xref: /openbsd/gnu/usr.bin/binutils/bfd/elf64-sparc.c (revision fda68da1)
1 /* SPARC-specific support for 64-bit ELF
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004 Free Software Foundation, Inc.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20 
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26 
27 /* This is defined if one wants to build upward compatible binaries
28    with the original sparc64-elf toolchain.  The support is kept in for
29    now but is turned off by default.  dje 970930  */
30 /*#define SPARC64_OLD_RELOCS*/
31 
32 #include "elf/sparc.h"
33 
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36 
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38   PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 	   bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43   PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45   PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46 
47 static void sparc64_elf_build_plt
48   PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50   PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52   PARAMS ((bfd_vma, bfd_vma));
53 
54 static bfd_boolean sparc64_elf_check_relocs
55   PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 	   const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58   PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60   PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62   PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64   PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
65 	   const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67   PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 	   bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 			    asection *, struct elf_link_hash_entry *)));
70 static void sparc64_elf_symbol_processing
71   PARAMS ((bfd *, asymbol *));
72 
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74   PARAMS ((bfd *, bfd *));
75 
76 static bfd_boolean sparc64_elf_fake_sections
77   PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
78 
79 static const char *sparc64_elf_print_symbol_all
80   PARAMS ((bfd *, PTR, asymbol *));
81 static bfd_boolean sparc64_elf_new_section_hook
82   PARAMS ((bfd *, asection *));
83 static bfd_boolean sparc64_elf_relax_section
84   PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85 static bfd_boolean sparc64_elf_relocate_section
86   PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 	   Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89   PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
90 	   Elf_Internal_Sym *));
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92   PARAMS ((bfd *, struct bfd_link_info *));
93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97   PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99   PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
100 static long sparc64_elf_canonicalize_reloc
101   PARAMS ((bfd *, asection *, arelent **, asymbol **));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103   PARAMS ((bfd *, arelent **, asymbol **));
104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106   PARAMS ((const Elf_Internal_Rela *));
107 
108 /* The relocation "howto" table.  */
109 
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118 
119 static reloc_howto_type sparc64_elf_howto_table[] =
120 {
121   HOWTO(R_SPARC_NONE,      0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_NONE",    FALSE,0,0x00000000,TRUE),
122   HOWTO(R_SPARC_8,         0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_8",       FALSE,0,0x000000ff,TRUE),
123   HOWTO(R_SPARC_16,        0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_16",      FALSE,0,0x0000ffff,TRUE),
124   HOWTO(R_SPARC_32,        0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_32",      FALSE,0,0xffffffff,TRUE),
125   HOWTO(R_SPARC_DISP8,     0,0, 8,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP8",   FALSE,0,0x000000ff,TRUE),
126   HOWTO(R_SPARC_DISP16,    0,1,16,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP16",  FALSE,0,0x0000ffff,TRUE),
127   HOWTO(R_SPARC_DISP32,    0,2,32,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP32",  FALSE,0,0xffffffff,TRUE),
128   HOWTO(R_SPARC_WDISP30,   2,2,30,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129   HOWTO(R_SPARC_WDISP22,   2,2,22,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130   HOWTO(R_SPARC_HI22,     10,2,22,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HI22",    FALSE,0,0x003fffff,TRUE),
131   HOWTO(R_SPARC_22,        0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_22",      FALSE,0,0x003fffff,TRUE),
132   HOWTO(R_SPARC_13,        0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_13",      FALSE,0,0x00001fff,TRUE),
133   HOWTO(R_SPARC_LO10,      0,2,10,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LO10",    FALSE,0,0x000003ff,TRUE),
134   HOWTO(R_SPARC_GOT10,     0,2,10,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT10",   FALSE,0,0x000003ff,TRUE),
135   HOWTO(R_SPARC_GOT13,     0,2,13,FALSE,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_GOT13",   FALSE,0,0x00001fff,TRUE),
136   HOWTO(R_SPARC_GOT22,    10,2,22,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT22",   FALSE,0,0x003fffff,TRUE),
137   HOWTO(R_SPARC_PC10,      0,2,10,TRUE, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC10",    FALSE,0,0x000003ff,TRUE),
138   HOWTO(R_SPARC_PC22,     10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PC22",    FALSE,0,0x003fffff,TRUE),
139   HOWTO(R_SPARC_WPLT30,    2,2,30,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WPLT30",  FALSE,0,0x3fffffff,TRUE),
140   HOWTO(R_SPARC_COPY,      0,0,00,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_COPY",    FALSE,0,0x00000000,TRUE),
141   HOWTO(R_SPARC_GLOB_DAT,  0,0,00,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142   HOWTO(R_SPARC_JMP_SLOT,  0,0,00,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143   HOWTO(R_SPARC_RELATIVE,  0,0,00,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144   HOWTO(R_SPARC_UA32,      0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA32",    FALSE,0,0xffffffff,TRUE),
145 #ifndef SPARC64_OLD_RELOCS
146   HOWTO(R_SPARC_PLT32,     0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT32",   FALSE,0,0xffffffff,TRUE),
147   /* These aren't implemented yet.  */
148   HOWTO(R_SPARC_HIPLT22,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_HIPLT22",  FALSE,0,0x00000000,TRUE),
149   HOWTO(R_SPARC_LOPLT10,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_LOPLT10",  FALSE,0,0x00000000,TRUE),
150   HOWTO(R_SPARC_PCPLT32,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT32",  FALSE,0,0x00000000,TRUE),
151   HOWTO(R_SPARC_PCPLT22,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT22",  FALSE,0,0x00000000,TRUE),
152   HOWTO(R_SPARC_PCPLT10,   0,0,00,FALSE,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT10",  FALSE,0,0x00000000,TRUE),
153 #endif
154   HOWTO(R_SPARC_10,        0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_10",      FALSE,0,0x000003ff,TRUE),
155   HOWTO(R_SPARC_11,        0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_11",      FALSE,0,0x000007ff,TRUE),
156   HOWTO(R_SPARC_64,        0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_64",      FALSE,0,MINUS_ONE, TRUE),
157   HOWTO(R_SPARC_OLO10,     0,2,13,FALSE,0,complain_overflow_signed,  sparc_elf_notsup_reloc, "R_SPARC_OLO10",   FALSE,0,0x00001fff,TRUE),
158   HOWTO(R_SPARC_HH22,     42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_HH22",    FALSE,0,0x003fffff,TRUE),
159   HOWTO(R_SPARC_HM10,     32,2,10,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HM10",    FALSE,0,0x000003ff,TRUE),
160   HOWTO(R_SPARC_LM22,     10,2,22,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LM22",    FALSE,0,0x003fffff,TRUE),
161   HOWTO(R_SPARC_PC_HH22,  42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_PC_HH22",    FALSE,0,0x003fffff,TRUE),
162   HOWTO(R_SPARC_PC_HM10,  32,2,10,TRUE, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_HM10",    FALSE,0,0x000003ff,TRUE),
163   HOWTO(R_SPARC_PC_LM22,  10,2,22,TRUE, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_LM22",    FALSE,0,0x003fffff,TRUE),
164   HOWTO(R_SPARC_WDISP16,   2,2,16,TRUE, 0,complain_overflow_signed,  sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165   HOWTO(R_SPARC_WDISP19,   2,2,19,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166   HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167   HOWTO(R_SPARC_7,         0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_7",       FALSE,0,0x0000007f,TRUE),
168   HOWTO(R_SPARC_5,         0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_5",       FALSE,0,0x0000001f,TRUE),
169   HOWTO(R_SPARC_6,         0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_6",       FALSE,0,0x0000003f,TRUE),
170   HOWTO(R_SPARC_DISP64,    0,4,64,TRUE, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP64",  FALSE,0,MINUS_ONE, TRUE),
171   HOWTO(R_SPARC_PLT64,     0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT64",   FALSE,0,MINUS_ONE, TRUE),
172   HOWTO(R_SPARC_HIX22,     0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,  "R_SPARC_HIX22",   FALSE,0,MINUS_ONE, FALSE),
173   HOWTO(R_SPARC_LOX10,     0,4, 0,FALSE,0,complain_overflow_dont,    sparc_elf_lox10_reloc,  "R_SPARC_LOX10",   FALSE,0,MINUS_ONE, FALSE),
174   HOWTO(R_SPARC_H44,      22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_H44",     FALSE,0,0x003fffff,FALSE),
175   HOWTO(R_SPARC_M44,      12,2,10,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_M44",     FALSE,0,0x000003ff,FALSE),
176   HOWTO(R_SPARC_L44,       0,2,13,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_L44",     FALSE,0,0x00000fff,FALSE),
177   HOWTO(R_SPARC_REGISTER,  0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178   HOWTO(R_SPARC_UA64,        0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA64",      FALSE,0,MINUS_ONE, TRUE),
179   HOWTO(R_SPARC_UA16,        0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA16",      FALSE,0,0x0000ffff,TRUE),
180   HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181   HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182   HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183   HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184   HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc,  "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185   HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186   HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187   HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc,  "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188   HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189   HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont,  sparc_elf_lox10_reloc,  "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190   HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191   HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192   HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193   HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont,     bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194   HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195   HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196   HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197   HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont,   sparc_elf_lox10_reloc,  "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198   HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199   HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont,  bfd_elf_generic_reloc,  "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200   HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201   HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202   HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203   HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont,   bfd_elf_generic_reloc,  "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
204 };
205 
206 struct elf_reloc_map {
207   bfd_reloc_code_real_type bfd_reloc_val;
208   unsigned char elf_reloc_val;
209 };
210 
211 static const struct elf_reloc_map sparc_reloc_map[] =
212 {
213   { BFD_RELOC_NONE, R_SPARC_NONE, },
214   { BFD_RELOC_16, R_SPARC_16, },
215   { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
216   { BFD_RELOC_8, R_SPARC_8 },
217   { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218   { BFD_RELOC_CTOR, R_SPARC_64 },
219   { BFD_RELOC_32, R_SPARC_32 },
220   { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221   { BFD_RELOC_HI22, R_SPARC_HI22 },
222   { BFD_RELOC_LO10, R_SPARC_LO10, },
223   { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
224   { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
225   { BFD_RELOC_SPARC22, R_SPARC_22 },
226   { BFD_RELOC_SPARC13, R_SPARC_13 },
227   { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228   { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229   { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230   { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231   { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232   { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233   { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234   { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235   { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236   { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237   { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
238   { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239   { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240   { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241   { BFD_RELOC_SPARC_10, R_SPARC_10 },
242   { BFD_RELOC_SPARC_11, R_SPARC_11 },
243   { BFD_RELOC_SPARC_64, R_SPARC_64 },
244   { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245   { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246   { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247   { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248   { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249   { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250   { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251   { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252   { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253   { BFD_RELOC_SPARC_7, R_SPARC_7 },
254   { BFD_RELOC_SPARC_5, R_SPARC_5 },
255   { BFD_RELOC_SPARC_6, R_SPARC_6 },
256   { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
257   { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258   { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259   { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260   { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261   { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262   { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263   { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264   { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265   { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266   { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267   { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268   { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269   { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270   { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271   { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272   { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273   { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274   { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275   { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276   { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277   { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278   { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279   { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280   { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
281 #ifndef SPARC64_OLD_RELOCS
282   { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
283 #endif
284   { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285   { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286   { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287   { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288   { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289   { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290   { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
291 };
292 
293 static reloc_howto_type *
sparc64_elf_reloc_type_lookup(abfd,code)294 sparc64_elf_reloc_type_lookup (abfd, code)
295      bfd *abfd ATTRIBUTE_UNUSED;
296      bfd_reloc_code_real_type code;
297 {
298   unsigned int i;
299   for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
300     {
301       if (sparc_reloc_map[i].bfd_reloc_val == code)
302 	return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
303     }
304   return 0;
305 }
306 
307 static void
sparc64_elf_info_to_howto(abfd,cache_ptr,dst)308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
309      bfd *abfd ATTRIBUTE_UNUSED;
310      arelent *cache_ptr;
311      Elf_Internal_Rela *dst;
312 {
313   BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314   cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
315 }
316 
317 struct sparc64_elf_section_data
318 {
319   struct bfd_elf_section_data elf;
320   unsigned int do_relax, reloc_count;
321 };
322 
323 #define sec_do_relax(sec) \
324   ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326   ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
327 
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329    section can represent up to two relocs, we must tell the user to allocate
330    more space.  */
331 
332 static long
sparc64_elf_get_reloc_upper_bound(abfd,sec)333 sparc64_elf_get_reloc_upper_bound (abfd, sec)
334      bfd *abfd ATTRIBUTE_UNUSED;
335      asection *sec;
336 {
337   return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
338 }
339 
340 static long
sparc64_elf_get_dynamic_reloc_upper_bound(abfd)341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
342      bfd *abfd;
343 {
344   return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
345 }
346 
347 /* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
348    them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
349    has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
350    for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
351 
352 static bfd_boolean
sparc64_elf_slurp_one_reloc_table(abfd,asect,rel_hdr,symbols,dynamic)353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
354      bfd *abfd;
355      asection *asect;
356      Elf_Internal_Shdr *rel_hdr;
357      asymbol **symbols;
358      bfd_boolean dynamic;
359 {
360   PTR allocated = NULL;
361   bfd_byte *native_relocs;
362   arelent *relent;
363   unsigned int i;
364   int entsize;
365   bfd_size_type count;
366   arelent *relents;
367 
368   allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
369   if (allocated == NULL)
370     goto error_return;
371 
372   if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
373       || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
374     goto error_return;
375 
376   native_relocs = (bfd_byte *) allocated;
377 
378   relents = asect->relocation + canon_reloc_count (asect);
379 
380   entsize = rel_hdr->sh_entsize;
381   BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
382 
383   count = rel_hdr->sh_size / entsize;
384 
385   for (i = 0, relent = relents; i < count;
386        i++, relent++, native_relocs += entsize)
387     {
388       Elf_Internal_Rela rela;
389 
390       bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
391 
392       /* The address of an ELF reloc is section relative for an object
393 	 file, and absolute for an executable file or shared library.
