetof(objset_t, os_evicting_node));
1138 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1139 	    offsetof(vdev_t, vdev_state_dirty_node));
1140 
1141 	txg_list_create(&spa->spa_vdev_txg_list,
1142 	    offsetof(struct vdev, vdev_txg_node));
1143 
1144 	avl_create(&spa->spa_errlist_scrub,
1145 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1146 	    offsetof(spa_error_entry_t, se_avl));
1147 	avl_create(&spa->spa_errlist_last,
1148 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1149 	    offsetof(spa_error_entry_t, se_avl));
1150 }
1151 
1152 /*
1153  * Opposite of spa_activate().
1154  */
1155 static void
spa_deactivate(spa_t * spa)1156 spa_deactivate(spa_t *spa)
1157 {
1158 	ASSERT(spa->spa_sync_on == B_FALSE);
1159 	ASSERT(spa->spa_dsl_pool == NULL);
1160 	ASSERT(spa->spa_root_vdev == NULL);
1161 	ASSERT(spa->spa_async_zio_root == NULL);
1162 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1163 
1164 	/*
1165 	 * Stop TRIM thread in case spa_unload() wasn't called directly
1166 	 * before spa_deactivate().
1167 	 */
1168 	trim_thread_destroy(spa);
1169 
1170 	spa_evicting_os_wait(spa);
1171 
1172 	txg_list_destroy(&spa->spa_vdev_txg_list);
1173 
1174 	list_destroy(&spa->spa_config_dirty_list);
1175 	list_destroy(&spa->spa_evicting_os_list);
1176 	list_destroy(&spa->spa_state_dirty_list);
1177 
1178 	for (int t = 0; t < ZIO_TYPES; t++) {
1179 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1180 			spa_taskqs_fini(spa, t, q);
1181 		}
1182 	}
1183 
1184 	metaslab_class_destroy(spa->spa_normal_class);
1185 	spa->spa_normal_class = NULL;
1186 
1187 	metaslab_class_destroy(spa->spa_log_class);
1188 	spa->spa_log_class = NULL;
1189 
1190 	/*
1191 	 * If this was part of an import or the open otherwise failed, we may
1192 	 * still have errors left in the queues.  Empty them just in case.
1193 	 */
1194 	spa_errlog_drain(spa);
1195 
1196 	avl_destroy(&spa->spa_errlist_scrub);
1197 	avl_destroy(&spa->spa_errlist_last);
1198 
1199 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1200 
1201 	mutex_enter(&spa->spa_proc_lock);
1202 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1203 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1204 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1205 		cv_broadcast(&spa->spa_proc_cv);
1206 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1207 			ASSERT(spa->spa_proc != &p0);
1208 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1209 		}
1210 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1211 		spa->spa_proc_state = SPA_PROC_NONE;
1212 	}
1213 	ASSERT(spa->spa_proc == &p0);
1214 	mutex_exit(&spa->spa_proc_lock);
1215 
1216 #ifdef SPA_PROCESS
1217 	/*
1218 	 * We want to make sure spa_thread() has actually exited the ZFS
1219 	 * module, so that the module can't be unloaded out from underneath
1220 	 * it.
1221 	 */
1222 	if (spa->spa_did != 0) {
1223 		thread_join(spa->spa_did);
1224 		spa->spa_did = 0;
1225 	}
1226 #endif	/* SPA_PROCESS */
1227 }
1228 
1229 /*
1230  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1231  * will create all the necessary vdevs in the appropriate layout, with each vdev
1232  * in the CLOSED state.  This will prep the pool before open/creation/import.
1233  * All vdev validation is done by the vdev_alloc() routine.
1234  */
1235 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1236 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1237     uint_t id, int atype)
1238 {
1239 	nvlist_t **child;
1240 	uint_t children;
1241 	int error;
1242 
1243 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1244 		return (error);
1245 
1246 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1247 		return (0);
1248 
1249 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1250 	    &child, &children);
1251 
1252 	if (error == ENOENT)
1253 		return (0);
1254 
1255 	if (error) {
1256 		vdev_free(*vdp);
1257 		*vdp = NULL;
1258 		return (SET_ERROR(EINVAL));
1259 	}
1260 
1261 	for (int c = 0; c < children; c++) {
1262 		vdev_t *vd;
1263 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1264 		    atype)) != 0) {
1265 			vdev_free(*vdp);
1266 			*vdp = NULL;
1267 			return (error);
1268 		}
1269 	}
1270 
1271 	ASSERT(*vdp != NULL);
1272 
1273 	return (0);
1274 }
1275 
1276 /*
1277  * Opposite of spa_load().
1278  */
1279 static void
spa_unload(spa_t * spa)1280 spa_unload(spa_t *spa)
1281 {
1282 	int i;
1283 
1284 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1285 
1286 	/*
1287 	 * Stop TRIM thread.
1288 	 */
1289 	trim_thread_destroy(spa);
1290 
1291 	/*
1292 	 * Stop async tasks.
1293 	 */
1294 	spa_async_suspend(spa);
1295 
1296 	/*
1297 	 * Stop syncing.
1298 	 */
1299 	if (spa->spa_sync_on) {
1300 		txg_sync_stop(spa->spa_dsl_pool);
1301 		spa->spa_sync_on = B_FALSE;
1302 	}
1303 
1304 	/*
1305 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1306 	 * to call it earlier, before we wait for async i/o to complete.
1307 	 * This ensures that there is no async metaslab prefetching, by
1308 	 * calling taskq_wait(mg_taskq).
1309 	 */
1310 	if (spa->spa_root_vdev != NULL) {
1311 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1312 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1313 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1314 		spa_config_exit(spa, SCL_ALL, FTAG);
1315 	}
1316 
1317 	/*
1318 	 * Wait for any outstanding async I/O to complete.
1319 	 */
1320 	if (spa->spa_async_zio_root != NULL) {
1321 		for (int i = 0; i < max_ncpus; i++)
1322 			(void) zio_wait(spa->spa_async_zio_root[i]);
1323 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1324 		spa->spa_async_zio_root = NULL;
1325 	}
1326 
1327 	bpobj_close(&spa->spa_deferred_bpobj);
1328 
1329 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1330 
1331 	/*
1332 	 * Close all vdevs.
1333 	 */
1334 	if (spa->spa_root_vdev)
1335 		vdev_free(spa->spa_root_vdev);
1336 	ASSERT(spa->spa_root_vdev == NULL);
1337 
1338 	/*
1339 	 * Close the dsl pool.
1340 	 */
1341 	if (spa->spa_dsl_pool) {
1342 		dsl_pool_close(spa->spa_dsl_pool);
1343 		spa->spa_dsl_pool = NULL;
1344 		spa->spa_meta_objset = NULL;
1345 	}
1346 
1347 	ddt_unload(spa);
1348 
1349 	/*
1350 	 * Drop and purge level 2 cache
1351 	 */
1352 	spa_l2cache_drop(spa);
1353 
1354 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1355 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1356 	if (spa->spa_spares.sav_vdevs) {
1357 		kmem_free(spa->spa_spares.sav_vdevs,
1358 		    spa->spa_spares.sav_count * sizeof (void *));
1359 		spa->spa_spares.sav_vdevs = NULL;
1360 	}
1361 	if (spa->spa_spares.sav_config) {
1362 		nvlist_free(spa->spa_spares.sav_config);
1363 		spa->spa_spares.sav_config = NULL;
1364 	}
1365 	spa->spa_spares.sav_count = 0;
1366 
1367 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1368 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1369 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1370 	}
1371 	if (spa->spa_l2cache.sav_vdevs) {
1372 		kmem_free(spa->spa_l2cache.sav_vdevs,
1373 		    spa->spa_l2cache.sav_count * sizeof (void *));
1374 		spa->spa_l2cache.sav_vdevs = NULL;
1375 	}
1376 	if (spa->spa_l2cache.sav_config) {
1377 		nvlist_free(spa->spa_l2cache.sav_config);
1378 		spa->spa_l2cache.sav_config = NULL;
1379 	}
1380 	spa->spa_l2cache.sav_count = 0;
1381 
1382 	spa->spa_async_suspended = 0;
1383 
1384 	if (spa->spa_comment != NULL) {
1385 		spa_strfree(spa->spa_comment);
1386 		spa->spa_comment = NULL;
1387 	}
1388 
1389 	spa_config_exit(spa, SCL_ALL, FTAG);
1390 }
1391 
1392 /*
1393  * Load (or re-load) the current list of vdevs describing the active spares for
1394  * this pool.  When this is called, we have some form of basic information in
1395  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1396  * then re-generate a more complete list including status information.
1397  */
1398 static void
spa_load_spares(spa_t * spa)1399 spa_load_spares(spa_t *spa)
1400 {
1401 	nvlist_t **spares;
1402 	uint_t nspares;
1403 	int i;
1404 	vdev_t *vd, *tvd;
1405 
1406 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1407 
1408 	/*
1409 	 * First, close and free any existing spare vdevs.
1410 	 */
1411 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1412 		vd = spa->spa_spares.sav_vdevs[i];
1413 
1414 		/* Undo the call to spa_activate() below */
1415 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1416 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1417 			spa_spare_remove(tvd);
1418 		vdev_close(vd);
1419 		vdev_free(vd);
1420 	}
1421 
1422 	if (spa->spa_spares.sav_vdevs)
1423 		kmem_free(spa->spa_spares.sav_vdevs,
1424 		    spa->spa_spares.sav_count * sizeof (void *));
1425 
1426 	if (spa->spa_spares.sav_config == NULL)
1427 		nspares = 0;
1428 	else
1429 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1430 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1431 
1432 	spa->spa_spares.sav_count = (int)nspares;
1433 	spa->spa_spares.sav_vdevs = NULL;
1434 
1435 	if (nspares == 0)
1436 		return;
1437 
1438 	/*
1439 	 * Construct the array of vdevs, opening them to get status in the
1440 	 * process.   For each spare, there is potentially two different vdev_t
1441 	 * structures associated with it: one in the list of spares (used only
1442 	 * for basic validation purposes) and one in the active vdev
1443 	 * configuration (if it's spared in).  During this phase we open and
1444 	 * validate each vdev on the spare list.  If the vdev also exists in the
1445 	 * active configuration, then we also mark this vdev as an active spare.
1446 	 */
1447 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1448 	    KM_SLEEP);
1449 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1450 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1451 		    VDEV_ALLOC_SPARE) == 0);
1452 		ASSERT(vd != NULL);
1453 
1454 		spa->spa_spares.sav_vdevs[i] = vd;
1455 
1456 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1457 		    B_FALSE)) != NULL) {
1458 			if (!tvd->vdev_isspare)
1459 				spa_spare_add(tvd);
1460 
1461 			/*
1462 			 * We only mark the spare active if we were successfully
1463 			 * able to load the vdev.  Otherwise, importing a pool
1464 			 * with a bad active spare would result in strange
1465 			 * behavior, because multiple pool would think the spare
1466 			 * is actively in use.
1467 			 *
1468 			 * There is a vulnerability here to an equally bizarre
1469 			 * circumstance, where a dead active spare is later
1470 			 * brought back to life (onlined or otherwise).  Given
1471 			 * the rarity of this scenario, and the extra complexity
1472 			 * it adds, we ignore the possibility.
1473 			 */
1474 			if (!vdev_is_dead(tvd))
1475 				spa_spare_activate(tvd);
1476 		}
1477 
1478 		vd->vdev_top = vd;
1479 		vd->vdev_aux = &spa->spa_spares;
1480 
1481 		if (vdev_open(vd) != 0)
1482 			continue;
1483 
1484 		if (vdev_validate_aux(vd) == 0)
1485 			spa_spare_add(vd);
1486 	}
1487 
1488 	/*
1489 	 * Recompute the stashed list of spares, with status information
1490 	 * this time.
1491 	 */
1492 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1493 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1494 
1495 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1496 	    KM_SLEEP);
1497 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1498 		spares[i] = vdev_config_generate(spa,
1499 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1500 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1501 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1502 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1503 		nvlist_free(spares[i]);
1504 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1505 }
1506 
1507 /*
1508  * Load (or re-load) the current list of vdevs describing the active l2cache for
1509  * this pool.  When this is called, we have some form of basic information in
1510  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1511  * then re-generate a more complete list including status information.
1512  * Devices which are already active have their details maintained, and are
1513  * not re-opened.
1514  */
1515 static void
spa_load_l2cache(spa_t * spa)1516 spa_load_l2cache(spa_t *spa)
1517 {
1518 	nvlist_t **l2cache;
1519 	uint_t nl2cache;
1520 	int i, j, oldnvdevs;
1521 	uint64_t guid;
1522 	vdev_t *vd, **oldvdevs, **newvdevs;
1523 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1524 
1525 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1526 
1527 	if (sav->sav_config != NULL) {
1528 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1529 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1530 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1531 	} else {
1532 		nl2cache = 0;
1533 		newvdevs = NULL;
1534 	}
1535 
1536 	oldvdevs = sav->sav_vdevs;
1537 	oldnvdevs = sav->sav_count;
1538 	sav->sav_vdevs = NULL;
1539 	sav->sav_count = 0;
1540 
1541 	/*
1542 	 * Process new nvlist of vdevs.
1543 	 */
1544 	for (i = 0; i < nl2cache; i++) {
1545 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1546 		    &guid) == 0);
1547 
1548 		newvdevs[i] = NULL;
1549 		for (j = 0; j < oldnvdevs; j++) {
1550 			vd = oldvdevs[j];
1551 			if (vd != NULL && guid == vd->vdev_guid) {
1552 				/*
1553 				 * Retain previous vdev for add/remove ops.
1554 				 */
1555 				newvdevs[i] = vd;
1556 				oldvdevs[j] = NULL;
1557 				break;
1558 			}
1559 		}
1560 
1561 		if (newvdevs[i] == NULL) {
1562 			/*
1563 			 * Create new vdev
1564 			 */
1565 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1566 			    VDEV_ALLOC_L2CACHE) == 0);
1567 			ASSERT(vd != NULL);
1568 			newvdevs[i] = vd;
1569 
1570 			/*
1571 			 * Commit this vdev as an l2cache device,
1572 			 * even if it fails to open.
1573 			 */
1574 			spa_l2cache_add(vd);
1575 
1576 			vd->vdev_top = vd;
1577 			vd->vdev_aux = sav;
1578 
1579 			spa_l2cache_activate(vd);
1580 
1581 			if (vdev_open(vd) != 0)
1582 				continue;
1583 
1584 			(void) vdev_validate_aux(vd);
1585 
1586 			if (!vdev_is_dead(vd))
1587 				l2arc_add_vdev(spa, vd);
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * Purge vdevs that were dropped
1593 	 */
1594 	for (i = 0; i < oldnvdevs; i++) {
1595 		uint64_t pool;
1596 
1597 		vd = oldvdevs[i];
1598 		if (vd != NULL) {
1599 			ASSERT(vd->vdev_isl2cache);
1600 
1601 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1602 			    pool != 0ULL && l2arc_vdev_present(vd))
1603 				l2arc_remove_vdev(vd);
1604 			vdev_clear_stats(vd);
1605 			vdev_free(vd);
1606 		}
1607 	}
1608 
1609 	if (oldvdevs)
1610 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1611 
1612 	if (sav->sav_config == NULL)
1613 		goto out;
1614 
1615 	sav->sav_vdevs = newvdevs;
1616 	sav->sav_count = (int)nl2cache;
1617 
1618 	/*
1619 	 * Recompute the stashed list of l2cache devices, with status
1620 	 * information this time.
1621 	 */
1622 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1623 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1624 
1625 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1626 	for (i = 0; i < sav->sav_count; i++)
1627 		l2cache[i] = vdev_config_generate(spa,
1628 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1629 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1630 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1631 out:
1632 	for (i = 0; i < sav->sav_count; i++)
1633 		nvlist_free(l2cache[i]);
1634 	if (sav->sav_count)
1635 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1636 }
1637 
1638 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1639 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1640 {
1641 	dmu_buf_t *db;
1642 	char *packed = NULL;
1643 	size_t nvsize = 0;
1644 	int error;
1645 	*value = NULL;
1646 
1647 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1648 	if (error != 0)
1649 		return (error);
1650 
1651 	nvsize = *(uint64_t *)db->db_data;
1652 	dmu_buf_rele(db, FTAG);
1653 
1654 	packed = kmem_alloc(nvsize, KM_SLEEP);
1655 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1656 	    DMU_READ_PREFETCH);
1657 	if (error == 0)
1658 		error = nvlist_unpack(packed, nvsize, value, 0);
1659 	kmem_free(packed, nvsize);
1660 
1661 	return (error);
1662 }
1663 
1664 /*
1665  * Checks to see if the given vdev could not be opened, in which case we post a
1666  * sysevent to notify the autoreplace code that the device has been removed.
1667  */
1668 static void
spa_check_removed(vdev_t * vd)1669 spa_check_removed(vdev_t *vd)
1670 {
1671 	for (int c = 0; c < vd->vdev_children; c++)
1672 		spa_check_removed(vd->vdev_child[c]);
1673 
1674 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1675 	    !vd->vdev_ishole) {
1676 		zfs_post_autoreplace(vd->vdev_spa, vd);
1677 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1678 	}
1679 }
1680 
1681 static void
spa_config_valid_zaps(vdev_t * vd,vdev_t * mvd)1682 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1683 {
1684 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1685 
1686 	vd->vdev_top_zap = mvd->vdev_top_zap;
1687 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1688 
1689 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1690 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1691 	}
1692 }
1693 
1694 /*
1695  * Validate the current config against the MOS config
1696  */
1697 static boolean_t
spa_config_valid(spa_t * spa,nvlist_t * config)1698 spa_config_valid(spa_t *spa, nvlist_t *config)
1699 {
1700 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1701 	nvlist_t *nv;
1702 
1703 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1704 
1705 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1706 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1707 
1708 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1709 
1710 	/*
1711 	 * If we're doing a normal import, then build up any additional
1712 	 * diagnostic information about missing devices in this config.
1713 	 * We'll pass this up to the user for further processing.
1714 	 */
1715 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1716 		nvlist_t **child, *nv;
1717 		uint64_t idx = 0;
1718 
1719 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1720 		    KM_SLEEP);
1721 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1722 
1723 		for (int c = 0; c < rvd->vdev_children; c++) {
1724 			vdev_t *tvd = rvd->vdev_child[c];
1725 			vdev_t *mtvd  = mrvd->vdev_child[c];
1726 
1727 			if (tvd->vdev_ops == &vdev_missing_ops &&
1728 			    mtvd->vdev_ops != &vdev_missing_ops &&
1729 			    mtvd->vdev_islog)
1730 				child[idx++] = vdev_config_generate(spa, mtvd,
1731 				    B_FALSE, 0);
1732 		}
1733 
1734 		if (idx) {
1735 			VERIFY(nvlist_add_nvlist_array(nv,
1736 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1737 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1738 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1739 
1740 			for (int i = 0; i < idx; i++)
1741 				nvlist_free(child[i]);
1742 		}
1743 		nvlist_free(nv);
1744 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1745 	}
1746 
1747 	/*
1748 	 * Compare the root vdev tree with the information we have
1749 	 * from the MOS config (mrvd). Check each top-level vdev
1750 	 * with the corresponding MOS config top-level (mtvd).
1751 	 */
1752 	for (int c = 0; c < rvd->vdev_children; c++) {
1753 		vdev_t *tvd = rvd->vdev_child[c];
1754 		vdev_t *mtvd  = mrvd->vdev_child[c];
1755 
1756 		/*
1757 		 * Resolve any "missing" vdevs in the current configuration.
1758 		 * If we find that the MOS config has more accurate information
1759 		 * about the top-level vdev then use that vdev instead.
1760 		 */
1761 		if (tvd->vdev_ops == &vdev_missing_ops &&
1762 		    mtvd->vdev_ops != &vdev_missing_ops) {
1763 
1764 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1765 				continue;
1766 
1767 			/*
1768 			 * Device specific actions.
1769 			 */
1770 			if (mtvd->vdev_islog) {
1771 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1772 			} else {
1773 				/*
1774 				 * XXX - once we have 'readonly' pool
1775 				 * support we should be able to handle
1776 				 * missing data devices by transitioning
1777 				 * the pool to readonly.
1778 				 */
1779 				continue;
1780 			}
1781 
1782 			/*
1783 			 * Swap the missing vdev with the data we were
1784 			 * able to obtain from the MOS config.
1785 			 */
1786 			vdev_remove_child(rvd, tvd);
1787 			vdev_remove_child(mrvd, mtvd);
1788 
1789 			vdev_add_child(rvd, mtvd);
1790 			vdev_add_child(mrvd, tvd);
1791 
1792 			spa_config_exit(spa, SCL_ALL, FTAG);
1793 			vdev_load(mtvd);
1794 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1795 
1796 			vdev_reopen(rvd);
1797 		} else {
1798 			if (mtvd->vdev_islog) {
1799 				/*
1800 				 * Load the slog device's state from the MOS
1801 				 * config since it's possible that the label
1802 				 * does not contain the most up-to-date
1803 				 * information.
1804 				 */
1805 				vdev_load_log_state(tvd, mtvd);
1806 				vdev_reopen(tvd);
1807 			}
1808 
1809 			/*
1810 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1811 			 */
1812 			spa_config_valid_zaps(tvd, mtvd);
1813 		}
1814 	}
1815 
1816 	vdev_free(mrvd);
1817 	spa_config_exit(spa, SCL_ALL, FTAG);
1818 
1819 	/*
1820 	 * Ensure we were able to validate the config.
1821 	 */
1822 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1823 }
1824 
1825 /*
1826  * Check for missing log devices
1827  */
1828 static boolean_t
spa_check_logs(spa_t * spa)1829 spa_check_logs(spa_t *spa)
1830 {
1831 	boolean_t rv = B_FALSE;
1832 	dsl_pool_t *dp = spa_get_dsl(spa);
1833 
1834 	switch (spa->spa_log_state) {
1835 	case SPA_LOG_MISSING:
1836 		/* need to recheck in case slog has been restored */
1837 	case SPA_LOG_UNKNOWN:
1838 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1839 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1840 		if (rv)
1841 			spa_set_log_state(spa, SPA_LOG_MISSING);
1842 		break;
1843 	}
1844 	return (rv);
1845 }
1846 
1847 static boolean_t
spa_passivate_log(spa_t * spa)1848 spa_passivate_log(spa_t *spa)
1849 {
1850 	vdev_t *rvd = spa->spa_root_vdev;
1851 	boolean_t slog_found = B_FALSE;
1852 
1853 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1854 
1855 	if (!spa_has_slogs(spa))
1856 		return (B_FALSE);
1857 
1858 	for (int c = 0; c < rvd->vdev_children; c++) {
1859 		vdev_t *tvd = rvd->vdev_child[c];
1860 		metaslab_group_t *mg = tvd->vdev_mg;
1861 
1862 		if (tvd->vdev_islog) {
1863 			metaslab_group_passivate(mg);
1864 			slog_found = B_TRUE;
1865 		}
1866 	}
1867 
1868 	return (slog_found);
1869 }
1870 
1871 static void
spa_activate_log(spa_t * spa)1872 spa_activate_log(spa_t *spa)
1873 {
1874 	vdev_t *rvd = spa->spa_root_vdev;
1875 
1876 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1877 
1878 	for (int c = 0; c < rvd->vdev_children; c++) {
1879 		vdev_t *tvd = rvd->vdev_child[c];
1880 		metaslab_group_t *mg = tvd->vdev_mg;
1881 
1882 		if (tvd->vdev_islog)
1883 			metaslab_group_activate(mg);
1884 	}
1885 }
1886 
1887 int
spa_offline_log(spa_t * spa)1888 spa_offline_log(spa_t *spa)
1889 {
1890 	int error;
1891 
1892 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1893 	    NULL, DS_FIND_CHILDREN);
1894 	if (error == 0) {
1895 		/*
1896 		 * We successfully offlined the log device, sync out the
1897 		 * current txg so that the "stubby" block can be removed
1898 		 * by zil_sync().
