1 /* $NetBSD: pmap.c,v 1.303 2016/07/07 06:55:38 msaitoh Exp $ */
2 /*
3 *
4 * Copyright (C) 1996-1999 Eduardo Horvath.
5 * All rights reserved.
6 *
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.303 2016/07/07 06:55:38 msaitoh Exp $");
30
31 #undef NO_VCACHE /* Don't forget the locked TLB in dostart */
32 #define HWREF
33
34 #include "opt_ddb.h"
35 #include "opt_multiprocessor.h"
36 #include "opt_modular.h"
37
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/systm.h>
42 #include <sys/msgbuf.h>
43 #include <sys/pool.h>
44 #include <sys/exec.h>
45 #include <sys/core.h>
46 #include <sys/kcore.h>
47 #include <sys/proc.h>
48 #include <sys/atomic.h>
49 #include <sys/cpu.h>
50
51 #include <sys/exec_aout.h> /* for MID_* */
52 #include <sys/reboot.h>
53
54 #include <uvm/uvm.h>
55
56 #include <machine/pcb.h>
57 #include <machine/sparc64.h>
58 #include <machine/ctlreg.h>
59 #include <machine/promlib.h>
60 #include <machine/kcore.h>
61 #include <machine/bootinfo.h>
62 #ifdef SUN4V
63 #include <machine/hypervisor.h>
64 #endif
65 #include <machine/mdesc.h>
66
67 #include <sparc64/sparc64/cache.h>
68
69 #ifdef DDB
70 #include <machine/db_machdep.h>
71 #include <ddb/db_command.h>
72 #include <ddb/db_sym.h>
73 #include <ddb/db_variables.h>
74 #include <ddb/db_extern.h>
75 #include <ddb/db_access.h>
76 #include <ddb/db_output.h>
77 #else
78 #define Debugger()
79 #define db_printf printf
80 #endif
81
82 #define MEG (1<<20) /* 1MB */
83 #define KB (1<<10) /* 1KB */
84
85 paddr_t cpu0paddr; /* contigious phys memory preallocated for cpus */
86
87 /* These routines are in assembly to allow access thru physical mappings */
88 extern int64_t pseg_get_real(struct pmap *, vaddr_t);
89 extern int pseg_set_real(struct pmap *, vaddr_t, int64_t, paddr_t);
90
91 /*
92 * Diatribe on ref/mod counting:
93 *
94 * First of all, ref/mod info must be non-volatile. Hence we need to keep it
95 * in the pv_entry structure for each page. (We could bypass this for the
96 * vm_page, but that's a long story....)
97 *
98 * This architecture has nice, fast traps with lots of space for software bits
99 * in the TTE. To accelerate ref/mod counts we make use of these features.
100 *
101 * When we map a page initially, we place a TTE in the page table. It's
102 * inserted with the TLB_W and TLB_ACCESS bits cleared. If a page is really
103 * writable we set the TLB_REAL_W bit for the trap handler.
104 *
105 * Whenever we take a TLB miss trap, the trap handler will set the TLB_ACCESS
106 * bit in the approprate TTE in the page table. Whenever we take a protection
107 * fault, if the TLB_REAL_W bit is set then we flip both the TLB_W and TLB_MOD
108 * bits to enable writing and mark the page as modified.
109 *
110 * This means that we may have ref/mod information all over the place. The
111 * pmap routines must traverse the page tables of all pmaps with a given page
112 * and collect/clear all the ref/mod information and copy it into the pv_entry.
113 */
114
115 #ifdef NO_VCACHE
116 #define FORCE_ALIAS 1
117 #else
118 #define FORCE_ALIAS 0
119 #endif
120
121 #define PV_ALIAS 0x1LL
122 #define PV_REF 0x2LL
123 #define PV_MOD 0x4LL
124 #define PV_NVC 0x8LL
125 #define PV_NC 0x10LL
126 #define PV_WE 0x20LL /* Debug -- this page was writable somtime */
127 #define PV_MASK (0x03fLL)
128 #define PV_VAMASK (~(PAGE_SIZE - 1))
129 #define PV_MATCH(pv,va) (!(((pv)->pv_va ^ (va)) & PV_VAMASK))
130 #define PV_SETVA(pv,va) ((pv)->pv_va = (((va) & PV_VAMASK) | \
131 (((pv)->pv_va) & PV_MASK)))
132
133 struct pool_cache pmap_cache;
134 struct pool_cache pmap_pv_cache;
135
136 pv_entry_t pmap_remove_pv(struct pmap *, vaddr_t, struct vm_page *);
137 void pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, struct vm_page *,
138 pv_entry_t);
139 void pmap_page_cache(struct pmap *, paddr_t, int);
140
141 /*
142 * First and last managed physical addresses.
143 * XXX only used for dumping the system.
144 */
145 paddr_t vm_first_phys, vm_num_phys;
146
147 /*
148 * Here's the CPU TSB stuff. It's allocated in pmap_bootstrap.
149 */
150 int tsbsize; /* tsbents = 512 * 2^^tsbsize */
151 #define TSBENTS (512<<tsbsize)
152 #define TSBSIZE (TSBENTS * 16)
153
154 static struct pmap kernel_pmap_;
155 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
156
157 static int ctx_alloc(struct pmap *);
158 static bool pmap_is_referenced_locked(struct vm_page *);
159
160 static void ctx_free(struct pmap *, struct cpu_info *);
161
162 /* set dmmu secondary context */
163 static __inline void
dmmu_set_secondary_context(uint ctx)164 dmmu_set_secondary_context(uint ctx)
165 {
166 if (!CPU_ISSUN4V)
167 __asm volatile(
168 "stxa %0,[%1]%2; "
169 "membar #Sync "
170 : : "r" (ctx), "r" (CTX_SECONDARY), "n" (ASI_DMMU)
171 : "memory");
172 else
173 __asm volatile(
174 "stxa %0,[%1]%2; "
175 "membar #Sync "
176 : : "r" (ctx), "r" (CTX_SECONDARY), "n" (ASI_MMU_CONTEXTID)
177 : "memory");
178
179 }
180
181 /*
182 * Check if any MMU has a non-zero context
183 */
184 static inline bool
pmap_has_ctx(struct pmap * p)185 pmap_has_ctx(struct pmap *p)
186 {
187 int i;
188
189 /* any context on any cpu? */
190 for (i = 0; i < sparc_ncpus; i++)
191 if (p->pm_ctx[i] > 0)
192 return true;
193
194 return false;
195 }
196
197 #ifdef MULTIPROCESSOR
198 #define pmap_ctx(PM) ((PM)->pm_ctx[cpu_number()])
199 #else
200 #define pmap_ctx(PM) ((PM)->pm_ctx[0])
201 #endif
202
203 /*
204 * Check if this pmap has a live mapping on some MMU.
205 */
206 static inline bool
pmap_is_on_mmu(struct pmap * p)207 pmap_is_on_mmu(struct pmap *p)
208 {
209 /* The kernel pmap is always on all MMUs */
210 if (p == pmap_kernel())
211 return true;
212
213 return pmap_has_ctx(p);
214 }
215
216 /*
217 * Virtual and physical addresses of the start and end of kernel text
218 * and data segments.
219 */
220 vaddr_t ktext;
221 paddr_t ktextp;
222 vaddr_t ektext;
223 paddr_t ektextp;
224 vaddr_t kdata;
225 paddr_t kdatap;
226 vaddr_t ekdata;
227 paddr_t ekdatap;
228
229 /*
230 * Kernel 4MB pages.
231 */
232 extern struct tlb_entry *kernel_tlbs;
233 extern int kernel_dtlb_slots, kernel_itlb_slots;
234
235 static int npgs;
236
237 vaddr_t vmmap; /* one reserved MI vpage for /dev/mem */
238
239 int phys_installed_size; /* Installed physical memory */
240 struct mem_region *phys_installed;
241
242 paddr_t avail_start, avail_end; /* These are used by ps & family */
243
244 static int ptelookup_va(vaddr_t va);
245
246 static inline void
clrx(void * addr)247 clrx(void *addr)
248 {
249 __asm volatile("clrx [%0]" : : "r" (addr) : "memory");
250 }
251
252 static void
tsb_invalidate(vaddr_t va,pmap_t pm)253 tsb_invalidate(vaddr_t va, pmap_t pm)
254 {
255 struct cpu_info *ci;
256 int ctx;
257 bool kpm = (pm == pmap_kernel());
258 int i;
259 int64_t tag;
260
261 i = ptelookup_va(va);
262 #ifdef MULTIPROCESSOR
263 for (ci = cpus; ci != NULL; ci = ci->ci_next) {
264 if (!CPUSET_HAS(cpus_active, ci->ci_index))
265 continue;
266 #else
267 ci = curcpu();
268 #endif
269 ctx = pm->pm_ctx[ci->ci_index];
270 if (kpm || ctx > 0) {
271 tag = TSB_TAG(0, ctx, va);
272 if (ci->ci_tsb_dmmu[i].tag == tag) {
273 clrx(&ci->ci_tsb_dmmu[i].data);
274 }
275 if (ci->ci_tsb_immu[i].tag == tag) {
276 clrx(&ci->ci_tsb_immu[i].data);
277 }
278 }
279 #ifdef MULTIPROCESSOR
280 }
281 #endif
282 }
283
284 struct prom_map *prom_map;
285 int prom_map_size;
286
287 #define PDB_CREATE 0x000001
288 #define PDB_DESTROY 0x000002
289 #define PDB_REMOVE 0x000004
290 #define PDB_CHANGEPROT 0x000008
291 #define PDB_ENTER 0x000010
292 #define PDB_DEMAP 0x000020 /* used in locore */
293 #define PDB_REF 0x000040
294 #define PDB_COPY 0x000080
295 #define PDB_MMU_ALLOC 0x000100
296 #define PDB_MMU_STEAL 0x000200
297 #define PDB_CTX_ALLOC 0x000400
298 #define PDB_CTX_STEAL 0x000800
299 #define PDB_MMUREG_ALLOC 0x001000
300 #define PDB_MMUREG_STEAL 0x002000
301 #define PDB_CACHESTUFF 0x004000
302 #define PDB_ALIAS 0x008000
303 #define PDB_EXTRACT 0x010000
304 #define PDB_BOOT 0x020000
305 #define PDB_BOOT1 0x040000
306 #define PDB_GROW 0x080000
307 #define PDB_CTX_FLUSHALL 0x100000
308 #define PDB_ACTIVATE 0x200000
309
310 #if defined(DEBUG) && !defined(PMAP_DEBUG)
311 #define PMAP_DEBUG
312 #endif
313
314 #ifdef PMAP_DEBUG
315 struct {
316 int kernel; /* entering kernel mapping */
317 int user; /* entering user mapping */
318 int ptpneeded; /* needed to allocate a PT page */
319 int pwchange; /* no mapping change, just wiring or protection */
320 int wchange; /* no mapping change, just wiring */
321 int mchange; /* was mapped but mapping to different page */
322 int managed; /* a managed page */
323 int firstpv; /* first mapping for this PA */
324 int secondpv; /* second mapping for this PA */
325 int ci; /* cache inhibited */
326 int unmanaged; /* not a managed page */
327 int flushes; /* cache flushes */
328 int cachehit; /* new entry forced valid entry out */
329 } enter_stats;
330 struct {
331 int calls;
332 int removes;
333 int flushes;
334 int tflushes; /* TLB flushes */
335 int pidflushes; /* HW pid stolen */
336 int pvfirst;
337 int pvsearch;
338 } remove_stats;
339 #define ENTER_STAT(x) do { enter_stats.x ++; } while (0)
340 #define REMOVE_STAT(x) do { remove_stats.x ++; } while (0)
341
342 int pmapdebug = 0;
343 //int pmapdebug = 0 | PDB_CTX_ALLOC | PDB_ACTIVATE;
344 /* Number of H/W pages stolen for page tables */
345 int pmap_pages_stolen = 0;
346
347 #define BDPRINTF(n, f) if (pmapdebug & (n)) prom_printf f
348 #define DPRINTF(n, f) if (pmapdebug & (n)) printf f
349 #else
350 #define ENTER_STAT(x) do { /* nothing */ } while (0)
351 #define REMOVE_STAT(x) do { /* nothing */ } while (0)
352 #define BDPRINTF(n, f)
353 #define DPRINTF(n, f)
354 #define pmapdebug 0
355 #endif
356
357 #define pv_check()
358
359 static int pmap_get_page(paddr_t *);
360 static void pmap_free_page(paddr_t, sparc64_cpuset_t);
361 static void pmap_free_page_noflush(paddr_t);
362
363 /*
364 * Global pmap locks.
365 */
366 static kmutex_t pmap_lock;
367 static bool lock_available = false;
368
369 /*
370 * Support for big page sizes. This maps the page size to the
371 * page bits. That is: these are the bits between 8K pages and
372 * larger page sizes that cause aliasing.
373 */
374 #define PSMAP_ENTRY(MASK, CODE) { .mask = MASK, .code = CODE }
375 struct page_size_map page_size_map[] = {
376 #ifdef DEBUG
377 PSMAP_ENTRY(0, PGSZ_8K & 0), /* Disable large pages */
378 #endif
379 PSMAP_ENTRY((4 * 1024 * 1024 - 1) & ~(8 * 1024 - 1), PGSZ_4M),
380 PSMAP_ENTRY((512 * 1024 - 1) & ~(8 * 1024 - 1), PGSZ_512K),
381 PSMAP_ENTRY((64 * 1024 - 1) & ~(8 * 1024 - 1), PGSZ_64K),
382 PSMAP_ENTRY((8 * 1024 - 1) & ~(8 * 1024 - 1), PGSZ_8K),
383 PSMAP_ENTRY(0, 0),
384 };
385
386 /*
387 * This probably shouldn't be necessary, but it stops USIII machines from
388 * breaking in general, and not just for MULTIPROCESSOR.
389 */
390 #define USE_LOCKSAFE_PSEG_GETSET
391 #if defined(USE_LOCKSAFE_PSEG_GETSET)
392
393 static kmutex_t pseg_lock;
394
395 static __inline__ int64_t
pseg_get_locksafe(struct pmap * pm,vaddr_t va)396 pseg_get_locksafe(struct pmap *pm, vaddr_t va)
397 {
398 int64_t rv;
399 bool took_lock = lock_available /*&& pm == pmap_kernel()*/;
400
401 if (__predict_true(took_lock))
402 mutex_enter(&pseg_lock);
403 rv = pseg_get_real(pm, va);
404 if (__predict_true(took_lock))
405 mutex_exit(&pseg_lock);
406 return rv;
407 }
408
409 static __inline__ int
pseg_set_locksafe(struct pmap * pm,vaddr_t va,int64_t data,paddr_t ptp)410 pseg_set_locksafe(struct pmap *pm, vaddr_t va, int64_t data, paddr_t ptp)
411 {
412 int rv;
413 bool took_lock = lock_available /*&& pm == pmap_kernel()*/;
414
415 if (__predict_true(took_lock))
416 mutex_enter(&pseg_lock);
417 rv = pseg_set_real(pm, va, data, ptp);
418 if (__predict_true(took_lock))
419 mutex_exit(&pseg_lock);
420 return rv;
421 }
422
423 #define pseg_get(pm, va) pseg_get_locksafe(pm, va)
424 #define pseg_set(pm, va, data, ptp) pseg_set_locksafe(pm, va, data, ptp)
425
426 #else /* USE_LOCKSAFE_PSEG_GETSET */
427
428 #define pseg_get(pm, va) pseg_get_real(pm, va)
429 #define pseg_set(pm, va, data, ptp) pseg_set_real(pm, va, data, ptp)
430
431 #endif /* USE_LOCKSAFE_PSEG_GETSET */
432
433 /*
434 * Enter a TTE into the kernel pmap only. Don't do anything else.
435 *
436 * Use only during bootstrapping since it does no locking and
437 * can lose ref/mod info!!!!
438 *
439 */
pmap_enter_kpage(vaddr_t va,int64_t data)440 static void pmap_enter_kpage(vaddr_t va, int64_t data)
441 {
442 paddr_t newp;
443
444 newp = 0UL;
445 while (pseg_set(pmap_kernel(), va, data, newp) & 1) {
446 if (!pmap_get_page(&newp)) {
447 prom_printf("pmap_enter_kpage: out of pages\n");
448 panic("pmap_enter_kpage");
449 }
450
451 ENTER_STAT(ptpneeded);
452 BDPRINTF(PDB_BOOT1,
453 ("pseg_set: pm=%p va=%p data=%lx newp %lx\n",
454 pmap_kernel(), va, (long)data, (long)newp));
455 if (pmapdebug & PDB_BOOT1)
456 {int i; for (i=0; i<140000000; i++) ;}
457 }
458 }
459
460 /*
461 * Check the bootargs to see if we need to enable bootdebug.
462 */
463 #ifdef DEBUG
pmap_bootdebug(void)464 static void pmap_bootdebug(void)
465 {
466 const char *cp = prom_getbootargs();
467
468 for (;;)
469 switch (*++cp) {
470 case '\0':
471 return;
472 case 'V':
473 pmapdebug |= PDB_BOOT|PDB_BOOT1;
474 break;
475 case 'D':
476 pmapdebug |= PDB_BOOT1;
477 break;
478 }
479 }
480 #else
481 #define pmap_bootdebug() /* nothing */
482 #endif
483
484
485 /*
486 * Calculate the correct number of page colors to use. This should be the
487 * size of the E$/PAGE_SIZE. However, different CPUs can have different sized
488 * E$, so we need to take the GCM of the E$ size.
