1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself depending on the value of bFree
88 **
89 ** If bFree==1, call sqlite3DbFree() on the p object.
90 ** If bFree==0, Leave the first Select object unfreed
91 */
clearSelect(sqlite3 * db,Select * p,int bFree)92 static void clearSelect(sqlite3 *db, Select *p, int bFree){
93   while( p ){
94     Select *pPrior = p->pPrior;
95     sqlite3ExprListDelete(db, p->pEList);
96     sqlite3SrcListDelete(db, p->pSrc);
97     sqlite3ExprDelete(db, p->pWhere);
98     sqlite3ExprListDelete(db, p->pGroupBy);
99     sqlite3ExprDelete(db, p->pHaving);
100     sqlite3ExprListDelete(db, p->pOrderBy);
101     sqlite3ExprDelete(db, p->pLimit);
102 #ifndef SQLITE_OMIT_WINDOWFUNC
103     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
104       sqlite3WindowListDelete(db, p->pWinDefn);
105     }
106     assert( p->pWin==0 );
107 #endif
108     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
109     if( bFree ) sqlite3DbFreeNN(db, p);
110     p = pPrior;
111     bFree = 1;
112   }
113 }
114 
115 /*
116 ** Initialize a SelectDest structure.
117 */
sqlite3SelectDestInit(SelectDest * pDest,int eDest,int iParm)118 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
119   pDest->eDest = (u8)eDest;
120   pDest->iSDParm = iParm;
121   pDest->zAffSdst = 0;
122   pDest->iSdst = 0;
123   pDest->nSdst = 0;
124 }
125 
126 
127 /*
128 ** Allocate a new Select structure and return a pointer to that
129 ** structure.
130 */
sqlite3SelectNew(Parse * pParse,ExprList * pEList,SrcList * pSrc,Expr * pWhere,ExprList * pGroupBy,Expr * pHaving,ExprList * pOrderBy,u32 selFlags,Expr * pLimit)131 Select *sqlite3SelectNew(
132   Parse *pParse,        /* Parsing context */
133   ExprList *pEList,     /* which columns to include in the result */
134   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
135   Expr *pWhere,         /* the WHERE clause */
136   ExprList *pGroupBy,   /* the GROUP BY clause */
137   Expr *pHaving,        /* the HAVING clause */
138   ExprList *pOrderBy,   /* the ORDER BY clause */
139   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
140   Expr *pLimit          /* LIMIT value.  NULL means not used */
141 ){
142   Select *pNew;
143   Select standin;
144   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
145   if( pNew==0 ){
146     assert( pParse->db->mallocFailed );
147     pNew = &standin;
148   }
149   if( pEList==0 ){
150     pEList = sqlite3ExprListAppend(pParse, 0,
151                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
152   }
153   pNew->pEList = pEList;
154   pNew->op = TK_SELECT;
155   pNew->selFlags = selFlags;
156   pNew->iLimit = 0;
157   pNew->iOffset = 0;
158   pNew->selId = ++pParse->nSelect;
159   pNew->addrOpenEphm[0] = -1;
160   pNew->addrOpenEphm[1] = -1;
161   pNew->nSelectRow = 0;
162   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
163   pNew->pSrc = pSrc;
164   pNew->pWhere = pWhere;
165   pNew->pGroupBy = pGroupBy;
166   pNew->pHaving = pHaving;
167   pNew->pOrderBy = pOrderBy;
168   pNew->pPrior = 0;
169   pNew->pNext = 0;
170   pNew->pLimit = pLimit;
171   pNew->pWith = 0;
172 #ifndef SQLITE_OMIT_WINDOWFUNC
173   pNew->pWin = 0;
174   pNew->pWinDefn = 0;
175 #endif
176   if( pParse->db->mallocFailed ) {
177     clearSelect(pParse->db, pNew, pNew!=&standin);
178     pNew = 0;
179   }else{
180     assert( pNew->pSrc!=0 || pParse->nErr>0 );
181   }
182   assert( pNew!=&standin );
183   return pNew;
184 }
185 
186 
187 /*
188 ** Delete the given Select structure and all of its substructures.
189 */
sqlite3SelectDelete(sqlite3 * db,Select * p)190 void sqlite3SelectDelete(sqlite3 *db, Select *p){
191   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
192 }
193 
194 /*
195 ** Delete all the substructure for p, but keep p allocated.  Redefine
196 ** p to be a single SELECT where every column of the result set has a
197 ** value of NULL.
198 */
sqlite3SelectReset(Parse * pParse,Select * p)199 void sqlite3SelectReset(Parse *pParse, Select *p){
200   if( ALWAYS(p) ){
201     clearSelect(pParse->db, p, 0);
202     memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit));
203     p->pEList = sqlite3ExprListAppend(pParse, 0,
204                      sqlite3ExprAlloc(pParse->db,TK_NULL,0,0));
205     p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList));
206   }
207 }
208 
209 /*
210 ** Return a pointer to the right-most SELECT statement in a compound.
211 */
findRightmost(Select * p)212 static Select *findRightmost(Select *p){
213   while( p->pNext ) p = p->pNext;
214   return p;
215 }
216 
217 /*
218 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
219 ** type of join.  Return an integer constant that expresses that type
220 ** in terms of the following bit values:
221 **
222 **     JT_INNER
223 **     JT_CROSS
224 **     JT_OUTER
225 **     JT_NATURAL
226 **     JT_LEFT
227 **     JT_RIGHT
228 **
229 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
230 **
231 ** If an illegal or unsupported join type is seen, then still return
232 ** a join type, but put an error in the pParse structure.
