1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
sqlite3ExprAffinity(Expr * pExpr)33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op = pExpr->op;
35   if( op==TK_SELECT ){
36     assert( pExpr->flags&EP_xIsSelect );
37     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38   }
39 #ifndef SQLITE_OMIT_CAST
40   if( op==TK_CAST ){
41     assert( !ExprHasProperty(pExpr, EP_IntValue) );
42     return sqlite3AffinityType(pExpr->u.zToken);
43   }
44 #endif
45   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46    && pExpr->pTab!=0
47   ){
48     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49     ** a TK_COLUMN but was previously evaluated and cached in a register */
50     int j = pExpr->iColumn;
51     if( j<0 ) return SQLITE_AFF_INTEGER;
52     assert( pExpr->pTab && j<pExpr->pTab->nCol );
53     return pExpr->pTab->aCol[j].affinity;
54   }
55   return pExpr->affinity;
56 }
57 
58 /*
59 ** Set the explicit collating sequence for an expression to the
60 ** collating sequence supplied in the second argument.
61 */
sqlite3ExprSetColl(Expr * pExpr,CollSeq * pColl)62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
63   if( pExpr && pColl ){
64     pExpr->pColl = pColl;
65     pExpr->flags |= EP_ExpCollate;
66   }
67   return pExpr;
68 }
69 
70 /*
71 ** Set the collating sequence for expression pExpr to be the collating
72 ** sequence named by pToken.   Return a pointer to the revised expression.
73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
74 ** flag.  An explicit collating sequence will override implicit
75 ** collating sequences.
76 */
sqlite3ExprSetCollByToken(Parse * pParse,Expr * pExpr,Token * pCollName)77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
78   char *zColl = 0;            /* Dequoted name of collation sequence */
79   CollSeq *pColl;
80   sqlite3 *db = pParse->db;
81   zColl = sqlite3NameFromToken(db, pCollName);
82   pColl = sqlite3LocateCollSeq(pParse, zColl);
83   sqlite3ExprSetColl(pExpr, pColl);
84   sqlite3DbFree(db, zColl);
85   return pExpr;
86 }
87 
88 /*
89 ** Return the default collation sequence for the expression pExpr. If
90 ** there is no default collation type, return 0.
91 */
sqlite3ExprCollSeq(Parse * pParse,Expr * pExpr)92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
93   CollSeq *pColl = 0;
94   Expr *p = pExpr;
95   while( p ){
96     int op;
97     pColl = p->pColl;
98     if( pColl ) break;
99     op = p->op;
100     if( p->pTab!=0 && (
101         op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
102     )){
103       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104       ** a TK_COLUMN but was previously evaluated and cached in a register */
105       const char *zColl;
106       int j = p->iColumn;
107       if( j>=0 ){
108         sqlite3 *db = pParse->db;
109         zColl = p->pTab->aCol[j].zColl;
110         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111         pExpr->pColl = pColl;
112       }
113       break;
114     }
115     if( op!=TK_CAST && op!=TK_UPLUS ){
116       break;
117     }
118     p = p->pLeft;
119   }
120   if( sqlite3CheckCollSeq(pParse, pColl) ){
121     pColl = 0;
122   }
123   return pColl;
124 }
125 
126 /*
127 ** pExpr is an operand of a comparison operator.  aff2 is the
128 ** type affinity of the other operand.  This routine returns the
129 ** type affinity that should be used for the comparison operator.
130 */
sqlite3CompareAffinity(Expr * pExpr,char aff2)131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
132   char aff1 = sqlite3ExprAffinity(pExpr);
133   if( aff1 && aff2 ){
134     /* Both sides of the comparison are columns. If one has numeric
135     ** affinity, use that. Otherwise use no affinity.
136     */
137     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
138       return SQLITE_AFF_NUMERIC;
139     }else{
140       return SQLITE_AFF_NONE;
141     }
142   }else if( !aff1 && !aff2 ){
143     /* Neither side of the comparison is a column.  Compare the
144     ** results directly.
145     */
146     return SQLITE_AFF_NONE;
147   }else{
148     /* One side is a column, the other is not. Use the columns affinity. */
149     assert( aff1==0 || aff2==0 );
150     return (aff1 + aff2);
151   }
152 }
153 
154 /*
155 ** pExpr is a comparison operator.  Return the type affinity that should
156 ** be applied to both operands prior to doing the comparison.
157 */
comparisonAffinity(Expr * pExpr)158 static char comparisonAffinity(Expr *pExpr){
159   char aff;
160   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
161           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
162           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
163   assert( pExpr->pLeft );
164   aff = sqlite3ExprAffinity(pExpr->pLeft);
165   if( pExpr->pRight ){
166     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
167   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
168     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
169   }else if( !aff ){
170     aff = SQLITE_AFF_NONE;
171   }
172   return aff;
173 }
174 
175 /*
176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
177 ** idx_affinity is the affinity of an indexed column. Return true
178 ** if the index with affinity idx_affinity may be used to implement
179 ** the comparison in pExpr.
180 */
sqlite3IndexAffinityOk(Expr * pExpr,char idx_affinity)181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
182   char aff = comparisonAffinity(pExpr);
183   switch( aff ){
184     case SQLITE_AFF_NONE:
185       return 1;
186     case SQLITE_AFF_TEXT:
187       return idx_affinity==SQLITE_AFF_TEXT;
188     default:
189       return sqlite3IsNumericAffinity(idx_affinity);
190   }
191 }
192 
193 /*
194 ** Return the P5 value that should be used for a binary comparison
195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
196 */
binaryCompareP5(Expr * pExpr1,Expr * pExpr2,int jumpIfNull)197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
198   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
199   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
200   return aff;
201 }
202 
203 /*
204 ** Return a pointer to the collation sequence that should be used by
205 ** a binary comparison operator comparing pLeft and pRight.
206 **
207 ** If the left hand expression has a collating sequence type, then it is
208 ** used. Otherwise the collation sequence for the right hand expression
209 ** is used, or the default (BINARY) if neither expression has a collating
210 ** type.
211 **
212 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
213 ** it is not considered.
214 */
sqlite3BinaryCompareCollSeq(Parse * pParse,Expr * pLeft,Expr * pRight)215 CollSeq *sqlite3BinaryCompareCollSeq(
216   Parse *pParse,
217   Expr *pLeft,
218   Expr *pRight
219 ){
220   CollSeq *pColl;
221   assert( pLeft );
222   if( pLeft->flags & EP_ExpCollate ){
223     assert( pLeft->pColl );
224     pColl = pLeft->pColl;
225   }else if( pRight && pRight->flags & EP_ExpCollate ){
226     assert( pRight->pColl );
227     pColl = pRight->pColl;
228   }else{
229     pColl = sqlite3ExprCollSeq(pParse, pLeft);
230     if( !pColl ){
231       pColl = sqlite3ExprCollSeq(pParse, pRight);
232     }
233   }
234   return pColl;
235 }
236 
237 /*
238 ** Generate code for a comparison operator.
239 */
codeCompare(Parse * pParse,Expr * pLeft,Expr * pRight,int opcode,int in1,int in2,int dest,int jumpIfNull)240 static int codeCompare(
241   Parse *pParse,    /* The parsing (and code generating) context */
242   Expr *pLeft,      /* The left operand */
243   Expr *pRight,     /* The right operand */
244   int opcode,       /* The comparison opcode */
245   int in1, int in2, /* Register holding operands */
246   int dest,         /* Jump here if true.  */
247   int jumpIfNull    /* If true, jump if either operand is NULL */
248 ){
249   int p5;
250   int addr;
251   CollSeq *p4;
252 
253   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
254   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
255   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
256                            (void*)p4, P4_COLLSEQ);
257   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
258   return addr;
259 }
260 
261 #if SQLITE_MAX_EXPR_DEPTH>0
262 /*
263 ** Check that argument nHeight is less than or equal to the maximum
264 ** expression depth allowed. If it is not, leave an error message in
265 ** pParse.
266 */
sqlite3ExprCheckHeight(Parse * pParse,int nHeight)267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
268   int rc = SQLITE_OK;
269   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
270   if( nHeight>mxHeight ){
271     sqlite3ErrorMsg(pParse,
272        "Expression tree is too large (maximum depth %d)", mxHeight
273     );
274     rc = SQLITE_ERROR;
275   }
276   return rc;
277 }
278 
279 /* The following three functions, heightOfExpr(), heightOfExprList()
280 ** and heightOfSelect(), are used to determine the maximum height
281 ** of any expression tree referenced by the structure passed as the
282 ** first argument.
283 **
284 ** If this maximum height is greater than the current value pointed
285 ** to by pnHeight, the second parameter, then set *pnHeight to that
286 ** value.
287 */
heightOfExpr(Expr * p,int * pnHeight)288 static void heightOfExpr(Expr *p, int *pnHeight){
289   if( p ){
290     if( p->nHeight>*pnHeight ){
291       *pnHeight = p->nHeight;
292     }
293   }
294 }
heightOfExprList(ExprList * p,int * pnHeight)295 static void heightOfExprList(ExprList *p, int *pnHeight){
296   if( p ){
297     int i;
298     for(i=0; i<p->nExpr; i++){
299       heightOfExpr(p->a[i].pExpr, pnHeight);
300     }
301   }
302 }
heightOfSelect(Select * p,int * pnHeight)303 static void heightOfSelect(Select *p, int *pnHeight){
304   if( p ){
305     heightOfExpr(p->pWhere, pnHeight);
306     heightOfExpr(p->pHaving, pnHeight);
307     heightOfExpr(p->pLimit, pnHeight);
308     heightOfExpr(p->pOffset, pnHeight);
309     heightOfExprList(p->pEList, pnHeight);
310     heightOfExprList(p->pGroupBy, pnHeight);
311     heightOfExprList(p->pOrderBy, pnHeight);
312     heightOfSelect(p->pPrior, pnHeight);
313   }
314 }
315 
316 /*
317 ** Set the Expr.nHeight variable in the structure passed as an
318 ** argument. An expression with no children, Expr.pList or
319 ** Expr.pSelect member has a height of 1. Any other expression
320 ** has a height equal to the maximum height of any other
321 ** referenced Expr plus one.
322 */
exprSetHeight(Expr * p)323 static void exprSetHeight(Expr *p){
324   int nHeight = 0;
325   heightOfExpr(p->pLeft, &nHeight);
326   heightOfExpr(p->pRight, &nHeight);
327   if( ExprHasProperty(p, EP_xIsSelect) ){
328     heightOfSelect(p->x.pSelect, &nHeight);
329   }else{
330     heightOfExprList(p->x.pList, &nHeight);
331   }
332   p->nHeight = nHeight + 1;
333 }
334 
335 /*
336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
337 ** the height is greater than the maximum allowed expression depth,
338 ** leave an error in pParse.
339 */
sqlite3ExprSetHeight(Parse * pParse,Expr * p)340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
341   exprSetHeight(p);
342   sqlite3ExprCheckHeight(pParse, p->nHeight);
343 }
344 
345 /*
346 ** Return the maximum height of any expression tree referenced
347 ** by the select statement passed as an argument.
348 */
sqlite3SelectExprHeight(Select * p)349 int sqlite3SelectExprHeight(Select *p){
350   int nHeight = 0;
351   heightOfSelect(p, &nHeight);
352   return nHeight;
353 }
354 #else
355   #define exprSetHeight(y)
356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
357 
358 /*
359 ** This routine is the core allocator for Expr nodes.
360 **
361 ** Construct a new expression node and return a pointer to it.  Memory
362 ** for this node and for the pToken argument is a single allocation
363 ** obtained from sqlite3DbMalloc().  The calling function
364 ** is responsible for making sure the node eventually gets freed.
365 **
366 ** If dequote is true, then the token (if it exists) is dequoted.
367 ** If dequote is false, no dequoting is performance.  The deQuote
368 ** parameter is ignored if pToken is NULL or if the token does not
369 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
370 ** then the EP_DblQuoted flag is set on the expression node.
371 **
372 ** Special case:  If op==TK_INTEGER and pToken points to a string that
373 ** can be translated into a 32-bit integer, then the token is not
374 ** stored in u.zToken.  Instead, the integer values is written
375 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
376 ** is allocated to hold the integer text and the dequote flag is ignored.
377 */
sqlite3ExprAlloc(sqlite3 * db,int op,const Token * pToken,int dequote)378 Expr *sqlite3ExprAlloc(
379   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
380   int op,                 /* Expression opcode */
381   const Token *pToken,    /* Token argument.  Might be NULL */
382   int dequote             /* True to dequote */
383 ){
384   Expr *pNew;
385   int nExtra = 0;
386   int iValue = 0;
387 
388   if( pToken ){
389     if( op!=TK_INTEGER || pToken->z==0
390           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
391       nExtra = pToken->n+1;
392       assert( iValue>=0 );
393     }
394   }
395   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
396   if( pNew ){
397     pNew->op = (u8)op;
398     pNew->iAgg = -1;
399     if( pToken ){
400       if( nExtra==0 ){
401         pNew->flags |= EP_IntValue;
402         pNew->u.iValue = iValue;
403       }else{
404         int c;
405         pNew->u.zToken = (char*)&pNew[1];
406         memcpy(pNew->u.zToken, pToken->z, pToken->n);
407         pNew->u.zToken[pToken->n] = 0;
408         if( dequote && nExtra>=3
409              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
410           sqlite3Dequote(pNew->u.zToken);
411           if( c=='"' ) pNew->flags |= EP_DblQuoted;
412         }
413       }
414     }
415 #if SQLITE_MAX_EXPR_DEPTH>0
416     pNew->nHeight = 1;
417 #endif
418   }
419   return pNew;
420 }
421 
422 /*
423 ** Allocate a new expression node from a zero-terminated token that has
424 ** already been dequoted.
425 */
sqlite3Expr(sqlite3 * db,int op,const char * zToken)426 Expr *sqlite3Expr(
427   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
428   int op,                 /* Expression opcode */
429   const char *zToken      /* Token argument.  Might be NULL */
430 ){
431   Token x;
432   x.z = zToken;
433   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
434   return sqlite3ExprAlloc(db, op, &x, 0);
435 }
436 
437 /*
438 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
439 **
440 ** If pRoot==NULL that means that a memory allocation error has occurred.
441 ** In that case, delete the subtrees pLeft and pRight.
442 */
sqlite3ExprAttachSubtrees(sqlite3 * db,Expr * pRoot,Expr * pLeft,Expr * pRight)443 void sqlite3ExprAttachSubtrees(
444   sqlite3 *db,
445   Expr *pRoot,
446   Expr *pLeft,
447   Expr *pRight
448 ){
449   if( pRoot==0 ){
450     assert( db->mallocFailed );
451     sqlite3ExprDelete(db, pLeft);
452     sqlite3ExprDelete(db, pRight);
453   }else{
454     if( pRight ){
455       pRoot->pRight = pRight;
456       if( pRight->flags & EP_ExpCollate ){
457         pRoot->flags |= EP_ExpCollate;
458         pRoot->pColl = pRight->pColl;
459       }
460     }
461     if( pLeft ){
462       pRoot->pLeft = pLeft;
463       if( pLeft->flags & EP_ExpCollate ){
464         pRoot->flags |= EP_ExpCollate;
465         pRoot->pColl = pLeft->pColl;
466       }
467     }
468     exprSetHeight(pRoot);
469   }
470 }
471 
472 /*
473 ** Allocate a Expr node which joins as many as two subtrees.
474 **
475 ** One or both of the subtrees can be NULL.  Return a pointer to the new
476 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
477 ** free the subtrees and return NULL.
