1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 asection *, struct elf_link_hash_entry *)));
70 static void sparc64_elf_symbol_processing
71 PARAMS ((bfd *, asymbol *));
72
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74 PARAMS ((bfd *, bfd *));
75
76 static bfd_boolean sparc64_elf_fake_sections
77 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
78
79 static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd *, PTR, asymbol *));
81 static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd *, asection *));
83 static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85 static bfd_boolean sparc64_elf_relocate_section
86 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
90 Elf_Internal_Sym *));
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92 PARAMS ((bfd *, struct bfd_link_info *));
93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
100 static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd *, asection *, arelent **, asymbol **));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd *, arelent **, asymbol **));
104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela *));
107
108 /* The relocation "howto" table. */
109
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118
119 static reloc_howto_type sparc64_elf_howto_table[] =
120 {
121 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
122 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
126 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
127 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
128 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
131 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
132 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
134 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
136 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
138 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
139 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
140 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
145 #ifndef SPARC64_OLD_RELOCS
146 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
147 /* These aren't implemented yet. */
148 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
152 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
153 #endif
154 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
155 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
156 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
157 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
158 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
162 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
163 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
164 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
168 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
169 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
170 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
171 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
172 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
173 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
174 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
175 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
176 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
177 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
179 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
180 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
204 };
205
206 struct elf_reloc_map {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
209 };
210
211 static const struct elf_reloc_map sparc_reloc_map[] =
212 {
213 { BFD_RELOC_NONE, R_SPARC_NONE, },
214 { BFD_RELOC_16, R_SPARC_16, },
215 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
216 { BFD_RELOC_8, R_SPARC_8 },
217 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218 { BFD_RELOC_CTOR, R_SPARC_64 },
219 { BFD_RELOC_32, R_SPARC_32 },
220 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221 { BFD_RELOC_HI22, R_SPARC_HI22 },
222 { BFD_RELOC_LO10, R_SPARC_LO10, },
223 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
224 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
225 { BFD_RELOC_SPARC22, R_SPARC_22 },
226 { BFD_RELOC_SPARC13, R_SPARC_13 },
227 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
238 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241 { BFD_RELOC_SPARC_10, R_SPARC_10 },
242 { BFD_RELOC_SPARC_11, R_SPARC_11 },
243 { BFD_RELOC_SPARC_64, R_SPARC_64 },
244 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253 { BFD_RELOC_SPARC_7, R_SPARC_7 },
254 { BFD_RELOC_SPARC_5, R_SPARC_5 },
255 { BFD_RELOC_SPARC_6, R_SPARC_6 },
256 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
257 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
281 #ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
283 #endif
284 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
291 };
292
293 static reloc_howto_type *
sparc64_elf_reloc_type_lookup(abfd,code)294 sparc64_elf_reloc_type_lookup (abfd, code)
295 bfd *abfd ATTRIBUTE_UNUSED;
296 bfd_reloc_code_real_type code;
297 {
298 unsigned int i;
299 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
300 {
301 if (sparc_reloc_map[i].bfd_reloc_val == code)
302 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
303 }
304 return 0;
305 }
306
307 static void
sparc64_elf_info_to_howto(abfd,cache_ptr,dst)308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
309 bfd *abfd ATTRIBUTE_UNUSED;
310 arelent *cache_ptr;
311 Elf_Internal_Rela *dst;
312 {
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
315 }
316
317 struct sparc64_elf_section_data
318 {
319 struct bfd_elf_section_data elf;
320 unsigned int do_relax, reloc_count;
321 };
322
323 #define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
327
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
330 more space. */
331
332 static long
sparc64_elf_get_reloc_upper_bound(abfd,sec)333 sparc64_elf_get_reloc_upper_bound (abfd, sec)
334 bfd *abfd ATTRIBUTE_UNUSED;
335 asection *sec;
336 {
337 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
338 }
339
340 static long
sparc64_elf_get_dynamic_reloc_upper_bound(abfd)341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
342 bfd *abfd;
343 {
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
345 }
346
347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
351
352 static bfd_boolean
sparc64_elf_slurp_one_reloc_table(abfd,asect,rel_hdr,symbols,dynamic)353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
354 bfd *abfd;
355 asection *asect;
356 Elf_Internal_Shdr *rel_hdr;
357 asymbol **symbols;
358 bfd_boolean dynamic;
359 {
360 PTR allocated = NULL;
361 bfd_byte *native_relocs;
362 arelent *relent;
363 unsigned int i;
364 int entsize;
365 bfd_size_type count;
366 arelent *relents;
367
368 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
369 if (allocated == NULL)
370 goto error_return;
371
372 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
373 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
374 goto error_return;
375
376 native_relocs = (bfd_byte *) allocated;
377
378 relents = asect->relocation + canon_reloc_count (asect);
379
380 entsize = rel_hdr->sh_entsize;
381 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
382
383 count = rel_hdr->sh_size / entsize;
384
385 for (i = 0, relent = relents; i < count;
386 i++, relent++, native_relocs += entsize)
387 {
388 Elf_Internal_Rela rela;
389
390 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
391
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 relent->address = rela.r_offset;
398 else
399 relent->address = rela.r_offset - asect->vma;
400
401 if (ELF64_R_SYM (rela.r_info) == 0)
402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403 else
404 {
405 asymbol **ps, *s;
406
407 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
408 s = *ps;
409
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s->flags & BSF_SECTION_SYM) == 0)
412 relent->sym_ptr_ptr = ps;
413 else
414 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
415 }
416
417 relent->addend = rela.r_addend;
418
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
421 {
422 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 relent[1].address = relent->address;
424 relent++;
425 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
428 }
429 else
430 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
431 }
432
433 canon_reloc_count (asect) += relent - relents;
434
435 if (allocated != NULL)
436 free (allocated);
437
438 return TRUE;
439
440 error_return:
441 if (allocated != NULL)
442 free (allocated);
443 return FALSE;
444 }
445
446 /* Read in and swap the external relocs. */
447
448 static bfd_boolean
sparc64_elf_slurp_reloc_table(abfd,asect,symbols,dynamic)449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
450 bfd *abfd;
451 asection *asect;
452 asymbol **symbols;
453 bfd_boolean dynamic;
454 {
455 struct bfd_elf_section_data * const d = elf_section_data (asect);
456 Elf_Internal_Shdr *rel_hdr;
457 Elf_Internal_Shdr *rel_hdr2;
458 bfd_size_type amt;
459
460 if (asect->relocation != NULL)
461 return TRUE;
462
463 if (! dynamic)
464 {
465 if ((asect->flags & SEC_RELOC) == 0
466 || asect->reloc_count == 0)
467 return TRUE;
468
469 rel_hdr = &d->rel_hdr;
470 rel_hdr2 = d->rel_hdr2;
471
472 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
474 }
475 else
476 {
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
481 if (asect->_raw_size == 0)
482 return TRUE;
483
484 rel_hdr = &d->this_hdr;
485 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
486 rel_hdr2 = NULL;
487 }
488
489 amt = asect->reloc_count;
490 amt *= 2 * sizeof (arelent);
491 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
492 if (asect->relocation == NULL)
493 return FALSE;
494
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect) = 0;
498
499 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
500 dynamic))
501 return FALSE;
502
503 if (rel_hdr2
504 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
505 dynamic))
506 return FALSE;
507
508 return TRUE;
509 }
510
511 /* Canonicalize the relocs. */
512
513 static long
sparc64_elf_canonicalize_reloc(abfd,section,relptr,symbols)514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
515 bfd *abfd;
516 sec_ptr section;
517 arelent **relptr;
518 asymbol **symbols;
519 {
520 arelent *tblptr;
521 unsigned int i;
522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
523
524 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
525 return -1;
526
527 tblptr = section->relocation;
528 for (i = 0; i < canon_reloc_count (section); i++)
529 *relptr++ = tblptr++;
530
531 *relptr = NULL;
532
533 return canon_reloc_count (section);
534 }
535
536
537 /* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
544 section. */
545
546 static long
sparc64_elf_canonicalize_dynamic_reloc(abfd,storage,syms)547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
548 bfd *abfd;
549 arelent **storage;
550 asymbol **syms;
551 {
552 asection *s;
553 long ret;
554
555 if (elf_dynsymtab (abfd) == 0)
556 {
557 bfd_set_error (bfd_error_invalid_operation);
558 return -1;
559 }
560
561 ret = 0;
562 for (s = abfd->sections; s != NULL; s = s->next)
563 {
564 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
566 {
567 arelent *p;
568 long count, i;
569
570 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
571 return -1;
572 count = canon_reloc_count (s);
573 p = s->relocation;
574 for (i = 0; i < count; i++)
575 *storage++ = p++;
576 ret += count;
577 }
578 }
579
580 *storage = NULL;
581
582 return ret;
583 }
584
585 /* Write out the relocs. */
586
587 static void
sparc64_elf_write_relocs(abfd,sec,data)588 sparc64_elf_write_relocs (abfd, sec, data)
589 bfd *abfd;
590 asection *sec;
591 PTR data;
592 {
593 bfd_boolean *failedp = (bfd_boolean *) data;
594 Elf_Internal_Shdr *rela_hdr;
595 Elf64_External_Rela *outbound_relocas, *src_rela;
596 unsigned int idx, count;
597 asymbol *last_sym = 0;
598 int last_sym_idx = 0;
599
600 /* If we have already failed, don't do anything. */
601 if (*failedp)
602 return;
603
604 if ((sec->flags & SEC_RELOC) == 0)
605 return;
606
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
610 relocs. */
611 if (sec->reloc_count == 0)
612 return;
613
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
617 count = 0;
618 for (idx = 0; idx < sec->reloc_count; idx++)
619 {
620 bfd_vma addr;
621
622 ++count;
623
624 addr = sec->orelocation[idx]->address;
625 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 && idx < sec->reloc_count - 1)
627 {
628 arelent *r = sec->orelocation[idx + 1];
629
630 if (r->howto->type == R_SPARC_13
631 && r->address == addr
632 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 && (*r->sym_ptr_ptr)->value == 0)
634 ++idx;
635 }
636 }
637
638 rela_hdr = &elf_section_data (sec)->rel_hdr;
639
640 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642 if (rela_hdr->contents == NULL)
643 {
644 *failedp = TRUE;
645 return;
646 }
647
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr->sh_type != SHT_RELA)
650 abort ();
651
652 /* orelocation has the data, reloc_count has the count... */
653 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
654 src_rela = outbound_relocas;
655
656 for (idx = 0; idx < sec->reloc_count; idx++)
657 {
658 Elf_Internal_Rela dst_rela;
659 arelent *ptr;
660 asymbol *sym;
661 int n;
662
663 ptr = sec->orelocation[idx];
664
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 dst_rela.r_offset = ptr->address;
670 else
671 dst_rela.r_offset = ptr->address + sec->vma;
672
673 sym = *ptr->sym_ptr_ptr;
674 if (sym == last_sym)
675 n = last_sym_idx;
676 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
677 n = STN_UNDEF;
678 else
679 {
680 last_sym = sym;
681 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
682 if (n < 0)
683 {
684 *failedp = TRUE;
685 return;
686 }
687 last_sym_idx = n;
688 }
689
690 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 && ! _bfd_elf_validate_reloc (abfd, ptr))
693 {
694 *failedp = TRUE;
695 return;
696 }
697
698 if (ptr->howto->type == R_SPARC_LO10
699 && idx < sec->reloc_count - 1)
700 {
701 arelent *r = sec->orelocation[idx + 1];
702
703 if (r->howto->type == R_SPARC_13
704 && r->address == ptr->address
705 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 && (*r->sym_ptr_ptr)->value == 0)
707 {
708 idx++;
709 dst_rela.r_info
710 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
711 R_SPARC_OLO10));
712 }
713 else
714 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
715 }
716 else
717 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
718
719 dst_rela.r_addend = ptr->addend;
720 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
721 ++src_rela;
722 }
723 }
724
725 /* Sparc64 ELF linker hash table. */
726
727 struct sparc64_elf_app_reg
728 {
729 unsigned char bind;
730 unsigned short shndx;
731 bfd *abfd;
732 char *name;
733 };
734
735 struct sparc64_elf_link_hash_table
736 {
737 struct elf_link_hash_table root;
738
739 struct sparc64_elf_app_reg app_regs [4];
740 };
741
742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
743
744 #define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
746
747 /* Create a Sparc64 ELF linker hash table. */
748
749 static struct bfd_link_hash_table *
sparc64_elf_bfd_link_hash_table_create(abfd)750 sparc64_elf_bfd_link_hash_table_create (abfd)
751 bfd *abfd;
752 {
753 struct sparc64_elf_link_hash_table *ret;
754 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
755
756 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
757 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
758 return NULL;
759
760 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 _bfd_elf_link_hash_newfunc))
762 {
763 free (ret);
764 return NULL;
765 }
766
767 return &ret->root.root;
768 }
769
770 /* Utility for performing the standard initial work of an instruction
771 relocation.