233 */
sqlite3JoinType(Parse * pParse,Token * pA,Token * pB,Token * pC)234 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
235   int jointype = 0;
236   Token *apAll[3];
237   Token *p;
238                              /*   0123456789 123456789 123456789 123 */
239   static const char zKeyText[] = "naturaleftouterightfullinnercross";
240   static const struct {
241     u8 i;        /* Beginning of keyword text in zKeyText[] */
242     u8 nChar;    /* Length of the keyword in characters */
243     u8 code;     /* Join type mask */
244   } aKeyword[] = {
245     /* natural */ { 0,  7, JT_NATURAL                },
246     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
247     /* outer   */ { 10, 5, JT_OUTER                  },
248     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
249     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
250     /* inner   */ { 23, 5, JT_INNER                  },
251     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
252   };
253   int i, j;
254   apAll[0] = pA;
255   apAll[1] = pB;
256   apAll[2] = pC;
257   for(i=0; i<3 && apAll[i]; i++){
258     p = apAll[i];
259     for(j=0; j<ArraySize(aKeyword); j++){
260       if( p->n==aKeyword[j].nChar
261           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
262         jointype |= aKeyword[j].code;
263         break;
264       }
265     }
266     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
267     if( j>=ArraySize(aKeyword) ){
268       jointype |= JT_ERROR;
269       break;
270     }
271   }
272   if(
273      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
274      (jointype & JT_ERROR)!=0
275   ){
276     const char *zSp = " ";
277     assert( pB!=0 );
278     if( pC==0 ){ zSp++; }
279     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
280        "%T %T%s%T", pA, pB, zSp, pC);
281     jointype = JT_INNER;
282   }else if( (jointype & JT_OUTER)!=0
283          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
284     sqlite3ErrorMsg(pParse,
285       "RIGHT and FULL OUTER JOINs are not currently supported");
286     jointype = JT_INNER;
287   }
288   return jointype;
289 }
290 
291 /*
292 ** Return the index of a column in a table.  Return -1 if the column
293 ** is not contained in the table.
294 */
columnIndex(Table * pTab,const char * zCol)295 static int columnIndex(Table *pTab, const char *zCol){
296   int i;
297   for(i=0; i<pTab->nCol; i++){
298     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
299   }
300   return -1;
301 }
302 
303 /*
304 ** Search the first N tables in pSrc, from left to right, looking for a
305 ** table that has a column named zCol.
306 **
307 ** When found, set *piTab and *piCol to the table index and column index
308 ** of the matching column and return TRUE.
309 **
310 ** If not found, return FALSE.
311 */
tableAndColumnIndex(SrcList * pSrc,int N,const char * zCol,int * piTab,int * piCol,int bIgnoreHidden)312 static int tableAndColumnIndex(
313   SrcList *pSrc,       /* Array of tables to search */
314   int N,               /* Number of tables in pSrc->a[] to search */
315   const char *zCol,    /* Name of the column we are looking for */
316   int *piTab,          /* Write index of pSrc->a[] here */
317   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
318   int bIgnoreHidden    /* True to ignore hidden columns */
319 ){
320   int i;               /* For looping over tables in pSrc */
321   int iCol;            /* Index of column matching zCol */
322 
323   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
324   for(i=0; i<N; i++){
325     iCol = columnIndex(pSrc->a[i].pTab, zCol);
326     if( iCol>=0
327      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
328     ){
329       if( piTab ){
330         *piTab = i;
331         *piCol = iCol;
332       }
333       return 1;
334     }
335   }
336   return 0;
337 }
338 
339 /*
340 ** This function is used to add terms implied by JOIN syntax to the
341 ** WHERE clause expression of a SELECT statement. The new term, which
342 ** is ANDed with the existing WHERE clause, is of the form:
343 **
344 **    (tab1.col1 = tab2.col2)
345 **
346 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
347 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
348 ** column iColRight of tab2.
349 */
addWhereTerm(Parse * pParse,SrcList * pSrc,int iLeft,int iColLeft,int iRight,int iColRight,int isOuterJoin,Expr ** ppWhere)350 static void addWhereTerm(
351   Parse *pParse,                  /* Parsing context */
352   SrcList *pSrc,                  /* List of tables in FROM clause */
353   int iLeft,                      /* Index of first table to join in pSrc */
354   int iColLeft,                   /* Index of column in first table */
355   int iRight,                     /* Index of second table in pSrc */
356   int iColRight,                  /* Index of column in second table */
357   int isOuterJoin,                /* True if this is an OUTER join */
358   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
359 ){
360   sqlite3 *db = pParse->db;
361   Expr *pE1;
362   Expr *pE2;
363   Expr *pEq;
364 
365   assert( iLeft<iRight );
366   assert( pSrc->nSrc>iRight );
367   assert( pSrc->a[iLeft].pTab );
368   assert( pSrc->a[iRight].pTab );
369 
370   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
371   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
372 
373   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
374   if( pEq && isOuterJoin ){
375     ExprSetProperty(pEq, EP_FromJoin);
376     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
377     ExprSetVVAProperty(pEq, EP_NoReduce);
378     pEq->iRightJoinTable = (i16)pE2->iTable;
379   }
380   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
381 }
382 
383 /*
384 ** Set the EP_FromJoin property on all terms of the given expression.
385 ** And set the Expr.iRightJoinTable to iTable for every term in the
386 ** expression.
387 **
388 ** The EP_FromJoin property is used on terms of an expression to tell
389 ** the LEFT OUTER JOIN processing logic that this term is part of the
390 ** join restriction specified in the ON or USING clause and not a part
391 ** of the more general WHERE clause.  These terms are moved over to the
392 ** WHERE clause during join processing but we need to remember that they
393 ** originated in the ON or USING clause.
