xref: /linux/include/linux/blk-mq.h (revision 02ccd7c3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 #include <linux/rw_hint.h>
12 
13 struct blk_mq_tags;
14 struct blk_flush_queue;
15 
16 #define BLKDEV_MIN_RQ	4
17 #define BLKDEV_DEFAULT_RQ	128
18 
19 enum rq_end_io_ret {
20 	RQ_END_IO_NONE,
21 	RQ_END_IO_FREE,
22 };
23 
24 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
25 
26 /*
27  * request flags */
28 typedef __u32 __bitwise req_flags_t;
29 
30 /* drive already may have started this one */
31 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
32 /* request for flush sequence */
33 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
34 /* merge of different types, fail separately */
35 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
36 /* don't call prep for this one */
37 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
38 /* use hctx->sched_tags */
39 #define RQF_SCHED_TAGS		((__force req_flags_t)(1 << 8))
40 /* use an I/O scheduler for this request */
41 #define RQF_USE_SCHED		((__force req_flags_t)(1 << 9))
42 /* vaguely specified driver internal error.  Ignored by the block layer */
43 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
44 /* don't warn about errors */
45 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
46 /* account into disk and partition IO statistics */
47 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
48 /* runtime pm request */
49 #define RQF_PM			((__force req_flags_t)(1 << 15))
50 /* on IO scheduler merge hash */
51 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
52 /* track IO completion time */
53 #define RQF_STATS		((__force req_flags_t)(1 << 17))
54 /* Look at ->special_vec for the actual data payload instead of the
55    bio chain. */
56 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
57 /* The request completion needs to be signaled to zone write pluging. */
58 #define RQF_ZONE_WRITE_PLUGGING	((__force req_flags_t)(1 << 20))
59 /* ->timeout has been called, don't expire again */
60 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
61 #define RQF_RESV		((__force req_flags_t)(1 << 23))
62 
63 /* flags that prevent us from merging requests: */
64 #define RQF_NOMERGE_FLAGS \
65 	(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
66 
67 enum mq_rq_state {
68 	MQ_RQ_IDLE		= 0,
69 	MQ_RQ_IN_FLIGHT		= 1,
70 	MQ_RQ_COMPLETE		= 2,
71 };
72 
73 /*
74  * Try to put the fields that are referenced together in the same cacheline.
75  *
76  * If you modify this structure, make sure to update blk_rq_init() and
77  * especially blk_mq_rq_ctx_init() to take care of the added fields.
78  */
79 struct request {
80 	struct request_queue *q;
81 	struct blk_mq_ctx *mq_ctx;
82 	struct blk_mq_hw_ctx *mq_hctx;
83 
84 	blk_opf_t cmd_flags;		/* op and common flags */
85 	req_flags_t rq_flags;
86 
87 	int tag;
88 	int internal_tag;
89 
90 	unsigned int timeout;
91 
92 	/* the following two fields are internal, NEVER access directly */
93 	unsigned int __data_len;	/* total data len */
94 	sector_t __sector;		/* sector cursor */
95 
96 	struct bio *bio;
97 	struct bio *biotail;
98 
99 	union {
100 		struct list_head queuelist;
101 		struct request *rq_next;
102 	};
103 
104 	struct block_device *part;
105 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
106 	/* Time that the first bio started allocating this request. */
107 	u64 alloc_time_ns;
108 #endif
109 	/* Time that this request was allocated for this IO. */
110 	u64 start_time_ns;
111 	/* Time that I/O was submitted to the device. */
112 	u64 io_start_time_ns;
113 
114 #ifdef CONFIG_BLK_WBT
115 	unsigned short wbt_flags;
116 #endif
117 	/*
118 	 * rq sectors used for blk stats. It has the same value
119 	 * with blk_rq_sectors(rq), except that it never be zeroed
120 	 * by completion.
121 	 */
122 	unsigned short stats_sectors;
123 
124 	/*
125 	 * Number of scatter-gather DMA addr+len pairs after
126 	 * physical address coalescing is performed.
127 	 */
128 	unsigned short nr_phys_segments;
129 
130 #ifdef CONFIG_BLK_DEV_INTEGRITY
131 	unsigned short nr_integrity_segments;
132 #endif
133 
134 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
135 	struct bio_crypt_ctx *crypt_ctx;
136 	struct blk_crypto_keyslot *crypt_keyslot;
137 #endif
138 
139 	enum rw_hint write_hint;
140 	unsigned short ioprio;
141 
142 	enum mq_rq_state state;
143 	atomic_t ref;
144 
145 	unsigned long deadline;
146 
147 	/*
148 	 * The hash is used inside the scheduler, and killed once the
149 	 * request reaches the dispatch list. The ipi_list is only used
150 	 * to queue the request for softirq completion, which is long
151 	 * after the request has been unhashed (and even removed from
152 	 * the dispatch list).