394 	 The address of a normal BFD reloc is always section relative,
395 	 and the address of a dynamic reloc is absolute..  */
396       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 	relent->address = rela.r_offset;
398       else
399 	relent->address = rela.r_offset - asect->vma;
400 
401       if (ELF64_R_SYM (rela.r_info) == 0)
402 	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403       else
404 	{
405 	  asymbol **ps, *s;
406 
407 	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
408 	  s = *ps;
409 
410 	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
411 	  if ((s->flags & BSF_SECTION_SYM) == 0)
412 	    relent->sym_ptr_ptr = ps;
413 	  else
414 	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
415 	}
416 
417       relent->addend = rela.r_addend;
418 
419       BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420       if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
421 	{
422 	  relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 	  relent[1].address = relent->address;
424 	  relent++;
425 	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 	  relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
428 	}
429       else
430 	relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
431     }
432 
433   canon_reloc_count (asect) += relent - relents;
434 
435   if (allocated != NULL)
436     free (allocated);
437 
438   return TRUE;
439 
440  error_return:
441   if (allocated != NULL)
442     free (allocated);
443   return FALSE;
444 }
445 
446 /* Read in and swap the external relocs.  */
447 
448 static bfd_boolean
sparc64_elf_slurp_reloc_table(abfd,asect,symbols,dynamic)449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
450      bfd *abfd;
451      asection *asect;
452      asymbol **symbols;
453      bfd_boolean dynamic;
454 {
455   struct bfd_elf_section_data * const d = elf_section_data (asect);
456   Elf_Internal_Shdr *rel_hdr;
457   Elf_Internal_Shdr *rel_hdr2;
458   bfd_size_type amt;
459 
460   if (asect->relocation != NULL)
461     return TRUE;
462 
463   if (! dynamic)
464     {
465       if ((asect->flags & SEC_RELOC) == 0
466 	  || asect->reloc_count == 0)
467 	return TRUE;
468 
469       rel_hdr = &d->rel_hdr;
470       rel_hdr2 = d->rel_hdr2;
471 
472       BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
474     }
475   else
476     {
477       /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 	 case because relocations against this section may use the
479 	 dynamic symbol table, and in that case bfd_section_from_shdr
480 	 in elf.c does not update the RELOC_COUNT.  */
481       if (asect->_raw_size == 0)
482 	return TRUE;
483 
484       rel_hdr = &d->this_hdr;
485       asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
486       rel_hdr2 = NULL;
487     }
488 
489   amt = asect->reloc_count;
490   amt *= 2 * sizeof (arelent);
491   asect->relocation = (arelent *) bfd_alloc (abfd, amt);
492   if (asect->relocation == NULL)
493     return FALSE;
494 
495   /* The sparc64_elf_slurp_one_reloc_table routine increments
496      canon_reloc_count.  */
497   canon_reloc_count (asect) = 0;
498 
499   if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
500 					  dynamic))
501     return FALSE;
502 
503   if (rel_hdr2
504       && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
505 					     dynamic))
506     return FALSE;
507 
508   return TRUE;
509 }
510 
511 /* Canonicalize the relocs.  */
512 
513 static long
sparc64_elf_canonicalize_reloc(abfd,section,relptr,symbols)514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
515      bfd *abfd;
516      sec_ptr section;
517      arelent **relptr;
518      asymbol **symbols;
519 {
520   arelent *tblptr;
521   unsigned int i;
522   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
523 
524   if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
525     return -1;
526 
527   tblptr = section->relocation;
528   for (i = 0; i < canon_reloc_count (section); i++)
529     *relptr++ = tblptr++;
530 
531   *relptr = NULL;
532 
533   return canon_reloc_count (section);
534 }
535 
536 
537 /* Canonicalize the dynamic relocation entries.  Note that we return
538    the dynamic relocations as a single block, although they are
539    actually associated with particular sections; the interface, which
540    was designed for SunOS style shared libraries, expects that there
541    is only one set of dynamic relocs.  Any section that was actually
542    installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543    the dynamic symbol table, is considered to be a dynamic reloc
544    section.  */
545 
546 static long
sparc64_elf_canonicalize_dynamic_reloc(abfd,storage,syms)547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
548      bfd *abfd;
549      arelent **storage;
550      asymbol **syms;
551 {
552   asection *s;
553   long ret;
554 
555   if (elf_dynsymtab (abfd) == 0)
556     {
557       bfd_set_error (bfd_error_invalid_operation);
558       return -1;
559     }
560 
561   ret = 0;
562   for (s = abfd->sections; s != NULL; s = s->next)
563     {
564       if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
566 	{
567 	  arelent *p;
568 	  long count, i;
569 
570 	  if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
571 	    return -1;
572 	  count = canon_reloc_count (s);
573 	  p = s->relocation;
574 	  for (i = 0; i < count; i++)
575 	    *storage++ = p++;
576 	  ret += count;
577 	}
578     }
579 
580   *storage = NULL;
581 
582   return ret;
583 }
584 
585 /* Write out the relocs.  */
586 
587 static void
sparc64_elf_write_relocs(abfd,sec,data)588 sparc64_elf_write_relocs (abfd, sec, data)
589      bfd *abfd;
590      asection *sec;
591      PTR data;
592 {
593   bfd_boolean *failedp = (bfd_boolean *) data;
594   Elf_Internal_Shdr *rela_hdr;
595   Elf64_External_Rela *outbound_relocas, *src_rela;
596   unsigned int idx, count;
597   asymbol *last_sym = 0;
598   int last_sym_idx = 0;
599 
600   /* If we have already failed, don't do anything.  */
601   if (*failedp)
602     return;
603 
604   if ((sec->flags & SEC_RELOC) == 0)
605     return;
606 
607   /* The linker backend writes the relocs out itself, and sets the
608      reloc_count field to zero to inhibit writing them here.  Also,
609      sometimes the SEC_RELOC flag gets set even when there aren't any
610      relocs.  */
611   if (sec->reloc_count == 0)
612     return;
613 
614   /* We can combine two relocs that refer to the same address
615      into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616      latter is R_SPARC_13 with no associated symbol.  */
617   count = 0;
618   for (idx = 0; idx < sec->reloc_count; idx++)
619     {
620       bfd_vma addr;
621 
622       ++count;
623 
624       addr = sec->orelocation[idx]->address;
625       if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 	  && idx < sec->reloc_count - 1)
627 	{
628 	  arelent *r = sec->orelocation[idx + 1];
629 
630 	  if (r->howto->type == R_SPARC_13
631 	      && r->address == addr
632 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 	      && (*r->sym_ptr_ptr)->value == 0)
634 	    ++idx;
635 	}
636     }
637 
638   rela_hdr = &elf_section_data (sec)->rel_hdr;
639 
640   rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641   rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642   if (rela_hdr->contents == NULL)
643     {
644       *failedp = TRUE;
645       return;
646     }
647 
648   /* Figure out whether the relocations are RELA or REL relocations.  */
649   if (rela_hdr->sh_type != SHT_RELA)
650     abort ();
651 
652   /* orelocation has the data, reloc_count has the count...  */
653   outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
654   src_rela = outbound_relocas;
655 
656   for (idx = 0; idx < sec->reloc_count; idx++)
657     {
658       Elf_Internal_Rela dst_rela;
659       arelent *ptr;
660       asymbol *sym;
661       int n;
662 
663       ptr = sec->orelocation[idx];
664 
665       /* The address of an ELF reloc is section relative for an object
666 	 file, and absolute for an executable file or shared library.
667 	 The address of a BFD reloc is always section relative.  */
668       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 	dst_rela.r_offset = ptr->address;
670       else
671 	dst_rela.r_offset = ptr->address + sec->vma;
672 
673       sym = *ptr->sym_ptr_ptr;
674       if (sym == last_sym)
675 	n = last_sym_idx;
676       else if (bfd_is_abs_section (sym->section) && sym->value == 0)
677 	n = STN_UNDEF;
678       else
679 	{
680 	  last_sym = sym;
681 	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
682 	  if (n < 0)
683 	    {
684 	      *failedp = TRUE;
685 	      return;
686 	    }
687 	  last_sym_idx = n;
688 	}
689 
690       if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 	  && ! _bfd_elf_validate_reloc (abfd, ptr))
693 	{
694 	  *failedp = TRUE;
695 	  return;
696 	}
697 
698       if (ptr->howto->type == R_SPARC_LO10
699 	  && idx < sec->reloc_count - 1)
700 	{
701 	  arelent *r = sec->orelocation[idx + 1];
702 
703 	  if (r->howto->type == R_SPARC_13
704 	      && r->address == ptr->address
705 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 	      && (*r->sym_ptr_ptr)->value == 0)
707 	    {
708 	      idx++;
709 	      dst_rela.r_info
710 		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
711 						      R_SPARC_OLO10));
712 	    }
713 	  else
714 	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
715 	}
716       else
717 	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
718 
719       dst_rela.r_addend = ptr->addend;
720       bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
721       ++src_rela;
722     }
723 }
724 
725 /* Sparc64 ELF linker hash table.  */
726 
727 struct sparc64_elf_app_reg
728 {
729   unsigned char bind;
730   unsigned short shndx;
731   bfd *abfd;
732   char *name;
733 };
734 
735 struct sparc64_elf_link_hash_table
736 {
737   struct elf_link_hash_table root;
738 
739   struct sparc64_elf_app_reg app_regs [4];
740 };
741 
742 /* Get the Sparc64 ELF linker hash table from a link_info structure.  */
743 
744 #define sparc64_elf_hash_table(p) \
745   ((struct sparc64_elf_link_hash_table *) ((p)->hash))
746 
747 /* Create a Sparc64 ELF linker hash table.  */
748 
749 static struct bfd_link_hash_table *
sparc64_elf_bfd_link_hash_table_create(abfd)750 sparc64_elf_bfd_link_hash_table_create (abfd)
751      bfd *abfd;
752 {
753   struct sparc64_elf_link_hash_table *ret;
754   bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
755 
756   ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
757   if (ret == (struct sparc64_elf_link_hash_table *) NULL)
758     return NULL;
759 
760   if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 				       _bfd_elf_link_hash_newfunc))
762     {
763       free (ret);
764       return NULL;
765     }
766 
767   return &ret->root.root;
768 }
769 
770 /* Utility for performing the standard initial work of an instruction
771    relocation.
772    *PRELOCATION will contain the relocated item.
773    *PINSN will contain the instruction from the input stream.