394 **
395 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
396 ** expression depends on table iRightJoinTable even if that table is not
397 ** explicitly mentioned in the expression.  That information is needed
398 ** for cases like this:
399 **
400 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
401 **
402 ** The where clause needs to defer the handling of the t1.x=5
403 ** term until after the t2 loop of the join.  In that way, a
404 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
405 ** defer the handling of t1.x=5, it will be processed immediately
406 ** after the t1 loop and rows with t1.x!=5 will never appear in
407 ** the output, which is incorrect.
408 */
sqlite3SetJoinExpr(Expr * p,int iTable)409 void sqlite3SetJoinExpr(Expr *p, int iTable){
410   while( p ){
411     ExprSetProperty(p, EP_FromJoin);
412     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
413     ExprSetVVAProperty(p, EP_NoReduce);
414     p->iRightJoinTable = (i16)iTable;
415     if( p->op==TK_FUNCTION && p->x.pList ){
416       int i;
417       for(i=0; i<p->x.pList->nExpr; i++){
418         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
419       }
420     }
421     sqlite3SetJoinExpr(p->pLeft, iTable);
422     p = p->pRight;
423   }
424 }
425 
426 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
427 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
428 ** an ordinary term that omits the EP_FromJoin mark.
429 **
430 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
431 */
unsetJoinExpr(Expr * p,int iTable)432 static void unsetJoinExpr(Expr *p, int iTable){
433   while( p ){
434     if( ExprHasProperty(p, EP_FromJoin)
435      && (iTable<0 || p->iRightJoinTable==iTable) ){
436       ExprClearProperty(p, EP_FromJoin);
437     }
438     if( p->op==TK_FUNCTION && p->x.pList ){
439       int i;
440       for(i=0; i<p->x.pList->nExpr; i++){
441         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
442       }
443     }
444     unsetJoinExpr(p->pLeft, iTable);
445     p = p->pRight;
446   }
447 }
448 
449 /*
450 ** This routine processes the join information for a SELECT statement.
451 ** ON and USING clauses are converted into extra terms of the WHERE clause.
452 ** NATURAL joins also create extra WHERE clause terms.
453 **
454 ** The terms of a FROM clause are contained in the Select.pSrc structure.
455 ** The left most table is the first entry in Select.pSrc.  The right-most
456 ** table is the last entry.  The join operator is held in the entry to
457 ** the left.  Thus entry 0 contains the join operator for the join between
458 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
459 ** also attached to the left entry.
460 **
461 ** This routine returns the number of errors encountered.
462 */
sqliteProcessJoin(Parse * pParse,Select * p)463 static int sqliteProcessJoin(Parse *pParse, Select *p){
464   SrcList *pSrc;                  /* All tables in the FROM clause */
465   int i, j;                       /* Loop counters */
466   struct SrcList_item *pLeft;     /* Left table being joined */
467   struct SrcList_item *pRight;    /* Right table being joined */
468 
469   pSrc = p->pSrc;
470   pLeft = &pSrc->a[0];
471   pRight = &pLeft[1];
472   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
473     Table *pRightTab = pRight->pTab;
474     int isOuter;
475 
476     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
477     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
478 
479     /* When the NATURAL keyword is present, add WHERE clause terms for
480     ** every column that the two tables have in common.
481     */
482     if( pRight->fg.jointype & JT_NATURAL ){
483       if( pRight->pOn || pRight->pUsing ){
484         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
485            "an ON or USING clause", 0);
486         return 1;
487       }
488       for(j=0; j<pRightTab->nCol; j++){
489         char *zName;   /* Name of column in the right table */
490         int iLeft;     /* Matching left table */
491         int iLeftCol;  /* Matching column in the left table */
492 
493         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
494         zName = pRightTab->aCol[j].zName;
495         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
496           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
497                 isOuter, &p->pWhere);
498         }
499       }
500     }
501 
502     /* Disallow both ON and USING clauses in the same join
503     */
504     if( pRight->pOn && pRight->pUsing ){
505       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
506         "clauses in the same join");
507       return 1;
508     }
509 
510     /* Add the ON clause to the end of the WHERE clause, connected by
511     ** an AND operator.
512     */
513     if( pRight->pOn ){
514       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
515       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
516       pRight->pOn = 0;
517     }
518 
519     /* Create extra terms on the WHERE clause for each column named
520     ** in the USING clause.  Example: If the two tables to be joined are
521     ** A and B and the USING clause names X, Y, and Z, then add this
522     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
523     ** Report an error if any column mentioned in the USING clause is
524     ** not contained in both tables to be joined.
525     */
526     if( pRight->pUsing ){
527       IdList *pList = pRight->pUsing;
528       for(j=0; j<pList->nId; j++){
529         char *zName;     /* Name of the term in the USING clause */
530         int iLeft;       /* Table on the left with matching column name */
531         int iLeftCol;    /* Column number of matching column on the left */
532         int iRightCol;   /* Column number of matching column on the right */
533 
534         zName = pList->a[j].zName;
535         iRightCol = columnIndex(pRightTab, zName);
536         if( iRightCol<0
537          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
538         ){
539           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
540             "not present in both tables", zName);
541           return 1;
542         }
543         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
544                      isOuter, &p->pWhere);
545       }
546     }
547   }
548   return 0;
549 }
550 
551 /*
552 ** An instance of this object holds information (beyond pParse and pSelect)
553 ** needed to load the next result row that is to be added to the sorter.
554 */
555 typedef struct RowLoadInfo RowLoadInfo;
556 struct RowLoadInfo {
557   int regResult;               /* Store results in array of registers here */
558   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
559 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
560   ExprList *pExtra;            /* Extra columns needed by sorter refs */
561   int regExtraResult;          /* Where to load the extra columns */
562 #endif
563 };
564 
565 /*
566 ** This routine does the work of loading query data into an array of
567 ** registers so that it can be added to the sorter.