1899 		 */
1900 		txg_wait_synced(spa->spa_dsl_pool, 0);
1901 	}
1902 	return (error);
1903 }
1904 
1905 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)1906 spa_aux_check_removed(spa_aux_vdev_t *sav)
1907 {
1908 	int i;
1909 
1910 	for (i = 0; i < sav->sav_count; i++)
1911 		spa_check_removed(sav->sav_vdevs[i]);
1912 }
1913 
1914 void
spa_claim_notify(zio_t * zio)1915 spa_claim_notify(zio_t *zio)
1916 {
1917 	spa_t *spa = zio->io_spa;
1918 
1919 	if (zio->io_error)
1920 		return;
1921 
1922 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1923 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1924 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1925 	mutex_exit(&spa->spa_props_lock);
1926 }
1927 
1928 typedef struct spa_load_error {
1929 	uint64_t	sle_meta_count;
1930 	uint64_t	sle_data_count;
1931 } spa_load_error_t;
1932 
1933 static void
spa_load_verify_done(zio_t * zio)1934 spa_load_verify_done(zio_t *zio)
1935 {
1936 	blkptr_t *bp = zio->io_bp;
1937 	spa_load_error_t *sle = zio->io_private;
1938 	dmu_object_type_t type = BP_GET_TYPE(bp);
1939 	int error = zio->io_error;
1940 	spa_t *spa = zio->io_spa;
1941 
1942 	if (error) {
1943 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1944 		    type != DMU_OT_INTENT_LOG)
1945 			atomic_inc_64(&sle->sle_meta_count);
1946 		else
1947 			atomic_inc_64(&sle->sle_data_count);
1948 	}
1949 	zio_data_buf_free(zio->io_data, zio->io_size);
1950 
1951 	mutex_enter(&spa->spa_scrub_lock);
1952 	spa->spa_scrub_inflight--;
1953 	cv_broadcast(&spa->spa_scrub_io_cv);
1954 	mutex_exit(&spa->spa_scrub_lock);
1955 }
1956 
1957 /*
1958  * Maximum number of concurrent scrub i/os to create while verifying
1959  * a pool while importing it.
1960  */
1961 int spa_load_verify_maxinflight = 10000;
1962 boolean_t spa_load_verify_metadata = B_TRUE;
1963 boolean_t spa_load_verify_data = B_TRUE;
1964 
1965 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1966     &spa_load_verify_maxinflight, 0,
1967     "Maximum number of concurrent scrub I/Os to create while verifying a "
1968     "pool while importing it");
1969 
1970 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1971     &spa_load_verify_metadata, 0,
1972     "Check metadata on import?");
1973 
1974 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1975     &spa_load_verify_data, 0,
1976     "Check user data on import?");
1977 
1978 /*ARGSUSED*/
1979 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)1980 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1981     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1982 {
1983 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1984 		return (0);
1985 	/*
1986 	 * Note: normally this routine will not be called if
1987 	 * spa_load_verify_metadata is not set.  However, it may be useful
1988 	 * to manually set the flag after the traversal has begun.
1989 	 */
1990 	if (!spa_load_verify_metadata)
1991 		return (0);
1992 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1993 		return (0);
1994 
1995 	zio_t *rio = arg;
1996 	size_t size = BP_GET_PSIZE(bp);
1997 	void *data = zio_data_buf_alloc(size);
1998 
1999 	mutex_enter(&spa->spa_scrub_lock);
2000 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2001 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2002 	spa->spa_scrub_inflight++;
2003 	mutex_exit(&spa->spa_scrub_lock);
2004 
2005 	zio_nowait(zio_read(rio, spa, bp, data, size,
2006 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2007 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2008 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2009 	return (0);
2010 }
2011 
2012 /* ARGSUSED */
2013 int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2014 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2015 {
2016 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2017 		return (SET_ERROR(ENAMETOOLONG));
2018 
2019 	return (0);
2020 }
2021 
2022 static int
spa_load_verify(spa_t * spa)2023 spa_load_verify(spa_t *spa)
2024 {
2025 	zio_t *rio;
2026 	spa_load_error_t sle = { 0 };
2027 	zpool_rewind_policy_t policy;
2028 	boolean_t verify_ok = B_FALSE;
2029 	int error = 0;
2030 
2031 	zpool_get_rewind_policy(spa->spa_config, &policy);
2032 
2033 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2034 		return (0);
2035 
2036 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2037 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2038 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2039 	    DS_FIND_CHILDREN);
2040 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2041 	if (error != 0)
2042 		return (error);
2043 
2044 	rio = zio_root(spa, NULL, &sle,
2045 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2046 
2047 	if (spa_load_verify_metadata) {
2048 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2049 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2050 		    spa_load_verify_cb, rio);
2051 	}
2052 
2053 	(void) zio_wait(rio);
2054 
2055 	spa->spa_load_meta_errors = sle.sle_meta_count;
2056 	spa->spa_load_data_errors = sle.sle_data_count;
2057 
2058 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2059 	    sle.sle_data_count <= policy.zrp_maxdata) {
2060 		int64_t loss = 0;
2061 
2062 		verify_ok = B_TRUE;
2063 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2064 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2065 
2066 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2067 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2068 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2069 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2070 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2071 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2072 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2073 	} else {
2074 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2075 	}
2076 
2077 	if (error) {
2078 		if (error != ENXIO && error != EIO)
2079 			error = SET_ERROR(EIO);
2080 		return (error);
2081 	}
2082 
2083 	return (verify_ok ? 0 : EIO);
2084 }
2085 
2086 /*
2087  * Find a value in the pool props object.
2088  */
2089 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2090 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2091 {
2092 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2093 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2094 }
2095 
2096 /*
2097  * Find a value in the pool directory object.
2098  */
2099 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val)2100 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2101 {
2102 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2103 	    name, sizeof (uint64_t), 1, val));
2104 }
2105 
2106 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2107 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2108 {
2109 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2110 	return (err);
2111 }
2112 
2113 /*
2114  * Fix up config after a partly-completed split.  This is done with the
2115  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2116  * pool have that entry in their config, but only the splitting one contains
2117  * a list of all the guids of the vdevs that are being split off.
2118  *
2119  * This function determines what to do with that list: either rejoin
2120  * all the disks to the pool, or complete the splitting process.  To attempt
2121  * the rejoin, each disk that is offlined is marked online again, and
2122  * we do a reopen() call.  If the vdev label for every disk that was
2123  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2124  * then we call vdev_split() on each disk, and complete the split.
2125  *
2126  * Otherwise we leave the config alone, with all the vdevs in place in
2127  * the original pool.
2128  */
2129 static void
spa_try_repair(spa_t * spa,nvlist_t * config)2130 spa_try_repair(spa_t *spa, nvlist_t *config)
2131 {
2132 	uint_t extracted;
2133 	uint64_t *glist;
2134 	uint_t i, gcount;
2135 	nvlist_t *nvl;
2136 	vdev_t **vd;
2137 	boolean_t attempt_reopen;
2138 
2139 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2140 		return;
2141 
2142 	/* check that the config is complete */
2143 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2144 	    &glist, &gcount) != 0)
2145 		return;
2146 
2147 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2148 
2149 	/* attempt to online all the vdevs & validate */
2150 	attempt_reopen = B_TRUE;
2151 	for (i = 0; i < gcount; i++) {
2152 		if (glist[i] == 0)	/* vdev is hole */
2153 			continue;
2154 
2155 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2156 		if (vd[i] == NULL) {
2157 			/*
2158 			 * Don't bother attempting to reopen the disks;
2159 			 * just do the split.
2160 			 */
2161 			attempt_reopen = B_FALSE;
2162 		} else {
2163 			/* attempt to re-online it */
2164 			vd[i]->vdev_offline = B_FALSE;
2165 		}
2166 	}
2167 
2168 	if (attempt_reopen) {
2169 		vdev_reopen(spa->spa_root_vdev);
2170 
2171 		/* check each device to see what state it's in */
2172 		for (extracted = 0, i = 0; i < gcount; i++) {
2173 			if (vd[i] != NULL &&
2174 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2175 				break;
2176 			++extracted;
2177 		}
2178 	}
2179 
2180 	/*
2181 	 * If every disk has been moved to the new pool, or if we never
2182 	 * even attempted to look at them, then we split them off for
2183 	 * good.
2184 	 */
2185 	if (!attempt_reopen || gcount == extracted) {
2186 		for (i = 0; i < gcount; i++)
2187 			if (vd[i] != NULL)
2188 				vdev_split(vd[i]);
2189 		vdev_reopen(spa->spa_root_vdev);
2190 	}
2191 
2192 	kmem_free(vd, gcount * sizeof (vdev_t *));
2193 }
2194 
2195 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig)2196 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2197     boolean_t mosconfig)
2198 {
2199 	nvlist_t *config = spa->spa_config;
2200 	char *ereport = FM_EREPORT_ZFS_POOL;
2201 	char *comment;
2202 	int error;
2203 	uint64_t pool_guid;
2204 	nvlist_t *nvl;
2205 
2206 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2207 		return (SET_ERROR(EINVAL));
2208 
2209 	ASSERT(spa->spa_comment == NULL);
2210 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2211 		spa->spa_comment = spa_strdup(comment);
2212 
2213 	/*
2214 	 * Versioning wasn't explicitly added to the label until later, so if
2215 	 * it's not present treat it as the initial version.
2216 	 */
2217 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2218 	    &spa->spa_ubsync.ub_version) != 0)
2219 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2220 
2221 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2222 	    &spa->spa_config_txg);
2223 
2224 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2225 	    spa_guid_exists(pool_guid, 0)) {
2226 		error = SET_ERROR(EEXIST);
2227 	} else {
2228 		spa->spa_config_guid = pool_guid;
2229 
2230 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2231 		    &nvl) == 0) {
2232 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2233 			    KM_SLEEP) == 0);
2234 		}
2235 
2236 		nvlist_free(spa->spa_load_info);
2237 		spa->spa_load_info = fnvlist_alloc();
2238 
2239 		gethrestime(&spa->spa_loaded_ts);
2240 		error = spa_load_impl(spa, pool_guid, config, state, type,
2241 		    mosconfig, &ereport);
2242 	}
2243 
2244 	/*
2245 	 * Don't count references from objsets that are already closed
2246 	 * and are making their way through the eviction process.
2247 	 */
2248 	spa_evicting_os_wait(spa);
2249 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2250 	if (error) {
2251 		if (error != EEXIST) {
2252 			spa->spa_loaded_ts.tv_sec = 0;
2253 			spa->spa_loaded_ts.tv_nsec = 0;
2254 		}
2255 		if (error != EBADF) {
2256 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2257 		}
2258 	}
2259 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2260 	spa->spa_ena = 0;
2261 
2262 	return (error);
2263 }
2264 
2265 /*
2266  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2267  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2268  * spa's per-vdev ZAP list.
2269  */
2270 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)2271 vdev_count_verify_zaps(vdev_t *vd)
2272 {
2273 	spa_t *spa = vd->vdev_spa;
2274 	uint64_t total = 0;
2275 	if (vd->vdev_top_zap != 0) {
2276 		total++;
2277 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2278 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2279 	}
2280 	if (vd->vdev_leaf_zap != 0) {
2281 		total++;
2282 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2283 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2284 	}
2285 
2286 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2287 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2288 	}
2289 
2290 	return (total);
2291 }
2292 
2293 /*
2294  * Load an existing storage pool, using the pool's builtin spa_config as a
2295  * source of configuration information.
2296  */
2297 static int
spa_load_impl(spa_t * spa,uint64_t pool_guid,nvlist_t * config,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig,char ** ereport)2298 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2299     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2300     char **ereport)
2301 {
2302 	int error = 0;
2303 	nvlist_t *nvroot = NULL;
2304 	nvlist_t *label;
2305 	vdev_t *rvd;
2306 	uberblock_t *ub = &spa->spa_uberblock;
2307 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2308 	int orig_mode = spa->spa_mode;
2309 	int parse;
2310 	uint64_t obj;
2311 	boolean_t missing_feat_write = B_FALSE;
2312 
2313 	/*
2314 	 * If this is an untrusted config, access the pool in read-only mode.
2315 	 * This prevents things like resilvering recently removed devices.
2316 	 */
2317 	if (!mosconfig)
2318 		spa->spa_mode = FREAD;
2319 
2320 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2321 
2322 	spa->spa_load_state = state;
2323 
2324 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2325 		return (SET_ERROR(EINVAL));
2326 
2327 	parse = (type == SPA_IMPORT_EXISTING ?
2328 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2329 
2330 	/*
2331 	 * Create "The Godfather" zio to hold all async IOs
2332 	 */
2333 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2334 	    KM_SLEEP);
2335 	for (int i = 0; i < max_ncpus; i++) {
2336 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2337 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2338 		    ZIO_FLAG_GODFATHER);
2339 	}
2340 
2341 	/*
2342 	 * Parse the configuration into a vdev tree.  We explicitly set the
2343 	 * value that will be returned by spa_version() since parsing the
2344 	 * configuration requires knowing the version number.
2345 	 */
2346 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2347 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2348 	spa_config_exit(spa, SCL_ALL, FTAG);
2349 
2350 	if (error != 0)
2351 		return (error);
2352 
2353 	ASSERT(spa->spa_root_vdev == rvd);
2354 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2355 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2356 
2357 	if (type != SPA_IMPORT_ASSEMBLE) {
2358 		ASSERT(spa_guid(spa) == pool_guid);
2359 	}
2360 
2361 	/*
2362 	 * Try to open all vdevs, loading each label in the process.
2363 	 */
2364 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2365 	error = vdev_open(rvd);
2366 	spa_config_exit(spa, SCL_ALL, FTAG);
2367 	if (error != 0)
2368 		return (error);
2369 
2370 	/*
2371 	 * We need to validate the vdev labels against the configuration that
2372 	 * we have in hand, which is dependent on the setting of mosconfig. If
2373 	 * mosconfig is true then we're validating the vdev labels based on
2374 	 * that config.  Otherwise, we're validating against the cached config
2375 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2376 	 * later we will recursively call spa_load() and validate against
2377 	 * the vdev config.
2378 	 *
2379 	 * If we're assembling a new pool that's been split off from an
2380 	 * existing pool, the labels haven't yet been updated so we skip
2381 	 * validation for now.
2382 	 */
2383 	if (type != SPA_IMPORT_ASSEMBLE) {
2384 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2385 		error = vdev_validate(rvd, mosconfig);
2386 		spa_config_exit(spa, SCL_ALL, FTAG);
2387 
2388 		if (error != 0)
2389 			return (error);
2390 
2391 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2392 			return (SET_ERROR(ENXIO));
2393 	}
2394 
2395 	/*
2396 	 * Find the best uberblock.
2397 	 */
2398 	vdev_uberblock_load(rvd, ub, &label);
2399 
2400 	/*
2401 	 * If we weren't able to find a single valid uberblock, return failure.
2402 	 */
2403 	if (ub->ub_txg == 0) {
2404 		nvlist_free(label);
2405 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2406 	}
2407 
2408 	/*
2409 	 * If the pool has an unsupported version we can't open it.
2410 	 */
2411 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2412 		nvlist_free(label);
2413 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2414 	}
2415 
2416 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2417 		nvlist_t *features;
2418 
2419 		/*
2420 		 * If we weren't able to find what's necessary for reading the
2421 		 * MOS in the label, return failure.
2422 		 */
2423 		if (label == NULL || nvlist_lookup_nvlist(label,
2424 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2425 			nvlist_free(label);
2426 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2427 			    ENXIO));
2428 		}
2429 
2430 		/*
2431 		 * Update our in-core representation with the definitive values
2432 		 * from the label.
2433 		 */
2434 		nvlist_free(spa->spa_label_features);
2435 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2436 	}
2437 
2438 	nvlist_free(label);
2439 
2440 	/*
2441 	 * Look through entries in the label nvlist's features_for_read. If
2442 	 * there is a feature listed there which we don't understand then we
2443 	 * cannot open a pool.
2444 	 */
2445 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2446 		nvlist_t *unsup_feat;
2447 
2448 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2449 		    0);
2450 
2451 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2452 		    NULL); nvp != NULL;
2453 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2454 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2455 				VERIFY(nvlist_add_string(unsup_feat,
2456 				    nvpair_name(nvp), "") == 0);
2457 			}
2458 		}
2459 
2460 		if (!nvlist_empty(unsup_feat)) {
2461 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2462 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2463 			nvlist_free(unsup_feat);
2464 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2465 			    ENOTSUP));
2466 		}
2467 
2468 		nvlist_free(unsup_feat);
2469 	}
2470 
2471 	/*
2472 	 * If the vdev guid sum doesn't match the uberblock, we have an
2473 	 * incomplete configuration.  We first check to see if the pool
2474 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2475 	 * If it is, defer the vdev_guid_sum check till later so we
2476 	 * can handle missing vdevs.
2477 	 */
2478 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2479 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2480 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2481 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2482 
2483 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2484 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2485 		spa_try_repair(spa, config);
2486 		spa_config_exit(spa, SCL_ALL, FTAG);
2487 		nvlist_free(spa->spa_config_splitting);
2488 		spa->spa_config_splitting = NULL;
2489 	}
2490 
2491 	/*
2492 	 * Initialize internal SPA structures.
2493 	 */
2494 	spa->spa_state = POOL_STATE_ACTIVE;
2495 	spa->spa_ubsync = spa->spa_uberblock;
2496 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2497 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2498 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2499 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2500 	spa->spa_claim_max_txg = spa->spa_first_txg;
2501 	spa->spa_prev_software_version = ub->ub_software_version;
2502 
2503 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2504 	if (error)
2505 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2506 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2507 
2508 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2509 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2510 
2511 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2512 		boolean_t missing_feat_read = B_FALSE;
2513 		nvlist_t *unsup_feat, *enabled_feat;
2514 
2515 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2516 		    &spa->spa_feat_for_read_obj) != 0) {
2517 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2518 		}
2519 
2520 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2521 		    &spa->spa_feat_for_write_obj) != 0) {
2522 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2523 		}
2524 
2525 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2526 		    &spa->spa_feat_desc_obj) != 0) {
2527 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528 		}
2529 
2530 		enabled_feat = fnvlist_alloc();
2531 		unsup_feat = fnvlist_alloc();
2532 
2533 		if (!spa_features_check(spa, B_FALSE,
2534 		    unsup_feat, enabled_feat))
2535 			missing_feat_read = B_TRUE;
2536 
2537 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2538 			if (!spa_features_check(spa, B_TRUE,
2539 			    unsup_feat, enabled_feat)) {
2540 				missing_feat_write = B_TRUE;
2541 			}
2542 		}
2543 
2544 		fnvlist_add_nvlist(spa->spa_load_info,
2545 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2546 
2547 		if (!nvlist_empty(unsup_feat)) {
2548 			fnvlist_add_nvlist(spa->spa_load_info,
2549 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2550 		}
2551 
2552 		fnvlist_free(enabled_feat);
2553 		fnvlist_free(unsup_feat);
2554 
2555 		if (!missing_feat_read) {
2556 			fnvlist_add_boolean(spa->spa_load_info,
2557 			    ZPOOL_CONFIG_CAN_RDONLY);
2558 		}
2559 
2560 		/*
2561 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2562 		 * twofold: to determine whether the pool is available for
2563 		 * import in read-write mode and (if it is not) whether the
2564 		 * pool is available for import in read-only mode. If the pool
2565 		 * is available for import in read-write mode, it is displayed
2566 		 * as available in userland; if it is not available for import
2567 		 * in read-only mode, it is displayed as unavailable in
2568 		 * userland. If the pool is available for import in read-only
2569 		 * mode but not read-write mode, it is displayed as unavailable
2570 		 * in userland with a special note that the pool is actually
2571 		 * available for open in read-only mode.
2572 		 *
2573 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2574 		 * missing a feature for write, we must first determine whether
2575 		 * the pool can be opened read-only before returning to
2576 		 * userland in order to know whether to display the
2577 		 * abovementioned note.
2578 		 */
2579 		if (missing_feat_read || (missing_feat_write &&
2580 		    spa_writeable(spa))) {
2581 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2582 			    ENOTSUP));
2583 		}
2584 
2585 		/*
2586 		 * Load refcounts for ZFS features from disk into an in-memory
2587 		 * cache during SPA initialization.
2588 		 */
2589 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2590 			uint64_t refcount;
2591 
2592 			error = feature_get_refcount_from_disk(spa,
2593 			    &spa_feature_table[i], &refcount);
2594 			if (error == 0) {
2595 				spa->spa_feat_refcount_cache[i] = refcount;
2596 			} else if (error == ENOTSUP) {
2597 				spa->spa_feat_refcount_cache[i] =
2598 				    SPA_FEATURE_DISABLED;
2599 			} else {
2600 				return (spa_vdev_err(rvd,
2601 				    VDEV_AUX_CORRUPT_DATA, EIO));
2602 			}
2603 		}
2604 	}
2605 
2606 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2607 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2608 		    &spa->spa_feat_enabled_txg_obj) != 0)
2609 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2610 	}
2611 
2612 	spa->spa_is_initializing = B_TRUE;
2613 	error = dsl_pool_open(spa->spa_dsl_pool);
2614 	spa->spa_is_initializing = B_FALSE;
2615 	if (error != 0)
2616 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2617 
2618 	if (!mosconfig) {
2619 		uint64_t hostid;
2620 		nvlist_t *policy = NULL, *nvconfig;
2621 
2622 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2623 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2624 
2625 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2626 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2627 			char *hostname;
2628 			unsigned long myhostid = 0;
2629 
2630 			VERIFY(nvlist_lookup_string(nvconfig,
2631 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2632 
2633 #ifdef	_KERNEL
2634 			myhostid = zone_get_hostid(NULL);
2635 #else	/* _KERNEL */
2636 			/*
2637 			 * We're emulating the system's hostid in userland, so
2638 			 * we can't use zone_get_hostid().
2639 			 */
2640 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2641 #endif	/* _KERNEL */
2642 			if (check_hostid && hostid != 0 && myhostid != 0 &&
2643 			    hostid != myhostid) {
2644 				nvlist_free(nvconfig);
2645 				cmn_err(CE_WARN, "pool '%s' could not be "
2646 				    "loaded as it was last accessed by "
2647 				    "another system (host: %s hostid: 0x%lx). "
2648 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2649 				    spa_name(spa), hostname,
2650 				    (unsigned long)hostid);
2651 				return (SET_ERROR(EBADF));
2652 			}
2653 		}
2654 		if (nvlist_lookup_nvlist(spa->spa_config,
2655 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2656 			VERIFY(nvlist_add_nvlist(nvconfig,
2657 			    ZPOOL_REWIND_POLICY, policy) == 0);
2658 
2659 		spa_config_set(spa, nvconfig);
2660 		spa_unload(spa);
2661 		spa_deactivate(spa);
2662 		spa_activate(spa, orig_mode);
2663 
2664 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2665 	}
2666 
2667 	/* Grab the secret checksum salt from the MOS. */
2668 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2669 	    DMU_POOL_CHECKSUM_SALT, 1,
2670 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2671 	    spa->spa_cksum_salt.zcs_bytes);
2672 	if (error == ENOENT) {
2673 		/* Generate a new salt for subsequent use */
2674 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2675 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2676 	} else if (error != 0) {
2677 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2678 	}
2679 
2680 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2681 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2682 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2683 	if (error != 0)
2684 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2685 
2686 	/*
2687 	 * Load the bit that tells us to use the new accounting function
2688 	 * (raid-z deflation).  If we have an older pool, this will not
2689 	 * be present.
2690 	 */
2691 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2692 	if (error != 0 && error != ENOENT)
2693 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2694 
2695 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2696 	    &spa->spa_creation_version);
2697 	if (error != 0 && error != ENOENT)
2698 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2699 
2700 	/*
2701 	 * Load the persistent error log.  If we have an older pool, this will
2702 	 * not be present.
2703 	 */
2704 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2705 	if (error != 0 && error != ENOENT)
2706 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2707 
2708 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2709 	    &spa->spa_errlog_scrub);
2710 	if (error != 0 && error != ENOENT)
2711 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2712 
2713 	/*
2714 	 * Load the history object.  If we have an older pool, this
2715 	 * will not be present.
2716 	 */
2717 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2718 	if (error != 0 && error != ENOENT)
2719 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2720 
2721 	/*
2722 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2723 	 * be present; in this case, defer its creation to a later time to
2724 	 * avoid dirtying the MOS this early / out of sync context. See
2725 	 * spa_sync_config_object.
2726 	 */
2727 
2728 	/* The sentinel is only available in the MOS config. */
2729 	nvlist_t *mos_config;
2730 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2731 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2732 
2733 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2734 	    &spa->spa_all_vdev_zaps);
2735 
2736 	if (error != ENOENT && error != 0) {
2737 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2738 	} else if (error == 0 && !nvlist_exists(mos_config,
2739 	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2740 		/*
2741 		 * An older version of ZFS overwrote the sentinel value, so
2742 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2743 		 * destruction to later; see spa_sync_config_object.