489 */
pmap_calculate_colors(void)490 static int pmap_calculate_colors(void)
491 {
492 int node;
493 int size, assoc, color, maxcolor = 1;
494
495 for (node = prom_firstchild(prom_findroot()); node != 0;
496 node = prom_nextsibling(node)) {
497 char *name = prom_getpropstring(node, "device_type");
498 if (strcmp("cpu", name) != 0)
499 continue;
500
501 /* Found a CPU, get the E$ info. */
502 size = cpu_ecache_size(node);
503 if (size == 0) {
504 prom_printf("pmap_calculate_colors: node %x has "
505 "no ecache-size\n", node);
506 /* If we can't get the E$ size, skip the node */
507 continue;
508 }
509
510 assoc = cpu_ecache_associativity(node);
511 color = size/assoc/PAGE_SIZE;
512 if (color > maxcolor)
513 maxcolor = color;
514 }
515 return (maxcolor);
516 }
517
pmap_alloc_bootargs(void)518 static void pmap_alloc_bootargs(void)
519 {
520 char *v;
521
522 v = OF_claim(NULL, 2*PAGE_SIZE, PAGE_SIZE);
523 if ((v == NULL) || (v == (void*)-1))
524 panic("Can't claim two pages of memory.");
525
526 memset(v, 0, 2*PAGE_SIZE);
527
528 cpu_args = (struct cpu_bootargs*)v;
529 }
530
531 #if defined(MULTIPROCESSOR)
532 static void pmap_mp_init(void);
533
534 static void
pmap_mp_init(void)535 pmap_mp_init(void)
536 {
537 pte_t *tp;
538 char *v;
539 int i;
540
541 extern void cpu_mp_startup(void);
542
543 if ((v = OF_claim(NULL, PAGE_SIZE, PAGE_SIZE)) == NULL) {
544 panic("pmap_mp_init: Cannot claim a page.");
545 }
546
547 memcpy(v, mp_tramp_code, mp_tramp_code_len);
548 *(u_long *)(v + mp_tramp_dtlb_slots) = kernel_dtlb_slots;
549 *(u_long *)(v + mp_tramp_itlb_slots) = kernel_itlb_slots;
550 *(u_long *)(v + mp_tramp_func) = (u_long)cpu_mp_startup;
551 *(u_long *)(v + mp_tramp_ci) = (u_long)cpu_args;
552 tp = (pte_t *)(v + mp_tramp_code_len);
553 for (i = 0; i < kernel_dtlb_slots; i++) {
554 tp[i].tag = kernel_tlbs[i].te_va;
555 tp[i].data = TSB_DATA(0, /* g */
556 PGSZ_4M, /* sz */
557 kernel_tlbs[i].te_pa, /* pa */
558 1, /* priv */
559 0, /* write */
560 1, /* cache */
561 1, /* aliased */
562 1, /* valid */
563 0 /* ie */);
564 tp[i].data |= TLB_L | TLB_CV;
565
566 if (i >= kernel_itlb_slots) {
567 tp[i].data |= TLB_W;
568 } else {
569 if (CPU_ISSUN4V)
570 tp[i].data |= SUN4V_TLB_X;
571 }
572
573 DPRINTF(PDB_BOOT1, ("xtlb[%d]: Tag: %" PRIx64 " Data: %"
574 PRIx64 "\n", i, tp[i].tag, tp[i].data));
575 }
576
577 for (i = 0; i < PAGE_SIZE; i += sizeof(long))
578 flush(v + i);
579
580 cpu_spinup_trampoline = (vaddr_t)v;
581 }
582 #else
583 #define pmap_mp_init() ((void)0)
584 #endif
585
586 paddr_t pmap_kextract(vaddr_t va);
587
588 paddr_t
pmap_kextract(vaddr_t va)589 pmap_kextract(vaddr_t va)
590 {
591 int i;
592 paddr_t paddr = (paddr_t)-1;
593
594 for (i = 0; i < kernel_dtlb_slots; i++) {
595 if ((va & ~PAGE_MASK_4M) == kernel_tlbs[i].te_va) {
596 paddr = kernel_tlbs[i].te_pa +
597 (paddr_t)(va & PAGE_MASK_4M);
598 break;
599 }
600 }
601
602 if (i == kernel_dtlb_slots) {
603 panic("pmap_kextract: Address %p is not from kernel space.\n"
604 "Data segment is too small?\n", (void*)va);
605 }
606
607 return (paddr);
608 }
609
610 /*
611 * Bootstrap kernel allocator, allocates from unused space in 4MB kernel
612 * data segment meaning that
613 *
614 * - Access to allocated memory will never generate a trap
615 * - Allocated chunks are never reclaimed or freed
616 * - Allocation calls do not change PROM memlists
617 */
618 static struct mem_region kdata_mem_pool;
619
620 static void
kdata_alloc_init(vaddr_t va_start,vaddr_t va_end)621 kdata_alloc_init(vaddr_t va_start, vaddr_t va_end)
622 {
623 vsize_t va_size = va_end - va_start;
624
625 kdata_mem_pool.start = va_start;
626 kdata_mem_pool.size = va_size;
627
628 BDPRINTF(PDB_BOOT, ("kdata_alloc_init(): %d bytes @%p.\n", va_size,
629 va_start));
630 }
631
632 static vaddr_t
kdata_alloc(vsize_t size,vsize_t align)633 kdata_alloc(vsize_t size, vsize_t align)
634 {
635 vaddr_t va;
636 vsize_t asize;
637
638 asize = roundup(kdata_mem_pool.start, align) - kdata_mem_pool.start;
639
640 kdata_mem_pool.start += asize;
641 kdata_mem_pool.size -= asize;
642
643 if (kdata_mem_pool.size < size) {
644 panic("kdata_alloc(): Data segment is too small.\n");
645 }
646
647 va = kdata_mem_pool.start;
648 kdata_mem_pool.start += size;
649 kdata_mem_pool.size -= size;
650
651 BDPRINTF(PDB_BOOT, ("kdata_alloc(): Allocated %d@%p, %d free.\n",
652 size, (void*)va, kdata_mem_pool.size));
653
654 return (va);
655 }
656
657 /*
658 * Unified routine for reading PROM properties.
659 */
660 static void
pmap_read_memlist(const char * device,const char * property,void ** ml,int * ml_size,vaddr_t (* ml_alloc)(vsize_t,vsize_t))661 pmap_read_memlist(const char *device, const char *property, void **ml,
662 int *ml_size, vaddr_t (* ml_alloc)(vsize_t, vsize_t))
663 {
664 void *va;
665 int size, handle;
666
667 if ( (handle = prom_finddevice(device)) == 0) {
668 prom_printf("pmap_read_memlist(): No %s device found.\n",
669 device);
670 prom_halt();
671 }
672 if ( (size = OF_getproplen(handle, property)) < 0) {
673 prom_printf("pmap_read_memlist(): %s/%s has no length.\n",
674 device, property);
675 prom_halt();
676 }
677 if ( (va = (void*)(* ml_alloc)(size, sizeof(uint64_t))) == NULL) {
678 prom_printf("pmap_read_memlist(): Cannot allocate memlist.\n");
679 prom_halt();
680 }
681 if (OF_getprop(handle, property, va, size) <= 0) {
682 prom_printf("pmap_read_memlist(): Cannot read %s/%s.\n",
683 device, property);
684 prom_halt();
685 }
686
687 *ml = va;
688 *ml_size = size;
689 }
690
691 /*
692 * This is called during bootstrap, before the system is really initialized.
693 *
694 * It's called with the start and end virtual addresses of the kernel. We
695 * bootstrap the pmap allocator now. We will allocate the basic structures we
696 * need to bootstrap the VM system here: the page frame tables, the TSB, and
697 * the free memory lists.
698 *
699 * Now all this is becoming a bit obsolete. maxctx is still important, but by
700 * separating the kernel text and data segments we really would need to
701 * provide the start and end of each segment. But we can't. The rodata
702 * segment is attached to the end of the kernel segment and has nothing to
703 * delimit its end. We could still pass in the beginning of the kernel and
704 * the beginning and end of the data segment but we could also just as easily
705 * calculate that all in here.
706 *
707 * To handle the kernel text, we need to do a reverse mapping of the start of
708 * the kernel, then traverse the free memory lists to find out how big it is.
709 */
710
711 void
pmap_bootstrap(u_long kernelstart,u_long kernelend)712 pmap_bootstrap(u_long kernelstart, u_long kernelend)
713 {
714 #ifdef MODULAR
715 extern vaddr_t module_start, module_end;
716 #endif
717 extern char etext[], data_start[]; /* start of data segment */
718 extern int msgbufmapped;
719 struct mem_region *mp, *mp1, *avail, *orig;
720 int i, j, pcnt, msgbufsiz;
721 size_t s, sz;
722 int64_t data;
723 vaddr_t va, intstk;
724 uint64_t phys_msgbuf;
725 paddr_t newp = 0;
726
727 void *prom_memlist;
728 int prom_memlist_size;
729
730 BDPRINTF(PDB_BOOT, ("Entered pmap_bootstrap.\n"));
731
732 /* XXX - incomplete spinup code for SUN4V */
733 if (CPU_ISSUN4V)
734 boothowto |= RB_MD1;
735
736 cache_setup_funcs();
737
738 /*
739 * Calculate kernel size.
740 */
741 ktext = kernelstart;
742 ktextp = pmap_kextract(ktext);
743 ektext = roundup((vaddr_t)etext, PAGE_SIZE_4M);
744 ektextp = roundup(pmap_kextract((vaddr_t)etext), PAGE_SIZE_4M);
745
746 kdata = (vaddr_t)data_start;
747 kdatap = pmap_kextract(kdata);
748 ekdata = roundup(kernelend, PAGE_SIZE_4M);
749 ekdatap = roundup(pmap_kextract(kernelend), PAGE_SIZE_4M);
750
751 BDPRINTF(PDB_BOOT, ("Virtual layout: text %lx-%lx, data %lx-%lx.\n",
752 ktext, ektext, kdata, ekdata));
753 BDPRINTF(PDB_BOOT, ("Physical layout: text %lx-%lx, data %lx-%lx.\n",
754 ktextp, ektextp, kdatap, ekdatap));
755
756 /* Initialize bootstrap allocator. */
757 kdata_alloc_init(kernelend + 1 * 1024 * 1024, ekdata);
758
759 /* make sure we have access to the mdesc data on SUN4V machines */
760 if (CPU_ISSUN4V) {
761 vaddr_t m_va;
762 psize_t m_len;
763 paddr_t m_pa;
764
765 m_len = mdesc_get_len();
766 m_va = kdata_alloc(m_len, 16);
767 m_pa = kdatap + (m_va - kdata);
768 mdesc_init(m_va, m_pa, m_len);
769 }
770
771 pmap_bootdebug();
772 pmap_alloc_bootargs();
773 pmap_mp_init();
774
775 /*
776 * set machine page size
777 */
778 uvmexp.pagesize = NBPG;
779 uvmexp.ncolors = pmap_calculate_colors();
780 uvm_setpagesize();
781
782 /*
783 * Get hold or the message buffer.
784 */
785 msgbufp = (struct kern_msgbuf *)(vaddr_t)MSGBUF_VA;
786 msgbufsiz = MSGBUFSIZE;
787 BDPRINTF(PDB_BOOT, ("Trying to allocate msgbuf at %lx, size %lx\n",
788 (long)msgbufp, (long)msgbufsiz));
789 if ((long)msgbufp !=
790 (long)(phys_msgbuf = prom_claim_virt((vaddr_t)msgbufp, msgbufsiz)))
791 prom_printf(
792 "cannot get msgbuf VA, msgbufp=%p, phys_msgbuf=%lx\n",
793 (void *)msgbufp, (long)phys_msgbuf);
794 phys_msgbuf = prom_get_msgbuf(msgbufsiz, MMU_PAGE_ALIGN);
795 BDPRINTF(PDB_BOOT,
796 ("We should have the memory at %lx, let's map it in\n",
797 phys_msgbuf));
798 if (prom_map_phys(phys_msgbuf, msgbufsiz, (vaddr_t)msgbufp,
799 -1/* sunos does this */) == -1) {
800 prom_printf("Failed to map msgbuf\n");
801 } else {
802 BDPRINTF(PDB_BOOT, ("msgbuf mapped at %p\n",
803 (void *)msgbufp));
804 }
805 msgbufmapped = 1; /* enable message buffer */
806 initmsgbuf((void *)msgbufp, msgbufsiz);
807
808 /*
809 * Find out how much RAM we have installed.
810 */
811 BDPRINTF(PDB_BOOT, ("pmap_bootstrap: getting phys installed\n"));
812 pmap_read_memlist("/memory", "reg", &prom_memlist, &prom_memlist_size,
813 kdata_alloc);
814 phys_installed = prom_memlist;
815 phys_installed_size = prom_memlist_size / sizeof(*phys_installed);
816
817 if (pmapdebug & PDB_BOOT1) {
818 /* print out mem list */
819 prom_printf("Installed physical memory:\n");
820 for (i = 0; i < phys_installed_size; i++) {
821 prom_printf("memlist start %lx size %lx\n",
822 (u_long)phys_installed[i].start,
823 (u_long)phys_installed[i].size);
824 }
825 }
826
827 BDPRINTF(PDB_BOOT1, ("Calculating physmem:"));
828 for (i = 0; i < phys_installed_size; i++)
829 physmem += btoc(phys_installed[i].size);
830 BDPRINTF(PDB_BOOT1, (" result %x or %d pages\n",
831 (int)physmem, (int)physmem));
832
833 /*
834 * Calculate approx TSB size. This probably needs tweaking.
835 */
836 if (physmem < btoc(64 * 1024 * 1024))
837 tsbsize = 0;
838 else if (physmem < btoc(512 * 1024 * 1024))
839 tsbsize = 1;
840 else
841 tsbsize = 2;
842
843 /*
844 * Save the prom translations
845 */
846 pmap_read_memlist("/virtual-memory", "translations", &prom_memlist,
847 &prom_memlist_size, kdata_alloc);
848 prom_map = prom_memlist;
849 prom_map_size = prom_memlist_size / sizeof(struct prom_map);
850
851 if (pmapdebug & PDB_BOOT) {
852 /* print out mem list */
853 prom_printf("Prom xlations:\n");
854 for (i = 0; i < prom_map_size; i++) {
855 prom_printf("start %016lx size %016lx tte %016lx\n",
856 (u_long)prom_map[i].vstart,
857 (u_long)prom_map[i].vsize,
858 (u_long)prom_map[i].tte);
859 }
860 prom_printf("End of prom xlations\n");
861 }
862
863 /*
864 * Here's a quick in-lined reverse bubble sort. It gets rid of
865 * any translations inside the kernel data VA range.
866 */
867 for (i = 0; i < prom_map_size; i++) {
868 for (j = i; j < prom_map_size; j++) {
869 if (prom_map[j].vstart > prom_map[i].vstart) {
870 struct prom_map tmp;
871
872 tmp = prom_map[i];
873 prom_map[i] = prom_map[j];
874 prom_map[j] = tmp;
875 }
876 }
877 }
878 if (pmapdebug & PDB_BOOT) {
879 /* print out mem list */
880 prom_printf("Prom xlations:\n");
881 for (i = 0; i < prom_map_size; i++) {
882 prom_printf("start %016lx size %016lx tte %016lx\n",
883 (u_long)prom_map[i].vstart,
884 (u_long)prom_map[i].vsize,
885 (u_long)prom_map[i].tte);
886 }
887 prom_printf("End of prom xlations\n");
888 }
889
890 /*
891 * Allocate a ncpu*64KB page for the cpu_info & stack structure now.
892 */
893 cpu0paddr = prom_alloc_phys(8 * PAGE_SIZE * sparc_ncpus, 8 * PAGE_SIZE);
894 if (cpu0paddr == 0) {
895 prom_printf("Cannot allocate cpu_infos\n");
896 prom_halt();
897 }
898
899 /*
900 * Now the kernel text segment is in its final location we can try to
901 * find out how much memory really is free.
902 */
903 pmap_read_memlist("/memory", "available", &prom_memlist,
904 &prom_memlist_size, kdata_alloc);
905 orig = prom_memlist;
906 sz = prom_memlist_size;
907 pcnt = prom_memlist_size / sizeof(*orig);
908
909 BDPRINTF(PDB_BOOT1, ("Available physical memory:\n"));
910 avail = (struct mem_region*)kdata_alloc(sz, sizeof(uint64_t));
911 for (i = 0; i < pcnt; i++) {
912 avail[i] = orig[i];
913 BDPRINTF(PDB_BOOT1, ("memlist start %lx size %lx\n",
914 (u_long)orig[i].start,
915 (u_long)orig[i].size));
916 }
917 BDPRINTF(PDB_BOOT1, ("End of available physical memory\n"));
918
919 BDPRINTF(PDB_BOOT, ("ktext %08lx[%08lx] - %08lx[%08lx] : "
920 "kdata %08lx[%08lx] - %08lx[%08lx]\n",
921 (u_long)ktext, (u_long)ktextp,
922 (u_long)ektext, (u_long)ektextp,
923 (u_long)kdata, (u_long)kdatap,
924 (u_long)ekdata, (u_long)ekdatap));
925 if (pmapdebug & PDB_BOOT1) {
926 /* print out mem list */
927 prom_printf("Available %lx physical memory before cleanup:\n",
928 (u_long)avail);
929 for (i = 0; i < pcnt; i++) {
930 prom_printf("memlist start %lx size %lx\n",
931 (u_long)avail[i].start,
932 (u_long)avail[i].size);
933 }
934 prom_printf("End of available physical memory before cleanup\n");
935 prom_printf("kernel physical text size %08lx - %08lx\n",
936 (u_long)ktextp, (u_long)ektextp);
937 prom_printf("kernel physical data size %08lx - %08lx\n",
938 (u_long)kdatap, (u_long)ekdatap);
939 }
940
941 /*
942 * Here's a another quick in-lined bubble sort.
943 */
944 for (i = 0; i < pcnt; i++) {
945 for (j = i; j < pcnt; j++) {
946 if (avail[j].start < avail[i].start) {
947 struct mem_region tmp;
948 tmp = avail[i];
949 avail[i] = avail[j];
950 avail[j] = tmp;
951 }
952 }
953 }
954
955 /* Throw away page zero if we have it. */
956 if (avail->start == 0) {
957 avail->start += PAGE_SIZE;
958 avail->size -= PAGE_SIZE;
959 }
960
961 /*
962 * Now we need to remove the area we valloc'ed from the available
963 * memory lists. (NB: we may have already alloc'ed the entire space).
964 */
965 npgs = 0;
966 for (mp = avail, i = 0; i < pcnt; i++, mp = &avail[i]) {
967 /*
968 * Now page align the start of the region.
969 */
970 s = mp->start % PAGE_SIZE;
971 if (mp->size >= s) {
972 mp->size -= s;
973 mp->start += s;
974 }
975 /*
976 * And now align the size of the region.
977 */
978 mp->size -= mp->size % PAGE_SIZE;
979 /*
980 * Check whether some memory is left here.
981 */
982 if (mp->size == 0) {
983 memcpy(mp, mp + 1,
984 (pcnt - (mp - avail)) * sizeof *mp);
985 pcnt--;
986 mp--;
987 continue;
988 }
989 s = mp->start;
990 sz = mp->size;
991 npgs += btoc(sz);
992 for (mp1 = avail; mp1 < mp; mp1++)
993 if (s < mp1->start)
994 break;
995 if (mp1 < mp) {
996 memcpy(mp1 + 1, mp1, (char *)mp - (char *)mp1);
997 mp1->start = s;
998 mp1->size = sz;
999 }
1000 #ifdef DEBUG
1001 /* Clear all memory we give to the VM system. I want to make sure
1002 * the PROM isn't using it for something, so this should break the PROM.
1003 */
1004
1005 /* Calling pmap_zero_page() at this point also hangs some machines
1006 * so don't do it at all. -- pk 26/02/2002
1007 */
1008 #if 0
1009 {
1010 paddr_t p;
1011 for (p = mp->start; p < mp->start+mp->size;
1012 p += PAGE_SIZE)
1013 pmap_zero_page(p);
1014 }
1015 #endif
1016 #endif /* DEBUG */
1017 /*
1018 * In future we should be able to specify both allocated
1019 * and free.