153 	 */
154 	union {
155 		struct hlist_node hash;	/* merge hash */
156 		struct llist_node ipi_list;
157 	};
158 
159 	/*
160 	 * The rb_node is only used inside the io scheduler, requests
161 	 * are pruned when moved to the dispatch queue. special_vec must
162 	 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
163 	 * insert into an IO scheduler.
164 	 */
165 	union {
166 		struct rb_node rb_node;	/* sort/lookup */
167 		struct bio_vec special_vec;
168 	};
169 
170 	/*
171 	 * Three pointers are available for the IO schedulers, if they need
172 	 * more they have to dynamically allocate it.
173 	 */
174 	struct {
175 		struct io_cq		*icq;
176 		void			*priv[2];
177 	} elv;
178 
179 	struct {
180 		unsigned int		seq;
181 		rq_end_io_fn		*saved_end_io;
182 	} flush;
183 
184 	u64 fifo_time;
185 
186 	/*
187 	 * completion callback.
188 	 */
189 	rq_end_io_fn *end_io;
190 	void *end_io_data;
191 };
192 
req_op(const struct request * req)193 static inline enum req_op req_op(const struct request *req)
194 {
195 	return req->cmd_flags & REQ_OP_MASK;
196 }
197 
blk_rq_is_passthrough(struct request * rq)198 static inline bool blk_rq_is_passthrough(struct request *rq)
199 {
200 	return blk_op_is_passthrough(rq->cmd_flags);
201 }
202 
req_get_ioprio(struct request * req)203 static inline unsigned short req_get_ioprio(struct request *req)
204 {
205 	return req->ioprio;
206 }
207 
208 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
209 
210 #define rq_dma_dir(rq) \
211 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
212 
213 #define rq_list_add(listptr, rq)	do {		\
214 	(rq)->rq_next = *(listptr);			\
215 	*(listptr) = rq;				\
216 } while (0)
217 
218 #define rq_list_add_tail(lastpptr, rq)	do {		\
219 	(rq)->rq_next = NULL;				\
220 	**(lastpptr) = rq;				\
221 	*(lastpptr) = &rq->rq_next;			\
222 } while (0)
223 
224 #define rq_list_pop(listptr)				\
225 ({							\
226 	struct request *__req = NULL;			\
227 	if ((listptr) && *(listptr))	{		\
228 		__req = *(listptr);			\
229 		*(listptr) = __req->rq_next;		\
230 	}						\
231 	__req;						\
232 })
233 
234 #define rq_list_peek(listptr)				\
235 ({							\
236 	struct request *__req = NULL;			\
237 	if ((listptr) && *(listptr))			\
238 		__req = *(listptr);			\
239 	__req;						\
240 })
241 
242 #define rq_list_for_each(listptr, pos)			\
243 	for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
244 
245 #define rq_list_for_each_safe(listptr, pos, nxt)			\
246 	for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);	\
247 		pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
248 
249 #define rq_list_next(rq)	(rq)->rq_next
250 #define rq_list_empty(list)	((list) == (struct request *) NULL)
251 
252 /**
253  * rq_list_move() - move a struct request from one list to another
254  * @src: The source list @rq is currently in
255  * @dst: The destination list that @rq will be appended to
256  * @rq: The request to move
257  * @prev: The request preceding @rq in @src (NULL if @rq is the head)
258  */
rq_list_move(struct request ** src,struct request ** dst,struct request * rq,struct request * prev)259 static inline void rq_list_move(struct request **src, struct request **dst,
260 				struct request *rq, struct request *prev)
261 {
262 	if (prev)
263 		prev->rq_next = rq->rq_next;
264 	else
265 		*src = rq->rq_next;
266 	rq_list_add(dst, rq);
267 }
268 
269 /**
270  * enum blk_eh_timer_return - How the timeout handler should proceed
271  * @BLK_EH_DONE: The block driver completed the command or will complete it at
272  *	a later time.
273  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
274  *	request to complete.
275  */
276 enum blk_eh_timer_return {
277 	BLK_EH_DONE,
278 	BLK_EH_RESET_TIMER,
279 };
280 
281 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
282 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
283 
284 /**
285  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
286  * block device
287  */
288 struct blk_mq_hw_ctx {
289 	struct {
290 		/** @lock: Protects the dispatch list. */
291 		spinlock_t		lock;
292 		/**
293 		 * @dispatch: Used for requests that are ready to be
294 		 * dispatched to the hardware but for some reason (e.g. lack of
295 		 * resources) could not be sent to the hardware. As soon as the
296 		 * driver can send new requests, requests at this list will
297 		 * be sent first for a fairer dispatch.