774    If the result is `bfd_reloc_other' the caller can continue with
775    performing the relocation.  Otherwise it must stop and return the
776    value to its caller.  */
777 
778 static bfd_reloc_status_type
init_insn_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,prelocation,pinsn)779 init_insn_reloc (abfd,
780 		 reloc_entry,
781 		 symbol,
782 		 data,
783 		 input_section,
784 		 output_bfd,
785 		 prelocation,
786 		 pinsn)
787      bfd *abfd;
788      arelent *reloc_entry;
789      asymbol *symbol;
790      PTR data;
791      asection *input_section;
792      bfd *output_bfd;
793      bfd_vma *prelocation;
794      bfd_vma *pinsn;
795 {
796   bfd_vma relocation;
797   reloc_howto_type *howto = reloc_entry->howto;
798 
799   if (output_bfd != (bfd *) NULL
800       && (symbol->flags & BSF_SECTION_SYM) == 0
801       && (! howto->partial_inplace
802 	  || reloc_entry->addend == 0))
803     {
804       reloc_entry->address += input_section->output_offset;
805       return bfd_reloc_ok;
806     }
807 
808   /* This works because partial_inplace is FALSE.  */
809   if (output_bfd != NULL)
810     return bfd_reloc_continue;
811 
812   if (reloc_entry->address > input_section->_cooked_size)
813     return bfd_reloc_outofrange;
814 
815   relocation = (symbol->value
816 		+ symbol->section->output_section->vma
817 		+ symbol->section->output_offset);
818   relocation += reloc_entry->addend;
819   if (howto->pc_relative)
820     {
821       relocation -= (input_section->output_section->vma
822 		     + input_section->output_offset);
823       relocation -= reloc_entry->address;
824     }
825 
826   *prelocation = relocation;
827   *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
828   return bfd_reloc_other;
829 }
830 
831 /* For unsupported relocs.  */
832 
833 static bfd_reloc_status_type
sparc_elf_notsup_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)834 sparc_elf_notsup_reloc (abfd,
835 			reloc_entry,
836 			symbol,
837 			data,
838 			input_section,
839 			output_bfd,
840 			error_message)
841      bfd *abfd ATTRIBUTE_UNUSED;
842      arelent *reloc_entry ATTRIBUTE_UNUSED;
843      asymbol *symbol ATTRIBUTE_UNUSED;
844      PTR data ATTRIBUTE_UNUSED;
845      asection *input_section ATTRIBUTE_UNUSED;
846      bfd *output_bfd ATTRIBUTE_UNUSED;
847      char **error_message ATTRIBUTE_UNUSED;
848 {
849   return bfd_reloc_notsupported;
850 }
851 
852 /* Handle the WDISP16 reloc.  */
853 
854 static bfd_reloc_status_type
sparc_elf_wdisp16_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)855 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
856 			 output_bfd, error_message)
857      bfd *abfd;
858      arelent *reloc_entry;
859      asymbol *symbol;
860      PTR data;
861      asection *input_section;
862      bfd *output_bfd;
863      char **error_message ATTRIBUTE_UNUSED;
864 {
865   bfd_vma relocation;
866   bfd_vma insn;
867   bfd_reloc_status_type status;
868 
869   status = init_insn_reloc (abfd, reloc_entry, symbol, data,
870 			    input_section, output_bfd, &relocation, &insn);
871   if (status != bfd_reloc_other)
872     return status;
873 
874   insn &= ~ (bfd_vma) 0x303fff;
875   insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
876   bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
877 
878   if ((bfd_signed_vma) relocation < - 0x40000
879       || (bfd_signed_vma) relocation > 0x3ffff)
880     return bfd_reloc_overflow;
881   else
882     return bfd_reloc_ok;
883 }
884 
885 /* Handle the HIX22 reloc.  */
886 
887 static bfd_reloc_status_type
sparc_elf_hix22_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)888 sparc_elf_hix22_reloc (abfd,
889 		       reloc_entry,
890 		       symbol,
891 		       data,
892 		       input_section,
893 		       output_bfd,
894 		       error_message)
895      bfd *abfd;
896      arelent *reloc_entry;
897      asymbol *symbol;
898      PTR data;
899      asection *input_section;
900      bfd *output_bfd;
901      char **error_message ATTRIBUTE_UNUSED;
902 {
903   bfd_vma relocation;
904   bfd_vma insn;
905   bfd_reloc_status_type status;
906 
907   status = init_insn_reloc (abfd, reloc_entry, symbol, data,
908 			    input_section, output_bfd, &relocation, &insn);
909   if (status != bfd_reloc_other)
910     return status;
911 
912   relocation ^= MINUS_ONE;
913   insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
914   bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
915 
916   if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
917     return bfd_reloc_overflow;
918   else
919     return bfd_reloc_ok;
920 }
921 
922 /* Handle the LOX10 reloc.  */
923 
924 static bfd_reloc_status_type
sparc_elf_lox10_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)925 sparc_elf_lox10_reloc (abfd,
926 		       reloc_entry,
927 		       symbol,
928 		       data,
929 		       input_section,
930 		       output_bfd,
931 		       error_message)
932      bfd *abfd;
933      arelent *reloc_entry;
934      asymbol *symbol;
935      PTR data;
936      asection *input_section;
937      bfd *output_bfd;
938      char **error_message ATTRIBUTE_UNUSED;
939 {
940   bfd_vma relocation;
941   bfd_vma insn;
942   bfd_reloc_status_type status;
943 
944   status = init_insn_reloc (abfd, reloc_entry, symbol, data,
945 			    input_section, output_bfd, &relocation, &insn);
946   if (status != bfd_reloc_other)
947     return status;
948 
949   insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
950   bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
951 
952   return bfd_reloc_ok;
953 }
954 
955 /* PLT/GOT stuff */
956 
957 /* Both the headers and the entries are icache aligned.  */
958 #define PLT_ENTRY_SIZE		32
959 #define PLT_HEADER_SIZE		(4 * PLT_ENTRY_SIZE)
960 #define LARGE_PLT_THRESHOLD	32768
961 #define GOT_RESERVED_ENTRIES	1
962 
963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
964 
965 /* Fill in the .plt section.  */
966 
967 static void
sparc64_elf_build_plt(output_bfd,contents,nentries)968 sparc64_elf_build_plt (output_bfd, contents, nentries)
969      bfd *output_bfd;
970      unsigned char *contents;
971      int nentries;
972 {
973   const unsigned int nop = 0x01000000;
974   int i, j;
975 
976   /* The first four entries are reserved, and are initially undefined.
977      We fill them with `illtrap 0' to force ld.so to do something.  */
978 
979   for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
980     bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
981 
982   /* The first 32768 entries are close enough to plt1 to get there via
983      a straight branch.  */
984 
985   for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
986     {
987       unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
988       unsigned int sethi, ba;
989 
990       /* sethi (. - plt0), %g1 */
991       sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
992 
993       /* ba,a,pt %xcc, plt1 */
994       ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
995 
996       bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
997       bfd_put_32 (output_bfd, (bfd_vma) ba,    entry + 4);
998       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 8);
999       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 12);
1000       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 16);
1001       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 20);
1002       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 24);
1003       bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 28);
1004     }
1005 
1006   /* Now the tricky bit.  Entries 32768 and higher are grouped in blocks of
1007      160: 160 entries and 160 pointers.  This is to separate code from data,
1008      which is much friendlier on the cache.  */
1009 
1010   for (; i < nentries; i += 160)
1011     {
1012       int block = (i + 160 <= nentries ? 160 : nentries - i);
1013       for (j = 0; j < block; ++j)
1014 	{
1015 	  unsigned char *entry, *ptr;
1016 	  unsigned int ldx;
1017 
1018 	  entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1019 	  ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1020 
1021 	  /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 	  ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1023 
1024 	  /* mov %o7,%g5
1025 	     call .+8
1026 	     nop
1027 	     ldx [%o7+P],%g1
1028 	     jmpl %o7+%g1,%g1
1029 	     mov %g5,%o7  */
1030 	  bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1031 	  bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1032 	  bfd_put_32 (output_bfd, (bfd_vma) nop,        entry + 8);
1033 	  bfd_put_32 (output_bfd, (bfd_vma) ldx,        entry + 12);
1034 	  bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1035 	  bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1036 
1037 	  bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1038 	}
1039     }
1040 }
1041 
1042 /* Return the offset of a particular plt entry within the .plt section.  */
1043 
1044 static bfd_vma
sparc64_elf_plt_entry_offset(index)1045 sparc64_elf_plt_entry_offset (index)
1046      bfd_vma index;
1047 {
1048   bfd_vma block, ofs;
1049 
1050   if (index < LARGE_PLT_THRESHOLD)
1051     return index * PLT_ENTRY_SIZE;
1052 
1053   /* See above for details.  */
1054 
1055   block = (index - LARGE_PLT_THRESHOLD) / 160;
1056   ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1057 
1058   return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1059 }
1060 
1061 static bfd_vma
sparc64_elf_plt_ptr_offset(index,max)1062 sparc64_elf_plt_ptr_offset (index, max)
1063      bfd_vma index;
1064      bfd_vma max;
1065 {
1066   bfd_vma block, ofs, last;
1067 
1068   BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1069 
1070   /* See above for details.  */
1071 
1072   block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1073   ofs = index - block;
1074   if (block + 160 > max)
1075     last = (max - LARGE_PLT_THRESHOLD) % 160;
1076   else
1077     last = 160;
1078 
1079   return (block * PLT_ENTRY_SIZE
1080 	  + last * 6*4
1081 	  + ofs * 8);
1082 }
1083 
1084 /* Look through the relocs for a section during the first phase, and
1085    allocate space in the global offset table or procedure linkage
1086    table.  */
1087 
1088 static bfd_boolean
sparc64_elf_check_relocs(abfd,info,sec,relocs)1089 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1090      bfd *abfd;
1091      struct bfd_link_info *info;
1092      asection *sec;
1093      const Elf_Internal_Rela *relocs;
1094 {
1095   bfd *dynobj;
1096   Elf_Internal_Shdr *symtab_hdr;
1097   struct elf_link_hash_entry **sym_hashes;
1098   bfd_vma *local_got_offsets;
1099   const Elf_Internal_Rela *rel;
1100   const Elf_Internal_Rela *rel_end;
1101   asection *sgot;
1102   asection *srelgot;
1103   asection *sreloc;
1104 
1105   if (info->relocatable || !(sec->flags & SEC_ALLOC))
1106     return TRUE;
1107 
1108   dynobj = elf_hash_table (info)->dynobj;
1109   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1110   sym_hashes = elf_sym_hashes (abfd);
1111   local_got_offsets = elf_local_got_offsets (abfd);
1112 
1113   sgot = NULL;
1114   srelgot = NULL;
1115   sreloc = NULL;
1116 
1117   rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1118   for (rel = relocs; rel < rel_end; rel++)
1119     {
1120       unsigned long r_symndx;
1121       struct elf_link_hash_entry *h;
1122 
1123       r_symndx = ELF64_R_SYM (rel->r_info);
1124       if (r_symndx < symtab_hdr->sh_info)
1125 	h = NULL;
1126       else
1127 	h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1128 
1129       switch (ELF64_R_TYPE_ID (rel->r_info))
1130 	{
1131 	case R_SPARC_GOT10:
1132 	case R_SPARC_GOT13:
1133 	case R_SPARC_GOT22:
1134 	  /* This symbol requires a global offset table entry.  */
1135 
1136 	  if (dynobj == NULL)
1137 	    {
1138 	      /* Create the .got section.  */
1139 	      elf_hash_table (info)->dynobj = dynobj = abfd;
1140 	      if (! _bfd_elf_create_got_section (dynobj, info))
1141 		return FALSE;
1142 	    }
1143 
1144 	  if (sgot == NULL)
1145 	    {
1146 	      sgot = bfd_get_section_by_name (dynobj, ".got");
1147 	      BFD_ASSERT (sgot != NULL);
1148 	    }
1149 
1150 	  if (srelgot == NULL && (h != NULL || info->shared))
1151 	    {
1152 	      srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1153 	      if (srelgot == NULL)
1154 		{
1155 		  srelgot = bfd_make_section (dynobj, ".rela.got");
1156 		  if (srelgot == NULL
1157 		      || ! bfd_set_section_flags (dynobj, srelgot,
1158 						  (SEC_ALLOC
1159 						   | SEC_LOAD
1160 						   | SEC_HAS_CONTENTS
1161 						   | SEC_IN_MEMORY
1162 						   | SEC_LINKER_CREATED
1163 						   | SEC_READONLY))
1164 		      || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1165 		    return FALSE;
1166 		}
1167 	    }
1168 
1169 	  if (h != NULL)
1170 	    {
1171 	      if (h->got.offset != (bfd_vma) -1)
1172 		{
1173 		  /* We have already allocated space in the .got.  */
1174 		  break;
1175 		}
1176 	      h->got.offset = sgot->_raw_size;
1177 
1178 	      /* Make sure this symbol is output as a dynamic symbol.  */
1179 	      if (h->dynindx == -1)
1180 		{
1181 		  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1182 		    return FALSE;
1183 		}
1184 
1185 	      srelgot->_raw_size += sizeof (Elf64_External_Rela);
1186 	    }
1187 	  else
1188 	    {
1189 	      /* This is a global offset table entry for a local
1190                  symbol.  */
1191 	      if (local_got_offsets == NULL)
1192 		{
1193 		  bfd_size_type size;
1194 		  register unsigned int i;
1195 
1196 		  size = symtab_hdr->sh_info;
1197 		  size *= sizeof (bfd_vma);
1198 		  local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1199 		  if (local_got_offsets == NULL)
1200 		    return FALSE;
1201 		  elf_local_got_offsets (abfd) = local_got_offsets;
1202 		  for (i = 0; i < symtab_hdr->sh_info; i++)
1203 		    local_got_offsets[i] = (bfd_vma) -1;
1204 		}
1205 	      if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1206 		{
1207 		  /* We have already allocated space in the .got.  */
1208 		  break;
1209 		}
1210 	      local_got_offsets[r_symndx] = sgot->_raw_size;
1211 
1212 	      if (info->shared)
1213 		{
1214 		  /* If we are generating a shared object, we need to
1215                      output a R_SPARC_RELATIVE reloc so that the
1216                      dynamic linker can adjust this GOT entry.  */
1217 		  srelgot->_raw_size += sizeof (Elf64_External_Rela);
1218 		}
1219 	    }
1220 
1221 	  sgot->_raw_size += 8;
1222 
1223 #if 0
1224 	  /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 	     unsigned numbers.  If we permit ourselves to modify
1226 	     code so we get sethi/xor, this could work.
1227 	     Question: do we consider conditionally re-enabling
1228              this for -fpic, once we know about object code models?  */
1229 	  /* If the .got section is more than 0x1000 bytes, we add
1230 	     0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 	     bit relocations have a greater chance of working.  */
1232 	  if (sgot->_raw_size >= 0x1000
1233 	      && elf_hash_table (info)->hgot->root.u.def.value == 0)
1234 	    elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1235 #endif
1236 
1237 	  break;
1238 
1239 	case R_SPARC_WPLT30:
1240 	case R_SPARC_PLT32:
1241 	case R_SPARC_HIPLT22:
1242 	case R_SPARC_LOPLT10:
1243 	case R_SPARC_PCPLT32:
1244 	case R_SPARC_PCPLT22:
1245 	case R_SPARC_PCPLT10:
1246 	case R_SPARC_PLT64:
1247 	  /* This symbol requires a procedure linkage table entry.  We
1248              actually build the entry in adjust_dynamic_symbol,
1249              because this might be a case of linking PIC code without
1250              linking in any dynamic objects, in which case we don't
1251              need to generate a procedure linkage table after all.  */
1252 
1253 	  if (h == NULL)
1254 	    {
1255 	      /* It does not make sense to have a procedure linkage
1256                  table entry for a local symbol.  */
1257 	      bfd_set_error (bfd_error_bad_value);
1258 	      return FALSE;
1259 	    }
1260 
1261 	  /* Make sure this symbol is output as a dynamic symbol.  */
1262 	  if (h->dynindx == -1)
1263 	    {
1264 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
1265 		return FALSE;
1266 	    }
1267 
1268 	  h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1269 	  if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1270 	      && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1271 	    break;
1272 	  /* Fall through.  */
1273 	case R_SPARC_PC10:
1274 	case R_SPARC_PC22:
1275 	case R_SPARC_PC_HH22:
1276 	case R_SPARC_PC_HM10:
1277 	case R_SPARC_PC_LM22:
1278 	  if (h != NULL
1279 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1280 	    break;
1281 	  /* Fall through.  */
1282 	case R_SPARC_DISP8:
1283 	case R_SPARC_DISP16:
1284 	case R_SPARC_DISP32:
1285 	case R_SPARC_DISP64:
1286 	case R_SPARC_WDISP30:
1287 	case R_SPARC_WDISP22:
1288 	case R_SPARC_WDISP19:
1289 	case R_SPARC_WDISP16:
1290 	  if (h == NULL)
1291 	    break;
1292 	  /* Fall through.  */
1293 	case R_SPARC_8:
1294 	case R_SPARC_16:
1295 	case R_SPARC_32:
1296 	case R_SPARC_HI22:
1297 	case R_SPARC_22:
1298 	case R_SPARC_13:
1299 	case R_SPARC_LO10:
1300 	case R_SPARC_UA32:
1301 	case R_SPARC_10:
1302 	case R_SPARC_11:
1303 	case R_SPARC_64:
1304 	case R_SPARC_OLO10:
1305 	case R_SPARC_HH22:
1306 	case R_SPARC_HM10:
1307 	case R_SPARC_LM22:
1308 	case R_SPARC_7:
1309 	case R_SPARC_5:
1310 	case R_SPARC_6:
1311 	case R_SPARC_HIX22:
1312 	case R_SPARC_LOX10:
1313 	case R_SPARC_H44:
1314 	case R_SPARC_M44:
1315 	case R_SPARC_L44:
1316 	case R_SPARC_UA64:
1317 	case R_SPARC_UA16:
1318 	  /* When creating a shared object, we must copy these relocs
1319 	     into the output file.  We create a reloc section in
1320 	     dynobj and make room for the reloc.