1020 */
1021 BDPRINTF(PDB_BOOT1, ("uvm_page_physload(%lx, %lx)\n",
1022 (long)mp->start,
1023 (long)(mp->start + mp->size)));
1024 uvm_page_physload(
1025 atop(mp->start),
1026 atop(mp->start+mp->size),
1027 atop(mp->start),
1028 atop(mp->start+mp->size),
1029 VM_FREELIST_DEFAULT);
1030 }
1031
1032 if (pmapdebug & PDB_BOOT) {
1033 /* print out mem list */
1034 prom_printf("Available physical memory after cleanup:\n");
1035 for (i = 0; i < pcnt; i++) {
1036 prom_printf("avail start %lx size %lx\n",
1037 (long)avail[i].start, (long)avail[i].size);
1038 }
1039 prom_printf("End of available physical memory after cleanup\n");
1040 }
1041
1042 /*
1043 * Allocate and clear out pmap_kernel()->pm_segs[]
1044 */
1045 pmap_kernel()->pm_refs = 1;
1046 memset(&pmap_kernel()->pm_ctx, 0, sizeof(pmap_kernel()->pm_ctx));
1047
1048 /* Throw away page zero */
1049 do {
1050 pmap_get_page(&newp);
1051 } while (!newp);
1052 pmap_kernel()->pm_segs=(paddr_t *)(u_long)newp;
1053 pmap_kernel()->pm_physaddr = newp;
1054
1055 /*
1056 * finish filling out kernel pmap.
1057 */
1058
1059 BDPRINTF(PDB_BOOT, ("pmap_kernel()->pm_physaddr = %lx\n",
1060 (long)pmap_kernel()->pm_physaddr));
1061 /*
1062 * Tell pmap about our mesgbuf -- Hope this works already
1063 */
1064 BDPRINTF(PDB_BOOT1, ("Calling consinit()\n"));
1065 if (pmapdebug & PDB_BOOT1)
1066 consinit();
1067 BDPRINTF(PDB_BOOT1, ("Inserting mesgbuf into pmap_kernel()\n"));
1068 /* it's not safe to call pmap_enter so we need to do this ourselves */
1069 va = (vaddr_t)msgbufp;
1070 while (msgbufsiz) {
1071 data = TSB_DATA(0 /* global */,
1072 PGSZ_8K,
1073 phys_msgbuf,
1074 1 /* priv */,
1075 1 /* Write */,
1076 1 /* Cacheable */,
1077 FORCE_ALIAS /* ALIAS -- Disable D$ */,
1078 1 /* valid */,
1079 0 /* IE */);
1080 pmap_enter_kpage(va, data);
1081 va += PAGE_SIZE;
1082 msgbufsiz -= PAGE_SIZE;
1083 phys_msgbuf += PAGE_SIZE;
1084 }
1085 BDPRINTF(PDB_BOOT1, ("Done inserting mesgbuf into pmap_kernel()\n"));
1086
1087 BDPRINTF(PDB_BOOT1, ("Inserting PROM mappings into pmap_kernel()\n"));
1088 for (i = 0; i < prom_map_size; i++)
1089 if (prom_map[i].vstart && ((prom_map[i].vstart >> 32) == 0))
1090 for (j = 0; j < prom_map[i].vsize; j += PAGE_SIZE) {
1091 int k;
1092
1093 for (k = 0; page_size_map[k].mask; k++) {
1094 if (((prom_map[i].vstart |
1095 prom_map[i].tte) &
1096 page_size_map[k].mask) == 0 &&
1097 page_size_map[k].mask <
1098 prom_map[i].vsize)
1099 break;
1100 }
1101 page_size_map[k].use++;
1102 /* Enter PROM map into pmap_kernel() */
1103 pmap_enter_kpage(prom_map[i].vstart + j,
1104 (prom_map[i].tte + j) | TLB_EXEC |
1105 page_size_map[k].code);
1106 }
1107 BDPRINTF(PDB_BOOT1, ("Done inserting PROM mappings into pmap_kernel()\n"));
1108
1109 /*
1110 * Fix up start of kernel heap.
1111 */
1112 vmmap = (vaddr_t)roundup(ekdata, 4*MEG);
1113 /* Let's keep 1 page of redzone after the kernel */
1114 vmmap += PAGE_SIZE;
1115 {
1116 extern void main(void);
1117 vaddr_t u0va;
1118 paddr_t pa;
1119
1120 u0va = vmmap;
1121
1122 BDPRINTF(PDB_BOOT1,
1123 ("Inserting lwp0 USPACE into pmap_kernel() at %p\n",
1124 vmmap));
1125
1126 while (vmmap < u0va + 2*USPACE) {
1127 int64_t data1;
1128
1129 if (!pmap_get_page(&pa))
1130 panic("pmap_bootstrap: no pages");
1131 prom_map_phys(pa, PAGE_SIZE, vmmap, -1);
1132 data1 = TSB_DATA(0 /* global */,
1133 PGSZ_8K,
1134 pa,
1135 1 /* priv */,
1136 1 /* Write */,
1137 1 /* Cacheable */,
1138 FORCE_ALIAS /* ALIAS -- Disable D$ */,
1139 1 /* valid */,
1140 0 /* IE */);
1141 pmap_enter_kpage(vmmap, data1);
1142 vmmap += PAGE_SIZE;
1143 }
1144 BDPRINTF(PDB_BOOT1,
1145 ("Done inserting stack 0 into pmap_kernel()\n"));
1146
1147 /* Now map in and initialize our cpu_info structure */
1148 #ifdef DIAGNOSTIC
1149 vmmap += PAGE_SIZE; /* redzone -- XXXX do we need one? */
1150 #endif
1151 if ((vmmap ^ INTSTACK) & VA_ALIAS_MASK)
1152 vmmap += PAGE_SIZE; /* Matchup virtual color for D$ */
1153 intstk = vmmap;
1154 cpus = (struct cpu_info *)(intstk + CPUINFO_VA - INTSTACK);
1155
1156 BDPRINTF(PDB_BOOT1,
1157 ("Inserting cpu_info into pmap_kernel() at %p\n",
1158 cpus));
1159 /* Now map in all 8 pages of interrupt stack/cpu_info */
1160 pa = cpu0paddr;
1161 prom_map_phys(pa, 64*KB, vmmap, -1);
1162
1163 /*
1164 * Also map it in as the interrupt stack.
1165 * This lets the PROM see this if needed.
1166 *
1167 * XXXX locore.s does not flush these mappings
1168 * before installing the locked TTE.
1169 */
1170 prom_map_phys(pa, 64*KB, INTSTACK, -1);
1171 for (i = 0; i < 8; i++) {
1172 int64_t data1;
1173
1174 data1 = TSB_DATA(0 /* global */,
1175 PGSZ_8K,
1176 pa,
1177 1 /* priv */,
1178 1 /* Write */,
1179 1 /* Cacheable */,
1180 FORCE_ALIAS /* ALIAS -- Disable D$ */,
1181 1 /* valid */,
1182 0 /* IE */);
1183 pmap_enter_kpage(vmmap, data1);
1184 vmmap += PAGE_SIZE;
1185 pa += PAGE_SIZE;
1186 }
1187 BDPRINTF(PDB_BOOT1, ("Initializing cpu_info\n"));
1188
1189 /* Initialize our cpu_info structure */
1190 memset((void *)intstk, 0, 64 * KB);
1191 cpus->ci_self = cpus;
1192 cpus->ci_next = NULL;
1193 cpus->ci_curlwp = &lwp0;
1194 cpus->ci_flags = CPUF_PRIMARY;
1195 cpus->ci_cpuid = cpu_myid();
1196 cpus->ci_fplwp = NULL;
1197 cpus->ci_eintstack = NULL;
1198 cpus->ci_spinup = main; /* Call main when we're running. */
1199 cpus->ci_paddr = cpu0paddr;
1200 if (CPU_ISSUN4V) {
1201 cpus->ci_mmfsa = cpu0paddr;
1202 cpus->ci_tsb_desc = NULL;
1203 }
1204 cpus->ci_cpcb = (struct pcb *)u0va;
1205 cpus->ci_idepth = -1;
1206 memset(cpus->ci_intrpending, -1, sizeof(cpus->ci_intrpending));
1207
1208 uvm_lwp_setuarea(&lwp0, u0va);
1209 lwp0.l_md.md_tf = (struct trapframe64*)(u0va + USPACE
1210 - sizeof(struct trapframe64));
1211
1212 cpu0paddr += 64 * KB;
1213
1214 CPUSET_CLEAR(cpus_active);
1215 CPUSET_ADD(cpus_active, 0);
1216
1217 cpu_pmap_prepare(cpus, true);
1218 cpu_pmap_init(cpus);
1219
1220 /* The rest will be done at CPU attach time. */
1221 BDPRINTF(PDB_BOOT1,
1222 ("Done inserting cpu_info into pmap_kernel()\n"));
1223 }
1224
1225 vmmap = (vaddr_t)reserve_dumppages((void *)(u_long)vmmap);
1226
1227 #ifdef MODULAR
1228 /*
1229 * For 32bit kernels:
1230 * Reserve 16 MB of VA for module loading. Right now our full
1231 * GENERIC kernel is about 13 MB, so this looks good enough.
1232 * For 64bit kernels:
1233 * We can use all the space left before the special addresses,
1234 * but leave 2 pages at vmmap alone (see pmap_virtual_space)
1235 * and another red zone page.
1236 */
1237 #ifdef __arch64__
1238 module_start = vmmap + 3*PAGE_SIZE;
1239 module_end = 0x08000000; /* keep all modules within 2GB */
1240 KASSERT(module_end < KERNEND); /* of kernel text */
1241 #else
1242 module_start = vmmap;
1243 vmmap += 16 * 1024*1024;
1244 module_end = vmmap;
1245 #endif
1246 #endif
1247
1248 /*
1249 * Set up bounds of allocatable memory for vmstat et al.
1250 */
1251 avail_start = avail->start;
1252 for (mp = avail; mp->size; mp++)
1253 avail_end = mp->start+mp->size;
1254
1255 BDPRINTF(PDB_BOOT1, ("Finished pmap_bootstrap()\n"));
1256
1257 BDPRINTF(PDB_BOOT, ("left kdata: %" PRId64 " @%" PRIx64 ".\n",
1258 kdata_mem_pool.size, kdata_mem_pool.start));
1259 }
1260
1261 /*
1262 * Allocate TSBs for both mmus from the locked kernel data segment page.
1263 * This is run before the cpu itself is activated (or by the first cpu
1264 * itself)
1265 */
1266 void
cpu_pmap_prepare(struct cpu_info * ci,bool initial)1267 cpu_pmap_prepare(struct cpu_info *ci, bool initial)
1268 {
1269 /* allocate our TSBs */
1270 ci->ci_tsb_dmmu = (pte_t *)kdata_alloc(TSBSIZE, TSBSIZE);
1271 ci->ci_tsb_immu = (pte_t *)kdata_alloc(TSBSIZE, TSBSIZE);
1272 memset(ci->ci_tsb_dmmu, 0, TSBSIZE);
1273 memset(ci->ci_tsb_immu, 0, TSBSIZE);
1274 if (!initial) {
1275 KASSERT(ci != curcpu());
1276 /*
1277 * Initially share ctxbusy with the boot cpu, the
1278 * cpu will replace it as soon as it runs (and can
1279 * probe the number of available contexts itself).
1280 * Untill then only context 0 (aka kernel) will be
1281 * referenced anyway.
1282 */
1283 ci->ci_numctx = curcpu()->ci_numctx;
1284 ci->ci_ctxbusy = curcpu()->ci_ctxbusy;
1285 }
1286
1287 if (CPU_ISSUN4V) {
1288 ci->ci_tsb_desc = (struct tsb_desc *)kdata_alloc(
1289 sizeof(struct tsb_desc), 16);
1290 memset(ci->ci_tsb_desc, 0, sizeof(struct tsb_desc));
1291 /* 8K page size used for TSB index computation */
1292 ci->ci_tsb_desc->td_idxpgsz = 0;
1293 ci->ci_tsb_desc->td_assoc = 1;
1294 ci->ci_tsb_desc->td_size = TSBENTS;
1295 ci->ci_tsb_desc->td_ctxidx = -1;
1296 ci->ci_tsb_desc->td_pgsz = 0xf;
1297 ci->ci_tsb_desc->td_pa = pmap_kextract((vaddr_t)ci->ci_tsb_dmmu);
1298 BDPRINTF(PDB_BOOT1, ("cpu %d: TSB descriptor allocated at %p "
1299 "size %08x - td_pa at %p\n",
1300 ci->ci_index, ci->ci_tsb_desc, sizeof(struct tsb_desc),
1301 ci->ci_tsb_desc->td_pa));
1302 }
1303
1304 BDPRINTF(PDB_BOOT1, ("cpu %d: TSB allocated at %p/%p size %08x\n",
1305 ci->ci_index, ci->ci_tsb_dmmu, ci->ci_tsb_immu, TSBSIZE));
1306 }
1307
1308 /*
1309 * Initialize the per CPU parts for the cpu running this code.
1310 */
1311 void
cpu_pmap_init(struct cpu_info * ci)1312 cpu_pmap_init(struct cpu_info *ci)
1313 {
1314 size_t ctxsize;
1315
1316 /*
1317 * We delay initialising ci_ctx_lock here as LOCKDEBUG isn't
1318 * running for cpu0 yet..
1319 */
1320 ci->ci_pmap_next_ctx = 1;
1321 /* all SUN4U use 13 bit contexts - SUN4V use at least 13 bit contexts */
1322 ci->ci_numctx = 0x2000;
1323 ctxsize = sizeof(paddr_t)*ci->ci_numctx;
1324 ci->ci_ctxbusy = (paddr_t *)kdata_alloc(ctxsize, sizeof(uint64_t));
1325 memset(ci->ci_ctxbusy, 0, ctxsize);
1326 LIST_INIT(&ci->ci_pmap_ctxlist);
1327
1328 /* mark kernel context as busy */
1329 ci->ci_ctxbusy[0] = pmap_kernel()->pm_physaddr;
1330 }
1331
1332 /*
1333 * Initialize anything else for pmap handling.
1334 * Called during vm_init().
1335 */
1336 void
pmap_init(void)1337 pmap_init(void)
1338 {
1339 struct vm_page *pg;
1340 struct pglist pglist;
1341 uint64_t data;
1342 paddr_t pa;
1343 psize_t size;
1344 vaddr_t va;
1345
1346 BDPRINTF(PDB_BOOT1, ("pmap_init()\n"));
1347
1348 size = sizeof(struct pv_entry) * physmem;
1349 if (uvm_pglistalloc((psize_t)size, (paddr_t)0, (paddr_t)-1,
1350 (paddr_t)PAGE_SIZE, (paddr_t)0, &pglist, 1, 0) != 0)
1351 panic("pmap_init: no memory");
1352
1353 va = uvm_km_alloc(kernel_map, size, 0, UVM_KMF_VAONLY);
1354 if (va == 0)
1355 panic("pmap_init: no memory");
1356
1357 /* Map the pages */
1358 TAILQ_FOREACH(pg, &pglist, pageq.queue) {
1359 pa = VM_PAGE_TO_PHYS(pg);
1360 pmap_zero_page(pa);
1361 data = TSB_DATA(0 /* global */,
1362 PGSZ_8K,
1363 pa,
1364 1 /* priv */,
1365 1 /* Write */,
1366 1 /* Cacheable */,
1367 FORCE_ALIAS /* ALIAS -- Disable D$ */,
1368 1 /* valid */,
1369 0 /* IE */);
1370 pmap_enter_kpage(va, data);
1371 va += PAGE_SIZE;
1372 }
1373
1374 /*
1375 * initialize the pmap pools.
1376 */
1377 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap),
1378 SPARC64_BLOCK_SIZE, 0, 0, "pmappl", NULL, IPL_NONE, NULL, NULL,
1379 NULL);
1380 pool_cache_bootstrap(&pmap_pv_cache, sizeof(struct pv_entry), 0, 0,
1381 PR_LARGECACHE, "pv_entry", NULL, IPL_NONE, NULL, NULL, NULL);
1382
1383 vm_first_phys = avail_start;
1384 vm_num_phys = avail_end - avail_start;
1385
1386 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE);
1387 #if defined(USE_LOCKSAFE_PSEG_GETSET)
1388 mutex_init(&pseg_lock, MUTEX_SPIN, IPL_VM);
1389 #endif
1390 lock_available = true;
1391 }
1392
1393 /*
1394 * How much virtual space is available to the kernel?
1395 */
1396 static vaddr_t kbreak; /* End of kernel VA */
1397 void
pmap_virtual_space(vaddr_t * start,vaddr_t * end)1398 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1399 {
1400
1401 /*
1402 * Reserve one segment for kernel virtual memory.
1403 */
1404 #ifdef __arch64__
1405 /*
1406 * On 64 bit kernels, start it beyound firmware, so
1407 * we are basically unrestricted.
1408 */
1409 *start = kbreak = VM_KERNEL_MEM_VA_START;
1410 *end = VM_MAX_KERNEL_ADDRESS;
1411 #else
1412 /*
1413 * Reserve two pages for pmap_copy_page && /dev/mem, but otherwise
1414 * end it beyound the iospace and other special fixed addresses.
1415 */
1416 *start = kbreak = (vaddr_t)(vmmap + 2*PAGE_SIZE);
1417 *end = VM_MAX_KERNEL_ADDRESS;
1418 #endif
1419 BDPRINTF(PDB_BOOT1, ("pmap_virtual_space: %x-%x\n", *start, *end));
1420 }
1421
1422 /*
1423 * Preallocate kernel page tables to a specified VA.
1424 * This simply loops through the first TTE for each
1425 * page table from the beginning of the kernel pmap,
1426 * reads the entry, and if the result is
1427 * zero (either invalid entry or no page table) it stores
1428 * a zero there, populating page tables in the process.
1429 * This is not the most efficient technique but i don't
1430 * expect it to be called that often.
1431 */
1432 vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)1433 pmap_growkernel(vaddr_t maxkvaddr)
1434 {
1435 struct pmap *pm = pmap_kernel();
1436 paddr_t pa;
1437
1438 if (maxkvaddr >= VM_MAX_KERNEL_ADDRESS) {
1439 printf("WARNING: cannot extend kernel pmap beyond %p to %p\n",
1440 (void *)VM_MAX_KERNEL_ADDRESS, (void *)maxkvaddr);
1441 return (kbreak);
1442 }
1443 DPRINTF(PDB_GROW, ("pmap_growkernel(%lx...%lx)\n", kbreak, maxkvaddr));
1444 /* Align with the start of a page table */
1445 for (kbreak &= ((~0ULL) << PDSHIFT); kbreak < maxkvaddr;
1446 kbreak += (1 << PDSHIFT)) {
1447 if (pseg_get(pm, kbreak) & TLB_V)
1448 continue;
1449
1450 pa = 0;
1451 while (pseg_set(pm, kbreak, 0, pa) & 1) {
1452 DPRINTF(PDB_GROW,
1453 ("pmap_growkernel: extending %lx\n", kbreak));
1454 pa = 0;
1455 if (!pmap_get_page(&pa))
1456 panic("pmap_growkernel: no pages");
1457 ENTER_STAT(ptpneeded);
1458 }
1459 }
1460 return (kbreak);
1461 }
1462
1463 /*
1464 * Create and return a physical map.