298 		 */
299 		struct list_head	dispatch;
300 		 /**
301 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
302 		  * queue (active, scheduled to restart, stopped).
303 		  */
304 		unsigned long		state;
305 	} ____cacheline_aligned_in_smp;
306 
307 	/**
308 	 * @run_work: Used for scheduling a hardware queue run at a later time.
309 	 */
310 	struct delayed_work	run_work;
311 	/** @cpumask: Map of available CPUs where this hctx can run. */
312 	cpumask_var_t		cpumask;
313 	/**
314 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
315 	 * selection from @cpumask.
316 	 */
317 	int			next_cpu;
318 	/**
319 	 * @next_cpu_batch: Counter of how many works left in the batch before
320 	 * changing to the next CPU.
321 	 */
322 	int			next_cpu_batch;
323 
324 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
325 	unsigned long		flags;
326 
327 	/**
328 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
329 	 * queue. It's up to the IO scheduler how to use this pointer.
330 	 */
331 	void			*sched_data;
332 	/**
333 	 * @queue: Pointer to the request queue that owns this hardware context.
334 	 */
335 	struct request_queue	*queue;
336 	/** @fq: Queue of requests that need to perform a flush operation. */
337 	struct blk_flush_queue	*fq;
338 
339 	/**
340 	 * @driver_data: Pointer to data owned by the block driver that created
341 	 * this hctx
342 	 */
343 	void			*driver_data;
344 
345 	/**
346 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
347 	 * pending request in that software queue.
348 	 */
349 	struct sbitmap		ctx_map;
350 
351 	/**
352 	 * @dispatch_from: Software queue to be used when no scheduler was
353 	 * selected.
354 	 */
355 	struct blk_mq_ctx	*dispatch_from;
356 	/**
357 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
358 	 * decide if the hw_queue is busy using Exponential Weighted Moving
359 	 * Average algorithm.
360 	 */
361 	unsigned int		dispatch_busy;
362 
363 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
364 	unsigned short		type;
365 	/** @nr_ctx: Number of software queues. */
366 	unsigned short		nr_ctx;
367 	/** @ctxs: Array of software queues. */
368 	struct blk_mq_ctx	**ctxs;
369 
370 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
371 	spinlock_t		dispatch_wait_lock;
372 	/**
373 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
374 	 * available at the moment, to wait for another try in the future.
375 	 */
376 	wait_queue_entry_t	dispatch_wait;
377 
378 	/**
379 	 * @wait_index: Index of next available dispatch_wait queue to insert
380 	 * requests.
381 	 */
382 	atomic_t		wait_index;
383 
384 	/**
385 	 * @tags: Tags owned by the block driver. A tag at this set is only
386 	 * assigned when a request is dispatched from a hardware queue.
387 	 */
388 	struct blk_mq_tags	*tags;
389 	/**
390 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
391 	 * scheduler associated with a request queue, a tag is assigned when
392 	 * that request is allocated. Else, this member is not used.
393 	 */
394 	struct blk_mq_tags	*sched_tags;
395 
396 	/** @numa_node: NUMA node the storage adapter has been connected to. */
397 	unsigned int		numa_node;
398 	/** @queue_num: Index of this hardware queue. */
399 	unsigned int		queue_num;
400 
401 	/**
402 	 * @nr_active: Number of active requests. Only used when a tag set is
403 	 * shared across request queues.
404 	 */
405 	atomic_t		nr_active;
406 
407 	/** @cpuhp_online: List to store request if CPU is going to die */
408 	struct hlist_node	cpuhp_online;
409 	/** @cpuhp_dead: List to store request if some CPU die. */
410 	struct hlist_node	cpuhp_dead;
411 	/** @kobj: Kernel object for sysfs. */
412 	struct kobject		kobj;
413 
414 #ifdef CONFIG_BLK_DEBUG_FS
415 	/**
416 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
417 	 * as cpu<cpu_number>.
418 	 */
419 	struct dentry		*debugfs_dir;
420 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
421 	struct dentry		*sched_debugfs_dir;
422 #endif
423 
424 	/**
425 	 * @hctx_list: if this hctx is not in use, this is an entry in
426 	 * q->unused_hctx_list.
427 	 */
428 	struct list_head	hctx_list;
429 };
430 
431 /**
432  * struct blk_mq_queue_map - Map software queues to hardware queues
433  * @mq_map:       CPU ID to hardware queue index map. This is an array
434  *	with nr_cpu_ids elements. Each element has a value in the range
435  *	[@queue_offset, @queue_offset + @nr_queues).