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
777
778 static bfd_reloc_status_type
init_insn_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,prelocation,pinsn)779 init_insn_reloc (abfd,
780 reloc_entry,
781 symbol,
782 data,
783 input_section,
784 output_bfd,
785 prelocation,
786 pinsn)
787 bfd *abfd;
788 arelent *reloc_entry;
789 asymbol *symbol;
790 PTR data;
791 asection *input_section;
792 bfd *output_bfd;
793 bfd_vma *prelocation;
794 bfd_vma *pinsn;
795 {
796 bfd_vma relocation;
797 reloc_howto_type *howto = reloc_entry->howto;
798
799 if (output_bfd != (bfd *) NULL
800 && (symbol->flags & BSF_SECTION_SYM) == 0
801 && (! howto->partial_inplace
802 || reloc_entry->addend == 0))
803 {
804 reloc_entry->address += input_section->output_offset;
805 return bfd_reloc_ok;
806 }
807
808 /* This works because partial_inplace is FALSE. */
809 if (output_bfd != NULL)
810 return bfd_reloc_continue;
811
812 if (reloc_entry->address > input_section->_cooked_size)
813 return bfd_reloc_outofrange;
814
815 relocation = (symbol->value
816 + symbol->section->output_section->vma
817 + symbol->section->output_offset);
818 relocation += reloc_entry->addend;
819 if (howto->pc_relative)
820 {
821 relocation -= (input_section->output_section->vma
822 + input_section->output_offset);
823 relocation -= reloc_entry->address;
824 }
825
826 *prelocation = relocation;
827 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
828 return bfd_reloc_other;
829 }
830
831 /* For unsupported relocs. */
832
833 static bfd_reloc_status_type
sparc_elf_notsup_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)834 sparc_elf_notsup_reloc (abfd,
835 reloc_entry,
836 symbol,
837 data,
838 input_section,
839 output_bfd,
840 error_message)
841 bfd *abfd ATTRIBUTE_UNUSED;
842 arelent *reloc_entry ATTRIBUTE_UNUSED;
843 asymbol *symbol ATTRIBUTE_UNUSED;
844 PTR data ATTRIBUTE_UNUSED;
845 asection *input_section ATTRIBUTE_UNUSED;
846 bfd *output_bfd ATTRIBUTE_UNUSED;
847 char **error_message ATTRIBUTE_UNUSED;
848 {
849 return bfd_reloc_notsupported;
850 }
851
852 /* Handle the WDISP16 reloc. */
853
854 static bfd_reloc_status_type
sparc_elf_wdisp16_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)855 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
856 output_bfd, error_message)
857 bfd *abfd;
858 arelent *reloc_entry;
859 asymbol *symbol;
860 PTR data;
861 asection *input_section;
862 bfd *output_bfd;
863 char **error_message ATTRIBUTE_UNUSED;
864 {
865 bfd_vma relocation;
866 bfd_vma insn;
867 bfd_reloc_status_type status;
868
869 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
870 input_section, output_bfd, &relocation, &insn);
871 if (status != bfd_reloc_other)
872 return status;
873
874 insn &= ~ (bfd_vma) 0x303fff;
875 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
876 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
877
878 if ((bfd_signed_vma) relocation < - 0x40000
879 || (bfd_signed_vma) relocation > 0x3ffff)
880 return bfd_reloc_overflow;
881 else
882 return bfd_reloc_ok;
883 }
884
885 /* Handle the HIX22 reloc. */
886
887 static bfd_reloc_status_type
sparc_elf_hix22_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)888 sparc_elf_hix22_reloc (abfd,
889 reloc_entry,
890 symbol,
891 data,
892 input_section,
893 output_bfd,
894 error_message)
895 bfd *abfd;
896 arelent *reloc_entry;
897 asymbol *symbol;
898 PTR data;
899 asection *input_section;
900 bfd *output_bfd;
901 char **error_message ATTRIBUTE_UNUSED;
902 {
903 bfd_vma relocation;
904 bfd_vma insn;
905 bfd_reloc_status_type status;
906
907 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
908 input_section, output_bfd, &relocation, &insn);
909 if (status != bfd_reloc_other)
910 return status;
911
912 relocation ^= MINUS_ONE;
913 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
914 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
915
916 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
917 return bfd_reloc_overflow;
918 else
919 return bfd_reloc_ok;
920 }
921
922 /* Handle the LOX10 reloc. */
923
924 static bfd_reloc_status_type
sparc_elf_lox10_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)925 sparc_elf_lox10_reloc (abfd,
926 reloc_entry,
927 symbol,
928 data,
929 input_section,
930 output_bfd,
931 error_message)
932 bfd *abfd;
933 arelent *reloc_entry;
934 asymbol *symbol;
935 PTR data;
936 asection *input_section;
937 bfd *output_bfd;
938 char **error_message ATTRIBUTE_UNUSED;
939 {
940 bfd_vma relocation;
941 bfd_vma insn;
942 bfd_reloc_status_type status;
943
944 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
945 input_section, output_bfd, &relocation, &insn);
946 if (status != bfd_reloc_other)
947 return status;
948
949 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
950 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
951
952 return bfd_reloc_ok;
953 }
954
955 /* PLT/GOT stuff */
956
957 /* Both the headers and the entries are icache aligned. */
958 #define PLT_ENTRY_SIZE 32
959 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
960 #define LARGE_PLT_THRESHOLD 32768
961 #define GOT_RESERVED_ENTRIES 1
962
963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
964
965 /* Fill in the .plt section. */
966
967 static void
sparc64_elf_build_plt(output_bfd,contents,nentries)968 sparc64_elf_build_plt (output_bfd, contents, nentries)
969 bfd *output_bfd;
970 unsigned char *contents;
971 int nentries;
972 {
973 const unsigned int nop = 0x01000000;
974 int i, j;
975
976 /* The first four entries are reserved, and are initially undefined.
977 We fill them with `illtrap 0' to force ld.so to do something. */
978
979 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
980 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
981
982 /* The first 32768 entries are close enough to plt1 to get there via
983 a straight branch. */
984
985 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
986 {
987 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
988 unsigned int sethi, ba;
989
990 /* sethi (. - plt0), %g1 */
991 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
992
993 /* ba,a,pt %xcc, plt1 */
994 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
995
996 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
997 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
998 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
999 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1004 }
1005
1006 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1007 160: 160 entries and 160 pointers. This is to separate code from data,
1008 which is much friendlier on the cache. */
1009
1010 for (; i < nentries; i += 160)
1011 {
1012 int block = (i + 160 <= nentries ? 160 : nentries - i);
1013 for (j = 0; j < block; ++j)
1014 {
1015 unsigned char *entry, *ptr;
1016 unsigned int ldx;
1017
1018 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1019 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1020
1021 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1023
1024 /* mov %o7,%g5
1025 call .+8
1026 nop
1027 ldx [%o7+P],%g1
1028 jmpl %o7+%g1,%g1
1029 mov %g5,%o7 */
1030 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1031 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1032 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1033 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1034 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1035 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1036
1037 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1038 }
1039 }
1040 }
1041
1042 /* Return the offset of a particular plt entry within the .plt section. */
1043
1044 static bfd_vma
sparc64_elf_plt_entry_offset(index)1045 sparc64_elf_plt_entry_offset (index)
1046 bfd_vma index;
1047 {
1048 bfd_vma block, ofs;
1049
1050 if (index < LARGE_PLT_THRESHOLD)
1051 return index * PLT_ENTRY_SIZE;
1052
1053 /* See above for details. */
1054
1055 block = (index - LARGE_PLT_THRESHOLD) / 160;
1056 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1057
1058 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1059 }
1060
1061 static bfd_vma
sparc64_elf_plt_ptr_offset(index,max)1062 sparc64_elf_plt_ptr_offset (index, max)
1063 bfd_vma index;
1064 bfd_vma max;
1065 {
1066 bfd_vma block, ofs, last;
1067
1068 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1069
1070 /* See above for details. */
1071
1072 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1073 ofs = index - block;
1074 if (block + 160 > max)
1075 last = (max - LARGE_PLT_THRESHOLD) % 160;
1076 else
1077 last = 160;
1078
1079 return (block * PLT_ENTRY_SIZE
1080 + last * 6*4
1081 + ofs * 8);
1082 }
1083
1084 /* Look through the relocs for a section during the first phase, and
1085 allocate space in the global offset table or procedure linkage
1086 table. */
1087
1088 static bfd_boolean
sparc64_elf_check_relocs(abfd,info,sec,relocs)1089 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1090 bfd *abfd;
1091 struct bfd_link_info *info;
1092 asection *sec;
1093 const Elf_Internal_Rela *relocs;
1094 {
1095 bfd *dynobj;
1096 Elf_Internal_Shdr *symtab_hdr;
1097 struct elf_link_hash_entry **sym_hashes;
1098 bfd_vma *local_got_offsets;
1099 const Elf_Internal_Rela *rel;
1100 const Elf_Internal_Rela *rel_end;
1101 asection *sgot;
1102 asection *srelgot;
1103 asection *sreloc;
1104
1105 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1106 return TRUE;
1107
1108 dynobj = elf_hash_table (info)->dynobj;
1109 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1110 sym_hashes = elf_sym_hashes (abfd);
1111 local_got_offsets = elf_local_got_offsets (abfd);
1112
1113 sgot = NULL;
1114 srelgot = NULL;
1115 sreloc = NULL;
1116
1117 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1118 for (rel = relocs; rel < rel_end; rel++)
1119 {
1120 unsigned long r_symndx;
1121 struct elf_link_hash_entry *h;
1122
1123 r_symndx = ELF64_R_SYM (rel->r_info);
1124 if (r_symndx < symtab_hdr->sh_info)
1125 h = NULL;
1126 else
1127 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1128
1129 switch (ELF64_R_TYPE_ID (rel->r_info))
1130 {
1131 case R_SPARC_GOT10:
1132 case R_SPARC_GOT13:
1133 case R_SPARC_GOT22:
1134 /* This symbol requires a global offset table entry. */
1135
1136 if (dynobj == NULL)
1137 {
1138 /* Create the .got section. */
1139 elf_hash_table (info)->dynobj = dynobj = abfd;
1140 if (! _bfd_elf_create_got_section (dynobj, info))
1141 return FALSE;
1142 }
1143
1144 if (sgot == NULL)
1145 {
1146 sgot = bfd_get_section_by_name (dynobj, ".got");
1147 BFD_ASSERT (sgot != NULL);
1148 }
1149
1150 if (srelgot == NULL && (h != NULL || info->shared))
1151 {
1152 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1153 if (srelgot == NULL)
1154 {
1155 srelgot = bfd_make_section (dynobj, ".rela.got");
1156 if (srelgot == NULL
1157 || ! bfd_set_section_flags (dynobj, srelgot,
1158 (SEC_ALLOC
1159 | SEC_LOAD
1160 | SEC_HAS_CONTENTS
1161 | SEC_IN_MEMORY
1162 | SEC_LINKER_CREATED
1163 | SEC_READONLY))
1164 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1165 return FALSE;
1166 }
1167 }
1168
1169 if (h != NULL)
1170 {
1171 if (h->got.offset != (bfd_vma) -1)
1172 {
1173 /* We have already allocated space in the .got. */
1174 break;
1175 }
1176 h->got.offset = sgot->_raw_size;
1177
1178 /* Make sure this symbol is output as a dynamic symbol. */
1179 if (h->dynindx == -1)
1180 {
1181 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1182 return FALSE;
1183 }
1184
1185 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1186 }
1187 else
1188 {
1189 /* This is a global offset table entry for a local
1190 symbol. */
1191 if (local_got_offsets == NULL)
1192 {
1193 bfd_size_type size;
1194 register unsigned int i;
1195
1196 size = symtab_hdr->sh_info;
1197 size *= sizeof (bfd_vma);
1198 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1199 if (local_got_offsets == NULL)
1200 return FALSE;
1201 elf_local_got_offsets (abfd) = local_got_offsets;
1202 for (i = 0; i < symtab_hdr->sh_info; i++)
1203 local_got_offsets[i] = (bfd_vma) -1;
1204 }
1205 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1206 {
1207 /* We have already allocated space in the .got. */
1208 break;
1209 }
1210 local_got_offsets[r_symndx] = sgot->_raw_size;
1211
1212 if (info->shared)
1213 {
1214 /* If we are generating a shared object, we need to
1215 output a R_SPARC_RELATIVE reloc so that the
1216 dynamic linker can adjust this GOT entry. */
1217 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1218 }
1219 }
1220
1221 sgot->_raw_size += 8;
1222
1223 #if 0
1224 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 unsigned numbers. If we permit ourselves to modify
1226 code so we get sethi/xor, this could work.