1321 
1322 	     But don't do this for debugging sections -- this shows up
1323 	     with DWARF2 -- first because they are not loaded, and
1324 	     second because DWARF sez the debug info is not to be
1325 	     biased by the load address.  */
1326 	  if (info->shared && (sec->flags & SEC_ALLOC))
1327 	    {
1328 	      if (sreloc == NULL)
1329 		{
1330 		  const char *name;
1331 
1332 		  name = (bfd_elf_string_from_elf_section
1333 			  (abfd,
1334 			   elf_elfheader (abfd)->e_shstrndx,
1335 			   elf_section_data (sec)->rel_hdr.sh_name));
1336 		  if (name == NULL)
1337 		    return FALSE;
1338 
1339 		  BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1340 			      && strcmp (bfd_get_section_name (abfd, sec),
1341 					 name + 5) == 0);
1342 
1343 		  sreloc = bfd_get_section_by_name (dynobj, name);
1344 		  if (sreloc == NULL)
1345 		    {
1346 		      flagword flags;
1347 
1348 		      sreloc = bfd_make_section (dynobj, name);
1349 		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1350 			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1351 		      if ((sec->flags & SEC_ALLOC) != 0)
1352 			flags |= SEC_ALLOC | SEC_LOAD;
1353 		      if (sreloc == NULL
1354 			  || ! bfd_set_section_flags (dynobj, sreloc, flags)
1355 			  || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1356 			return FALSE;
1357 		    }
1358 		  if (sec->flags & SEC_READONLY)
1359 		    info->flags |= DF_TEXTREL;
1360 		}
1361 
1362 	      sreloc->_raw_size += sizeof (Elf64_External_Rela);
1363 	    }
1364 	  break;
1365 
1366 	case R_SPARC_REGISTER:
1367 	  /* Nothing to do.  */
1368 	  break;
1369 
1370 	default:
1371 	  (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1372 				bfd_archive_filename (abfd),
1373 				ELF64_R_TYPE_ID (rel->r_info));
1374 	  return FALSE;
1375 	}
1376     }
1377 
1378   return TRUE;
1379 }
1380 
1381 /* Hook called by the linker routine which adds symbols from an object
1382    file.  We use it for STT_REGISTER symbols.  */
1383 
1384 static bfd_boolean
sparc64_elf_add_symbol_hook(abfd,info,sym,namep,flagsp,secp,valp)1385 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1386      bfd *abfd;
1387      struct bfd_link_info *info;
1388      Elf_Internal_Sym *sym;
1389      const char **namep;
1390      flagword *flagsp ATTRIBUTE_UNUSED;
1391      asection **secp ATTRIBUTE_UNUSED;
1392      bfd_vma *valp ATTRIBUTE_UNUSED;
1393 {
1394   static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1395 
1396   if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1397     {
1398       int reg;
1399       struct sparc64_elf_app_reg *p;
1400 
1401       reg = (int)sym->st_value;
1402       switch (reg & ~1)
1403 	{
1404 	case 2: reg -= 2; break;
1405 	case 6: reg -= 4; break;
1406 	default:
1407           (*_bfd_error_handler)
1408             (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1409              bfd_archive_filename (abfd));
1410 	  return FALSE;
1411 	}
1412 
1413       if (info->hash->creator != abfd->xvec
1414 	  || (abfd->flags & DYNAMIC) != 0)
1415         {
1416 	  /* STT_REGISTER only works when linking an elf64_sparc object.
1417 	     If STT_REGISTER comes from a dynamic object, don't put it into
1418 	     the output bfd.  The dynamic linker will recheck it.  */
1419 	  *namep = NULL;
1420 	  return TRUE;
1421         }
1422 
1423       p = sparc64_elf_hash_table(info)->app_regs + reg;
1424 
1425       if (p->name != NULL && strcmp (p->name, *namep))
1426 	{
1427           (*_bfd_error_handler)
1428             (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1429              (int) sym->st_value,
1430              **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1431              *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1432 	  return FALSE;
1433 	}
1434 
1435       if (p->name == NULL)
1436 	{
1437 	  if (**namep)
1438 	    {
1439 	      struct elf_link_hash_entry *h;
1440 
1441 	      h = (struct elf_link_hash_entry *)
1442 		bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1443 
1444 	      if (h != NULL)
1445 		{
1446 		  unsigned char type = h->type;
1447 
1448 		  if (type > STT_FUNC)
1449 		    type = 0;
1450 		  (*_bfd_error_handler)
1451 		    (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1452 		     *namep, bfd_archive_filename (abfd),
1453 		     stt_types[type], bfd_archive_filename (p->abfd));
1454 		  return FALSE;
1455 		}
1456 
1457 	      p->name = bfd_hash_allocate (&info->hash->table,
1458 					   strlen (*namep) + 1);
1459 	      if (!p->name)
1460 		return FALSE;
1461 
1462 	      strcpy (p->name, *namep);
1463 	    }
1464 	  else
1465 	    p->name = "";
1466 	  p->bind = ELF_ST_BIND (sym->st_info);
1467 	  p->abfd = abfd;
1468 	  p->shndx = sym->st_shndx;
1469 	}
1470       else
1471 	{
1472 	  if (p->bind == STB_WEAK
1473 	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1474 	    {
1475 	      p->bind = STB_GLOBAL;
1476 	      p->abfd = abfd;
1477 	    }
1478 	}
1479       *namep = NULL;
1480       return TRUE;
1481     }
1482   else if (*namep && **namep
1483 	   && info->hash->creator == abfd->xvec)
1484     {
1485       int i;
1486       struct sparc64_elf_app_reg *p;
1487 
1488       p = sparc64_elf_hash_table(info)->app_regs;
1489       for (i = 0; i < 4; i++, p++)
1490 	if (p->name != NULL && ! strcmp (p->name, *namep))
1491 	  {
1492 	    unsigned char type = ELF_ST_TYPE (sym->st_info);
1493 
1494 	    if (type > STT_FUNC)
1495 	      type = 0;
1496 	    (*_bfd_error_handler)
1497 	      (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1498 	       *namep, stt_types[type], bfd_archive_filename (abfd),
1499 	       bfd_archive_filename (p->abfd));
1500 	    return FALSE;
1501 	  }
1502     }
1503   return TRUE;
1504 }
1505 
1506 /* This function takes care of emitting STT_REGISTER symbols
1507    which we cannot easily keep in the symbol hash table.  */
1508 
1509 static bfd_boolean
sparc64_elf_output_arch_syms(output_bfd,info,finfo,func)1510 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1511      bfd *output_bfd ATTRIBUTE_UNUSED;
1512      struct bfd_link_info *info;
1513      PTR finfo;
1514      bfd_boolean (*func)
1515        PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1516 		struct elf_link_hash_entry *));
1517 {
1518   int reg;
1519   struct sparc64_elf_app_reg *app_regs =
1520     sparc64_elf_hash_table(info)->app_regs;
1521   Elf_Internal_Sym sym;
1522 
1523   /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1524      at the end of the dynlocal list, so they came at the end of the local
1525      symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
1526      to back up symtab->sh_info.  */
1527   if (elf_hash_table (info)->dynlocal)
1528     {
1529       bfd * dynobj = elf_hash_table (info)->dynobj;
1530       asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1531       struct elf_link_local_dynamic_entry *e;
1532 
1533       for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1534 	if (e->input_indx == -1)
1535 	  break;
1536       if (e)
1537 	{
1538 	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1539 	    = e->dynindx;
1540 	}
1541     }
1542 
1543   if (info->strip == strip_all)
1544     return TRUE;
1545 
1546   for (reg = 0; reg < 4; reg++)
1547     if (app_regs [reg].name != NULL)
1548       {
1549 	if (info->strip == strip_some
1550 	    && bfd_hash_lookup (info->keep_hash,
1551 				app_regs [reg].name,
1552 				FALSE, FALSE) == NULL)
1553 	  continue;
1554 
1555 	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1556 	sym.st_size = 0;
1557 	sym.st_other = 0;
1558 	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1559 	sym.st_shndx = app_regs [reg].shndx;
1560 	if (! (*func) (finfo, app_regs [reg].name, &sym,
1561 		       sym.st_shndx == SHN_ABS
1562 			 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1563 		       NULL))
1564 	  return FALSE;
1565       }
1566 
1567   return TRUE;
1568 }
1569 
1570 static int
sparc64_elf_get_symbol_type(elf_sym,type)1571 sparc64_elf_get_symbol_type (elf_sym, type)
1572      Elf_Internal_Sym * elf_sym;
1573      int type;
1574 {
1575   if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1576     return STT_REGISTER;
1577   else
1578     return type;
1579 }
1580 
1581 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1582    even in SHN_UNDEF section.  */
1583 
1584 static void
sparc64_elf_symbol_processing(abfd,asym)1585 sparc64_elf_symbol_processing (abfd, asym)
1586      bfd *abfd ATTRIBUTE_UNUSED;
1587      asymbol *asym;
1588 {
1589   elf_symbol_type *elfsym;
1590 
1591   elfsym = (elf_symbol_type *) asym;
1592   if (elfsym->internal_elf_sym.st_info
1593       == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1594     {
1595       asym->flags |= BSF_GLOBAL;
1596     }
1597 }
1598 
1599 /* Adjust a symbol defined by a dynamic object and referenced by a
1600    regular object.  The current definition is in some section of the
1601    dynamic object, but we're not including those sections.  We have to
1602    change the definition to something the rest of the link can
1603    understand.  */
1604 
1605 static bfd_boolean
sparc64_elf_adjust_dynamic_symbol(info,h)1606 sparc64_elf_adjust_dynamic_symbol (info, h)
1607      struct bfd_link_info *info;
1608      struct elf_link_hash_entry *h;
1609 {
1610   bfd *dynobj;
1611   asection *s;
1612   unsigned int power_of_two;
1613 
1614   dynobj = elf_hash_table (info)->dynobj;
1615 
1616   /* Make sure we know what is going on here.  */
1617   BFD_ASSERT (dynobj != NULL
1618 	      && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1619 		  || h->weakdef != NULL
1620 		  || ((h->elf_link_hash_flags
1621 		       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1622 		      && (h->elf_link_hash_flags
1623 			  & ELF_LINK_HASH_REF_REGULAR) != 0
1624 		      && (h->elf_link_hash_flags
1625 			  & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1626 
1627   /* If this is a function, put it in the procedure linkage table.  We
1628      will fill in the contents of the procedure linkage table later
1629      (although we could actually do it here).  The STT_NOTYPE
1630      condition is a hack specifically for the Oracle libraries
1631      delivered for Solaris; for some inexplicable reason, they define
1632      some of their functions as STT_NOTYPE when they really should be
1633      STT_FUNC.  */
1634   if (h->type == STT_FUNC
1635       || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1636       || (h->type == STT_NOTYPE
1637 	  && (h->root.type == bfd_link_hash_defined
1638 	      || h->root.type == bfd_link_hash_defweak)
1639 	  && (h->root.u.def.section->flags & SEC_CODE) != 0))
1640     {
1641       if (! info->shared
1642 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1643 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1644 	  && h->root.type != bfd_link_hash_undefweak
1645 	  && h->root.type != bfd_link_hash_undefined)
1646 	{
1647 	  /* This case can occur if we saw a WPLT30 reloc in an input
1648              file, but none of the input files were dynamic objects.