436  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
437  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
438  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
439  *	set of hardware queues.
440  */
441 struct blk_mq_queue_map {
442 	unsigned int *mq_map;
443 	unsigned int nr_queues;
444 	unsigned int queue_offset;
445 };
446 
447 /**
448  * enum hctx_type - Type of hardware queue
449  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
450  * @HCTX_TYPE_READ:	Just for READ I/O.
451  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
452  * @HCTX_MAX_TYPES:	Number of types of hctx.
453  */
454 enum hctx_type {
455 	HCTX_TYPE_DEFAULT,
456 	HCTX_TYPE_READ,
457 	HCTX_TYPE_POLL,
458 
459 	HCTX_MAX_TYPES,
460 };
461 
462 /**
463  * struct blk_mq_tag_set - tag set that can be shared between request queues
464  * @ops:	   Pointers to functions that implement block driver behavior.
465  * @map:	   One or more ctx -> hctx mappings. One map exists for each
466  *		   hardware queue type (enum hctx_type) that the driver wishes
467  *		   to support. There are no restrictions on maps being of the
468  *		   same size, and it's perfectly legal to share maps between
469  *		   types.
470  * @nr_maps:	   Number of elements in the @map array. A number in the range
471  *		   [1, HCTX_MAX_TYPES].
472  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
473  *		   owns this data structure.
474  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
475  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
476  *		   allocations.
477  * @cmd_size:	   Number of additional bytes to allocate per request. The block
478  *		   driver owns these additional bytes.
479  * @numa_node:	   NUMA node the storage adapter has been connected to.
480  * @timeout:	   Request processing timeout in jiffies.
481  * @flags:	   Zero or more BLK_MQ_F_* flags.
482  * @driver_data:   Pointer to data owned by the block driver that created this
483  *		   tag set.
484  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
485  *		   elements.
486  * @shared_tags:
487  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
488  *		   shared by all @tags.
489  * @tag_list_lock: Serializes tag_list accesses.
490  * @tag_list:	   List of the request queues that use this tag set. See also
491  *		   request_queue.tag_set_list.
492  * @srcu:	   Use as lock when type of the request queue is blocking
493  *		   (BLK_MQ_F_BLOCKING).
494  */
495 struct blk_mq_tag_set {
496 	const struct blk_mq_ops	*ops;
497 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
498 	unsigned int		nr_maps;
499 	unsigned int		nr_hw_queues;
500 	unsigned int		queue_depth;
501 	unsigned int		reserved_tags;
502 	unsigned int		cmd_size;
503 	int			numa_node;
504 	unsigned int		timeout;
505 	unsigned int		flags;
506 	void			*driver_data;
507 
508 	struct blk_mq_tags	**tags;
509 
510 	struct blk_mq_tags	*shared_tags;
511 
512 	struct mutex		tag_list_lock;
513 	struct list_head	tag_list;
514 	struct srcu_struct	*srcu;
515 };
516 
517 /**
518  * struct blk_mq_queue_data - Data about a request inserted in a queue
519  *
520  * @rq:   Request pointer.
521  * @last: If it is the last request in the queue.
522  */
523 struct blk_mq_queue_data {
524 	struct request *rq;
525 	bool last;
526 };
527 
528 typedef bool (busy_tag_iter_fn)(struct request *, void *);
529 
530 /**
531  * struct blk_mq_ops - Callback functions that implements block driver
532  * behaviour.
533  */
534 struct blk_mq_ops {
535 	/**
536 	 * @queue_rq: Queue a new request from block IO.
537 	 */
538 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
539 				 const struct blk_mq_queue_data *);
540 
541 	/**
542 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
543 	 * requests to hardware, it must define this function. In case of errors
544 	 * that make us stop issuing further requests, this hook serves the
545 	 * purpose of kicking the hardware (which the last request otherwise
546 	 * would have done).
547 	 */
548 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
549 
550 	/**
551 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
552 	 * that each request belongs to the same queue. If the driver doesn't
553 	 * empty the @rqlist completely, then the rest will be queued
554 	 * individually by the block layer upon return.
555 	 */
556 	void (*queue_rqs)(struct request **rqlist);
557 
558 	/**
559 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
560 	 * run, it is driver's responsibility to release the
561 	 * reserved budget. Also we have to handle failure case
562 	 * of .get_budget for avoiding I/O deadlock.
563 	 */
564 	int (*get_budget)(struct request_queue *);
565 
566 	/**
567 	 * @put_budget: Release the reserved budget.