1465 */
1466 struct pmap *
pmap_create(void)1467 pmap_create(void)
1468 {
1469 struct pmap *pm;
1470
1471 DPRINTF(PDB_CREATE, ("pmap_create()\n"));
1472
1473 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
1474 memset(pm, 0, sizeof *pm);
1475 DPRINTF(PDB_CREATE, ("pmap_create(): created %p\n", pm));
1476
1477 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
1478 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
1479 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
1480
1481 if (pm != pmap_kernel()) {
1482 while (!pmap_get_page(&pm->pm_physaddr)) {
1483 uvm_wait("pmap_create");
1484 }
1485 pm->pm_segs = (paddr_t *)(u_long)pm->pm_physaddr;
1486 }
1487 DPRINTF(PDB_CREATE, ("pmap_create(%p): ctx %d\n", pm, pmap_ctx(pm)));
1488 return pm;
1489 }
1490
1491 /*
1492 * Add a reference to the given pmap.
1493 */
1494 void
pmap_reference(struct pmap * pm)1495 pmap_reference(struct pmap *pm)
1496 {
1497
1498 atomic_inc_uint(&pm->pm_refs);
1499 }
1500
1501 /*
1502 * Retire the given pmap from service.
1503 * Should only be called if the map contains no valid mappings.
1504 */
1505 void
pmap_destroy(struct pmap * pm)1506 pmap_destroy(struct pmap *pm)
1507 {
1508 #ifdef MULTIPROCESSOR
1509 struct cpu_info *ci;
1510 sparc64_cpuset_t pmap_cpus_active;
1511 #else
1512 #define pmap_cpus_active 0
1513 #endif
1514 struct vm_page *pg, *nextpg;
1515
1516 if ((int)atomic_dec_uint_nv(&pm->pm_refs) > 0) {
1517 return;
1518 }
1519 DPRINTF(PDB_DESTROY, ("pmap_destroy: freeing pmap %p\n", pm));
1520 #ifdef MULTIPROCESSOR
1521 CPUSET_CLEAR(pmap_cpus_active);
1522 for (ci = cpus; ci != NULL; ci = ci->ci_next) {
1523 /* XXXMRG: Move the lock inside one or both tests? */
1524 mutex_enter(&ci->ci_ctx_lock);
1525 if (CPUSET_HAS(cpus_active, ci->ci_index)) {
1526 if (pm->pm_ctx[ci->ci_index] > 0) {
1527 CPUSET_ADD(pmap_cpus_active, ci->ci_index);
1528 ctx_free(pm, ci);
1529 }
1530 }
1531 mutex_exit(&ci->ci_ctx_lock);
1532 }
1533 #else
1534 if (pmap_ctx(pm)) {
1535 mutex_enter(&curcpu()->ci_ctx_lock);
1536 ctx_free(pm, curcpu());
1537 mutex_exit(&curcpu()->ci_ctx_lock);
1538 }
1539 #endif
1540
1541 /* we could be a little smarter and leave pages zeroed */
1542 for (pg = TAILQ_FIRST(&pm->pm_obj.memq); pg != NULL; pg = nextpg) {
1543 #ifdef DIAGNOSTIC
1544 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
1545 #endif
1546
1547 KASSERT((pg->flags & PG_MARKER) == 0);
1548 nextpg = TAILQ_NEXT(pg, listq.queue);
1549 TAILQ_REMOVE(&pm->pm_obj.memq, pg, listq.queue);
1550 KASSERT(md->mdpg_pvh.pv_pmap == NULL);
1551 dcache_flush_page_cpuset(VM_PAGE_TO_PHYS(pg), pmap_cpus_active);
1552 uvm_pagefree(pg);
1553 }
1554 pmap_free_page((paddr_t)(u_long)pm->pm_segs, pmap_cpus_active);
1555
1556 uvm_obj_destroy(&pm->pm_obj, false);
1557 mutex_destroy(&pm->pm_obj_lock);
1558 pool_cache_put(&pmap_cache, pm);
1559 }
1560
1561 /*
1562 * Copy the range specified by src_addr/len
1563 * from the source map to the range dst_addr/len
1564 * in the destination map.
1565 *
1566 * This routine is only advisory and need not do anything.
1567 */
1568 void
pmap_copy(struct pmap * dst_pmap,struct pmap * src_pmap,vaddr_t dst_addr,vsize_t len,vaddr_t src_addr)1569 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr, vsize_t len, vaddr_t src_addr)
1570 {
1571
1572 DPRINTF(PDB_CREATE, ("pmap_copy(%p, %p, %p, %lx, %p)\n",
1573 dst_pmap, src_pmap, (void *)(u_long)dst_addr,
1574 (u_long)len, (void *)(u_long)src_addr));
1575 }
1576
1577 /*
1578 * Activate the address space for the specified process. If the
1579 * process is the current process, load the new MMU context.
1580 */
1581 void
pmap_activate(struct lwp * l)1582 pmap_activate(struct lwp *l)
1583 {
1584 struct pmap *pmap = l->l_proc->p_vmspace->vm_map.pmap;
1585
1586 if (pmap == pmap_kernel()) {
1587 return;
1588 }
1589
1590 /*
1591 * This is essentially the same thing that happens in cpu_switchto()
1592 * when the newly selected process is about to run, except that we
1593 * have to make sure to clean the register windows before we set
1594 * the new context.
1595 */
1596
1597 if (l != curlwp) {
1598 return;
1599 }
1600 write_user_windows();
1601 pmap_activate_pmap(pmap);
1602 }
1603
1604 void
pmap_activate_pmap(struct pmap * pmap)1605 pmap_activate_pmap(struct pmap *pmap)
1606 {
1607
1608 if (pmap_ctx(pmap) == 0) {
1609 (void) ctx_alloc(pmap);
1610 }
1611 DPRINTF(PDB_ACTIVATE,
1612 ("%s: cpu%d activating ctx %d\n", __func__,
1613 cpu_number(), pmap_ctx(pmap)));
1614 dmmu_set_secondary_context(pmap_ctx(pmap));
1615 }
1616
1617 /*
1618 * Deactivate the address space of the specified process.
1619 */
1620 void
pmap_deactivate(struct lwp * l)1621 pmap_deactivate(struct lwp *l)
1622 {
1623
1624 DPRINTF(PDB_ACTIVATE,
1625 ("%s: cpu%d deactivating ctx %d\n", __func__,
1626 cpu_number(), pmap_ctx(l->l_proc->p_vmspace->vm_map.pmap)));
1627 }
1628
1629 /*
1630 * pmap_kenter_pa: [ INTERFACE ]
1631 *
1632 * Enter a va -> pa mapping into the kernel pmap without any
1633 * physical->virtual tracking.
1634 *
1635 * Note: no locking is necessary in this function.
1636 */
1637 void
pmap_kenter_pa(vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)1638 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1639 {
1640 pte_t tte;
1641 paddr_t ptp;
1642 struct pmap *pm = pmap_kernel();
1643 int i;
1644
1645 KASSERT(va < INTSTACK || va > EINTSTACK);
1646 KASSERT(va < kdata || va > ekdata);
1647
1648 /*
1649 * Construct the TTE.
1650 */
1651
1652 ENTER_STAT(unmanaged);
1653 if (pa & (PMAP_NVC|PMAP_NC)) {
1654 ENTER_STAT(ci);
1655 }
1656
1657 tte.data = TSB_DATA(0, PGSZ_8K, pa, 1 /* Privileged */,
1658 (VM_PROT_WRITE & prot),
1659 !(pa & PMAP_NC), pa & (PMAP_NVC), 1, 0);
1660 /* We don't track mod/ref here. */
1661 if (prot & VM_PROT_WRITE)
1662 tte.data |= TLB_REAL_W|TLB_W;
1663 if (prot & VM_PROT_EXECUTE)
1664 tte.data |= TLB_EXEC;
1665 tte.data |= TLB_TSB_LOCK; /* wired */
1666 ptp = 0;
1667
1668 retry:
1669 i = pseg_set(pm, va, tte.data, ptp);
1670 if (i & 1) {
1671 KASSERT((i & 4) == 0);
1672 ptp = 0;
1673 if (!pmap_get_page(&ptp))
1674 panic("pmap_kenter_pa: no pages");
1675 ENTER_STAT(ptpneeded);
1676 goto retry;
1677 }
1678 if (ptp && i == 0) {
1679 /* We allocated a spare page but didn't use it. Free it. */
1680 printf("pmap_kenter_pa: freeing unused page %llx\n",
1681 (long long)ptp);
1682 pmap_free_page_noflush(ptp);
1683 }
1684 #ifdef PMAP_DEBUG
1685 i = ptelookup_va(va);
1686 if (pmapdebug & PDB_ENTER)
1687 prom_printf("pmap_kenter_pa: va=%08x data=%08x:%08x "
1688 "tsb_dmmu[%d]=%08x\n", va, (int)(tte.data>>32),
1689 (int)tte.data, i, &curcpu()->ci_tsb_dmmu[i]);
1690 if (pmapdebug & PDB_MMU_STEAL && curcpu()->ci_tsb_dmmu[i].data) {
1691 prom_printf("pmap_kenter_pa: evicting entry tag=%x:%08x "
1692 "data=%08x:%08x tsb_dmmu[%d]=%08x\n",
1693 (int)(curcpu()->ci_tsb_dmmu[i].tag>>32), (int)curcpu()->ci_tsb_dmmu[i].tag,
1694 (int)(curcpu()->ci_tsb_dmmu[i].data>>32), (int)curcpu()->ci_tsb_dmmu[i].data,
1695 i, &curcpu()->ci_tsb_dmmu[i]);
1696 prom_printf("with va=%08x data=%08x:%08x tsb_dmmu[%d]=%08x\n",
1697 va, (int)(tte.data>>32), (int)tte.data, i,
1698 &curcpu()->ci_tsb_dmmu[i]);
1699 }
1700 #endif
1701 }
1702
1703 /*
1704 * pmap_kremove: [ INTERFACE ]
1705 *
1706 * Remove a mapping entered with pmap_kenter_pa() starting at va,
1707 * for size bytes (assumed to be page rounded).
1708 */
1709 void
pmap_kremove(vaddr_t va,vsize_t size)1710 pmap_kremove(vaddr_t va, vsize_t size)
1711 {
1712 struct pmap *pm = pmap_kernel();
1713 int64_t data;
1714 paddr_t pa;
1715 int rv;
1716 bool flush = FALSE;
1717
1718 KASSERT(va < INTSTACK || va > EINTSTACK);
1719 KASSERT(va < kdata || va > ekdata);
1720
1721 DPRINTF(PDB_DEMAP, ("pmap_kremove: start 0x%lx size %lx\n", va, size));
1722 for (; size >= PAGE_SIZE; va += PAGE_SIZE, size -= PAGE_SIZE) {
1723
1724 #ifdef DIAGNOSTIC
1725 /*
1726 * Is this part of the permanent 4MB mapping?
1727 */
1728 if (va >= ktext && va < roundup(ekdata, 4*MEG))
1729 panic("pmap_kremove: va=%08x in locked TLB", (u_int)va);
1730 #endif
1731
1732 data = pseg_get(pm, va);
1733 if ((data & TLB_V) == 0) {
1734 continue;
1735 }
1736
1737 flush = TRUE;
1738 pa = data & TLB_PA_MASK;
1739
1740 /*
1741 * We need to flip the valid bit and
1742 * clear the access statistics.
1743 */
1744
1745 rv = pseg_set(pm, va, 0, 0);
1746 if (rv & 1)
1747 panic("pmap_kremove: pseg_set needs spare, rv=%d\n",
1748 rv);
1749 DPRINTF(PDB_DEMAP, ("pmap_kremove: seg %x pdir %x pte %x\n",
1750 (int)va_to_seg(va), (int)va_to_dir(va),
1751 (int)va_to_pte(va)));
1752 REMOVE_STAT(removes);
1753
1754 tsb_invalidate(va, pm);
1755 REMOVE_STAT(tflushes);
1756
1757 /*
1758 * Here we assume nothing can get into the TLB
1759 * unless it has a PTE.
1760 */
1761
1762 tlb_flush_pte(va, pm);
1763 dcache_flush_page_all(pa);
1764 }
1765 if (flush)
1766 REMOVE_STAT(flushes);
1767 }
1768
1769 /*
1770 * Insert physical page at pa into the given pmap at virtual address va.
1771 * Supports 64-bit pa so we can map I/O space.
1772 */
1773
1774 int
pmap_enter(struct pmap * pm,vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)1775 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1776 {
1777 pte_t tte;
1778 int64_t data;
1779 paddr_t opa = 0, ptp; /* XXX: gcc */
1780 pv_entry_t pvh, npv = NULL, freepv;
1781 struct vm_page *pg, *opg, *ptpg;
1782 int s, i, uncached = 0, error = 0;
1783 int size = PGSZ_8K; /* PMAP_SZ_TO_TTE(pa); */
1784 bool wired = (flags & PMAP_WIRED) != 0;
1785 bool wasmapped = FALSE;
1786 bool dopv = TRUE;
1787
1788 /*
1789 * Is this part of the permanent mappings?
1790 */
1791 KASSERT(pm != pmap_kernel() || va < INTSTACK || va > EINTSTACK);
1792 KASSERT(pm != pmap_kernel() || va < kdata || va > ekdata);
1793
1794 /* Grab a spare PV. */
1795 freepv = pool_cache_get(&pmap_pv_cache, PR_NOWAIT);
1796 if (__predict_false(freepv == NULL)) {
1797 if (flags & PMAP_CANFAIL)
1798 return (ENOMEM);
1799 panic("pmap_enter: no pv entries available");
1800 }
1801 freepv->pv_next = NULL;
1802
1803 /*
1804 * If a mapping at this address already exists, check if we're
1805 * entering the same PA again. if it's different remove it.
1806 */
1807
1808 mutex_enter(&pmap_lock);
1809 data = pseg_get(pm, va);
1810 if (data & TLB_V) {
1811 wasmapped = TRUE;
1812 opa = data & TLB_PA_MASK;
1813 if (opa != pa) {
1814 opg = PHYS_TO_VM_PAGE(opa);
1815 if (opg != NULL) {
1816 npv = pmap_remove_pv(pm, va, opg);
1817 }
1818 }
1819 }
1820
1821 /*
1822 * Construct the TTE.
1823 */
1824 pg = PHYS_TO_VM_PAGE(pa);
1825 if (pg) {
1826 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
1827
1828 pvh = &md->mdpg_pvh;
1829 uncached = (pvh->pv_va & (PV_ALIAS|PV_NVC));
1830 #ifdef DIAGNOSTIC
1831 if ((flags & VM_PROT_ALL) & ~prot)
1832 panic("pmap_enter: access_type exceeds prot");
1833 #endif
1834 /*
1835 * If we don't have the traphandler do it,
1836 * set the ref/mod bits now.
1837 */
1838 if (flags & VM_PROT_ALL)
1839 pvh->pv_va |= PV_REF;
1840 if (flags & VM_PROT_WRITE)
1841 pvh->pv_va |= PV_MOD;
1842
1843 /*
1844 * make sure we have a pv entry ready if we need one.
1845 */
1846 if (pvh->pv_pmap == NULL || (wasmapped && opa == pa)) {
1847 if (npv != NULL) {
1848 /* free it */
1849 npv->pv_next = freepv;
1850 freepv = npv;
1851 npv = NULL;
1852 }
1853 if (wasmapped && opa == pa) {
1854 dopv = FALSE;
1855 }
1856 } else if (npv == NULL) {
1857 /* use the pre-allocated pv */
1858 npv = freepv;
1859 freepv = freepv->pv_next;
1860 }
1861 ENTER_STAT(managed);
1862 } else {
1863 ENTER_STAT(unmanaged);
1864 dopv = FALSE;
1865 if (npv != NULL) {
1866 /* free it */
1867 npv->pv_next = freepv;
1868 freepv = npv;
1869 npv = NULL;
1870 }
1871 }
1872
1873 #ifndef NO_VCACHE
1874 if (pa & PMAP_NVC)
1875 #endif
1876 uncached = 1;
1877 if (uncached) {
1878 ENTER_STAT(ci);
1879 }
1880 tte.data = TSB_DATA(0, size, pa, pm == pmap_kernel(),
1881 flags & VM_PROT_WRITE, !(pa & PMAP_NC),
1882 uncached, 1, pa & PMAP_LITTLE);
1883 #ifdef HWREF
1884 if (prot & VM_PROT_WRITE)
1885 tte.data |= TLB_REAL_W;
1886 if (prot & VM_PROT_EXECUTE)
1887 tte.data |= TLB_EXEC;
1888 #else
1889 /* If it needs ref accounting do nothing. */
1890 if (!(flags & VM_PROT_READ)) {
1891 mutex_exit(&pmap_lock);
1892 goto out;
1893 }
1894 #endif
1895 if (flags & VM_PROT_EXECUTE) {
1896 if ((flags & (VM_PROT_READ|VM_PROT_WRITE)) == 0)
1897 tte.data |= TLB_EXEC_ONLY|TLB_EXEC;
1898 else
1899 tte.data |= TLB_EXEC;
1900 }
1901 if (wired)
1902 tte.data |= TLB_TSB_LOCK;
1903 ptp = 0;
1904
1905 retry:
1906 i = pseg_set(pm, va, tte.data, ptp);
1907 if (i == -2) {
1908 if (flags & PMAP_CANFAIL)
1909 return (ENOMEM);
1910 panic("pmap_enter: invalid VA (inside hole)");
1911 }
1912 if (i & 4) {
1913 /* ptp used as L3 */
1914 KASSERT(ptp != 0);
1915 KASSERT((i & 3) == 0);
1916 ptpg = PHYS_TO_VM_PAGE(ptp);
1917 if (ptpg) {
1918 ptpg->offset = (uint64_t)va & (0xfffffLL << 23);
1919 TAILQ_INSERT_TAIL(&pm->pm_obj.memq, ptpg, listq.queue);
1920 } else {
1921 KASSERT(pm == pmap_kernel());
1922 }
1923 }
1924 if (i & 2) {
1925 /* ptp used as L2 */
1926 KASSERT(ptp != 0);
1927 KASSERT((i & 4) == 0);
1928 ptpg = PHYS_TO_VM_PAGE(ptp);
1929 if (ptpg) {
1930 ptpg->offset = (((uint64_t)va >> 43) & 0x3ffLL) << 13;
1931 TAILQ_INSERT_TAIL(&pm->pm_obj.memq, ptpg, listq.queue);
1932 } else {
1933 KASSERT(pm == pmap_kernel());
1934 }
1935 }
1936 if (i & 1) {
1937 KASSERT((i & 4) == 0);
1938 ptp = 0;
1939 if (!pmap_get_page(&ptp)) {
1940 mutex_exit(&pmap_lock);
1941 if (flags & PMAP_CANFAIL) {
1942 if (npv != NULL) {
1943 /* free it */
1944 npv->pv_next = freepv;
1945 freepv = npv;
1946 }
1947 error = ENOMEM;
1948 goto out;
1949 } else {
1950 panic("pmap_enter: no pages");
1951 }
1952 }
1953 ENTER_STAT(ptpneeded);
1954 goto retry;
1955 }
1956 if (ptp && i == 0) {
1957 /* We allocated a spare page but didn't use it. Free it. */
1958 printf("pmap_enter: freeing unused page %llx\n",
1959 (long long)ptp);
1960 pmap_free_page_noflush(ptp);
1961 }
1962 if (dopv) {
1963 pmap_enter_pv(pm, va, pa, pg, npv);
1964 }
1965
1966 mutex_exit(&pmap_lock);
1967 #ifdef PMAP_DEBUG
1968 i = ptelookup_va(va);
1969 if (pmapdebug & PDB_ENTER)
1970 prom_printf("pmap_enter: va=%08x data=%08x:%08x "
1971 "tsb_dmmu[%d]=%08x\n", va, (int)(tte.data>>32),
1972 (int)tte.data, i, &curcpu()->ci_tsb_dmmu[i]);
1973 if (pmapdebug & PDB_MMU_STEAL && curcpu()->ci_tsb_dmmu[i].data) {
1974 prom_printf("pmap_enter: evicting entry tag=%x:%08x "
1975 "data=%08x:%08x tsb_dmmu[%d]=%08x\n",
1976 (int)(curcpu()->ci_tsb_dmmu[i].tag>>32), (int)curcpu()->ci_tsb_dmmu[i].tag,
1977 (int)(curcpu()->ci_tsb_dmmu[i].data>>32), (int)curcpu()->ci_tsb_dmmu[i].data, i,
1978 &curcpu()->ci_tsb_dmmu[i]);
1979 prom_printf("with va=%08x data=%08x:%08x tsb_dmmu[%d]=%08x\n",
1980 va, (int)(tte.data>>32), (int)tte.data, i,
1981 &curcpu()->ci_tsb_dmmu[i]);
1982 }
1983 #endif
1984
1985 if (flags & (VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE)) {
1986
1987 /*
1988 * preload the TSB with the new entry,
1989 * since we're going to need it immediately anyway.