568 */
innerLoopLoadRow(Parse * pParse,Select * pSelect,RowLoadInfo * pInfo)569 static void innerLoopLoadRow(
570   Parse *pParse,             /* Statement under construction */
571   Select *pSelect,           /* The query being coded */
572   RowLoadInfo *pInfo         /* Info needed to complete the row load */
573 ){
574   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
575                           0, pInfo->ecelFlags);
576 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
577   if( pInfo->pExtra ){
578     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
579     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
580   }
581 #endif
582 }
583 
584 /*
585 ** Code the OP_MakeRecord instruction that generates the entry to be
586 ** added into the sorter.
587 **
588 ** Return the register in which the result is stored.
589 */
makeSorterRecord(Parse * pParse,SortCtx * pSort,Select * pSelect,int regBase,int nBase)590 static int makeSorterRecord(
591   Parse *pParse,
592   SortCtx *pSort,
593   Select *pSelect,
594   int regBase,
595   int nBase
596 ){
597   int nOBSat = pSort->nOBSat;
598   Vdbe *v = pParse->pVdbe;
599   int regOut = ++pParse->nMem;
600   if( pSort->pDeferredRowLoad ){
601     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
602   }
603   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
604   return regOut;
605 }
606 
607 /*
608 ** Generate code that will push the record in registers regData
609 ** through regData+nData-1 onto the sorter.
610 */
pushOntoSorter(Parse * pParse,SortCtx * pSort,Select * pSelect,int regData,int regOrigData,int nData,int nPrefixReg)611 static void pushOntoSorter(
612   Parse *pParse,         /* Parser context */
613   SortCtx *pSort,        /* Information about the ORDER BY clause */
614   Select *pSelect,       /* The whole SELECT statement */
615   int regData,           /* First register holding data to be sorted */
616   int regOrigData,       /* First register holding data before packing */
617   int nData,             /* Number of elements in the regData data array */
618   int nPrefixReg         /* No. of reg prior to regData available for use */
619 ){
620   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
621   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
622   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
623   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
624   int regBase;                                     /* Regs for sorter record */
625   int regRecord = 0;                               /* Assembled sorter record */
626   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
627   int op;                            /* Opcode to add sorter record to sorter */
628   int iLimit;                        /* LIMIT counter */
629   int iSkip = 0;                     /* End of the sorter insert loop */
630 
631   assert( bSeq==0 || bSeq==1 );
632 
633   /* Three cases:
634   **   (1) The data to be sorted has already been packed into a Record
635   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
636   **       will be completely unrelated to regOrigData.
637   **   (2) All output columns are included in the sort record.  In that
638   **       case regData==regOrigData.
639   **   (3) Some output columns are omitted from the sort record due to
640   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
641   **       SQLITE_ECEL_OMITREF optimization, or due to the
642   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
643   **       regOrigData is 0 to prevent this routine from trying to copy
644   **       values that might not yet exist.
645   */
646   assert( nData==1 || regData==regOrigData || regOrigData==0 );
647 
648   if( nPrefixReg ){
649     assert( nPrefixReg==nExpr+bSeq );
650     regBase = regData - nPrefixReg;
651   }else{
652     regBase = pParse->nMem + 1;
653     pParse->nMem += nBase;
654   }
655   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
656   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
657   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
658   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
659                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
660   if( bSeq ){
661     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
662   }
663   if( nPrefixReg==0 && nData>0 ){
664     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
665   }
666   if( nOBSat>0 ){
667     int regPrevKey;   /* The first nOBSat columns of the previous row */
668     int addrFirst;    /* Address of the OP_IfNot opcode */
669     int addrJmp;      /* Address of the OP_Jump opcode */
670     VdbeOp *pOp;      /* Opcode that opens the sorter */
671     int nKey;         /* Number of sorting key columns, including OP_Sequence */
672     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
673 
674     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
675     regPrevKey = pParse->nMem+1;
676     pParse->nMem += pSort->nOBSat;
677     nKey = nExpr - pSort->nOBSat + bSeq;
678     if( bSeq ){
679       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
680     }else{
681       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
682     }
683     VdbeCoverage(v);
684     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
685     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
686     if( pParse->db->mallocFailed ) return;
687     pOp->p2 = nKey + nData;
688     pKI = pOp->p4.pKeyInfo;
689     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
690     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
691     testcase( pKI->nAllField > pKI->nKeyField+2 );
692     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
693                                            pKI->nAllField-pKI->nKeyField-1);
694     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
695     addrJmp = sqlite3VdbeCurrentAddr(v);
696     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
697     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
698     pSort->regReturn = ++pParse->nMem;
699     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
700     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
701     if( iLimit ){
702       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
703       VdbeCoverage(v);
704     }
705     sqlite3VdbeJumpHere(v, addrFirst);
706     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
707     sqlite3VdbeJumpHere(v, addrJmp);
708   }
709   if( iLimit ){
710     /* At this point the values for the new sorter entry are stored
711     ** in an array of registers. They need to be composed into a record
712     ** and inserted into the sorter if either (a) there are currently
713     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
714     ** the largest record currently in the sorter. If (b) is true and there
715     ** are already LIMIT+OFFSET items in the sorter, delete the largest
716     ** entry before inserting the new one. This way there are never more
717     ** than LIMIT+OFFSET items in the sorter.