568 	 */
569 	void (*put_budget)(struct request_queue *, int);
570 
571 	/**
572 	 * @set_rq_budget_token: store rq's budget token
573 	 */
574 	void (*set_rq_budget_token)(struct request *, int);
575 	/**
576 	 * @get_rq_budget_token: retrieve rq's budget token
577 	 */
578 	int (*get_rq_budget_token)(struct request *);
579 
580 	/**
581 	 * @timeout: Called on request timeout.
582 	 */
583 	enum blk_eh_timer_return (*timeout)(struct request *);
584 
585 	/**
586 	 * @poll: Called to poll for completion of a specific tag.
587 	 */
588 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
589 
590 	/**
591 	 * @complete: Mark the request as complete.
592 	 */
593 	void (*complete)(struct request *);
594 
595 	/**
596 	 * @init_hctx: Called when the block layer side of a hardware queue has
597 	 * been set up, allowing the driver to allocate/init matching
598 	 * structures.
599 	 */
600 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
601 	/**
602 	 * @exit_hctx: Ditto for exit/teardown.
603 	 */
604 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
605 
606 	/**
607 	 * @init_request: Called for every command allocated by the block layer
608 	 * to allow the driver to set up driver specific data.
609 	 *
610 	 * Tag greater than or equal to queue_depth is for setting up
611 	 * flush request.
612 	 */
613 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
614 			    unsigned int, unsigned int);
615 	/**
616 	 * @exit_request: Ditto for exit/teardown.
617 	 */
618 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
619 			     unsigned int);
620 
621 	/**
622 	 * @cleanup_rq: Called before freeing one request which isn't completed
623 	 * yet, and usually for freeing the driver private data.
624 	 */
625 	void (*cleanup_rq)(struct request *);
626 
627 	/**
628 	 * @busy: If set, returns whether or not this queue currently is busy.
629 	 */
630 	bool (*busy)(struct request_queue *);
631 
632 	/**
633 	 * @map_queues: This allows drivers specify their own queue mapping by
634 	 * overriding the setup-time function that builds the mq_map.
635 	 */
636 	void (*map_queues)(struct blk_mq_tag_set *set);
637 
638 #ifdef CONFIG_BLK_DEBUG_FS
639 	/**
640 	 * @show_rq: Used by the debugfs implementation to show driver-specific
641 	 * information about a request.
642 	 */
643 	void (*show_rq)(struct seq_file *m, struct request *rq);
644 #endif
645 };
646 
647 enum {
648 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
649 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
650 	/*
651 	 * Set when this device requires underlying blk-mq device for
652 	 * completing IO:
653 	 */
654 	BLK_MQ_F_STACKING	= 1 << 2,
655 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
656 	BLK_MQ_F_BLOCKING	= 1 << 5,
657 	/* Do not allow an I/O scheduler to be configured. */
658 	BLK_MQ_F_NO_SCHED	= 1 << 6,
659 	/*
660 	 * Select 'none' during queue registration in case of a single hwq
661 	 * or shared hwqs instead of 'mq-deadline'.
662 	 */
663 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
664 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
665 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
666 
667 	BLK_MQ_S_STOPPED	= 0,
668 	BLK_MQ_S_TAG_ACTIVE	= 1,
669 	BLK_MQ_S_SCHED_RESTART	= 2,
670 
671 	/* hw queue is inactive after all its CPUs become offline */
672 	BLK_MQ_S_INACTIVE	= 3,
673 
674 	BLK_MQ_MAX_DEPTH	= 10240,
675 
676 	BLK_MQ_CPU_WORK_BATCH	= 8,
677 };
678 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
679 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
680 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
681 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
682 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
683 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
684 
685 #define BLK_MQ_NO_HCTX_IDX	(-1U)
686 
687 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
688 		struct queue_limits *lim, void *queuedata,
689 		struct lock_class_key *lkclass);
690 #define blk_mq_alloc_disk(set, lim, queuedata)				\
691 ({									\
692 	static struct lock_class_key __key;				\
693 									\
694 	__blk_mq_alloc_disk(set, lim, queuedata, &__key);		\
695 })
696 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
697 		struct lock_class_key *lkclass);
698 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
699 		struct queue_limits *lim, void *queuedata);
700 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
701 		struct request_queue *q);
702 void blk_mq_destroy_queue(struct request_queue *);
703 
704 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
705 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
706 		const struct blk_mq_ops *ops, unsigned int queue_depth,
707 		unsigned int set_flags);
708 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
709 
710 void blk_mq_free_request(struct request *rq);
711 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
712 		unsigned int poll_flags);
713 
714 bool blk_mq_queue_inflight(struct request_queue *q);
715 
716 enum {
717 	/* return when out of requests */
718 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
719 	/* allocate from reserved pool */
720 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
721 	/* set RQF_PM */
722 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
723 };
724 
725 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
726 		blk_mq_req_flags_t flags);
727 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
728 		blk_opf_t opf, blk_mq_req_flags_t flags,
729 		unsigned int hctx_idx);
730 
731 /*
732  * Tag address space map.