1990 */
1991
1992 KASSERT(pmap_ctx(pm)>=0);
1993 i = ptelookup_va(va);
1994 tte.tag = TSB_TAG(0, pmap_ctx(pm), va);
1995 s = splhigh();
1996 if (wasmapped && pmap_is_on_mmu(pm)) {
1997 tsb_invalidate(va, pm);
1998 }
1999 if (flags & (VM_PROT_READ | VM_PROT_WRITE)) {
2000 curcpu()->ci_tsb_dmmu[i].tag = tte.tag;
2001 __asm volatile("" : : : "memory");
2002 curcpu()->ci_tsb_dmmu[i].data = tte.data;
2003 }
2004 if (flags & VM_PROT_EXECUTE) {
2005 curcpu()->ci_tsb_immu[i].tag = tte.tag;
2006 __asm volatile("" : : : "memory");
2007 curcpu()->ci_tsb_immu[i].data = tte.data;
2008 }
2009
2010 /*
2011 * it's only necessary to flush the TLB if this page was
2012 * previously mapped, but for some reason it's a lot faster
2013 * for the fork+exit microbenchmark if we always do it.
2014 */
2015
2016 KASSERT(pmap_ctx(pm)>=0);
2017 #ifdef MULTIPROCESSOR
2018 if (wasmapped && pmap_is_on_mmu(pm))
2019 tlb_flush_pte(va, pm);
2020 else
2021 sp_tlb_flush_pte(va, pmap_ctx(pm));
2022 #else
2023 tlb_flush_pte(va, pm);
2024 #endif
2025 splx(s);
2026 } else if (wasmapped && pmap_is_on_mmu(pm)) {
2027 /* Force reload -- protections may be changed */
2028 KASSERT(pmap_ctx(pm)>=0);
2029 tsb_invalidate(va, pm);
2030 tlb_flush_pte(va, pm);
2031 }
2032
2033 /* We will let the fast mmu miss interrupt load the new translation */
2034 pv_check();
2035 out:
2036 /* Catch up on deferred frees. */
2037 for (; freepv != NULL; freepv = npv) {
2038 npv = freepv->pv_next;
2039 pool_cache_put(&pmap_pv_cache, freepv);
2040 }
2041 return error;
2042 }
2043
2044 void
pmap_remove_all(struct pmap * pm)2045 pmap_remove_all(struct pmap *pm)
2046 {
2047 #ifdef MULTIPROCESSOR
2048 struct cpu_info *ci;
2049 sparc64_cpuset_t pmap_cpus_active;
2050 #endif
2051
2052 if (pm == pmap_kernel()) {
2053 return;
2054 }
2055 write_user_windows();
2056 pm->pm_refs = 0;
2057
2058 /*
2059 * XXXMRG: pmap_destroy() does exactly the same dance here.
2060 * surely one of them isn't necessary?
2061 */
2062 #ifdef MULTIPROCESSOR
2063 CPUSET_CLEAR(pmap_cpus_active);
2064 for (ci = cpus; ci != NULL; ci = ci->ci_next) {
2065 /* XXXMRG: Move the lock inside one or both tests? */
2066 mutex_enter(&ci->ci_ctx_lock);
2067 if (CPUSET_HAS(cpus_active, ci->ci_index)) {
2068 if (pm->pm_ctx[ci->ci_index] > 0) {
2069 CPUSET_ADD(pmap_cpus_active, ci->ci_index);
2070 ctx_free(pm, ci);
2071 }
2072 }
2073 mutex_exit(&ci->ci_ctx_lock);
2074 }
2075 #else
2076 if (pmap_ctx(pm)) {
2077 mutex_enter(&curcpu()->ci_ctx_lock);
2078 ctx_free(pm, curcpu());
2079 mutex_exit(&curcpu()->ci_ctx_lock);
2080 }
2081 #endif
2082
2083 REMOVE_STAT(flushes);
2084 /*
2085 * XXXMRG: couldn't we do something less severe here, and
2086 * only flush the right context on each CPU?
2087 */
2088 blast_dcache();
2089 }
2090
2091 /*
2092 * Remove the given range of mapping entries.
2093 */
2094 void
pmap_remove(struct pmap * pm,vaddr_t va,vaddr_t endva)2095 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
2096 {
2097 int64_t data;
2098 paddr_t pa;
2099 struct vm_page *pg;
2100 pv_entry_t pv, freepv = NULL;
2101 int rv;
2102 bool flush = FALSE;
2103
2104 /*
2105 * In here we should check each pseg and if there are no more entries,
2106 * free it. It's just that linear scans of 8K pages gets expensive.
2107 */
2108
2109 KASSERT(pm != pmap_kernel() || endva < INTSTACK || va > EINTSTACK);
2110 KASSERT(pm != pmap_kernel() || endva < kdata || va > ekdata);
2111
2112 mutex_enter(&pmap_lock);
2113 DPRINTF(PDB_REMOVE, ("pmap_remove(pm=%p, va=%p, endva=%p):", pm,
2114 (void *)(u_long)va, (void *)(u_long)endva));
2115 REMOVE_STAT(calls);
2116
2117 /* Now do the real work */
2118 for (; va < endva; va += PAGE_SIZE) {
2119 #ifdef DIAGNOSTIC
2120 /*
2121 * Is this part of the permanent 4MB mapping?
2122 */
2123 if (pm == pmap_kernel() && va >= ktext &&
2124 va < roundup(ekdata, 4*MEG))
2125 panic("pmap_remove: va=%08llx in locked TLB",
2126 (long long)va);
2127 #endif
2128
2129 data = pseg_get(pm, va);
2130 if ((data & TLB_V) == 0) {
2131 continue;
2132 }
2133
2134 flush = TRUE;
2135 /* First remove the pv entry, if there is one */
2136 pa = data & TLB_PA_MASK;
2137 pg = PHYS_TO_VM_PAGE(pa);
2138 if (pg) {
2139 pv = pmap_remove_pv(pm, va, pg);
2140 if (pv != NULL) {
2141 /* free it */
2142 pv->pv_next = freepv;
2143 freepv = pv;
2144 }
2145 }
2146
2147 /*
2148 * We need to flip the valid bit and
2149 * clear the access statistics.
2150 */
2151
2152 rv = pseg_set(pm, va, 0, 0);
2153 if (rv & 1)
2154 panic("pmap_remove: pseg_set needed spare, rv=%d!\n",
2155 rv);
2156
2157 DPRINTF(PDB_REMOVE, (" clearing seg %x pte %x\n",
2158 (int)va_to_seg(va), (int)va_to_pte(va)));
2159 REMOVE_STAT(removes);
2160
2161 if (pm != pmap_kernel() && !pmap_has_ctx(pm))
2162 continue;
2163
2164 /*
2165 * if the pmap is being torn down, don't bother flushing,
2166 * we already have done so.
2167 */
2168
2169 if (!pm->pm_refs)
2170 continue;
2171
2172 /*
2173 * Here we assume nothing can get into the TLB
2174 * unless it has a PTE.
2175 */
2176
2177 KASSERT(pmap_ctx(pm)>=0);
2178 tsb_invalidate(va, pm);
2179 REMOVE_STAT(tflushes);
2180 tlb_flush_pte(va, pm);
2181 dcache_flush_page_all(pa);
2182 }
2183 if (flush && pm->pm_refs)
2184 REMOVE_STAT(flushes);
2185 DPRINTF(PDB_REMOVE, ("\n"));
2186 pv_check();
2187 mutex_exit(&pmap_lock);
2188
2189 /* Catch up on deferred frees. */
2190 for (; freepv != NULL; freepv = pv) {
2191 pv = freepv->pv_next;
2192 pool_cache_put(&pmap_pv_cache, freepv);
2193 }
2194 }
2195
2196 /*
2197 * Change the protection on the specified range of this pmap.
2198 */
2199 void
pmap_protect(struct pmap * pm,vaddr_t sva,vaddr_t eva,vm_prot_t prot)2200 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2201 {
2202 paddr_t pa;
2203 int64_t data;
2204 struct vm_page *pg;
2205 pv_entry_t pv;
2206 int rv;
2207
2208 KASSERT(pm != pmap_kernel() || eva < INTSTACK || sva > EINTSTACK);
2209 KASSERT(pm != pmap_kernel() || eva < kdata || sva > ekdata);
2210
2211 if (prot == VM_PROT_NONE) {
2212 pmap_remove(pm, sva, eva);
2213 return;
2214 }
2215
2216 sva = trunc_page(sva);
2217 mutex_enter(&pmap_lock);
2218 for (; sva < eva; sva += PAGE_SIZE) {
2219 #ifdef PMAP_DEBUG
2220 /*
2221 * Is this part of the permanent 4MB mapping?
2222 */
2223 if (pm == pmap_kernel() && sva >= ktext &&
2224 sva < roundup(ekdata, 4 * MEG)) {
2225 mutex_exit(&pmap_lock);
2226 prom_printf("pmap_protect: va=%08x in locked TLB\n",
2227 sva);
2228 prom_abort();
2229 return;
2230 }
2231 #endif
2232 DPRINTF(PDB_CHANGEPROT, ("pmap_protect: va %p\n",
2233 (void *)(u_long)sva));
2234 data = pseg_get(pm, sva);
2235 if ((data & TLB_V) == 0) {
2236 continue;
2237 }
2238
2239 pa = data & TLB_PA_MASK;
2240 DPRINTF(PDB_CHANGEPROT|PDB_REF,
2241 ("pmap_protect: va=%08x data=%08llx "
2242 "seg=%08x pte=%08x\n",
2243 (u_int)sva, (long long)pa, (int)va_to_seg(sva),
2244 (int)va_to_pte(sva)));
2245
2246 pg = PHYS_TO_VM_PAGE(pa);
2247 if (pg) {
2248 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
2249
2250 /* Save REF/MOD info */
2251 pv = &md->mdpg_pvh;
2252 if (data & TLB_ACCESS)
2253 pv->pv_va |= PV_REF;
2254 if (data & TLB_MODIFY)
2255 pv->pv_va |= PV_MOD;
2256 }
2257
2258 /* Just do the pmap and TSB, not the pv_list */
2259 if ((prot & VM_PROT_WRITE) == 0)
2260 data &= ~(TLB_W|TLB_REAL_W);
2261 if ((prot & VM_PROT_EXECUTE) == 0)
2262 data &= ~(TLB_EXEC);
2263
2264 rv = pseg_set(pm, sva, data, 0);
2265 if (rv & 1)
2266 panic("pmap_protect: pseg_set needs spare! rv=%d\n",
2267 rv);
2268
2269 if (pm != pmap_kernel() && !pmap_has_ctx(pm))
2270 continue;
2271
2272 KASSERT(pmap_ctx(pm)>=0);
2273 tsb_invalidate(sva, pm);
2274 tlb_flush_pte(sva, pm);
2275 }
2276 pv_check();
2277 mutex_exit(&pmap_lock);
2278 }
2279
2280 /*
2281 * Extract the physical page address associated
2282 * with the given map/virtual_address pair.
2283 */
2284 bool
pmap_extract(struct pmap * pm,vaddr_t va,paddr_t * pap)2285 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
2286 {
2287 paddr_t pa;
2288 int64_t data = 0;
2289
2290 if (pm == pmap_kernel() && va >= kdata && va < roundup(ekdata, 4*MEG)) {
2291 /* Need to deal w/locked TLB entry specially. */
2292 pa = pmap_kextract(va);
2293 DPRINTF(PDB_EXTRACT, ("pmap_extract: va=%lx pa=%llx\n",
2294 (u_long)va, (unsigned long long)pa));
2295 if (pap != NULL)
2296 *pap = pa;
2297 return TRUE;
2298 } else if (pm == pmap_kernel() && va >= ktext && va < ektext) {
2299 /* Need to deal w/locked TLB entry specially. */
2300 pa = pmap_kextract(va);
2301 DPRINTF(PDB_EXTRACT, ("pmap_extract: va=%lx pa=%llx\n",
2302 (u_long)va, (unsigned long long)pa));
2303 if (pap != NULL)
2304 *pap = pa;
2305 return TRUE;
2306 } else if (pm == pmap_kernel() && va >= INTSTACK && va < (INTSTACK + 64*KB)) {
2307 pa = (paddr_t)(curcpu()->ci_paddr - INTSTACK + va);
2308 DPRINTF(PDB_EXTRACT, ("pmap_extract (intstack): va=%lx pa=%llx\n",
2309 (u_long)va, (unsigned long long)pa));
2310 if (pap != NULL)
2311 *pap = pa;
2312 return TRUE;
2313 } else {
2314 data = pseg_get(pm, va);
2315 pa = data & TLB_PA_MASK;
2316 if (pmapdebug & PDB_EXTRACT) {
2317 paddr_t npa = ldxa((vaddr_t)&pm->pm_segs[va_to_seg(va)],
2318 ASI_PHYS_CACHED);
2319 printf("pmap_extract: va=%p segs[%ld]=%llx",
2320 (void *)(u_long)va, (long)va_to_seg(va),
2321 (unsigned long long)npa);
2322 if (npa) {
2323 npa = (paddr_t)
2324 ldxa((vaddr_t)&((paddr_t *)(u_long)npa)
2325 [va_to_dir(va)],
2326 ASI_PHYS_CACHED);
2327 printf(" segs[%ld][%ld]=%lx",
2328 (long)va_to_seg(va),
2329 (long)va_to_dir(va), (long)npa);
2330 }
2331 if (npa) {
2332 npa = (paddr_t)
2333 ldxa((vaddr_t)&((paddr_t *)(u_long)npa)
2334 [va_to_pte(va)],
2335 ASI_PHYS_CACHED);
2336 printf(" segs[%ld][%ld][%ld]=%lx",
2337 (long)va_to_seg(va),
2338 (long)va_to_dir(va),
2339 (long)va_to_pte(va), (long)npa);
2340 }
2341 printf(" pseg_get: %lx\n", (long)pa);
2342 }
2343 }
2344 if ((data & TLB_V) == 0)
2345 return (FALSE);
2346 if (pap != NULL)
2347 *pap = pa + (va & PGOFSET);
2348 return (TRUE);
2349 }
2350
2351 /*
2352 * Change protection on a kernel address.
2353 * This should only be called from MD code.
2354 */
2355 void
pmap_kprotect(vaddr_t va,vm_prot_t prot)2356 pmap_kprotect(vaddr_t va, vm_prot_t prot)
2357 {
2358 struct pmap *pm = pmap_kernel();
2359 int64_t data;
2360 int rv;
2361
2362 data = pseg_get(pm, va);
2363 KASSERT(data & TLB_V);
2364 if (prot & VM_PROT_WRITE) {
2365 data |= (TLB_W|TLB_REAL_W);
2366 } else {
2367 data &= ~(TLB_W|TLB_REAL_W);
2368 }
2369 rv = pseg_set(pm, va, data, 0);
2370 if (rv & 1)
2371 panic("pmap_kprotect: pseg_set needs spare! rv=%d", rv);
2372 KASSERT(pmap_ctx(pm)>=0);
2373 tsb_invalidate(va, pm);
2374 tlb_flush_pte(va, pm);
2375 }
2376
2377 /*
2378 * Return the number bytes that pmap_dumpmmu() will dump.
2379 */
2380 int
pmap_dumpsize(void)2381 pmap_dumpsize(void)
2382 {
2383 int sz;
2384
2385 sz = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
2386 sz += kernel_dtlb_slots * sizeof(struct cpu_kcore_4mbseg);
2387 sz += phys_installed_size * sizeof(phys_ram_seg_t);
2388
2389 return btodb(sz + DEV_BSIZE - 1);
2390 }
2391
2392 /*
2393 * Write the mmu contents to the dump device.
2394 * This gets appended to the end of a crash dump since
2395 * there is no in-core copy of kernel memory mappings on a 4/4c machine.
2396 *
2397 * Write the core dump headers and MD data to the dump device.