2744 		 */
2745 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2746 		/*
2747 		 * We're assuming that no vdevs have had their ZAPs created
2748 		 * before this. Better be sure of it.
2749 		 */
2750 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2751 	}
2752 	nvlist_free(mos_config);
2753 
2754 	/*
2755 	 * If we're assembling the pool from the split-off vdevs of
2756 	 * an existing pool, we don't want to attach the spares & cache
2757 	 * devices.
2758 	 */
2759 
2760 	/*
2761 	 * Load any hot spares for this pool.
2762 	 */
2763 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2764 	if (error != 0 && error != ENOENT)
2765 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2766 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2767 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2768 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2769 		    &spa->spa_spares.sav_config) != 0)
2770 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2771 
2772 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2773 		spa_load_spares(spa);
2774 		spa_config_exit(spa, SCL_ALL, FTAG);
2775 	} else if (error == 0) {
2776 		spa->spa_spares.sav_sync = B_TRUE;
2777 	}
2778 
2779 	/*
2780 	 * Load any level 2 ARC devices for this pool.
2781 	 */
2782 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2783 	    &spa->spa_l2cache.sav_object);
2784 	if (error != 0 && error != ENOENT)
2785 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2786 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2787 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2788 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2789 		    &spa->spa_l2cache.sav_config) != 0)
2790 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2791 
2792 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2793 		spa_load_l2cache(spa);
2794 		spa_config_exit(spa, SCL_ALL, FTAG);
2795 	} else if (error == 0) {
2796 		spa->spa_l2cache.sav_sync = B_TRUE;
2797 	}
2798 
2799 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2800 
2801 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2802 	if (error && error != ENOENT)
2803 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2804 
2805 	if (error == 0) {
2806 		uint64_t autoreplace;
2807 
2808 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2809 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2810 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2811 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2812 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2813 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2814 		    &spa->spa_dedup_ditto);
2815 
2816 		spa->spa_autoreplace = (autoreplace != 0);
2817 	}
2818 
2819 	/*
2820 	 * If the 'autoreplace' property is set, then post a resource notifying
2821 	 * the ZFS DE that it should not issue any faults for unopenable
2822 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2823 	 * unopenable vdevs so that the normal autoreplace handler can take
2824 	 * over.
2825 	 */
2826 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2827 		spa_check_removed(spa->spa_root_vdev);
2828 		/*
2829 		 * For the import case, this is done in spa_import(), because
2830 		 * at this point we're using the spare definitions from
2831 		 * the MOS config, not necessarily from the userland config.
2832 		 */
2833 		if (state != SPA_LOAD_IMPORT) {
2834 			spa_aux_check_removed(&spa->spa_spares);
2835 			spa_aux_check_removed(&spa->spa_l2cache);
2836 		}
2837 	}
2838 
2839 	/*
2840 	 * Load the vdev state for all toplevel vdevs.
2841 	 */
2842 	vdev_load(rvd);
2843 
2844 	/*
2845 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2846 	 */
2847 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2848 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2849 	spa_config_exit(spa, SCL_ALL, FTAG);
2850 
2851 	/*
2852 	 * Load the DDTs (dedup tables).
2853 	 */
2854 	error = ddt_load(spa);
2855 	if (error != 0)
2856 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2857 
2858 	spa_update_dspace(spa);
2859 
2860 	/*
2861 	 * Validate the config, using the MOS config to fill in any
2862 	 * information which might be missing.  If we fail to validate
2863 	 * the config then declare the pool unfit for use. If we're
2864 	 * assembling a pool from a split, the log is not transferred
2865 	 * over.
2866 	 */
2867 	if (type != SPA_IMPORT_ASSEMBLE) {
2868 		nvlist_t *nvconfig;
2869 
2870 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2871 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2872 
2873 		if (!spa_config_valid(spa, nvconfig)) {
2874 			nvlist_free(nvconfig);
2875 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2876 			    ENXIO));
2877 		}
2878 		nvlist_free(nvconfig);
2879 
2880 		/*
2881 		 * Now that we've validated the config, check the state of the
2882 		 * root vdev.  If it can't be opened, it indicates one or
2883 		 * more toplevel vdevs are faulted.
2884 		 */
2885 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2886 			return (SET_ERROR(ENXIO));
2887 
2888 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2889 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2890 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2891 		}
2892 	}
2893 
2894 	if (missing_feat_write) {
2895 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2896 
2897 		/*
2898 		 * At this point, we know that we can open the pool in
2899 		 * read-only mode but not read-write mode. We now have enough
2900 		 * information and can return to userland.
2901 		 */
2902 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2903 	}
2904 
2905 	/*
2906 	 * We've successfully opened the pool, verify that we're ready
2907 	 * to start pushing transactions.
2908 	 */
2909 	if (state != SPA_LOAD_TRYIMPORT) {
2910 		if (error = spa_load_verify(spa))
2911 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2912 			    error));
2913 	}
2914 
2915 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2916 	    spa->spa_load_max_txg == UINT64_MAX)) {
2917 		dmu_tx_t *tx;
2918 		int need_update = B_FALSE;
2919 		dsl_pool_t *dp = spa_get_dsl(spa);
2920 
2921 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2922 
2923 		/*
2924 		 * Claim log blocks that haven't been committed yet.
2925 		 * This must all happen in a single txg.
2926 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2927 		 * invoked from zil_claim_log_block()'s i/o done callback.
2928 		 * Price of rollback is that we abandon the log.
2929 		 */
2930 		spa->spa_claiming = B_TRUE;
2931 
2932 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2933 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2934 		    zil_claim, tx, DS_FIND_CHILDREN);
2935 		dmu_tx_commit(tx);
2936 
2937 		spa->spa_claiming = B_FALSE;
2938 
2939 		spa_set_log_state(spa, SPA_LOG_GOOD);
2940 		spa->spa_sync_on = B_TRUE;
2941 		txg_sync_start(spa->spa_dsl_pool);
2942 
2943 		/*
2944 		 * Wait for all claims to sync.  We sync up to the highest
2945 		 * claimed log block birth time so that claimed log blocks
2946 		 * don't appear to be from the future.  spa_claim_max_txg
2947 		 * will have been set for us by either zil_check_log_chain()
2948 		 * (invoked from spa_check_logs()) or zil_claim() above.
2949 		 */
2950 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2951 
2952 		/*
2953 		 * If the config cache is stale, or we have uninitialized
2954 		 * metaslabs (see spa_vdev_add()), then update the config.
2955 		 *
2956 		 * If this is a verbatim import, trust the current
2957 		 * in-core spa_config and update the disk labels.
2958 		 */
2959 		if (config_cache_txg != spa->spa_config_txg ||
2960 		    state == SPA_LOAD_IMPORT ||
2961 		    state == SPA_LOAD_RECOVER ||
2962 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2963 			need_update = B_TRUE;
2964 
2965 		for (int c = 0; c < rvd->vdev_children; c++)
2966 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2967 				need_update = B_TRUE;
2968 
2969 		/*
2970 		 * Update the config cache asychronously in case we're the
2971 		 * root pool, in which case the config cache isn't writable yet.
2972 		 */
2973 		if (need_update)
2974 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2975 
2976 		/*
2977 		 * Check all DTLs to see if anything needs resilvering.
2978 		 */
2979 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2980 		    vdev_resilver_needed(rvd, NULL, NULL))
2981 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2982 
2983 		/*
2984 		 * Log the fact that we booted up (so that we can detect if
2985 		 * we rebooted in the middle of an operation).
2986 		 */
2987 		spa_history_log_version(spa, "open");
2988 
2989 		/*
2990 		 * Delete any inconsistent datasets.
2991 		 */
2992 		(void) dmu_objset_find(spa_name(spa),
2993 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2994 
2995 		/*
2996 		 * Clean up any stale temporary dataset userrefs.
2997 		 */
2998 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2999 	}
3000 
3001 	return (0);
3002 }
3003 
3004 static int
spa_load_retry(spa_t * spa,spa_load_state_t state,int mosconfig)3005 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3006 {
3007 	int mode = spa->spa_mode;
3008 
3009 	spa_unload(spa);
3010 	spa_deactivate(spa);
3011 
3012 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3013 
3014 	spa_activate(spa, mode);
3015 	spa_async_suspend(spa);
3016 
3017 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3018 }
3019 
3020 /*
3021  * If spa_load() fails this function will try loading prior txg's. If
3022  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3023  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3024  * function will not rewind the pool and will return the same error as
3025  * spa_load().
3026  */
3027 static int
spa_load_best(spa_t * spa,spa_load_state_t state,int mosconfig,uint64_t max_request,int rewind_flags)3028 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3029     uint64_t max_request, int rewind_flags)
3030 {
3031 	nvlist_t *loadinfo = NULL;
3032 	nvlist_t *config = NULL;
3033 	int load_error, rewind_error;
3034 	uint64_t safe_rewind_txg;
3035 	uint64_t min_txg;
3036 
3037 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3038 		spa->spa_load_max_txg = spa->spa_load_txg;
3039 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3040 	} else {
3041 		spa->spa_load_max_txg = max_request;
3042 		if (max_request != UINT64_MAX)
3043 			spa->spa_extreme_rewind = B_TRUE;
3044 	}
3045 
3046 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3047 	    mosconfig);
3048 	if (load_error == 0)
3049 		return (0);
3050 
3051 	if (spa->spa_root_vdev != NULL)
3052 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3053 
3054 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3055 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3056 
3057 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3058 		nvlist_free(config);
3059 		return (load_error);
3060 	}
3061 
3062 	if (state == SPA_LOAD_RECOVER) {
3063 		/* Price of rolling back is discarding txgs, including log */
3064 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3065 	} else {
3066 		/*
3067 		 * If we aren't rolling back save the load info from our first
3068 		 * import attempt so that we can restore it after attempting
3069 		 * to rewind.
3070 		 */
3071 		loadinfo = spa->spa_load_info;
3072 		spa->spa_load_info = fnvlist_alloc();
3073 	}
3074 
3075 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3076 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3077 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3078 	    TXG_INITIAL : safe_rewind_txg;
3079 
3080 	/*
3081 	 * Continue as long as we're finding errors, we're still within
3082 	 * the acceptable rewind range, and we're still finding uberblocks
3083 	 */
3084 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3085 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3086 		if (spa->spa_load_max_txg < safe_rewind_txg)
3087 			spa->spa_extreme_rewind = B_TRUE;
3088 		rewind_error = spa_load_retry(spa, state, mosconfig);
3089 	}
3090 
3091 	spa->spa_extreme_rewind = B_FALSE;
3092 	spa->spa_load_max_txg = UINT64_MAX;
3093 
3094 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3095 		spa_config_set(spa, config);
3096 
3097 	if (state == SPA_LOAD_RECOVER) {
3098 		ASSERT3P(loadinfo, ==, NULL);
3099 		return (rewind_error);
3100 	} else {
3101 		/* Store the rewind info as part of the initial load info */
3102 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3103 		    spa->spa_load_info);
3104 
3105 		/* Restore the initial load info */
3106 		fnvlist_free(spa->spa_load_info);
3107 		spa->spa_load_info = loadinfo;
3108 
3109 		return (load_error);
3110 	}
3111 }
3112 
3113 /*
3114  * Pool Open/Import
3115  *
3116  * The import case is identical to an open except that the configuration is sent
3117  * down from userland, instead of grabbed from the configuration cache.  For the
3118  * case of an open, the pool configuration will exist in the
3119  * POOL_STATE_UNINITIALIZED state.
3120  *
3121  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3122  * the same time open the pool, without having to keep around the spa_t in some
3123  * ambiguous state.
3124  */
3125 static int
spa_open_common(const char * pool,spa_t ** spapp,void * tag,nvlist_t * nvpolicy,nvlist_t ** config)3126 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3127     nvlist_t **config)
3128 {
3129 	spa_t *spa;
3130 	spa_load_state_t state = SPA_LOAD_OPEN;
3131 	int error;
3132 	int locked = B_FALSE;
3133 	int firstopen = B_FALSE;
3134 
3135 	*spapp = NULL;
3136 
3137 	/*
3138 	 * As disgusting as this is, we need to support recursive calls to this
3139 	 * function because dsl_dir_open() is called during spa_load(), and ends
3140 	 * up calling spa_open() again.  The real fix is to figure out how to
3141 	 * avoid dsl_dir_open() calling this in the first place.
3142 	 */
3143 	if (!mutex_owned(&spa_namespace_lock)) {
3144 		mutex_enter(&spa_namespace_lock);
3145 		locked = B_TRUE;
3146 	}
3147 
3148 	if ((spa = spa_lookup(pool)) == NULL) {
3149 		if (locked)
3150 			mutex_exit(&spa_namespace_lock);
3151 		return (SET_ERROR(ENOENT));
3152 	}
3153 
3154 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3155 		zpool_rewind_policy_t policy;
3156 
3157 		firstopen = B_TRUE;
3158 
3159 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3160 		    &policy);
3161 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3162 			state = SPA_LOAD_RECOVER;
3163 
3164 		spa_activate(spa, spa_mode_global);
3165 
3166 		if (state != SPA_LOAD_RECOVER)
3167 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3168 
3169 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3170 		    policy.zrp_request);
3171 
3172 		if (error == EBADF) {
3173 			/*
3174 			 * If vdev_validate() returns failure (indicated by
3175 			 * EBADF), it indicates that one of the vdevs indicates
3176 			 * that the pool has been exported or destroyed.  If
3177 			 * this is the case, the config cache is out of sync and
3178 			 * we should remove the pool from the namespace.
3179 			 */
3180 			spa_unload(spa);
3181 			spa_deactivate(spa);
3182 			spa_config_sync(spa, B_TRUE, B_TRUE);
3183 			spa_remove(spa);
3184 			if (locked)
3185 				mutex_exit(&spa_namespace_lock);
3186 			return (SET_ERROR(ENOENT));
3187 		}
3188 
3189 		if (error) {
3190 			/*
3191 			 * We can't open the pool, but we still have useful
3192 			 * information: the state of each vdev after the
3193 			 * attempted vdev_open().  Return this to the user.
3194 			 */
3195 			if (config != NULL && spa->spa_config) {
3196 				VERIFY(nvlist_dup(spa->spa_config, config,
3197 				    KM_SLEEP) == 0);
3198 				VERIFY(nvlist_add_nvlist(*config,
3199 				    ZPOOL_CONFIG_LOAD_INFO,
3200 				    spa->spa_load_info) == 0);
3201 			}
3202 			spa_unload(spa);
3203 			spa_deactivate(spa);
3204 			spa->spa_last_open_failed = error;
3205 			if (locked)
3206 				mutex_exit(&spa_namespace_lock);
3207 			*spapp = NULL;
3208 			return (error);
3209 		}
3210 	}
3211 
3212 	spa_open_ref(spa, tag);
3213 
3214 	if (config != NULL)
3215 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3216 
3217 	/*
3218 	 * If we've recovered the pool, pass back any information we
3219 	 * gathered while doing the load.
3220 	 */
3221 	if (state == SPA_LOAD_RECOVER) {
3222 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3223 		    spa->spa_load_info) == 0);
3224 	}
3225 
3226 	if (locked) {
3227 		spa->spa_last_open_failed = 0;
3228 		spa->spa_last_ubsync_txg = 0;
3229 		spa->spa_load_txg = 0;
3230 		mutex_exit(&spa_namespace_lock);
3231 #if defined(__FreeBSD__) || defined(__NetBSD__)
3232 #ifdef _KERNEL
3233 		if (firstopen)
3234 			zvol_create_minors(spa->spa_name);
3235 #endif
3236 #endif
3237 	}
3238 
3239 	*spapp = spa;
3240 
3241 	return (0);
3242 }
3243 
3244 int
spa_open_rewind(const char * name,spa_t ** spapp,void * tag,nvlist_t * policy,nvlist_t ** config)3245 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3246     nvlist_t **config)
3247 {
3248 	return (spa_open_common(name, spapp, tag, policy, config));
3249 }
3250 
3251 int
spa_open(const char * name,spa_t ** spapp,void * tag)3252 spa_open(const char *name, spa_t **spapp, void *tag)
3253 {
3254 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3255 }
3256 
3257 /*
3258  * Lookup the given spa_t, incrementing the inject count in the process,
3259  * preventing it from being exported or destroyed.
3260  */
3261 spa_t *
spa_inject_addref(char * name)3262 spa_inject_addref(char *name)
3263 {
3264 	spa_t *spa;
3265 
3266 	mutex_enter(&spa_namespace_lock);
3267 	if ((spa = spa_lookup(name)) == NULL) {
3268 		mutex_exit(&spa_namespace_lock);
3269 		return (NULL);
3270 	}
3271 	spa->spa_inject_ref++;
3272 	mutex_exit(&spa_namespace_lock);
3273 
3274 	return (spa);
3275 }
3276 
3277 void
spa_inject_delref(spa_t * spa)3278 spa_inject_delref(spa_t *spa)
3279 {
3280 	mutex_enter(&spa_namespace_lock);
3281 	spa->spa_inject_ref--;
3282 	mutex_exit(&spa_namespace_lock);
3283 }
3284 
3285 /*
3286  * Add spares device information to the nvlist.
3287  */
3288 static void
spa_add_spares(spa_t * spa,nvlist_t * config)3289 spa_add_spares(spa_t *spa, nvlist_t *config)
3290 {
3291 	nvlist_t **spares;
3292 	uint_t i, nspares;
3293 	nvlist_t *nvroot;
3294 	uint64_t guid;
3295 	vdev_stat_t *vs;
3296 	uint_t vsc;
3297 	uint64_t pool;
3298 
3299 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3300 
3301 	if (spa->spa_spares.sav_count == 0)
3302 		return;
3303 
3304 	VERIFY(nvlist_lookup_nvlist(config,
3305 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3306 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3307 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3308 	if (nspares != 0) {
3309 		VERIFY(nvlist_add_nvlist_array(nvroot,
3310 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3311 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3312 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3313 
3314 		/*
3315 		 * Go through and find any spares which have since been
3316 		 * repurposed as an active spare.  If this is the case, update
3317 		 * their status appropriately.
3318 		 */
3319 		for (i = 0; i < nspares; i++) {
3320 			VERIFY(nvlist_lookup_uint64(spares[i],
3321 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3322 			if (spa_spare_exists(guid, &pool, NULL) &&
3323 			    pool != 0ULL) {
3324 				VERIFY(nvlist_lookup_uint64_array(
3325 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3326 				    (uint64_t **)&vs, &vsc) == 0);
3327 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3328 				vs->vs_aux = VDEV_AUX_SPARED;
3329 			}
3330 		}
3331 	}
3332 }
3333 
3334 /*
3335  * Add l2cache device information to the nvlist, including vdev stats.
3336  */
3337 static void
spa_add_l2cache(spa_t * spa,nvlist_t * config)3338 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3339 {
3340 	nvlist_t **l2cache;
3341 	uint_t i, j, nl2cache;
3342 	nvlist_t *nvroot;
3343 	uint64_t guid;
3344 	vdev_t *vd;
3345 	vdev_stat_t *vs;
3346 	uint_t vsc;
3347 
3348 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3349 
3350 	if (spa->spa_l2cache.sav_count == 0)
3351 		return;
3352 
3353 	VERIFY(nvlist_lookup_nvlist(config,
3354 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3355 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3356 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3357 	if (nl2cache != 0) {
3358 		VERIFY(nvlist_add_nvlist_array(nvroot,
3359 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3360 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3361 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3362 
3363 		/*
3364 		 * Update level 2 cache device stats.
3365 		 */
3366 
3367 		for (i = 0; i < nl2cache; i++) {
3368 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3369 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3370 
3371 			vd = NULL;
3372 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3373 				if (guid ==
3374 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3375 					vd = spa->spa_l2cache.sav_vdevs[j];
3376 					break;
3377 				}
3378 			}
3379 			ASSERT(vd != NULL);
3380 
3381 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3382 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3383 			    == 0);
3384 			vdev_get_stats(vd, vs);
3385 		}
3386 	}
3387 }
3388 
3389 static void
spa_add_feature_stats(spa_t * spa,nvlist_t * config)3390 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3391 {
3392 	nvlist_t *features;
3393 	zap_cursor_t zc;
3394 	zap_attribute_t za;
3395 
3396 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3397 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3398 
3399 	/* We may be unable to read features if pool is suspended. */
3400 	if (spa_suspended(spa))
3401 		goto out;
3402 
3403 	if (spa->spa_feat_for_read_obj != 0) {
3404 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3405 		    spa->spa_feat_for_read_obj);
3406 		    zap_cursor_retrieve(&zc, &za) == 0;
3407 		    zap_cursor_advance(&zc)) {
3408 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3409 			    za.za_num_integers == 1);
3410 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3411 			    za.za_first_integer));
3412 		}
3413 		zap_cursor_fini(&zc);
3414 	}
3415 
3416 	if (spa->spa_feat_for_write_obj != 0) {
3417 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3418 		    spa->spa_feat_for_write_obj);
3419 		    zap_cursor_retrieve(&zc, &za) == 0;
3420 		    zap_cursor_advance(&zc)) {
3421 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3422 			    za.za_num_integers == 1);
3423 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3424 			    za.za_first_integer));
3425 		}
3426 		zap_cursor_fini(&zc);
3427 	}
3428 
3429 out:
3430 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3431 	    features) == 0);
3432 	nvlist_free(features);
3433 }
3434 
3435 int
spa_get_stats(const char * name,nvlist_t ** config,char * altroot,size_t buflen)3436 spa_get_stats(const char *name, nvlist_t **config,
3437     char *altroot, size_t buflen)
3438 {
3439 	int error;
3440 	spa_t *spa;
3441 
3442 	*config = NULL;
3443 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3444 
3445 	if (spa != NULL) {
3446 		/*
3447 		 * This still leaves a window of inconsistency where the spares
3448 		 * or l2cache devices could change and the config would be
3449 		 * self-inconsistent.
3450 		 */
3451 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3452 
3453 		if (*config != NULL) {
3454 			uint64_t loadtimes[2];
3455 
3456 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3457 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3458 			VERIFY(nvlist_add_uint64_array(*config,
3459 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3460 
3461 			VERIFY(nvlist_add_uint64(*config,
3462 			    ZPOOL_CONFIG_ERRCOUNT,
3463 			    spa_get_errlog_size(spa)) == 0);
3464 
3465 			if (spa_suspended(spa))
3466 				VERIFY(nvlist_add_uint64(*config,
3467 				    ZPOOL_CONFIG_SUSPENDED,
3468 				    spa->spa_failmode) == 0);
3469 
3470 			spa_add_spares(spa, *config);
3471 			spa_add_l2cache(spa, *config);
3472 			spa_add_feature_stats(spa, *config);
3473 		}
3474 	}
3475 
3476 	/*
3477 	 * We want to get the alternate root even for faulted pools, so we cheat
3478 	 * and call spa_lookup() directly.
3479 	 */
3480 	if (altroot) {
3481 		if (spa == NULL) {
3482 			mutex_enter(&spa_namespace_lock);
3483 			spa = spa_lookup(name);
3484 			if (spa)
3485 				spa_altroot(spa, altroot, buflen);
3486 			else
3487 				altroot[0] = '\0';
3488 			spa = NULL;
3489 			mutex_exit(&spa_namespace_lock);
3490 		} else {
3491 			spa_altroot(spa, altroot, buflen);
3492 		}
3493 	}
3494 
3495 	if (spa != NULL) {
3496 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3497 		spa_close(spa, FTAG);
3498 	}
3499 
3500 	return (error);
3501 }
3502 
3503 /*
3504  * Validate that the auxiliary device array is well formed.  We must have an
3505  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3506  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3507  * specified, as long as they are well-formed.
3508  */
3509 static int
spa_validate_aux_devs(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode,spa_aux_vdev_t * sav,const char * config,uint64_t version,vdev_labeltype_t label)3510 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3511     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3512     vdev_labeltype_t label)
3513 {
3514 	nvlist_t **dev;
3515 	uint_t i, ndev;
3516 	vdev_t *vd;
3517 	int error;
3518 
3519 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3520 
3521 	/*
3522 	 * It's acceptable to have no devs specified.
3523 	 */
3524 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3525 		return (0);
3526 
3527 	if (ndev == 0)
3528 		return (SET_ERROR(EINVAL));
3529 
3530 	/*
3531 	 * Make sure the pool is formatted with a version that supports this
3532 	 * device type.
3533 	 */
3534 	if (spa_version(spa) < version)
3535 		return (SET_ERROR(ENOTSUP));
3536 
3537 	/*
3538 	 * Set the pending device list so we correctly handle device in-use
3539 	 * checking.