733  */
734 struct blk_mq_tags {
735 	unsigned int nr_tags;
736 	unsigned int nr_reserved_tags;
737 	unsigned int active_queues;
738 
739 	struct sbitmap_queue bitmap_tags;
740 	struct sbitmap_queue breserved_tags;
741 
742 	struct request **rqs;
743 	struct request **static_rqs;
744 	struct list_head page_list;
745 
746 	/*
747 	 * used to clear request reference in rqs[] before freeing one
748 	 * request pool
749 	 */
750 	spinlock_t lock;
751 };
752 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)753 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
754 					       unsigned int tag)
755 {
756 	if (tag < tags->nr_tags) {
757 		prefetch(tags->rqs[tag]);
758 		return tags->rqs[tag];
759 	}
760 
761 	return NULL;
762 }
763 
764 enum {
765 	BLK_MQ_UNIQUE_TAG_BITS = 16,
766 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
767 };
768 
769 u32 blk_mq_unique_tag(struct request *rq);
770 
blk_mq_unique_tag_to_hwq(u32 unique_tag)771 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
772 {
773 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
774 }
775 
blk_mq_unique_tag_to_tag(u32 unique_tag)776 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
777 {
778 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
779 }
780 
781 /**
782  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
783  * @rq: target request.
784  */
blk_mq_rq_state(struct request * rq)785 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
786 {
787 	return READ_ONCE(rq->state);
788 }
789 
blk_mq_request_started(struct request * rq)790 static inline int blk_mq_request_started(struct request *rq)
791 {
792 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
793 }
794 
blk_mq_request_completed(struct request * rq)795 static inline int blk_mq_request_completed(struct request *rq)
796 {
797 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
798 }
799 
800 /*
801  *
802  * Set the state to complete when completing a request from inside ->queue_rq.
803  * This is used by drivers that want to ensure special complete actions that
804  * need access to the request are called on failure, e.g. by nvme for
805  * multipathing.
806  */
blk_mq_set_request_complete(struct request * rq)807 static inline void blk_mq_set_request_complete(struct request *rq)
808 {
809 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
810 }
811 
812 /*
813  * Complete the request directly instead of deferring it to softirq or
814  * completing it another CPU. Useful in preemptible instead of an interrupt.
815  */
blk_mq_complete_request_direct(struct request * rq,void (* complete)(struct request * rq))816 static inline void blk_mq_complete_request_direct(struct request *rq,
817 		   void (*complete)(struct request *rq))
818 {
819 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
820 	complete(rq);
821 }
822 
823 void blk_mq_start_request(struct request *rq);
824 void blk_mq_end_request(struct request *rq, blk_status_t error);
825 void __blk_mq_end_request(struct request *rq, blk_status_t error);
826 void blk_mq_end_request_batch(struct io_comp_batch *ib);
827 
828 /*
829  * Only need start/end time stamping if we have iostat or
830  * blk stats enabled, or using an IO scheduler.
831  */
blk_mq_need_time_stamp(struct request * rq)832 static inline bool blk_mq_need_time_stamp(struct request *rq)
833 {
834 	/*
835 	 * passthrough io doesn't use iostat accounting, cgroup stats
836 	 * and io scheduler functionalities.
837 	 */
838 	if (blk_rq_is_passthrough(rq))
839 		return false;
840 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
841 }
842 
blk_mq_is_reserved_rq(struct request * rq)843 static inline bool blk_mq_is_reserved_rq(struct request *rq)
844 {
845 	return rq->rq_flags & RQF_RESV;
846 }
847 
848 /*
849  * Batched completions only work when there is no I/O error and no special
850  * ->end_io handler.