1227 Question: do we consider conditionally re-enabling
1228 this for -fpic, once we know about object code models? */
1229 /* If the .got section is more than 0x1000 bytes, we add
1230 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 bit relocations have a greater chance of working. */
1232 if (sgot->_raw_size >= 0x1000
1233 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1234 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1235 #endif
1236
1237 break;
1238
1239 case R_SPARC_WPLT30:
1240 case R_SPARC_PLT32:
1241 case R_SPARC_HIPLT22:
1242 case R_SPARC_LOPLT10:
1243 case R_SPARC_PCPLT32:
1244 case R_SPARC_PCPLT22:
1245 case R_SPARC_PCPLT10:
1246 case R_SPARC_PLT64:
1247 /* This symbol requires a procedure linkage table entry. We
1248 actually build the entry in adjust_dynamic_symbol,
1249 because this might be a case of linking PIC code without
1250 linking in any dynamic objects, in which case we don't
1251 need to generate a procedure linkage table after all. */
1252
1253 if (h == NULL)
1254 {
1255 /* It does not make sense to have a procedure linkage
1256 table entry for a local symbol. */
1257 bfd_set_error (bfd_error_bad_value);
1258 return FALSE;
1259 }
1260
1261 /* Make sure this symbol is output as a dynamic symbol. */
1262 if (h->dynindx == -1)
1263 {
1264 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1265 return FALSE;
1266 }
1267
1268 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1269 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1270 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1271 break;
1272 /* Fall through. */
1273 case R_SPARC_PC10:
1274 case R_SPARC_PC22:
1275 case R_SPARC_PC_HH22:
1276 case R_SPARC_PC_HM10:
1277 case R_SPARC_PC_LM22:
1278 if (h != NULL
1279 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1280 break;
1281 /* Fall through. */
1282 case R_SPARC_DISP8:
1283 case R_SPARC_DISP16:
1284 case R_SPARC_DISP32:
1285 case R_SPARC_DISP64:
1286 case R_SPARC_WDISP30:
1287 case R_SPARC_WDISP22:
1288 case R_SPARC_WDISP19:
1289 case R_SPARC_WDISP16:
1290 if (h == NULL)
1291 break;
1292 /* Fall through. */
1293 case R_SPARC_8:
1294 case R_SPARC_16:
1295 case R_SPARC_32:
1296 case R_SPARC_HI22:
1297 case R_SPARC_22:
1298 case R_SPARC_13:
1299 case R_SPARC_LO10:
1300 case R_SPARC_UA32:
1301 case R_SPARC_10:
1302 case R_SPARC_11:
1303 case R_SPARC_64:
1304 case R_SPARC_OLO10:
1305 case R_SPARC_HH22:
1306 case R_SPARC_HM10:
1307 case R_SPARC_LM22:
1308 case R_SPARC_7:
1309 case R_SPARC_5:
1310 case R_SPARC_6:
1311 case R_SPARC_HIX22:
1312 case R_SPARC_LOX10:
1313 case R_SPARC_H44:
1314 case R_SPARC_M44:
1315 case R_SPARC_L44:
1316 case R_SPARC_UA64:
1317 case R_SPARC_UA16:
1318 /* When creating a shared object, we must copy these relocs
1319 into the output file. We create a reloc section in
1320 dynobj and make room for the reloc.
1321
1322 But don't do this for debugging sections -- this shows up
1323 with DWARF2 -- first because they are not loaded, and
1324 second because DWARF sez the debug info is not to be
1325 biased by the load address. */
1326 if (info->shared && (sec->flags & SEC_ALLOC))
1327 {
1328 if (sreloc == NULL)
1329 {
1330 const char *name;
1331
1332 name = (bfd_elf_string_from_elf_section
1333 (abfd,
1334 elf_elfheader (abfd)->e_shstrndx,
1335 elf_section_data (sec)->rel_hdr.sh_name));
1336 if (name == NULL)
1337 return FALSE;
1338
1339 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1340 && strcmp (bfd_get_section_name (abfd, sec),
1341 name + 5) == 0);
1342
1343 sreloc = bfd_get_section_by_name (dynobj, name);
1344 if (sreloc == NULL)
1345 {
1346 flagword flags;
1347
1348 sreloc = bfd_make_section (dynobj, name);
1349 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1350 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1351 if ((sec->flags & SEC_ALLOC) != 0)
1352 flags |= SEC_ALLOC | SEC_LOAD;
1353 if (sreloc == NULL
1354 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1355 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1356 return FALSE;
1357 }
1358 if (sec->flags & SEC_READONLY)
1359 info->flags |= DF_TEXTREL;
1360 }
1361
1362 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1363 }
1364 break;
1365
1366 case R_SPARC_REGISTER:
1367 /* Nothing to do. */
1368 break;
1369
1370 default:
1371 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1372 bfd_archive_filename (abfd),
1373 ELF64_R_TYPE_ID (rel->r_info));
1374 return FALSE;
1375 }
1376 }
1377
1378 return TRUE;
1379 }
1380
1381 /* Hook called by the linker routine which adds symbols from an object
1382 file. We use it for STT_REGISTER symbols. */
1383
1384 static bfd_boolean
sparc64_elf_add_symbol_hook(abfd,info,sym,namep,flagsp,secp,valp)1385 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1386 bfd *abfd;
1387 struct bfd_link_info *info;
1388 Elf_Internal_Sym *sym;
1389 const char **namep;
1390 flagword *flagsp ATTRIBUTE_UNUSED;
1391 asection **secp ATTRIBUTE_UNUSED;
1392 bfd_vma *valp ATTRIBUTE_UNUSED;
1393 {
1394 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1395
1396 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1397 {
1398 int reg;
1399 struct sparc64_elf_app_reg *p;
1400
1401 reg = (int)sym->st_value;
1402 switch (reg & ~1)
1403 {
1404 case 2: reg -= 2; break;
1405 case 6: reg -= 4; break;
1406 default:
1407 (*_bfd_error_handler)
1408 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1409 bfd_archive_filename (abfd));
1410 return FALSE;
1411 }
1412
1413 if (info->hash->creator != abfd->xvec
1414 || (abfd->flags & DYNAMIC) != 0)
1415 {
1416 /* STT_REGISTER only works when linking an elf64_sparc object.