3540 	 */
3541 	sav->sav_pending = dev;
3542 	sav->sav_npending = ndev;
3543 
3544 	for (i = 0; i < ndev; i++) {
3545 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3546 		    mode)) != 0)
3547 			goto out;
3548 
3549 		if (!vd->vdev_ops->vdev_op_leaf) {
3550 			vdev_free(vd);
3551 			error = SET_ERROR(EINVAL);
3552 			goto out;
3553 		}
3554 
3555 		/*
3556 		 * The L2ARC currently only supports disk devices in
3557 		 * kernel context.  For user-level testing, we allow it.
3558 		 */
3559 #ifdef _KERNEL
3560 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3561 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3562 			error = SET_ERROR(ENOTBLK);
3563 			vdev_free(vd);
3564 			goto out;
3565 		}
3566 #endif
3567 		vd->vdev_top = vd;
3568 
3569 		if ((error = vdev_open(vd)) == 0 &&
3570 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3571 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3572 			    vd->vdev_guid) == 0);
3573 		}
3574 
3575 		vdev_free(vd);
3576 
3577 		if (error &&
3578 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3579 			goto out;
3580 		else
3581 			error = 0;
3582 	}
3583 
3584 out:
3585 	sav->sav_pending = NULL;
3586 	sav->sav_npending = 0;
3587 	return (error);
3588 }
3589 
3590 static int
spa_validate_aux(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode)3591 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3592 {
3593 	int error;
3594 
3595 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3596 
3597 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3598 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3599 	    VDEV_LABEL_SPARE)) != 0) {
3600 		return (error);
3601 	}
3602 
3603 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3604 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3605 	    VDEV_LABEL_L2CACHE));
3606 }
3607 
3608 static void
spa_set_aux_vdevs(spa_aux_vdev_t * sav,nvlist_t ** devs,int ndevs,const char * config)3609 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3610     const char *config)
3611 {
3612 	int i;
3613 
3614 	if (sav->sav_config != NULL) {
3615 		nvlist_t **olddevs;
3616 		uint_t oldndevs;
3617 		nvlist_t **newdevs;
3618 
3619 		/*
3620 		 * Generate new dev list by concatentating with the
3621 		 * current dev list.
3622 		 */
3623 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3624 		    &olddevs, &oldndevs) == 0);
3625 
3626 		newdevs = kmem_alloc(sizeof (void *) *
3627 		    (ndevs + oldndevs), KM_SLEEP);
3628 		for (i = 0; i < oldndevs; i++)
3629 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3630 			    KM_SLEEP) == 0);
3631 		for (i = 0; i < ndevs; i++)
3632 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3633 			    KM_SLEEP) == 0);
3634 
3635 		VERIFY(nvlist_remove(sav->sav_config, config,
3636 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3637 
3638 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3639 		    config, newdevs, ndevs + oldndevs) == 0);
3640 		for (i = 0; i < oldndevs + ndevs; i++)
3641 			nvlist_free(newdevs[i]);
3642 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3643 	} else {
3644 		/*
3645 		 * Generate a new dev list.
3646 		 */
3647 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3648 		    KM_SLEEP) == 0);
3649 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3650 		    devs, ndevs) == 0);
3651 	}
3652 }
3653 
3654 /*
3655  * Stop and drop level 2 ARC devices
3656  */
3657 void
spa_l2cache_drop(spa_t * spa)3658 spa_l2cache_drop(spa_t *spa)
3659 {
3660 	vdev_t *vd;
3661 	int i;
3662 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3663 
3664 	for (i = 0; i < sav->sav_count; i++) {
3665 		uint64_t pool;
3666 
3667 		vd = sav->sav_vdevs[i];
3668 		ASSERT(vd != NULL);
3669 
3670 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3671 		    pool != 0ULL && l2arc_vdev_present(vd))
3672 			l2arc_remove_vdev(vd);
3673 	}
3674 }
3675 
3676 /*
3677  * Pool Creation
3678  */
3679 int
spa_create(const char * pool,nvlist_t * nvroot,nvlist_t * props,nvlist_t * zplprops)3680 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3681     nvlist_t *zplprops)
3682 {
3683 	spa_t *spa;
3684 	char *altroot = NULL;
3685 	vdev_t *rvd;
3686 	dsl_pool_t *dp;
3687 	dmu_tx_t *tx;
3688 	int error = 0;
3689 	uint64_t txg = TXG_INITIAL;
3690 	nvlist_t **spares, **l2cache;
3691 	uint_t nspares, nl2cache;
3692 	uint64_t version, obj;
3693 	boolean_t has_features;
3694 
3695 	/*
3696 	 * If this pool already exists, return failure.
3697 	 */
3698 	mutex_enter(&spa_namespace_lock);
3699 	if (spa_lookup(pool) != NULL) {
3700 		mutex_exit(&spa_namespace_lock);
3701 		return (SET_ERROR(EEXIST));
3702 	}
3703 
3704 	/*
3705 	 * Allocate a new spa_t structure.
3706 	 */
3707 	(void) nvlist_lookup_string(props,
3708 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3709 	spa = spa_add(pool, NULL, altroot);
3710 	spa_activate(spa, spa_mode_global);
3711 
3712 	if (props && (error = spa_prop_validate(spa, props))) {
3713 		spa_deactivate(spa);
3714 		spa_remove(spa);
3715 		mutex_exit(&spa_namespace_lock);
3716 		return (error);
3717 	}
3718 
3719 	has_features = B_FALSE;
3720 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3721 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3722 		if (zpool_prop_feature(nvpair_name(elem)))
3723 			has_features = B_TRUE;
3724 	}
3725 
3726 	if (has_features || nvlist_lookup_uint64(props,
3727 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3728 		version = SPA_VERSION;
3729 	}
3730 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3731 
3732 	spa->spa_first_txg = txg;
3733 	spa->spa_uberblock.ub_txg = txg - 1;
3734 	spa->spa_uberblock.ub_version = version;
3735 	spa->spa_ubsync = spa->spa_uberblock;
3736 	spa->spa_load_state = SPA_LOAD_CREATE;
3737 
3738 	/*
3739 	 * Create "The Godfather" zio to hold all async IOs
3740 	 */
3741 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3742 	    KM_SLEEP);
3743 	for (int i = 0; i < max_ncpus; i++) {
3744 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3745 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3746 		    ZIO_FLAG_GODFATHER);
3747 	}
3748 
3749 	/*
3750 	 * Create the root vdev.
3751 	 */
3752 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3753 
3754 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3755 
3756 	ASSERT(error != 0 || rvd != NULL);
3757 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3758 
3759 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3760 		error = SET_ERROR(EINVAL);
3761 
3762 	if (error == 0 &&
3763 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3764 	    (error = spa_validate_aux(spa, nvroot, txg,
3765 	    VDEV_ALLOC_ADD)) == 0) {
3766 		for (int c = 0; c < rvd->vdev_children; c++) {
3767 			vdev_ashift_optimize(rvd->vdev_child[c]);
3768 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3769 			vdev_expand(rvd->vdev_child[c], txg);
3770 		}
3771 	}
3772 
3773 	spa_config_exit(spa, SCL_ALL, FTAG);
3774 
3775 	if (error != 0) {
3776 		spa_unload(spa);
3777 		spa_deactivate(spa);
3778 		spa_remove(spa);
3779 		mutex_exit(&spa_namespace_lock);
3780 		return (error);
3781 	}
3782 
3783 	/*
3784 	 * Get the list of spares, if specified.
3785 	 */
3786 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3787 	    &spares, &nspares) == 0) {
3788 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3789 		    KM_SLEEP) == 0);
3790 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3791 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3792 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3793 		spa_load_spares(spa);
3794 		spa_config_exit(spa, SCL_ALL, FTAG);
3795 		spa->spa_spares.sav_sync = B_TRUE;
3796 	}
3797 
3798 	/*
3799 	 * Get the list of level 2 cache devices, if specified.
3800 	 */
3801 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3802 	    &l2cache, &nl2cache) == 0) {
3803 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3804 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3805 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3806 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3807 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3808 		spa_load_l2cache(spa);
3809 		spa_config_exit(spa, SCL_ALL, FTAG);
3810 		spa->spa_l2cache.sav_sync = B_TRUE;
3811 	}
3812 
3813 	spa->spa_is_initializing = B_TRUE;
3814 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3815 	spa->spa_meta_objset = dp->dp_meta_objset;
3816 	spa->spa_is_initializing = B_FALSE;
3817 
3818 	/*
3819 	 * Create DDTs (dedup tables).
3820 	 */
3821 	ddt_create(spa);
3822 
3823 	spa_update_dspace(spa);
3824 
3825 	tx = dmu_tx_create_assigned(dp, txg);
3826 
3827 	/*
3828 	 * Create the pool config object.
3829 	 */
3830 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3831 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3832 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3833 
3834 	if (zap_add(spa->spa_meta_objset,
3835 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3836 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3837 		cmn_err(CE_PANIC, "failed to add pool config");
3838 	}
3839 
3840 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3841 		spa_feature_create_zap_objects(spa, tx);
3842 
3843 	if (zap_add(spa->spa_meta_objset,
3844 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3845 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3846 		cmn_err(CE_PANIC, "failed to add pool version");
3847 	}
3848 
3849 	/* Newly created pools with the right version are always deflated. */
3850 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3851 		spa->spa_deflate = TRUE;
3852 		if (zap_add(spa->spa_meta_objset,
3853 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3854 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3855 			cmn_err(CE_PANIC, "failed to add deflate");
3856 		}
3857 	}
3858 
3859 	/*
3860 	 * Create the deferred-free bpobj.  Turn off compression
3861 	 * because sync-to-convergence takes longer if the blocksize
3862 	 * keeps changing.
3863 	 */
3864 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3865 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3866 	    ZIO_COMPRESS_OFF, tx);
3867 	if (zap_add(spa->spa_meta_objset,
3868 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3869 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3870 		cmn_err(CE_PANIC, "failed to add bpobj");
3871 	}
3872 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3873 	    spa->spa_meta_objset, obj));
3874 
3875 	/*
3876 	 * Create the pool's history object.
3877 	 */
3878 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3879 		spa_history_create_obj(spa, tx);
3880 
3881 	/*
3882 	 * Generate some random noise for salted checksums to operate on.
3883 	 */
3884 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3885 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3886 
3887 	/*
3888 	 * Set pool properties.
3889 	 */
3890 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3891 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3892 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3893 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3894 
3895 	if (props != NULL) {
3896 		spa_configfile_set(spa, props, B_FALSE);
3897 		spa_sync_props(props, tx);
3898 	}
3899 
3900 	dmu_tx_commit(tx);
3901 
3902 	spa->spa_sync_on = B_TRUE;
3903 	txg_sync_start(spa->spa_dsl_pool);
3904 
3905 	/*
3906 	 * We explicitly wait for the first transaction to complete so that our
3907 	 * bean counters are appropriately updated.
3908 	 */
3909 	txg_wait_synced(spa->spa_dsl_pool, txg);
3910 
3911 	spa_config_sync(spa, B_FALSE, B_TRUE);
3912 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3913 
3914 	spa_history_log_version(spa, "create");
3915 
3916 	/*
3917 	 * Don't count references from objsets that are already closed
3918 	 * and are making their way through the eviction process.
3919 	 */
3920 	spa_evicting_os_wait(spa);
3921 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3922 	spa->spa_load_state = SPA_LOAD_NONE;
3923 
3924 	mutex_exit(&spa_namespace_lock);
3925 
3926 	return (0);
3927 }
3928 
3929 #ifndef __NetBSD__
3930 #ifdef _KERNEL
3931 #ifdef illumos
3932 /*
3933  * Get the root pool information from the root disk, then import the root pool
3934  * during the system boot up time.
3935  */
3936 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3937 
3938 static nvlist_t *
spa_generate_rootconf(char * devpath,char * devid,uint64_t * guid)3939 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3940 {
3941 	nvlist_t *config;
3942 	nvlist_t *nvtop, *nvroot;
3943 	uint64_t pgid;
3944 
3945 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3946 		return (NULL);
3947 
3948 	/*
3949 	 * Add this top-level vdev to the child array.
3950 	 */
3951 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3952 	    &nvtop) == 0);
3953 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3954 	    &pgid) == 0);
3955 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3956 
3957 	/*
3958 	 * Put this pool's top-level vdevs into a root vdev.
3959 	 */
3960 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3961 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3962 	    VDEV_TYPE_ROOT) == 0);
3963 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3964 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3965 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3966 	    &nvtop, 1) == 0);
3967 
3968 	/*
3969 	 * Replace the existing vdev_tree with the new root vdev in
3970 	 * this pool's configuration (remove the old, add the new).
3971 	 */
3972 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3973 	nvlist_free(nvroot);
3974 	return (config);
3975 }
3976 
3977 /*
3978  * Walk the vdev tree and see if we can find a device with "better"
3979  * configuration. A configuration is "better" if the label on that
3980  * device has a more recent txg.
3981  */
3982 static void
spa_alt_rootvdev(vdev_t * vd,vdev_t ** avd,uint64_t * txg)3983 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3984 {
3985 	for (int c = 0; c < vd->vdev_children; c++)
3986 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3987 
3988 	if (vd->vdev_ops->vdev_op_leaf) {
3989 		nvlist_t *label;
3990 		uint64_t label_txg;
3991 
3992 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3993 		    &label) != 0)
3994 			return;
3995 
3996 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3997 		    &label_txg) == 0);
3998 
3999 		/*
4000 		 * Do we have a better boot device?
4001 		 */
4002 		if (label_txg > *txg) {
4003 			*txg = label_txg;
4004 			*avd = vd;
4005 		}
4006 		nvlist_free(label);
4007 	}
4008 }
4009 
4010 /*
4011  * Import a root pool.
4012  *
4013  * For x86. devpath_list will consist of devid and/or physpath name of
4014  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4015  * The GRUB "findroot" command will return the vdev we should boot.
4016  *
4017  * For Sparc, devpath_list consists the physpath name of the booting device
4018  * no matter the rootpool is a single device pool or a mirrored pool.
4019  * e.g.
4020  *	"/pci@1f,0/ide@d/disk@0,0:a"
4021  */
4022 int
spa_import_rootpool(char * devpath,char * devid)4023 spa_import_rootpool(char *devpath, char *devid)
4024 {
4025 	spa_t *spa;
4026 	vdev_t *rvd, *bvd, *avd = NULL;
4027 	nvlist_t *config, *nvtop;
4028 	uint64_t guid, txg;
4029 	char *pname;
4030 	int error;
4031 
4032 	/*
4033 	 * Read the label from the boot device and generate a configuration.
4034 	 */
4035 	config = spa_generate_rootconf(devpath, devid, &guid);
4036 #if defined(_OBP) && defined(_KERNEL)
4037 	if (config == NULL) {
4038 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4039 			/* iscsi boot */
4040 			get_iscsi_bootpath_phy(devpath);
4041 			config = spa_generate_rootconf(devpath, devid, &guid);
4042 		}
4043 	}
4044 #endif
4045 	if (config == NULL) {
4046 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4047 		    devpath);
4048 		return (SET_ERROR(EIO));
4049 	}
4050 
4051 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4052 	    &pname) == 0);
4053 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4054 
4055 	mutex_enter(&spa_namespace_lock);
4056 	if ((spa = spa_lookup(pname)) != NULL) {
4057 		/*
4058 		 * Remove the existing root pool from the namespace so that we
4059 		 * can replace it with the correct config we just read in.
4060 		 */
4061 		spa_remove(spa);
4062 	}
4063 
4064 	spa = spa_add(pname, config, NULL);
4065 	spa->spa_is_root = B_TRUE;
4066 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4067 
4068 	/*
4069 	 * Build up a vdev tree based on the boot device's label config.
4070 	 */
4071 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4072 	    &nvtop) == 0);
4073 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4074 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4075 	    VDEV_ALLOC_ROOTPOOL);
4076 	spa_config_exit(spa, SCL_ALL, FTAG);
4077 	if (error) {
4078 		mutex_exit(&spa_namespace_lock);
4079 		nvlist_free(config);
4080 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4081 		    pname);
4082 		return (error);
4083 	}
4084 
4085 	/*
4086 	 * Get the boot vdev.
4087 	 */
4088 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4089 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4090 		    (u_longlong_t)guid);
4091 		error = SET_ERROR(ENOENT);
4092 		goto out;
4093 	}
4094 
4095 	/*
4096 	 * Determine if there is a better boot device.
4097 	 */
4098 	avd = bvd;
4099 	spa_alt_rootvdev(rvd, &avd, &txg);
4100 	if (avd != bvd) {
4101 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4102 		    "try booting from '%s'", avd->vdev_path);
4103 		error = SET_ERROR(EINVAL);
4104 		goto out;
4105 	}
4106 
4107 	/*
4108 	 * If the boot device is part of a spare vdev then ensure that
4109 	 * we're booting off the active spare.
4110 	 */
4111 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4112 	    !bvd->vdev_isspare) {
4113 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4114 		    "try booting from '%s'",
4115 		    bvd->vdev_parent->
4116 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4117 		error = SET_ERROR(EINVAL);
4118 		goto out;
4119 	}
4120 
4121 	error = 0;
4122 out:
4123 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4124 	vdev_free(rvd);
4125 	spa_config_exit(spa, SCL_ALL, FTAG);
4126 	mutex_exit(&spa_namespace_lock);
4127 
4128 	nvlist_free(config);
4129 	return (error);
4130 }
4131 
4132 #else	/* !illumos */
4133 
4134 extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4135     uint64_t *count);
4136 
4137 static nvlist_t *
spa_generate_rootconf(const char * name)4138 spa_generate_rootconf(const char *name)
4139 {
4140 	nvlist_t **configs, **tops;
4141 	nvlist_t *config;
4142 	nvlist_t *best_cfg, *nvtop, *nvroot;
4143 	uint64_t *holes;
4144 	uint64_t best_txg;
4145 	uint64_t nchildren;
4146 	uint64_t pgid;
4147 	uint64_t count;
4148 	uint64_t i;
4149 	uint_t   nholes;
4150 
4151 	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4152 		return (NULL);
4153 
4154 	ASSERT3U(count, !=, 0);
4155 	best_txg = 0;
4156 	for (i = 0; i < count; i++) {
4157 		uint64_t txg;
4158 
4159 		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4160 		    &txg) == 0);
4161 		if (txg > best_txg) {
4162 			best_txg = txg;
4163 			best_cfg = configs[i];
4164 		}
4165 	}
4166 
4167 	nchildren = 1;
4168 	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4169 	holes = NULL;
4170 	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4171 	    &holes, &nholes);
4172 
4173 	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4174 	for (i = 0; i < nchildren; i++) {
4175 		if (i >= count)
4176 			break;
4177 		if (configs[i] == NULL)
4178 			continue;
4179 		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4180 		    &nvtop) == 0);
4181 		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4182 	}
4183 	for (i = 0; holes != NULL && i < nholes; i++) {
4184 		if (i >= nchildren)
4185 			continue;
4186 		if (tops[holes[i]] != NULL)
4187 			continue;
4188 		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4189 		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4190 		    VDEV_TYPE_HOLE) == 0);
4191 		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4192 		    holes[i]) == 0);
4193 		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4194 		    0) == 0);
4195 	}
4196 	for (i = 0; i < nchildren; i++) {
4197 		if (tops[i] != NULL)
4198 			continue;
4199 		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4200 		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4201 		    VDEV_TYPE_MISSING) == 0);
4202 		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4203 		    i) == 0);
4204 		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4205 		    0) == 0);
4206 	}
4207 
4208 	/*
4209 	 * Create pool config based on the best vdev config.
4210 	 */
4211 	nvlist_dup(best_cfg, &config, KM_SLEEP);
4212 
4213 	/*
4214 	 * Put this pool's top-level vdevs into a root vdev.
4215 	 */
4216 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4217 	    &pgid) == 0);
4218 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4219 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4220 	    VDEV_TYPE_ROOT) == 0);
4221 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4222 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4223 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4224 	    tops, nchildren) == 0);
4225 
4226 	/*
4227 	 * Replace the existing vdev_tree with the new root vdev in
4228 	 * this pool's configuration (remove the old, add the new).
4229 	 */
4230 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4231 
4232 	/*
4233 	 * Drop vdev config elements that should not be present at pool level.
4234 	 */
4235 	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4236 	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4237 
4238 	for (i = 0; i < count; i++)
4239 		nvlist_free(configs[i]);
4240 	kmem_free(configs, count * sizeof(void *));
4241 	for (i = 0; i < nchildren; i++)
4242 		nvlist_free(tops[i]);
4243 	kmem_free(tops, nchildren * sizeof(void *));
4244 	nvlist_free(nvroot);
4245 	return (config);
4246 }
4247 
4248 int
spa_import_rootpool(const char * name)4249 spa_import_rootpool(const char *name)
4250 {
4251 	spa_t *spa;
4252 	vdev_t *rvd, *bvd, *avd = NULL;
4253 	nvlist_t *config, *nvtop;
4254 	uint64_t txg;
4255 	char *pname;
4256 	int error;
4257 
4258 	/*
4259 	 * Read the label from the boot device and generate a configuration.
4260 	 */
4261 	config = spa_generate_rootconf(name);
4262 
4263 	mutex_enter(&spa_namespace_lock);
4264 	if (config != NULL) {
4265 		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4266 		    &pname) == 0 && strcmp(name, pname) == 0);
4267 		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4268 		    == 0);
4269 
4270 		if ((spa = spa_lookup(pname)) != NULL) {
4271 			/*
4272 			 * Remove the existing root pool from the namespace so
4273 			 * that we can replace it with the correct config
4274 			 * we just read in.
4275 			 */
4276 			spa_remove(spa);
4277 		}
4278 		spa = spa_add(pname, config, NULL);
4279 
4280 		/*
4281 		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4282 		 * via spa_version().
4283 		 */
4284 		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4285 		    &spa->spa_ubsync.ub_version) != 0)
4286 			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4287 	} else if ((spa = spa_lookup(name)) == NULL) {
4288 		mutex_exit(&spa_namespace_lock);
4289 		nvlist_free(config);
4290 		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4291 		    name);
4292 		return (EIO);
4293 	} else {
4294 		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4295 	}
4296 	spa->spa_is_root = B_TRUE;
4297 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4298 
4299 	/*
4300 	 * Build up a vdev tree based on the boot device's label config.
4301 	 */
4302 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4303 	    &nvtop) == 0);
4304 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4305 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4306 	    VDEV_ALLOC_ROOTPOOL);
4307 	spa_config_exit(spa, SCL_ALL, FTAG);
4308 	if (error) {
4309 		mutex_exit(&spa_namespace_lock);
4310 		nvlist_free(config);
4311 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4312 		    pname);
4313 		return (error);
4314 	}
4315 
4316 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4317 	vdev_free(rvd);
4318 	spa_config_exit(spa, SCL_ALL, FTAG);
4319 	mutex_exit(&spa_namespace_lock);
4320 
4321 	nvlist_free(config);
4322 	return (0);
4323 }
4324 
4325 #endif	/* illumos */
4326 #endif	/* _KERNEL */
4327 #endif	/* !__NetBSD__ */
4328 
4329 /*
4330  * Import a non-root pool into the system.
4331  */
4332 int
spa_import(const char * pool,nvlist_t * config,nvlist_t * props,uint64_t flags)4333 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4334 {
4335 	spa_t *spa;
4336 	char *altroot = NULL;
4337 	spa_load_state_t state = SPA_LOAD_IMPORT;
4338 	zpool_rewind_policy_t policy;
4339 	uint64_t mode = spa_mode_global;
4340 	uint64_t readonly = B_FALSE;
4341 	int error;
4342 	nvlist_t *nvroot;
4343 	nvlist_t **spares, **l2cache;
4344 	uint_t nspares, nl2cache;
4345 
4346 	/*
4347 	 * If a pool with this name exists, return failure.
4348 	 */
4349 	mutex_enter(&spa_namespace_lock);
4350 	if (spa_lookup(pool) != NULL) {
4351 		mutex_exit(&spa_namespace_lock);
4352 		return (SET_ERROR(EEXIST));
4353 	}
4354 
4355 	/*
4356 	 * Create and initialize the spa structure.