851  */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,int ioerror,void (* complete)(struct io_comp_batch *))852 static inline bool blk_mq_add_to_batch(struct request *req,
853 				       struct io_comp_batch *iob, int ioerror,
854 				       void (*complete)(struct io_comp_batch *))
855 {
856 	/*
857 	 * blk_mq_end_request_batch() can't end request allocated from
858 	 * sched tags
859 	 */
860 	if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
861 			(req->end_io && !blk_rq_is_passthrough(req)))
862 		return false;
863 
864 	if (!iob->complete)
865 		iob->complete = complete;
866 	else if (iob->complete != complete)
867 		return false;
868 	iob->need_ts |= blk_mq_need_time_stamp(req);
869 	rq_list_add(&iob->req_list, req);
870 	return true;
871 }
872 
873 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
874 void blk_mq_kick_requeue_list(struct request_queue *q);
875 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
876 void blk_mq_complete_request(struct request *rq);
877 bool blk_mq_complete_request_remote(struct request *rq);
878 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
879 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
880 void blk_mq_stop_hw_queues(struct request_queue *q);
881 void blk_mq_start_hw_queues(struct request_queue *q);
882 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
883 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
884 void blk_mq_quiesce_queue(struct request_queue *q);
885 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
886 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
887 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
888 void blk_mq_unquiesce_queue(struct request_queue *q);
889 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
890 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
891 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
892 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
893 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
894 		busy_tag_iter_fn *fn, void *priv);
895 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
896 void blk_mq_freeze_queue(struct request_queue *q);
897 void blk_mq_unfreeze_queue(struct request_queue *q);
898 void blk_freeze_queue_start(struct request_queue *q);
899 void blk_mq_freeze_queue_wait(struct request_queue *q);
900 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
901 				     unsigned long timeout);
902 
903 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
904 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
905 
906 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
907 
908 unsigned int blk_mq_rq_cpu(struct request *rq);
909 
910 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)911 static inline bool blk_should_fake_timeout(struct request_queue *q)
912 {
913 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
914 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
915 		return __blk_should_fake_timeout(q);
916 	return false;
917 }
918 
919 /**
920  * blk_mq_rq_from_pdu - cast a PDU to a request
921  * @pdu: the PDU (Protocol Data Unit) to be casted
922  *
923  * Return: request
924  *
925  * Driver command data is immediately after the request. So subtract request
926  * size to get back to the original request.
927  */
blk_mq_rq_from_pdu(void * pdu)928 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
929 {
930 	return pdu - sizeof(struct request);
931 }
932 
933 /**
934  * blk_mq_rq_to_pdu - cast a request to a PDU
935  * @rq: the request to be casted
936  *
937  * Return: pointer to the PDU
938  *
939  * Driver command data is immediately after the request. So add request to get
940  * the PDU.
941  */
blk_mq_rq_to_pdu(struct request * rq)942 static inline void *blk_mq_rq_to_pdu(struct request *rq)
943 {
944 	return rq + 1;
945 }
946 
947 #define queue_for_each_hw_ctx(q, hctx, i)				\
948 	xa_for_each(&(q)->hctx_table, (i), (hctx))
949 
950 #define hctx_for_each_ctx(hctx, ctx, i)					\
951 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
952 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
953 
blk_mq_cleanup_rq(struct request * rq)954 static inline void blk_mq_cleanup_rq(struct request *rq)
955 {
956 	if (rq->q->mq_ops->cleanup_rq)
957 		rq->q->mq_ops->cleanup_rq(rq);
958 }
959 
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)960 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
961 		unsigned int nr_segs)
962 {
963 	rq->nr_phys_segments = nr_segs;
964 	rq->__data_len = bio->bi_iter.bi_size;
965 	rq->bio = rq->biotail = bio;
966 	rq->ioprio = bio_prio(bio);
967 }
968 
969 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
970 		struct lock_class_key *key);
971 
rq_is_sync(struct request * rq)972 static inline bool rq_is_sync(struct request *rq)
973 {
974 	return op_is_sync(rq->cmd_flags);
975 }
976 
977 void blk_rq_init(struct request_queue *q, struct request *rq);
978 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
979 		struct bio_set *bs, gfp_t gfp_mask,
980 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
981 void blk_rq_unprep_clone(struct request *rq);
982 blk_status_t blk_insert_cloned_request(struct request *rq);
983 
984 struct rq_map_data {
985 	struct page **pages;
986 	unsigned long offset;
987 	unsigned short page_order;
988 	unsigned short nr_entries;
989 	bool null_mapped;
990 	bool from_user;
991 };
992 
993 int blk_rq_map_user(struct request_queue *, struct request *,
994 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
995 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
996 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
997 int blk_rq_map_user_iov(struct request_queue *, struct request *,