718     **
719     ** If the new record does not need to be inserted into the sorter,
720     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
721     ** value is not zero, then it is a label of where to jump.  Otherwise,
722     ** just bypass the row insert logic.  See the header comment on the
723     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
724     */
725     int iCsr = pSort->iECursor;
726     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
727     VdbeCoverage(v);
728     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
729     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
730                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
731     VdbeCoverage(v);
732     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
733   }
734   if( regRecord==0 ){
735     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
736   }
737   if( pSort->sortFlags & SORTFLAG_UseSorter ){
738     op = OP_SorterInsert;
739   }else{
740     op = OP_IdxInsert;
741   }
742   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
743                        regBase+nOBSat, nBase-nOBSat);
744   if( iSkip ){
745     sqlite3VdbeChangeP2(v, iSkip,
746          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
747   }
748 }
749 
750 /*
751 ** Add code to implement the OFFSET
752 */
codeOffset(Vdbe * v,int iOffset,int iContinue)753 static void codeOffset(
754   Vdbe *v,          /* Generate code into this VM */
755   int iOffset,      /* Register holding the offset counter */
756   int iContinue     /* Jump here to skip the current record */
757 ){
758   if( iOffset>0 ){
759     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
760     VdbeComment((v, "OFFSET"));
761   }
762 }
763 
764 /*
765 ** Add code that will check to make sure the N registers starting at iMem
766 ** form a distinct entry.  iTab is a sorting index that holds previously
767 ** seen combinations of the N values.  A new entry is made in iTab
768 ** if the current N values are new.
769 **
770 ** A jump to addrRepeat is made and the N+1 values are popped from the
771 ** stack if the top N elements are not distinct.
772 */
codeDistinct(Parse * pParse,int iTab,int addrRepeat,int N,int iMem)773 static void codeDistinct(
774   Parse *pParse,     /* Parsing and code generating context */
775   int iTab,          /* A sorting index used to test for distinctness */
776   int addrRepeat,    /* Jump to here if not distinct */
777   int N,             /* Number of elements */
778   int iMem           /* First element */
779 ){
780   Vdbe *v;
781   int r1;
782 
783   v = pParse->pVdbe;
784   r1 = sqlite3GetTempReg(pParse);
785   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
786   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
787   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
788   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
789   sqlite3ReleaseTempReg(pParse, r1);
790 }
791 
792 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
793 /*
794 ** This function is called as part of inner-loop generation for a SELECT
795 ** statement with an ORDER BY that is not optimized by an index. It
796 ** determines the expressions, if any, that the sorter-reference
797 ** optimization should be used for. The sorter-reference optimization
798 ** is used for SELECT queries like:
799 **
800 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
801 **
802 ** If the optimization is used for expression "bigblob", then instead of
803 ** storing values read from that column in the sorter records, the PK of
804 ** the row from table t1 is stored instead. Then, as records are extracted from
805 ** the sorter to return to the user, the required value of bigblob is
806 ** retrieved directly from table t1. If the values are very large, this
807 ** can be more efficient than storing them directly in the sorter records.
808 **
809 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
810 ** for which the sorter-reference optimization should be enabled.
811 ** Additionally, the pSort->aDefer[] array is populated with entries
812 ** for all cursors required to evaluate all selected expressions. Finally.
813 ** output variable (*ppExtra) is set to an expression list containing
814 ** expressions for all extra PK values that should be stored in the
815 ** sorter records.
816 */
selectExprDefer(Parse * pParse,SortCtx * pSort,ExprList * pEList,ExprList ** ppExtra)817 static void selectExprDefer(
818   Parse *pParse,                  /* Leave any error here */
819   SortCtx *pSort,                 /* Sorter context */
820   ExprList *pEList,               /* Expressions destined for sorter */
821   ExprList **ppExtra              /* Expressions to append to sorter record */
822 ){
823   int i;
824   int nDefer = 0;
825   ExprList *pExtra = 0;
826   for(i=0; i<pEList->nExpr; i++){
827     struct ExprList_item *pItem = &pEList->a[i];
828     if( pItem->u.x.iOrderByCol==0 ){
829       Expr *pExpr = pItem->pExpr;
830       Table *pTab = pExpr->y.pTab;
831       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
832        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
833       ){
834         int j;
835         for(j=0; j<nDefer; j++){
836           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
837         }
838         if( j==nDefer ){
839           if( nDefer==ArraySize(pSort->aDefer) ){
840             continue;
841           }else{
842             int nKey = 1;
843             int k;
844             Index *pPk = 0;
845             if( !HasRowid(pTab) ){
846               pPk = sqlite3PrimaryKeyIndex(pTab);
847               nKey = pPk->nKeyCol;
848             }
849             for(k=0; k<nKey; k++){
850               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
851               if( pNew ){
852                 pNew->iTable = pExpr->iTable;
853                 pNew->y.pTab = pExpr->y.pTab;
854                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
855                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
856               }
857             }
858             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
859             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
860             pSort->aDefer[nDefer].nKey = nKey;
861             nDefer++;
862           }
863         }
864         pItem->bSorterRef = 1;
865       }
866     }
867   }
868   pSort->nDefer = (u8)nDefer;
869   *ppExtra = pExtra;
870 }
871 #endif
872 
873 /*
874 ** This routine generates the code for the inside of the inner loop
875 ** of a SELECT.
876 **
877 ** If srcTab is negative, then the p->pEList expressions
878 ** are evaluated in order to get the data for this row.  If srcTab is
879 ** zero or more, then data is pulled from srcTab and p->pEList is used only
880 ** to get the number of columns and the collation sequence for each column.