4357 	 */
4358 	(void) nvlist_lookup_string(props,
4359 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4360 	(void) nvlist_lookup_uint64(props,
4361 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4362 	if (readonly)
4363 		mode = FREAD;
4364 	spa = spa_add(pool, config, altroot);
4365 	spa->spa_import_flags = flags;
4366 
4367 	/*
4368 	 * Verbatim import - Take a pool and insert it into the namespace
4369 	 * as if it had been loaded at boot.
4370 	 */
4371 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4372 		if (props != NULL)
4373 			spa_configfile_set(spa, props, B_FALSE);
4374 
4375 		spa_config_sync(spa, B_FALSE, B_TRUE);
4376 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4377 
4378 		mutex_exit(&spa_namespace_lock);
4379 		return (0);
4380 	}
4381 
4382 	spa_activate(spa, mode);
4383 
4384 	/*
4385 	 * Don't start async tasks until we know everything is healthy.
4386 	 */
4387 	spa_async_suspend(spa);
4388 
4389 	zpool_get_rewind_policy(config, &policy);
4390 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4391 		state = SPA_LOAD_RECOVER;
4392 
4393 	/*
4394 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4395 	 * because the user-supplied config is actually the one to trust when
4396 	 * doing an import.
4397 	 */
4398 	if (state != SPA_LOAD_RECOVER)
4399 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4400 
4401 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4402 	    policy.zrp_request);
4403 
4404 	/*
4405 	 * Propagate anything learned while loading the pool and pass it
4406 	 * back to caller (i.e. rewind info, missing devices, etc).
4407 	 */
4408 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4409 	    spa->spa_load_info) == 0);
4410 
4411 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4412 	/*
4413 	 * Toss any existing sparelist, as it doesn't have any validity
4414 	 * anymore, and conflicts with spa_has_spare().
4415 	 */
4416 	if (spa->spa_spares.sav_config) {
4417 		nvlist_free(spa->spa_spares.sav_config);
4418 		spa->spa_spares.sav_config = NULL;
4419 		spa_load_spares(spa);
4420 	}
4421 	if (spa->spa_l2cache.sav_config) {
4422 		nvlist_free(spa->spa_l2cache.sav_config);
4423 		spa->spa_l2cache.sav_config = NULL;
4424 		spa_load_l2cache(spa);
4425 	}
4426 
4427 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4428 	    &nvroot) == 0);
4429 	if (error == 0)
4430 		error = spa_validate_aux(spa, nvroot, -1ULL,
4431 		    VDEV_ALLOC_SPARE);
4432 	if (error == 0)
4433 		error = spa_validate_aux(spa, nvroot, -1ULL,
4434 		    VDEV_ALLOC_L2CACHE);
4435 	spa_config_exit(spa, SCL_ALL, FTAG);
4436 
4437 	if (props != NULL)
4438 		spa_configfile_set(spa, props, B_FALSE);
4439 
4440 	if (error != 0 || (props && spa_writeable(spa) &&
4441 	    (error = spa_prop_set(spa, props)))) {
4442 		spa_unload(spa);
4443 		spa_deactivate(spa);
4444 		spa_remove(spa);
4445 		mutex_exit(&spa_namespace_lock);
4446 		return (error);
4447 	}
4448 
4449 	spa_async_resume(spa);
4450 
4451 	/*
4452 	 * Override any spares and level 2 cache devices as specified by
4453 	 * the user, as these may have correct device names/devids, etc.
4454 	 */
4455 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4456 	    &spares, &nspares) == 0) {
4457 		if (spa->spa_spares.sav_config)
4458 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4459 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4460 		else
4461 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4462 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4463 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4464 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4465 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4466 		spa_load_spares(spa);
4467 		spa_config_exit(spa, SCL_ALL, FTAG);
4468 		spa->spa_spares.sav_sync = B_TRUE;
4469 	}
4470 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4471 	    &l2cache, &nl2cache) == 0) {
4472 		if (spa->spa_l2cache.sav_config)
4473 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4474 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4475 		else
4476 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4477 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4478 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4479 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4480 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4481 		spa_load_l2cache(spa);
4482 		spa_config_exit(spa, SCL_ALL, FTAG);
4483 		spa->spa_l2cache.sav_sync = B_TRUE;
4484 	}
4485 
4486 	/*
4487 	 * Check for any removed devices.
4488 	 */
4489 	if (spa->spa_autoreplace) {
4490 		spa_aux_check_removed(&spa->spa_spares);
4491 		spa_aux_check_removed(&spa->spa_l2cache);
4492 	}
4493 
4494 	if (spa_writeable(spa)) {
4495 		/*
4496 		 * Update the config cache to include the newly-imported pool.
4497 		 */
4498 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4499 	}
4500 
4501 	/*
4502 	 * It's possible that the pool was expanded while it was exported.
4503 	 * We kick off an async task to handle this for us.
4504 	 */
4505 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4506 
4507 	spa_history_log_version(spa, "import");
4508 
4509 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4510 
4511 	mutex_exit(&spa_namespace_lock);
4512 
4513 #if defined(__FreeBSD__) || defined(__NetBSD__)
4514 #ifdef _KERNEL
4515 	zvol_create_minors(pool);
4516 #endif
4517 #endif
4518 	return (0);
4519 }
4520 
4521 nvlist_t *
spa_tryimport(nvlist_t * tryconfig)4522 spa_tryimport(nvlist_t *tryconfig)
4523 {
4524 	nvlist_t *config = NULL;
4525 	char *poolname;
4526 	spa_t *spa;
4527 	uint64_t state;
4528 	int error;
4529 
4530 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4531 		return (NULL);
4532 
4533 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4534 		return (NULL);
4535 
4536 	/*
4537 	 * Create and initialize the spa structure.
4538 	 */
4539 	mutex_enter(&spa_namespace_lock);
4540 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4541 	spa_activate(spa, FREAD);
4542 
4543 	/*
4544 	 * Pass off the heavy lifting to spa_load().
4545 	 * Pass TRUE for mosconfig because the user-supplied config
4546 	 * is actually the one to trust when doing an import.
4547 	 */
4548 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4549 
4550 	/*
4551 	 * If 'tryconfig' was at least parsable, return the current config.
4552 	 */
4553 	if (spa->spa_root_vdev != NULL) {
4554 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4555 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4556 		    poolname) == 0);
4557 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4558 		    state) == 0);
4559 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4560 		    spa->spa_uberblock.ub_timestamp) == 0);
4561 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4562 		    spa->spa_load_info) == 0);
4563 
4564 		/*
4565 		 * If the bootfs property exists on this pool then we
4566 		 * copy it out so that external consumers can tell which
4567 		 * pools are bootable.
4568 		 */
4569 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4570 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4571 
4572 			/*
4573 			 * We have to play games with the name since the
4574 			 * pool was opened as TRYIMPORT_NAME.
4575 			 */
4576 			if (dsl_dsobj_to_dsname(spa_name(spa),
4577 			    spa->spa_bootfs, tmpname) == 0) {
4578 				char *cp;
4579 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4580 
4581 				cp = strchr(tmpname, '/');
4582 				if (cp == NULL) {
4583 					(void) strlcpy(dsname, tmpname,
4584 					    MAXPATHLEN);
4585 				} else {
4586 					(void) snprintf(dsname, MAXPATHLEN,
4587 					    "%s/%s", poolname, ++cp);
4588 				}
4589 				VERIFY(nvlist_add_string(config,
4590 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4591 				kmem_free(dsname, MAXPATHLEN);
4592 			}
4593 			kmem_free(tmpname, MAXPATHLEN);
4594 		}
4595 
4596 		/*
4597 		 * Add the list of hot spares and level 2 cache devices.
4598 		 */
4599 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4600 		spa_add_spares(spa, config);
4601 		spa_add_l2cache(spa, config);
4602 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4603 	}
4604 
4605 	spa_unload(spa);
4606 	spa_deactivate(spa);
4607 	spa_remove(spa);
4608 	mutex_exit(&spa_namespace_lock);
4609 
4610 	return (config);
4611 }
4612 
4613 /*
4614  * Pool export/destroy
4615  *
4616  * The act of destroying or exporting a pool is very simple.  We make sure there
4617  * is no more pending I/O and any references to the pool are gone.  Then, we
4618  * update the pool state and sync all the labels to disk, removing the
4619  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4620  * we don't sync the labels or remove the configuration cache.
4621  */
4622 static int
spa_export_common(char * pool,int new_state,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)4623 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4624     boolean_t force, boolean_t hardforce)
4625 {
4626 	spa_t *spa;
4627 
4628 	if (oldconfig)
4629 		*oldconfig = NULL;
4630 
4631 	if (!(spa_mode_global & FWRITE))
4632 		return (SET_ERROR(EROFS));
4633 
4634 	mutex_enter(&spa_namespace_lock);
4635 	if ((spa = spa_lookup(pool)) == NULL) {
4636 		mutex_exit(&spa_namespace_lock);
4637 		return (SET_ERROR(ENOENT));
4638 	}
4639 
4640 	/*
4641 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4642 	 * reacquire the namespace lock, and see if we can export.
4643 	 */
4644 	spa_open_ref(spa, FTAG);
4645 	mutex_exit(&spa_namespace_lock);
4646 	spa_async_suspend(spa);
4647 	mutex_enter(&spa_namespace_lock);
4648 	spa_close(spa, FTAG);
4649 
4650 	/*
4651 	 * The pool will be in core if it's openable,
4652 	 * in which case we can modify its state.
4653 	 */
4654 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4655 		/*
4656 		 * Objsets may be open only because they're dirty, so we
4657 		 * have to force it to sync before checking spa_refcnt.
4658 		 */
4659 		txg_wait_synced(spa->spa_dsl_pool, 0);
4660 		spa_evicting_os_wait(spa);
4661 
4662 		/*
4663 		 * A pool cannot be exported or destroyed if there are active
4664 		 * references.  If we are resetting a pool, allow references by
4665 		 * fault injection handlers.
4666 		 */
4667 		if (!spa_refcount_zero(spa) ||
4668 		    (spa->spa_inject_ref != 0 &&
4669 		    new_state != POOL_STATE_UNINITIALIZED)) {
4670 			spa_async_resume(spa);
4671 			mutex_exit(&spa_namespace_lock);
4672 			return (SET_ERROR(EBUSY));
4673 		}
4674 
4675 		/*
4676 		 * A pool cannot be exported if it has an active shared spare.
4677 		 * This is to prevent other pools stealing the active spare
4678 		 * from an exported pool. At user's own will, such pool can
4679 		 * be forcedly exported.
4680 		 */
4681 		if (!force && new_state == POOL_STATE_EXPORTED &&
4682 		    spa_has_active_shared_spare(spa)) {
4683 			spa_async_resume(spa);
4684 			mutex_exit(&spa_namespace_lock);
4685 			return (SET_ERROR(EXDEV));
4686 		}
4687 
4688 		/*
4689 		 * We want this to be reflected on every label,
4690 		 * so mark them all dirty.  spa_unload() will do the
4691 		 * final sync that pushes these changes out.
4692 		 */
4693 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4694 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4695 			spa->spa_state = new_state;
4696 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4697 			    TXG_DEFER_SIZE + 1;
4698 			vdev_config_dirty(spa->spa_root_vdev);
4699 			spa_config_exit(spa, SCL_ALL, FTAG);
4700 		}
4701 	}
4702 
4703 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4704 
4705 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4706 		spa_unload(spa);
4707 		spa_deactivate(spa);
4708 	}
4709 
4710 	if (oldconfig && spa->spa_config)
4711 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4712 
4713 	if (new_state != POOL_STATE_UNINITIALIZED) {
4714 		if (!hardforce)
4715 			spa_config_sync(spa, B_TRUE, B_TRUE);
4716 		spa_remove(spa);
4717 	}
4718 	mutex_exit(&spa_namespace_lock);
4719 
4720 	return (0);
4721 }
4722 
4723 /*
4724  * Destroy a storage pool.
4725  */
4726 int
spa_destroy(char * pool)4727 spa_destroy(char *pool)
4728 {
4729 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4730 	    B_FALSE, B_FALSE));
4731 }
4732 
4733 /*
4734  * Export a storage pool.
4735  */
4736 int
spa_export(char * pool,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)4737 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4738     boolean_t hardforce)
4739 {
4740 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4741 	    force, hardforce));
4742 }
4743 
4744 /*
4745  * Similar to spa_export(), this unloads the spa_t without actually removing it
4746  * from the namespace in any way.
4747  */
4748 int
spa_reset(char * pool)4749 spa_reset(char *pool)
4750 {
4751 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4752 	    B_FALSE, B_FALSE));
4753 }
4754 
4755 /*
4756  * ==========================================================================
4757  * Device manipulation
4758  * ==========================================================================
4759  */
4760 
4761 /*
4762  * Add a device to a storage pool.
4763  */
4764 int
spa_vdev_add(spa_t * spa,nvlist_t * nvroot)4765 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4766 {
4767 	uint64_t txg, id;
4768 	int error;
4769 	vdev_t *rvd = spa->spa_root_vdev;
4770 	vdev_t *vd, *tvd;
4771 	nvlist_t **spares, **l2cache;
4772 	uint_t nspares, nl2cache;
4773 
4774 	ASSERT(spa_writeable(spa));
4775 
4776 	txg = spa_vdev_enter(spa);
4777 
4778 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4779 	    VDEV_ALLOC_ADD)) != 0)
4780 		return (spa_vdev_exit(spa, NULL, txg, error));
4781 
4782 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4783 
4784 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4785 	    &nspares) != 0)
4786 		nspares = 0;
4787 
4788 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4789 	    &nl2cache) != 0)
4790 		nl2cache = 0;
4791 
4792 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4793 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4794 
4795 	if (vd->vdev_children != 0 &&
4796 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4797 		return (spa_vdev_exit(spa, vd, txg, error));
4798 
4799 	/*
4800 	 * We must validate the spares and l2cache devices after checking the
4801 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4802 	 */
4803 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4804 		return (spa_vdev_exit(spa, vd, txg, error));
4805 
4806 	/*
4807 	 * Transfer each new top-level vdev from vd to rvd.
4808 	 */
4809 	for (int c = 0; c < vd->vdev_children; c++) {
4810 
4811 		/*
4812 		 * Set the vdev id to the first hole, if one exists.
4813 		 */
4814 		for (id = 0; id < rvd->vdev_children; id++) {
4815 			if (rvd->vdev_child[id]->vdev_ishole) {
4816 				vdev_free(rvd->vdev_child[id]);
4817 				break;
4818 			}
4819 		}
4820 		tvd = vd->vdev_child[c];
4821 		vdev_remove_child(vd, tvd);
4822 		tvd->vdev_id = id;
4823 		vdev_add_child(rvd, tvd);
4824 		vdev_config_dirty(tvd);
4825 	}
4826 
4827 	if (nspares != 0) {
4828 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4829 		    ZPOOL_CONFIG_SPARES);
4830 		spa_load_spares(spa);
4831 		spa->spa_spares.sav_sync = B_TRUE;
4832 	}
4833 
4834 	if (nl2cache != 0) {
4835 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4836 		    ZPOOL_CONFIG_L2CACHE);
4837 		spa_load_l2cache(spa);
4838 		spa->spa_l2cache.sav_sync = B_TRUE;
4839 	}
4840 
4841 	/*
4842 	 * We have to be careful when adding new vdevs to an existing pool.
4843 	 * If other threads start allocating from these vdevs before we
4844 	 * sync the config cache, and we lose power, then upon reboot we may
4845 	 * fail to open the pool because there are DVAs that the config cache
4846 	 * can't translate.  Therefore, we first add the vdevs without
4847 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4848 	 * and then let spa_config_update() initialize the new metaslabs.
4849 	 *
4850 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4851 	 * if we lose power at any point in this sequence, the remaining
4852 	 * steps will be completed the next time we load the pool.
4853 	 */
4854 	(void) spa_vdev_exit(spa, vd, txg, 0);
4855 
4856 	mutex_enter(&spa_namespace_lock);
4857 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4858 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4859 	mutex_exit(&spa_namespace_lock);
4860 
4861 	return (0);
4862 }
4863 
4864 /*
4865  * Attach a device to a mirror.  The arguments are the path to any device
4866  * in the mirror, and the nvroot for the new device.  If the path specifies
4867  * a device that is not mirrored, we automatically insert the mirror vdev.
4868  *
4869  * If 'replacing' is specified, the new device is intended to replace the
4870  * existing device; in this case the two devices are made into their own
4871  * mirror using the 'replacing' vdev, which is functionally identical to
4872  * the mirror vdev (it actually reuses all the same ops) but has a few
4873  * extra rules: you can't attach to it after it's been created, and upon
4874  * completion of resilvering, the first disk (the one being replaced)
4875  * is automatically detached.
4876  */
4877 int
spa_vdev_attach(spa_t * spa,uint64_t guid,nvlist_t * nvroot,int replacing)4878 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4879 {
4880 	uint64_t txg, dtl_max_txg;
4881 	vdev_t *rvd = spa->spa_root_vdev;
4882 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4883 	vdev_ops_t *pvops;
4884 	char *oldvdpath, *newvdpath;
4885 	int newvd_isspare;
4886 	int error;
4887 
4888 	ASSERT(spa_writeable(spa));
4889 
4890 	txg = spa_vdev_enter(spa);
4891 
4892 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4893 
4894 	if (oldvd == NULL)
4895 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4896 
4897 	if (!oldvd->vdev_ops->vdev_op_leaf)
4898 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4899 
4900 	pvd = oldvd->vdev_parent;
4901 
4902 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4903 	    VDEV_ALLOC_ATTACH)) != 0)
4904 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4905 
4906 	if (newrootvd->vdev_children != 1)
4907 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4908 
4909 	newvd = newrootvd->vdev_child[0];
4910 
4911 	if (!newvd->vdev_ops->vdev_op_leaf)
4912 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4913 
4914 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4915 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4916 
4917 	/*
4918 	 * Spares can't replace logs
4919 	 */
4920 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4921 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4922 
4923 	if (!replacing) {
4924 		/*
4925 		 * For attach, the only allowable parent is a mirror or the root
4926 		 * vdev.
4927 		 */
4928 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4929 		    pvd->vdev_ops != &vdev_root_ops)
4930 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4931 
4932 		pvops = &vdev_mirror_ops;
4933 	} else {
4934 		/*
4935 		 * Active hot spares can only be replaced by inactive hot
4936 		 * spares.
4937 		 */
4938 		if (pvd->vdev_ops == &vdev_spare_ops &&
4939 		    oldvd->vdev_isspare &&
4940 		    !spa_has_spare(spa, newvd->vdev_guid))
4941 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4942 
4943 		/*
4944 		 * If the source is a hot spare, and the parent isn't already a
4945 		 * spare, then we want to create a new hot spare.  Otherwise, we
4946 		 * want to create a replacing vdev.  The user is not allowed to
4947 		 * attach to a spared vdev child unless the 'isspare' state is
4948 		 * the same (spare replaces spare, non-spare replaces
4949 		 * non-spare).
4950 		 */
4951 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4952 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4953 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4954 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4955 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4956 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4957 		}
4958 
4959 		if (newvd->vdev_isspare)
4960 			pvops = &vdev_spare_ops;
4961 		else
4962 			pvops = &vdev_replacing_ops;
4963 	}
4964 
4965 	/*
4966 	 * Make sure the new device is big enough.
4967 	 */
4968 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4969 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4970 
4971 	/*
4972 	 * The new device cannot have a higher alignment requirement
4973 	 * than the top-level vdev.
4974 	 */
4975 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4976 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4977 
4978 	/*
4979 	 * If this is an in-place replacement, update oldvd's path and devid
4980 	 * to make it distinguishable from newvd, and unopenable from now on.
4981 	 */
4982 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4983 		spa_strfree(oldvd->vdev_path);
4984 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4985 		    KM_SLEEP);
4986 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4987 		    newvd->vdev_path, "old");
4988 		if (oldvd->vdev_devid != NULL) {
4989 			spa_strfree(oldvd->vdev_devid);
4990 			oldvd->vdev_devid = NULL;
4991 		}
4992 	}
4993 
4994 	/* mark the device being resilvered */
4995 	newvd->vdev_resilver_txg = txg;
4996 
4997 	/*
4998 	 * If the parent is not a mirror, or if we're replacing, insert the new
4999 	 * mirror/replacing/spare vdev above oldvd.
5000 	 */
5001 	if (pvd->vdev_ops != pvops)
5002 		pvd = vdev_add_parent(oldvd, pvops);
5003 
5004 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
5005 	ASSERT(pvd->vdev_ops == pvops);
5006 	ASSERT(oldvd->vdev_parent == pvd);
5007 
5008 	/*
5009 	 * Extract the new device from its root and add it to pvd.
5010 	 */
5011 	vdev_remove_child(newrootvd, newvd);
5012 	newvd->vdev_id = pvd->vdev_children;
5013 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
5014 	vdev_add_child(pvd, newvd);
5015 
5016 	tvd = newvd->vdev_top;
5017 	ASSERT(pvd->vdev_top == tvd);
5018 	ASSERT(tvd->vdev_parent == rvd);
5019 
5020 	vdev_config_dirty(tvd);
5021 
5022 	/*
5023 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5024 	 * for any dmu_sync-ed blocks.  It will propagate upward when
5025 	 * spa_vdev_exit() calls vdev_dtl_reassess().
5026 	 */
5027 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5028 
5029 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5030 	    dtl_max_txg - TXG_INITIAL);
5031 
5032 	if (newvd->vdev_isspare) {
5033 		spa_spare_activate(newvd);
5034 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
5035 	}
5036 
5037 	oldvdpath = spa_strdup(oldvd->vdev_path);
5038 	newvdpath = spa_strdup(newvd->vdev_path);
5039 	newvd_isspare = newvd->vdev_isspare;
5040 
5041 	/*
5042 	 * Mark newvd's DTL dirty in this txg.
5043 	 */
5044 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5045 
5046 	/*
5047 	 * Schedule the resilver to restart in the future. We do this to
5048 	 * ensure that dmu_sync-ed blocks have been stitched into the
5049 	 * respective datasets.
5050 	 */
5051 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5052 
5053 	if (spa->spa_bootfs)
5054 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5055 
5056 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
5057 
5058 	/*
5059 	 * Commit the config
5060 	 */
5061 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5062 
5063 	spa_history_log_internal(spa, "vdev attach", NULL,
5064 	    "%s vdev=%s %s vdev=%s",
5065 	    replacing && newvd_isspare ? "spare in" :
5066 	    replacing ? "replace" : "attach", newvdpath,
5067 	    replacing ? "for" : "to", oldvdpath);
5068 
5069 	spa_strfree(oldvdpath);
5070 	spa_strfree(newvdpath);
5071 
5072 	return (0);
5073 }
5074 
5075 /*
5076  * Detach a device from a mirror or replacing vdev.
5077  *
5078  * If 'replace_done' is specified, only detach if the parent
5079  * is a replacing vdev.
5080  */
5081 int
spa_vdev_detach(spa_t * spa,uint64_t guid,uint64_t pguid,int replace_done)5082 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5083 {
5084 	uint64_t txg;
5085 	int error;
5086 	vdev_t *rvd = spa->spa_root_vdev;
5087 	vdev_t *vd, *pvd, *cvd, *tvd;
5088 	boolean_t unspare = B_FALSE;
5089 	uint64_t unspare_guid = 0;
5090 	char *vdpath;
5091 
5092 	ASSERT(spa_writeable(spa));
5093 
5094 	txg = spa_vdev_enter(spa);
5095 
5096 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5097 
5098 	if (vd == NULL)
5099 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5100 
5101 	if (!vd->vdev_ops->vdev_op_leaf)
5102 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5103 
5104 	pvd = vd->vdev_parent;
5105 
5106 	/*
5107 	 * If the parent/child relationship is not as expected, don't do it.
5108 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5109 	 * vdev that's replacing B with C.  The user's intent in replacing
5110 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5111 	 * the replace by detaching C, the expected behavior is to end up
5112 	 * M(A,B).  But suppose that right after deciding to detach C,
5113 	 * the replacement of B completes.  We would have M(A,C), and then
5114 	 * ask to detach C, which would leave us with just A -- not what
5115 	 * the user wanted.  To prevent this, we make sure that the
5116 	 * parent/child relationship hasn't changed -- in this example,
5117 	 * that C's parent is still the replacing vdev R.
5118 	 */
5119 	if (pvd->vdev_guid != pguid && pguid != 0)
5120 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5121 
5122 	/*
5123 	 * Only 'replacing' or 'spare' vdevs can be replaced.
5124 	 */
5125 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5126 	    pvd->vdev_ops != &vdev_spare_ops)
5127 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5128 
5129 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5130 	    spa_version(spa) >= SPA_VERSION_SPARES);
5131 
5132 	/*
5133 	 * Only mirror, replacing, and spare vdevs support detach.