1649              In such a case, we don't actually need to build a
1650              procedure linkage table, and we can just do a WDISP30
1651              reloc instead.  */
1652 	  BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1653 	  return TRUE;
1654 	}
1655 
1656       s = bfd_get_section_by_name (dynobj, ".plt");
1657       BFD_ASSERT (s != NULL);
1658 
1659       /* The first four bit in .plt is reserved.  */
1660       if (s->_raw_size == 0)
1661 	s->_raw_size = PLT_HEADER_SIZE;
1662 
1663       /* To simplify matters later, just store the plt index here.  */
1664       h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1665 
1666       /* If this symbol is not defined in a regular file, and we are
1667 	 not generating a shared library, then set the symbol to this
1668 	 location in the .plt.  This is required to make function
1669 	 pointers compare as equal between the normal executable and
1670 	 the shared library.  */
1671       if (! info->shared
1672 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1673 	{
1674 	  h->root.u.def.section = s;
1675 	  h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1676 	}
1677 
1678       /* Make room for this entry.  */
1679       s->_raw_size += PLT_ENTRY_SIZE;
1680 
1681       /* We also need to make an entry in the .rela.plt section.  */
1682 
1683       s = bfd_get_section_by_name (dynobj, ".rela.plt");
1684       BFD_ASSERT (s != NULL);
1685 
1686       s->_raw_size += sizeof (Elf64_External_Rela);
1687 
1688       /* The procedure linkage table size is bounded by the magnitude
1689 	 of the offset we can describe in the entry.  */
1690       if (s->_raw_size >= (bfd_vma)1 << 32)
1691 	{
1692 	  bfd_set_error (bfd_error_bad_value);
1693 	  return FALSE;
1694 	}
1695 
1696       return TRUE;
1697     }
1698 
1699   /* If this is a weak symbol, and there is a real definition, the
1700      processor independent code will have arranged for us to see the
1701      real definition first, and we can just use the same value.  */
1702   if (h->weakdef != NULL)
1703     {
1704       BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1705 		  || h->weakdef->root.type == bfd_link_hash_defweak);
1706       h->root.u.def.section = h->weakdef->root.u.def.section;
1707       h->root.u.def.value = h->weakdef->root.u.def.value;
1708       return TRUE;
1709     }
1710 
1711   /* This is a reference to a symbol defined by a dynamic object which
1712      is not a function.  */
1713 
1714   /* If we are creating a shared library, we must presume that the
1715      only references to the symbol are via the global offset table.
1716      For such cases we need not do anything here; the relocations will
1717      be handled correctly by relocate_section.  */
1718   if (info->shared)
1719     return TRUE;
1720 
1721   /* We must allocate the symbol in our .dynbss section, which will
1722      become part of the .bss section of the executable.  There will be
1723      an entry for this symbol in the .dynsym section.  The dynamic
1724      object will contain position independent code, so all references
1725      from the dynamic object to this symbol will go through the global
1726      offset table.  The dynamic linker will use the .dynsym entry to
1727      determine the address it must put in the global offset table, so
1728      both the dynamic object and the regular object will refer to the
1729      same memory location for the variable.  */
1730 
1731   s = bfd_get_section_by_name (dynobj, ".dynbss");
1732   BFD_ASSERT (s != NULL);
1733 
1734   /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1735      to copy the initial value out of the dynamic object and into the
1736      runtime process image.  We need to remember the offset into the
1737      .rel.bss section we are going to use.  */
1738   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1739     {
1740       asection *srel;
1741 
1742       srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1743       BFD_ASSERT (srel != NULL);
1744       srel->_raw_size += sizeof (Elf64_External_Rela);
1745       h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1746     }
1747 
1748   /* We need to figure out the alignment required for this symbol.  I
1749      have no idea how ELF linkers handle this.  16-bytes is the size
1750      of the largest type that requires hard alignment -- long double.  */
1751   power_of_two = bfd_log2 (h->size);
1752   if (power_of_two > 4)
1753     power_of_two = 4;
1754 
1755   /* Apply the required alignment.  */
1756   s->_raw_size = BFD_ALIGN (s->_raw_size,
1757 			    (bfd_size_type) (1 << power_of_two));
1758   if (power_of_two > bfd_get_section_alignment (dynobj, s))
1759     {
1760       if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1761 	return FALSE;
1762     }
1763 
1764   /* Define the symbol as being at this point in the section.  */
1765   h->root.u.def.section = s;
1766   h->root.u.def.value = s->_raw_size;
1767 
1768   /* Increment the section size to make room for the symbol.  */
1769   s->_raw_size += h->size;
1770 
1771   return TRUE;
1772 }
1773 
1774 /* Set the sizes of the dynamic sections.  */
1775 
1776 static bfd_boolean
sparc64_elf_size_dynamic_sections(output_bfd,info)1777 sparc64_elf_size_dynamic_sections (output_bfd, info)
1778      bfd *output_bfd;
1779      struct bfd_link_info *info;
1780 {
1781   bfd *dynobj;
1782   asection *s;
1783   bfd_boolean relplt;
1784 
1785   dynobj = elf_hash_table (info)->dynobj;
1786   BFD_ASSERT (dynobj != NULL);
1787 
1788   if (elf_hash_table (info)->dynamic_sections_created)
1789     {
1790       /* Set the contents of the .interp section to the interpreter.  */
1791       if (info->executable && !info->static_link)
1792 	{
1793 	  s = bfd_get_section_by_name (dynobj, ".interp");
1794 	  BFD_ASSERT (s != NULL);
1795 	  s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1796 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1797 	}
1798     }
1799   else
1800     {
1801       /* We may have created entries in the .rela.got section.
1802          However, if we are not creating the dynamic sections, we will
1803          not actually use these entries.  Reset the size of .rela.got,
1804          which will cause it to get stripped from the output file
1805          below.  */
1806       s = bfd_get_section_by_name (dynobj, ".rela.got");
1807       if (s != NULL)
1808 	s->_raw_size = 0;
1809     }
1810 
1811   /* The check_relocs and adjust_dynamic_symbol entry points have
1812      determined the sizes of the various dynamic sections.  Allocate
1813      memory for them.  */
1814   relplt = FALSE;
1815   for (s = dynobj->sections; s != NULL; s = s->next)
1816     {
1817       const char *name;
1818       bfd_boolean strip;
1819 
1820       if ((s->flags & SEC_LINKER_CREATED) == 0)
1821 	continue;
1822 
1823       /* It's OK to base decisions on the section name, because none
1824 	 of the dynobj section names depend upon the input files.  */
1825       name = bfd_get_section_name (dynobj, s);
1826 
1827       strip = FALSE;
1828 
1829       if (strncmp (name, ".rela", 5) == 0)
1830 	{
1831 	  if (s->_raw_size == 0)
1832 	    {
1833 	      /* If we don't need this section, strip it from the
1834 		 output file.  This is to handle .rela.bss and
1835 		 .rel.plt.  We must create it in
1836 		 create_dynamic_sections, because it must be created
1837 		 before the linker maps input sections to output
1838 		 sections.  The linker does that before
1839 		 adjust_dynamic_symbol is called, and it is that
1840 		 function which decides whether anything needs to go
1841 		 into these sections.  */
1842 	      strip = TRUE;
1843 	    }
1844 	  else
1845 	    {
1846 	      if (strcmp (name, ".rela.plt") == 0)
1847 		relplt = TRUE;
1848 
1849 	      /* We use the reloc_count field as a counter if we need
1850 		 to copy relocs into the output file.  */
1851 	      s->reloc_count = 0;
1852 	    }
1853 	}
1854       else if (strcmp (name, ".plt") != 0
1855 	       && strncmp (name, ".got", 4) != 0)
1856 	{
1857 	  /* It's not one of our sections, so don't allocate space.  */
1858 	  continue;
1859 	}
1860 
1861       if (strip)
1862 	{
1863 	  _bfd_strip_section_from_output (info, s);
1864 	  continue;
1865 	}
1866 
1867       /* Allocate memory for the section contents.  Zero the memory
1868 	 for the benefit of .rela.plt, which has 4 unused entries
1869 	 at the beginning, and we don't want garbage.  */
1870       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1871       if (s->contents == NULL && s->_raw_size != 0)
1872 	return FALSE;
1873     }
1874 
1875   if (elf_hash_table (info)->dynamic_sections_created)
1876     {
1877       /* Add some entries to the .dynamic section.  We fill in the
1878 	 values later, in sparc64_elf_finish_dynamic_sections, but we
1879 	 must add the entries now so that we get the correct size for
1880 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1881 	 dynamic linker and used by the debugger.  */
1882 #define add_dynamic_entry(TAG, VAL) \
1883   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1884 
1885       int reg;
1886       struct sparc64_elf_app_reg * app_regs;
1887       struct elf_strtab_hash *dynstr;
1888       struct elf_link_hash_table *eht = elf_hash_table (info);
1889 
1890       if (info->executable)
1891 	{
1892 	  if (!add_dynamic_entry (DT_DEBUG, 0))
1893 	    return FALSE;
1894 	}
1895 
1896       if (relplt)
1897 	{
1898 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
1899 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
1900 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1901 	      || !add_dynamic_entry (DT_JMPREL, 0))
1902 	    return FALSE;
1903 	}
1904 
1905       if (!add_dynamic_entry (DT_RELA, 0)
1906 	  || !add_dynamic_entry (DT_RELASZ, 0)
1907 	  || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1908 	return FALSE;
1909 
1910       if (info->flags & DF_TEXTREL)
1911 	{
1912 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1913 	    return FALSE;
1914 	}
1915 
1916       /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1917 	 entries if needed.  */
1918       app_regs = sparc64_elf_hash_table (info)->app_regs;
1919       dynstr = eht->dynstr;
1920 
1921       for (reg = 0; reg < 4; reg++)
1922 	if (app_regs [reg].name != NULL)
1923 	  {
1924 	    struct elf_link_local_dynamic_entry *entry, *e;
1925 
1926 	    if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1927 	      return FALSE;
1928 
1929 	    entry = (struct elf_link_local_dynamic_entry *)
1930 	      bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1931 	    if (entry == NULL)
1932 	      return FALSE;
1933 
1934 	    /* We cheat here a little bit: the symbol will not be local, so we
1935 	       put it at the end of the dynlocal linked list.  We will fix it
1936 	       later on, as we have to fix other fields anyway.  */
1937 	    entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1938 	    entry->isym.st_size = 0;
1939 	    if (*app_regs [reg].name != '\0')
1940 	      entry->isym.st_name
1941 		= _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1942 	    else
1943 	      entry->isym.st_name = 0;
1944 	    entry->isym.st_other = 0;
1945 	    entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1946 					       STT_REGISTER);
1947 	    entry->isym.st_shndx = app_regs [reg].shndx;
1948 	    entry->next = NULL;
1949 	    entry->input_bfd = output_bfd;
1950 	    entry->input_indx = -1;
1951 
1952 	    if (eht->dynlocal == NULL)
1953 	      eht->dynlocal = entry;
1954 	    else
1955 	      {
1956 		for (e = eht->dynlocal; e->next; e = e->next)
1957 		  ;
1958 		e->next = entry;
1959 	      }
1960 	    eht->dynsymcount++;
1961 	  }
1962     }
1963 #undef add_dynamic_entry
1964 
1965   return TRUE;
1966 }
1967 
1968 static bfd_boolean
sparc64_elf_new_section_hook(abfd,sec)1969 sparc64_elf_new_section_hook (abfd, sec)
1970      bfd *abfd;
1971      asection *sec;
1972 {
1973   struct sparc64_elf_section_data *sdata;
1974   bfd_size_type amt = sizeof (*sdata);
1975 
1976   sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1977   if (sdata == NULL)
1978     return FALSE;
1979   sec->used_by_bfd = (PTR) sdata;
1980 
1981   return _bfd_elf_new_section_hook (abfd, sec);
1982 }
1983 
1984 static bfd_boolean
sparc64_elf_relax_section(abfd,section,link_info,again)1985 sparc64_elf_relax_section (abfd, section, link_info, again)
1986      bfd *abfd ATTRIBUTE_UNUSED;
1987      asection *section ATTRIBUTE_UNUSED;