478 */
sqlite3PExpr(Parse * pParse,int op,Expr * pLeft,Expr * pRight,const Token * pToken)479 Expr *sqlite3PExpr(
480   Parse *pParse,          /* Parsing context */
481   int op,                 /* Expression opcode */
482   Expr *pLeft,            /* Left operand */
483   Expr *pRight,           /* Right operand */
484   const Token *pToken     /* Argument token */
485 ){
486   Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
487   sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
488   if( p ) {
489     sqlite3ExprCheckHeight(pParse, p->nHeight);
490   }
491   return p;
492 }
493 
494 /*
495 ** Join two expressions using an AND operator.  If either expression is
496 ** NULL, then just return the other expression.
497 */
sqlite3ExprAnd(sqlite3 * db,Expr * pLeft,Expr * pRight)498 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
499   if( pLeft==0 ){
500     return pRight;
501   }else if( pRight==0 ){
502     return pLeft;
503   }else{
504     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
505     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
506     return pNew;
507   }
508 }
509 
510 /*
511 ** Construct a new expression node for a function with multiple
512 ** arguments.
513 */
sqlite3ExprFunction(Parse * pParse,ExprList * pList,Token * pToken)514 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
515   Expr *pNew;
516   sqlite3 *db = pParse->db;
517   assert( pToken );
518   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
519   if( pNew==0 ){
520     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
521     return 0;
522   }
523   pNew->x.pList = pList;
524   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
525   sqlite3ExprSetHeight(pParse, pNew);
526   return pNew;
527 }
528 
529 /*
530 ** Assign a variable number to an expression that encodes a wildcard
531 ** in the original SQL statement.
532 **
533 ** Wildcards consisting of a single "?" are assigned the next sequential
534 ** variable number.
535 **
536 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
537 ** sure "nnn" is not too be to avoid a denial of service attack when
538 ** the SQL statement comes from an external source.
539 **
540 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
541 ** as the previous instance of the same wildcard.  Or if this is the first
542 ** instance of the wildcard, the next sequenial variable number is
543 ** assigned.
544 */
sqlite3ExprAssignVarNumber(Parse * pParse,Expr * pExpr)545 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
546   sqlite3 *db = pParse->db;
547   const char *z;
548 
549   if( pExpr==0 ) return;
550   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
551   z = pExpr->u.zToken;
552   assert( z!=0 );
553   assert( z[0]!=0 );
554   if( z[1]==0 ){
555     /* Wildcard of the form "?".  Assign the next variable number */
556     assert( z[0]=='?' );
557     pExpr->iColumn = (ynVar)(++pParse->nVar);
558   }else if( z[0]=='?' ){
559     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
560     ** use it as the variable number */
561     i64 i;
562     int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
563     pExpr->iColumn = (ynVar)i;
564     testcase( i==0 );
565     testcase( i==1 );
566     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
567     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
568     if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
569       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
570           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
571     }
572     if( i>pParse->nVar ){
573       pParse->nVar = (int)i;
574     }
575   }else{
576     /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
577     ** number as the prior appearance of the same name, or if the name
578     ** has never appeared before, reuse the same variable number
579     */
580     int i;
581     u32 n;
582     n = sqlite3Strlen30(z);
583     for(i=0; i<pParse->nVarExpr; i++){
584       Expr *pE = pParse->apVarExpr[i];
585       assert( pE!=0 );
586       if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
587         pExpr->iColumn = pE->iColumn;
588         break;
589       }
590     }
591     if( i>=pParse->nVarExpr ){
592       pExpr->iColumn = (ynVar)(++pParse->nVar);
593       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
594         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
595         pParse->apVarExpr =
596             sqlite3DbReallocOrFree(
597               db,
598               pParse->apVarExpr,
599               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
600             );
601       }
602       if( !db->mallocFailed ){
603         assert( pParse->apVarExpr!=0 );
604         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
605       }
606     }
607   }
608   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
609     sqlite3ErrorMsg(pParse, "too many SQL variables");
610   }
611 }
612 
613 /*
614 ** Recursively delete an expression tree.
615 */
sqlite3ExprDelete(sqlite3 * db,Expr * p)616 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
617   if( p==0 ) return;
618   /* Sanity check: Assert that the IntValue is non-negative if it exists */
619   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
620   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
621     sqlite3ExprDelete(db, p->pLeft);
622     sqlite3ExprDelete(db, p->pRight);
623     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
624       sqlite3DbFree(db, p->u.zToken);
625     }
626     if( ExprHasProperty(p, EP_xIsSelect) ){
627       sqlite3SelectDelete(db, p->x.pSelect);
628     }else{
629       sqlite3ExprListDelete(db, p->x.pList);
630     }
631   }
632   if( !ExprHasProperty(p, EP_Static) ){
633     sqlite3DbFree(db, p);
634   }
635 }
636 
637 /*
638 ** Return the number of bytes allocated for the expression structure
639 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
640 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
641 */
exprStructSize(Expr * p)642 static int exprStructSize(Expr *p){
643   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
644   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
645   return EXPR_FULLSIZE;
646 }
647 
648 /*
649 ** The dupedExpr*Size() routines each return the number of bytes required
650 ** to store a copy of an expression or expression tree.  They differ in
651 ** how much of the tree is measured.
652 **
653 **     dupedExprStructSize()     Size of only the Expr structure
654 **     dupedExprNodeSize()       Size of Expr + space for token
655 **     dupedExprSize()           Expr + token + subtree components
656 **
657 ***************************************************************************
658 **
659 ** The dupedExprStructSize() function returns two values OR-ed together:
660 ** (1) the space required for a copy of the Expr structure only and
661 ** (2) the EP_xxx flags that indicate what the structure size should be.
662 ** The return values is always one of:
663 **
664 **      EXPR_FULLSIZE
665 **      EXPR_REDUCEDSIZE   | EP_Reduced
666 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
667 **
668 ** The size of the structure can be found by masking the return value
669 ** of this routine with 0xfff.  The flags can be found by masking the
670 ** return value with EP_Reduced|EP_TokenOnly.
671 **
672 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
673 ** (unreduced) Expr objects as they or originally constructed by the parser.
674 ** During expression analysis, extra information is computed and moved into
675 ** later parts of teh Expr object and that extra information might get chopped
676 ** off if the expression is reduced.  Note also that it does not work to
677 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
678 ** to reduce a pristine expression tree from the parser.  The implementation
679 ** of dupedExprStructSize() contain multiple assert() statements that attempt
680 ** to enforce this constraint.
681 */
dupedExprStructSize(Expr * p,int flags)682 static int dupedExprStructSize(Expr *p, int flags){
683   int nSize;
684   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
685   if( 0==(flags&EXPRDUP_REDUCE) ){
686     nSize = EXPR_FULLSIZE;
687   }else{
688     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
689     assert( !ExprHasProperty(p, EP_FromJoin) );
690     assert( (p->flags2 & EP2_MallocedToken)==0 );
691     assert( (p->flags2 & EP2_Irreducible)==0 );
692     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
693       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
694     }else{
695       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
696     }
697   }
698   return nSize;
699 }
700 
701 /*
702 ** This function returns the space in bytes required to store the copy
703 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
704 ** string is defined.)
705 */
dupedExprNodeSize(Expr * p,int flags)706 static int dupedExprNodeSize(Expr *p, int flags){
707   int nByte = dupedExprStructSize(p, flags) & 0xfff;
708   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
709     nByte += sqlite3Strlen30(p->u.zToken)+1;
710   }
711   return ROUND8(nByte);
712 }
713 
714 /*
715 ** Return the number of bytes required to create a duplicate of the
716 ** expression passed as the first argument. The second argument is a
717 ** mask containing EXPRDUP_XXX flags.
718 **
719 ** The value returned includes space to create a copy of the Expr struct
720 ** itself and the buffer referred to by Expr.u.zToken, if any.
721 **
722 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
723 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
724 ** and Expr.pRight variables (but not for any structures pointed to or
725 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
726 */
dupedExprSize(Expr * p,int flags)727 static int dupedExprSize(Expr *p, int flags){
728   int nByte = 0;
729   if( p ){
730     nByte = dupedExprNodeSize(p, flags);
731     if( flags&EXPRDUP_REDUCE ){
732       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
733     }
734   }
735   return nByte;
736 }
737 
738 /*
739 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
740 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
741 ** to store the copy of expression p, the copies of p->u.zToken
742 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
743 ** if any. Before returning, *pzBuffer is set to the first byte passed the
744 ** portion of the buffer copied into by this function.
745 */
exprDup(sqlite3 * db,Expr * p,int flags,u8 ** pzBuffer)746 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
747   Expr *pNew = 0;                      /* Value to return */
748   if( p ){
749     const int isReduced = (flags&EXPRDUP_REDUCE);
750     u8 *zAlloc;
751     u32 staticFlag = 0;
752 
753     assert( pzBuffer==0 || isReduced );
754 
755     /* Figure out where to write the new Expr structure. */
756     if( pzBuffer ){
757       zAlloc = *pzBuffer;
758       staticFlag = EP_Static;
759     }else{
760       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
761     }
762     pNew = (Expr *)zAlloc;
763 
764     if( pNew ){
765       /* Set nNewSize to the size allocated for the structure pointed to
766       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
767       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
768       ** by the copy of the p->u.zToken string (if any).
769       */
770       const unsigned nStructSize = dupedExprStructSize(p, flags);
771       const int nNewSize = nStructSize & 0xfff;
772       int nToken;
773       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
774         nToken = sqlite3Strlen30(p->u.zToken) + 1;
775       }else{
776         nToken = 0;
777       }
778       if( isReduced ){
779         assert( ExprHasProperty(p, EP_Reduced)==0 );
780         memcpy(zAlloc, p, nNewSize);
781       }else{
782         int nSize = exprStructSize(p);
783         memcpy(zAlloc, p, nSize);
784         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
785       }
786 
787       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
788       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
789       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
790       pNew->flags |= staticFlag;
791 
792       /* Copy the p->u.zToken string, if any. */
793       if( nToken ){
794         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
795         memcpy(zToken, p->u.zToken, nToken);
796       }
797 
798       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
799         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
800         if( ExprHasProperty(p, EP_xIsSelect) ){
801           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
802         }else{
803           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
804         }
805       }
806 
807       /* Fill in pNew->pLeft and pNew->pRight. */
808       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
809         zAlloc += dupedExprNodeSize(p, flags);
810         if( ExprHasProperty(pNew, EP_Reduced) ){
811           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
812           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
813         }
814         if( pzBuffer ){
815           *pzBuffer = zAlloc;
816         }
817       }else{
818         pNew->flags2 = 0;
819         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
820           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
821           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
822         }
823       }
824 
825     }
826   }
827   return pNew;
828 }
829 
830 /*
831 ** The following group of routines make deep copies of expressions,
832 ** expression lists, ID lists, and select statements.  The copies can
833 ** be deleted (by being passed to their respective ...Delete() routines)
834 ** without effecting the originals.
835 **
836 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
837 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
838 ** by subsequent calls to sqlite*ListAppend() routines.
839 **
840 ** Any tables that the SrcList might point to are not duplicated.
841 **
842 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
843 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
844 ** truncated version of the usual Expr structure that will be stored as
845 ** part of the in-memory representation of the database schema.
846 */
sqlite3ExprDup(sqlite3 * db,Expr * p,int flags)847 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
848   return exprDup(db, p, flags, 0);
849 }
sqlite3ExprListDup(sqlite3 * db,ExprList * p,int flags)850 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
851   ExprList *pNew;
852   struct ExprList_item *pItem, *pOldItem;
853   int i;
854   if( p==0 ) return 0;
855   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
856   if( pNew==0 ) return 0;
857   pNew->iECursor = 0;
858   pNew->nExpr = pNew->nAlloc = p->nExpr;
859   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
860   if( pItem==0 ){
861     sqlite3DbFree(db, pNew);
862     return 0;
863   }
864   pOldItem = p->a;
865   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
866     Expr *pOldExpr = pOldItem->pExpr;
867     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
868     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
869     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
870     pItem->sortOrder = pOldItem->sortOrder;
871     pItem->done = 0;
872     pItem->iCol = pOldItem->iCol;
873     pItem->iAlias = pOldItem->iAlias;
874   }
875   return pNew;
876 }
877 
878 /*
879 ** If cursors, triggers, views and subqueries are all omitted from
880 ** the build, then none of the following routines, except for
881 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
882 ** called with a NULL argument.
883 */
884 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
885  || !defined(SQLITE_OMIT_SUBQUERY)
sqlite3SrcListDup(sqlite3 * db,SrcList * p,int flags)886 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
887   SrcList *pNew;
888   int i;
889   int nByte;
890   if( p==0 ) return 0;
891   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
892   pNew = sqlite3DbMallocRaw(db, nByte );
893   if( pNew==0 ) return 0;
894   pNew->nSrc = pNew->nAlloc = p->nSrc;
895   for(i=0; i<p->nSrc; i++){
896     struct SrcList_item *pNewItem = &pNew->a[i];
897     struct SrcList_item *pOldItem = &p->a[i];
898     Table *pTab;
899     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
900     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
901     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
902     pNewItem->jointype = pOldItem->jointype;
903     pNewItem->iCursor = pOldItem->iCursor;
904     pNewItem->isPopulated = pOldItem->isPopulated;
905     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
906     pNewItem->notIndexed = pOldItem->notIndexed;
907     pNewItem->pIndex = pOldItem->pIndex;
908     pTab = pNewItem->pTab = pOldItem->pTab;
909     if( pTab ){
910       pTab->nRef++;
911     }
912     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
913     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
914     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
915     pNewItem->colUsed = pOldItem->colUsed;
916   }
917   return pNew;
918 }
sqlite3IdListDup(sqlite3 * db,IdList * p)919 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
920   IdList *pNew;
921   int i;
922   if( p==0 ) return 0;
923   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
924   if( pNew==0 ) return 0;
925   pNew->nId = pNew->nAlloc = p->nId;
926   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
927   if( pNew->a==0 ){
928     sqlite3DbFree(db, pNew);
929     return 0;
930   }
931   for(i=0; i<p->nId; i++){
932     struct IdList_item *pNewItem = &pNew->a[i];
933     struct IdList_item *pOldItem = &p->a[i];
934     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
935     pNewItem->idx = pOldItem->idx;
936   }
937   return pNew;
938 }
sqlite3SelectDup(sqlite3 * db,Select * p,int flags)939 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
940   Select *pNew;
941   if( p==0 ) return 0;
942   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
943   if( pNew==0 ) return 0;
944   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
945   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
946   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
947   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
948   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
949   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
950   pNew->op = p->op;
951   pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
952   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
953   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
954   pNew->iLimit = 0;
955   pNew->iOffset = 0;
956   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
957   pNew->pRightmost = 0;
958   pNew->addrOpenEphm[0] = -1;
959   pNew->addrOpenEphm[1] = -1;
960   pNew->addrOpenEphm[2] = -1;
961   return pNew;
962 }
963 #else
sqlite3SelectDup(sqlite3 * db,Select * p,int flags)964 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
965   assert( p==0 );
966   return 0;
967 }
968 #endif
969 
970 
971 /*
972 ** Add a new element to the end of an expression list.  If pList is
973 ** initially NULL, then create a new expression list.
974 **
975 ** If a memory allocation error occurs, the entire list is freed and
976 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
977 ** that the new entry was successfully appended.