1417 If STT_REGISTER comes from a dynamic object, don't put it into
1418 the output bfd. The dynamic linker will recheck it. */
1419 *namep = NULL;
1420 return TRUE;
1421 }
1422
1423 p = sparc64_elf_hash_table(info)->app_regs + reg;
1424
1425 if (p->name != NULL && strcmp (p->name, *namep))
1426 {
1427 (*_bfd_error_handler)
1428 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1429 (int) sym->st_value,
1430 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1431 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1432 return FALSE;
1433 }
1434
1435 if (p->name == NULL)
1436 {
1437 if (**namep)
1438 {
1439 struct elf_link_hash_entry *h;
1440
1441 h = (struct elf_link_hash_entry *)
1442 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1443
1444 if (h != NULL)
1445 {
1446 unsigned char type = h->type;
1447
1448 if (type > STT_FUNC)
1449 type = 0;
1450 (*_bfd_error_handler)
1451 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1452 *namep, bfd_archive_filename (abfd),
1453 stt_types[type], bfd_archive_filename (p->abfd));
1454 return FALSE;
1455 }
1456
1457 p->name = bfd_hash_allocate (&info->hash->table,
1458 strlen (*namep) + 1);
1459 if (!p->name)
1460 return FALSE;
1461
1462 strcpy (p->name, *namep);
1463 }
1464 else
1465 p->name = "";
1466 p->bind = ELF_ST_BIND (sym->st_info);
1467 p->abfd = abfd;
1468 p->shndx = sym->st_shndx;
1469 }
1470 else
1471 {
1472 if (p->bind == STB_WEAK
1473 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1474 {
1475 p->bind = STB_GLOBAL;
1476 p->abfd = abfd;
1477 }
1478 }
1479 *namep = NULL;
1480 return TRUE;
1481 }
1482 else if (*namep && **namep
1483 && info->hash->creator == abfd->xvec)
1484 {
1485 int i;
1486 struct sparc64_elf_app_reg *p;
1487
1488 p = sparc64_elf_hash_table(info)->app_regs;
1489 for (i = 0; i < 4; i++, p++)
1490 if (p->name != NULL && ! strcmp (p->name, *namep))
1491 {
1492 unsigned char type = ELF_ST_TYPE (sym->st_info);
1493
1494 if (type > STT_FUNC)
1495 type = 0;
1496 (*_bfd_error_handler)
1497 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1498 *namep, stt_types[type], bfd_archive_filename (abfd),
1499 bfd_archive_filename (p->abfd));
1500 return FALSE;
1501 }
1502 }
1503 return TRUE;
1504 }
1505
1506 /* This function takes care of emitting STT_REGISTER symbols
1507 which we cannot easily keep in the symbol hash table. */
1508
1509 static bfd_boolean
sparc64_elf_output_arch_syms(output_bfd,info,finfo,func)1510 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1511 bfd *output_bfd ATTRIBUTE_UNUSED;
1512 struct bfd_link_info *info;
1513 PTR finfo;
1514 bfd_boolean (*func)
1515 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1516 struct elf_link_hash_entry *));
1517 {
1518 int reg;
1519 struct sparc64_elf_app_reg *app_regs =
1520 sparc64_elf_hash_table(info)->app_regs;
1521 Elf_Internal_Sym sym;
1522
1523 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1524 at the end of the dynlocal list, so they came at the end of the local
1525 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1526 to back up symtab->sh_info. */
1527 if (elf_hash_table (info)->dynlocal)
1528 {
1529 bfd * dynobj = elf_hash_table (info)->dynobj;
1530 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1531 struct elf_link_local_dynamic_entry *e;
1532
1533 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1534 if (e->input_indx == -1)
1535 break;
1536 if (e)
1537 {
1538 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1539 = e->dynindx;
1540 }
1541 }
1542
1543 if (info->strip == strip_all)
1544 return TRUE;
1545
1546 for (reg = 0; reg < 4; reg++)
1547 if (app_regs [reg].name != NULL)
1548 {
1549 if (info->strip == strip_some
1550 && bfd_hash_lookup (info->keep_hash,
1551 app_regs [reg].name,
1552 FALSE, FALSE) == NULL)
1553 continue;
1554
1555 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1556 sym.st_size = 0;
1557 sym.st_other = 0;
1558 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1559 sym.st_shndx = app_regs [reg].shndx;
1560 if (! (*func) (finfo, app_regs [reg].name, &sym,
1561 sym.st_shndx == SHN_ABS
1562 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1563 NULL))
1564 return FALSE;
1565 }
1566
1567 return TRUE;
1568 }
1569
1570 static int
sparc64_elf_get_symbol_type(elf_sym,type)1571 sparc64_elf_get_symbol_type (elf_sym, type)
1572 Elf_Internal_Sym * elf_sym;
1573 int type;
1574 {
1575 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1576 return STT_REGISTER;
1577 else
1578 return type;
1579 }
1580
1581 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1582 even in SHN_UNDEF section. */
1583
1584 static void
sparc64_elf_symbol_processing(abfd,asym)1585 sparc64_elf_symbol_processing (abfd, asym)
1586 bfd *abfd ATTRIBUTE_UNUSED;
1587 asymbol *asym;
1588 {
1589 elf_symbol_type *elfsym;
1590
1591 elfsym = (elf_symbol_type *) asym;
1592 if (elfsym->internal_elf_sym.st_info
1593 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1594 {
1595 asym->flags |= BSF_GLOBAL;
1596 }
1597 }
1598
1599 /* Adjust a symbol defined by a dynamic object and referenced by a
1600 regular object. The current definition is in some section of the
1601 dynamic object, but we're not including those sections. We have to
1602 change the definition to something the rest of the link can
1603 understand. */
1604
1605 static bfd_boolean
sparc64_elf_adjust_dynamic_symbol(info,h)1606 sparc64_elf_adjust_dynamic_symbol (info, h)
1607 struct bfd_link_info *info;
1608 struct elf_link_hash_entry *h;
1609 {
1610 bfd *dynobj;
1611 asection *s;
1612 unsigned int power_of_two;
1613
1614 dynobj = elf_hash_table (info)->dynobj;
1615
1616 /* Make sure we know what is going on here. */
1617 BFD_ASSERT (dynobj != NULL
1618 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1619 || h->weakdef != NULL
1620 || ((h->elf_link_hash_flags
1621 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1622 && (h->elf_link_hash_flags
1623 & ELF_LINK_HASH_REF_REGULAR) != 0
1624 && (h->elf_link_hash_flags
1625 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1626
1627 /* If this is a function, put it in the procedure linkage table. We
1628 will fill in the contents of the procedure linkage table later
1629 (although we could actually do it here). The STT_NOTYPE
1630 condition is a hack specifically for the Oracle libraries
1631 delivered for Solaris; for some inexplicable reason, they define
1632 some of their functions as STT_NOTYPE when they really should be
1633 STT_FUNC. */
1634 if (h->type == STT_FUNC
1635 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1636 || (h->type == STT_NOTYPE
1637 && (h->root.type == bfd_link_hash_defined
1638 || h->root.type == bfd_link_hash_defweak)
1639 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1640 {
1641 if (! info->shared
1642 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1643 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1644 && h->root.type != bfd_link_hash_undefweak
1645 && h->root.type != bfd_link_hash_undefined)
1646 {
1647 /* This case can occur if we saw a WPLT30 reloc in an input
1648 file, but none of the input files were dynamic objects.
1649 In such a case, we don't actually need to build a
1650 procedure linkage table, and we can just do a WDISP30
1651 reloc instead. */
1652 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1653 return TRUE;
1654 }
1655
1656 s = bfd_get_section_by_name (dynobj, ".plt");
1657 BFD_ASSERT (s != NULL);
1658
1659 /* The first four bit in .plt is reserved. */
1660 if (s->_raw_size == 0)
1661 s->_raw_size = PLT_HEADER_SIZE;
1662
1663 /* To simplify matters later, just store the plt index here. */
1664 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1665
1666 /* If this symbol is not defined in a regular file, and we are
1667 not generating a shared library, then set the symbol to this
1668 location in the .plt. This is required to make function
1669 pointers compare as equal between the normal executable and
1670 the shared library. */
1671 if (! info->shared
1672 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1673 {
1674 h->root.u.def.section = s;
1675 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1676 }
1677
1678 /* Make room for this entry. */
1679 s->_raw_size += PLT_ENTRY_SIZE;
1680
1681 /* We also need to make an entry in the .rela.plt section. */
1682
1683 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1684 BFD_ASSERT (s != NULL);
1685
1686 s->_raw_size += sizeof (Elf64_External_Rela);
1687
1688 /* The procedure linkage table size is bounded by the magnitude
1689 of the offset we can describe in the entry. */
1690 if (s->_raw_size >= (bfd_vma)1 << 32)
1691 {
1692 bfd_set_error (bfd_error_bad_value);
1693 return FALSE;
1694 }
1695
1696 return TRUE;
1697 }
1698
1699 /* If this is a weak symbol, and there is a real definition, the
1700 processor independent code will have arranged for us to see the
1701 real definition first, and we can just use the same value. */
1702 if (h->weakdef != NULL)
1703 {
1704 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1705 || h->weakdef->root.type == bfd_link_hash_defweak);
1706 h->root.u.def.section = h->weakdef->root.u.def.section;
1707 h->root.u.def.value = h->weakdef->root.u.def.value;
1708 return TRUE;
1709 }
1710
1711 /* This is a reference to a symbol defined by a dynamic object which
1712 is not a function. */
1713
1714 /* If we are creating a shared library, we must presume that the
1715 only references to the symbol are via the global offset table.
1716 For such cases we need not do anything here; the relocations will
1717 be handled correctly by relocate_section. */
1718 if (info->shared)
1719 return TRUE;
1720
1721 /* We must allocate the symbol in our .dynbss section, which will
1722 become part of the .bss section of the executable. There will be
1723 an entry for this symbol in the .dynsym section. The dynamic
1724 object will contain position independent code, so all references
1725 from the dynamic object to this symbol will go through the global
1726 offset table. The dynamic linker will use the .dynsym entry to
1727 determine the address it must put in the global offset table, so
1728 both the dynamic object and the regular object will refer to the
1729 same memory location for the variable. */
1730
1731 s = bfd_get_section_by_name (dynobj, ".dynbss");
1732 BFD_ASSERT (s != NULL);
1733
1734 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1735 to copy the initial value out of the dynamic object and into the
1736 runtime process image. We need to remember the offset into the
1737 .rel.bss section we are going to use. */
1738 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1739 {
1740 asection *srel;
1741
1742 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1743 BFD_ASSERT (srel != NULL);
1744 srel->_raw_size += sizeof (Elf64_External_Rela);
1745 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1746 }
1747
1748 /* We need to figure out the alignment required for this symbol. I
1749 have no idea how ELF linkers handle this. 16-bytes is the size
1750 of the largest type that requires hard alignment -- long double. */
1751 power_of_two = bfd_log2 (h->size);
1752 if (power_of_two > 4)
1753 power_of_two = 4;
1754
1755 /* Apply the required alignment. */
1756 s->_raw_size = BFD_ALIGN (s->_raw_size,
1757 (bfd_size_type) (1 << power_of_two));
1758 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1759 {
1760 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1761 return FALSE;
1762 }
1763
1764 /* Define the symbol as being at this point in the section. */
1765 h->root.u.def.section = s;
1766 h->root.u.def.value = s->_raw_size;
1767
1768 /* Increment the section size to make room for the symbol. */
1769 s->_raw_size += h->size;
1770
1771 return TRUE;
1772 }
1773
1774 /* Set the sizes of the dynamic sections. */
1775
1776 static bfd_boolean
sparc64_elf_size_dynamic_sections(output_bfd,info)1777 sparc64_elf_size_dynamic_sections (output_bfd, info)
1778 bfd *output_bfd;
1779 struct bfd_link_info *info;
1780 {
1781 bfd *dynobj;
1782 asection *s;
1783 bfd_boolean relplt;
1784
1785 dynobj = elf_hash_table (info)->dynobj;
1786 BFD_ASSERT (dynobj != NULL);
1787
1788 if (elf_hash_table (info)->dynamic_sections_created)
1789 {
1790 /* Set the contents of the .interp section to the interpreter. */
1791 if (info->executable && !info->static_link)
1792 {
1793 s = bfd_get_section_by_name (dynobj, ".interp");
1794 BFD_ASSERT (s != NULL);
1795 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1796 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1797 }
1798 }
1799 else
1800 {
1801 /* We may have created entries in the .rela.got section.