1988      struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1989      bfd_boolean *again;
1990 {
1991   *again = FALSE;
1992   sec_do_relax (section) = 1;
1993   return TRUE;
1994 }
1995 
1996 /* Relocate a SPARC64 ELF section.  */
1997 
1998 static bfd_boolean
sparc64_elf_relocate_section(output_bfd,info,input_bfd,input_section,contents,relocs,local_syms,local_sections)1999 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
2000 			      contents, relocs, local_syms, local_sections)
2001      bfd *output_bfd;
2002      struct bfd_link_info *info;
2003      bfd *input_bfd;
2004      asection *input_section;
2005      bfd_byte *contents;
2006      Elf_Internal_Rela *relocs;
2007      Elf_Internal_Sym *local_syms;
2008      asection **local_sections;
2009 {
2010   bfd *dynobj;
2011   Elf_Internal_Shdr *symtab_hdr;
2012   struct elf_link_hash_entry **sym_hashes;
2013   bfd_vma *local_got_offsets;
2014   bfd_vma got_base;
2015   asection *sgot;
2016   asection *splt;
2017   asection *sreloc;
2018   Elf_Internal_Rela *rel;
2019   Elf_Internal_Rela *relend;
2020 
2021   if (info->relocatable)
2022     return TRUE;
2023 
2024   dynobj = elf_hash_table (info)->dynobj;
2025   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2026   sym_hashes = elf_sym_hashes (input_bfd);
2027   local_got_offsets = elf_local_got_offsets (input_bfd);
2028 
2029   if (elf_hash_table(info)->hgot == NULL)
2030     got_base = 0;
2031   else
2032     got_base = elf_hash_table (info)->hgot->root.u.def.value;
2033 
2034   sgot = splt = sreloc = NULL;
2035   if (dynobj != NULL)
2036     splt = bfd_get_section_by_name (dynobj, ".plt");
2037 
2038   rel = relocs;
2039   relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2040   for (; rel < relend; rel++)
2041     {
2042       int r_type;
2043       reloc_howto_type *howto;
2044       unsigned long r_symndx;
2045       struct elf_link_hash_entry *h;
2046       Elf_Internal_Sym *sym;
2047       asection *sec;
2048       bfd_vma relocation, off;
2049       bfd_reloc_status_type r;
2050       bfd_boolean is_plt = FALSE;
2051       bfd_boolean unresolved_reloc;
2052 
2053       r_type = ELF64_R_TYPE_ID (rel->r_info);
2054       if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2055 	{
2056 	  bfd_set_error (bfd_error_bad_value);
2057 	  return FALSE;
2058 	}
2059       howto = sparc64_elf_howto_table + r_type;
2060 
2061       /* This is a final link.  */
2062       r_symndx = ELF64_R_SYM (rel->r_info);
2063       h = NULL;
2064       sym = NULL;
2065       sec = NULL;
2066       unresolved_reloc = FALSE;
2067       if (r_symndx < symtab_hdr->sh_info)
2068 	{
2069 	  sym = local_syms + r_symndx;
2070 	  sec = local_sections[r_symndx];
2071 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2072 	}
2073       else
2074 	{
2075 	  bfd_boolean warned;
2076 
2077 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2078 				   r_symndx, symtab_hdr, sym_hashes,
2079 				   h, sec, relocation,
2080 				   unresolved_reloc, warned);
2081 	  if (warned)
2082 	    {
2083 	      /* To avoid generating warning messages about truncated
2084 		 relocations, set the relocation's address to be the same as
2085 		 the start of this section.  */
2086 	      if (input_section->output_section != NULL)
2087 		relocation = input_section->output_section->vma;
2088 	      else
2089 		relocation = 0;
2090 	    }
2091 	}
2092 
2093  do_dynreloc:
2094       /* When generating a shared object, these relocations are copied
2095 	 into the output file to be resolved at run time.  */
2096       if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2097 	{
2098 	  switch (r_type)
2099 	    {
2100 	    case R_SPARC_PC10:
2101 	    case R_SPARC_PC22:
2102 	    case R_SPARC_PC_HH22:
2103 	    case R_SPARC_PC_HM10:
2104 	    case R_SPARC_PC_LM22:
2105 	      if (h != NULL
2106 		  && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2107 		break;
2108 	      /* Fall through.  */
2109 	    case R_SPARC_DISP8:
2110 	    case R_SPARC_DISP16:
2111 	    case R_SPARC_DISP32:
2112 	    case R_SPARC_DISP64:
2113 	    case R_SPARC_WDISP30:
2114 	    case R_SPARC_WDISP22:
2115 	    case R_SPARC_WDISP19:
2116 	    case R_SPARC_WDISP16:
2117 	      if (h == NULL)
2118 		break;
2119 	      /* Fall through.  */
2120 	    case R_SPARC_8:
2121 	    case R_SPARC_16:
2122 	    case R_SPARC_32:
2123 	    case R_SPARC_HI22:
2124 	    case R_SPARC_22:
2125 	    case R_SPARC_13:
2126 	    case R_SPARC_LO10:
2127 	    case R_SPARC_UA32:
2128 	    case R_SPARC_10:
2129 	    case R_SPARC_11:
2130 	    case R_SPARC_64:
2131 	    case R_SPARC_OLO10:
2132 	    case R_SPARC_HH22:
2133 	    case R_SPARC_HM10:
2134 	    case R_SPARC_LM22:
2135 	    case R_SPARC_7:
2136 	    case R_SPARC_5:
2137 	    case R_SPARC_6:
2138 	    case R_SPARC_HIX22:
2139 	    case R_SPARC_LOX10:
2140 	    case R_SPARC_H44:
2141 	    case R_SPARC_M44:
2142 	    case R_SPARC_L44:
2143 	    case R_SPARC_UA64:
2144 	    case R_SPARC_UA16:
2145 	      {
2146 		Elf_Internal_Rela outrel;
2147 		bfd_byte *loc;
2148 		bfd_boolean skip, relocate;
2149 
2150 		if (sreloc == NULL)
2151 		  {
2152 		    const char *name =
2153 		      (bfd_elf_string_from_elf_section
2154 		       (input_bfd,
2155 			elf_elfheader (input_bfd)->e_shstrndx,
2156 			elf_section_data (input_section)->rel_hdr.sh_name));
2157 
2158 		    if (name == NULL)
2159 		      return FALSE;
2160 
2161 		    BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2162 				&& strcmp (bfd_get_section_name(input_bfd,
2163 								input_section),
2164 					   name + 5) == 0);
2165 
2166 		    sreloc = bfd_get_section_by_name (dynobj, name);
2167 		    BFD_ASSERT (sreloc != NULL);
2168 		  }
2169 
2170 		skip = FALSE;
2171 		relocate = FALSE;
2172 
2173 		outrel.r_offset =
2174 		  _bfd_elf_section_offset (output_bfd, info, input_section,
2175 					   rel->r_offset);
2176 		if (outrel.r_offset == (bfd_vma) -1)
2177 		  skip = TRUE;
2178 		else if (outrel.r_offset == (bfd_vma) -2)
2179 		  skip = TRUE, relocate = TRUE;
2180 
2181 		outrel.r_offset += (input_section->output_section->vma
2182 				    + input_section->output_offset);
2183 
2184 		/* Optimize unaligned reloc usage now that we know where
2185 		   it finally resides.  */
2186 		switch (r_type)
2187 		  {
2188 		  case R_SPARC_16:
2189 		    if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2190 		    break;
2191 		  case R_SPARC_UA16:
2192 		    if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2193 		    break;
2194 		  case R_SPARC_32:
2195 		    if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2196 		    break;
2197 		  case R_SPARC_UA32:
2198 		    if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2199 		    break;
2200 		  case R_SPARC_64:
2201 		    if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2202 		    break;
2203 		  case R_SPARC_UA64:
2204 		    if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2205 		    break;
2206 		  case R_SPARC_DISP8:
2207 		  case R_SPARC_DISP16:
2208 		  case R_SPARC_DISP32:
2209 		  case R_SPARC_DISP64:
2210 		    /* If the symbol is not dynamic, we should not keep
2211 		       a dynamic relocation.  But an .rela.* slot has been
2212 		       allocated for it, output R_SPARC_NONE.
2213 		       FIXME: Add code tracking needed dynamic relocs as
2214 		       e.g. i386 has.  */
2215 		    if (h->dynindx == -1)
2216 		      skip = TRUE, relocate = TRUE;
2217 		    break;
2218 		  }
2219 
2220 		if (skip)
2221 		  memset (&outrel, 0, sizeof outrel);
2222 		/* h->dynindx may be -1 if the symbol was marked to
2223 		   become local.  */
2224 		else if (h != NULL && ! is_plt
2225 			 && ((!info->symbolic && !info->static_link
2226 			      && h->dynindx != -1)
2227 			     || (h->elf_link_hash_flags
2228 				 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2229 		  {
2230 		    BFD_ASSERT (h->dynindx != -1);
2231 		    outrel.r_info
2232 		      = ELF64_R_INFO (h->dynindx,
2233 				      ELF64_R_TYPE_INFO (
2234 					ELF64_R_TYPE_DATA (rel->r_info),
2235 							   r_type));
2236 		    outrel.r_addend = rel->r_addend;
2237 		  }
2238 		else
2239 		  {
2240 		    outrel.r_addend = relocation + rel->r_addend;
2241 		    if (r_type == R_SPARC_64)
2242 		      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2243 		    else
2244 		      {
2245 			long indx;
2246 
2247 			if (is_plt)
2248 			  sec = splt;
2249 
2250 			if (bfd_is_abs_section (sec))
2251 			  indx = 0;
2252 			else if (sec == NULL || sec->owner == NULL)
2253 			  {
2254 			    bfd_set_error (bfd_error_bad_value);
2255 			    return FALSE;
2256 			  }
2257 			else
2258 			  {
2259 			    asection *osec;
2260 
2261 			    osec = sec->output_section;
2262 			    indx = elf_section_data (osec)->dynindx;
2263 
2264 			    /* We are turning this relocation into one
2265 			       against a section symbol, so subtract out
2266 			       the output section's address but not the
2267 			       offset of the input section in the output
2268 			       section.  */
2269 			    outrel.r_addend -= osec->vma;
2270 
2271 			    /* FIXME: we really should be able to link non-pic
2272 			       shared libraries.  */
2273 			    if (indx == 0)
2274 			      {
2275 				BFD_FAIL ();
2276 				(*_bfd_error_handler)
2277 				  (_("%s: probably compiled without -fPIC?"),
2278 				   bfd_archive_filename (input_bfd));
2279 				bfd_set_error (bfd_error_bad_value);
2280 				return FALSE;
2281 			      }
2282 			  }
2283 
2284 			outrel.r_info
2285 			  = ELF64_R_INFO (indx,
2286 					  ELF64_R_TYPE_INFO (
2287 					    ELF64_R_TYPE_DATA (rel->r_info),
2288 							       r_type));
2289 		      }
2290 		  }
2291 
2292 		loc = sreloc->contents;
2293 		loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2294 		bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2295 
2296 		/* This reloc will be computed at runtime, so there's no
2297 		   need to do anything now.  */
2298 		if (! relocate)
2299 		  continue;
2300 	      }
2301 	    break;
2302 	    }
2303 	}
2304 
2305       switch (r_type)
2306 	{
2307 	case R_SPARC_GOT10:
2308 	case R_SPARC_GOT13:
2309 	case R_SPARC_GOT22:
2310 	  /* Relocation is to the entry for this symbol in the global
2311 	     offset table.  */
2312 	  if (sgot == NULL)
2313 	    {
2314 	      sgot = bfd_get_section_by_name (dynobj, ".got");
2315 	      BFD_ASSERT (sgot != NULL);
2316 	    }
2317 
2318 	  if (h != NULL)
2319 	    {
2320 	      bfd_boolean dyn;
2321 
2322 	      off = h->got.offset;
2323 	      BFD_ASSERT (off != (bfd_vma) -1);
2324 	      dyn = elf_hash_table (info)->dynamic_sections_created;
2325 
2326 	      if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2327 		  || (info->shared
2328 		      && (info->symbolic
2329 			  || h->dynindx == -1
2330 			  || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2331 		      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2332 		{
2333 		  /* This is actually a static link, or it is a -Bsymbolic
2334 		     link and the symbol is defined locally, or the symbol
2335 		     was forced to be local because of a version file.  We
2336 		     must initialize this entry in the global offset table.
2337 		     Since the offset must always be a multiple of 8, we
2338 		     use the least significant bit to record whether we
2339 		     have initialized it already.
2340 
2341 		     When doing a dynamic link, we create a .rela.got
2342 		     relocation entry to initialize the value.  This is
2343 		     done in the finish_dynamic_symbol routine.  */
2344 
2345 		  if ((off & 1) != 0)
2346 		    off &= ~1;
2347 		  else
2348 		    {
2349 		      bfd_put_64 (output_bfd, relocation,
2350 				  sgot->contents + off);
2351 		      h->got.offset |= 1;
2352 		    }
2353 		}
2354 	      else
2355 		unresolved_reloc = FALSE;
2356 	    }
2357 	  else
2358 	    {
2359 	      BFD_ASSERT (local_got_offsets != NULL);
2360 	      off = local_got_offsets[r_symndx];
2361 	      BFD_ASSERT (off != (bfd_vma) -1);
2362 
2363 	      /* The offset must always be a multiple of 8.  We use
2364 		 the least significant bit to record whether we have
2365 		 already processed this entry.  */
2366 	      if ((off & 1) != 0)
2367 		off &= ~1;
2368 	      else
2369 		{
2370 		  local_got_offsets[r_symndx] |= 1;
2371 
2372 		  if (info->shared)
2373 		    {
2374 		      asection *s;
2375 		      Elf_Internal_Rela outrel;
2376 		      bfd_byte *loc;
2377 
2378 		      /* The Solaris 2.7 64-bit linker adds the contents
2379 			 of the location to the value of the reloc.