5134 	 */
5135 	if (pvd->vdev_ops != &vdev_replacing_ops &&
5136 	    pvd->vdev_ops != &vdev_mirror_ops &&
5137 	    pvd->vdev_ops != &vdev_spare_ops)
5138 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5139 
5140 	/*
5141 	 * If this device has the only valid copy of some data,
5142 	 * we cannot safely detach it.
5143 	 */
5144 	if (vdev_dtl_required(vd))
5145 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5146 
5147 	ASSERT(pvd->vdev_children >= 2);
5148 
5149 	/*
5150 	 * If we are detaching the second disk from a replacing vdev, then
5151 	 * check to see if we changed the original vdev's path to have "/old"
5152 	 * at the end in spa_vdev_attach().  If so, undo that change now.
5153 	 */
5154 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5155 	    vd->vdev_path != NULL) {
5156 		size_t len = strlen(vd->vdev_path);
5157 
5158 		for (int c = 0; c < pvd->vdev_children; c++) {
5159 			cvd = pvd->vdev_child[c];
5160 
5161 			if (cvd == vd || cvd->vdev_path == NULL)
5162 				continue;
5163 
5164 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5165 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5166 				spa_strfree(cvd->vdev_path);
5167 				cvd->vdev_path = spa_strdup(vd->vdev_path);
5168 				break;
5169 			}
5170 		}
5171 	}
5172 
5173 	/*
5174 	 * If we are detaching the original disk from a spare, then it implies
5175 	 * that the spare should become a real disk, and be removed from the
5176 	 * active spare list for the pool.
5177 	 */
5178 	if (pvd->vdev_ops == &vdev_spare_ops &&
5179 	    vd->vdev_id == 0 &&
5180 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5181 		unspare = B_TRUE;
5182 
5183 	/*
5184 	 * Erase the disk labels so the disk can be used for other things.
5185 	 * This must be done after all other error cases are handled,
5186 	 * but before we disembowel vd (so we can still do I/O to it).
5187 	 * But if we can't do it, don't treat the error as fatal --
5188 	 * it may be that the unwritability of the disk is the reason
5189 	 * it's being detached!
5190 	 */
5191 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5192 
5193 	/*
5194 	 * Remove vd from its parent and compact the parent's children.
5195 	 */
5196 	vdev_remove_child(pvd, vd);
5197 	vdev_compact_children(pvd);
5198 
5199 	/*
5200 	 * Remember one of the remaining children so we can get tvd below.
5201 	 */
5202 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5203 
5204 	/*
5205 	 * If we need to remove the remaining child from the list of hot spares,
5206 	 * do it now, marking the vdev as no longer a spare in the process.
5207 	 * We must do this before vdev_remove_parent(), because that can
5208 	 * change the GUID if it creates a new toplevel GUID.  For a similar
5209 	 * reason, we must remove the spare now, in the same txg as the detach;
5210 	 * otherwise someone could attach a new sibling, change the GUID, and
5211 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5212 	 */
5213 	if (unspare) {
5214 		ASSERT(cvd->vdev_isspare);
5215 		spa_spare_remove(cvd);
5216 		unspare_guid = cvd->vdev_guid;
5217 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5218 		cvd->vdev_unspare = B_TRUE;
5219 	}
5220 
5221 	/*
5222 	 * If the parent mirror/replacing vdev only has one child,
5223 	 * the parent is no longer needed.  Remove it from the tree.
5224 	 */
5225 	if (pvd->vdev_children == 1) {
5226 		if (pvd->vdev_ops == &vdev_spare_ops)
5227 			cvd->vdev_unspare = B_FALSE;
5228 		vdev_remove_parent(cvd);
5229 	}
5230 
5231 
5232 	/*
5233 	 * We don't set tvd until now because the parent we just removed
5234 	 * may have been the previous top-level vdev.
5235 	 */
5236 	tvd = cvd->vdev_top;
5237 	ASSERT(tvd->vdev_parent == rvd);
5238 
5239 	/*
5240 	 * Reevaluate the parent vdev state.
5241 	 */
5242 	vdev_propagate_state(cvd);
5243 
5244 	/*
5245 	 * If the 'autoexpand' property is set on the pool then automatically
5246 	 * try to expand the size of the pool. For example if the device we
5247 	 * just detached was smaller than the others, it may be possible to
5248 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5249 	 * first so that we can obtain the updated sizes of the leaf vdevs.
5250 	 */
5251 	if (spa->spa_autoexpand) {
5252 		vdev_reopen(tvd);
5253 		vdev_expand(tvd, txg);
5254 	}
5255 
5256 	vdev_config_dirty(tvd);
5257 
5258 	/*
5259 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5260 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5261 	 * But first make sure we're not on any *other* txg's DTL list, to
5262 	 * prevent vd from being accessed after it's freed.
5263 	 */
5264 	vdpath = spa_strdup(vd->vdev_path);
5265 	for (int t = 0; t < TXG_SIZE; t++)
5266 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5267 	vd->vdev_detached = B_TRUE;
5268 	vdev_dirty(tvd, VDD_DTL, vd, txg);
5269 
5270 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5271 
5272 	/* hang on to the spa before we release the lock */
5273 	spa_open_ref(spa, FTAG);
5274 
5275 	error = spa_vdev_exit(spa, vd, txg, 0);
5276 
5277 	spa_history_log_internal(spa, "detach", NULL,
5278 	    "vdev=%s", vdpath);
5279 	spa_strfree(vdpath);
5280 
5281 	/*
5282 	 * If this was the removal of the original device in a hot spare vdev,
5283 	 * then we want to go through and remove the device from the hot spare
5284 	 * list of every other pool.
5285 	 */
5286 	if (unspare) {
5287 		spa_t *altspa = NULL;
5288 
5289 		mutex_enter(&spa_namespace_lock);
5290 		while ((altspa = spa_next(altspa)) != NULL) {
5291 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5292 			    altspa == spa)
5293 				continue;
5294 
5295 			spa_open_ref(altspa, FTAG);
5296 			mutex_exit(&spa_namespace_lock);
5297 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5298 			mutex_enter(&spa_namespace_lock);
5299 			spa_close(altspa, FTAG);
5300 		}
5301 		mutex_exit(&spa_namespace_lock);
5302 
5303 		/* search the rest of the vdevs for spares to remove */
5304 		spa_vdev_resilver_done(spa);
5305 	}
5306 
5307 	/* all done with the spa; OK to release */
5308 	mutex_enter(&spa_namespace_lock);
5309 	spa_close(spa, FTAG);
5310 	mutex_exit(&spa_namespace_lock);
5311 
5312 	return (error);
5313 }
5314 
5315 /*
5316  * Split a set of devices from their mirrors, and create a new pool from them.
5317  */
5318 int
spa_vdev_split_mirror(spa_t * spa,char * newname,nvlist_t * config,nvlist_t * props,boolean_t exp)5319 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5320     nvlist_t *props, boolean_t exp)
5321 {
5322 	int error = 0;
5323 	uint64_t txg, *glist;
5324 	spa_t *newspa;
5325 	uint_t c, children, lastlog;
5326 	nvlist_t **child, *nvl, *tmp;
5327 	dmu_tx_t *tx;
5328 	char *altroot = NULL;
5329 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5330 	boolean_t activate_slog;
5331 
5332 	ASSERT(spa_writeable(spa));
5333 
5334 	txg = spa_vdev_enter(spa);
5335 
5336 	/* clear the log and flush everything up to now */
5337 	activate_slog = spa_passivate_log(spa);
5338 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5339 	error = spa_offline_log(spa);
5340 	txg = spa_vdev_config_enter(spa);
5341 
5342 	if (activate_slog)
5343 		spa_activate_log(spa);
5344 
5345 	if (error != 0)
5346 		return (spa_vdev_exit(spa, NULL, txg, error));
5347 
5348 	/* check new spa name before going any further */
5349 	if (spa_lookup(newname) != NULL)
5350 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5351 
5352 	/*
5353 	 * scan through all the children to ensure they're all mirrors
5354 	 */
5355 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5356 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5357 	    &children) != 0)
5358 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5359 
5360 	/* first, check to ensure we've got the right child count */
5361 	rvd = spa->spa_root_vdev;
5362 	lastlog = 0;
5363 	for (c = 0; c < rvd->vdev_children; c++) {
5364 		vdev_t *vd = rvd->vdev_child[c];
5365 
5366 		/* don't count the holes & logs as children */
5367 		if (vd->vdev_islog || vd->vdev_ishole) {
5368 			if (lastlog == 0)
5369 				lastlog = c;
5370 			continue;
5371 		}
5372 
5373 		lastlog = 0;
5374 	}
5375 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5376 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5377 
5378 	/* next, ensure no spare or cache devices are part of the split */
5379 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5380 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5381 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5382 
5383 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5384 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5385 
5386 	/* then, loop over each vdev and validate it */
5387 	for (c = 0; c < children; c++) {
5388 		uint64_t is_hole = 0;
5389 
5390 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5391 		    &is_hole);
5392 
5393 		if (is_hole != 0) {
5394 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5395 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5396 				continue;
5397 			} else {
5398 				error = SET_ERROR(EINVAL);
5399 				break;
5400 			}
5401 		}
5402 
5403 		/* which disk is going to be split? */
5404 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5405 		    &glist[c]) != 0) {
5406 			error = SET_ERROR(EINVAL);
5407 			break;
5408 		}
5409 
5410 		/* look it up in the spa */
5411 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5412 		if (vml[c] == NULL) {
5413 			error = SET_ERROR(ENODEV);
5414 			break;
5415 		}
5416 
5417 		/* make sure there's nothing stopping the split */
5418 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5419 		    vml[c]->vdev_islog ||
5420 		    vml[c]->vdev_ishole ||
5421 		    vml[c]->vdev_isspare ||
5422 		    vml[c]->vdev_isl2cache ||
5423 		    !vdev_writeable(vml[c]) ||
5424 		    vml[c]->vdev_children != 0 ||
5425 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5426 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5427 			error = SET_ERROR(EINVAL);
5428 			break;
5429 		}
5430 
5431 		if (vdev_dtl_required(vml[c])) {
5432 			error = SET_ERROR(EBUSY);
5433 			break;
5434 		}
5435 
5436 		/* we need certain info from the top level */
5437 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5438 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5439 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5440 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5441 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5442 		    vml[c]->vdev_top->vdev_asize) == 0);
5443 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5444 		    vml[c]->vdev_top->vdev_ashift) == 0);
5445 
5446 		/* transfer per-vdev ZAPs */
5447 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5448 		VERIFY0(nvlist_add_uint64(child[c],
5449 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5450 
5451 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5452 		VERIFY0(nvlist_add_uint64(child[c],
5453 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5454 		    vml[c]->vdev_parent->vdev_top_zap));
5455 	}
5456 
5457 	if (error != 0) {
5458 		kmem_free(vml, children * sizeof (vdev_t *));
5459 		kmem_free(glist, children * sizeof (uint64_t));
5460 		return (spa_vdev_exit(spa, NULL, txg, error));
5461 	}
5462 
5463 	/* stop writers from using the disks */
5464 	for (c = 0; c < children; c++) {
5465 		if (vml[c] != NULL)
5466 			vml[c]->vdev_offline = B_TRUE;
5467 	}
5468 	vdev_reopen(spa->spa_root_vdev);
5469 
5470 	/*
5471 	 * Temporarily record the splitting vdevs in the spa config.  This
5472 	 * will disappear once the config is regenerated.
5473 	 */
5474 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5475 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5476 	    glist, children) == 0);
5477 	kmem_free(glist, children * sizeof (uint64_t));
5478 
5479 	mutex_enter(&spa->spa_props_lock);
5480 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5481 	    nvl) == 0);
5482 	mutex_exit(&spa->spa_props_lock);
5483 	spa->spa_config_splitting = nvl;
5484 	vdev_config_dirty(spa->spa_root_vdev);
5485 
5486 	/* configure and create the new pool */
5487 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5488 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5489 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5490 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5491 	    spa_version(spa)) == 0);
5492 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5493 	    spa->spa_config_txg) == 0);
5494 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5495 	    spa_generate_guid(NULL)) == 0);
5496 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5497 	(void) nvlist_lookup_string(props,
5498 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5499 
5500 	/* add the new pool to the namespace */
5501 	newspa = spa_add(newname, config, altroot);
5502 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5503 	newspa->spa_config_txg = spa->spa_config_txg;
5504 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5505 
5506 	/* release the spa config lock, retaining the namespace lock */
5507 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5508 
5509 	if (zio_injection_enabled)
5510 		zio_handle_panic_injection(spa, FTAG, 1);
5511 
5512 	spa_activate(newspa, spa_mode_global);
5513 	spa_async_suspend(newspa);
5514 
5515 #ifndef illumos
5516 	/* mark that we are creating new spa by splitting */
5517 	newspa->spa_splitting_newspa = B_TRUE;
5518 #endif
5519 	/* create the new pool from the disks of the original pool */
5520 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5521 #ifndef illumos
5522 	newspa->spa_splitting_newspa = B_FALSE;
5523 #endif
5524 	if (error)
5525 		goto out;
5526 
5527 	/* if that worked, generate a real config for the new pool */
5528 	if (newspa->spa_root_vdev != NULL) {
5529 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5530 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5531 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5532 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5533 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5534 		    B_TRUE));
5535 	}
5536 
5537 	/* set the props */
5538 	if (props != NULL) {
5539 		spa_configfile_set(newspa, props, B_FALSE);
5540 		error = spa_prop_set(newspa, props);
5541 		if (error)
5542 			goto out;
5543 	}
5544 
5545 	/* flush everything */
5546 	txg = spa_vdev_config_enter(newspa);
5547 	vdev_config_dirty(newspa->spa_root_vdev);
5548 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5549 
5550 	if (zio_injection_enabled)
5551 		zio_handle_panic_injection(spa, FTAG, 2);
5552 
5553 	spa_async_resume(newspa);
5554 
5555 	/* finally, update the original pool's config */
5556 	txg = spa_vdev_config_enter(spa);
5557 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5558 	error = dmu_tx_assign(tx, TXG_WAIT);
5559 	if (error != 0)
5560 		dmu_tx_abort(tx);
5561 	for (c = 0; c < children; c++) {
5562 		if (vml[c] != NULL) {
5563 			vdev_split(vml[c]);
5564 			if (error == 0)
5565 				spa_history_log_internal(spa, "detach", tx,
5566 				    "vdev=%s", vml[c]->vdev_path);
5567 
5568 			vdev_free(vml[c]);
5569 		}
5570 	}
5571 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5572 	vdev_config_dirty(spa->spa_root_vdev);
5573 	spa->spa_config_splitting = NULL;
5574 	nvlist_free(nvl);
5575 	if (error == 0)
5576 		dmu_tx_commit(tx);
5577 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5578 
5579 	if (zio_injection_enabled)
5580 		zio_handle_panic_injection(spa, FTAG, 3);
5581 
5582 	/* split is complete; log a history record */
5583 	spa_history_log_internal(newspa, "split", NULL,
5584 	    "from pool %s", spa_name(spa));
5585 
5586 	kmem_free(vml, children * sizeof (vdev_t *));
5587 
5588 	/* if we're not going to mount the filesystems in userland, export */
5589 	if (exp)
5590 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5591 		    B_FALSE, B_FALSE);
5592 
5593 	return (error);
5594 
5595 out:
5596 	spa_unload(newspa);
5597 	spa_deactivate(newspa);
5598 	spa_remove(newspa);
5599 
5600 	txg = spa_vdev_config_enter(spa);
5601 
5602 	/* re-online all offlined disks */
5603 	for (c = 0; c < children; c++) {
5604 		if (vml[c] != NULL)
5605 			vml[c]->vdev_offline = B_FALSE;
5606 	}
5607 	vdev_reopen(spa->spa_root_vdev);
5608 
5609 	nvlist_free(spa->spa_config_splitting);
5610 	spa->spa_config_splitting = NULL;
5611 	(void) spa_vdev_exit(spa, NULL, txg, error);
5612 
5613 	kmem_free(vml, children * sizeof (vdev_t *));
5614 	return (error);
5615 }
5616 
5617 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)5618 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5619 {
5620 	for (int i = 0; i < count; i++) {
5621 		uint64_t guid;
5622 
5623 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5624 		    &guid) == 0);
5625 
5626 		if (guid == target_guid)
5627 			return (nvpp[i]);
5628 	}
5629 
5630 	return (NULL);
5631 }
5632 
5633 static void
spa_vdev_remove_aux(nvlist_t * config,char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)5634 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5635     nvlist_t *dev_to_remove)
5636 {
5637 	nvlist_t **newdev = NULL;
5638 
5639 	if (count > 1)
5640 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5641 
5642 	for (int i = 0, j = 0; i < count; i++) {
5643 		if (dev[i] == dev_to_remove)
5644 			continue;
5645 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5646 	}
5647 
5648 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5649 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5650 
5651 	for (int i = 0; i < count - 1; i++)
5652 		nvlist_free(newdev[i]);
5653 
5654 	if (count > 1)
5655 		kmem_free(newdev, (count - 1) * sizeof (void *));
5656 }
5657 
5658 /*
5659  * Evacuate the device.
5660  */
5661 static int
spa_vdev_remove_evacuate(spa_t * spa,vdev_t * vd)5662 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5663 {
5664 	uint64_t txg;
5665 	int error = 0;
5666 
5667 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5668 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5669 	ASSERT(vd == vd->vdev_top);
5670 
5671 	/*
5672 	 * Evacuate the device.  We don't hold the config lock as writer
5673 	 * since we need to do I/O but we do keep the
5674 	 * spa_namespace_lock held.  Once this completes the device
5675 	 * should no longer have any blocks allocated on it.
5676 	 */
5677 	if (vd->vdev_islog) {
5678 		if (vd->vdev_stat.vs_alloc != 0)
5679 			error = spa_offline_log(spa);
5680 	} else {
5681 		error = SET_ERROR(ENOTSUP);
5682 	}
5683 
5684 	if (error)
5685 		return (error);
5686 
5687 	/*
5688 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5689 	 * associated with this vdev, and wait for these changes to sync.
5690 	 */
5691 	ASSERT0(vd->vdev_stat.vs_alloc);
5692 	txg = spa_vdev_config_enter(spa);
5693 	vd->vdev_removing = B_TRUE;
5694 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5695 	vdev_config_dirty(vd);
5696 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5697 
5698 	return (0);
5699 }
5700 
5701 /*
5702  * Complete the removal by cleaning up the namespace.
5703  */
5704 static void
spa_vdev_remove_from_namespace(spa_t * spa,vdev_t * vd)5705 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5706 {
5707 	vdev_t *rvd = spa->spa_root_vdev;
5708 	uint64_t id = vd->vdev_id;
5709 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5710 
5711 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5712 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5713 	ASSERT(vd == vd->vdev_top);
5714 
5715 	/*
5716 	 * Only remove any devices which are empty.
5717 	 */
5718 	if (vd->vdev_stat.vs_alloc != 0)
5719 		return;
5720 
5721 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5722 
5723 	if (list_link_active(&vd->vdev_state_dirty_node))
5724 		vdev_state_clean(vd);
5725 	if (list_link_active(&vd->vdev_config_dirty_node))
5726 		vdev_config_clean(vd);
5727 
5728 	vdev_free(vd);
5729 
5730 	if (last_vdev) {
5731 		vdev_compact_children(rvd);
5732 	} else {
5733 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5734 		vdev_add_child(rvd, vd);
5735 	}
5736 	vdev_config_dirty(rvd);
5737 
5738 	/*
5739 	 * Reassess the health of our root vdev.
5740 	 */
5741 	vdev_reopen(rvd);
5742 }
5743 
5744 /*
5745  * Remove a device from the pool -
5746  *
5747  * Removing a device from the vdev namespace requires several steps
5748  * and can take a significant amount of time.  As a result we use
5749  * the spa_vdev_config_[enter/exit] functions which allow us to
5750  * grab and release the spa_config_lock while still holding the namespace
5751  * lock.  During each step the configuration is synced out.
5752  *
5753  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5754  * devices.
5755  */
5756 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)5757 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5758 {
5759 	vdev_t *vd;
5760 	sysevent_t *ev = NULL;
5761 	metaslab_group_t *mg;
5762 	nvlist_t **spares, **l2cache, *nv;
5763 	uint64_t txg = 0;
5764 	uint_t nspares, nl2cache;
5765 	int error = 0;
5766 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5767 
5768 	ASSERT(spa_writeable(spa));
5769 
5770 	if (!locked)
5771 		txg = spa_vdev_enter(spa);
5772 
5773 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5774 
5775 	if (spa->spa_spares.sav_vdevs != NULL &&
5776 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5777 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5778 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5779 		/*
5780 		 * Only remove the hot spare if it's not currently in use
5781 		 * in this pool.
5782 		 */
5783 		if (vd == NULL || unspare) {
5784 			if (vd == NULL)
5785 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5786 			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5787 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5788 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5789 			spa_load_spares(spa);
5790 			spa->spa_spares.sav_sync = B_TRUE;
5791 		} else {
5792 			error = SET_ERROR(EBUSY);
5793 		}
5794 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5795 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5796 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5797 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5798 		/*
5799 		 * Cache devices can always be removed.
5800 		 */
5801 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5802 		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5803 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5804 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5805 		spa_load_l2cache(spa);
5806 		spa->spa_l2cache.sav_sync = B_TRUE;
5807 	} else if (vd != NULL && vd->vdev_islog) {
5808 		ASSERT(!locked);
5809 		ASSERT(vd == vd->vdev_top);
5810 
5811 		mg = vd->vdev_mg;
5812 
5813 		/*
5814 		 * Stop allocating from this vdev.
5815 		 */
5816 		metaslab_group_passivate(mg);
5817 
5818 		/*
5819 		 * Wait for the youngest allocations and frees to sync,
5820 		 * and then wait for the deferral of those frees to finish.
5821 		 */
5822 		spa_vdev_config_exit(spa, NULL,
5823 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5824 
5825 		/*
5826 		 * Attempt to evacuate the vdev.
5827 		 */
5828 		error = spa_vdev_remove_evacuate(spa, vd);
5829 
5830 		txg = spa_vdev_config_enter(spa);
5831 
5832 		/*
5833 		 * If we couldn't evacuate the vdev, unwind.
5834 		 */
5835 		if (error) {
5836 			metaslab_group_activate(mg);
5837 			return (spa_vdev_exit(spa, NULL, txg, error));
5838 		}
5839 
5840 		/*
5841 		 * Clean up the vdev namespace.
5842 		 */
5843 		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5844 		spa_vdev_remove_from_namespace(spa, vd);
5845 
5846 	} else if (vd != NULL) {
5847 		/*
5848 		 * Normal vdevs cannot be removed (yet).
5849 		 */
5850 		error = SET_ERROR(ENOTSUP);
5851 	} else {
5852 		/*
5853 		 * There is no vdev of any kind with the specified guid.
5854 		 */
5855 		error = SET_ERROR(ENOENT);
5856 	}
5857 
5858 	if (!locked)
5859 		error = spa_vdev_exit(spa, NULL, txg, error);
5860 
5861 	if (ev)
5862 		spa_event_post(ev);
5863 
5864 	return (error);
5865 }
5866 
5867 /*
5868  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5869  * currently spared, so we can detach it.
5870  */
5871 static vdev_t *
spa_vdev_resilver_done_hunt(vdev_t * vd)5872 spa_vdev_resilver_done_hunt(vdev_t *vd)
5873 {
5874 	vdev_t *newvd, *oldvd;
5875 
5876 	for (int c = 0; c < vd->vdev_children; c++) {
5877 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5878 		if (oldvd != NULL)
5879 			return (oldvd);
5880 	}
5881 
5882 	/*
5883 	 * Check for a completed replacement.  We always consider the first
5884 	 * vdev in the list to be the oldest vdev, and the last one to be
5885 	 * the newest (see spa_vdev_attach() for how that works).  In
5886 	 * the case where the newest vdev is faulted, we will not automatically
5887 	 * remove it after a resilver completes.  This is OK as it will require
5888 	 * user intervention to determine which disk the admin wishes to keep.
5889 	 */
5890 	if (vd->vdev_ops == &vdev_replacing_ops) {
5891 		ASSERT(vd->vdev_children > 1);
5892 
5893 		newvd = vd->vdev_child[vd->vdev_children - 1];
5894 		oldvd = vd->vdev_child[0];
5895 
5896 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5897 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5898 		    !vdev_dtl_required(oldvd))
5899 			return (oldvd);
5900 	}
5901 
5902 	/*
5903 	 * Check for a completed resilver with the 'unspare' flag set.