1802 However, if we are not creating the dynamic sections, we will
1803 not actually use these entries. Reset the size of .rela.got,
1804 which will cause it to get stripped from the output file
1805 below. */
1806 s = bfd_get_section_by_name (dynobj, ".rela.got");
1807 if (s != NULL)
1808 s->_raw_size = 0;
1809 }
1810
1811 /* The check_relocs and adjust_dynamic_symbol entry points have
1812 determined the sizes of the various dynamic sections. Allocate
1813 memory for them. */
1814 relplt = FALSE;
1815 for (s = dynobj->sections; s != NULL; s = s->next)
1816 {
1817 const char *name;
1818 bfd_boolean strip;
1819
1820 if ((s->flags & SEC_LINKER_CREATED) == 0)
1821 continue;
1822
1823 /* It's OK to base decisions on the section name, because none
1824 of the dynobj section names depend upon the input files. */
1825 name = bfd_get_section_name (dynobj, s);
1826
1827 strip = FALSE;
1828
1829 if (strncmp (name, ".rela", 5) == 0)
1830 {
1831 if (s->_raw_size == 0)
1832 {
1833 /* If we don't need this section, strip it from the
1834 output file. This is to handle .rela.bss and
1835 .rel.plt. We must create it in
1836 create_dynamic_sections, because it must be created
1837 before the linker maps input sections to output
1838 sections. The linker does that before
1839 adjust_dynamic_symbol is called, and it is that
1840 function which decides whether anything needs to go
1841 into these sections. */
1842 strip = TRUE;
1843 }
1844 else
1845 {
1846 if (strcmp (name, ".rela.plt") == 0)
1847 relplt = TRUE;
1848
1849 /* We use the reloc_count field as a counter if we need
1850 to copy relocs into the output file. */
1851 s->reloc_count = 0;
1852 }
1853 }
1854 else if (strcmp (name, ".plt") != 0
1855 && strncmp (name, ".got", 4) != 0)
1856 {
1857 /* It's not one of our sections, so don't allocate space. */
1858 continue;
1859 }
1860
1861 if (strip)
1862 {
1863 _bfd_strip_section_from_output (info, s);
1864 continue;
1865 }
1866
1867 /* Allocate memory for the section contents. Zero the memory
1868 for the benefit of .rela.plt, which has 4 unused entries
1869 at the beginning, and we don't want garbage. */
1870 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1871 if (s->contents == NULL && s->_raw_size != 0)
1872 return FALSE;
1873 }
1874
1875 if (elf_hash_table (info)->dynamic_sections_created)
1876 {
1877 /* Add some entries to the .dynamic section. We fill in the
1878 values later, in sparc64_elf_finish_dynamic_sections, but we
1879 must add the entries now so that we get the correct size for
1880 the .dynamic section. The DT_DEBUG entry is filled in by the
1881 dynamic linker and used by the debugger. */
1882 #define add_dynamic_entry(TAG, VAL) \
1883 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1884
1885 int reg;
1886 struct sparc64_elf_app_reg * app_regs;
1887 struct elf_strtab_hash *dynstr;
1888 struct elf_link_hash_table *eht = elf_hash_table (info);
1889
1890 if (info->executable)
1891 {
1892 if (!add_dynamic_entry (DT_DEBUG, 0))
1893 return FALSE;
1894 }
1895
1896 if (relplt)
1897 {
1898 if (!add_dynamic_entry (DT_PLTGOT, 0)
1899 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1900 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1901 || !add_dynamic_entry (DT_JMPREL, 0))
1902 return FALSE;
1903 }
1904
1905 if (!add_dynamic_entry (DT_RELA, 0)
1906 || !add_dynamic_entry (DT_RELASZ, 0)
1907 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1908 return FALSE;
1909
1910 if (info->flags & DF_TEXTREL)
1911 {
1912 if (!add_dynamic_entry (DT_TEXTREL, 0))
1913 return FALSE;
1914 }
1915
1916 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1917 entries if needed. */
1918 app_regs = sparc64_elf_hash_table (info)->app_regs;
1919 dynstr = eht->dynstr;
1920
1921 for (reg = 0; reg < 4; reg++)
1922 if (app_regs [reg].name != NULL)
1923 {
1924 struct elf_link_local_dynamic_entry *entry, *e;
1925
1926 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1927 return FALSE;
1928
1929 entry = (struct elf_link_local_dynamic_entry *)
1930 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1931 if (entry == NULL)
1932 return FALSE;
1933
1934 /* We cheat here a little bit: the symbol will not be local, so we
1935 put it at the end of the dynlocal linked list. We will fix it
1936 later on, as we have to fix other fields anyway. */
1937 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1938 entry->isym.st_size = 0;
1939 if (*app_regs [reg].name != '\0')
1940 entry->isym.st_name
1941 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1942 else
1943 entry->isym.st_name = 0;
1944 entry->isym.st_other = 0;
1945 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1946 STT_REGISTER);
1947 entry->isym.st_shndx = app_regs [reg].shndx;
1948 entry->next = NULL;
1949 entry->input_bfd = output_bfd;
1950 entry->input_indx = -1;
1951
1952 if (eht->dynlocal == NULL)
1953 eht->dynlocal = entry;
1954 else
1955 {
1956 for (e = eht->dynlocal; e->next; e = e->next)
1957 ;
1958 e->next = entry;
1959 }
1960 eht->dynsymcount++;
1961 }
1962 }
1963 #undef add_dynamic_entry
1964
1965 return TRUE;
1966 }
1967
1968 static bfd_boolean
sparc64_elf_new_section_hook(abfd,sec)1969 sparc64_elf_new_section_hook (abfd, sec)
1970 bfd *abfd;
1971 asection *sec;
1972 {
1973 struct sparc64_elf_section_data *sdata;
1974 bfd_size_type amt = sizeof (*sdata);
1975
1976 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1977 if (sdata == NULL)
1978 return FALSE;
1979 sec->used_by_bfd = (PTR) sdata;
1980
1981 return _bfd_elf_new_section_hook (abfd, sec);
1982 }
1983
1984 static bfd_boolean
sparc64_elf_relax_section(abfd,section,link_info,again)1985 sparc64_elf_relax_section (abfd, section, link_info, again)
1986 bfd *abfd ATTRIBUTE_UNUSED;
1987 asection *section ATTRIBUTE_UNUSED;
1988 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1989 bfd_boolean *again;
1990 {
1991 *again = FALSE;
1992 sec_do_relax (section) = 1;
1993 return TRUE;
1994 }
1995
1996 /* Relocate a SPARC64 ELF section. */
1997
1998 static bfd_boolean
sparc64_elf_relocate_section(output_bfd,info,input_bfd,input_section,contents,relocs,local_syms,local_sections)1999 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
2000 contents, relocs, local_syms, local_sections)
2001 bfd *output_bfd;
2002 struct bfd_link_info *info;
2003 bfd *input_bfd;
2004 asection *input_section;
2005 bfd_byte *contents;
2006 Elf_Internal_Rela *relocs;
2007 Elf_Internal_Sym *local_syms;
2008 asection **local_sections;
2009 {
2010 bfd *dynobj;
2011 Elf_Internal_Shdr *symtab_hdr;
2012 struct elf_link_hash_entry **sym_hashes;
2013 bfd_vma *local_got_offsets;
2014 bfd_vma got_base;
2015 asection *sgot;
2016 asection *splt;
2017 asection *sreloc;
2018 Elf_Internal_Rela *rel;
2019 Elf_Internal_Rela *relend;
2020
2021 if (info->relocatable)
2022 return TRUE;
2023
2024 dynobj = elf_hash_table (info)->dynobj;
2025 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2026 sym_hashes = elf_sym_hashes (input_bfd);
2027 local_got_offsets = elf_local_got_offsets (input_bfd);
2028
2029 if (elf_hash_table(info)->hgot == NULL)
2030 got_base = 0;
2031 else
2032 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2033
2034 sgot = splt = sreloc = NULL;
2035 if (dynobj != NULL)
2036 splt = bfd_get_section_by_name (dynobj, ".plt");
2037
2038 rel = relocs;
2039 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2040 for (; rel < relend; rel++)
2041 {
2042 int r_type;
2043 reloc_howto_type *howto;
2044 unsigned long r_symndx;
2045 struct elf_link_hash_entry *h;
2046 Elf_Internal_Sym *sym;
2047 asection *sec;
2048 bfd_vma relocation, off;
2049 bfd_reloc_status_type r;
2050 bfd_boolean is_plt = FALSE;
2051 bfd_boolean unresolved_reloc;
2052
2053 r_type = ELF64_R_TYPE_ID (rel->r_info);
2054 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2055 {
2056 bfd_set_error (bfd_error_bad_value);
2057 return FALSE;
2058 }
2059 howto = sparc64_elf_howto_table + r_type;
2060
2061 /* This is a final link. */
2062 r_symndx = ELF64_R_SYM (rel->r_info);
2063 h = NULL;
2064 sym = NULL;
2065 sec = NULL;
2066 unresolved_reloc = FALSE;
2067 if (r_symndx < symtab_hdr->sh_info)
2068 {
2069 sym = local_syms + r_symndx;
2070 sec = local_sections[r_symndx];
2071 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2072 }
2073 else
2074 {
2075 bfd_boolean warned;
2076
2077 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2078 r_symndx, symtab_hdr, sym_hashes,
2079 h, sec, relocation,
2080 unresolved_reloc, warned);
2081 if (warned)
2082 {
2083 /* To avoid generating warning messages about truncated
2084 relocations, set the relocation's address to be the same as
2085 the start of this section. */
2086 if (input_section->output_section != NULL)
2087 relocation = input_section->output_section->vma;
2088 else
2089 relocation = 0;
2090 }
2091 }
2092
2093 do_dynreloc:
2094 /* When generating a shared object, these relocations are copied
2095 into the output file to be resolved at run time. */
2096 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2097 {
2098 switch (r_type)
2099 {
2100 case R_SPARC_PC10:
2101 case R_SPARC_PC22:
2102 case R_SPARC_PC_HH22:
2103 case R_SPARC_PC_HM10:
2104 case R_SPARC_PC_LM22:
2105 if (h != NULL
2106 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2107 break;
2108 /* Fall through. */
2109 case R_SPARC_DISP8:
2110 case R_SPARC_DISP16:
2111 case R_SPARC_DISP32:
2112 case R_SPARC_DISP64:
2113 case R_SPARC_WDISP30:
2114 case R_SPARC_WDISP22:
2115 case R_SPARC_WDISP19:
2116 case R_SPARC_WDISP16:
2117 if (h == NULL)
2118 break;
2119 /* Fall through. */
2120 case R_SPARC_8:
2121 case R_SPARC_16:
2122 case R_SPARC_32:
2123 case R_SPARC_HI22:
2124 case R_SPARC_22:
2125 case R_SPARC_13:
2126 case R_SPARC_LO10:
2127 case R_SPARC_UA32:
2128 case R_SPARC_10:
2129 case R_SPARC_11:
2130 case R_SPARC_64:
2131 case R_SPARC_OLO10:
2132 case R_SPARC_HH22:
2133 case R_SPARC_HM10:
2134 case R_SPARC_LM22:
2135 case R_SPARC_7:
2136 case R_SPARC_5:
2137 case R_SPARC_6:
2138 case R_SPARC_HIX22:
2139 case R_SPARC_LOX10:
2140 case R_SPARC_H44:
2141 case R_SPARC_M44:
2142 case R_SPARC_L44:
2143 case R_SPARC_UA64:
2144 case R_SPARC_UA16:
2145 {
2146 Elf_Internal_Rela outrel;
2147 bfd_byte *loc;
2148 bfd_boolean skip, relocate;
2149
2150 if (sreloc == NULL)
2151 {
2152 const char *name =
2153 (bfd_elf_string_from_elf_section
2154 (input_bfd,
2155 elf_elfheader (input_bfd)->e_shstrndx,
2156 elf_section_data (input_section)->rel_hdr.sh_name));
2157
2158 if (name == NULL)
2159 return FALSE;
2160
2161 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2162 && strcmp (bfd_get_section_name(input_bfd,
2163 input_section),
2164 name + 5) == 0);
2165
2166 sreloc = bfd_get_section_by_name (dynobj, name);
2167 BFD_ASSERT (sreloc != NULL);
2168 }
2169
2170 skip = FALSE;
2171 relocate = FALSE;
2172
2173 outrel.r_offset =
2174 _bfd_elf_section_offset (output_bfd, info, input_section,
2175 rel->r_offset);
2176 if (outrel.r_offset == (bfd_vma) -1)
2177 skip = TRUE;
2178 else if (outrel.r_offset == (bfd_vma) -2)
2179 skip = TRUE, relocate = TRUE;
2180
2181 outrel.r_offset += (input_section->output_section->vma
2182 + input_section->output_offset);
2183
2184 /* Optimize unaligned reloc usage now that we know where
2185 it finally resides. */
2186 switch (r_type)
2187 {
2188 case R_SPARC_16:
2189 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2190 break;
2191 case R_SPARC_UA16:
2192 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2193 break;
2194 case R_SPARC_32:
2195 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2196 break;
2197 case R_SPARC_UA32:
2198 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2199 break;
2200 case R_SPARC_64:
2201 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2202 break;
2203 case R_SPARC_UA64:
2204 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2205 break;
2206 case R_SPARC_DISP8:
2207 case R_SPARC_DISP16:
2208 case R_SPARC_DISP32:
2209 case R_SPARC_DISP64:
2210 /* If the symbol is not dynamic, we should not keep
2211 a dynamic relocation. But an .rela.* slot has been
2212 allocated for it, output R_SPARC_NONE.