2380 			 Note this is different behaviour to the
2381 			 32-bit linker, which both adds the contents
2382 			 and ignores the addend.  So clear the location.  */
2383 		      bfd_put_64 (output_bfd, (bfd_vma) 0,
2384 				  sgot->contents + off);
2385 
2386 		      /* We need to generate a R_SPARC_RELATIVE reloc
2387 			 for the dynamic linker.  */
2388 		      s = bfd_get_section_by_name(dynobj, ".rela.got");
2389 		      BFD_ASSERT (s != NULL);
2390 
2391 		      outrel.r_offset = (sgot->output_section->vma
2392 					 + sgot->output_offset
2393 					 + off);
2394 		      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2395 		      outrel.r_addend = relocation;
2396 		      loc = s->contents;
2397 		      loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2398 		      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2399 		    }
2400 		  else
2401 		    bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2402 		}
2403 	    }
2404 	  relocation = sgot->output_offset + off - got_base;
2405 	  goto do_default;
2406 
2407 	case R_SPARC_WPLT30:
2408 	case R_SPARC_PLT32:
2409 	case R_SPARC_HIPLT22:
2410 	case R_SPARC_LOPLT10:
2411 	case R_SPARC_PCPLT32:
2412 	case R_SPARC_PCPLT22:
2413 	case R_SPARC_PCPLT10:
2414 	case R_SPARC_PLT64:
2415 	  /* Relocation is to the entry for this symbol in the
2416              procedure linkage table.  */
2417 	  BFD_ASSERT (h != NULL);
2418 
2419 	  if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2420 	    {
2421 	      /* We didn't make a PLT entry for this symbol.  This
2422 		 happens when statically linking PIC code, or when
2423 		 using -Bsymbolic.  */
2424 	      goto do_default;
2425 	    }
2426 
2427 	  relocation = (splt->output_section->vma
2428 			+ splt->output_offset
2429 			+ sparc64_elf_plt_entry_offset (h->plt.offset));
2430 	  unresolved_reloc = FALSE;
2431 	  if (r_type == R_SPARC_WPLT30)
2432 	    goto do_wplt30;
2433 	  if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2434 	    {
2435 	      r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2436 	      is_plt = TRUE;
2437 	      goto do_dynreloc;
2438 	    }
2439 	  goto do_default;
2440 
2441 	case R_SPARC_OLO10:
2442 	  {
2443 	    bfd_vma x;
2444 
2445 	    relocation += rel->r_addend;
2446 	    relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2447 
2448 	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2449 	    x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2450 	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2451 
2452 	    r = bfd_check_overflow (howto->complain_on_overflow,
2453 				    howto->bitsize, howto->rightshift,
2454 				    bfd_arch_bits_per_address (input_bfd),
2455 				    relocation);
2456 	  }
2457 	  break;
2458 
2459 	case R_SPARC_WDISP16:
2460 	  {
2461 	    bfd_vma x;
2462 
2463 	    relocation += rel->r_addend;
2464 	    /* Adjust for pc-relative-ness.  */
2465 	    relocation -= (input_section->output_section->vma
2466 			   + input_section->output_offset);
2467 	    relocation -= rel->r_offset;
2468 
2469 	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2470 	    x &= ~(bfd_vma) 0x303fff;
2471 	    x |= ((((relocation >> 2) & 0xc000) << 6)
2472 		  | ((relocation >> 2) & 0x3fff));
2473 	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2474 
2475 	    r = bfd_check_overflow (howto->complain_on_overflow,
2476 				    howto->bitsize, howto->rightshift,
2477 				    bfd_arch_bits_per_address (input_bfd),
2478 				    relocation);
2479 	  }
2480 	  break;
2481 
2482 	case R_SPARC_HIX22:
2483 	  {
2484 	    bfd_vma x;
2485 
2486 	    relocation += rel->r_addend;
2487 	    relocation = relocation ^ MINUS_ONE;
2488 
2489 	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2490 	    x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2491 	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2492 
2493 	    r = bfd_check_overflow (howto->complain_on_overflow,
2494 				    howto->bitsize, howto->rightshift,
2495 				    bfd_arch_bits_per_address (input_bfd),
2496 				    relocation);
2497 	  }
2498 	  break;
2499 
2500 	case R_SPARC_LOX10:
2501 	  {
2502 	    bfd_vma x;
2503 
2504 	    relocation += rel->r_addend;
2505 	    relocation = (relocation & 0x3ff) | 0x1c00;
2506 
2507 	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2508 	    x = (x & ~(bfd_vma) 0x1fff) | relocation;
2509 	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2510 
2511 	    r = bfd_reloc_ok;
2512 	  }
2513 	  break;
2514 
2515 	case R_SPARC_WDISP30:
2516 	do_wplt30:
2517 	  if (sec_do_relax (input_section)
2518 	      && rel->r_offset + 4 < input_section->_raw_size)
2519 	    {
2520 #define G0		0
2521 #define O7		15
2522 #define XCC		(2 << 20)
2523 #define COND(x)		(((x)&0xf)<<25)
2524 #define CONDA		COND(0x8)
2525 #define INSN_BPA	(F2(0,1) | CONDA | BPRED | XCC)
2526 #define INSN_BA		(F2(0,2) | CONDA)
2527 #define INSN_OR		F3(2, 0x2, 0)
2528 #define INSN_NOP	F2(0,4)
2529 
2530 	      bfd_vma x, y;
2531 
2532 	      /* If the instruction is a call with either:
2533 		 restore
2534 		 arithmetic instruction with rd == %o7
2535 		 where rs1 != %o7 and rs2 if it is register != %o7
2536 		 then we can optimize if the call destination is near
2537 		 by changing the call into a branch always.  */
2538 	      x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2539 	      y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2540 	      if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2541 		{
2542 		  if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2543 		       || ((y & OP3(0x28)) == 0 /* arithmetic */
2544 			   && (y & RD(~0)) == RD(O7)))
2545 		      && (y & RS1(~0)) != RS1(O7)
2546 		      && ((y & F3I(~0))
2547 			  || (y & RS2(~0)) != RS2(O7)))
2548 		    {
2549 		      bfd_vma reloc;
2550 
2551 		      reloc = relocation + rel->r_addend - rel->r_offset;
2552 		      reloc -= (input_section->output_section->vma
2553 				+ input_section->output_offset);
2554 		      if (reloc & 3)
2555 			goto do_default;
2556 
2557 		      /* Ensure the branch fits into simm22.  */
2558 		      if ((reloc & ~(bfd_vma)0x7fffff)
2559 			   && ((reloc | 0x7fffff) != MINUS_ONE))
2560 			goto do_default;
2561 		      reloc >>= 2;
2562 
2563 		      /* Check whether it fits into simm19.  */
2564 		      if ((reloc & 0x3c0000) == 0
2565 			  || (reloc & 0x3c0000) == 0x3c0000)
2566 			x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2567 		      else
2568 			x = INSN_BA | (reloc & 0x3fffff); /* ba */
2569 		      bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2570 		      r = bfd_reloc_ok;
2571 		      if (rel->r_offset >= 4
2572 			  && (y & (0xffffffff ^ RS1(~0)))
2573 			     == (INSN_OR | RD(O7) | RS2(G0)))
2574 			{
2575 			  bfd_vma z;
2576 			  unsigned int reg;
2577 
2578 			  z = bfd_get_32 (input_bfd,
2579 					  contents + rel->r_offset - 4);
2580 			  if ((z & (0xffffffff ^ RD(~0)))
2581 			      != (INSN_OR | RS1(O7) | RS2(G0)))
2582 			    break;
2583 
2584 			  /* The sequence was
2585 			     or %o7, %g0, %rN
2586 			     call foo
2587 			     or %rN, %g0, %o7
2588 
2589 			     If call foo was replaced with ba, replace
2590 			     or %rN, %g0, %o7 with nop.  */
2591 
2592 			  reg = (y & RS1(~0)) >> 14;
2593 			  if (reg != ((z & RD(~0)) >> 25)
2594 			      || reg == G0 || reg == O7)
2595 			    break;
2596 
2597 			  bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2598 				      contents + rel->r_offset + 4);
2599 			}
2600 		      break;
2601 		    }
2602 		}
2603 	    }
2604 	  /* Fall through.  */
2605 
2606 	default:
2607 	do_default:
2608 	  r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2609 					contents, rel->r_offset,
2610 					relocation, rel->r_addend);
2611 	  break;
2612 	}
2613 
2614       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2615 	 because such sections are not SEC_ALLOC and thus ld.so will
2616 	 not process them.  */
2617       if (unresolved_reloc
2618 	  && !((input_section->flags & SEC_DEBUGGING) != 0
2619 	       && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2620 	(*_bfd_error_handler)
2621 	  (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2622 	   bfd_archive_filename (input_bfd),
2623 	   bfd_get_section_name (input_bfd, input_section),
2624 	   (long) rel->r_offset,
2625 	   h->root.root.string);
2626 
2627       switch (r)
2628 	{
2629 	case bfd_reloc_ok:
2630 	  break;
2631 
2632 	default:
2633 	case bfd_reloc_outofrange:
2634 	  abort ();
2635 
2636 	case bfd_reloc_overflow:
2637 	  {
2638 	    const char *name;
2639 
2640 	    /* The Solaris native linker silently disregards
2641 	       overflows.  We don't, but this breaks stabs debugging
2642 	       info, whose relocations are only 32-bits wide.  Ignore
2643 	       overflows for discarded entries.  */
2644 	    if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2645 		&& _bfd_elf_section_offset (output_bfd, info, input_section,
2646 					    rel->r_offset) == (bfd_vma) -1)
2647 	      break;
2648 
2649 	    if (h != NULL)
2650 	      {
2651 		if (h->root.type == bfd_link_hash_undefweak
2652 		    && howto->pc_relative)
2653 		  {
2654 		    /* Assume this is a call protected by other code that
2655 		       detect the symbol is undefined.  If this is the case,
2656 		       we can safely ignore the overflow.  If not, the
2657 		       program is hosed anyway, and a little warning isn't
2658 		       going to help.  */
2659 		    break;
2660 		  }
2661 
2662 	        name = h->root.root.string;
2663 	      }
2664 	    else
2665 	      {
2666 		name = (bfd_elf_string_from_elf_section
2667 			(input_bfd,
2668 			 symtab_hdr->sh_link,
2669 			 sym->st_name));
2670 		if (name == NULL)
2671 		  return FALSE;
2672 		if (*name == '\0')
2673 		  name = bfd_section_name (input_bfd, sec);
2674 	      }
2675 	    if (! ((*info->callbacks->reloc_overflow)
2676 		   (info, name, howto->name, (bfd_vma) 0,
2677 		    input_bfd, input_section, rel->r_offset)))
2678 	      return FALSE;
2679 	  }
2680 	break;
2681 	}
2682     }
2683 
2684   return TRUE;
2685 }
2686 
2687 /* Finish up dynamic symbol handling.  We set the contents of various
2688    dynamic sections here.  */
2689 
2690 static bfd_boolean
sparc64_elf_finish_dynamic_symbol(output_bfd,info,h,sym)2691 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2692      bfd *output_bfd;
2693      struct bfd_link_info *info;
2694      struct elf_link_hash_entry *h;
2695      Elf_Internal_Sym *sym;
2696 {
2697   bfd *dynobj;
2698 
2699   dynobj = elf_hash_table (info)->dynobj;
2700 
2701   if (h->plt.offset != (bfd_vma) -1)
2702     {
2703       asection *splt;
2704       asection *srela;
2705       Elf_Internal_Rela rela;
2706       bfd_byte *loc;
2707 
2708       /* This symbol has an entry in the PLT.  Set it up.  */
2709 
2710       BFD_ASSERT (h->dynindx != -1);
2711 
2712       splt = bfd_get_section_by_name (dynobj, ".plt");
2713       srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2714       BFD_ASSERT (splt != NULL && srela != NULL);
2715 
2716       /* Fill in the entry in the .rela.plt section.  */
2717 
2718       if (h->plt.offset < LARGE_PLT_THRESHOLD)
2719 	{
2720 	  rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2721 	  rela.r_addend = 0;
2722 	}
2723       else
2724 	{
2725 	  bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2726 	  rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2727 	  rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2728 			  -(splt->output_section->vma + splt->output_offset);
2729 	}
2730       rela.r_offset += (splt->output_section->vma + splt->output_offset);
2731       rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2732 
2733       /* Adjust for the first 4 reserved elements in the .plt section
2734 	 when setting the offset in the .rela.plt section.
2735 	 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2736 	 thus .plt[4] has corresponding .rela.plt[0] and so on.  */
2737 
2738       loc = srela->contents;
2739       loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2740       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2741 
2742       if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2743 	{
2744 	  /* Mark the symbol as undefined, rather than as defined in
2745 	     the .plt section.  Leave the value alone.  */
2746 	  sym->st_shndx = SHN_UNDEF;
2747 	  /* If the symbol is weak, we do need to clear the value.
2748 	     Otherwise, the PLT entry would provide a definition for
2749 	     the symbol even if the symbol wasn't defined anywhere,
2750 	     and so the symbol would never be NULL.  */
2751 	  if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2752 	      == 0)
2753 	    sym->st_value = 0;
2754 	}
2755     }
2756 
2757   if (h->got.offset != (bfd_vma) -1)
2758     {
2759       asection *sgot;
2760       asection *srela;
2761       Elf_Internal_Rela rela;
2762       bfd_byte *loc;
2763 
2764       /* This symbol has an entry in the GOT.  Set it up.  */
2765 
2766       sgot = bfd_get_section_by_name (dynobj, ".got");
2767       srela = bfd_get_section_by_name (dynobj, ".rela.got");
2768       BFD_ASSERT (sgot != NULL && srela != NULL);
2769 
2770       rela.r_offset = (sgot->output_section->vma
2771 		       + sgot->output_offset
2772 		       + (h->got.offset &~ (bfd_vma) 1));
2773 
2774       /* If this is a -Bsymbolic link, and the symbol is defined
2775 	 locally, we just want to emit a RELATIVE reloc.  Likewise if
2776 	 the symbol was forced to be local because of a version file.