881 */
selectInnerLoop(Parse * pParse,Select * p,int srcTab,SortCtx * pSort,DistinctCtx * pDistinct,SelectDest * pDest,int iContinue,int iBreak)882 static void selectInnerLoop(
883   Parse *pParse,          /* The parser context */
884   Select *p,              /* The complete select statement being coded */
885   int srcTab,             /* Pull data from this table if non-negative */
886   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
887   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
888   SelectDest *pDest,      /* How to dispose of the results */
889   int iContinue,          /* Jump here to continue with next row */
890   int iBreak              /* Jump here to break out of the inner loop */
891 ){
892   Vdbe *v = pParse->pVdbe;
893   int i;
894   int hasDistinct;            /* True if the DISTINCT keyword is present */
895   int eDest = pDest->eDest;   /* How to dispose of results */
896   int iParm = pDest->iSDParm; /* First argument to disposal method */
897   int nResultCol;             /* Number of result columns */
898   int nPrefixReg = 0;         /* Number of extra registers before regResult */
899   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
900 
901   /* Usually, regResult is the first cell in an array of memory cells
902   ** containing the current result row. In this case regOrig is set to the
903   ** same value. However, if the results are being sent to the sorter, the
904   ** values for any expressions that are also part of the sort-key are omitted
905   ** from this array. In this case regOrig is set to zero.  */
906   int regResult;              /* Start of memory holding current results */
907   int regOrig;                /* Start of memory holding full result (or 0) */
908 
909   assert( v );
910   assert( p->pEList!=0 );
911   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
912   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
913   if( pSort==0 && !hasDistinct ){
914     assert( iContinue!=0 );
915     codeOffset(v, p->iOffset, iContinue);
916   }
917 
918   /* Pull the requested columns.
919   */
920   nResultCol = p->pEList->nExpr;
921 
922   if( pDest->iSdst==0 ){
923     if( pSort ){
924       nPrefixReg = pSort->pOrderBy->nExpr;
925       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
926       pParse->nMem += nPrefixReg;
927     }
928     pDest->iSdst = pParse->nMem+1;
929     pParse->nMem += nResultCol;
930   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
931     /* This is an error condition that can result, for example, when a SELECT
932     ** on the right-hand side of an INSERT contains more result columns than
933     ** there are columns in the table on the left.  The error will be caught
934     ** and reported later.  But we need to make sure enough memory is allocated
935     ** to avoid other spurious errors in the meantime. */
936     pParse->nMem += nResultCol;
937   }
938   pDest->nSdst = nResultCol;
939   regOrig = regResult = pDest->iSdst;
940   if( srcTab>=0 ){
941     for(i=0; i<nResultCol; i++){
942       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
943       VdbeComment((v, "%s", p->pEList->a[i].zEName));
944     }
945   }else if( eDest!=SRT_Exists ){
946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
947     ExprList *pExtra = 0;
948 #endif
949     /* If the destination is an EXISTS(...) expression, the actual
950     ** values returned by the SELECT are not required.
951     */
952     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
953     ExprList *pEList;
954     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
955       ecelFlags = SQLITE_ECEL_DUP;
956     }else{
957       ecelFlags = 0;
958     }
959     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
960       /* For each expression in p->pEList that is a copy of an expression in
961       ** the ORDER BY clause (pSort->pOrderBy), set the associated
962       ** iOrderByCol value to one more than the index of the ORDER BY
963       ** expression within the sort-key that pushOntoSorter() will generate.
964       ** This allows the p->pEList field to be omitted from the sorted record,
965       ** saving space and CPU cycles.  */
966       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
967 
968       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
969         int j;
970         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
971           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
972         }
973       }
974 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
975       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
976       if( pExtra && pParse->db->mallocFailed==0 ){
977         /* If there are any extra PK columns to add to the sorter records,
978         ** allocate extra memory cells and adjust the OpenEphemeral
979         ** instruction to account for the larger records. This is only
980         ** required if there are one or more WITHOUT ROWID tables with
981         ** composite primary keys in the SortCtx.aDefer[] array.  */
982         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
983         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
984         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
985         pParse->nMem += pExtra->nExpr;
986       }
987 #endif
988 
989       /* Adjust nResultCol to account for columns that are omitted
990       ** from the sorter by the optimizations in this branch */
991       pEList = p->pEList;
992       for(i=0; i<pEList->nExpr; i++){
993         if( pEList->a[i].u.x.iOrderByCol>0
994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
995          || pEList->a[i].bSorterRef
996 #endif
997         ){
998           nResultCol--;
999           regOrig = 0;
1000         }
1001       }
1002 
1003       testcase( regOrig );
1004       testcase( eDest==SRT_Set );
1005       testcase( eDest==SRT_Mem );
1006       testcase( eDest==SRT_Coroutine );
1007       testcase( eDest==SRT_Output );
1008       assert( eDest==SRT_Set || eDest==SRT_Mem
1009            || eDest==SRT_Coroutine || eDest==SRT_Output );
1010     }
1011     sRowLoadInfo.regResult = regResult;
1012     sRowLoadInfo.ecelFlags = ecelFlags;
1013 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1014     sRowLoadInfo.pExtra = pExtra;
1015     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1016     if( pExtra ) nResultCol += pExtra->nExpr;
1017 #endif
1018     if( p->iLimit
1019      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1020      && nPrefixReg>0
1021     ){
1022       assert( pSort!=0 );
1023       assert( hasDistinct==0 );
1024       pSort->pDeferredRowLoad = &sRowLoadInfo;
1025       regOrig = 0;
1026     }else{
1027       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1028     }
1029   }
1030 
1031   /* If the DISTINCT keyword was present on the SELECT statement
1032   ** and this row has been seen before, then do not make this row
1033   ** part of the result.
1034   */
1035   if( hasDistinct ){
1036     switch( pDistinct->eTnctType ){
1037       case WHERE_DISTINCT_ORDERED: {
1038         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1039         int iJump;              /* Jump destination */
1040         int regPrev;            /* Previous row content */
1041 
1042         /* Allocate space for the previous row */
1043         regPrev = pParse->nMem+1;
1044         pParse->nMem += nResultCol;
1045 
1046         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1047         ** sets the MEM_Cleared bit on the first register of the
1048         ** previous value.  This will cause the OP_Ne below to always
1049         ** fail on the first iteration of the loop even if the first
1050         ** row is all NULLs.