2398 * We dump the following items:
2399 *
2400 * kcore_seg_t MI header defined in <sys/kcore.h>)
2401 * cpu_kcore_hdr_t MD header defined in <machine/kcore.h>)
2402 * phys_ram_seg_t[phys_installed_size] physical memory segments
2403 */
2404 int
pmap_dumpmmu(int (* dump)(dev_t,daddr_t,void *,size_t),daddr_t blkno)2405 pmap_dumpmmu(int (*dump)(dev_t, daddr_t, void *, size_t), daddr_t blkno)
2406 {
2407 kcore_seg_t *kseg;
2408 cpu_kcore_hdr_t *kcpu;
2409 phys_ram_seg_t memseg;
2410 struct cpu_kcore_4mbseg ktlb;
2411 int error = 0;
2412 int i;
2413 int buffer[dbtob(1) / sizeof(int)];
2414 int *bp, *ep;
2415
2416 #define EXPEDITE(p,n) do { \
2417 int *sp = (void *)(p); \
2418 int sz = (n); \
2419 while (sz > 0) { \
2420 *bp++ = *sp++; \
2421 if (bp >= ep) { \
2422 error = (*dump)(dumpdev, blkno, \
2423 (void *)buffer, dbtob(1)); \
2424 if (error != 0) \
2425 return (error); \
2426 ++blkno; \
2427 bp = buffer; \
2428 } \
2429 sz -= 4; \
2430 } \
2431 } while (0)
2432
2433 /* Setup bookkeeping pointers */
2434 bp = buffer;
2435 ep = &buffer[sizeof(buffer) / sizeof(buffer[0])];
2436
2437 /* Fill in MI segment header */
2438 kseg = (kcore_seg_t *)bp;
2439 CORE_SETMAGIC(*kseg, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
2440 kseg->c_size = dbtob(pmap_dumpsize()) - ALIGN(sizeof(kcore_seg_t));
2441
2442 /* Fill in MD segment header (interpreted by MD part of libkvm) */
2443 kcpu = (cpu_kcore_hdr_t *)((long)bp + ALIGN(sizeof(kcore_seg_t)));
2444 kcpu->cputype = cputyp;
2445 kcpu->kernbase = (uint64_t)KERNBASE;
2446 kcpu->cpubase = (uint64_t)CPUINFO_VA;
2447
2448 /* Describe the locked text segment */
2449 kcpu->ktextbase = (uint64_t)ktext;
2450 kcpu->ktextp = (uint64_t)ktextp;
2451 kcpu->ktextsz = (uint64_t)ektext - ktext;
2452 if (kcpu->ktextsz > 4*MEG)
2453 kcpu->ktextsz = 0; /* old version can not work */
2454
2455 /* Describe locked data segment */
2456 kcpu->kdatabase = (uint64_t)kdata;
2457 kcpu->kdatap = (uint64_t)kdatap;
2458 kcpu->kdatasz = (uint64_t)ekdatap - kdatap;
2459
2460 /* new version of locked segments description */
2461 kcpu->newmagic = SPARC64_KCORE_NEWMAGIC;
2462 kcpu->num4mbsegs = kernel_dtlb_slots;
2463 kcpu->off4mbsegs = ALIGN(sizeof(cpu_kcore_hdr_t));
2464
2465 /* description of per-cpu mappings */
2466 kcpu->numcpuinfos = sparc_ncpus;
2467 kcpu->percpusz = 64 * 1024; /* used to be 128k for some time */
2468 kcpu->thiscpu = cpu_number(); /* which cpu is doing this dump */
2469 kcpu->cpusp = cpu0paddr - 64 * 1024 * sparc_ncpus;
2470
2471 /* Now the memsegs */
2472 kcpu->nmemseg = phys_installed_size;
2473 kcpu->memsegoffset = kcpu->off4mbsegs
2474 + kernel_dtlb_slots * sizeof(struct cpu_kcore_4mbseg);
2475
2476 /* Now we need to point this at our kernel pmap. */
2477 kcpu->nsegmap = STSZ;
2478 kcpu->segmapoffset = (uint64_t)pmap_kernel()->pm_physaddr;
2479
2480 /* Note: we have assumed everything fits in buffer[] so far... */
2481 bp = (int *)((long)kcpu + ALIGN(sizeof(cpu_kcore_hdr_t)));
2482
2483 /* write locked kernel 4MB TLBs */
2484 for (i = 0; i < kernel_dtlb_slots; i++) {
2485 ktlb.va = kernel_tlbs[i].te_va;
2486 ktlb.pa = kernel_tlbs[i].te_pa;
2487 EXPEDITE(&ktlb, sizeof(ktlb));
2488 }
2489
2490 /* write memsegs */
2491 for (i = 0; i < phys_installed_size; i++) {
2492 memseg.start = phys_installed[i].start;
2493 memseg.size = phys_installed[i].size;
2494 EXPEDITE(&memseg, sizeof(phys_ram_seg_t));
2495 }
2496
2497 if (bp != buffer)
2498 error = (*dump)(dumpdev, blkno++, (void *)buffer, dbtob(1));
2499
2500 return (error);
2501 }
2502
2503 /*
2504 * Determine (non)existence of physical page
2505 */
2506 int
pmap_pa_exists(paddr_t pa)2507 pmap_pa_exists(paddr_t pa)
2508 {
2509 int i;
2510
2511 /* Just go through physical memory list & see if we're there */
2512 for (i = 0; i < phys_installed_size; i++) {
2513 if ((phys_installed[i].start <= pa) &&
2514 (phys_installed[i].start +
2515 phys_installed[i].size >= pa))
2516 return 1;
2517 }
2518 return 0;
2519 }
2520
2521 /*
2522 * Lookup the appropriate TSB entry.
2523 *
2524 * Here is the full official pseudo code:
2525 *
2526 */
2527
2528 #ifdef NOTYET
GenerateTSBPointer(int64 va,PointerType type,int64 TSBBase,Boolean split,int TSBSize)2529 int64 GenerateTSBPointer(
2530 int64 va, /* Missing VA */
2531 PointerType type, /* 8K_POINTER or 16K_POINTER */
2532 int64 TSBBase, /* TSB Register[63:13] << 13 */
2533 Boolean split, /* TSB Register[12] */
2534 int TSBSize) /* TSB Register[2:0] */
2535 {
2536 int64 vaPortion;
2537 int64 TSBBaseMask;
2538 int64 splitMask;
2539
2540 /* TSBBaseMask marks the bits from TSB Base Reg */
2541 TSBBaseMask = 0xffffffffffffe000 <<
2542 (split? (TSBsize + 1) : TSBsize);
2543
2544 /* Shift va towards lsb appropriately and */
2545 /* zero out the original va page offset */
2546 vaPortion = (va >> ((type == 8K_POINTER)? 9: 12)) &
2547 0xfffffffffffffff0;
2548
2549 if (split) {
2550 /* There's only one bit in question for split */
2551 splitMask = 1 << (13 + TSBsize);
2552 if (type == 8K_POINTER)
2553 /* Make sure we're in the lower half */
2554 vaPortion &= ~splitMask;
2555 else
2556 /* Make sure we're in the upper half */
2557 vaPortion |= splitMask;
2558 }
2559 return (TSBBase & TSBBaseMask) | (vaPortion & ~TSBBaseMask);
2560 }
2561 #endif
2562 /*
2563 * Of course, since we are not using a split TSB or variable page sizes,
2564 * we can optimize this a bit.
2565 *
2566 * The following only works for a unified 8K TSB. It will find the slot
2567 * for that particular va and return it. IT MAY BE FOR ANOTHER MAPPING!
2568 */
2569 int
ptelookup_va(vaddr_t va)2570 ptelookup_va(vaddr_t va)
2571 {
2572 long tsbptr;
2573 #define TSBBASEMASK (0xffffffffffffe000LL << tsbsize)
2574
2575 tsbptr = (((va >> 9) & 0xfffffffffffffff0LL) & ~TSBBASEMASK);
2576 return (tsbptr / sizeof(pte_t));
2577 }
2578
2579 /*
2580 * Do whatever is needed to sync the MOD/REF flags
2581 */
2582
2583 bool
pmap_clear_modify(struct vm_page * pg)2584 pmap_clear_modify(struct vm_page *pg)
2585 {
2586 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
2587 pv_entry_t pv;
2588 int rv;
2589 int changed = 0;
2590 #ifdef DEBUG
2591 int modified = 0;
2592
2593 DPRINTF(PDB_CHANGEPROT|PDB_REF, ("pmap_clear_modify(%p)\n", pg));
2594
2595 modified = pmap_is_modified(pg);
2596 #endif
2597 mutex_enter(&pmap_lock);
2598 /* Clear all mappings */
2599 pv = &md->mdpg_pvh;
2600 #ifdef DEBUG
2601 if (pv->pv_va & PV_MOD)
2602 pv->pv_va |= PV_WE; /* Remember this was modified */
2603 #endif
2604 if (pv->pv_va & PV_MOD) {
2605 changed |= 1;
2606 pv->pv_va &= ~PV_MOD;
2607 }
2608 #ifdef DEBUG
2609 if (pv->pv_next && !pv->pv_pmap) {
2610 printf("pmap_clear_modify: npv but no pmap for pv %p\n", pv);
2611 Debugger();
2612 }
2613 #endif
2614 if (pv->pv_pmap != NULL) {
2615 for (; pv; pv = pv->pv_next) {
2616 int64_t data;
2617 struct pmap *pmap = pv->pv_pmap;
2618 vaddr_t va = pv->pv_va & PV_VAMASK;
2619
2620 /* First clear the mod bit in the PTE and make it R/O */
2621 data = pseg_get(pmap, va);
2622 KASSERT(data & TLB_V);
2623 /* Need to both clear the modify and write bits */
2624 if (data & TLB_MODIFY)
2625 changed |= 1;
2626 #ifdef HWREF
2627 data &= ~(TLB_MODIFY|TLB_W);
2628 #else
2629 data &= ~(TLB_MODIFY|TLB_W|TLB_REAL_W);
2630 #endif
2631 rv = pseg_set(pmap, va, data, 0);
2632 if (rv & 1)
2633 printf("pmap_clear_modify: pseg_set needs"
2634 " spare! rv=%d\n", rv);
2635 if (pmap_is_on_mmu(pmap)) {
2636 KASSERT(pmap_ctx(pmap)>=0);
2637 tsb_invalidate(va, pmap);
2638 tlb_flush_pte(va, pmap);
2639 }
2640 /* Then clear the mod bit in the pv */
2641 if (pv->pv_va & PV_MOD) {
2642 changed |= 1;
2643 pv->pv_va &= ~PV_MOD;
2644 }
2645 }
2646 }
2647 pv_check();
2648 mutex_exit(&pmap_lock);
2649 #ifdef DEBUG
2650 DPRINTF(PDB_CHANGEPROT|PDB_REF, ("pmap_clear_modify: pg %p %s\n", pg,
2651 (changed ? "was modified" : "was not modified")));
2652 if (modified && modified != changed) {
2653 printf("pmap_clear_modify: modified %d changed %d\n",
2654 modified, changed);
2655 Debugger();
2656 }
2657 #endif
2658 return (changed);
2659 }
2660
2661 bool
pmap_clear_reference(struct vm_page * pg)2662 pmap_clear_reference(struct vm_page *pg)
2663 {
2664 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
2665 pv_entry_t pv;
2666 int rv;
2667 int changed = 0;
2668 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
2669 int referenced = 0;
2670 #endif
2671
2672 mutex_enter(&pmap_lock);
2673 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
2674 DPRINTF(PDB_CHANGEPROT|PDB_REF, ("pmap_clear_reference(%p)\n", pg));
2675 referenced = pmap_is_referenced_locked(pg);
2676 #endif
2677 /* Clear all references */
2678 pv = &md->mdpg_pvh;
2679 if (pv->pv_va & PV_REF) {
2680 changed |= 1;
2681 pv->pv_va &= ~PV_REF;
2682 }
2683 #ifdef DEBUG
2684 if (pv->pv_next && !pv->pv_pmap) {
2685 printf("pmap_clear_reference: npv but no pmap for pv %p\n", pv);
2686 Debugger();
2687 }
2688 #endif
2689 if (pv->pv_pmap != NULL) {
2690 for (; pv; pv = pv->pv_next) {
2691 int64_t data;
2692 struct pmap *pmap = pv->pv_pmap;
2693 vaddr_t va = pv->pv_va & PV_VAMASK;
2694
2695 data = pseg_get(pmap, va);
2696 KASSERT(data & TLB_V);
2697 DPRINTF(PDB_CHANGEPROT,
2698 ("clearing ref pm:%p va:%p ctx:%lx data:%llx\n",
2699 pmap, (void *)(u_long)va,
2700 (u_long)pmap_ctx(pmap),
2701 (long long)data));
2702 #ifdef HWREF
2703 if (data & TLB_ACCESS) {
2704 changed |= 1;
2705 data &= ~TLB_ACCESS;
2706 }
2707 #else
2708 if (data < 0)
2709 changed |= 1;
2710 data = 0;
2711 #endif
2712 rv = pseg_set(pmap, va, data, 0);
2713 if (rv & 1)
2714 panic("pmap_clear_reference: pseg_set needs"
2715 " spare! rv=%d\n", rv);
2716 if (pmap_is_on_mmu(pmap)) {
2717 KASSERT(pmap_ctx(pmap)>=0);
2718 tsb_invalidate(va, pmap);
2719 tlb_flush_pte(va, pmap);
2720 }
2721 if (pv->pv_va & PV_REF) {
2722 changed |= 1;
2723 pv->pv_va &= ~PV_REF;
2724 }
2725 }
2726 }
2727 dcache_flush_page_all(VM_PAGE_TO_PHYS(pg));
2728 pv_check();
2729 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
2730 if (pmap_is_referenced_locked(pg)) {
2731 pv = &md->mdpg_pvh;
2732 printf("pmap_clear_reference(): %p still referenced "
2733 "(pmap = %p, ctx = %d)\n", pg, pv->pv_pmap,
2734 pv->pv_pmap ? pmap_ctx(pv->pv_pmap) : 0);
2735 Debugger();
2736 }
2737 DPRINTF(PDB_CHANGEPROT|PDB_REF,
2738 ("pmap_clear_reference: pg %p %s\n", pg,
2739 (changed ? "was referenced" : "was not referenced")));
2740 if (referenced != changed) {
2741 printf("pmap_clear_reference: referenced %d changed %d\n",
2742 referenced, changed);
2743 Debugger();
2744 } else {
2745 mutex_exit(&pmap_lock);
2746 return (referenced);
2747 }
2748 #endif
2749 mutex_exit(&pmap_lock);
2750 return (changed);
2751 }
2752
2753 bool
pmap_is_modified(struct vm_page * pg)2754 pmap_is_modified(struct vm_page *pg)
2755 {
2756 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
2757 pv_entry_t pv, npv;
2758 bool res = false;
2759
2760 /* Check if any mapping has been modified */
2761 pv = &md->mdpg_pvh;
2762 if (pv->pv_va & PV_MOD)
2763 res = true;
2764 #ifdef HWREF
2765 #ifdef DEBUG
2766 if (pv->pv_next && !pv->pv_pmap) {
2767 printf("pmap_is_modified: npv but no pmap for pv %p\n", pv);
2768 Debugger();
2769 }
2770 #endif
2771 if (!res && pv->pv_pmap != NULL) {
2772 mutex_enter(&pmap_lock);
2773 for (npv = pv; !res && npv && npv->pv_pmap;
2774 npv = npv->pv_next) {
2775 int64_t data;
2776
2777 data = pseg_get(npv->pv_pmap, npv->pv_va & PV_VAMASK);
2778 KASSERT(data & TLB_V);
2779 if (data & TLB_MODIFY)
2780 res = true;
2781
2782 /* Migrate modify info to head pv */
2783 if (npv->pv_va & PV_MOD) {
2784 res = true;
2785 npv->pv_va &= ~PV_MOD;
2786 }
2787 }
2788 /* Save modify info */
2789 if (res)
2790 pv->pv_va |= PV_MOD;
2791 #ifdef DEBUG
2792 if (res)
2793 pv->pv_va |= PV_WE;
2794 #endif
2795 mutex_exit(&pmap_lock);
2796 }
2797 #endif
2798
2799 DPRINTF(PDB_CHANGEPROT|PDB_REF, ("pmap_is_modified(%p) = %d\n", pg,
2800 res));
2801 pv_check();
2802 return res;
2803 }
2804
2805 /*
2806 * Variant of pmap_is_reference() where caller already holds pmap_lock
2807 */
2808 static bool
pmap_is_referenced_locked(struct vm_page * pg)2809 pmap_is_referenced_locked(struct vm_page *pg)
2810 {
2811 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
2812 pv_entry_t pv, npv;
2813 bool res = false;
2814
2815 KASSERT(mutex_owned(&pmap_lock));
2816
2817 /* Check if any mapping has been referenced */
2818 pv = &md->mdpg_pvh;
2819 if (pv->pv_va & PV_REF)
2820 return true;
2821
2822 #ifdef HWREF
2823 #ifdef DEBUG
2824 if (pv->pv_next && !pv->pv_pmap) {
2825 printf("pmap_is_referenced: npv but no pmap for pv %p\n", pv);
2826 Debugger();
2827 }
2828 #endif
2829 if (pv->pv_pmap == NULL)
2830 return false;
2831
2832 for (npv = pv; npv; npv = npv->pv_next) {
2833 int64_t data;
2834
2835 data = pseg_get(npv->pv_pmap, npv->pv_va & PV_VAMASK);
2836 KASSERT(data & TLB_V);
2837 if (data & TLB_ACCESS)
2838 res = true;
2839
2840 /* Migrate ref info to head pv */
2841 if (npv->pv_va & PV_REF) {
2842 res = true;
2843 npv->pv_va &= ~PV_REF;
2844 }
2845 }
2846 /* Save ref info */
2847 if (res)
2848 pv->pv_va |= PV_REF;
2849 #endif
2850
2851 DPRINTF(PDB_CHANGEPROT|PDB_REF,
2852 ("pmap_is_referenced(%p) = %d\n", pg, res));
2853 pv_check();
2854 return res;
2855 }
2856
2857 bool
pmap_is_referenced(struct vm_page * pg)2858 pmap_is_referenced(struct vm_page *pg)
2859 {
2860 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
2861 pv_entry_t pv;
2862 bool res = false;
2863
2864 /* Check if any mapping has been referenced */
2865 pv = &md->mdpg_pvh;
2866 if (pv->pv_va & PV_REF)
2867 return true;
2868
2869 #ifdef HWREF
2870 #ifdef DEBUG
2871 if (pv->pv_next && !pv->pv_pmap) {
2872 printf("pmap_is_referenced: npv but no pmap for pv %p\n", pv);
2873 Debugger();
2874 }
2875 #endif
2876 if (pv->pv_pmap != NULL) {
2877 mutex_enter(&pmap_lock);
2878 res = pmap_is_referenced_locked(pg);
2879 mutex_exit(&pmap_lock);
2880 }
2881 #endif
2882
2883 DPRINTF(PDB_CHANGEPROT|PDB_REF,
2884 ("pmap_is_referenced(%p) = %d\n", pg, res));
2885 pv_check();
2886 return res;
2887 }
2888
2889
2890
2891 /*
2892 * Routine: pmap_unwire
2893 * Function: Clear the wired attribute for a map/virtual-address
2894 * pair.