2213 FIXME: Add code tracking needed dynamic relocs as
2214 e.g. i386 has. */
2215 if (h->dynindx == -1)
2216 skip = TRUE, relocate = TRUE;
2217 break;
2218 }
2219
2220 if (skip)
2221 memset (&outrel, 0, sizeof outrel);
2222 /* h->dynindx may be -1 if the symbol was marked to
2223 become local. */
2224 else if (h != NULL && ! is_plt
2225 && ((!info->symbolic && !info->static_link
2226 && h->dynindx != -1)
2227 || (h->elf_link_hash_flags
2228 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2229 {
2230 BFD_ASSERT (h->dynindx != -1);
2231 outrel.r_info
2232 = ELF64_R_INFO (h->dynindx,
2233 ELF64_R_TYPE_INFO (
2234 ELF64_R_TYPE_DATA (rel->r_info),
2235 r_type));
2236 outrel.r_addend = rel->r_addend;
2237 }
2238 else
2239 {
2240 outrel.r_addend = relocation + rel->r_addend;
2241 if (r_type == R_SPARC_64)
2242 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2243 else
2244 {
2245 long indx;
2246
2247 if (is_plt)
2248 sec = splt;
2249
2250 if (bfd_is_abs_section (sec))
2251 indx = 0;
2252 else if (sec == NULL || sec->owner == NULL)
2253 {
2254 bfd_set_error (bfd_error_bad_value);
2255 return FALSE;
2256 }
2257 else
2258 {
2259 asection *osec;
2260
2261 osec = sec->output_section;
2262 indx = elf_section_data (osec)->dynindx;
2263
2264 /* We are turning this relocation into one
2265 against a section symbol, so subtract out
2266 the output section's address but not the
2267 offset of the input section in the output
2268 section. */
2269 outrel.r_addend -= osec->vma;
2270
2271 /* FIXME: we really should be able to link non-pic
2272 shared libraries. */
2273 if (indx == 0)
2274 {
2275 BFD_FAIL ();
2276 (*_bfd_error_handler)
2277 (_("%s: probably compiled without -fPIC?"),
2278 bfd_archive_filename (input_bfd));
2279 bfd_set_error (bfd_error_bad_value);
2280 return FALSE;
2281 }
2282 }
2283
2284 outrel.r_info
2285 = ELF64_R_INFO (indx,
2286 ELF64_R_TYPE_INFO (
2287 ELF64_R_TYPE_DATA (rel->r_info),
2288 r_type));
2289 }
2290 }
2291
2292 loc = sreloc->contents;
2293 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2294 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2295
2296 /* This reloc will be computed at runtime, so there's no
2297 need to do anything now. */
2298 if (! relocate)
2299 continue;
2300 }
2301 break;
2302 }
2303 }
2304
2305 switch (r_type)
2306 {
2307 case R_SPARC_GOT10:
2308 case R_SPARC_GOT13:
2309 case R_SPARC_GOT22:
2310 /* Relocation is to the entry for this symbol in the global
2311 offset table. */
2312 if (sgot == NULL)
2313 {
2314 sgot = bfd_get_section_by_name (dynobj, ".got");
2315 BFD_ASSERT (sgot != NULL);
2316 }
2317
2318 if (h != NULL)
2319 {
2320 bfd_boolean dyn;
2321
2322 off = h->got.offset;
2323 BFD_ASSERT (off != (bfd_vma) -1);
2324 dyn = elf_hash_table (info)->dynamic_sections_created;
2325
2326 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2327 || (info->shared
2328 && (info->symbolic
2329 || h->dynindx == -1
2330 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2331 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2332 {
2333 /* This is actually a static link, or it is a -Bsymbolic
2334 link and the symbol is defined locally, or the symbol
2335 was forced to be local because of a version file. We
2336 must initialize this entry in the global offset table.
2337 Since the offset must always be a multiple of 8, we
2338 use the least significant bit to record whether we
2339 have initialized it already.
2340
2341 When doing a dynamic link, we create a .rela.got
2342 relocation entry to initialize the value. This is
2343 done in the finish_dynamic_symbol routine. */
2344
2345 if ((off & 1) != 0)
2346 off &= ~1;
2347 else
2348 {
2349 bfd_put_64 (output_bfd, relocation,
2350 sgot->contents + off);
2351 h->got.offset |= 1;
2352 }
2353 }
2354 else
2355 unresolved_reloc = FALSE;
2356 }
2357 else
2358 {
2359 BFD_ASSERT (local_got_offsets != NULL);
2360 off = local_got_offsets[r_symndx];
2361 BFD_ASSERT (off != (bfd_vma) -1);
2362
2363 /* The offset must always be a multiple of 8. We use
2364 the least significant bit to record whether we have
2365 already processed this entry. */
2366 if ((off & 1) != 0)
2367 off &= ~1;
2368 else
2369 {
2370 local_got_offsets[r_symndx] |= 1;
2371
2372 if (info->shared)
2373 {
2374 asection *s;
2375 Elf_Internal_Rela outrel;
2376 bfd_byte *loc;
2377
2378 /* The Solaris 2.7 64-bit linker adds the contents
2379 of the location to the value of the reloc.
2380 Note this is different behaviour to the
2381 32-bit linker, which both adds the contents
2382 and ignores the addend. So clear the location. */
2383 bfd_put_64 (output_bfd, (bfd_vma) 0,
2384 sgot->contents + off);
2385
2386 /* We need to generate a R_SPARC_RELATIVE reloc
2387 for the dynamic linker. */
2388 s = bfd_get_section_by_name(dynobj, ".rela.got");
2389 BFD_ASSERT (s != NULL);
2390
2391 outrel.r_offset = (sgot->output_section->vma
2392 + sgot->output_offset
2393 + off);
2394 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2395 outrel.r_addend = relocation;
2396 loc = s->contents;
2397 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2398 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2399 }
2400 else
2401 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2402 }
2403 }
2404 relocation = sgot->output_offset + off - got_base;
2405 goto do_default;
2406
2407 case R_SPARC_WPLT30:
2408 case R_SPARC_PLT32:
2409 case R_SPARC_HIPLT22:
2410 case R_SPARC_LOPLT10:
2411 case R_SPARC_PCPLT32:
2412 case R_SPARC_PCPLT22:
2413 case R_SPARC_PCPLT10:
2414 case R_SPARC_PLT64:
2415 /* Relocation is to the entry for this symbol in the
2416 procedure linkage table. */
2417 BFD_ASSERT (h != NULL);
2418
2419 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2420 {
2421 /* We didn't make a PLT entry for this symbol. This
2422 happens when statically linking PIC code, or when
2423 using -Bsymbolic. */
2424 goto do_default;
2425 }
2426
2427 relocation = (splt->output_section->vma
2428 + splt->output_offset
2429 + sparc64_elf_plt_entry_offset (h->plt.offset));
2430 unresolved_reloc = FALSE;
2431 if (r_type == R_SPARC_WPLT30)
2432 goto do_wplt30;
2433 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2434 {
2435 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2436 is_plt = TRUE;
2437 goto do_dynreloc;
2438 }
2439 goto do_default;
2440
2441 case R_SPARC_OLO10:
2442 {
2443 bfd_vma x;
2444
2445 relocation += rel->r_addend;
2446 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2447
2448 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2449 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2450 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2451
2452 r = bfd_check_overflow (howto->complain_on_overflow,
2453 howto->bitsize, howto->rightshift,
2454 bfd_arch_bits_per_address (input_bfd),
2455 relocation);
2456 }
2457 break;
2458
2459 case R_SPARC_WDISP16:
2460 {
2461 bfd_vma x;
2462
2463 relocation += rel->r_addend;
2464 /* Adjust for pc-relative-ness. */
2465 relocation -= (input_section->output_section->vma
2466 + input_section->output_offset);
2467 relocation -= rel->r_offset;
2468
2469 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2470 x &= ~(bfd_vma) 0x303fff;
2471 x |= ((((relocation >> 2) & 0xc000) << 6)
2472 | ((relocation >> 2) & 0x3fff));
2473 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2474
2475 r = bfd_check_overflow (howto->complain_on_overflow,
2476 howto->bitsize, howto->rightshift,
2477 bfd_arch_bits_per_address (input_bfd),
2478 relocation);
2479 }
2480 break;
2481
2482 case R_SPARC_HIX22:
2483 {
2484 bfd_vma x;
2485
2486 relocation += rel->r_addend;
2487 relocation = relocation ^ MINUS_ONE;
2488
2489 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2490 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2491 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2492
2493 r = bfd_check_overflow (howto->complain_on_overflow,
2494 howto->bitsize, howto->rightshift,
2495 bfd_arch_bits_per_address (input_bfd),
2496 relocation);
2497 }
2498 break;
2499
2500 case R_SPARC_LOX10:
2501 {
2502 bfd_vma x;
2503
2504 relocation += rel->r_addend;
2505 relocation = (relocation & 0x3ff) | 0x1c00;
2506
2507 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2508 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2509 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2510
2511 r = bfd_reloc_ok;
2512 }
2513 break;
2514
2515 case R_SPARC_WDISP30:
2516 do_wplt30:
2517 if (sec_do_relax (input_section)
2518 && rel->r_offset + 4 < input_section->_raw_size)
2519 {
2520 #define G0 0
2521 #define O7 15
2522 #define XCC (2 << 20)
2523 #define COND(x) (((x)&0xf)<<25)
2524 #define CONDA COND(0x8)
2525 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2526 #define INSN_BA (F2(0,2) | CONDA)
2527 #define INSN_OR F3(2, 0x2, 0)
2528 #define INSN_NOP F2(0,4)
2529
2530 bfd_vma x, y;
2531
2532 /* If the instruction is a call with either:
2533 restore
2534 arithmetic instruction with rd == %o7
2535 where rs1 != %o7 and rs2 if it is register != %o7
2536 then we can optimize if the call destination is near
2537 by changing the call into a branch always. */
2538 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2539 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2540 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2541 {
2542 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2543 || ((y & OP3(0x28)) == 0 /* arithmetic */
2544 && (y & RD(~0)) == RD(O7)))
2545 && (y & RS1(~0)) != RS1(O7)
2546 && ((y & F3I(~0))
2547 || (y & RS2(~0)) != RS2(O7)))
2548 {
2549 bfd_vma reloc;
2550
2551 reloc = relocation + rel->r_addend - rel->r_offset;
2552 reloc -= (input_section->output_section->vma
2553 + input_section->output_offset);
2554 if (reloc & 3)
2555 goto do_default;
2556
2557 /* Ensure the branch fits into simm22. */
2558 if ((reloc & ~(bfd_vma)0x7fffff)
2559 && ((reloc | 0x7fffff) != MINUS_ONE))
2560 goto do_default;
2561 reloc >>= 2;
2562
2563 /* Check whether it fits into simm19. */
2564 if ((reloc & 0x3c0000) == 0
2565 || (reloc & 0x3c0000) == 0x3c0000)