978 */
sqlite3ExprListAppend(Parse * pParse,ExprList * pList,Expr * pExpr)979 ExprList *sqlite3ExprListAppend(
980   Parse *pParse,          /* Parsing context */
981   ExprList *pList,        /* List to which to append. Might be NULL */
982   Expr *pExpr             /* Expression to be appended. Might be NULL */
983 ){
984   sqlite3 *db = pParse->db;
985   if( pList==0 ){
986     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
987     if( pList==0 ){
988       goto no_mem;
989     }
990     assert( pList->nAlloc==0 );
991   }
992   if( pList->nAlloc<=pList->nExpr ){
993     struct ExprList_item *a;
994     int n = pList->nAlloc*2 + 4;
995     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
996     if( a==0 ){
997       goto no_mem;
998     }
999     pList->a = a;
1000     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1001   }
1002   assert( pList->a!=0 );
1003   if( 1 ){
1004     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1005     memset(pItem, 0, sizeof(*pItem));
1006     pItem->pExpr = pExpr;
1007   }
1008   return pList;
1009 
1010 no_mem:
1011   /* Avoid leaking memory if malloc has failed. */
1012   sqlite3ExprDelete(db, pExpr);
1013   sqlite3ExprListDelete(db, pList);
1014   return 0;
1015 }
1016 
1017 /*
1018 ** Set the ExprList.a[].zName element of the most recently added item
1019 ** on the expression list.
1020 **
1021 ** pList might be NULL following an OOM error.  But pName should never be
1022 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1023 ** is set.
1024 */
sqlite3ExprListSetName(Parse * pParse,ExprList * pList,Token * pName,int dequote)1025 void sqlite3ExprListSetName(
1026   Parse *pParse,          /* Parsing context */
1027   ExprList *pList,        /* List to which to add the span. */
1028   Token *pName,           /* Name to be added */
1029   int dequote             /* True to cause the name to be dequoted */
1030 ){
1031   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1032   if( pList ){
1033     struct ExprList_item *pItem;
1034     assert( pList->nExpr>0 );
1035     pItem = &pList->a[pList->nExpr-1];
1036     assert( pItem->zName==0 );
1037     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1038     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1039   }
1040 }
1041 
1042 /*
1043 ** Set the ExprList.a[].zSpan element of the most recently added item
1044 ** on the expression list.
1045 **
1046 ** pList might be NULL following an OOM error.  But pSpan should never be
1047 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1048 ** is set.
1049 */
sqlite3ExprListSetSpan(Parse * pParse,ExprList * pList,ExprSpan * pSpan)1050 void sqlite3ExprListSetSpan(
1051   Parse *pParse,          /* Parsing context */
1052   ExprList *pList,        /* List to which to add the span. */
1053   ExprSpan *pSpan         /* The span to be added */
1054 ){
1055   sqlite3 *db = pParse->db;
1056   assert( pList!=0 || db->mallocFailed!=0 );
1057   if( pList ){
1058     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1059     assert( pList->nExpr>0 );
1060     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1061     sqlite3DbFree(db, pItem->zSpan);
1062     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1063                                     (int)(pSpan->zEnd - pSpan->zStart));
1064   }
1065 }
1066 
1067 /*
1068 ** If the expression list pEList contains more than iLimit elements,
1069 ** leave an error message in pParse.
1070 */
sqlite3ExprListCheckLength(Parse * pParse,ExprList * pEList,const char * zObject)1071 void sqlite3ExprListCheckLength(
1072   Parse *pParse,
1073   ExprList *pEList,
1074   const char *zObject
1075 ){
1076   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1077   testcase( pEList && pEList->nExpr==mx );
1078   testcase( pEList && pEList->nExpr==mx+1 );
1079   if( pEList && pEList->nExpr>mx ){
1080     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1081   }
1082 }
1083 
1084 /*
1085 ** Delete an entire expression list.
1086 */
sqlite3ExprListDelete(sqlite3 * db,ExprList * pList)1087 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1088   int i;
1089   struct ExprList_item *pItem;
1090   if( pList==0 ) return;
1091   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1092   assert( pList->nExpr<=pList->nAlloc );
1093   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1094     sqlite3ExprDelete(db, pItem->pExpr);
1095     sqlite3DbFree(db, pItem->zName);
1096     sqlite3DbFree(db, pItem->zSpan);
1097   }
1098   sqlite3DbFree(db, pList->a);
1099   sqlite3DbFree(db, pList);
1100 }
1101 
1102 /*
1103 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1104 ** to an integer.  These routines are checking an expression to see
1105 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1106 ** not constant.
1107 **
1108 ** These callback routines are used to implement the following:
1109 **
1110 **     sqlite3ExprIsConstant()
1111 **     sqlite3ExprIsConstantNotJoin()
1112 **     sqlite3ExprIsConstantOrFunction()
1113 **
1114 */
exprNodeIsConstant(Walker * pWalker,Expr * pExpr)1115 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1116 
1117   /* If pWalker->u.i is 3 then any term of the expression that comes from
1118   ** the ON or USING clauses of a join disqualifies the expression
1119   ** from being considered constant. */
1120   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1121     pWalker->u.i = 0;
1122     return WRC_Abort;
1123   }
1124 
1125   switch( pExpr->op ){
1126     /* Consider functions to be constant if all their arguments are constant
1127     ** and pWalker->u.i==2 */
1128     case TK_FUNCTION:
1129       if( pWalker->u.i==2 ) return 0;
1130       /* Fall through */
1131     case TK_ID:
1132     case TK_COLUMN:
1133     case TK_AGG_FUNCTION:
1134     case TK_AGG_COLUMN:
1135       testcase( pExpr->op==TK_ID );
1136       testcase( pExpr->op==TK_COLUMN );
1137       testcase( pExpr->op==TK_AGG_FUNCTION );
1138       testcase( pExpr->op==TK_AGG_COLUMN );
1139       pWalker->u.i = 0;
1140       return WRC_Abort;
1141     default:
1142       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1143       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1144       return WRC_Continue;
1145   }
1146 }
selectNodeIsConstant(Walker * pWalker,Select * NotUsed)1147 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1148   UNUSED_PARAMETER(NotUsed);
1149   pWalker->u.i = 0;
1150   return WRC_Abort;
1151 }
exprIsConst(Expr * p,int initFlag)1152 static int exprIsConst(Expr *p, int initFlag){
1153   Walker w;
1154   w.u.i = initFlag;
1155   w.xExprCallback = exprNodeIsConstant;
1156   w.xSelectCallback = selectNodeIsConstant;
1157   sqlite3WalkExpr(&w, p);
1158   return w.u.i;
1159 }
1160 
1161 /*
1162 ** Walk an expression tree.  Return 1 if the expression is constant
1163 ** and 0 if it involves variables or function calls.
1164 **
1165 ** For the purposes of this function, a double-quoted string (ex: "abc")
1166 ** is considered a variable but a single-quoted string (ex: 'abc') is
1167 ** a constant.
1168 */
sqlite3ExprIsConstant(Expr * p)1169 int sqlite3ExprIsConstant(Expr *p){
1170   return exprIsConst(p, 1);
1171 }
1172 
1173 /*
1174 ** Walk an expression tree.  Return 1 if the expression is constant
1175 ** that does no originate from the ON or USING clauses of a join.
1176 ** Return 0 if it involves variables or function calls or terms from
1177 ** an ON or USING clause.
1178 */
sqlite3ExprIsConstantNotJoin(Expr * p)1179 int sqlite3ExprIsConstantNotJoin(Expr *p){
1180   return exprIsConst(p, 3);
1181 }
1182 
1183 /*
1184 ** Walk an expression tree.  Return 1 if the expression is constant
1185 ** or a function call with constant arguments.  Return and 0 if there
1186 ** are any variables.
1187 **
1188 ** For the purposes of this function, a double-quoted string (ex: "abc")
1189 ** is considered a variable but a single-quoted string (ex: 'abc') is
1190 ** a constant.
1191 */
sqlite3ExprIsConstantOrFunction(Expr * p)1192 int sqlite3ExprIsConstantOrFunction(Expr *p){
1193   return exprIsConst(p, 2);
1194 }
1195 
1196 /*
1197 ** If the expression p codes a constant integer that is small enough
1198 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1199 ** in *pValue.  If the expression is not an integer or if it is too big
1200 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1201 */
sqlite3ExprIsInteger(Expr * p,int * pValue)1202 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1203   int rc = 0;
1204 
1205   /* If an expression is an integer literal that fits in a signed 32-bit
1206   ** integer, then the EP_IntValue flag will have already been set */
1207   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1208            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1209 
1210   if( p->flags & EP_IntValue ){
1211     *pValue = p->u.iValue;
1212     return 1;
1213   }
1214   switch( p->op ){
1215     case TK_UPLUS: {
1216       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1217       break;
1218     }
1219     case TK_UMINUS: {
1220       int v;
1221       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1222         *pValue = -v;
1223         rc = 1;
1224       }
1225       break;
1226     }
1227     default: break;
1228   }
1229   return rc;
1230 }
1231 
1232 /*
1233 ** Return FALSE if there is no chance that the expression can be NULL.
1234 **
1235 ** If the expression might be NULL or if the expression is too complex
1236 ** to tell return TRUE.
1237 **
1238 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1239 ** when we know that a value cannot be NULL.  Hence, a false positive
1240 ** (returning TRUE when in fact the expression can never be NULL) might
1241 ** be a small performance hit but is otherwise harmless.  On the other
1242 ** hand, a false negative (returning FALSE when the result could be NULL)
1243 ** will likely result in an incorrect answer.  So when in doubt, return
1244 ** TRUE.
1245 */
sqlite3ExprCanBeNull(const Expr * p)1246 int sqlite3ExprCanBeNull(const Expr *p){
1247   u8 op;
1248   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1249   op = p->op;
1250   if( op==TK_REGISTER ) op = p->op2;
1251   switch( op ){
1252     case TK_INTEGER:
1253     case TK_STRING:
1254     case TK_FLOAT:
1255     case TK_BLOB:
1256       return 0;
1257     default:
1258       return 1;
1259   }
1260 }
1261 
1262 /*
1263 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1264 ** to location iDest if the value in iReg is NULL.  The value in iReg
1265 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1266 ** determine that it can never generate a NULL, then the OP_IsNull operation
1267 ** can be omitted.
1268 */
sqlite3ExprCodeIsNullJump(Vdbe * v,const Expr * pExpr,int iReg,int iDest)1269 void sqlite3ExprCodeIsNullJump(
1270   Vdbe *v,            /* The VDBE under construction */
1271   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1272   int iReg,           /* Test the value in this register for NULL */
1273   int iDest           /* Jump here if the value is null */
1274 ){
1275   if( sqlite3ExprCanBeNull(pExpr) ){
1276     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1277   }
1278 }
1279 
1280 /*
1281 ** Return TRUE if the given expression is a constant which would be
1282 ** unchanged by OP_Affinity with the affinity given in the second
1283 ** argument.
1284 **
1285 ** This routine is used to determine if the OP_Affinity operation
1286 ** can be omitted.  When in doubt return FALSE.  A false negative
1287 ** is harmless.  A false positive, however, can result in the wrong
1288 ** answer.
1289 */
sqlite3ExprNeedsNoAffinityChange(const Expr * p,char aff)1290 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1291   u8 op;
1292   if( aff==SQLITE_AFF_NONE ) return 1;
1293   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1294   op = p->op;
1295   if( op==TK_REGISTER ) op = p->op2;
1296   switch( op ){
1297     case TK_INTEGER: {
1298       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1299     }
1300     case TK_FLOAT: {
1301       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1302     }
1303     case TK_STRING: {
1304       return aff==SQLITE_AFF_TEXT;
1305     }
1306     case TK_BLOB: {
1307       return 1;
1308     }
1309     case TK_COLUMN: {
1310       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1311       return p->iColumn<0
1312           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1313     }
1314     default: {
1315       return 0;
1316     }
1317   }
1318 }
1319 
1320 /*
1321 ** Return TRUE if the given string is a row-id column name.
1322 */
sqlite3IsRowid(const char * z)1323 int sqlite3IsRowid(const char *z){
1324   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1325   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1326   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1327   return 0;
1328 }
1329 
1330 /*
1331 ** Return true if we are able to the IN operator optimization on a
1332 ** query of the form
1333 **
1334 **       x IN (SELECT ...)
1335 **
1336 ** Where the SELECT... clause is as specified by the parameter to this
1337 ** routine.
1338 **
1339 ** The Select object passed in has already been preprocessed and no
1340 ** errors have been found.
1341 */
1342 #ifndef SQLITE_OMIT_SUBQUERY
isCandidateForInOpt(Select * p)1343 static int isCandidateForInOpt(Select *p){
1344   SrcList *pSrc;
1345   ExprList *pEList;
1346   Table *pTab;
1347   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1348   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1349   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1350     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1351     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1352     return 0; /* No DISTINCT keyword and no aggregate functions */
1353   }
1354   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1355   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1356   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1357   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1358   pSrc = p->pSrc;
1359   assert( pSrc!=0 );
1360   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1361   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1362   pTab = pSrc->a[0].pTab;
1363   if( NEVER(pTab==0) ) return 0;
1364   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1365   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1366   pEList = p->pEList;
1367   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1368   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1369   return 1;
1370 }
1371 #endif /* SQLITE_OMIT_SUBQUERY */
1372 
1373 /*
1374 ** This function is used by the implementation of the IN (...) operator.
1375 ** It's job is to find or create a b-tree structure that may be used
1376 ** either to test for membership of the (...) set or to iterate through
1377 ** its members, skipping duplicates.
1378 **
1379 ** The index of the cursor opened on the b-tree (database table, database index
1380 ** or ephermal table) is stored in pX->iTable before this function returns.
1381 ** The returned value of this function indicates the b-tree type, as follows:
1382 **
1383 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1384 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1385 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1386 **                    populated epheremal table.
1387 **
1388 ** An existing b-tree may only be used if the SELECT is of the simple
1389 ** form:
1390 **
1391 **     SELECT <column> FROM <table>
1392 **
1393 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1394 ** through the set members, skipping any duplicates. In this case an
1395 ** epheremal table must be used unless the selected <column> is guaranteed
1396 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1397 ** has a UNIQUE constraint or UNIQUE index.
1398 **
1399 ** If the prNotFound parameter is not 0, then the b-tree will be used
1400 ** for fast set membership tests. In this case an epheremal table must
1401 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1402 ** be found with <column> as its left-most column.
1403 **
1404 ** When the b-tree is being used for membership tests, the calling function
1405 ** needs to know whether or not the structure contains an SQL NULL
1406 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1407 ** If there is any chance that the (...) might contain a NULL value at
1408 ** runtime, then a register is allocated and the register number written
1409 ** to *prNotFound. If there is no chance that the (...) contains a
1410 ** NULL value, then *prNotFound is left unchanged.
1411 **
1412 ** If a register is allocated and its location stored in *prNotFound, then
1413 ** its initial value is NULL.  If the (...) does not remain constant
1414 ** for the duration of the query (i.e. the SELECT within the (...)
1415 ** is a correlated subquery) then the value of the allocated register is
1416 ** reset to NULL each time the subquery is rerun. This allows the
1417 ** caller to use vdbe code equivalent to the following:
1418 **
1419 **   if( register==NULL ){
1420 **     has_null = <test if data structure contains null>
1421 **     register = 1
1422 **   }
1423 **
1424 ** in order to avoid running the <test if data structure contains null>
1425 ** test more often than is necessary.