2895 * In/out conditions:
2896 * The mapping must already exist in the pmap.
2897 */
2898 void
pmap_unwire(pmap_t pmap,vaddr_t va)2899 pmap_unwire(pmap_t pmap, vaddr_t va)
2900 {
2901 int64_t data;
2902 int rv;
2903
2904 DPRINTF(PDB_MMU_STEAL, ("pmap_unwire(%p, %lx)\n", pmap, va));
2905
2906 #ifdef DEBUG
2907 /*
2908 * Is this part of the permanent 4MB mapping?
2909 */
2910 if (pmap == pmap_kernel() && va >= ktext &&
2911 va < roundup(ekdata, 4*MEG)) {
2912 prom_printf("pmap_unwire: va=%08x in locked TLB\n", va);
2913 prom_abort();
2914 return;
2915 }
2916 #endif
2917 data = pseg_get(pmap, va & PV_VAMASK);
2918 KASSERT(data & TLB_V);
2919 data &= ~TLB_TSB_LOCK;
2920 rv = pseg_set(pmap, va & PV_VAMASK, data, 0);
2921 if (rv & 1)
2922 panic("pmap_unwire: pseg_set needs spare! rv=%d\n", rv);
2923 pv_check();
2924 }
2925
2926 /*
2927 * Lower the protection on the specified physical page.
2928 *
2929 * Never enable writing as it will break COW
2930 */
2931
2932 void
pmap_page_protect(struct vm_page * pg,vm_prot_t prot)2933 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2934 {
2935 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
2936 int64_t clear, set;
2937 int64_t data = 0;
2938 int rv;
2939 pv_entry_t pv, npv, freepv = NULL;
2940 struct pmap *pmap;
2941 vaddr_t va;
2942 bool needflush = FALSE;
2943
2944 DPRINTF(PDB_CHANGEPROT,
2945 ("pmap_page_protect: pg %p prot %x\n", pg, prot));
2946
2947 mutex_enter(&pmap_lock);
2948 pv = &md->mdpg_pvh;
2949 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
2950 /* copy_on_write */
2951
2952 set = TLB_V;
2953 clear = TLB_REAL_W|TLB_W;
2954 if (VM_PROT_EXECUTE & prot)
2955 set |= TLB_EXEC;
2956 else
2957 clear |= TLB_EXEC;
2958 if (VM_PROT_EXECUTE == prot)
2959 set |= TLB_EXEC_ONLY;
2960
2961 #ifdef DEBUG
2962 if (pv->pv_next && !pv->pv_pmap) {
2963 printf("pmap_page_protect: no pmap for pv %p\n", pv);
2964 Debugger();
2965 }
2966 #endif
2967 if (pv->pv_pmap != NULL) {
2968 for (; pv; pv = pv->pv_next) {
2969 pmap = pv->pv_pmap;
2970 va = pv->pv_va & PV_VAMASK;
2971
2972 DPRINTF(PDB_CHANGEPROT | PDB_REF,
2973 ("pmap_page_protect: "
2974 "RO va %p of pg %p...\n",
2975 (void *)(u_long)pv->pv_va, pg));
2976 data = pseg_get(pmap, va);
2977 KASSERT(data & TLB_V);
2978
2979 /* Save REF/MOD info */
2980 if (data & TLB_ACCESS)
2981 pv->pv_va |= PV_REF;
2982 if (data & TLB_MODIFY)
2983 pv->pv_va |= PV_MOD;
2984
2985 data &= ~clear;
2986 data |= set;
2987 rv = pseg_set(pmap, va, data, 0);
2988 if (rv & 1)
2989 panic("pmap_page_protect: "
2990 "pseg_set needs spare! rv=%d\n",
2991 rv);
2992 if (pmap_is_on_mmu(pmap)) {
2993 KASSERT(pmap_ctx(pmap)>=0);
2994 tsb_invalidate(va, pmap);
2995 tlb_flush_pte(va, pmap);
2996 }
2997 }
2998 }
2999 } else {
3000 /* remove mappings */
3001 DPRINTF(PDB_REMOVE,
3002 ("pmap_page_protect: demapping pg %p\n", pg));
3003
3004 /* First remove the entire list of continuation pv's */
3005 for (npv = pv->pv_next; npv; npv = pv->pv_next) {
3006 pmap = npv->pv_pmap;
3007 va = npv->pv_va & PV_VAMASK;
3008
3009 /* We're removing npv from pv->pv_next */
3010 DPRINTF(PDB_CHANGEPROT|PDB_REF|PDB_REMOVE,
3011 ("pmap_page_protect: "
3012 "demap va %p of pg %p in pmap %p...\n",
3013 (void *)(u_long)va, pg, pmap));
3014
3015 /* clear the entry in the page table */
3016 data = pseg_get(pmap, va);
3017 KASSERT(data & TLB_V);
3018
3019 /* Save ref/mod info */
3020 if (data & TLB_ACCESS)
3021 pv->pv_va |= PV_REF;
3022 if (data & TLB_MODIFY)
3023 pv->pv_va |= PV_MOD;
3024 /* Clear mapping */
3025 rv = pseg_set(pmap, va, 0, 0);
3026 if (rv & 1)
3027 panic("pmap_page_protect: pseg_set needs"
3028 " spare! rv=%d\n", rv);
3029 if (pmap_is_on_mmu(pmap)) {
3030 KASSERT(pmap_ctx(pmap)>=0);
3031 tsb_invalidate(va, pmap);
3032 tlb_flush_pte(va, pmap);
3033 }
3034 if (pmap->pm_refs > 0) {
3035 needflush = TRUE;
3036 }
3037
3038 /* free the pv */
3039 pv->pv_next = npv->pv_next;
3040 npv->pv_next = freepv;
3041 freepv = npv;
3042 }
3043
3044 /* Then remove the primary pv */
3045 #ifdef DEBUG
3046 if (pv->pv_next && !pv->pv_pmap) {
3047 printf("pmap_page_protect: no pmap for pv %p\n", pv);
3048 Debugger();
3049 }
3050 #endif
3051 if (pv->pv_pmap != NULL) {
3052 pmap = pv->pv_pmap;
3053 va = pv->pv_va & PV_VAMASK;
3054
3055 DPRINTF(PDB_CHANGEPROT|PDB_REF|PDB_REMOVE,
3056 ("pmap_page_protect: "
3057 "demap va %p of pg %p from pm %p...\n",
3058 (void *)(u_long)va, pg, pmap));
3059
3060 data = pseg_get(pmap, va);
3061 KASSERT(data & TLB_V);
3062 /* Save ref/mod info */
3063 if (data & TLB_ACCESS)
3064 pv->pv_va |= PV_REF;
3065 if (data & TLB_MODIFY)
3066 pv->pv_va |= PV_MOD;
3067 rv = pseg_set(pmap, va, 0, 0);
3068 if (rv & 1)
3069 panic("pmap_page_protect: pseg_set needs"
3070 " spare! rv=%d\n", rv);
3071 if (pmap_is_on_mmu(pmap)) {
3072 KASSERT(pmap_ctx(pmap)>=0);
3073 tsb_invalidate(va, pmap);
3074 tlb_flush_pte(va, pmap);
3075 }
3076 if (pmap->pm_refs > 0) {
3077 needflush = TRUE;
3078 }
3079 npv = pv->pv_next;
3080 /* dump the first pv */
3081 if (npv) {
3082 /* First save mod/ref bits */
3083 pv->pv_pmap = npv->pv_pmap;
3084 pv->pv_va = (pv->pv_va & PV_MASK) | npv->pv_va;
3085 pv->pv_next = npv->pv_next;
3086 npv->pv_next = freepv;
3087 freepv = npv;
3088 } else {
3089 pv->pv_pmap = NULL;
3090 pv->pv_next = NULL;
3091 }
3092 }
3093 if (needflush)
3094 dcache_flush_page_all(VM_PAGE_TO_PHYS(pg));
3095 }
3096 /* We should really only flush the pages we demapped. */
3097 pv_check();
3098 mutex_exit(&pmap_lock);
3099
3100 /* Catch up on deferred frees. */
3101 for (; freepv != NULL; freepv = npv) {
3102 npv = freepv->pv_next;
3103 pool_cache_put(&pmap_pv_cache, freepv);
3104 }
3105 }
3106
3107 #ifdef PMAP_COUNT_DEBUG
3108 /*
3109 * count pages in pmap -- this can be slow.
3110 */
3111 int
pmap_count_res(struct pmap * pm)3112 pmap_count_res(struct pmap *pm)
3113 {
3114 int64_t data;
3115 paddr_t *pdir, *ptbl;
3116 int i, j, k, n;
3117
3118 /* Don't want one of these pages reused while we're reading it. */
3119 mutex_enter(&pmap_lock);
3120 n = 0;
3121 for (i = 0; i < STSZ; i++) {
3122 pdir = (paddr_t *)(u_long)ldxa((vaddr_t)&pm->pm_segs[i],
3123 ASI_PHYS_CACHED);
3124 if (pdir == NULL) {
3125 continue;
3126 }
3127 for (k = 0; k < PDSZ; k++) {
3128 ptbl = (paddr_t *)(u_long)ldxa((vaddr_t)&pdir[k],
3129 ASI_PHYS_CACHED);
3130 if (ptbl == NULL) {
3131 continue;
3132 }
3133 for (j = 0; j < PTSZ; j++) {
3134 data = (int64_t)ldxa((vaddr_t)&ptbl[j],
3135 ASI_PHYS_CACHED);
3136 if (data & TLB_V)
3137 n++;
3138 }
3139 }
3140 }
3141 mutex_exit(&pmap_lock);
3142
3143 if (pm->pm_stats.resident_count != n)
3144 printf("pmap_count_resident: pm_stats = %ld, counted: %d\n",
3145 pm->pm_stats.resident_count, n);
3146
3147 return n;
3148 }
3149
3150 /*
3151 * count wired pages in pmap -- this can be slow.
3152 */
3153 int
pmap_count_wired(struct pmap * pm)3154 pmap_count_wired(struct pmap *pm)
3155 {
3156 int64_t data;
3157 paddr_t *pdir, *ptbl;
3158 int i, j, k, n;
3159
3160 /* Don't want one of these pages reused while we're reading it. */
3161 mutex_enter(&pmap_lock); /* XXX uvmplock */
3162 n = 0;
3163 for (i = 0; i < STSZ; i++) {
3164 pdir = (paddr_t *)(u_long)ldxa((vaddr_t)&pm->pm_segs[i],
3165 ASI_PHYS_CACHED);
3166 if (pdir == NULL) {
3167 continue;
3168 }
3169 for (k = 0; k < PDSZ; k++) {
3170 ptbl = (paddr_t *)(u_long)ldxa((vaddr_t)&pdir[k],
3171 ASI_PHYS_CACHED);
3172 if (ptbl == NULL) {
3173 continue;
3174 }
3175 for (j = 0; j < PTSZ; j++) {
3176 data = (int64_t)ldxa((vaddr_t)&ptbl[j],
3177 ASI_PHYS_CACHED);
3178 if (data & TLB_TSB_LOCK)
3179 n++;
3180 }
3181 }
3182 }
3183 mutex_exit(&pmap_lock); /* XXX uvmplock */
3184
3185 if (pm->pm_stats.wired_count != n)
3186 printf("pmap_count_wired: pm_stats = %ld, counted: %d\n",
3187 pm->pm_stats.wired_count, n);
3188
3189 return n;
3190 }
3191 #endif /* PMAP_COUNT_DEBUG */
3192
3193 void
pmap_procwr(struct proc * p,vaddr_t va,size_t len)3194 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3195 {
3196
3197 blast_icache();
3198 }
3199
3200 /*
3201 * Allocate a hardware context to the given pmap.
3202 */
3203 static int
ctx_alloc(struct pmap * pm)3204 ctx_alloc(struct pmap *pm)
3205 {
3206 int i, ctx;
3207
3208 KASSERT(pm != pmap_kernel());
3209 KASSERT(pm == curproc->p_vmspace->vm_map.pmap);
3210 mutex_enter(&curcpu()->ci_ctx_lock);
3211 ctx = curcpu()->ci_pmap_next_ctx++;
3212
3213 /*
3214 * if we have run out of contexts, remove all user entries from
3215 * the TSB, TLB and dcache and start over with context 1 again.
3216 */
3217
3218 if (ctx == curcpu()->ci_numctx) {
3219 DPRINTF(PDB_CTX_ALLOC|PDB_CTX_FLUSHALL,
3220 ("ctx_alloc: cpu%d run out of contexts %d\n",
3221 cpu_number(), curcpu()->ci_numctx));
3222 write_user_windows();
3223 while (!LIST_EMPTY(&curcpu()->ci_pmap_ctxlist)) {
3224 #ifdef MULTIPROCESSOR
3225 KASSERT(pmap_ctx(LIST_FIRST(&curcpu()->ci_pmap_ctxlist)) != 0);
3226 #endif
3227 ctx_free(LIST_FIRST(&curcpu()->ci_pmap_ctxlist),
3228 curcpu());
3229 }
3230 for (i = TSBENTS - 1; i >= 0; i--) {
3231 if (TSB_TAG_CTX(curcpu()->ci_tsb_dmmu[i].tag) != 0) {
3232 clrx(&curcpu()->ci_tsb_dmmu[i].data);
3233 }
3234 if (TSB_TAG_CTX(curcpu()->ci_tsb_immu[i].tag) != 0) {
3235 clrx(&curcpu()->ci_tsb_immu[i].data);
3236 }
3237 }
3238 sp_tlb_flush_all();
3239 ctx = 1;
3240 curcpu()->ci_pmap_next_ctx = 2;
3241 }
3242 curcpu()->ci_ctxbusy[ctx] = pm->pm_physaddr;
3243 LIST_INSERT_HEAD(&curcpu()->ci_pmap_ctxlist, pm, pm_list[cpu_number()]);
3244 pmap_ctx(pm) = ctx;
3245 mutex_exit(&curcpu()->ci_ctx_lock);
3246 DPRINTF(PDB_CTX_ALLOC, ("ctx_alloc: cpu%d allocated ctx %d\n",
3247 cpu_number(), ctx));
3248 return ctx;
3249 }
3250
3251 /*
3252 * Give away a context.
3253 */
3254 static void
ctx_free(struct pmap * pm,struct cpu_info * ci)3255 ctx_free(struct pmap *pm, struct cpu_info *ci)
3256 {
3257 int oldctx;
3258 int cpunum;
3259
3260 KASSERT(mutex_owned(&ci->ci_ctx_lock));
3261
3262 #ifdef MULTIPROCESSOR
3263 cpunum = ci->ci_index;
3264 #else
3265 /* Give the compiler a hint.. */
3266 cpunum = 0;
3267 #endif
3268
3269 oldctx = pm->pm_ctx[cpunum];
3270 if (oldctx == 0)
3271 return;
3272
3273 #ifdef DIAGNOSTIC
3274 if (pm == pmap_kernel())
3275 panic("ctx_free: freeing kernel context");
3276 if (ci->ci_ctxbusy[oldctx] == 0)
3277 printf("ctx_free: freeing free context %d\n", oldctx);
3278 if (ci->ci_ctxbusy[oldctx] != pm->pm_physaddr) {
3279 printf("ctx_free: freeing someone else's context\n "
3280 "ctxbusy[%d] = %p, pm(%p)->pm_ctx = %p\n",
3281 oldctx, (void *)(u_long)ci->ci_ctxbusy[oldctx], pm,
3282 (void *)(u_long)pm->pm_physaddr);
3283 Debugger();
3284 }
3285 #endif
3286 /* We should verify it has not been stolen and reallocated... */
3287 DPRINTF(PDB_CTX_ALLOC, ("ctx_free: cpu%d freeing ctx %d\n",
3288 cpu_number(), oldctx));
3289 ci->ci_ctxbusy[oldctx] = 0UL;
3290 pm->pm_ctx[cpunum] = 0;
3291 LIST_REMOVE(pm, pm_list[cpunum]);
3292 }
3293
3294 /*
3295 * Enter the pmap and virtual address into the
3296 * physical to virtual map table.
3297 *
3298 * We enter here with the pmap locked.
3299 */
3300
3301 void
pmap_enter_pv(struct pmap * pmap,vaddr_t va,paddr_t pa,struct vm_page * pg,pv_entry_t npv)3302 pmap_enter_pv(struct pmap *pmap, vaddr_t va, paddr_t pa, struct vm_page *pg,
3303 pv_entry_t npv)
3304 {
3305 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
3306 pv_entry_t pvh;
3307
3308 KASSERT(mutex_owned(&pmap_lock));
3309
3310 pvh = &md->mdpg_pvh;
3311 DPRINTF(PDB_ENTER, ("pmap_enter: pvh %p: was %lx/%p/%p\n",
3312 pvh, pvh->pv_va, pvh->pv_pmap, pvh->pv_next));
3313 if (pvh->pv_pmap == NULL) {
3314
3315 /*
3316 * No entries yet, use header as the first entry
3317 */
3318 DPRINTF(PDB_ENTER, ("pmap_enter: first pv: pmap %p va %lx\n",
3319 pmap, va));
3320 ENTER_STAT(firstpv);
3321 PV_SETVA(pvh, va);
3322 pvh->pv_pmap = pmap;
3323 pvh->pv_next = NULL;
3324 KASSERT(npv == NULL);
3325 } else {
3326 if (pg->loan_count == 0 && !(pvh->pv_va & PV_ALIAS)) {
3327
3328 /*
3329 * There is at least one other VA mapping this page.
3330 * Check if they are cache index compatible. If not
3331 * remove all mappings, flush the cache and set page
3332 * to be mapped uncached. Caching will be restored
3333 * when pages are mapped compatible again.
3334 */
3335 if ((pvh->pv_va ^ va) & VA_ALIAS_MASK) {
3336 pvh->pv_va |= PV_ALIAS;
3337 pmap_page_cache(pmap, pa, 0);
3338 ENTER_STAT(ci);
3339 }
3340 }
3341
3342 /*
3343 * There is at least one other VA mapping this page.
3344 * Place this entry after the header.
3345 */
3346
3347 DPRINTF(PDB_ENTER, ("pmap_enter: new pv: pmap %p va %lx\n",
3348 pmap, va));
3349 npv->pv_pmap = pmap;
3350 npv->pv_va = va & PV_VAMASK;
3351 npv->pv_next = pvh->pv_next;
3352 pvh->pv_next = npv;
3353
3354 if (!npv->pv_next) {
3355 ENTER_STAT(secondpv);
3356 }
3357 }
3358 }
3359
3360 /*
3361 * Remove a physical to virtual address translation.