2566 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2567 else
2568 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2569 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2570 r = bfd_reloc_ok;
2571 if (rel->r_offset >= 4
2572 && (y & (0xffffffff ^ RS1(~0)))
2573 == (INSN_OR | RD(O7) | RS2(G0)))
2574 {
2575 bfd_vma z;
2576 unsigned int reg;
2577
2578 z = bfd_get_32 (input_bfd,
2579 contents + rel->r_offset - 4);
2580 if ((z & (0xffffffff ^ RD(~0)))
2581 != (INSN_OR | RS1(O7) | RS2(G0)))
2582 break;
2583
2584 /* The sequence was
2585 or %o7, %g0, %rN
2586 call foo
2587 or %rN, %g0, %o7
2588
2589 If call foo was replaced with ba, replace
2590 or %rN, %g0, %o7 with nop. */
2591
2592 reg = (y & RS1(~0)) >> 14;
2593 if (reg != ((z & RD(~0)) >> 25)
2594 || reg == G0 || reg == O7)
2595 break;
2596
2597 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2598 contents + rel->r_offset + 4);
2599 }
2600 break;
2601 }
2602 }
2603 }
2604 /* Fall through. */
2605
2606 default:
2607 do_default:
2608 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2609 contents, rel->r_offset,
2610 relocation, rel->r_addend);
2611 break;
2612 }
2613
2614 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2615 because such sections are not SEC_ALLOC and thus ld.so will
2616 not process them. */
2617 if (unresolved_reloc
2618 && !((input_section->flags & SEC_DEBUGGING) != 0
2619 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2620 (*_bfd_error_handler)
2621 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2622 bfd_archive_filename (input_bfd),
2623 bfd_get_section_name (input_bfd, input_section),
2624 (long) rel->r_offset,
2625 h->root.root.string);
2626
2627 switch (r)
2628 {
2629 case bfd_reloc_ok:
2630 break;
2631
2632 default:
2633 case bfd_reloc_outofrange:
2634 abort ();
2635
2636 case bfd_reloc_overflow:
2637 {
2638 const char *name;
2639
2640 /* The Solaris native linker silently disregards
2641 overflows. We don't, but this breaks stabs debugging
2642 info, whose relocations are only 32-bits wide. Ignore
2643 overflows for discarded entries. */
2644 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2645 && _bfd_elf_section_offset (output_bfd, info, input_section,
2646 rel->r_offset) == (bfd_vma) -1)
2647 break;
2648
2649 if (h != NULL)
2650 {
2651 if (h->root.type == bfd_link_hash_undefweak
2652 && howto->pc_relative)
2653 {
2654 /* Assume this is a call protected by other code that
2655 detect the symbol is undefined. If this is the case,
2656 we can safely ignore the overflow. If not, the
2657 program is hosed anyway, and a little warning isn't
2658 going to help. */
2659 break;
2660 }
2661
2662 name = h->root.root.string;
2663 }
2664 else
2665 {
2666 name = (bfd_elf_string_from_elf_section
2667 (input_bfd,
2668 symtab_hdr->sh_link,
2669 sym->st_name));
2670 if (name == NULL)
2671 return FALSE;
2672 if (*name == '\0')
2673 name = bfd_section_name (input_bfd, sec);
2674 }
2675 if (! ((*info->callbacks->reloc_overflow)
2676 (info, name, howto->name, (bfd_vma) 0,
2677 input_bfd, input_section, rel->r_offset)))
2678 return FALSE;
2679 }
2680 break;
2681 }
2682 }
2683
2684 return TRUE;
2685 }
2686
2687 /* Finish up dynamic symbol handling. We set the contents of various
2688 dynamic sections here. */
2689
2690 static bfd_boolean
sparc64_elf_finish_dynamic_symbol(output_bfd,info,h,sym)2691 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2692 bfd *output_bfd;
2693 struct bfd_link_info *info;
2694 struct elf_link_hash_entry *h;
2695 Elf_Internal_Sym *sym;
2696 {
2697 bfd *dynobj;
2698
2699 dynobj = elf_hash_table (info)->dynobj;
2700
2701 if (h->plt.offset != (bfd_vma) -1)
2702 {
2703 asection *splt;
2704 asection *srela;
2705 Elf_Internal_Rela rela;
2706 bfd_byte *loc;
2707
2708 /* This symbol has an entry in the PLT. Set it up. */
2709
2710 BFD_ASSERT (h->dynindx != -1);
2711
2712 splt = bfd_get_section_by_name (dynobj, ".plt");
2713 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2714 BFD_ASSERT (splt != NULL && srela != NULL);
2715
2716 /* Fill in the entry in the .rela.plt section. */
2717
2718 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2719 {
2720 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2721 rela.r_addend = 0;
2722 }
2723 else
2724 {
2725 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2726 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2727 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2728 -(splt->output_section->vma + splt->output_offset);
2729 }
2730 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2731 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2732
2733 /* Adjust for the first 4 reserved elements in the .plt section
2734 when setting the offset in the .rela.plt section.
2735 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2736 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2737
2738 loc = srela->contents;
2739 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2740 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2741
2742 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2743 {
2744 /* Mark the symbol as undefined, rather than as defined in
2745 the .plt section. Leave the value alone. */
2746 sym->st_shndx = SHN_UNDEF;
2747 /* If the symbol is weak, we do need to clear the value.
2748 Otherwise, the PLT entry would provide a definition for
2749 the symbol even if the symbol wasn't defined anywhere,
2750 and so the symbol would never be NULL. */
2751 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2752 == 0)
2753 sym->st_value = 0;
2754 }
2755 }
2756
2757 if (h->got.offset != (bfd_vma) -1)
2758 {
2759 asection *sgot;
2760 asection *srela;
2761 Elf_Internal_Rela rela;
2762 bfd_byte *loc;
2763
2764 /* This symbol has an entry in the GOT. Set it up. */
2765
2766 sgot = bfd_get_section_by_name (dynobj, ".got");
2767 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2768 BFD_ASSERT (sgot != NULL && srela != NULL);
2769
2770 rela.r_offset = (sgot->output_section->vma
2771 + sgot->output_offset
2772 + (h->got.offset &~ (bfd_vma) 1));
2773
2774 /* If this is a -Bsymbolic link, and the symbol is defined
2775 locally, we just want to emit a RELATIVE reloc. Likewise if
2776 the symbol was forced to be local because of a version file.
2777 The entry in the global offset table will already have been
2778 initialized in the relocate_section function. */
2779 if (info->shared
2780 && (info->symbolic || info->static_link || h->dynindx == -1)
2781 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2782 {
2783 asection *sec = h->root.u.def.section;
2784 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2785 rela.r_addend = (h->root.u.def.value
2786 + sec->output_section->vma
2787 + sec->output_offset);
2788 }
2789 else
2790 {
2791 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2792 rela.r_addend = 0;
2793 }
2794
2795 bfd_put_64 (output_bfd, (bfd_vma) 0,
2796 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2797 loc = srela->contents;
2798 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2799 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2800 }
2801
2802 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2803 {
2804 asection *s;
2805 Elf_Internal_Rela rela;
2806 bfd_byte *loc;
2807
2808 /* This symbols needs a copy reloc. Set it up. */
2809 BFD_ASSERT (h->dynindx != -1);
2810
2811 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2812 ".rela.bss");
2813 BFD_ASSERT (s != NULL);
2814
2815 rela.r_offset = (h->root.u.def.value
2816 + h->root.u.def.section->output_section->vma
2817 + h->root.u.def.section->output_offset);
2818 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2819 rela.r_addend = 0;
2820 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2821 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2822 }
2823
2824 /* Mark some specially defined symbols as absolute. */
2825 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2826 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2827 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2828 sym->st_shndx = SHN_ABS;
2829
2830 return TRUE;
2831 }
2832
2833 /* Finish up the dynamic sections. */
2834
2835 static bfd_boolean
sparc64_elf_finish_dynamic_sections(output_bfd,info)2836 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2837 bfd *output_bfd;
2838 struct bfd_link_info *info;
2839 {
2840 bfd *dynobj;
2841 int stt_regidx = -1;
2842 asection *sdyn;
2843 asection *sgot;
2844
2845 dynobj = elf_hash_table (info)->dynobj;
2846
2847 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2848
2849 if (elf_hash_table (info)->dynamic_sections_created)
2850 {
2851 asection *splt;
2852 Elf64_External_Dyn *dyncon, *dynconend;
2853
2854 splt = bfd_get_section_by_name (dynobj, ".plt");
2855 BFD_ASSERT (splt != NULL && sdyn != NULL);
2856
2857 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2858 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2859 for (; dyncon < dynconend; dyncon++)
2860 {
2861 Elf_Internal_Dyn dyn;
2862 const char *name;
2863 bfd_boolean size;
2864
2865 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2866
2867 switch (dyn.d_tag)
2868 {
2869 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2870 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2871 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2872 case DT_SPARC_REGISTER:
2873 if (stt_regidx == -1)
2874 {
2875 stt_regidx =
2876 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2877 if (stt_regidx == -1)
2878 return FALSE;
2879 }
2880 dyn.d_un.d_val = stt_regidx++;
2881 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2882 /* fallthrough */
2883 default: name = NULL; size = FALSE; break;
2884 }
2885
2886 if (name != NULL)
2887 {
2888 asection *s;
2889
2890 s = bfd_get_section_by_name (output_bfd, name);
2891 if (s == NULL)
2892 dyn.d_un.d_val = 0;
2893 else
2894 {
2895 if (! size)
2896 dyn.d_un.d_ptr = s->vma;
2897 else
2898 {
2899 if (s->_cooked_size != 0)
2900 dyn.d_un.d_val = s->_cooked_size;
2901 else
2902 dyn.d_un.d_val = s->_raw_size;
2903 }
2904 }