1426 */
1427 #ifndef SQLITE_OMIT_SUBQUERY
sqlite3FindInIndex(Parse * pParse,Expr * pX,int * prNotFound)1428 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1429   Select *p;                            /* SELECT to the right of IN operator */
1430   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1431   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1432   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1433 
1434   assert( pX->op==TK_IN );
1435 
1436   /* Check to see if an existing table or index can be used to
1437   ** satisfy the query.  This is preferable to generating a new
1438   ** ephemeral table.
1439   */
1440   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1441   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1442     sqlite3 *db = pParse->db;              /* Database connection */
1443     Expr *pExpr = p->pEList->a[0].pExpr;   /* Expression <column> */
1444     int iCol = pExpr->iColumn;             /* Index of column <column> */
1445     Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1446     Table *pTab = p->pSrc->a[0].pTab;      /* Table <table>. */
1447     int iDb;                               /* Database idx for pTab */
1448 
1449     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1450     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1451     sqlite3CodeVerifySchema(pParse, iDb);
1452     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1453 
1454     /* This function is only called from two places. In both cases the vdbe
1455     ** has already been allocated. So assume sqlite3GetVdbe() is always
1456     ** successful here.
1457     */
1458     assert(v);
1459     if( iCol<0 ){
1460       int iMem = ++pParse->nMem;
1461       int iAddr;
1462 
1463       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1464       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1465 
1466       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1467       eType = IN_INDEX_ROWID;
1468 
1469       sqlite3VdbeJumpHere(v, iAddr);
1470     }else{
1471       Index *pIdx;                         /* Iterator variable */
1472 
1473       /* The collation sequence used by the comparison. If an index is to
1474       ** be used in place of a temp-table, it must be ordered according
1475       ** to this collation sequence.  */
1476       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1477 
1478       /* Check that the affinity that will be used to perform the
1479       ** comparison is the same as the affinity of the column. If
1480       ** it is not, it is not possible to use any index.
1481       */
1482       char aff = comparisonAffinity(pX);
1483       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1484 
1485       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1486         if( (pIdx->aiColumn[0]==iCol)
1487          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1488          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1489         ){
1490           int iMem = ++pParse->nMem;
1491           int iAddr;
1492           char *pKey;
1493 
1494           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1495           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1496           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1497 
1498           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1499                                pKey,P4_KEYINFO_HANDOFF);
1500           VdbeComment((v, "%s", pIdx->zName));
1501           eType = IN_INDEX_INDEX;
1502 
1503           sqlite3VdbeJumpHere(v, iAddr);
1504           if( prNotFound && !pTab->aCol[iCol].notNull ){
1505             *prNotFound = ++pParse->nMem;
1506           }
1507         }
1508       }
1509     }
1510   }
1511 
1512   if( eType==0 ){
1513     /* Could not found an existing table or index to use as the RHS b-tree.
1514     ** We will have to generate an ephemeral table to do the job.
1515     */
1516     double savedNQueryLoop = pParse->nQueryLoop;
1517     int rMayHaveNull = 0;
1518     eType = IN_INDEX_EPH;
1519     if( prNotFound ){
1520       *prNotFound = rMayHaveNull = ++pParse->nMem;
1521     }else{
1522       testcase( pParse->nQueryLoop>(double)1 );
1523       pParse->nQueryLoop = (double)1;
1524       if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1525         eType = IN_INDEX_ROWID;
1526       }
1527     }
1528     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1529     pParse->nQueryLoop = savedNQueryLoop;
1530   }else{
1531     pX->iTable = iTab;
1532   }
1533   return eType;
1534 }
1535 #endif
1536 
1537 /*
1538 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1539 ** or IN operators.  Examples:
1540 **
1541 **     (SELECT a FROM b)          -- subquery
1542 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1543 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1544 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1545 **
1546 ** The pExpr parameter describes the expression that contains the IN
1547 ** operator or subquery.
1548 **
1549 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1550 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1551 ** to some integer key column of a table B-Tree. In this case, use an
1552 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1553 ** (slower) variable length keys B-Tree.
1554 **
1555 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1556 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1557 ** Furthermore, the IN is in a WHERE clause and that we really want
1558 ** to iterate over the RHS of the IN operator in order to quickly locate
1559 ** all corresponding LHS elements.  All this routine does is initialize
1560 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1561 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1562 **
1563 ** If rMayHaveNull is zero, that means that the subquery is being used
1564 ** for membership testing only.  There is no need to initialize any
1565 ** registers to indicate the presense or absence of NULLs on the RHS.
1566 **
1567 ** For a SELECT or EXISTS operator, return the register that holds the
1568 ** result.  For IN operators or if an error occurs, the return value is 0.
1569 */
1570 #ifndef SQLITE_OMIT_SUBQUERY
sqlite3CodeSubselect(Parse * pParse,Expr * pExpr,int rMayHaveNull,int isRowid)1571 int sqlite3CodeSubselect(
1572   Parse *pParse,          /* Parsing context */
1573   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1574   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1575   int isRowid             /* If true, LHS of IN operator is a rowid */
1576 ){
1577   int testAddr = 0;                       /* One-time test address */
1578   int rReg = 0;                           /* Register storing resulting */
1579   Vdbe *v = sqlite3GetVdbe(pParse);
1580   if( NEVER(v==0) ) return 0;
1581   sqlite3ExprCachePush(pParse);
1582 
1583   /* This code must be run in its entirety every time it is encountered
1584   ** if any of the following is true:
1585   **
1586   **    *  The right-hand side is a correlated subquery
1587   **    *  The right-hand side is an expression list containing variables
1588   **    *  We are inside a trigger
1589   **
1590   ** If all of the above are false, then we can run this code just once
1591   ** save the results, and reuse the same result on subsequent invocations.
1592   */
1593   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
1594     int mem = ++pParse->nMem;
1595     sqlite3VdbeAddOp1(v, OP_If, mem);
1596     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1597     assert( testAddr>0 || pParse->db->mallocFailed );
1598   }
1599 
1600 #ifndef SQLITE_OMIT_EXPLAIN
1601   if( pParse->explain==2 ){
1602     char *zMsg = sqlite3MPrintf(
1603         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
1604         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1605     );
1606     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1607   }
1608 #endif
1609 
1610   switch( pExpr->op ){
1611     case TK_IN: {
1612       char affinity;              /* Affinity of the LHS of the IN */
1613       KeyInfo keyInfo;            /* Keyinfo for the generated table */
1614       int addr;                   /* Address of OP_OpenEphemeral instruction */
1615       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1616 
1617       if( rMayHaveNull ){
1618         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1619       }
1620 
1621       affinity = sqlite3ExprAffinity(pLeft);
1622 
1623       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1624       ** expression it is handled the same way.  An ephemeral table is
1625       ** filled with single-field index keys representing the results
1626       ** from the SELECT or the <exprlist>.
1627       **
1628       ** If the 'x' expression is a column value, or the SELECT...
1629       ** statement returns a column value, then the affinity of that
1630       ** column is used to build the index keys. If both 'x' and the
1631       ** SELECT... statement are columns, then numeric affinity is used
1632       ** if either column has NUMERIC or INTEGER affinity. If neither
1633       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1634       ** is used.
1635       */
1636       pExpr->iTable = pParse->nTab++;
1637       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1638       if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1639       memset(&keyInfo, 0, sizeof(keyInfo));
1640       keyInfo.nField = 1;
1641 
1642       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1643         /* Case 1:     expr IN (SELECT ...)
1644         **
1645         ** Generate code to write the results of the select into the temporary
1646         ** table allocated and opened above.
1647         */
1648         SelectDest dest;
1649         ExprList *pEList;
1650 
1651         assert( !isRowid );
1652         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1653         dest.affinity = (u8)affinity;
1654         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1655         pExpr->x.pSelect->iLimit = 0;
1656         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1657           return 0;
1658         }
1659         pEList = pExpr->x.pSelect->pEList;
1660         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1661           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1662               pEList->a[0].pExpr);
1663         }
1664       }else if( ALWAYS(pExpr->x.pList!=0) ){
1665         /* Case 2:     expr IN (exprlist)
1666         **
1667         ** For each expression, build an index key from the evaluation and
1668         ** store it in the temporary table. If <expr> is a column, then use
1669         ** that columns affinity when building index keys. If <expr> is not
1670         ** a column, use numeric affinity.
1671         */
1672         int i;
1673         ExprList *pList = pExpr->x.pList;
1674         struct ExprList_item *pItem;
1675         int r1, r2, r3;
1676 
1677         if( !affinity ){
1678           affinity = SQLITE_AFF_NONE;
1679         }
1680         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1681 
1682         /* Loop through each expression in <exprlist>. */
1683         r1 = sqlite3GetTempReg(pParse);
1684         r2 = sqlite3GetTempReg(pParse);
1685         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1686         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1687           Expr *pE2 = pItem->pExpr;
1688           int iValToIns;
1689 
1690           /* If the expression is not constant then we will need to
1691           ** disable the test that was generated above that makes sure
1692           ** this code only executes once.  Because for a non-constant
1693           ** expression we need to rerun this code each time.
1694           */
1695           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1696             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1697             testAddr = 0;
1698           }
1699 
1700           /* Evaluate the expression and insert it into the temp table */
1701           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1702             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1703           }else{
1704             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1705             if( isRowid ){
1706               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1707                                 sqlite3VdbeCurrentAddr(v)+2);
1708               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1709             }else{
1710               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1711               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1712               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1713             }
1714           }
1715         }
1716         sqlite3ReleaseTempReg(pParse, r1);
1717         sqlite3ReleaseTempReg(pParse, r2);
1718       }
1719       if( !isRowid ){
1720         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1721       }
1722       break;
1723     }
1724 
1725     case TK_EXISTS:
1726     case TK_SELECT:
1727     default: {
1728       /* If this has to be a scalar SELECT.  Generate code to put the
1729       ** value of this select in a memory cell and record the number
1730       ** of the memory cell in iColumn.  If this is an EXISTS, write
1731       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1732       ** and record that memory cell in iColumn.
1733       */
1734       Select *pSel;                         /* SELECT statement to encode */
1735       SelectDest dest;                      /* How to deal with SELECt result */
1736 
1737       testcase( pExpr->op==TK_EXISTS );
1738       testcase( pExpr->op==TK_SELECT );
1739       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1740 
1741       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1742       pSel = pExpr->x.pSelect;
1743       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1744       if( pExpr->op==TK_SELECT ){
1745         dest.eDest = SRT_Mem;
1746         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1747         VdbeComment((v, "Init subquery result"));
1748       }else{
1749         dest.eDest = SRT_Exists;
1750         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1751         VdbeComment((v, "Init EXISTS result"));
1752       }
1753       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1754       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1755                                   &sqlite3IntTokens[1]);
1756       pSel->iLimit = 0;
1757       if( sqlite3Select(pParse, pSel, &dest) ){
1758         return 0;
1759       }
1760       rReg = dest.iParm;
1761       ExprSetIrreducible(pExpr);
1762       break;
1763     }
1764   }
1765 
1766   if( testAddr ){
1767     sqlite3VdbeJumpHere(v, testAddr-1);
1768   }
1769   sqlite3ExprCachePop(pParse, 1);
1770 
1771   return rReg;
1772 }
1773 #endif /* SQLITE_OMIT_SUBQUERY */
1774 
1775 #ifndef SQLITE_OMIT_SUBQUERY
1776 /*
1777 ** Generate code for an IN expression.
1778 **
1779 **      x IN (SELECT ...)
1780 **      x IN (value, value, ...)
1781 **
1782 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1783 ** is an array of zero or more values.  The expression is true if the LHS is
1784 ** contained within the RHS.  The value of the expression is unknown (NULL)
1785 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1786 ** RHS contains one or more NULL values.
1787 **
1788 ** This routine generates code will jump to destIfFalse if the LHS is not
1789 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1790 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1791 ** within the RHS then fall through.
1792 */
sqlite3ExprCodeIN(Parse * pParse,Expr * pExpr,int destIfFalse,int destIfNull)1793 static void sqlite3ExprCodeIN(
1794   Parse *pParse,        /* Parsing and code generating context */
1795   Expr *pExpr,          /* The IN expression */
1796   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1797   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1798 ){
1799   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1800   char affinity;        /* Comparison affinity to use */
1801   int eType;            /* Type of the RHS */
1802   int r1;               /* Temporary use register */
1803   Vdbe *v;              /* Statement under construction */
1804 
1805   /* Compute the RHS.   After this step, the table with cursor
1806   ** pExpr->iTable will contains the values that make up the RHS.
1807   */
1808   v = pParse->pVdbe;
1809   assert( v!=0 );       /* OOM detected prior to this routine */
1810   VdbeNoopComment((v, "begin IN expr"));
1811   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1812 
1813   /* Figure out the affinity to use to create a key from the results
1814   ** of the expression. affinityStr stores a static string suitable for
1815   ** P4 of OP_MakeRecord.
1816   */
1817   affinity = comparisonAffinity(pExpr);
1818 
1819   /* Code the LHS, the <expr> from "<expr> IN (...)".
1820   */
1821   sqlite3ExprCachePush(pParse);
1822   r1 = sqlite3GetTempReg(pParse);
1823   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1824 
1825   /* If the LHS is NULL, then the result is either false or NULL depending
1826   ** on whether the RHS is empty or not, respectively.
1827   */
1828   if( destIfNull==destIfFalse ){
1829     /* Shortcut for the common case where the false and NULL outcomes are
1830     ** the same. */
1831     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1832   }else{
1833     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1834     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1835     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1836     sqlite3VdbeJumpHere(v, addr1);
1837   }
1838 
1839   if( eType==IN_INDEX_ROWID ){
1840     /* In this case, the RHS is the ROWID of table b-tree
1841     */
1842     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1843     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1844   }else{
1845     /* In this case, the RHS is an index b-tree.
1846     */
1847     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1848 
1849     /* If the set membership test fails, then the result of the
1850     ** "x IN (...)" expression must be either 0 or NULL. If the set
1851     ** contains no NULL values, then the result is 0. If the set
1852     ** contains one or more NULL values, then the result of the
1853     ** expression is also NULL.
1854     */
1855     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1856       /* This branch runs if it is known at compile time that the RHS
1857       ** cannot contain NULL values. This happens as the result
1858       ** of a "NOT NULL" constraint in the database schema.
1859       **
1860       ** Also run this branch if NULL is equivalent to FALSE
1861       ** for this particular IN operator.
1862       */
1863       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1864 
1865     }else{
1866       /* In this branch, the RHS of the IN might contain a NULL and
1867       ** the presence of a NULL on the RHS makes a difference in the
1868       ** outcome.
1869       */
1870       int j1, j2, j3;
1871 
1872       /* First check to see if the LHS is contained in the RHS.  If so,
1873       ** then the presence of NULLs in the RHS does not matter, so jump
1874       ** over all of the code that follows.
1875       */
1876       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1877 
1878       /* Here we begin generating code that runs if the LHS is not
1879       ** contained within the RHS.  Generate additional code that
1880       ** tests the RHS for NULLs.  If the RHS contains a NULL then
1881       ** jump to destIfNull.  If there are no NULLs in the RHS then
1882       ** jump to destIfFalse.
1883       */
1884       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1885       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1886       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1887       sqlite3VdbeJumpHere(v, j3);
1888       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1889       sqlite3VdbeJumpHere(v, j2);
1890 
1891       /* Jump to the appropriate target depending on whether or not
1892       ** the RHS contains a NULL
1893       */
1894       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1895       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1896 
1897       /* The OP_Found at the top of this branch jumps here when true,
1898       ** causing the overall IN expression evaluation to fall through.