5904 	 */
5905 	if (vd->vdev_ops == &vdev_spare_ops) {
5906 		vdev_t *first = vd->vdev_child[0];
5907 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5908 
5909 		if (last->vdev_unspare) {
5910 			oldvd = first;
5911 			newvd = last;
5912 		} else if (first->vdev_unspare) {
5913 			oldvd = last;
5914 			newvd = first;
5915 		} else {
5916 			oldvd = NULL;
5917 		}
5918 
5919 		if (oldvd != NULL &&
5920 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5921 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5922 		    !vdev_dtl_required(oldvd))
5923 			return (oldvd);
5924 
5925 		/*
5926 		 * If there are more than two spares attached to a disk,
5927 		 * and those spares are not required, then we want to
5928 		 * attempt to free them up now so that they can be used
5929 		 * by other pools.  Once we're back down to a single
5930 		 * disk+spare, we stop removing them.
5931 		 */
5932 		if (vd->vdev_children > 2) {
5933 			newvd = vd->vdev_child[1];
5934 
5935 			if (newvd->vdev_isspare && last->vdev_isspare &&
5936 			    vdev_dtl_empty(last, DTL_MISSING) &&
5937 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5938 			    !vdev_dtl_required(newvd))
5939 				return (newvd);
5940 		}
5941 	}
5942 
5943 	return (NULL);
5944 }
5945 
5946 static void
spa_vdev_resilver_done(spa_t * spa)5947 spa_vdev_resilver_done(spa_t *spa)
5948 {
5949 	vdev_t *vd, *pvd, *ppvd;
5950 	uint64_t guid, sguid, pguid, ppguid;
5951 
5952 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5953 
5954 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5955 		pvd = vd->vdev_parent;
5956 		ppvd = pvd->vdev_parent;
5957 		guid = vd->vdev_guid;
5958 		pguid = pvd->vdev_guid;
5959 		ppguid = ppvd->vdev_guid;
5960 		sguid = 0;
5961 		/*
5962 		 * If we have just finished replacing a hot spared device, then
5963 		 * we need to detach the parent's first child (the original hot
5964 		 * spare) as well.
5965 		 */
5966 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5967 		    ppvd->vdev_children == 2) {
5968 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5969 			sguid = ppvd->vdev_child[1]->vdev_guid;
5970 		}
5971 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5972 
5973 		spa_config_exit(spa, SCL_ALL, FTAG);
5974 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5975 			return;
5976 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5977 			return;
5978 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5979 	}
5980 
5981 	spa_config_exit(spa, SCL_ALL, FTAG);
5982 }
5983 
5984 /*
5985  * Update the stored path or FRU for this vdev.
5986  */
5987 int
spa_vdev_set_common(spa_t * spa,uint64_t guid,const char * value,boolean_t ispath)5988 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5989     boolean_t ispath)
5990 {
5991 	vdev_t *vd;
5992 	boolean_t sync = B_FALSE;
5993 
5994 	ASSERT(spa_writeable(spa));
5995 
5996 	spa_vdev_state_enter(spa, SCL_ALL);
5997 
5998 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5999 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
6000 
6001 	if (!vd->vdev_ops->vdev_op_leaf)
6002 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6003 
6004 	if (ispath) {
6005 		if (strcmp(value, vd->vdev_path) != 0) {
6006 			spa_strfree(vd->vdev_path);
6007 			vd->vdev_path = spa_strdup(value);
6008 			sync = B_TRUE;
6009 		}
6010 	} else {
6011 		if (vd->vdev_fru == NULL) {
6012 			vd->vdev_fru = spa_strdup(value);
6013 			sync = B_TRUE;
6014 		} else if (strcmp(value, vd->vdev_fru) != 0) {
6015 			spa_strfree(vd->vdev_fru);
6016 			vd->vdev_fru = spa_strdup(value);
6017 			sync = B_TRUE;
6018 		}
6019 	}
6020 
6021 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6022 }
6023 
6024 int
spa_vdev_setpath(spa_t * spa,uint64_t guid,const char * newpath)6025 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6026 {
6027 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6028 }
6029 
6030 int
spa_vdev_setfru(spa_t * spa,uint64_t guid,const char * newfru)6031 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6032 {
6033 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6034 }
6035 
6036 /*
6037  * ==========================================================================
6038  * SPA Scanning
6039  * ==========================================================================
6040  */
6041 
6042 int
spa_scan_stop(spa_t * spa)6043 spa_scan_stop(spa_t *spa)
6044 {
6045 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6046 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6047 		return (SET_ERROR(EBUSY));
6048 	return (dsl_scan_cancel(spa->spa_dsl_pool));
6049 }
6050 
6051 int
spa_scan(spa_t * spa,pool_scan_func_t func)6052 spa_scan(spa_t *spa, pool_scan_func_t func)
6053 {
6054 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6055 
6056 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6057 		return (SET_ERROR(ENOTSUP));
6058 
6059 	/*
6060 	 * If a resilver was requested, but there is no DTL on a
6061 	 * writeable leaf device, we have nothing to do.
6062 	 */
6063 	if (func == POOL_SCAN_RESILVER &&
6064 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6065 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6066 		return (0);
6067 	}
6068 
6069 	return (dsl_scan(spa->spa_dsl_pool, func));
6070 }
6071 
6072 /*
6073  * ==========================================================================
6074  * SPA async task processing
6075  * ==========================================================================
6076  */
6077 
6078 static void
spa_async_remove(spa_t * spa,vdev_t * vd)6079 spa_async_remove(spa_t *spa, vdev_t *vd)
6080 {
6081 	if (vd->vdev_remove_wanted) {
6082 		vd->vdev_remove_wanted = B_FALSE;
6083 		vd->vdev_delayed_close = B_FALSE;
6084 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6085 
6086 		/*
6087 		 * We want to clear the stats, but we don't want to do a full
6088 		 * vdev_clear() as that will cause us to throw away
6089 		 * degraded/faulted state as well as attempt to reopen the
6090 		 * device, all of which is a waste.
6091 		 */
6092 		vd->vdev_stat.vs_read_errors = 0;
6093 		vd->vdev_stat.vs_write_errors = 0;
6094 		vd->vdev_stat.vs_checksum_errors = 0;
6095 
6096 		vdev_state_dirty(vd->vdev_top);
6097 		/* Tell userspace that the vdev is gone. */
6098 		zfs_post_remove(spa, vd);
6099 	}
6100 
6101 	for (int c = 0; c < vd->vdev_children; c++)
6102 		spa_async_remove(spa, vd->vdev_child[c]);
6103 }
6104 
6105 static void
spa_async_probe(spa_t * spa,vdev_t * vd)6106 spa_async_probe(spa_t *spa, vdev_t *vd)
6107 {
6108 	if (vd->vdev_probe_wanted) {
6109 		vd->vdev_probe_wanted = B_FALSE;
6110 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6111 	}
6112 
6113 	for (int c = 0; c < vd->vdev_children; c++)
6114 		spa_async_probe(spa, vd->vdev_child[c]);
6115 }
6116 
6117 static void
spa_async_autoexpand(spa_t * spa,vdev_t * vd)6118 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6119 {
6120 	sysevent_id_t eid;
6121 	nvlist_t *attr;
6122 	char *physpath;
6123 
6124 	if (!spa->spa_autoexpand)
6125 		return;
6126 
6127 	for (int c = 0; c < vd->vdev_children; c++) {
6128 		vdev_t *cvd = vd->vdev_child[c];
6129 		spa_async_autoexpand(spa, cvd);
6130 	}
6131 
6132 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6133 		return;
6134 
6135 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6136 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6137 
6138 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6139 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6140 
6141 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6142 	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6143 
6144 	nvlist_free(attr);
6145 	kmem_free(physpath, MAXPATHLEN);
6146 }
6147 
6148 static void
spa_async_thread(void * arg)6149 spa_async_thread(void *arg)
6150 {
6151 	spa_t *spa = arg;
6152 	int tasks;
6153 
6154 	ASSERT(spa->spa_sync_on);
6155 
6156 	mutex_enter(&spa->spa_async_lock);
6157 	tasks = spa->spa_async_tasks;
6158 	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6159 	mutex_exit(&spa->spa_async_lock);
6160 
6161 	/*
6162 	 * See if the config needs to be updated.
6163 	 */
6164 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6165 		uint64_t old_space, new_space;
6166 
6167 		mutex_enter(&spa_namespace_lock);
6168 		old_space = metaslab_class_get_space(spa_normal_class(spa));
6169 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6170 		new_space = metaslab_class_get_space(spa_normal_class(spa));
6171 		mutex_exit(&spa_namespace_lock);
6172 
6173 		/*
6174 		 * If the pool grew as a result of the config update,
6175 		 * then log an internal history event.
6176 		 */
6177 		if (new_space != old_space) {
6178 			spa_history_log_internal(spa, "vdev online", NULL,
6179 			    "pool '%s' size: %llu(+%llu)",
6180 			    spa_name(spa), new_space, new_space - old_space);
6181 		}
6182 	}
6183 
6184 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6185 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6186 		spa_async_autoexpand(spa, spa->spa_root_vdev);
6187 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6188 	}
6189 
6190 	/*
6191 	 * See if any devices need to be probed.
6192 	 */
6193 	if (tasks & SPA_ASYNC_PROBE) {
6194 		spa_vdev_state_enter(spa, SCL_NONE);
6195 		spa_async_probe(spa, spa->spa_root_vdev);
6196 		(void) spa_vdev_state_exit(spa, NULL, 0);
6197 	}
6198 
6199 	/*
6200 	 * If any devices are done replacing, detach them.
6201 	 */
6202 	if (tasks & SPA_ASYNC_RESILVER_DONE)
6203 		spa_vdev_resilver_done(spa);
6204 
6205 	/*
6206 	 * Kick off a resilver.
6207 	 */
6208 	if (tasks & SPA_ASYNC_RESILVER)
6209 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6210 
6211 	/*
6212 	 * Let the world know that we're done.
6213 	 */
6214 	mutex_enter(&spa->spa_async_lock);
6215 	spa->spa_async_thread = NULL;
6216 	cv_broadcast(&spa->spa_async_cv);
6217 	mutex_exit(&spa->spa_async_lock);
6218 	thread_exit();
6219 }
6220 
6221 static void
spa_async_thread_vd(void * arg)6222 spa_async_thread_vd(void *arg)
6223 {
6224 	spa_t *spa = arg;
6225 	int tasks;
6226 
6227 	ASSERT(spa->spa_sync_on);
6228 
6229 	mutex_enter(&spa->spa_async_lock);
6230 	tasks = spa->spa_async_tasks;
6231 retry:
6232 	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6233 	mutex_exit(&spa->spa_async_lock);
6234 
6235 	/*
6236 	 * See if any devices need to be marked REMOVED.
6237 	 */
6238 	if (tasks & SPA_ASYNC_REMOVE) {
6239 		spa_vdev_state_enter(spa, SCL_NONE);
6240 		spa_async_remove(spa, spa->spa_root_vdev);
6241 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6242 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6243 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6244 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6245 		(void) spa_vdev_state_exit(spa, NULL, 0);
6246 	}
6247 
6248 	/*
6249 	 * Let the world know that we're done.
6250 	 */
6251 	mutex_enter(&spa->spa_async_lock);
6252 	tasks = spa->spa_async_tasks;
6253 	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6254 		goto retry;
6255 	spa->spa_async_thread_vd = NULL;
6256 	cv_broadcast(&spa->spa_async_cv);
6257 	mutex_exit(&spa->spa_async_lock);
6258 	thread_exit();
6259 }
6260 
6261 void
spa_async_suspend(spa_t * spa)6262 spa_async_suspend(spa_t *spa)
6263 {
6264 	mutex_enter(&spa->spa_async_lock);
6265 	spa->spa_async_suspended++;
6266 	while (spa->spa_async_thread != NULL &&
6267 	    spa->spa_async_thread_vd != NULL)
6268 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6269 	mutex_exit(&spa->spa_async_lock);
6270 }
6271 
6272 void
spa_async_resume(spa_t * spa)6273 spa_async_resume(spa_t *spa)
6274 {
6275 	mutex_enter(&spa->spa_async_lock);
6276 	ASSERT(spa->spa_async_suspended != 0);
6277 	spa->spa_async_suspended--;
6278 	mutex_exit(&spa->spa_async_lock);
6279 }
6280 
6281 static boolean_t
spa_async_tasks_pending(spa_t * spa)6282 spa_async_tasks_pending(spa_t *spa)
6283 {
6284 	uint_t non_config_tasks;
6285 	uint_t config_task;
6286 	boolean_t config_task_suspended;
6287 
6288 	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6289 	    SPA_ASYNC_REMOVE);
6290 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6291 	if (spa->spa_ccw_fail_time == 0) {
6292 		config_task_suspended = B_FALSE;
6293 	} else {
6294 		config_task_suspended =
6295 		    (gethrtime() - spa->spa_ccw_fail_time) <
6296 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
6297 	}
6298 
6299 	return (non_config_tasks || (config_task && !config_task_suspended));
6300 }
6301 
6302 static void
spa_async_dispatch(spa_t * spa)6303 spa_async_dispatch(spa_t *spa)
6304 {
6305 	mutex_enter(&spa->spa_async_lock);
6306 	if (spa_async_tasks_pending(spa) &&
6307 	    !spa->spa_async_suspended &&
6308 	    spa->spa_async_thread == NULL &&
6309 	    rootdir != NULL)
6310 		spa->spa_async_thread = thread_create(NULL, 0,
6311 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6312 	mutex_exit(&spa->spa_async_lock);
6313 }
6314 
6315 static void
spa_async_dispatch_vd(spa_t * spa)6316 spa_async_dispatch_vd(spa_t *spa)
6317 {
6318 	mutex_enter(&spa->spa_async_lock);
6319 	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6320 	    !spa->spa_async_suspended &&
6321 	    spa->spa_async_thread_vd == NULL &&
6322 	    rootdir != NULL)
6323 		spa->spa_async_thread_vd = thread_create(NULL, 0,
6324 		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6325 	mutex_exit(&spa->spa_async_lock);
6326 }
6327 
6328 void
spa_async_request(spa_t * spa,int task)6329 spa_async_request(spa_t *spa, int task)
6330 {
6331 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6332 	mutex_enter(&spa->spa_async_lock);
6333 	spa->spa_async_tasks |= task;
6334 	mutex_exit(&spa->spa_async_lock);
6335 	spa_async_dispatch_vd(spa);
6336 }
6337 
6338 /*
6339  * ==========================================================================
6340  * SPA syncing routines
6341  * ==========================================================================
6342  */
6343 
6344 static int
bpobj_enqueue_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)6345 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6346 {
6347 	bpobj_t *bpo = arg;
6348 	bpobj_enqueue(bpo, bp, tx);
6349 	return (0);
6350 }
6351 
6352 static int
spa_free_sync_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)6353 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6354 {
6355 	zio_t *zio = arg;
6356 
6357 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6358 	    BP_GET_PSIZE(bp), zio->io_flags));
6359 	return (0);
6360 }
6361 
6362 /*
6363  * Note: this simple function is not inlined to make it easier to dtrace the
6364  * amount of time spent syncing frees.
6365  */
6366 static void
spa_sync_frees(spa_t * spa,bplist_t * bpl,dmu_tx_t * tx)6367 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6368 {
6369 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6370 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6371 	VERIFY(zio_wait(zio) == 0);
6372 }
6373 
6374 /*
6375  * Note: this simple function is not inlined to make it easier to dtrace the
6376  * amount of time spent syncing deferred frees.
6377  */
6378 static void
spa_sync_deferred_frees(spa_t * spa,dmu_tx_t * tx)6379 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6380 {
6381 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6382 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6383 	    spa_free_sync_cb, zio, tx), ==, 0);
6384 	VERIFY0(zio_wait(zio));
6385 }
6386 
6387 
6388 static void
spa_sync_nvlist(spa_t * spa,uint64_t obj,nvlist_t * nv,dmu_tx_t * tx)6389 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6390 {
6391 	char *packed = NULL;
6392 	size_t bufsize;
6393 	size_t nvsize = 0;
6394 	dmu_buf_t *db;
6395 
6396 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6397 
6398 	/*
6399 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6400 	 * information.  This avoids the dmu_buf_will_dirty() path and
6401 	 * saves us a pre-read to get data we don't actually care about.
6402 	 */
6403 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6404 	packed = kmem_alloc(bufsize, KM_SLEEP);
6405 
6406 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6407 	    KM_SLEEP) == 0);
6408 	bzero(packed + nvsize, bufsize - nvsize);
6409 
6410 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6411 
6412 	kmem_free(packed, bufsize);
6413 
6414 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6415 	dmu_buf_will_dirty(db, tx);
6416 	*(uint64_t *)db->db_data = nvsize;
6417 	dmu_buf_rele(db, FTAG);
6418 }
6419 
6420 static void
spa_sync_aux_dev(spa_t * spa,spa_aux_vdev_t * sav,dmu_tx_t * tx,const char * config,const char * entry)6421 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6422     const char *config, const char *entry)
6423 {
6424 	nvlist_t *nvroot;
6425 	nvlist_t **list;
6426 	int i;
6427 
6428 	if (!sav->sav_sync)
6429 		return;
6430 
6431 	/*
6432 	 * Update the MOS nvlist describing the list of available devices.
6433 	 * spa_validate_aux() will have already made sure this nvlist is
6434 	 * valid and the vdevs are labeled appropriately.
6435 	 */
6436 	if (sav->sav_object == 0) {
6437 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6438 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6439 		    sizeof (uint64_t), tx);
6440 		VERIFY(zap_update(spa->spa_meta_objset,
6441 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6442 		    &sav->sav_object, tx) == 0);
6443 	}
6444 
6445 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6446 	if (sav->sav_count == 0) {
6447 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6448 	} else {
6449 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6450 		for (i = 0; i < sav->sav_count; i++)
6451 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6452 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6453 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6454 		    sav->sav_count) == 0);
6455 		for (i = 0; i < sav->sav_count; i++)
6456 			nvlist_free(list[i]);
6457 		kmem_free(list, sav->sav_count * sizeof (void *));
6458 	}
6459 
6460 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6461 	nvlist_free(nvroot);
6462 
6463 	sav->sav_sync = B_FALSE;
6464 }
6465 
6466 /*
6467  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6468  * The all-vdev ZAP must be empty.
6469  */
6470 static void
spa_avz_build(vdev_t * vd,uint64_t avz,dmu_tx_t * tx)6471 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6472 {
6473 	spa_t *spa = vd->vdev_spa;
6474 	if (vd->vdev_top_zap != 0) {
6475 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6476 		    vd->vdev_top_zap, tx));
6477 	}
6478 	if (vd->vdev_leaf_zap != 0) {
6479 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6480 		    vd->vdev_leaf_zap, tx));
6481 	}
6482 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6483 		spa_avz_build(vd->vdev_child[i], avz, tx);
6484 	}
6485 }
6486 
6487 static void
spa_sync_config_object(spa_t * spa,dmu_tx_t * tx)6488 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6489 {
6490 	nvlist_t *config;
6491 
6492 	/*
6493 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6494 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6495 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6496 	 * need to rebuild the AVZ although the config may not be dirty.
6497 	 */
6498 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6499 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6500 		return;
6501 
6502 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6503 
6504 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6505 	    spa->spa_all_vdev_zaps != 0);
6506 
6507 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6508 		/* Make and build the new AVZ */
6509 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6510 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6511 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6512 
6513 		/* Diff old AVZ with new one */
6514 		zap_cursor_t zc;
6515 		zap_attribute_t za;
6516 
6517 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6518 		    spa->spa_all_vdev_zaps);
6519 		    zap_cursor_retrieve(&zc, &za) == 0;
6520 		    zap_cursor_advance(&zc)) {
6521 			uint64_t vdzap = za.za_first_integer;
6522 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6523 			    vdzap) == ENOENT) {
6524 				/*
6525 				 * ZAP is listed in old AVZ but not in new one;
6526 				 * destroy it
6527 				 */
6528 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6529 				    tx));
6530 			}
6531 		}
6532 
6533 		zap_cursor_fini(&zc);
6534 
6535 		/* Destroy the old AVZ */
6536 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6537 		    spa->spa_all_vdev_zaps, tx));
6538 
6539 		/* Replace the old AVZ in the dir obj with the new one */
6540 		VERIFY0(zap_update(spa->spa_meta_objset,
6541 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6542 		    sizeof (new_avz), 1, &new_avz, tx));
6543 
6544 		spa->spa_all_vdev_zaps = new_avz;
6545 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6546 		zap_cursor_t zc;
6547 		zap_attribute_t za;
6548 
6549 		/* Walk through the AVZ and destroy all listed ZAPs */
6550 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6551 		    spa->spa_all_vdev_zaps);
6552 		    zap_cursor_retrieve(&zc, &za) == 0;
6553 		    zap_cursor_advance(&zc)) {
6554 			uint64_t zap = za.za_first_integer;
6555 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6556 		}
6557 
6558 		zap_cursor_fini(&zc);
6559 
6560 		/* Destroy and unlink the AVZ itself */
6561 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6562 		    spa->spa_all_vdev_zaps, tx));
6563 		VERIFY0(zap_remove(spa->spa_meta_objset,
6564 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6565 		spa->spa_all_vdev_zaps = 0;
6566 	}
6567 
6568 	if (spa->spa_all_vdev_zaps == 0) {
6569 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6570 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6571 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6572 	}
6573 	spa->spa_avz_action = AVZ_ACTION_NONE;
6574 
6575 	/* Create ZAPs for vdevs that don't have them. */
6576 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6577 
6578 	config = spa_config_generate(spa, spa->spa_root_vdev,
6579 	    dmu_tx_get_txg(tx), B_FALSE);
6580 
6581 	/*
6582 	 * If we're upgrading the spa version then make sure that
6583 	 * the config object gets updated with the correct version.
6584 	 */
6585 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6586 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6587 		    spa->spa_uberblock.ub_version);
6588 
6589 	spa_config_exit(spa, SCL_STATE, FTAG);
6590 
6591 	nvlist_free(spa->spa_config_syncing);
6592 	spa->spa_config_syncing = config;
6593 
6594 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6595 }
6596 
6597 static void
spa_sync_version(void * arg,dmu_tx_t * tx)6598 spa_sync_version(void *arg, dmu_tx_t *tx)
6599 {
6600 	uint64_t *versionp = arg;
6601 	uint64_t version = *versionp;
6602 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6603 
6604 	/*
6605 	 * Setting the version is special cased when first creating the pool.
6606 	 */
6607 	ASSERT(tx->tx_txg != TXG_INITIAL);
6608 
6609 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6610 	ASSERT(version >= spa_version(spa));
6611 
6612 	spa->spa_uberblock.ub_version = version;
6613 	vdev_config_dirty(spa->spa_root_vdev);
6614 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6615 }
6616 
6617 /*
6618  * Set zpool properties.
6619  */
6620 static void
spa_sync_props(void * arg,dmu_tx_t * tx)6621 spa_sync_props(void *arg, dmu_tx_t *tx)
6622 {
6623 	nvlist_t *nvp = arg;
6624 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6625 	objset_t *mos = spa->spa_meta_objset;
6626 	nvpair_t *elem = NULL;
6627 
6628 	mutex_enter(&spa->spa_props_lock);
6629 
6630 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6631 		uint64_t intval;
6632 		char *strval, *fname;
6633 		zpool_prop_t prop;
6634 		const char *propname;
6635 		zprop_type_t proptype;
6636 		spa_feature_t fid;
6637 
6638 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6639 		case ZPROP_INVAL:
6640 			/*
6641 			 * We checked this earlier in spa_prop_validate().
6642 			 */
6643 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6644 
6645 			fname = strchr(nvpair_name(elem), '@') + 1;
6646 			VERIFY0(zfeature_lookup_name(fname, &fid));
6647 
6648 			spa_feature_enable(spa, fid, tx);
6649 			spa_history_log_internal(spa, "set", tx,
6650 			    "%s=enabled", nvpair_name(elem));
6651 			break;
6652 
6653 		case ZPOOL_PROP_VERSION:
6654 			intval = fnvpair_value_uint64(elem);
6655 			/*
6656 			 * The version is synced seperatly before other
6657 			 * properties and should be correct by now.