3362 */
3363
3364 pv_entry_t
pmap_remove_pv(struct pmap * pmap,vaddr_t va,struct vm_page * pg)3365 pmap_remove_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg)
3366 {
3367 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
3368 pv_entry_t pvh, npv, pv;
3369 int64_t data = 0;
3370
3371 KASSERT(mutex_owned(&pmap_lock));
3372
3373 pvh = &md->mdpg_pvh;
3374
3375 DPRINTF(PDB_REMOVE, ("pmap_remove_pv(pm=%p, va=%p, pg=%p)\n", pmap,
3376 (void *)(u_long)va, pg));
3377 pv_check();
3378
3379 /*
3380 * Remove page from the PV table.
3381 * If it is the first entry on the list, it is actually
3382 * in the header and we must copy the following entry up
3383 * to the header. Otherwise we must search the list for
3384 * the entry. In either case we free the now unused entry.
3385 */
3386 if (pmap == pvh->pv_pmap && PV_MATCH(pvh, va)) {
3387 data = pseg_get(pvh->pv_pmap, pvh->pv_va & PV_VAMASK);
3388 KASSERT(data & TLB_V);
3389 npv = pvh->pv_next;
3390 if (npv) {
3391 /* First save mod/ref bits */
3392 pvh->pv_va = (pvh->pv_va & PV_MASK) | npv->pv_va;
3393 pvh->pv_next = npv->pv_next;
3394 pvh->pv_pmap = npv->pv_pmap;
3395 } else {
3396 pvh->pv_pmap = NULL;
3397 pvh->pv_next = NULL;
3398 pvh->pv_va &= (PV_REF|PV_MOD);
3399 }
3400 REMOVE_STAT(pvfirst);
3401 } else {
3402 for (pv = pvh, npv = pvh->pv_next; npv;
3403 pv = npv, npv = npv->pv_next) {
3404 REMOVE_STAT(pvsearch);
3405 if (pmap == npv->pv_pmap && PV_MATCH(npv, va))
3406 break;
3407 }
3408 pv->pv_next = npv->pv_next;
3409 data = pseg_get(npv->pv_pmap, npv->pv_va & PV_VAMASK);
3410 KASSERT(data & TLB_V);
3411 }
3412
3413 /* Save ref/mod info */
3414 if (data & TLB_ACCESS)
3415 pvh->pv_va |= PV_REF;
3416 if (data & TLB_MODIFY)
3417 pvh->pv_va |= PV_MOD;
3418
3419 /* Check to see if the alias went away */
3420 if (pvh->pv_va & PV_ALIAS) {
3421 pvh->pv_va &= ~PV_ALIAS;
3422 for (pv = pvh; pv; pv = pv->pv_next) {
3423 if ((pv->pv_va ^ pvh->pv_va) & VA_ALIAS_MASK) {
3424 pvh->pv_va |= PV_ALIAS;
3425 break;
3426 }
3427 }
3428 if (!(pvh->pv_va & PV_ALIAS))
3429 pmap_page_cache(pmap, VM_PAGE_TO_PHYS(pg), 1);
3430 }
3431 pv_check();
3432 return npv;
3433 }
3434
3435 /*
3436 * pmap_page_cache:
3437 *
3438 * Change all mappings of a page to cached/uncached.
3439 */
3440 void
pmap_page_cache(struct pmap * pm,paddr_t pa,int mode)3441 pmap_page_cache(struct pmap *pm, paddr_t pa, int mode)
3442 {
3443 struct vm_page *pg;
3444 struct vm_page_md *md;
3445 pv_entry_t pv;
3446 vaddr_t va;
3447 int rv;
3448
3449 #if 0
3450 /*
3451 * Why is this?
3452 */
3453 if (CPU_ISSUN4US || CPU_ISSUN4V)
3454 return;
3455 #endif
3456
3457 KASSERT(mutex_owned(&pmap_lock));
3458
3459 DPRINTF(PDB_ENTER, ("pmap_page_uncache(%llx)\n",
3460 (unsigned long long)pa));
3461 pg = PHYS_TO_VM_PAGE(pa);
3462 md = VM_PAGE_TO_MD(pg);
3463 pv = &md->mdpg_pvh;
3464 while (pv) {
3465 va = pv->pv_va & PV_VAMASK;
3466 if (pv->pv_va & PV_NC) {
3467 int64_t data;
3468
3469 /* Non-cached -- I/O mapping */
3470 data = pseg_get(pv->pv_pmap, va);
3471 KASSERT(data & TLB_V);
3472 rv = pseg_set(pv->pv_pmap, va,
3473 data & ~(TLB_CV|TLB_CP), 0);
3474 if (rv & 1)
3475 panic("pmap_page_cache: pseg_set needs"
3476 " spare! rv=%d\n", rv);
3477 } else if (mode && (!(pv->pv_va & PV_NVC))) {
3478 int64_t data;
3479
3480 /* Enable caching */
3481 data = pseg_get(pv->pv_pmap, va);
3482 KASSERT(data & TLB_V);
3483 rv = pseg_set(pv->pv_pmap, va, data | TLB_CV, 0);
3484 if (rv & 1)
3485 panic("pmap_page_cache: pseg_set needs"
3486 " spare! rv=%d\n", rv);
3487 } else {
3488 int64_t data;
3489
3490 /* Disable caching */
3491 data = pseg_get(pv->pv_pmap, va);
3492 KASSERT(data & TLB_V);
3493 rv = pseg_set(pv->pv_pmap, va, data & ~TLB_CV, 0);
3494 if (rv & 1)
3495 panic("pmap_page_cache: pseg_set needs"
3496 " spare! rv=%d\n", rv);
3497 }
3498 if (pmap_is_on_mmu(pv->pv_pmap)) {
3499 /* Force reload -- cache bits have changed */
3500 KASSERT(pmap_ctx(pv->pv_pmap)>=0);
3501 tsb_invalidate(va, pv->pv_pmap);
3502 tlb_flush_pte(va, pv->pv_pmap);
3503 }
3504 pv = pv->pv_next;
3505 }
3506 }
3507
3508 /*
3509 * Some routines to allocate and free PTPs.
3510 */
3511 static int
pmap_get_page(paddr_t * p)3512 pmap_get_page(paddr_t *p)
3513 {
3514 struct vm_page *pg;
3515 paddr_t pa;
3516
3517 if (uvm.page_init_done) {
3518 pg = uvm_pagealloc(NULL, 0, NULL,
3519 UVM_PGA_ZERO | UVM_PGA_USERESERVE);
3520 if (pg == NULL)
3521 return (0);
3522 pa = VM_PAGE_TO_PHYS(pg);
3523 } else {
3524 if (!uvm_page_physget(&pa))
3525 return (0);
3526 pmap_zero_page(pa);
3527 }
3528 *p = pa;
3529 return (1);
3530 }
3531
3532 static void
pmap_free_page(paddr_t pa,sparc64_cpuset_t cs)3533 pmap_free_page(paddr_t pa, sparc64_cpuset_t cs)
3534 {
3535 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3536
3537 dcache_flush_page_cpuset(pa, cs);
3538 uvm_pagefree(pg);
3539 }
3540
3541 static void
pmap_free_page_noflush(paddr_t pa)3542 pmap_free_page_noflush(paddr_t pa)
3543 {
3544 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3545
3546 uvm_pagefree(pg);
3547 }
3548
3549 #ifdef DDB
3550
3551 void db_dump_pv(db_expr_t, int, db_expr_t, const char *);
3552 void
db_dump_pv(db_expr_t addr,int have_addr,db_expr_t count,const char * modif)3553 db_dump_pv(db_expr_t addr, int have_addr, db_expr_t count, const char *modif)
3554 {
3555 struct vm_page *pg;
3556 struct vm_page_md *md;
3557 struct pv_entry *pv;
3558
3559 if (!have_addr) {
3560 db_printf("Need addr for pv\n");
3561 return;
3562 }
3563
3564 pg = PHYS_TO_VM_PAGE((paddr_t)addr);
3565 if (pg == NULL) {
3566 db_printf("page is not managed\n");
3567 return;
3568 }
3569 md = VM_PAGE_TO_MD(pg);
3570 for (pv = &md->mdpg_pvh; pv; pv = pv->pv_next)
3571 db_printf("pv@%p: next=%p pmap=%p va=0x%llx\n",
3572 pv, pv->pv_next, pv->pv_pmap,
3573 (unsigned long long)pv->pv_va);
3574 }
3575
3576 #endif
3577
3578 #ifdef DEBUG
3579 /*
3580 * Test ref/modify handling. */
3581 void pmap_testout(void);
3582 void
pmap_testout(void)3583 pmap_testout(void)
3584 {
3585 vaddr_t va;
3586 volatile int *loc;
3587 int val = 0;
3588 paddr_t pa;
3589 struct vm_page *pg;
3590 int ref, mod;
3591
3592 /* Allocate a page */
3593 va = (vaddr_t)(vmmap - PAGE_SIZE);
3594 KASSERT(va != 0);
3595 loc = (int*)va;
3596
3597 pmap_get_page(&pa);
3598 pg = PHYS_TO_VM_PAGE(pa);
3599 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, VM_PROT_ALL);
3600 pmap_update(pmap_kernel());
3601
3602 /* Now clear reference and modify */
3603 ref = pmap_clear_reference(pg);
3604 mod = pmap_clear_modify(pg);
3605 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
3606 (void *)(u_long)va, (long)pa,
3607 ref, mod);
3608
3609 /* Check it's properly cleared */
3610 ref = pmap_is_referenced(pg);
3611 mod = pmap_is_modified(pg);
3612 printf("Checking cleared page: ref %d, mod %d\n",
3613 ref, mod);
3614
3615 /* Reference page */
3616 val = *loc;
3617
3618 ref = pmap_is_referenced(pg);
3619 mod = pmap_is_modified(pg);
3620 printf("Referenced page: ref %d, mod %d val %x\n",
3621 ref, mod, val);
3622
3623 /* Now clear reference and modify */
3624 ref = pmap_clear_reference(pg);
3625 mod = pmap_clear_modify(pg);
3626 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
3627 (void *)(u_long)va, (long)pa,
3628 ref, mod);
3629
3630 /* Modify page */
3631 *loc = 1;
3632
3633 ref = pmap_is_referenced(pg);
3634 mod = pmap_is_modified(pg);
3635 printf("Modified page: ref %d, mod %d\n",
3636 ref, mod);
3637
3638 /* Now clear reference and modify */
3639 ref = pmap_clear_reference(pg);
3640 mod = pmap_clear_modify(pg);
3641 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
3642 (void *)(u_long)va, (long)pa,
3643 ref, mod);
3644
3645 /* Check it's properly cleared */
3646 ref = pmap_is_referenced(pg);
3647 mod = pmap_is_modified(pg);
3648 printf("Checking cleared page: ref %d, mod %d\n",
3649 ref, mod);
3650
3651 /* Modify page */
3652 *loc = 1;
3653
3654 ref = pmap_is_referenced(pg);
3655 mod = pmap_is_modified(pg);
3656 printf("Modified page: ref %d, mod %d\n",
3657 ref, mod);
3658
3659 /* Check pmap_protect() */
3660 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
3661 pmap_update(pmap_kernel());
3662 ref = pmap_is_referenced(pg);
3663 mod = pmap_is_modified(pg);
3664 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
3665 ref, mod);
3666
3667 /* Now clear reference and modify */
3668 ref = pmap_clear_reference(pg);
3669 mod = pmap_clear_modify(pg);
3670 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
3671 (void *)(u_long)va, (long)pa,
3672 ref, mod);
3673
3674 /* Modify page */
3675 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, VM_PROT_ALL);
3676 pmap_update(pmap_kernel());
3677 *loc = 1;
3678
3679 ref = pmap_is_referenced(pg);
3680 mod = pmap_is_modified(pg);
3681 printf("Modified page: ref %d, mod %d\n",
3682 ref, mod);
3683
3684 /* Check pmap_protect() */
3685 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
3686 pmap_update(pmap_kernel());
3687 ref = pmap_is_referenced(pg);
3688 mod = pmap_is_modified(pg);
3689 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
3690 ref, mod);
3691
3692 /* Now clear reference and modify */
3693 ref = pmap_clear_reference(pg);
3694 mod = pmap_clear_modify(pg);
3695 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
3696 (void *)(u_long)va, (long)pa,
3697 ref, mod);
3698
3699 /* Modify page */
3700 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, VM_PROT_ALL);
3701 pmap_update(pmap_kernel());
3702 *loc = 1;
3703
3704 ref = pmap_is_referenced(pg);
3705 mod = pmap_is_modified(pg);
3706 printf("Modified page: ref %d, mod %d\n",
3707 ref, mod);
3708
3709 /* Check pmap_pag_protect() */
3710 pmap_page_protect(pg, VM_PROT_READ);
3711 ref = pmap_is_referenced(pg);
3712 mod = pmap_is_modified(pg);
3713 printf("pmap_protect(): ref %d, mod %d\n",
3714 ref, mod);
3715
3716 /* Now clear reference and modify */
3717 ref = pmap_clear_reference(pg);
3718 mod = pmap_clear_modify(pg);
3719 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
3720 (void *)(u_long)va, (long)pa,
3721 ref, mod);
3722
3723
3724 /* Modify page */
3725 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, VM_PROT_ALL);
3726 pmap_update(pmap_kernel());
3727 *loc = 1;
3728
3729 ref = pmap_is_referenced(pg);
3730 mod = pmap_is_modified(pg);
3731 printf("Modified page: ref %d, mod %d\n",
3732 ref, mod);
3733
3734 /* Check pmap_pag_protect() */
3735 pmap_page_protect(pg, VM_PROT_NONE);
3736 ref = pmap_is_referenced(pg);
3737 mod = pmap_is_modified(pg);
3738 printf("pmap_protect(): ref %d, mod %d\n",
3739 ref, mod);
3740
3741 /* Now clear reference and modify */
3742 ref = pmap_clear_reference(pg);
3743 mod = pmap_clear_modify(pg);
3744 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
3745 (void *)(u_long)va, (long)pa,
3746 ref, mod);
3747
3748 /* Unmap page */
3749 pmap_remove(pmap_kernel(), va, va+1);
3750 pmap_update(pmap_kernel());
3751 ref = pmap_is_referenced(pg);
3752 mod = pmap_is_modified(pg);
3753 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
3754
3755 /* Now clear reference and modify */
3756 ref = pmap_clear_reference(pg);
3757 mod = pmap_clear_modify(pg);
3758 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
3759 (void *)(u_long)va, (long)pa, ref, mod);
3760
3761 /* Check it's properly cleared */
3762 ref = pmap_is_referenced(pg);
3763 mod = pmap_is_modified(pg);
3764 printf("Checking cleared page: ref %d, mod %d\n",
3765 ref, mod);
3766
3767 pmap_remove(pmap_kernel(), va, va+1);
3768 pmap_update(pmap_kernel());
3769 pmap_free_page(pa, cpus_active);
3770 }
3771 #endif
3772
3773 void
pmap_update(struct pmap * pmap)3774 pmap_update(struct pmap *pmap)
3775 {
3776
3777 if (pmap->pm_refs > 0) {
3778 return;
3779 }
3780 pmap->pm_refs = 1;
3781 pmap_activate_pmap(pmap);
3782 }
3783
3784 /*
3785 * pmap_copy_page()/pmap_zero_page()
3786 *
3787 * we make sure that the destination page is flushed from all D$'s
3788 * before we perform the copy/zero.
3789 */
3790 extern int cold;
3791 void
pmap_copy_page(paddr_t src,paddr_t dst)3792 pmap_copy_page(paddr_t src, paddr_t dst)
3793 {
3794
3795 if (!cold)
3796 dcache_flush_page_all(dst);
3797 pmap_copy_page_phys(src, dst);
3798 }
3799
3800 void
pmap_zero_page(paddr_t pa)3801 pmap_zero_page(paddr_t pa)
3802 {
3803
3804 if (!cold)
3805 dcache_flush_page_all(pa);
3806 pmap_zero_page_phys(pa);
3807 }
3808
3809 #ifdef _LP64
3810 int
sparc64_mmap_range_test(vaddr_t addr,vaddr_t eaddr)3811 sparc64_mmap_range_test(vaddr_t addr, vaddr_t eaddr)
3812 {
3813 const vaddr_t hole_start = 0x000007ffffffffff;
3814 const vaddr_t hole_end = 0xfffff80000000000;
3815
3816 if (addr >= hole_end)
3817 return 0;
3818 if (eaddr <= hole_start)
3819 return 0;
3820
3821 return EINVAL;
3822 }
3823 #endif
3824
3825 #ifdef SUN4V
3826 void
pmap_setup_intstack_sun4v(paddr_t pa)3827 pmap_setup_intstack_sun4v(paddr_t pa)
3828 {
3829 int64_t hv_rc;
3830 int64_t data;
3831 data = SUN4V_TSB_DATA(
3832 0 /* global */,
3833 PGSZ_64K,
3834 pa,
3835 1 /* priv */,
3836 1 /* Write */,
3837 1 /* Cacheable */,
3838 FORCE_ALIAS /* ALIAS -- Disable D$ */,
3839 1 /* valid */,
3840 0 /* IE */);
3841 hv_rc = hv_mmu_map_perm_addr(INTSTACK, data, MAP_DTLB);
3842 if ( hv_rc != H_EOK ) {
3843 panic("hv_mmu_map_perm_addr() failed - rc = %" PRId64 "\n",
3844 hv_rc);
3845 }
3846 }
3847
3848 void
pmap_setup_tsb_sun4v(struct tsb_desc * tsb_desc)3849 pmap_setup_tsb_sun4v(struct tsb_desc* tsb_desc)
3850 {
3851 int err;
3852 paddr_t tsb_desc_p;
3853 tsb_desc_p = pmap_kextract((vaddr_t)tsb_desc);
3854 if (!tsb_desc_p) {
3855 panic("pmap_setup_tsb_sun4v() pmap_kextract() failed");
3856 }
3857 err = hv_mmu_tsb_ctx0(1, tsb_desc_p);
3858 if (err != H_EOK) {
3859 prom_printf("hv_mmu_tsb_ctx0() err: %d\n", err);
3860 panic("pmap_setup_tsb_sun4v() hv_mmu_tsb_ctx0() failed");
3861 }
3862 err = hv_mmu_tsb_ctxnon0(1, tsb_desc_p);
3863 if (err != H_EOK) {
3864 prom_printf("hv_mmu_tsb_ctxnon0() err: %d\n", err);
3865 panic("pmap_setup_tsb_sun4v() hv_mmu_tsb_ctxnon0() failed");
3866 }
3867 }
3868
3869 #endif
3870