1899       */
1900       sqlite3VdbeJumpHere(v, j1);
1901     }
1902   }
1903   sqlite3ReleaseTempReg(pParse, r1);
1904   sqlite3ExprCachePop(pParse, 1);
1905   VdbeComment((v, "end IN expr"));
1906 }
1907 #endif /* SQLITE_OMIT_SUBQUERY */
1908 
1909 /*
1910 ** Duplicate an 8-byte value
1911 */
dup8bytes(Vdbe * v,const char * in)1912 static char *dup8bytes(Vdbe *v, const char *in){
1913   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1914   if( out ){
1915     memcpy(out, in, 8);
1916   }
1917   return out;
1918 }
1919 
1920 #ifndef SQLITE_OMIT_FLOATING_POINT
1921 /*
1922 ** Generate an instruction that will put the floating point
1923 ** value described by z[0..n-1] into register iMem.
1924 **
1925 ** The z[] string will probably not be zero-terminated.  But the
1926 ** z[n] character is guaranteed to be something that does not look
1927 ** like the continuation of the number.
1928 */
codeReal(Vdbe * v,const char * z,int negateFlag,int iMem)1929 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1930   if( ALWAYS(z!=0) ){
1931     double value;
1932     char *zV;
1933     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1934     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1935     if( negateFlag ) value = -value;
1936     zV = dup8bytes(v, (char*)&value);
1937     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1938   }
1939 }
1940 #endif
1941 
1942 
1943 /*
1944 ** Generate an instruction that will put the integer describe by
1945 ** text z[0..n-1] into register iMem.
1946 **
1947 ** Expr.u.zToken is always UTF8 and zero-terminated.
1948 */
codeInteger(Parse * pParse,Expr * pExpr,int negFlag,int iMem)1949 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
1950   Vdbe *v = pParse->pVdbe;
1951   if( pExpr->flags & EP_IntValue ){
1952     int i = pExpr->u.iValue;
1953     assert( i>=0 );
1954     if( negFlag ) i = -i;
1955     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1956   }else{
1957     int c;
1958     i64 value;
1959     const char *z = pExpr->u.zToken;
1960     assert( z!=0 );
1961     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1962     if( c==0 || (c==2 && negFlag) ){
1963       char *zV;
1964       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
1965       zV = dup8bytes(v, (char*)&value);
1966       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1967     }else{
1968 #ifdef SQLITE_OMIT_FLOATING_POINT
1969       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1970 #else
1971       codeReal(v, z, negFlag, iMem);
1972 #endif
1973     }
1974   }
1975 }
1976 
1977 /*
1978 ** Clear a cache entry.
1979 */
cacheEntryClear(Parse * pParse,struct yColCache * p)1980 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1981   if( p->tempReg ){
1982     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1983       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1984     }
1985     p->tempReg = 0;
1986   }
1987 }
1988 
1989 
1990 /*
1991 ** Record in the column cache that a particular column from a
1992 ** particular table is stored in a particular register.
1993 */
sqlite3ExprCacheStore(Parse * pParse,int iTab,int iCol,int iReg)1994 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1995   int i;
1996   int minLru;
1997   int idxLru;
1998   struct yColCache *p;
1999 
2000   assert( iReg>0 );  /* Register numbers are always positive */
2001   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2002 
2003   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2004   ** for testing only - to verify that SQLite always gets the same answer
2005   ** with and without the column cache.
2006   */
2007   if( pParse->db->flags & SQLITE_ColumnCache ) return;
2008 
2009   /* First replace any existing entry.
2010   **
2011   ** Actually, the way the column cache is currently used, we are guaranteed
2012   ** that the object will never already be in cache.  Verify this guarantee.
2013   */
2014 #ifndef NDEBUG
2015   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2016 #if 0 /* This code wold remove the entry from the cache if it existed */
2017     if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
2018       cacheEntryClear(pParse, p);
2019       p->iLevel = pParse->iCacheLevel;
2020       p->iReg = iReg;
2021       p->lru = pParse->iCacheCnt++;
2022       return;
2023     }
2024 #endif
2025     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2026   }
2027 #endif
2028 
2029   /* Find an empty slot and replace it */
2030   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2031     if( p->iReg==0 ){
2032       p->iLevel = pParse->iCacheLevel;
2033       p->iTable = iTab;
2034       p->iColumn = iCol;
2035       p->iReg = iReg;
2036       p->tempReg = 0;
2037       p->lru = pParse->iCacheCnt++;
2038       return;
2039     }
2040   }
2041 
2042   /* Replace the last recently used */
2043   minLru = 0x7fffffff;
2044   idxLru = -1;
2045   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2046     if( p->lru<minLru ){
2047       idxLru = i;
2048       minLru = p->lru;
2049     }
2050   }
2051   if( ALWAYS(idxLru>=0) ){
2052     p = &pParse->aColCache[idxLru];
2053     p->iLevel = pParse->iCacheLevel;
2054     p->iTable = iTab;
2055     p->iColumn = iCol;
2056     p->iReg = iReg;
2057     p->tempReg = 0;
2058     p->lru = pParse->iCacheCnt++;
2059     return;
2060   }
2061 }
2062 
2063 /*
2064 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2065 ** Purge the range of registers from the column cache.
2066 */
sqlite3ExprCacheRemove(Parse * pParse,int iReg,int nReg)2067 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2068   int i;
2069   int iLast = iReg + nReg - 1;
2070   struct yColCache *p;
2071   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2072     int r = p->iReg;
2073     if( r>=iReg && r<=iLast ){
2074       cacheEntryClear(pParse, p);
2075       p->iReg = 0;
2076     }
2077   }
2078 }
2079 
2080 /*
2081 ** Remember the current column cache context.  Any new entries added
2082 ** added to the column cache after this call are removed when the
2083 ** corresponding pop occurs.
2084 */
sqlite3ExprCachePush(Parse * pParse)2085 void sqlite3ExprCachePush(Parse *pParse){
2086   pParse->iCacheLevel++;
2087 }
2088 
2089 /*
2090 ** Remove from the column cache any entries that were added since the
2091 ** the previous N Push operations.  In other words, restore the cache
2092 ** to the state it was in N Pushes ago.
2093 */
sqlite3ExprCachePop(Parse * pParse,int N)2094 void sqlite3ExprCachePop(Parse *pParse, int N){
2095   int i;
2096   struct yColCache *p;
2097   assert( N>0 );
2098   assert( pParse->iCacheLevel>=N );
2099   pParse->iCacheLevel -= N;
2100   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2101     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2102       cacheEntryClear(pParse, p);
2103       p->iReg = 0;
2104     }
2105   }
2106 }
2107 
2108 /*
2109 ** When a cached column is reused, make sure that its register is
2110 ** no longer available as a temp register.  ticket #3879:  that same
2111 ** register might be in the cache in multiple places, so be sure to
2112 ** get them all.
2113 */
sqlite3ExprCachePinRegister(Parse * pParse,int iReg)2114 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2115   int i;
2116   struct yColCache *p;
2117   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2118     if( p->iReg==iReg ){
2119       p->tempReg = 0;
2120     }
2121   }
2122 }
2123 
2124 /*
2125 ** Generate code to extract the value of the iCol-th column of a table.
2126 */
sqlite3ExprCodeGetColumnOfTable(Vdbe * v,Table * pTab,int iTabCur,int iCol,int regOut)2127 void sqlite3ExprCodeGetColumnOfTable(
2128   Vdbe *v,        /* The VDBE under construction */
2129   Table *pTab,    /* The table containing the value */
2130   int iTabCur,    /* The cursor for this table */
2131   int iCol,       /* Index of the column to extract */
2132   int regOut      /* Extract the valud into this register */
2133 ){
2134   if( iCol<0 || iCol==pTab->iPKey ){
2135     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2136   }else{
2137     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2138     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2139   }
2140   if( iCol>=0 ){
2141     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2142   }
2143 }
2144 
2145 /*
2146 ** Generate code that will extract the iColumn-th column from
2147 ** table pTab and store the column value in a register.  An effort
2148 ** is made to store the column value in register iReg, but this is
2149 ** not guaranteed.  The location of the column value is returned.
2150 **
2151 ** There must be an open cursor to pTab in iTable when this routine
2152 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2153 */
sqlite3ExprCodeGetColumn(Parse * pParse,Table * pTab,int iColumn,int iTable,int iReg)2154 int sqlite3ExprCodeGetColumn(
2155   Parse *pParse,   /* Parsing and code generating context */
2156   Table *pTab,     /* Description of the table we are reading from */
2157   int iColumn,     /* Index of the table column */
2158   int iTable,      /* The cursor pointing to the table */
2159   int iReg         /* Store results here */
2160 ){
2161   Vdbe *v = pParse->pVdbe;
2162   int i;
2163   struct yColCache *p;
2164 
2165   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2166     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2167       p->lru = pParse->iCacheCnt++;
2168       sqlite3ExprCachePinRegister(pParse, p->iReg);
2169       return p->iReg;
2170     }
2171   }
2172   assert( v!=0 );
2173   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2174   sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2175   return iReg;
2176 }
2177 
2178 /*
2179 ** Clear all column cache entries.
2180 */
sqlite3ExprCacheClear(Parse * pParse)2181 void sqlite3ExprCacheClear(Parse *pParse){
2182   int i;
2183   struct yColCache *p;
2184 
2185   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2186     if( p->iReg ){
2187       cacheEntryClear(pParse, p);
2188       p->iReg = 0;
2189     }
2190   }
2191 }
2192 
2193 /*
2194 ** Record the fact that an affinity change has occurred on iCount
2195 ** registers starting with iStart.
2196 */
sqlite3ExprCacheAffinityChange(Parse * pParse,int iStart,int iCount)2197 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2198   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2199 }
2200 
2201 /*
2202 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2203 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2204 */
sqlite3ExprCodeMove(Parse * pParse,int iFrom,int iTo,int nReg)2205 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2206   int i;
2207   struct yColCache *p;
2208   if( NEVER(iFrom==iTo) ) return;
2209   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2210   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2211     int x = p->iReg;
2212     if( x>=iFrom && x<iFrom+nReg ){
2213       p->iReg += iTo-iFrom;
2214     }
2215   }
2216 }
2217 
2218 /*
2219 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2220 ** over to iTo..iTo+nReg-1.
2221 */
sqlite3ExprCodeCopy(Parse * pParse,int iFrom,int iTo,int nReg)2222 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2223   int i;
2224   if( NEVER(iFrom==iTo) ) return;
2225   for(i=0; i<nReg; i++){
2226     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2227   }
2228 }
2229 
2230 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2231 /*
2232 ** Return true if any register in the range iFrom..iTo (inclusive)
2233 ** is used as part of the column cache.
2234 **
2235 ** This routine is used within assert() and testcase() macros only
2236 ** and does not appear in a normal build.
2237 */
usedAsColumnCache(Parse * pParse,int iFrom,int iTo)2238 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2239   int i;
2240   struct yColCache *p;
2241   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2242     int r = p->iReg;
2243     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2244   }
2245   return 0;
2246 }
2247 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2248 
2249 /*
2250 ** Generate code into the current Vdbe to evaluate the given
2251 ** expression.  Attempt to store the results in register "target".
2252 ** Return the register where results are stored.
2253 **
2254 ** With this routine, there is no guarantee that results will
2255 ** be stored in target.  The result might be stored in some other
2256 ** register if it is convenient to do so.  The calling function
2257 ** must check the return code and move the results to the desired
2258 ** register.