2777 	 The entry in the global offset table will already have been
2778 	 initialized in the relocate_section function.  */
2779       if (info->shared
2780 	  && (info->symbolic || info->static_link || h->dynindx == -1)
2781 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2782 	{
2783 	  asection *sec = h->root.u.def.section;
2784 	  rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2785 	  rela.r_addend = (h->root.u.def.value
2786 			   + sec->output_section->vma
2787 			   + sec->output_offset);
2788 	}
2789       else
2790 	{
2791 	  rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2792 	  rela.r_addend = 0;
2793 	}
2794 
2795       bfd_put_64 (output_bfd, (bfd_vma) 0,
2796 		  sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2797       loc = srela->contents;
2798       loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2799       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2800     }
2801 
2802   if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2803     {
2804       asection *s;
2805       Elf_Internal_Rela rela;
2806       bfd_byte *loc;
2807 
2808       /* This symbols needs a copy reloc.  Set it up.  */
2809       BFD_ASSERT (h->dynindx != -1);
2810 
2811       s = bfd_get_section_by_name (h->root.u.def.section->owner,
2812 				   ".rela.bss");
2813       BFD_ASSERT (s != NULL);
2814 
2815       rela.r_offset = (h->root.u.def.value
2816 		       + h->root.u.def.section->output_section->vma
2817 		       + h->root.u.def.section->output_offset);
2818       rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2819       rela.r_addend = 0;
2820       loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2821       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2822     }
2823 
2824   /* Mark some specially defined symbols as absolute.  */
2825   if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2826       || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2827       || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2828     sym->st_shndx = SHN_ABS;
2829 
2830   return TRUE;
2831 }
2832 
2833 /* Finish up the dynamic sections.  */
2834 
2835 static bfd_boolean
sparc64_elf_finish_dynamic_sections(output_bfd,info)2836 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2837      bfd *output_bfd;
2838      struct bfd_link_info *info;
2839 {
2840   bfd *dynobj;
2841   int stt_regidx = -1;
2842   asection *sdyn;
2843   asection *sgot;
2844 
2845   dynobj = elf_hash_table (info)->dynobj;
2846 
2847   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2848 
2849   if (elf_hash_table (info)->dynamic_sections_created)
2850     {
2851       asection *splt;
2852       Elf64_External_Dyn *dyncon, *dynconend;
2853 
2854       splt = bfd_get_section_by_name (dynobj, ".plt");
2855       BFD_ASSERT (splt != NULL && sdyn != NULL);
2856 
2857       dyncon = (Elf64_External_Dyn *) sdyn->contents;
2858       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2859       for (; dyncon < dynconend; dyncon++)
2860 	{
2861 	  Elf_Internal_Dyn dyn;
2862 	  const char *name;
2863 	  bfd_boolean size;
2864 
2865 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2866 
2867 	  switch (dyn.d_tag)
2868 	    {
2869 	    case DT_PLTGOT:   name = ".plt"; size = FALSE; break;
2870 	    case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2871 	    case DT_JMPREL:   name = ".rela.plt"; size = FALSE; break;
2872 	    case DT_SPARC_REGISTER:
2873 	      if (stt_regidx == -1)
2874 		{
2875 		  stt_regidx =
2876 		    _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2877 		  if (stt_regidx == -1)
2878 		    return FALSE;
2879 		}
2880 	      dyn.d_un.d_val = stt_regidx++;
2881 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2882 	      /* fallthrough */
2883 	    default:	      name = NULL; size = FALSE; break;
2884 	    }
2885 
2886 	  if (name != NULL)
2887 	    {
2888 	      asection *s;
2889 
2890 	      s = bfd_get_section_by_name (output_bfd, name);
2891 	      if (s == NULL)
2892 		dyn.d_un.d_val = 0;
2893 	      else
2894 		{
2895 		  if (! size)
2896 		    dyn.d_un.d_ptr = s->vma;
2897 		  else
2898 		    {
2899 		      if (s->_cooked_size != 0)
2900 			dyn.d_un.d_val = s->_cooked_size;
2901 		      else
2902 			dyn.d_un.d_val = s->_raw_size;
2903 		    }
2904 		}
2905 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2906 	    }
2907 	}
2908 
2909       /* Initialize the contents of the .plt section.  */
2910       if (splt->_raw_size > 0)
2911 	sparc64_elf_build_plt (output_bfd, splt->contents,
2912 			       (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2913 
2914       elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2915 	PLT_ENTRY_SIZE;
2916     }
2917 
2918   /* Set the first entry in the global offset table to the address of
2919      the dynamic section.  */
2920   sgot = bfd_get_section_by_name (dynobj, ".got");
2921   BFD_ASSERT (sgot != NULL);
2922   if (sgot->_raw_size > 0)
2923     {
2924       if (sdyn == NULL)
2925 	bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2926       else
2927 	bfd_put_64 (output_bfd,
2928 		    sdyn->output_section->vma + sdyn->output_offset,
2929 		    sgot->contents);
2930     }
2931 
2932   elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2933 
2934   return TRUE;
2935 }
2936 
2937 static enum elf_reloc_type_class
sparc64_elf_reloc_type_class(rela)2938 sparc64_elf_reloc_type_class (rela)
2939      const Elf_Internal_Rela *rela;
2940 {
2941   switch ((int) ELF64_R_TYPE (rela->r_info))
2942     {
2943     case R_SPARC_RELATIVE:
2944       return reloc_class_relative;
2945     case R_SPARC_JMP_SLOT:
2946       return reloc_class_plt;
2947     case R_SPARC_COPY:
2948       return reloc_class_copy;
2949     default:
2950       return reloc_class_normal;
2951     }
2952 }
2953 
2954 /* Functions for dealing with the e_flags field.  */
2955 
2956 /* Merge backend specific data from an object file to the output
2957    object file when linking.  */
2958 
2959 static bfd_boolean
sparc64_elf_merge_private_bfd_data(ibfd,obfd)2960 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2961      bfd *ibfd;
2962      bfd *obfd;
2963 {
2964   bfd_boolean error;
2965   flagword new_flags, old_flags;
2966   int new_mm, old_mm;
2967 
2968   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2969       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2970     return TRUE;
2971 
2972   new_flags = elf_elfheader (ibfd)->e_flags;
2973   old_flags = elf_elfheader (obfd)->e_flags;
2974 
2975   if (!elf_flags_init (obfd))   /* First call, no flags set */
2976     {
2977       elf_flags_init (obfd) = TRUE;
2978       elf_elfheader (obfd)->e_flags = new_flags;
2979     }
2980 
2981   else if (new_flags == old_flags)      /* Compatible flags are ok */
2982     ;
2983 
2984   else                                  /* Incompatible flags */
2985     {
2986       error = FALSE;
2987 
2988 #define EF_SPARC_ISA_EXTENSIONS \
2989   (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2990 
2991       if ((ibfd->flags & DYNAMIC) != 0)
2992 	{
2993 	  /* We don't want dynamic objects memory ordering and
2994 	     architecture to have any role. That's what dynamic linker
2995 	     should do.  */
2996 	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2997 	  new_flags |= (old_flags
2998 			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2999 	}
3000       else
3001 	{
3002 	  /* Choose the highest architecture requirements.  */
3003 	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3004 	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3005 	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3006 	      && (old_flags & EF_SPARC_HAL_R1))
3007 	    {
3008 	      error = TRUE;
3009 	      (*_bfd_error_handler)
3010 		(_("%s: linking UltraSPARC specific with HAL specific code"),
3011 		 bfd_archive_filename (ibfd));
3012 	    }
3013 	  /* Choose the most restrictive memory ordering.  */
3014 	  old_mm = (old_flags & EF_SPARCV9_MM);
3015 	  new_mm = (new_flags & EF_SPARCV9_MM);
3016 	  old_flags &= ~EF_SPARCV9_MM;
3017 	  new_flags &= ~EF_SPARCV9_MM;
3018 	  if (new_mm < old_mm)
3019 	    old_mm = new_mm;
3020 	  old_flags |= old_mm;
3021 	  new_flags |= old_mm;
3022 	}
3023 
3024       /* Warn about any other mismatches */
3025       if (new_flags != old_flags)
3026         {
3027           error = TRUE;
3028           (*_bfd_error_handler)
3029             (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3030              bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3031         }
3032 
3033       elf_elfheader (obfd)->e_flags = old_flags;
3034 
3035       if (error)
3036         {
3037           bfd_set_error (bfd_error_bad_value);
3038           return FALSE;
3039         }
3040     }
3041   return TRUE;
3042 }
3043 
3044 /* MARCO: Set the correct entry size for the .stab section.  */
3045 
3046 static bfd_boolean
sparc64_elf_fake_sections(abfd,hdr,sec)3047 sparc64_elf_fake_sections (abfd, hdr, sec)
3048      bfd *abfd ATTRIBUTE_UNUSED;
3049      Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3050      asection *sec;
3051 {
3052   const char *name;
3053 
3054   name = bfd_get_section_name (abfd, sec);
3055 
3056   if (strcmp (name, ".stab") == 0)
3057     {
3058       /* Even in the 64bit case the stab entries are only 12 bytes long.  */
3059       elf_section_data (sec)->this_hdr.sh_entsize = 12;
3060     }
3061 
3062   return TRUE;
3063 }
3064 
3065 /* Print a STT_REGISTER symbol to file FILE.  */
3066 
3067 static const char *
sparc64_elf_print_symbol_all(abfd,filep,symbol)3068 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3069      bfd *abfd ATTRIBUTE_UNUSED;
3070      PTR filep;
3071      asymbol *symbol;
3072 {
3073   FILE *file = (FILE *) filep;
3074   int reg, type;
3075 
3076   if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3077       != STT_REGISTER)
3078     return NULL;
3079 
3080   reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3081   type = symbol->flags;
3082   fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3083 		 ((type & BSF_LOCAL)
3084 		  ? (type & BSF_GLOBAL) ? '!' : 'l'
3085 	          : (type & BSF_GLOBAL) ? 'g' : ' '),
3086 	         (type & BSF_WEAK) ? 'w' : ' ');
3087   if (symbol->name == NULL || symbol->name [0] == '\0')
3088     return "#scratch";
3089   else
3090     return symbol->name;
3091 }
3092 
3093 /* Set the right machine number for a SPARC64 ELF file.  */
3094 
3095 static bfd_boolean
sparc64_elf_object_p(abfd)3096 sparc64_elf_object_p (abfd)
3097      bfd *abfd;
3098 {
3099   unsigned long mach = bfd_mach_sparc_v9;
3100 
3101   if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3102     mach = bfd_mach_sparc_v9b;
3103   else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3104     mach = bfd_mach_sparc_v9a;
3105   return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3106 }
3107 
3108 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3109    standard ELF, because R_SPARC_OLO10 has secondary addend in
3110    ELF64_R_TYPE_DATA field.  This structure is used to redirect the
3111    relocation handling routines.  */
3112 
3113 const struct elf_size_info sparc64_elf_size_info =
3114 {
3115   sizeof (Elf64_External_Ehdr),
3116   sizeof (Elf64_External_Phdr),
3117   sizeof (Elf64_External_Shdr),
3118   sizeof (Elf64_External_Rel),
3119   sizeof (Elf64_External_Rela),
3120   sizeof (Elf64_External_Sym),
3121   sizeof (Elf64_External_Dyn),
3122   sizeof (Elf_External_Note),
3123   4,		/* hash-table entry size.  */
3124   /* Internal relocations per external relocations.
3125      For link purposes we use just 1 internal per
3126      1 external, for assembly and slurp symbol table
3127      we use 2.  */
3128   1,
3129   64,		/* arch_size.  */
3130   3,		/* log_file_align.  */
3131   ELFCLASS64,
3132   EV_CURRENT,
3133   bfd_elf64_write_out_phdrs,
3134   bfd_elf64_write_shdrs_and_ehdr,
3135   sparc64_elf_write_relocs,
3136   bfd_elf64_swap_symbol_in,
3137   bfd_elf64_swap_symbol_out,
3138   sparc64_elf_slurp_reloc_table,
3139   bfd_elf64_slurp_symbol_table,
3140   bfd_elf64_swap_dyn_in,
3141   bfd_elf64_swap_dyn_out,
3142   bfd_elf64_swap_reloc_in,
3143   bfd_elf64_swap_reloc_out,
3144   bfd_elf64_swap_reloca_in,
3145   bfd_elf64_swap_reloca_out
3146 };
3147 
3148 #define TARGET_BIG_SYM	bfd_elf64_sparc_vec
3149 #define TARGET_BIG_NAME	"elf64-sparc"
3150 #define ELF_ARCH	bfd_arch_sparc
3151 #define ELF_MAXPAGESIZE 0x100000
3152 
3153 /* This is the official ABI value.  */
3154 #define ELF_MACHINE_CODE EM_SPARCV9
3155 
3156 /* This is the value that we used before the ABI was released.  */
3157 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3158 
3159 #define bfd_elf64_bfd_link_hash_table_create \
3160   sparc64_elf_bfd_link_hash_table_create
3161 
3162 #define elf_info_to_howto \
3163   sparc64_elf_info_to_howto
3164 #define bfd_elf64_get_reloc_upper_bound \
3165   sparc64_elf_get_reloc_upper_bound
3166 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3167   sparc64_elf_get_dynamic_reloc_upper_bound
3168 #define bfd_elf64_canonicalize_reloc \
3169   sparc64_elf_canonicalize_reloc
3170 #define bfd_elf64_canonicalize_dynamic_reloc \
3171   sparc64_elf_canonicalize_dynamic_reloc
3172 #define bfd_elf64_bfd_reloc_type_lookup \
3173   sparc64_elf_reloc_type_lookup
3174 #define bfd_elf64_bfd_relax_section \
3175   sparc64_elf_relax_section
3176 #define bfd_elf64_new_section_hook \
3177   sparc64_elf_new_section_hook
3178 
3179 #define elf_backend_create_dynamic_sections \
3180   _bfd_elf_create_dynamic_sections
3181 #define elf_backend_add_symbol_hook \
3182   sparc64_elf_add_symbol_hook
3183 #define elf_backend_get_symbol_type \
3184   sparc64_elf_get_symbol_type
3185 #define elf_backend_symbol_processing \
3186   sparc64_elf_symbol_processing
3187 #define elf_backend_check_relocs \
3188   sparc64_elf_check_relocs
3189 #define elf_backend_adjust_dynamic_symbol \
3190   sparc64_elf_adjust_dynamic_symbol
3191 #define elf_backend_size_dynamic_sections \
3192   sparc64_elf_size_dynamic_sections
3193 #define elf_backend_relocate_section \
3194   sparc64_elf_relocate_section
3195 #define elf_backend_finish_dynamic_symbol \
3196   sparc64_elf_finish_dynamic_symbol
3197 #define elf_backend_finish_dynamic_sections \
3198   sparc64_elf_finish_dynamic_sections
3199 #define elf_backend_print_symbol_all \
3200   sparc64_elf_print_symbol_all
3201 #define elf_backend_output_arch_syms \
3202   sparc64_elf_output_arch_syms
3203 #define bfd_elf64_bfd_merge_private_bfd_data \
3204   sparc64_elf_merge_private_bfd_data
3205 #define elf_backend_fake_sections \
3206   sparc64_elf_fake_sections
3207 
3208 #define elf_backend_size_info \
3209   sparc64_elf_size_info
3210 #define elf_backend_object_p \
3211   sparc64_elf_object_p
3212 #define elf_backend_reloc_type_class \
3213   sparc64_elf_reloc_type_class
3214 
3215 #define elf_backend_want_got_plt 0
3216 #define elf_backend_plt_readonly 0
3217 #define elf_backend_want_plt_sym 1
3218 #define elf_backend_rela_normal 1
3219 
3220 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
3221 #define elf_backend_plt_alignment 8
3222 
3223 #define elf_backend_got_header_size 8
3224 
3225 #include "elf64-target.h"
3226