1051         */
1052         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1053         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1054         pOp->opcode = OP_Null;
1055         pOp->p1 = 1;
1056         pOp->p2 = regPrev;
1057         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1058 
1059         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1060         for(i=0; i<nResultCol; i++){
1061           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1062           if( i<nResultCol-1 ){
1063             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1064             VdbeCoverage(v);
1065           }else{
1066             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1067             VdbeCoverage(v);
1068            }
1069           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1070           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1071         }
1072         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1073         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1074         break;
1075       }
1076 
1077       case WHERE_DISTINCT_UNIQUE: {
1078         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1079         break;
1080       }
1081 
1082       default: {
1083         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1084         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1085                      regResult);
1086         break;
1087       }
1088     }
1089     if( pSort==0 ){
1090       codeOffset(v, p->iOffset, iContinue);
1091     }
1092   }
1093 
1094   switch( eDest ){
1095     /* In this mode, write each query result to the key of the temporary
1096     ** table iParm.
1097     */
1098 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1099     case SRT_Union: {
1100       int r1;
1101       r1 = sqlite3GetTempReg(pParse);
1102       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1103       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1104       sqlite3ReleaseTempReg(pParse, r1);
1105       break;
1106     }
1107 
1108     /* Construct a record from the query result, but instead of
1109     ** saving that record, use it as a key to delete elements from
1110     ** the temporary table iParm.
1111     */
1112     case SRT_Except: {
1113       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1114       break;
1115     }
1116 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1117 
1118     /* Store the result as data using a unique key.
1119     */
1120     case SRT_Fifo:
1121     case SRT_DistFifo:
1122     case SRT_Table:
1123     case SRT_EphemTab: {
1124       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1125       testcase( eDest==SRT_Table );
1126       testcase( eDest==SRT_EphemTab );
1127       testcase( eDest==SRT_Fifo );
1128       testcase( eDest==SRT_DistFifo );
1129       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1130 #ifndef SQLITE_OMIT_CTE
1131       if( eDest==SRT_DistFifo ){
1132         /* If the destination is DistFifo, then cursor (iParm+1) is open
1133         ** on an ephemeral index. If the current row is already present
1134         ** in the index, do not write it to the output. If not, add the
1135         ** current row to the index and proceed with writing it to the
1136         ** output table as well.  */
1137         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1138         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1139         VdbeCoverage(v);
1140         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1141         assert( pSort==0 );
1142       }
1143 #endif
1144       if( pSort ){
1145         assert( regResult==regOrig );
1146         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1147       }else{
1148         int r2 = sqlite3GetTempReg(pParse);
1149         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1150         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1151         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1152         sqlite3ReleaseTempReg(pParse, r2);
1153       }
1154       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1155       break;
1156     }
1157 
1158 #ifndef SQLITE_OMIT_SUBQUERY
1159     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1160     ** then there should be a single item on the stack.  Write this
1161     ** item into the set table with bogus data.
1162     */
1163     case SRT_Set: {
1164       if( pSort ){
1165         /* At first glance you would think we could optimize out the
1166         ** ORDER BY in this case since the order of entries in the set
1167         ** does not matter.  But there might be a LIMIT clause, in which
1168         ** case the order does matter */
1169         pushOntoSorter(
1170             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1171       }else{
1172         int r1 = sqlite3GetTempReg(pParse);
1173         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1174         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1175             r1, pDest->zAffSdst, nResultCol);
1176         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1177         sqlite3ReleaseTempReg(pParse, r1);
1178       }
1179       break;
1180     }
1181 
1182     /* If any row exist in the result set, record that fact and abort.
1183     */
1184     case SRT_Exists: {
1185       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1186       /* The LIMIT clause will terminate the loop for us */
1187       break;
1188     }
1189 
1190     /* If this is a scalar select that is part of an expression, then
1191     ** store the results in the appropriate memory cell or array of
1192     ** memory cells and break out of the scan loop.
1193     */
1194     case SRT_Mem: {
1195       if( pSort ){
1196         assert( nResultCol<=pDest->nSdst );
1197         pushOntoSorter(
1198             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1199       }else{
1200         assert( nResultCol==pDest->nSdst );
1201         assert( regResult==iParm );
1202         /* The LIMIT clause will jump out of the loop for us */
1203       }
1204       break;
1205     }
1206 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1207 
1208     case SRT_Coroutine:       /* Send data to a co-routine */
1209     case SRT_Output: {        /* Return the results */
1210       testcase( eDest==SRT_Coroutine );
1211       testcase( eDest==SRT_Output );
1212       if( pSort ){
1213         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1214                        nPrefixReg);
1215       }else if( eDest==SRT_Coroutine ){
1216         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1217       }else{
1218         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1219       }
1220       break;
1221     }
1222 
1223 #ifndef SQLITE_OMIT_CTE
1224     /* Write the results into a priority queue that is order according to
1225     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1226     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1227     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1228     ** final OP_Sequence column.  The last column is the record as a blob.
1229     */
1230     case SRT_DistQueue:
1231     case SRT_Queue: {
1232       int nKey;
1233       int r1, r2, r3;
1234       int addrTest = 0;
1235       ExprList *pSO;
1236       pSO = pDest->pOrderBy;
1237       assert( pSO );
1238       nKey = pSO->nExpr;
1239       r1 = sqlite3GetTempReg(pParse);
1240       r2 = sqlite3GetTempRange(pParse, nKey+2);
1241       r3 = r2+nKey+1;
1242       if( eDest==SRT_DistQueue ){
1243         /* If the destination is DistQueue, then cursor (iParm+1) is open
1244         ** on a second ephemeral index that holds all values every previously
1245         ** added to the queue. */
1246         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1247                                         regResult, nResultCol);
1248         VdbeCoverage(v);
1249       }
1250       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1251       if( eDest==SRT_DistQueue ){
1252         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1253         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1254       }
1255       for(i=0; i<nKey; i++){
1256         sqlite3VdbeAddOp2(v, OP_SCopy,
1257                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1258                           r2+i);
1259       }
1260       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1261       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1262       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1263       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1264       sqlite3ReleaseTempReg(pParse, r1);
1265       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1266       break;
1267     }
1268 #endif /* SQLITE_OMIT_CTE */
1269 
1270 
1271 
1272 #if !defined(SQLITE_OMIT_TRIGGER)
1273     /* Discard the results.  This is used for SELECT statements inside
1274     ** the body of a TRIGGER.  The purpose of such selects is to call
1275     ** user-defined functions that have side effects.  We do not care
1276     ** about the actual results of the select.