2259 */
sqlite3ExprCodeTarget(Parse * pParse,Expr * pExpr,int target)2260 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2261   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2262   int op;                   /* The opcode being coded */
2263   int inReg = target;       /* Results stored in register inReg */
2264   int regFree1 = 0;         /* If non-zero free this temporary register */
2265   int regFree2 = 0;         /* If non-zero free this temporary register */
2266   int r1, r2, r3, r4;       /* Various register numbers */
2267   sqlite3 *db = pParse->db; /* The database connection */
2268 
2269   assert( target>0 && target<=pParse->nMem );
2270   if( v==0 ){
2271     assert( pParse->db->mallocFailed );
2272     return 0;
2273   }
2274 
2275   if( pExpr==0 ){
2276     op = TK_NULL;
2277   }else{
2278     op = pExpr->op;
2279   }
2280   switch( op ){
2281     case TK_AGG_COLUMN: {
2282       AggInfo *pAggInfo = pExpr->pAggInfo;
2283       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2284       if( !pAggInfo->directMode ){
2285         assert( pCol->iMem>0 );
2286         inReg = pCol->iMem;
2287         break;
2288       }else if( pAggInfo->useSortingIdx ){
2289         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2290                               pCol->iSorterColumn, target);
2291         break;
2292       }
2293       /* Otherwise, fall thru into the TK_COLUMN case */
2294     }
2295     case TK_COLUMN: {
2296       if( pExpr->iTable<0 ){
2297         /* This only happens when coding check constraints */
2298         assert( pParse->ckBase>0 );
2299         inReg = pExpr->iColumn + pParse->ckBase;
2300       }else{
2301         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2302                                  pExpr->iColumn, pExpr->iTable, target);
2303       }
2304       break;
2305     }
2306     case TK_INTEGER: {
2307       codeInteger(pParse, pExpr, 0, target);
2308       break;
2309     }
2310 #ifndef SQLITE_OMIT_FLOATING_POINT
2311     case TK_FLOAT: {
2312       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2313       codeReal(v, pExpr->u.zToken, 0, target);
2314       break;
2315     }
2316 #endif
2317     case TK_STRING: {
2318       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2319       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2320       break;
2321     }
2322     case TK_NULL: {
2323       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2324       break;
2325     }
2326 #ifndef SQLITE_OMIT_BLOB_LITERAL
2327     case TK_BLOB: {
2328       int n;
2329       const char *z;
2330       char *zBlob;
2331       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2332       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2333       assert( pExpr->u.zToken[1]=='\'' );
2334       z = &pExpr->u.zToken[2];
2335       n = sqlite3Strlen30(z) - 1;
2336       assert( z[n]=='\'' );
2337       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2338       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2339       break;
2340     }
2341 #endif
2342     case TK_VARIABLE: {
2343       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2344       assert( pExpr->u.zToken!=0 );
2345       assert( pExpr->u.zToken[0]!=0 );
2346       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2347       if( pExpr->u.zToken[1]!=0 ){
2348         sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
2349       }
2350       break;
2351     }
2352     case TK_REGISTER: {
2353       inReg = pExpr->iTable;
2354       break;
2355     }
2356     case TK_AS: {
2357       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2358       break;
2359     }
2360 #ifndef SQLITE_OMIT_CAST
2361     case TK_CAST: {
2362       /* Expressions of the form:   CAST(pLeft AS token) */
2363       int aff, to_op;
2364       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2365       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2366       aff = sqlite3AffinityType(pExpr->u.zToken);
2367       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2368       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2369       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2370       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2371       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2372       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2373       testcase( to_op==OP_ToText );
2374       testcase( to_op==OP_ToBlob );
2375       testcase( to_op==OP_ToNumeric );
2376       testcase( to_op==OP_ToInt );
2377       testcase( to_op==OP_ToReal );
2378       if( inReg!=target ){
2379         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2380         inReg = target;
2381       }
2382       sqlite3VdbeAddOp1(v, to_op, inReg);
2383       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2384       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2385       break;
2386     }
2387 #endif /* SQLITE_OMIT_CAST */
2388     case TK_LT:
2389     case TK_LE:
2390     case TK_GT:
2391     case TK_GE:
2392     case TK_NE:
2393     case TK_EQ: {
2394       assert( TK_LT==OP_Lt );
2395       assert( TK_LE==OP_Le );
2396       assert( TK_GT==OP_Gt );
2397       assert( TK_GE==OP_Ge );
2398       assert( TK_EQ==OP_Eq );
2399       assert( TK_NE==OP_Ne );
2400       testcase( op==TK_LT );
2401       testcase( op==TK_LE );
2402       testcase( op==TK_GT );
2403       testcase( op==TK_GE );
2404       testcase( op==TK_EQ );
2405       testcase( op==TK_NE );
2406       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2407       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2408       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2409                   r1, r2, inReg, SQLITE_STOREP2);
2410       testcase( regFree1==0 );
2411       testcase( regFree2==0 );
2412       break;
2413     }
2414     case TK_IS:
2415     case TK_ISNOT: {
2416       testcase( op==TK_IS );
2417       testcase( op==TK_ISNOT );
2418       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2419       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2420       op = (op==TK_IS) ? TK_EQ : TK_NE;
2421       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2422                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2423       testcase( regFree1==0 );
2424       testcase( regFree2==0 );
2425       break;
2426     }
2427     case TK_AND:
2428     case TK_OR:
2429     case TK_PLUS:
2430     case TK_STAR:
2431     case TK_MINUS:
2432     case TK_REM:
2433     case TK_BITAND:
2434     case TK_BITOR:
2435     case TK_SLASH:
2436     case TK_LSHIFT:
2437     case TK_RSHIFT:
2438     case TK_CONCAT: {
2439       assert( TK_AND==OP_And );
2440       assert( TK_OR==OP_Or );
2441       assert( TK_PLUS==OP_Add );
2442       assert( TK_MINUS==OP_Subtract );
2443       assert( TK_REM==OP_Remainder );
2444       assert( TK_BITAND==OP_BitAnd );
2445       assert( TK_BITOR==OP_BitOr );
2446       assert( TK_SLASH==OP_Divide );
2447       assert( TK_LSHIFT==OP_ShiftLeft );
2448       assert( TK_RSHIFT==OP_ShiftRight );
2449       assert( TK_CONCAT==OP_Concat );
2450       testcase( op==TK_AND );
2451       testcase( op==TK_OR );
2452       testcase( op==TK_PLUS );
2453       testcase( op==TK_MINUS );
2454       testcase( op==TK_REM );
2455       testcase( op==TK_BITAND );
2456       testcase( op==TK_BITOR );
2457       testcase( op==TK_SLASH );
2458       testcase( op==TK_LSHIFT );
2459       testcase( op==TK_RSHIFT );
2460       testcase( op==TK_CONCAT );
2461       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2462       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2463       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2464       testcase( regFree1==0 );
2465       testcase( regFree2==0 );
2466       break;
2467     }
2468     case TK_UMINUS: {
2469       Expr *pLeft = pExpr->pLeft;
2470       assert( pLeft );
2471       if( pLeft->op==TK_INTEGER ){
2472         codeInteger(pParse, pLeft, 1, target);
2473 #ifndef SQLITE_OMIT_FLOATING_POINT
2474       }else if( pLeft->op==TK_FLOAT ){
2475         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2476         codeReal(v, pLeft->u.zToken, 1, target);
2477 #endif
2478       }else{
2479         regFree1 = r1 = sqlite3GetTempReg(pParse);
2480         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2481         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2482         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2483         testcase( regFree2==0 );
2484       }
2485       inReg = target;
2486       break;
2487     }
2488     case TK_BITNOT:
2489     case TK_NOT: {
2490       assert( TK_BITNOT==OP_BitNot );
2491       assert( TK_NOT==OP_Not );
2492       testcase( op==TK_BITNOT );
2493       testcase( op==TK_NOT );
2494       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2495       testcase( regFree1==0 );
2496       inReg = target;
2497       sqlite3VdbeAddOp2(v, op, r1, inReg);
2498       break;
2499     }
2500     case TK_ISNULL:
2501     case TK_NOTNULL: {
2502       int addr;
2503       assert( TK_ISNULL==OP_IsNull );
2504       assert( TK_NOTNULL==OP_NotNull );
2505       testcase( op==TK_ISNULL );
2506       testcase( op==TK_NOTNULL );
2507       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2508       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2509       testcase( regFree1==0 );
2510       addr = sqlite3VdbeAddOp1(v, op, r1);
2511       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2512       sqlite3VdbeJumpHere(v, addr);
2513       break;
2514     }
2515     case TK_AGG_FUNCTION: {
2516       AggInfo *pInfo = pExpr->pAggInfo;
2517       if( pInfo==0 ){
2518         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2519         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2520       }else{
2521         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2522       }
2523       break;
2524     }
2525     case TK_CONST_FUNC:
2526     case TK_FUNCTION: {
2527       ExprList *pFarg;       /* List of function arguments */
2528       int nFarg;             /* Number of function arguments */
2529       FuncDef *pDef;         /* The function definition object */
2530       int nId;               /* Length of the function name in bytes */
2531       const char *zId;       /* The function name */
2532       int constMask = 0;     /* Mask of function arguments that are constant */
2533       int i;                 /* Loop counter */
2534       u8 enc = ENC(db);      /* The text encoding used by this database */
2535       CollSeq *pColl = 0;    /* A collating sequence */
2536 
2537       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2538       testcase( op==TK_CONST_FUNC );
2539       testcase( op==TK_FUNCTION );
2540       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2541         pFarg = 0;
2542       }else{
2543         pFarg = pExpr->x.pList;
2544       }
2545       nFarg = pFarg ? pFarg->nExpr : 0;
2546       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2547       zId = pExpr->u.zToken;
2548       nId = sqlite3Strlen30(zId);
2549       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2550       if( pDef==0 ){
2551         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2552         break;
2553       }
2554 
2555       /* Attempt a direct implementation of the built-in COALESCE() and
2556       ** IFNULL() functions.  This avoids unnecessary evalation of
2557       ** arguments past the first non-NULL argument.
2558       */
2559       if( pDef->flags & SQLITE_FUNC_COALESCE ){
2560         int endCoalesce = sqlite3VdbeMakeLabel(v);
2561         assert( nFarg>=2 );
2562         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2563         for(i=1; i<nFarg; i++){
2564           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2565           sqlite3ExprCacheRemove(pParse, target, 1);
2566           sqlite3ExprCachePush(pParse);
2567           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2568           sqlite3ExprCachePop(pParse, 1);
2569         }
2570         sqlite3VdbeResolveLabel(v, endCoalesce);
2571         break;
2572       }
2573 
2574 
2575       if( pFarg ){
2576         r1 = sqlite3GetTempRange(pParse, nFarg);
2577         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2578         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2579         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2580       }else{
2581         r1 = 0;
2582       }
2583 #ifndef SQLITE_OMIT_VIRTUALTABLE
2584       /* Possibly overload the function if the first argument is
2585       ** a virtual table column.
2586       **
2587       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2588       ** second argument, not the first, as the argument to test to
2589       ** see if it is a column in a virtual table.  This is done because
2590       ** the left operand of infix functions (the operand we want to
2591       ** control overloading) ends up as the second argument to the
2592       ** function.  The expression "A glob B" is equivalent to
2593       ** "glob(B,A).  We want to use the A in "A glob B" to test
2594       ** for function overloading.  But we use the B term in "glob(B,A)".
2595       */
2596       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2597         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2598       }else if( nFarg>0 ){
2599         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2600       }
2601 #endif
2602       for(i=0; i<nFarg; i++){
2603         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2604           constMask |= (1<<i);
2605         }
2606         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2607           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2608         }
2609       }
2610       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2611         if( !pColl ) pColl = db->pDfltColl;
2612         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2613       }
2614       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2615                         (char*)pDef, P4_FUNCDEF);
2616       sqlite3VdbeChangeP5(v, (u8)nFarg);
2617       if( nFarg ){
2618         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2619       }
2620       break;
2621     }
2622 #ifndef SQLITE_OMIT_SUBQUERY
2623     case TK_EXISTS:
2624     case TK_SELECT: {
2625       testcase( op==TK_EXISTS );
2626       testcase( op==TK_SELECT );
2627       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2628       break;
2629     }
2630     case TK_IN: {
2631       int destIfFalse = sqlite3VdbeMakeLabel(v);
2632       int destIfNull = sqlite3VdbeMakeLabel(v);
2633       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2634       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2635       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2636       sqlite3VdbeResolveLabel(v, destIfFalse);
2637       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2638       sqlite3VdbeResolveLabel(v, destIfNull);
2639       break;
2640     }
2641 #endif /* SQLITE_OMIT_SUBQUERY */
2642 
2643 
2644     /*
2645     **    x BETWEEN y AND z
2646     **
2647     ** This is equivalent to
2648     **
2649     **    x>=y AND x<=z
2650     **
2651     ** X is stored in pExpr->pLeft.
2652     ** Y is stored in pExpr->pList->a[0].pExpr.
2653     ** Z is stored in pExpr->pList->a[1].pExpr.
2654     */
2655     case TK_BETWEEN: {
2656       Expr *pLeft = pExpr->pLeft;
2657       struct ExprList_item *pLItem = pExpr->x.pList->a;
2658       Expr *pRight = pLItem->pExpr;
2659 
2660       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2661       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2662       testcase( regFree1==0 );
2663       testcase( regFree2==0 );
2664       r3 = sqlite3GetTempReg(pParse);
2665       r4 = sqlite3GetTempReg(pParse);
2666       codeCompare(pParse, pLeft, pRight, OP_Ge,
2667                   r1, r2, r3, SQLITE_STOREP2);
2668       pLItem++;
2669       pRight = pLItem->pExpr;
2670       sqlite3ReleaseTempReg(pParse, regFree2);
2671       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2672       testcase( regFree2==0 );
2673       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2674       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2675       sqlite3ReleaseTempReg(pParse, r3);
2676       sqlite3ReleaseTempReg(pParse, r4);
2677       break;
2678     }
2679     case TK_UPLUS: {
2680       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2681       break;
2682     }
2683 
2684     case TK_TRIGGER: {
2685       /* If the opcode is TK_TRIGGER, then the expression is a reference
2686       ** to a column in the new.* or old.* pseudo-tables available to
2687       ** trigger programs. In this case Expr.iTable is set to 1 for the
2688       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2689       ** is set to the column of the pseudo-table to read, or to -1 to
2690       ** read the rowid field.
2691       **
2692       ** The expression is implemented using an OP_Param opcode. The p1
2693       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2694       ** to reference another column of the old.* pseudo-table, where
2695       ** i is the index of the column. For a new.rowid reference, p1 is
2696       ** set to (n+1), where n is the number of columns in each pseudo-table.
2697       ** For a reference to any other column in the new.* pseudo-table, p1
2698       ** is set to (n+2+i), where n and i are as defined previously. For
2699       ** example, if the table on which triggers are being fired is
2700       ** declared as:
2701       **
2702       **   CREATE TABLE t1(a, b);
2703       **
2704       ** Then p1 is interpreted as follows:
2705       **
2706       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2707       **   p1==1   ->    old.a         p1==4   ->    new.a
2708       **   p1==2   ->    old.b         p1==5   ->    new.b
2709       */
2710       Table *pTab = pExpr->pTab;
2711       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2712 
2713       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2714       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2715       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2716       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2717 
2718       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2719       VdbeComment((v, "%s.%s -> $%d",
2720         (pExpr->iTable ? "new" : "old"),
2721         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2722         target
2723       ));
2724 
2725 #ifndef SQLITE_OMIT_FLOATING_POINT
2726       /* If the column has REAL affinity, it may currently be stored as an
2727       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2728       if( pExpr->iColumn>=0
2729        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2730       ){
2731         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2732       }
2733 #endif
2734       break;
2735     }
2736 
2737 
2738     /*
2739     ** Form A:
2740     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2741     **
2742     ** Form B:
2743     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2744     **
2745     ** Form A is can be transformed into the equivalent form B as follows:
2746     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2747     **        WHEN x=eN THEN rN ELSE y END
2748     **
2749     ** X (if it exists) is in pExpr->pLeft.
2750     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2751     ** ELSE clause and no other term matches, then the result of the
2752     ** exprssion is NULL.
2753     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2754     **
2755     ** The result of the expression is the Ri for the first matching Ei,
2756     ** or if there is no matching Ei, the ELSE term Y, or if there is
2757     ** no ELSE term, NULL.
2758     */
2759     default: assert( op==TK_CASE ); {
2760       int endLabel;                     /* GOTO label for end of CASE stmt */
2761       int nextCase;                     /* GOTO label for next WHEN clause */
2762       int nExpr;                        /* 2x number of WHEN terms */
2763       int i;                            /* Loop counter */
2764       ExprList *pEList;                 /* List of WHEN terms */
2765       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2766       Expr opCompare;                   /* The X==Ei expression */
2767       Expr cacheX;                      /* Cached expression X */
2768       Expr *pX;                         /* The X expression */
2769       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2770       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2771 
2772       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2773       assert((pExpr->x.pList->nExpr % 2) == 0);
2774       assert(pExpr->x.pList->nExpr > 0);
2775       pEList = pExpr->x.pList;
2776       aListelem = pEList->a;
2777       nExpr = pEList->nExpr;
2778       endLabel = sqlite3VdbeMakeLabel(v);
2779       if( (pX = pExpr->pLeft)!=0 ){
2780         cacheX = *pX;
2781         testcase( pX->op==TK_COLUMN );
2782         testcase( pX->op==TK_REGISTER );
2783         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2784         testcase( regFree1==0 );
2785         cacheX.op = TK_REGISTER;
2786         opCompare.op = TK_EQ;
2787         opCompare.pLeft = &cacheX;
2788         pTest = &opCompare;
2789         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2790         ** The value in regFree1 might get SCopy-ed into the file result.
2791         ** So make sure that the regFree1 register is not reused for other
2792         ** purposes and possibly overwritten.  */
2793         regFree1 = 0;
2794       }
2795       for(i=0; i<nExpr; i=i+2){
2796         sqlite3ExprCachePush(pParse);
2797         if( pX ){
2798           assert( pTest!=0 );
2799           opCompare.pRight = aListelem[i].pExpr;
2800         }else{
2801           pTest = aListelem[i].pExpr;
2802         }
2803         nextCase = sqlite3VdbeMakeLabel(v);
2804         testcase( pTest->op==TK_COLUMN );
2805         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2806         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2807         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2808         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2809         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2810         sqlite3ExprCachePop(pParse, 1);
2811         sqlite3VdbeResolveLabel(v, nextCase);
2812       }
2813       if( pExpr->pRight ){
2814         sqlite3ExprCachePush(pParse);
2815         sqlite3ExprCode(pParse, pExpr->pRight, target);
2816         sqlite3ExprCachePop(pParse, 1);
2817       }else{
2818         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2819       }
2820       assert( db->mallocFailed || pParse->nErr>0
2821            || pParse->iCacheLevel==iCacheLevel );
2822       sqlite3VdbeResolveLabel(v, endLabel);
2823       break;
2824     }
2825 #ifndef SQLITE_OMIT_TRIGGER
2826     case TK_RAISE: {
2827       assert( pExpr->affinity==OE_Rollback
2828            || pExpr->affinity==OE_Abort
2829            || pExpr->affinity==OE_Fail
2830            || pExpr->affinity==OE_Ignore
2831       );
2832       if( !pParse->pTriggerTab ){
2833         sqlite3ErrorMsg(pParse,
2834                        "RAISE() may only be used within a trigger-program");
2835         return 0;
2836       }
2837       if( pExpr->affinity==OE_Abort ){
2838         sqlite3MayAbort(pParse);
2839       }
2840       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2841       if( pExpr->affinity==OE_Ignore ){
2842         sqlite3VdbeAddOp4(
2843             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2844       }else{
2845         sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2846       }
2847 
2848       break;
2849     }
2850 #endif
2851   }
2852   sqlite3ReleaseTempReg(pParse, regFree1);
2853   sqlite3ReleaseTempReg(pParse, regFree2);
2854   return inReg;
2855 }
2856 
2857 /*
2858 ** Generate code to evaluate an expression and store the results
2859 ** into a register.  Return the register number where the results
2860 ** are stored.