2905 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2906 }
2907 }
2908
2909 /* Initialize the contents of the .plt section. */
2910 if (splt->_raw_size > 0)
2911 sparc64_elf_build_plt (output_bfd, splt->contents,
2912 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2913
2914 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2915 PLT_ENTRY_SIZE;
2916 }
2917
2918 /* Set the first entry in the global offset table to the address of
2919 the dynamic section. */
2920 sgot = bfd_get_section_by_name (dynobj, ".got");
2921 BFD_ASSERT (sgot != NULL);
2922 if (sgot->_raw_size > 0)
2923 {
2924 if (sdyn == NULL)
2925 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2926 else
2927 bfd_put_64 (output_bfd,
2928 sdyn->output_section->vma + sdyn->output_offset,
2929 sgot->contents);
2930 }
2931
2932 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2933
2934 return TRUE;
2935 }
2936
2937 static enum elf_reloc_type_class
sparc64_elf_reloc_type_class(rela)2938 sparc64_elf_reloc_type_class (rela)
2939 const Elf_Internal_Rela *rela;
2940 {
2941 switch ((int) ELF64_R_TYPE (rela->r_info))
2942 {
2943 case R_SPARC_RELATIVE:
2944 return reloc_class_relative;
2945 case R_SPARC_JMP_SLOT:
2946 return reloc_class_plt;
2947 case R_SPARC_COPY:
2948 return reloc_class_copy;
2949 default:
2950 return reloc_class_normal;
2951 }
2952 }
2953
2954 /* Functions for dealing with the e_flags field. */
2955
2956 /* Merge backend specific data from an object file to the output
2957 object file when linking. */
2958
2959 static bfd_boolean
sparc64_elf_merge_private_bfd_data(ibfd,obfd)2960 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2961 bfd *ibfd;
2962 bfd *obfd;
2963 {
2964 bfd_boolean error;
2965 flagword new_flags, old_flags;
2966 int new_mm, old_mm;
2967
2968 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2969 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2970 return TRUE;
2971
2972 new_flags = elf_elfheader (ibfd)->e_flags;
2973 old_flags = elf_elfheader (obfd)->e_flags;
2974
2975 if (!elf_flags_init (obfd)) /* First call, no flags set */
2976 {
2977 elf_flags_init (obfd) = TRUE;
2978 elf_elfheader (obfd)->e_flags = new_flags;
2979 }
2980
2981 else if (new_flags == old_flags) /* Compatible flags are ok */
2982 ;
2983
2984 else /* Incompatible flags */
2985 {
2986 error = FALSE;
2987
2988 #define EF_SPARC_ISA_EXTENSIONS \
2989 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2990
2991 if ((ibfd->flags & DYNAMIC) != 0)
2992 {
2993 /* We don't want dynamic objects memory ordering and
2994 architecture to have any role. That's what dynamic linker
2995 should do. */
2996 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2997 new_flags |= (old_flags
2998 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2999 }
3000 else
3001 {
3002 /* Choose the highest architecture requirements. */
3003 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3004 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3005 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3006 && (old_flags & EF_SPARC_HAL_R1))
3007 {
3008 error = TRUE;
3009 (*_bfd_error_handler)
3010 (_("%s: linking UltraSPARC specific with HAL specific code"),
3011 bfd_archive_filename (ibfd));
3012 }
3013 /* Choose the most restrictive memory ordering. */
3014 old_mm = (old_flags & EF_SPARCV9_MM);
3015 new_mm = (new_flags & EF_SPARCV9_MM);
3016 old_flags &= ~EF_SPARCV9_MM;
3017 new_flags &= ~EF_SPARCV9_MM;
3018 if (new_mm < old_mm)
3019 old_mm = new_mm;
3020 old_flags |= old_mm;
3021 new_flags |= old_mm;
3022 }
3023
3024 /* Warn about any other mismatches */
3025 if (new_flags != old_flags)
3026 {
3027 error = TRUE;
3028 (*_bfd_error_handler)
3029 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3030 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3031 }
3032
3033 elf_elfheader (obfd)->e_flags = old_flags;
3034
3035 if (error)
3036 {
3037 bfd_set_error (bfd_error_bad_value);
3038 return FALSE;
3039 }
3040 }
3041 return TRUE;
3042 }
3043
3044 /* MARCO: Set the correct entry size for the .stab section. */
3045
3046 static bfd_boolean
sparc64_elf_fake_sections(abfd,hdr,sec)3047 sparc64_elf_fake_sections (abfd, hdr, sec)
3048 bfd *abfd ATTRIBUTE_UNUSED;
3049 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3050 asection *sec;
3051 {
3052 const char *name;
3053
3054 name = bfd_get_section_name (abfd, sec);
3055
3056 if (strcmp (name, ".stab") == 0)
3057 {
3058 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3059 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3060 }
3061
3062 return TRUE;
3063 }
3064
3065 /* Print a STT_REGISTER symbol to file FILE. */
3066
3067 static const char *
sparc64_elf_print_symbol_all(abfd,filep,symbol)3068 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3069 bfd *abfd ATTRIBUTE_UNUSED;
3070 PTR filep;
3071 asymbol *symbol;
3072 {
3073 FILE *file = (FILE *) filep;
3074 int reg, type;
3075
3076 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3077 != STT_REGISTER)
3078 return NULL;
3079
3080 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3081 type = symbol->flags;
3082 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3083 ((type & BSF_LOCAL)
3084 ? (type & BSF_GLOBAL) ? '!' : 'l'
3085 : (type & BSF_GLOBAL) ? 'g' : ' '),
3086 (type & BSF_WEAK) ? 'w' : ' ');
3087 if (symbol->name == NULL || symbol->name [0] == '\0')
3088 return "#scratch";
3089 else
3090 return symbol->name;
3091 }
3092
3093 /* Set the right machine number for a SPARC64 ELF file. */
3094
3095 static bfd_boolean
sparc64_elf_object_p(abfd)3096 sparc64_elf_object_p (abfd)
3097 bfd *abfd;
3098 {
3099 unsigned long mach = bfd_mach_sparc_v9;
3100
3101 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3102 mach = bfd_mach_sparc_v9b;
3103 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3104 mach = bfd_mach_sparc_v9a;
3105 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3106 }
3107
3108 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3109 standard ELF, because R_SPARC_OLO10 has secondary addend in
3110 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3111 relocation handling routines. */
3112
3113 const struct elf_size_info sparc64_elf_size_info =
3114 {
3115 sizeof (Elf64_External_Ehdr),
3116 sizeof (Elf64_External_Phdr),
3117 sizeof (Elf64_External_Shdr),
3118 sizeof (Elf64_External_Rel),
3119 sizeof (Elf64_External_Rela),
3120 sizeof (Elf64_External_Sym),
3121 sizeof (Elf64_External_Dyn),
3122 sizeof (Elf_External_Note),
3123 4, /* hash-table entry size. */
3124 /* Internal relocations per external relocations.
3125 For link purposes we use just 1 internal per
3126 1 external, for assembly and slurp symbol table
3127 we use 2. */
3128 1,
3129 64, /* arch_size. */
3130 3, /* log_file_align. */
3131 ELFCLASS64,
3132 EV_CURRENT,
3133 bfd_elf64_write_out_phdrs,
3134 bfd_elf64_write_shdrs_and_ehdr,
3135 sparc64_elf_write_relocs,
3136 bfd_elf64_swap_symbol_in,
3137 bfd_elf64_swap_symbol_out,
3138 sparc64_elf_slurp_reloc_table,
3139 bfd_elf64_slurp_symbol_table,
3140 bfd_elf64_swap_dyn_in,
3141 bfd_elf64_swap_dyn_out,
3142 bfd_elf64_swap_reloc_in,
3143 bfd_elf64_swap_reloc_out,
3144 bfd_elf64_swap_reloca_in,
3145 bfd_elf64_swap_reloca_out
3146 };
3147
3148 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3149 #define TARGET_BIG_NAME "elf64-sparc"
3150 #define ELF_ARCH bfd_arch_sparc
3151 #define ELF_MAXPAGESIZE 0x100000
3152
3153 /* This is the official ABI value. */
3154 #define ELF_MACHINE_CODE EM_SPARCV9
3155
3156 /* This is the value that we used before the ABI was released. */
3157 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3158
3159 #define bfd_elf64_bfd_link_hash_table_create \
3160 sparc64_elf_bfd_link_hash_table_create
3161
3162 #define elf_info_to_howto \
3163 sparc64_elf_info_to_howto
3164 #define bfd_elf64_get_reloc_upper_bound \
3165 sparc64_elf_get_reloc_upper_bound
3166 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3167 sparc64_elf_get_dynamic_reloc_upper_bound
3168 #define bfd_elf64_canonicalize_reloc \
3169 sparc64_elf_canonicalize_reloc
3170 #define bfd_elf64_canonicalize_dynamic_reloc \
3171 sparc64_elf_canonicalize_dynamic_reloc
3172 #define bfd_elf64_bfd_reloc_type_lookup \
3173 sparc64_elf_reloc_type_lookup
3174 #define bfd_elf64_bfd_relax_section \
3175 sparc64_elf_relax_section
3176 #define bfd_elf64_new_section_hook \
3177 sparc64_elf_new_section_hook
3178
3179 #define elf_backend_create_dynamic_sections \
3180 _bfd_elf_create_dynamic_sections
3181 #define elf_backend_add_symbol_hook \
3182 sparc64_elf_add_symbol_hook
3183 #define elf_backend_get_symbol_type \
3184 sparc64_elf_get_symbol_type
3185 #define elf_backend_symbol_processing \
3186 sparc64_elf_symbol_processing
3187 #define elf_backend_check_relocs \
3188 sparc64_elf_check_relocs
3189 #define elf_backend_adjust_dynamic_symbol \
3190 sparc64_elf_adjust_dynamic_symbol
3191 #define elf_backend_size_dynamic_sections \
3192 sparc64_elf_size_dynamic_sections
3193 #define elf_backend_relocate_section \
3194 sparc64_elf_relocate_section
3195 #define elf_backend_finish_dynamic_symbol \
3196 sparc64_elf_finish_dynamic_symbol
3197 #define elf_backend_finish_dynamic_sections \
3198 sparc64_elf_finish_dynamic_sections
3199 #define elf_backend_print_symbol_all \
3200 sparc64_elf_print_symbol_all
3201 #define elf_backend_output_arch_syms \
3202 sparc64_elf_output_arch_syms
3203 #define bfd_elf64_bfd_merge_private_bfd_data \
3204 sparc64_elf_merge_private_bfd_data
3205 #define elf_backend_fake_sections \
3206 sparc64_elf_fake_sections
3207
3208 #define elf_backend_size_info \
3209 sparc64_elf_size_info
3210 #define elf_backend_object_p \
3211 sparc64_elf_object_p
3212 #define elf_backend_reloc_type_class \
3213 sparc64_elf_reloc_type_class
3214
3215 #define elf_backend_want_got_plt 0
3216 #define elf_backend_plt_readonly 0
3217 #define elf_backend_want_plt_sym 1
3218 #define elf_backend_rela_normal 1
3219
3220 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3221 #define elf_backend_plt_alignment 8
3222
3223 #define elf_backend_got_header_size 8
3224
3225 #include "elf64-target.h"
3226