998 		struct rq_map_data *, const struct iov_iter *, gfp_t);
999 int blk_rq_unmap_user(struct bio *);
1000 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1001 		unsigned int, gfp_t);
1002 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1003 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1004 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1005 bool blk_rq_is_poll(struct request *rq);
1006 
1007 struct req_iterator {
1008 	struct bvec_iter iter;
1009 	struct bio *bio;
1010 };
1011 
1012 #define __rq_for_each_bio(_bio, rq)	\
1013 	if ((rq->bio))			\
1014 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1015 
1016 #define rq_for_each_segment(bvl, _rq, _iter)			\
1017 	__rq_for_each_bio(_iter.bio, _rq)			\
1018 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1019 
1020 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1021 	__rq_for_each_bio(_iter.bio, _rq)			\
1022 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1023 
1024 #define rq_iter_last(bvec, _iter)				\
1025 		(_iter.bio->bi_next == NULL &&			\
1026 		 bio_iter_last(bvec, _iter.iter))
1027 
1028 /*
1029  * blk_rq_pos()			: the current sector
1030  * blk_rq_bytes()		: bytes left in the entire request
1031  * blk_rq_cur_bytes()		: bytes left in the current segment
1032  * blk_rq_sectors()		: sectors left in the entire request
1033  * blk_rq_cur_sectors()		: sectors left in the current segment
1034  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1035  */
blk_rq_pos(const struct request * rq)1036 static inline sector_t blk_rq_pos(const struct request *rq)
1037 {
1038 	return rq->__sector;
1039 }
1040 
blk_rq_bytes(const struct request * rq)1041 static inline unsigned int blk_rq_bytes(const struct request *rq)
1042 {
1043 	return rq->__data_len;
1044 }
1045 
blk_rq_cur_bytes(const struct request * rq)1046 static inline int blk_rq_cur_bytes(const struct request *rq)
1047 {
1048 	if (!rq->bio)
1049 		return 0;
1050 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1051 		return rq->bio->bi_iter.bi_size;
1052 	return bio_iovec(rq->bio).bv_len;
1053 }
1054 
blk_rq_sectors(const struct request * rq)1055 static inline unsigned int blk_rq_sectors(const struct request *rq)
1056 {
1057 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1058 }
1059 
blk_rq_cur_sectors(const struct request * rq)1060 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1061 {
1062 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1063 }
1064 
blk_rq_stats_sectors(const struct request * rq)1065 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1066 {
1067 	return rq->stats_sectors;
1068 }
1069 
1070 /*
1071  * Some commands like WRITE SAME have a payload or data transfer size which
1072  * is different from the size of the request.  Any driver that supports such
1073  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1074  * calculate the data transfer size.
1075  */
blk_rq_payload_bytes(struct request * rq)1076 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1077 {
1078 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1079 		return rq->special_vec.bv_len;
1080 	return blk_rq_bytes(rq);
1081 }
1082 
1083 /*
1084  * Return the first full biovec in the request.  The caller needs to check that
1085  * there are any bvecs before calling this helper.
1086  */
req_bvec(struct request * rq)1087 static inline struct bio_vec req_bvec(struct request *rq)
1088 {
1089 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1090 		return rq->special_vec;
1091 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1092 }
1093 
blk_rq_count_bios(struct request * rq)1094 static inline unsigned int blk_rq_count_bios(struct request *rq)
1095 {
1096 	unsigned int nr_bios = 0;
1097 	struct bio *bio;
1098 
1099 	__rq_for_each_bio(bio, rq)
1100 		nr_bios++;
1101 
1102 	return nr_bios;
1103 }
1104 
1105 void blk_steal_bios(struct bio_list *list, struct request *rq);
1106 
1107 /*
1108  * Request completion related functions.
1109  *
1110  * blk_update_request() completes given number of bytes and updates
1111  * the request without completing it.
1112  */
1113 bool blk_update_request(struct request *rq, blk_status_t error,
1114 			       unsigned int nr_bytes);
1115 void blk_abort_request(struct request *);
1116 
1117 /*
1118  * Number of physical segments as sent to the device.
1119  *
1120  * Normally this is the number of discontiguous data segments sent by the
1121  * submitter.  But for data-less command like discard we might have no
1122  * actual data segments submitted, but the driver might have to add it's
1123  * own special payload.  In that case we still return 1 here so that this
1124  * special payload will be mapped.
1125  */
blk_rq_nr_phys_segments(struct request * rq)1126 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1127 {
1128 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1129 		return 1;
1130 	return rq->nr_phys_segments;
1131 }
1132 
1133 /*
1134  * Number of discard segments (or ranges) the driver needs to fill in.
1135  * Each discard bio merged into a request is counted as one segment.
1136  */
blk_rq_nr_discard_segments(struct request * rq)1137 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1138 {
1139 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1140 }
1141 
1142 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1143 		struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1144 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1145 		struct scatterlist *sglist)
1146 {
1147 	struct scatterlist *last_sg = NULL;
1148 
1149 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1150 }
1151 void blk_dump_rq_flags(struct request *, char *);
1152 
1153 #endif /* BLK_MQ_H */
1154