2861 **
2862 ** If the register is a temporary register that can be deallocated,
2863 ** then write its number into *pReg.  If the result register is not
2864 ** a temporary, then set *pReg to zero.
2865 */
sqlite3ExprCodeTemp(Parse * pParse,Expr * pExpr,int * pReg)2866 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2867   int r1 = sqlite3GetTempReg(pParse);
2868   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2869   if( r2==r1 ){
2870     *pReg = r1;
2871   }else{
2872     sqlite3ReleaseTempReg(pParse, r1);
2873     *pReg = 0;
2874   }
2875   return r2;
2876 }
2877 
2878 /*
2879 ** Generate code that will evaluate expression pExpr and store the
2880 ** results in register target.  The results are guaranteed to appear
2881 ** in register target.
2882 */
sqlite3ExprCode(Parse * pParse,Expr * pExpr,int target)2883 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2884   int inReg;
2885 
2886   assert( target>0 && target<=pParse->nMem );
2887   if( pExpr && pExpr->op==TK_REGISTER ){
2888     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2889   }else{
2890     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2891     assert( pParse->pVdbe || pParse->db->mallocFailed );
2892     if( inReg!=target && pParse->pVdbe ){
2893       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2894     }
2895   }
2896   return target;
2897 }
2898 
2899 /*
2900 ** Generate code that evalutes the given expression and puts the result
2901 ** in register target.
2902 **
2903 ** Also make a copy of the expression results into another "cache" register
2904 ** and modify the expression so that the next time it is evaluated,
2905 ** the result is a copy of the cache register.
2906 **
2907 ** This routine is used for expressions that are used multiple
2908 ** times.  They are evaluated once and the results of the expression
2909 ** are reused.
2910 */
sqlite3ExprCodeAndCache(Parse * pParse,Expr * pExpr,int target)2911 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2912   Vdbe *v = pParse->pVdbe;
2913   int inReg;
2914   inReg = sqlite3ExprCode(pParse, pExpr, target);
2915   assert( target>0 );
2916   /* This routine is called for terms to INSERT or UPDATE.  And the only
2917   ** other place where expressions can be converted into TK_REGISTER is
2918   ** in WHERE clause processing.  So as currently implemented, there is
2919   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2920   ** keep the ALWAYS() in case the conditions above change with future
2921   ** modifications or enhancements. */
2922   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2923     int iMem;
2924     iMem = ++pParse->nMem;
2925     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2926     pExpr->iTable = iMem;
2927     pExpr->op2 = pExpr->op;
2928     pExpr->op = TK_REGISTER;
2929   }
2930   return inReg;
2931 }
2932 
2933 /*
2934 ** Return TRUE if pExpr is an constant expression that is appropriate
2935 ** for factoring out of a loop.  Appropriate expressions are:
2936 **
2937 **    *  Any expression that evaluates to two or more opcodes.
2938 **
2939 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2940 **       or OP_Variable that does not need to be placed in a
2941 **       specific register.
2942 **
2943 ** There is no point in factoring out single-instruction constant
2944 ** expressions that need to be placed in a particular register.
2945 ** We could factor them out, but then we would end up adding an
2946 ** OP_SCopy instruction to move the value into the correct register
2947 ** later.  We might as well just use the original instruction and
2948 ** avoid the OP_SCopy.
2949 */
isAppropriateForFactoring(Expr * p)2950 static int isAppropriateForFactoring(Expr *p){
2951   if( !sqlite3ExprIsConstantNotJoin(p) ){
2952     return 0;  /* Only constant expressions are appropriate for factoring */
2953   }
2954   if( (p->flags & EP_FixedDest)==0 ){
2955     return 1;  /* Any constant without a fixed destination is appropriate */
2956   }
2957   while( p->op==TK_UPLUS ) p = p->pLeft;
2958   switch( p->op ){
2959 #ifndef SQLITE_OMIT_BLOB_LITERAL
2960     case TK_BLOB:
2961 #endif
2962     case TK_VARIABLE:
2963     case TK_INTEGER:
2964     case TK_FLOAT:
2965     case TK_NULL:
2966     case TK_STRING: {
2967       testcase( p->op==TK_BLOB );
2968       testcase( p->op==TK_VARIABLE );
2969       testcase( p->op==TK_INTEGER );
2970       testcase( p->op==TK_FLOAT );
2971       testcase( p->op==TK_NULL );
2972       testcase( p->op==TK_STRING );
2973       /* Single-instruction constants with a fixed destination are
2974       ** better done in-line.  If we factor them, they will just end
2975       ** up generating an OP_SCopy to move the value to the destination
2976       ** register. */
2977       return 0;
2978     }
2979     case TK_UMINUS: {
2980       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2981         return 0;
2982       }
2983       break;
2984     }
2985     default: {
2986       break;
2987     }
2988   }
2989   return 1;
2990 }
2991 
2992 /*
2993 ** If pExpr is a constant expression that is appropriate for
2994 ** factoring out of a loop, then evaluate the expression
2995 ** into a register and convert the expression into a TK_REGISTER
2996 ** expression.
2997 */
evalConstExpr(Walker * pWalker,Expr * pExpr)2998 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
2999   Parse *pParse = pWalker->pParse;
3000   switch( pExpr->op ){
3001     case TK_IN:
3002     case TK_REGISTER: {
3003       return WRC_Prune;
3004     }
3005     case TK_FUNCTION:
3006     case TK_AGG_FUNCTION:
3007     case TK_CONST_FUNC: {
3008       /* The arguments to a function have a fixed destination.
3009       ** Mark them this way to avoid generated unneeded OP_SCopy
3010       ** instructions.
3011       */
3012       ExprList *pList = pExpr->x.pList;
3013       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3014       if( pList ){
3015         int i = pList->nExpr;
3016         struct ExprList_item *pItem = pList->a;
3017         for(; i>0; i--, pItem++){
3018           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3019         }
3020       }
3021       break;
3022     }
3023   }
3024   if( isAppropriateForFactoring(pExpr) ){
3025     int r1 = ++pParse->nMem;
3026     int r2;
3027     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3028     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3029     pExpr->op2 = pExpr->op;
3030     pExpr->op = TK_REGISTER;
3031     pExpr->iTable = r2;
3032     return WRC_Prune;
3033   }
3034   return WRC_Continue;
3035 }
3036 
3037 /*
3038 ** Preevaluate constant subexpressions within pExpr and store the
3039 ** results in registers.  Modify pExpr so that the constant subexpresions
3040 ** are TK_REGISTER opcodes that refer to the precomputed values.
3041 **
3042 ** This routine is a no-op if the jump to the cookie-check code has
3043 ** already occur.  Since the cookie-check jump is generated prior to
3044 ** any other serious processing, this check ensures that there is no
3045 ** way to accidently bypass the constant initializations.
3046 **
3047 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3048 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3049 ** interface.  This allows test logic to verify that the same answer is
3050 ** obtained for queries regardless of whether or not constants are
3051 ** precomputed into registers or if they are inserted in-line.
3052 */
sqlite3ExprCodeConstants(Parse * pParse,Expr * pExpr)3053 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3054   Walker w;
3055   if( pParse->cookieGoto ) return;
3056   if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
3057   w.xExprCallback = evalConstExpr;
3058   w.xSelectCallback = 0;
3059   w.pParse = pParse;
3060   sqlite3WalkExpr(&w, pExpr);
3061 }
3062 
3063 
3064 /*
3065 ** Generate code that pushes the value of every element of the given
3066 ** expression list into a sequence of registers beginning at target.
3067 **
3068 ** Return the number of elements evaluated.
3069 */
sqlite3ExprCodeExprList(Parse * pParse,ExprList * pList,int target,int doHardCopy)3070 int sqlite3ExprCodeExprList(
3071   Parse *pParse,     /* Parsing context */
3072   ExprList *pList,   /* The expression list to be coded */
3073   int target,        /* Where to write results */
3074   int doHardCopy     /* Make a hard copy of every element */
3075 ){
3076   struct ExprList_item *pItem;
3077   int i, n;
3078   assert( pList!=0 );
3079   assert( target>0 );
3080   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3081   n = pList->nExpr;
3082   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3083     Expr *pExpr = pItem->pExpr;
3084     int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3085     if( inReg!=target+i ){
3086       sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3087                         inReg, target+i);
3088     }
3089   }
3090   return n;
3091 }
3092 
3093 /*
3094 ** Generate code for a BETWEEN operator.
3095 **
3096 **    x BETWEEN y AND z
3097 **
3098 ** The above is equivalent to
3099 **
3100 **    x>=y AND x<=z
3101 **
3102 ** Code it as such, taking care to do the common subexpression
3103 ** elementation of x.
3104 */
exprCodeBetween(Parse * pParse,Expr * pExpr,int dest,int jumpIfTrue,int jumpIfNull)3105 static void exprCodeBetween(
3106   Parse *pParse,    /* Parsing and code generating context */
3107   Expr *pExpr,      /* The BETWEEN expression */
3108   int dest,         /* Jump here if the jump is taken */
3109   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3110   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3111 ){
3112   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3113   Expr compLeft;    /* The  x>=y  term */
3114   Expr compRight;   /* The  x<=z  term */
3115   Expr exprX;       /* The  x  subexpression */
3116   int regFree1 = 0; /* Temporary use register */
3117 
3118   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3119   exprX = *pExpr->pLeft;
3120   exprAnd.op = TK_AND;
3121   exprAnd.pLeft = &compLeft;
3122   exprAnd.pRight = &compRight;
3123   compLeft.op = TK_GE;
3124   compLeft.pLeft = &exprX;
3125   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3126   compRight.op = TK_LE;
3127   compRight.pLeft = &exprX;
3128   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3129   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3130   exprX.op = TK_REGISTER;
3131   if( jumpIfTrue ){
3132     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3133   }else{
3134     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3135   }
3136   sqlite3ReleaseTempReg(pParse, regFree1);
3137 
3138   /* Ensure adequate test coverage */
3139   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3140   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3141   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3142   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3143   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3144   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3145   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3146   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3147 }
3148 
3149 /*
3150 ** Generate code for a boolean expression such that a jump is made
3151 ** to the label "dest" if the expression is true but execution
3152 ** continues straight thru if the expression is false.
3153 **
3154 ** If the expression evaluates to NULL (neither true nor false), then
3155 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3156 **
3157 ** This code depends on the fact that certain token values (ex: TK_EQ)
3158 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3159 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3160 ** the make process cause these values to align.  Assert()s in the code
3161 ** below verify that the numbers are aligned correctly.
3162 */
sqlite3ExprIfTrue(Parse * pParse,Expr * pExpr,int dest,int jumpIfNull)3163 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3164   Vdbe *v = pParse->pVdbe;
3165   int op = 0;
3166   int regFree1 = 0;
3167   int regFree2 = 0;
3168   int r1, r2;
3169 
3170   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3171   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
3172   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3173   op = pExpr->op;
3174   switch( op ){
3175     case TK_AND: {
3176       int d2 = sqlite3VdbeMakeLabel(v);
3177       testcase( jumpIfNull==0 );
3178       sqlite3ExprCachePush(pParse);
3179       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3180       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3181       sqlite3VdbeResolveLabel(v, d2);
3182       sqlite3ExprCachePop(pParse, 1);
3183       break;
3184     }
3185     case TK_OR: {
3186       testcase( jumpIfNull==0 );
3187       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3188       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3189       break;
3190     }
3191     case TK_NOT: {
3192       testcase( jumpIfNull==0 );
3193       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3194       break;
3195     }
3196     case TK_LT:
3197     case TK_LE:
3198     case TK_GT:
3199     case TK_GE:
3200     case TK_NE:
3201     case TK_EQ: {
3202       assert( TK_LT==OP_Lt );
3203       assert( TK_LE==OP_Le );
3204       assert( TK_GT==OP_Gt );
3205       assert( TK_GE==OP_Ge );
3206       assert( TK_EQ==OP_Eq );
3207       assert( TK_NE==OP_Ne );
3208       testcase( op==TK_LT );
3209       testcase( op==TK_LE );
3210       testcase( op==TK_GT );
3211       testcase( op==TK_GE );
3212       testcase( op==TK_EQ );
3213       testcase( op==TK_NE );
3214       testcase( jumpIfNull==0 );
3215       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3216       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3217       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3218                   r1, r2, dest, jumpIfNull);
3219       testcase( regFree1==0 );
3220       testcase( regFree2==0 );
3221       break;
3222     }
3223     case TK_IS:
3224     case TK_ISNOT: {
3225       testcase( op==TK_IS );
3226       testcase( op==TK_ISNOT );
3227       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3228       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3229       op = (op==TK_IS) ? TK_EQ : TK_NE;
3230       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3231                   r1, r2, dest, SQLITE_NULLEQ);
3232       testcase( regFree1==0 );
3233       testcase( regFree2==0 );
3234       break;
3235     }
3236     case TK_ISNULL:
3237     case TK_NOTNULL: {
3238       assert( TK_ISNULL==OP_IsNull );
3239       assert( TK_NOTNULL==OP_NotNull );
3240       testcase( op==TK_ISNULL );
3241       testcase( op==TK_NOTNULL );
3242       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3243       sqlite3VdbeAddOp2(v, op, r1, dest);
3244       testcase( regFree1==0 );
3245       break;
3246     }
3247     case TK_BETWEEN: {
3248       testcase( jumpIfNull==0 );
3249       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3250       break;
3251     }
3252 #ifndef SQLITE_OMIT_SUBQUERY
3253     case TK_IN: {
3254       int destIfFalse = sqlite3VdbeMakeLabel(v);
3255       int destIfNull = jumpIfNull ? dest : destIfFalse;
3256       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3257       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3258       sqlite3VdbeResolveLabel(v, destIfFalse);
3259       break;
3260     }
3261 #endif
3262     default: {
3263       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3264       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3265       testcase( regFree1==0 );
3266       testcase( jumpIfNull==0 );
3267       break;
3268     }
3269   }
3270   sqlite3ReleaseTempReg(pParse, regFree1);
3271   sqlite3ReleaseTempReg(pParse, regFree2);
3272 }
3273 
3274 /*
3275 ** Generate code for a boolean expression such that a jump is made
3276 ** to the label "dest" if the expression is false but execution
3277 ** continues straight thru if the expression is true.
3278 **
3279 ** If the expression evaluates to NULL (neither true nor false) then
3280 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3281 ** is 0.
3282 */
sqlite3ExprIfFalse(Parse * pParse,Expr * pExpr,int dest,int jumpIfNull)3283 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3284   Vdbe *v = pParse->pVdbe;
3285   int op = 0;
3286   int regFree1 = 0;
3287   int regFree2 = 0;
3288   int r1, r2;
3289 
3290   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3291   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3292   if( pExpr==0 )    return;
3293 
3294   /* The value of pExpr->op and op are related as follows:
3295   **
3296   **       pExpr->op            op
3297   **       ---------          ----------
3298   **       TK_ISNULL          OP_NotNull
3299   **       TK_NOTNULL         OP_IsNull
3300   **       TK_NE              OP_Eq
3301   **       TK_EQ              OP_Ne
3302   **       TK_GT              OP_Le
3303   **       TK_LE              OP_Gt
3304   **       TK_GE              OP_Lt
3305   **       TK_LT              OP_Ge
3306   **
3307   ** For other values of pExpr->op, op is undefined and unused.