6658 			 */
6659 			ASSERT3U(spa_version(spa), >=, intval);
6660 			break;
6661 
6662 		case ZPOOL_PROP_ALTROOT:
6663 			/*
6664 			 * 'altroot' is a non-persistent property. It should
6665 			 * have been set temporarily at creation or import time.
6666 			 */
6667 			ASSERT(spa->spa_root != NULL);
6668 			break;
6669 
6670 		case ZPOOL_PROP_READONLY:
6671 		case ZPOOL_PROP_CACHEFILE:
6672 			/*
6673 			 * 'readonly' and 'cachefile' are also non-persisitent
6674 			 * properties.
6675 			 */
6676 			break;
6677 		case ZPOOL_PROP_COMMENT:
6678 			strval = fnvpair_value_string(elem);
6679 			if (spa->spa_comment != NULL)
6680 				spa_strfree(spa->spa_comment);
6681 			spa->spa_comment = spa_strdup(strval);
6682 			/*
6683 			 * We need to dirty the configuration on all the vdevs
6684 			 * so that their labels get updated.  It's unnecessary
6685 			 * to do this for pool creation since the vdev's
6686 			 * configuratoin has already been dirtied.
6687 			 */
6688 			if (tx->tx_txg != TXG_INITIAL)
6689 				vdev_config_dirty(spa->spa_root_vdev);
6690 			spa_history_log_internal(spa, "set", tx,
6691 			    "%s=%s", nvpair_name(elem), strval);
6692 			break;
6693 		default:
6694 			/*
6695 			 * Set pool property values in the poolprops mos object.
6696 			 */
6697 			if (spa->spa_pool_props_object == 0) {
6698 				spa->spa_pool_props_object =
6699 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6700 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6701 				    tx);
6702 			}
6703 
6704 			/* normalize the property name */
6705 			propname = zpool_prop_to_name(prop);
6706 			proptype = zpool_prop_get_type(prop);
6707 
6708 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6709 				ASSERT(proptype == PROP_TYPE_STRING);
6710 				strval = fnvpair_value_string(elem);
6711 				VERIFY0(zap_update(mos,
6712 				    spa->spa_pool_props_object, propname,
6713 				    1, strlen(strval) + 1, strval, tx));
6714 				spa_history_log_internal(spa, "set", tx,
6715 				    "%s=%s", nvpair_name(elem), strval);
6716 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6717 				intval = fnvpair_value_uint64(elem);
6718 
6719 				if (proptype == PROP_TYPE_INDEX) {
6720 					const char *unused;
6721 					VERIFY0(zpool_prop_index_to_string(
6722 					    prop, intval, &unused));
6723 				}
6724 				VERIFY0(zap_update(mos,
6725 				    spa->spa_pool_props_object, propname,
6726 				    8, 1, &intval, tx));
6727 				spa_history_log_internal(spa, "set", tx,
6728 				    "%s=%lld", nvpair_name(elem), intval);
6729 			} else {
6730 				ASSERT(0); /* not allowed */
6731 			}
6732 
6733 			switch (prop) {
6734 			case ZPOOL_PROP_DELEGATION:
6735 				spa->spa_delegation = intval;
6736 				break;
6737 			case ZPOOL_PROP_BOOTFS:
6738 				spa->spa_bootfs = intval;
6739 				break;
6740 			case ZPOOL_PROP_FAILUREMODE:
6741 				spa->spa_failmode = intval;
6742 				break;
6743 			case ZPOOL_PROP_AUTOEXPAND:
6744 				spa->spa_autoexpand = intval;
6745 				if (tx->tx_txg != TXG_INITIAL)
6746 					spa_async_request(spa,
6747 					    SPA_ASYNC_AUTOEXPAND);
6748 				break;
6749 			case ZPOOL_PROP_DEDUPDITTO:
6750 				spa->spa_dedup_ditto = intval;
6751 				break;
6752 			default:
6753 				break;
6754 			}
6755 		}
6756 
6757 	}
6758 
6759 	mutex_exit(&spa->spa_props_lock);
6760 }
6761 
6762 /*
6763  * Perform one-time upgrade on-disk changes.  spa_version() does not
6764  * reflect the new version this txg, so there must be no changes this
6765  * txg to anything that the upgrade code depends on after it executes.
6766  * Therefore this must be called after dsl_pool_sync() does the sync
6767  * tasks.
6768  */
6769 static void
spa_sync_upgrades(spa_t * spa,dmu_tx_t * tx)6770 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6771 {
6772 	dsl_pool_t *dp = spa->spa_dsl_pool;
6773 
6774 	ASSERT(spa->spa_sync_pass == 1);
6775 
6776 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6777 
6778 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6779 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6780 		dsl_pool_create_origin(dp, tx);
6781 
6782 		/* Keeping the origin open increases spa_minref */
6783 		spa->spa_minref += 3;
6784 	}
6785 
6786 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6787 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6788 		dsl_pool_upgrade_clones(dp, tx);
6789 	}
6790 
6791 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6792 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6793 		dsl_pool_upgrade_dir_clones(dp, tx);
6794 
6795 		/* Keeping the freedir open increases spa_minref */
6796 		spa->spa_minref += 3;
6797 	}
6798 
6799 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6800 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6801 		spa_feature_create_zap_objects(spa, tx);
6802 	}
6803 
6804 	/*
6805 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6806 	 * when possibility to use lz4 compression for metadata was added
6807 	 * Old pools that have this feature enabled must be upgraded to have
6808 	 * this feature active
6809 	 */
6810 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6811 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6812 		    SPA_FEATURE_LZ4_COMPRESS);
6813 		boolean_t lz4_ac = spa_feature_is_active(spa,
6814 		    SPA_FEATURE_LZ4_COMPRESS);
6815 
6816 		if (lz4_en && !lz4_ac)
6817 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6818 	}
6819 
6820 	/*
6821 	 * If we haven't written the salt, do so now.  Note that the
6822 	 * feature may not be activated yet, but that's fine since
6823 	 * the presence of this ZAP entry is backwards compatible.
6824 	 */
6825 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6826 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6827 		VERIFY0(zap_add(spa->spa_meta_objset,
6828 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6829 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6830 		    spa->spa_cksum_salt.zcs_bytes, tx));
6831 	}
6832 
6833 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6834 }
6835 
6836 /*
6837  * Sync the specified transaction group.  New blocks may be dirtied as
6838  * part of the process, so we iterate until it converges.
6839  */
6840 
6841 void
spa_sync(spa_t * spa,uint64_t txg)6842 spa_sync(spa_t *spa, uint64_t txg)
6843 {
6844 	dsl_pool_t *dp = spa->spa_dsl_pool;
6845 	objset_t *mos = spa->spa_meta_objset;
6846 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6847 	vdev_t *rvd = spa->spa_root_vdev;
6848 	vdev_t *vd;
6849 	dmu_tx_t *tx;
6850 	int error;
6851 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6852 	    zfs_vdev_queue_depth_pct / 100;
6853 
6854 	VERIFY(spa_writeable(spa));
6855 
6856 	/*
6857 	 * Lock out configuration changes.
6858 	 */
6859 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6860 
6861 	spa->spa_syncing_txg = txg;
6862 	spa->spa_sync_pass = 0;
6863 
6864 	mutex_enter(&spa->spa_alloc_lock);
6865 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6866 	mutex_exit(&spa->spa_alloc_lock);
6867 
6868 	/*
6869 	 * If there are any pending vdev state changes, convert them
6870 	 * into config changes that go out with this transaction group.
6871 	 */
6872 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6873 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6874 		/*
6875 		 * We need the write lock here because, for aux vdevs,
6876 		 * calling vdev_config_dirty() modifies sav_config.
6877 		 * This is ugly and will become unnecessary when we
6878 		 * eliminate the aux vdev wart by integrating all vdevs
6879 		 * into the root vdev tree.
6880 		 */
6881 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6882 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6883 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6884 			vdev_state_clean(vd);
6885 			vdev_config_dirty(vd);
6886 		}
6887 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6888 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6889 	}
6890 	spa_config_exit(spa, SCL_STATE, FTAG);
6891 
6892 	tx = dmu_tx_create_assigned(dp, txg);
6893 
6894 	spa->spa_sync_starttime = gethrtime();
6895 #ifdef illumos
6896 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6897 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6898 #endif	/* illumos */
6899 #ifdef __FreeBSD__
6900 #ifdef _KERNEL
6901 	callout_schedule(&spa->spa_deadman_cycid,
6902 	    hz * spa->spa_deadman_synctime / NANOSEC);
6903 #endif
6904 #endif /* __FreeBSD__ */
6905 #ifdef __NetBSD__
6906 #ifdef _KERNEL
6907 	callout_schedule(&spa->spa_deadman_cycid,
6908 	    hz * spa->spa_deadman_synctime / NANOSEC);
6909 #endif
6910 #endif
6911 
6912 	/*
6913 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6914 	 * set spa_deflate if we have no raid-z vdevs.
6915 	 */
6916 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6917 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6918 		int i;
6919 
6920 		for (i = 0; i < rvd->vdev_children; i++) {
6921 			vd = rvd->vdev_child[i];
6922 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6923 				break;
6924 		}
6925 		if (i == rvd->vdev_children) {
6926 			spa->spa_deflate = TRUE;
6927 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6928 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6929 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6930 		}
6931 	}
6932 
6933 	/*
6934 	 * Set the top-level vdev's max queue depth. Evaluate each
6935 	 * top-level's async write queue depth in case it changed.
6936 	 * The max queue depth will not change in the middle of syncing
6937 	 * out this txg.
6938 	 */
6939 	uint64_t queue_depth_total = 0;
6940 	for (int c = 0; c < rvd->vdev_children; c++) {
6941 		vdev_t *tvd = rvd->vdev_child[c];
6942 		metaslab_group_t *mg = tvd->vdev_mg;
6943 
6944 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6945 		    !metaslab_group_initialized(mg))
6946 			continue;
6947 
6948 		/*
6949 		 * It is safe to do a lock-free check here because only async
6950 		 * allocations look at mg_max_alloc_queue_depth, and async
6951 		 * allocations all happen from spa_sync().
6952 		 */
6953 		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6954 		mg->mg_max_alloc_queue_depth = max_queue_depth;
6955 		queue_depth_total += mg->mg_max_alloc_queue_depth;
6956 	}
6957 	metaslab_class_t *mc = spa_normal_class(spa);
6958 	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6959 	mc->mc_alloc_max_slots = queue_depth_total;
6960 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6961 
6962 	ASSERT3U(mc->mc_alloc_max_slots, <=,
6963 	    max_queue_depth * rvd->vdev_children);
6964 
6965 	/*
6966 	 * Iterate to convergence.
6967 	 */
6968 	do {
6969 		int pass = ++spa->spa_sync_pass;
6970 
6971 		spa_sync_config_object(spa, tx);
6972 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6973 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6974 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6975 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6976 		spa_errlog_sync(spa, txg);
6977 		dsl_pool_sync(dp, txg);
6978 
6979 		if (pass < zfs_sync_pass_deferred_free) {
6980 			spa_sync_frees(spa, free_bpl, tx);
6981 		} else {
6982 			/*
6983 			 * We can not defer frees in pass 1, because
6984 			 * we sync the deferred frees later in pass 1.
6985 			 */
6986 			ASSERT3U(pass, >, 1);
6987 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6988 			    &spa->spa_deferred_bpobj, tx);
6989 		}
6990 
6991 		ddt_sync(spa, txg);
6992 		dsl_scan_sync(dp, tx);
6993 
6994 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6995 			vdev_sync(vd, txg);
6996 
6997 		if (pass == 1) {
6998 			spa_sync_upgrades(spa, tx);
6999 			ASSERT3U(txg, >=,
7000 			    spa->spa_uberblock.ub_rootbp.blk_birth);
7001 			/*
7002 			 * Note: We need to check if the MOS is dirty
7003 			 * because we could have marked the MOS dirty
7004 			 * without updating the uberblock (e.g. if we
7005 			 * have sync tasks but no dirty user data).  We
7006 			 * need to check the uberblock's rootbp because
7007 			 * it is updated if we have synced out dirty
7008 			 * data (though in this case the MOS will most
7009 			 * likely also be dirty due to second order
7010 			 * effects, we don't want to rely on that here).
7011 			 */
7012 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7013 			    !dmu_objset_is_dirty(mos, txg)) {
7014 				/*
7015 				 * Nothing changed on the first pass,
7016 				 * therefore this TXG is a no-op.  Avoid
7017 				 * syncing deferred frees, so that we
7018 				 * can keep this TXG as a no-op.
7019 				 */
7020 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7021 				    txg));
7022 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7023 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7024 				break;
7025 			}
7026 			spa_sync_deferred_frees(spa, tx);
7027 		}
7028 
7029 	} while (dmu_objset_is_dirty(mos, txg));
7030 
7031 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7032 		/*
7033 		 * Make sure that the number of ZAPs for all the vdevs matches
7034 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7035 		 * called if the config is dirty; otherwise there may be
7036 		 * outstanding AVZ operations that weren't completed in
7037 		 * spa_sync_config_object.
7038 		 */
7039 		uint64_t all_vdev_zap_entry_count;
7040 		ASSERT0(zap_count(spa->spa_meta_objset,
7041 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7042 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7043 		    all_vdev_zap_entry_count);
7044 	}
7045 
7046 	/*
7047 	 * Rewrite the vdev configuration (which includes the uberblock)
7048 	 * to commit the transaction group.
7049 	 *
7050 	 * If there are no dirty vdevs, we sync the uberblock to a few
7051 	 * random top-level vdevs that are known to be visible in the
7052 	 * config cache (see spa_vdev_add() for a complete description).
7053 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7054 	 */
7055 	for (;;) {
7056 		/*
7057 		 * We hold SCL_STATE to prevent vdev open/close/etc.
7058 		 * while we're attempting to write the vdev labels.
7059 		 */
7060 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7061 
7062 		if (list_is_empty(&spa->spa_config_dirty_list)) {
7063 			vdev_t *svd[SPA_DVAS_PER_BP];
7064 			int svdcount = 0;
7065 			int children = rvd->vdev_children;
7066 			int c0 = spa_get_random(children);
7067 
7068 			for (int c = 0; c < children; c++) {
7069 				vd = rvd->vdev_child[(c0 + c) % children];
7070 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
7071 					continue;
7072 				svd[svdcount++] = vd;
7073 				if (svdcount == SPA_DVAS_PER_BP)
7074 					break;
7075 			}
7076 			error = vdev_config_sync(svd, svdcount, txg);
7077 		} else {
7078 			error = vdev_config_sync(rvd->vdev_child,
7079 			    rvd->vdev_children, txg);
7080 		}
7081 
7082 		if (error == 0)
7083 			spa->spa_last_synced_guid = rvd->vdev_guid;
7084 
7085 		spa_config_exit(spa, SCL_STATE, FTAG);
7086 
7087 		if (error == 0)
7088 			break;
7089 		zio_suspend(spa, NULL);
7090 		zio_resume_wait(spa);
7091 	}
7092 	dmu_tx_commit(tx);
7093 
7094 #ifdef illumos
7095 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7096 #endif	/* illumos */
7097 #ifdef __FreeBSD__
7098 #ifdef _KERNEL
7099 	callout_drain(&spa->spa_deadman_cycid);
7100 #endif
7101 #endif	/* __FreeBSD__ */
7102 #ifdef __NetBSD__
7103 #ifdef _KERNEL
7104 	callout_drain(&spa->spa_deadman_cycid);
7105 #endif
7106 #endif	/* __NetBSD__ */
7107 
7108 	/*
7109 	 * Clear the dirty config list.
7110 	 */
7111 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7112 		vdev_config_clean(vd);
7113 
7114 	/*
7115 	 * Now that the new config has synced transactionally,
7116 	 * let it become visible to the config cache.
7117 	 */
7118 	if (spa->spa_config_syncing != NULL) {
7119 		spa_config_set(spa, spa->spa_config_syncing);
7120 		spa->spa_config_txg = txg;
7121 		spa->spa_config_syncing = NULL;
7122 	}
7123 
7124 	dsl_pool_sync_done(dp, txg);
7125 
7126 	mutex_enter(&spa->spa_alloc_lock);
7127 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7128 	mutex_exit(&spa->spa_alloc_lock);
7129 
7130 	/*
7131 	 * Update usable space statistics.
7132 	 */
7133 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7134 		vdev_sync_done(vd, txg);
7135 
7136 	spa_update_dspace(spa);
7137 
7138 	/*
7139 	 * It had better be the case that we didn't dirty anything
7140 	 * since vdev_config_sync().
7141 	 */
7142 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7143 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7144 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7145 
7146 	spa->spa_sync_pass = 0;
7147 
7148 	/*
7149 	 * Update the last synced uberblock here. We want to do this at
7150 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7151 	 * will be guaranteed that all the processing associated with
7152 	 * that txg has been completed.
7153 	 */
7154 	spa->spa_ubsync = spa->spa_uberblock;
7155 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7156 
7157 	spa_handle_ignored_writes(spa);
7158 
7159 	/*
7160 	 * If any async tasks have been requested, kick them off.
7161 	 */
7162 	spa_async_dispatch(spa);
7163 	spa_async_dispatch_vd(spa);
7164 }
7165 
7166 /*
7167  * Sync all pools.  We don't want to hold the namespace lock across these
7168  * operations, so we take a reference on the spa_t and drop the lock during the
7169  * sync.
7170  */
7171 void
spa_sync_allpools(void)7172 spa_sync_allpools(void)
7173 {
7174 	spa_t *spa = NULL;
7175 	mutex_enter(&spa_namespace_lock);
7176 	while ((spa = spa_next(spa)) != NULL) {
7177 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7178 		    !spa_writeable(spa) || spa_suspended(spa))
7179 			continue;
7180 		spa_open_ref(spa, FTAG);
7181 		mutex_exit(&spa_namespace_lock);
7182 		txg_wait_synced(spa_get_dsl(spa), 0);
7183 		mutex_enter(&spa_namespace_lock);
7184 		spa_close(spa, FTAG);
7185 	}
7186 	mutex_exit(&spa_namespace_lock);
7187 }
7188 
7189 /*
7190  * ==========================================================================
7191  * Miscellaneous routines
7192  * ==========================================================================
7193  */
7194 
7195 /*
7196  * Remove all pools in the system.
7197  */
7198 void
spa_evict_all(void)7199 spa_evict_all(void)
7200 {
7201 	spa_t *spa;
7202 
7203 	/*
7204 	 * Remove all cached state.  All pools should be closed now,
7205 	 * so every spa in the AVL tree should be unreferenced.
7206 	 */
7207 	mutex_enter(&spa_namespace_lock);
7208 	while ((spa = spa_next(NULL)) != NULL) {
7209 		/*
7210 		 * Stop async tasks.  The async thread may need to detach
7211 		 * a device that's been replaced, which requires grabbing
7212 		 * spa_namespace_lock, so we must drop it here.
7213 		 */
7214 		spa_open_ref(spa, FTAG);
7215 		mutex_exit(&spa_namespace_lock);
7216 		spa_async_suspend(spa);
7217 		mutex_enter(&spa_namespace_lock);
7218 		spa_close(spa, FTAG);
7219 
7220 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7221 			spa_unload(spa);
7222 			spa_deactivate(spa);
7223 		}
7224 		spa_remove(spa);
7225 	}
7226 	mutex_exit(&spa_namespace_lock);
7227 }
7228 
7229 vdev_t *
spa_lookup_by_guid(spa_t * spa,uint64_t guid,boolean_t aux)7230 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7231 {
7232 	vdev_t *vd;
7233 	int i;
7234 
7235 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7236 		return (vd);
7237 
7238 	if (aux) {
7239 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7240 			vd = spa->spa_l2cache.sav_vdevs[i];
7241 			if (vd->vdev_guid == guid)
7242 				return (vd);
7243 		}
7244 
7245 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7246 			vd = spa->spa_spares.sav_vdevs[i];
7247 			if (vd->vdev_guid == guid)
7248 				return (vd);
7249 		}
7250 	}
7251 
7252 	return (NULL);
7253 }
7254 
7255 void
spa_upgrade(spa_t * spa,uint64_t version)7256 spa_upgrade(spa_t *spa, uint64_t version)
7257 {
7258 	ASSERT(spa_writeable(spa));
7259 
7260 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7261 
7262 	/*
7263 	 * This should only be called for a non-faulted pool, and since a
7264 	 * future version would result in an unopenable pool, this shouldn't be
7265 	 * possible.
7266 	 */
7267 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7268 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7269 
7270 	spa->spa_uberblock.ub_version = version;
7271 	vdev_config_dirty(spa->spa_root_vdev);
7272 
7273 	spa_config_exit(spa, SCL_ALL, FTAG);
7274 
7275 	txg_wait_synced(spa_get_dsl(spa), 0);
7276 }
7277 
7278 boolean_t
spa_has_spare(spa_t * spa,uint64_t guid)7279 spa_has_spare(spa_t *spa, uint64_t guid)
7280 {
7281 	int i;
7282 	uint64_t spareguid;
7283 	spa_aux_vdev_t *sav = &spa->spa_spares;
7284 
7285 	for (i = 0; i < sav->sav_count; i++)
7286 		if (sav->sav_vdevs[i]->vdev_guid == guid)
7287 			return (B_TRUE);
7288 
7289 	for (i = 0; i < sav->sav_npending; i++) {
7290 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7291 		    &spareguid) == 0 && spareguid == guid)
7292 			return (B_TRUE);
7293 	}
7294 
7295 	return (B_FALSE);
7296 }
7297 
7298 /*
7299  * Check if a pool has an active shared spare device.
7300  * Note: reference count of an active spare is 2, as a spare and as a replace
7301  */
7302 static boolean_t
spa_has_active_shared_spare(spa_t * spa)7303 spa_has_active_shared_spare(spa_t *spa)
7304 {
7305 	int i, refcnt;
7306 	uint64_t pool;
7307 	spa_aux_vdev_t *sav = &spa->spa_spares;
7308 
7309 	for (i = 0; i < sav->sav_count; i++) {
7310 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7311 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7312 		    refcnt > 2)
7313 			return (B_TRUE);
7314 	}
7315 
7316 	return (B_FALSE);
7317 }
7318 
7319 static sysevent_t *
spa_event_create(spa_t * spa,vdev_t * vd,const char * name)7320 spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
7321 {
7322 	sysevent_t		*ev = NULL;
7323 #ifdef _KERNEL
7324 	sysevent_attr_list_t	*attr = NULL;
7325 	sysevent_value_t	value;
7326 
7327 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7328 	    SE_SLEEP);
7329 	ASSERT(ev != NULL);
7330 
7331 	value.value_type = SE_DATA_TYPE_STRING;
7332 	value.value.sv_string = spa_name(spa);
7333 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7334 		goto done;
7335 
7336 	value.value_type = SE_DATA_TYPE_UINT64;
7337 	value.value.sv_uint64 = spa_guid(spa);
7338 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7339 		goto done;
7340 
7341 	if (vd) {
7342 		value.value_type = SE_DATA_TYPE_UINT64;
7343 		value.value.sv_uint64 = vd->vdev_guid;
7344 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7345 		    SE_SLEEP) != 0)
7346 			goto done;
7347 
7348 		if (vd->vdev_path) {
7349 			value.value_type = SE_DATA_TYPE_STRING;
7350 			value.value.sv_string = vd->vdev_path;
7351 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7352 			    &value, SE_SLEEP) != 0)
7353 				goto done;
7354 		}
7355 	}
7356 
7357 	if (sysevent_attach_attributes(ev, attr) != 0)
7358 		goto done;
7359 	attr = NULL;
7360 
7361 done:
7362 	if (attr)
7363 		sysevent_free_attr(attr);
7364 
7365 #endif
7366 	return (ev);
7367 }
7368 
7369 static void
spa_event_post(sysevent_t * ev)7370 spa_event_post(sysevent_t *ev)
7371 {
7372 #ifdef _KERNEL
7373 	sysevent_id_t		eid;
7374 
7375 	(void) log_sysevent(ev, SE_SLEEP, &eid);
7376 	sysevent_free(ev);
7377 #endif
7378 }
7379 
7380 /*
7381  * Post a sysevent corresponding to the given event.  The 'name' must be one of
7382  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7383  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7384  * in the userland libzpool, as we don't want consumers to misinterpret ztest
7385  * or zdb as real changes.
7386  */
7387 void
spa_event_notify(spa_t * spa,vdev_t * vd,const char * name)7388 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7389 {
7390 	spa_event_post(spa_event_create(spa, vd, name));
7391 }
7392