3308   ** The value of TK_ and OP_ constants are arranged such that we
3309   ** can compute the mapping above using the following expression.
3310   ** Assert()s verify that the computation is correct.
3311   */
3312   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3313 
3314   /* Verify correct alignment of TK_ and OP_ constants
3315   */
3316   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3317   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3318   assert( pExpr->op!=TK_NE || op==OP_Eq );
3319   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3320   assert( pExpr->op!=TK_LT || op==OP_Ge );
3321   assert( pExpr->op!=TK_LE || op==OP_Gt );
3322   assert( pExpr->op!=TK_GT || op==OP_Le );
3323   assert( pExpr->op!=TK_GE || op==OP_Lt );
3324 
3325   switch( pExpr->op ){
3326     case TK_AND: {
3327       testcase( jumpIfNull==0 );
3328       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3329       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3330       break;
3331     }
3332     case TK_OR: {
3333       int d2 = sqlite3VdbeMakeLabel(v);
3334       testcase( jumpIfNull==0 );
3335       sqlite3ExprCachePush(pParse);
3336       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3337       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3338       sqlite3VdbeResolveLabel(v, d2);
3339       sqlite3ExprCachePop(pParse, 1);
3340       break;
3341     }
3342     case TK_NOT: {
3343       testcase( jumpIfNull==0 );
3344       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3345       break;
3346     }
3347     case TK_LT:
3348     case TK_LE:
3349     case TK_GT:
3350     case TK_GE:
3351     case TK_NE:
3352     case TK_EQ: {
3353       testcase( op==TK_LT );
3354       testcase( op==TK_LE );
3355       testcase( op==TK_GT );
3356       testcase( op==TK_GE );
3357       testcase( op==TK_EQ );
3358       testcase( op==TK_NE );
3359       testcase( jumpIfNull==0 );
3360       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3361       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3362       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3363                   r1, r2, dest, jumpIfNull);
3364       testcase( regFree1==0 );
3365       testcase( regFree2==0 );
3366       break;
3367     }
3368     case TK_IS:
3369     case TK_ISNOT: {
3370       testcase( pExpr->op==TK_IS );
3371       testcase( pExpr->op==TK_ISNOT );
3372       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3373       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3374       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3375       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3376                   r1, r2, dest, SQLITE_NULLEQ);
3377       testcase( regFree1==0 );
3378       testcase( regFree2==0 );
3379       break;
3380     }
3381     case TK_ISNULL:
3382     case TK_NOTNULL: {
3383       testcase( op==TK_ISNULL );
3384       testcase( op==TK_NOTNULL );
3385       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3386       sqlite3VdbeAddOp2(v, op, r1, dest);
3387       testcase( regFree1==0 );
3388       break;
3389     }
3390     case TK_BETWEEN: {
3391       testcase( jumpIfNull==0 );
3392       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3393       break;
3394     }
3395 #ifndef SQLITE_OMIT_SUBQUERY
3396     case TK_IN: {
3397       if( jumpIfNull ){
3398         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3399       }else{
3400         int destIfNull = sqlite3VdbeMakeLabel(v);
3401         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3402         sqlite3VdbeResolveLabel(v, destIfNull);
3403       }
3404       break;
3405     }
3406 #endif
3407     default: {
3408       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3409       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3410       testcase( regFree1==0 );
3411       testcase( jumpIfNull==0 );
3412       break;
3413     }
3414   }
3415   sqlite3ReleaseTempReg(pParse, regFree1);
3416   sqlite3ReleaseTempReg(pParse, regFree2);
3417 }
3418 
3419 /*
3420 ** Do a deep comparison of two expression trees.  Return 0 if the two
3421 ** expressions are completely identical.  Return 1 if they differ only
3422 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3423 ** other than the top-level COLLATE operator.
3424 **
3425 ** Sometimes this routine will return 2 even if the two expressions
3426 ** really are equivalent.  If we cannot prove that the expressions are
3427 ** identical, we return 2 just to be safe.  So if this routine
3428 ** returns 2, then you do not really know for certain if the two
3429 ** expressions are the same.  But if you get a 0 or 1 return, then you
3430 ** can be sure the expressions are the same.  In the places where
3431 ** this routine is used, it does not hurt to get an extra 2 - that
3432 ** just might result in some slightly slower code.  But returning
3433 ** an incorrect 0 or 1 could lead to a malfunction.
3434 */
sqlite3ExprCompare(Expr * pA,Expr * pB)3435 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3436   if( pA==0||pB==0 ){
3437     return pB==pA ? 0 : 2;
3438   }
3439   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3440   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3441   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3442     return 2;
3443   }
3444   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3445   if( pA->op!=pB->op ) return 2;
3446   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3447   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3448   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3449   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3450   if( ExprHasProperty(pA, EP_IntValue) ){
3451     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3452       return 2;
3453     }
3454   }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3455     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3456     if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3457       return 2;
3458     }
3459   }
3460   if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3461   if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3462   return 0;
3463 }
3464 
3465 /*
3466 ** Compare two ExprList objects.  Return 0 if they are identical and
3467 ** non-zero if they differ in any way.
3468 **
3469 ** This routine might return non-zero for equivalent ExprLists.  The
3470 ** only consequence will be disabled optimizations.  But this routine
3471 ** must never return 0 if the two ExprList objects are different, or
3472 ** a malfunction will result.
3473 **
3474 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3475 ** always differs from a non-NULL pointer.
3476 */
sqlite3ExprListCompare(ExprList * pA,ExprList * pB)3477 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3478   int i;
3479   if( pA==0 && pB==0 ) return 0;
3480   if( pA==0 || pB==0 ) return 1;
3481   if( pA->nExpr!=pB->nExpr ) return 1;
3482   for(i=0; i<pA->nExpr; i++){
3483     Expr *pExprA = pA->a[i].pExpr;
3484     Expr *pExprB = pB->a[i].pExpr;
3485     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3486     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3487   }
3488   return 0;
3489 }
3490 
3491 /*
3492 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3493 ** the new element.  Return a negative number if malloc fails.
3494 */
addAggInfoColumn(sqlite3 * db,AggInfo * pInfo)3495 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3496   int i;
3497   pInfo->aCol = sqlite3ArrayAllocate(
3498        db,
3499        pInfo->aCol,
3500        sizeof(pInfo->aCol[0]),
3501        3,
3502        &pInfo->nColumn,
3503        &pInfo->nColumnAlloc,
3504        &i
3505   );
3506   return i;
3507 }
3508 
3509 /*
3510 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3511 ** the new element.  Return a negative number if malloc fails.
3512 */
addAggInfoFunc(sqlite3 * db,AggInfo * pInfo)3513 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3514   int i;
3515   pInfo->aFunc = sqlite3ArrayAllocate(
3516        db,
3517        pInfo->aFunc,
3518        sizeof(pInfo->aFunc[0]),
3519        3,
3520        &pInfo->nFunc,
3521        &pInfo->nFuncAlloc,
3522        &i
3523   );
3524   return i;
3525 }
3526 
3527 /*
3528 ** This is the xExprCallback for a tree walker.  It is used to
3529 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3530 ** for additional information.
3531 */
analyzeAggregate(Walker * pWalker,Expr * pExpr)3532 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3533   int i;
3534   NameContext *pNC = pWalker->u.pNC;
3535   Parse *pParse = pNC->pParse;
3536   SrcList *pSrcList = pNC->pSrcList;
3537   AggInfo *pAggInfo = pNC->pAggInfo;
3538 
3539   switch( pExpr->op ){
3540     case TK_AGG_COLUMN:
3541     case TK_COLUMN: {
3542       testcase( pExpr->op==TK_AGG_COLUMN );
3543       testcase( pExpr->op==TK_COLUMN );
3544       /* Check to see if the column is in one of the tables in the FROM
3545       ** clause of the aggregate query */
3546       if( ALWAYS(pSrcList!=0) ){
3547         struct SrcList_item *pItem = pSrcList->a;
3548         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3549           struct AggInfo_col *pCol;
3550           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3551           if( pExpr->iTable==pItem->iCursor ){
3552             /* If we reach this point, it means that pExpr refers to a table
3553             ** that is in the FROM clause of the aggregate query.
3554             **
3555             ** Make an entry for the column in pAggInfo->aCol[] if there
3556             ** is not an entry there already.
3557             */
3558             int k;
3559             pCol = pAggInfo->aCol;
3560             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3561               if( pCol->iTable==pExpr->iTable &&
3562                   pCol->iColumn==pExpr->iColumn ){
3563                 break;
3564               }
3565             }
3566             if( (k>=pAggInfo->nColumn)
3567              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3568             ){
3569               pCol = &pAggInfo->aCol[k];
3570               pCol->pTab = pExpr->pTab;
3571               pCol->iTable = pExpr->iTable;
3572               pCol->iColumn = pExpr->iColumn;
3573               pCol->iMem = ++pParse->nMem;
3574               pCol->iSorterColumn = -1;
3575               pCol->pExpr = pExpr;
3576               if( pAggInfo->pGroupBy ){
3577                 int j, n;
3578                 ExprList *pGB = pAggInfo->pGroupBy;
3579                 struct ExprList_item *pTerm = pGB->a;
3580                 n = pGB->nExpr;
3581                 for(j=0; j<n; j++, pTerm++){
3582                   Expr *pE = pTerm->pExpr;
3583                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3584                       pE->iColumn==pExpr->iColumn ){
3585                     pCol->iSorterColumn = j;
3586                     break;
3587                   }
3588                 }
3589               }
3590               if( pCol->iSorterColumn<0 ){
3591                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3592               }
3593             }
3594             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3595             ** because it was there before or because we just created it).
3596             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3597             ** pAggInfo->aCol[] entry.
3598             */
3599             ExprSetIrreducible(pExpr);
3600             pExpr->pAggInfo = pAggInfo;
3601             pExpr->op = TK_AGG_COLUMN;
3602             pExpr->iAgg = (i16)k;
3603             break;
3604           } /* endif pExpr->iTable==pItem->iCursor */
3605         } /* end loop over pSrcList */
3606       }
3607       return WRC_Prune;
3608     }
3609     case TK_AGG_FUNCTION: {
3610       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3611       ** to be ignored */
3612       if( pNC->nDepth==0 ){
3613         /* Check to see if pExpr is a duplicate of another aggregate
3614         ** function that is already in the pAggInfo structure
3615         */
3616         struct AggInfo_func *pItem = pAggInfo->aFunc;
3617         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3618           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
3619             break;
3620           }
3621         }
3622         if( i>=pAggInfo->nFunc ){
3623           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3624           */
3625           u8 enc = ENC(pParse->db);
3626           i = addAggInfoFunc(pParse->db, pAggInfo);
3627           if( i>=0 ){
3628             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3629             pItem = &pAggInfo->aFunc[i];
3630             pItem->pExpr = pExpr;
3631             pItem->iMem = ++pParse->nMem;
3632             assert( !ExprHasProperty(pExpr, EP_IntValue) );
3633             pItem->pFunc = sqlite3FindFunction(pParse->db,
3634                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3635                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3636             if( pExpr->flags & EP_Distinct ){
3637               pItem->iDistinct = pParse->nTab++;
3638             }else{
3639               pItem->iDistinct = -1;
3640             }
3641           }
3642         }
3643         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3644         */
3645         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3646         ExprSetIrreducible(pExpr);
3647         pExpr->iAgg = (i16)i;
3648         pExpr->pAggInfo = pAggInfo;
3649         return WRC_Prune;
3650       }
3651     }
3652   }
3653   return WRC_Continue;
3654 }
analyzeAggregatesInSelect(Walker * pWalker,Select * pSelect)3655 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3656   NameContext *pNC = pWalker->u.pNC;
3657   if( pNC->nDepth==0 ){
3658     pNC->nDepth++;
3659     sqlite3WalkSelect(pWalker, pSelect);
3660     pNC->nDepth--;
3661     return WRC_Prune;
3662   }else{
3663     return WRC_Continue;
3664   }
3665 }
3666 
3667 /*
3668 ** Analyze the given expression looking for aggregate functions and
3669 ** for variables that need to be added to the pParse->aAgg[] array.
3670 ** Make additional entries to the pParse->aAgg[] array as necessary.
3671 **
3672 ** This routine should only be called after the expression has been
3673 ** analyzed by sqlite3ResolveExprNames().
3674 */
sqlite3ExprAnalyzeAggregates(NameContext * pNC,Expr * pExpr)3675 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3676   Walker w;
3677   w.xExprCallback = analyzeAggregate;
3678   w.xSelectCallback = analyzeAggregatesInSelect;
3679   w.u.pNC = pNC;
3680   assert( pNC->pSrcList!=0 );
3681   sqlite3WalkExpr(&w, pExpr);
3682 }
3683 
3684 /*
3685 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3686 ** expression list.  Return the number of errors.
3687 **
3688 ** If an error is found, the analysis is cut short.
3689 */
sqlite3ExprAnalyzeAggList(NameContext * pNC,ExprList * pList)3690 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3691   struct ExprList_item *pItem;
3692   int i;
3693   if( pList ){
3694     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3695       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3696     }
3697   }
3698 }
3699 
3700 /*
3701 ** Allocate a single new register for use to hold some intermediate result.
3702 */
sqlite3GetTempReg(Parse * pParse)3703 int sqlite3GetTempReg(Parse *pParse){
3704   if( pParse->nTempReg==0 ){
3705     return ++pParse->nMem;
3706   }
3707   return pParse->aTempReg[--pParse->nTempReg];
3708 }
3709 
3710 /*
3711 ** Deallocate a register, making available for reuse for some other
3712 ** purpose.
3713 **
3714 ** If a register is currently being used by the column cache, then
3715 ** the dallocation is deferred until the column cache line that uses
3716 ** the register becomes stale.
3717 */
sqlite3ReleaseTempReg(Parse * pParse,int iReg)3718 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3719   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3720     int i;
3721     struct yColCache *p;
3722     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3723       if( p->iReg==iReg ){
3724         p->tempReg = 1;
3725         return;
3726       }
3727     }
3728     pParse->aTempReg[pParse->nTempReg++] = iReg;
3729   }
3730 }
3731 
3732 /*
3733 ** Allocate or deallocate a block of nReg consecutive registers
3734 */
sqlite3GetTempRange(Parse * pParse,int nReg)3735 int sqlite3GetTempRange(Parse *pParse, int nReg){
3736   int i, n;
3737   i = pParse->iRangeReg;
3738   n = pParse->nRangeReg;
3739   if( nReg<=n ){
3740     assert( !usedAsColumnCache(pParse, i, i+n-1) );
3741     pParse->iRangeReg += nReg;
3742     pParse->nRangeReg -= nReg;
3743   }else{
3744     i = pParse->nMem+1;
3745     pParse->nMem += nReg;
3746   }
3747   return i;
3748 }
sqlite3ReleaseTempRange(Parse * pParse,int iReg,int nReg)3749 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3750   sqlite3ExprCacheRemove(pParse, iReg, nReg);
3751   if( nReg>pParse->nRangeReg ){
3752     pParse->nRangeReg = nReg;
3753     pParse->iRangeReg = iReg;
3754   }
3755 }
3756