1277     */
1278     default: {
1279       assert( eDest==SRT_Discard );
1280       break;
1281     }
1282 #endif
1283   }
1284 
1285   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1286   ** there is a sorter, in which case the sorter has already limited
1287   ** the output for us.
1288   */
1289   if( pSort==0 && p->iLimit ){
1290     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1291   }
1292 }
1293 
1294 /*
1295 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1296 ** X extra columns.
1297 */
sqlite3KeyInfoAlloc(sqlite3 * db,int N,int X)1298 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1299   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1300   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1301   if( p ){
1302     p->aSortFlags = (u8*)&p->aColl[N+X];
1303     p->nKeyField = (u16)N;
1304     p->nAllField = (u16)(N+X);
1305     p->enc = ENC(db);
1306     p->db = db;
1307     p->nRef = 1;
1308     memset(&p[1], 0, nExtra);
1309   }else{
1310     sqlite3OomFault(db);
1311   }
1312   return p;
1313 }
1314 
1315 /*
1316 ** Deallocate a KeyInfo object
1317 */
sqlite3KeyInfoUnref(KeyInfo * p)1318 void sqlite3KeyInfoUnref(KeyInfo *p){
1319   if( p ){
1320     assert( p->nRef>0 );
1321     p->nRef--;
1322     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1323   }
1324 }
1325 
1326 /*
1327 ** Make a new pointer to a KeyInfo object
1328 */
sqlite3KeyInfoRef(KeyInfo * p)1329 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1330   if( p ){
1331     assert( p->nRef>0 );
1332     p->nRef++;
1333   }
1334   return p;
1335 }
1336 
1337 #ifdef SQLITE_DEBUG
1338 /*
1339 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1340 ** can only be changed if this is just a single reference to the object.
1341 **
1342 ** This routine is used only inside of assert() statements.
1343 */
sqlite3KeyInfoIsWriteable(KeyInfo * p)1344 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1345 #endif /* SQLITE_DEBUG */
1346 
1347 /*
1348 ** Given an expression list, generate a KeyInfo structure that records
1349 ** the collating sequence for each expression in that expression list.
1350 **
1351 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1352 ** KeyInfo structure is appropriate for initializing a virtual index to
1353 ** implement that clause.  If the ExprList is the result set of a SELECT
1354 ** then the KeyInfo structure is appropriate for initializing a virtual
1355 ** index to implement a DISTINCT test.
1356 **
1357 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1358 ** function is responsible for seeing that this structure is eventually
1359 ** freed.
1360 */
sqlite3KeyInfoFromExprList(Parse * pParse,ExprList * pList,int iStart,int nExtra)1361 KeyInfo *sqlite3KeyInfoFromExprList(
1362   Parse *pParse,       /* Parsing context */
1363   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1364   int iStart,          /* Begin with this column of pList */
1365   int nExtra           /* Add this many extra columns to the end */
1366 ){
1367   int nExpr;
1368   KeyInfo *pInfo;
1369   struct ExprList_item *pItem;
1370   sqlite3 *db = pParse->db;
1371   int i;
1372 
1373   nExpr = pList->nExpr;
1374   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1375   if( pInfo ){
1376     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1377     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1378       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1379       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1380     }
1381   }
1382   return pInfo;
1383 }
1384 
1385 /*
1386 ** Name of the connection operator, used for error messages.
1387 */
selectOpName(int id)1388 static const char *selectOpName(int id){
1389   char *z;
1390   switch( id ){
1391     case TK_ALL:       z = "UNION ALL";   break;
1392     case TK_INTERSECT: z = "INTERSECT";   break;
1393     case TK_EXCEPT:    z = "EXCEPT";      break;
1394     default:           z = "UNION";       break;
1395   }
1396   return z;
1397 }
1398 
1399 #ifndef SQLITE_OMIT_EXPLAIN
1400 /*
1401 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1402 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1403 ** where the caption is of the form:
1404 **
1405 **   "USE TEMP B-TREE FOR xxx"
1406 **
1407 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1408 ** is determined by the zUsage argument.
1409 */
explainTempTable(Parse * pParse,const char * zUsage)1410 static void explainTempTable(Parse *pParse, const char *zUsage){
1411   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1412 }
1413 
1414 /*
1415 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1416 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1417 ** in sqlite3Select() to assign values to structure member variables that
1418 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1419 ** code with #ifndef directives.
1420 */
1421 # define explainSetInteger(a, b) a = b
1422 
1423 #else
1424 /* No-op versions of the explainXXX() functions and macros. */
1425 # define explainTempTable(y,z)
1426 # define explainSetInteger(y,z)
1427 #endif
1428 
1429 
1430 /*
1431 ** If the inner loop was generated using a non-null pOrderBy argument,
1432 ** then the results were placed in a sorter.  After the loop is terminated
1433 ** we need to run the sorter and output the results.  The following
1434 ** routine generates the code needed to do that.
1435 */
generateSortTail(Parse * pParse,Select * p,SortCtx * pSort,int nColumn,SelectDest * pDest)1436 static void generateSortTail(
1437   Parse *pParse,    /* Parsing context */
1438   Select *p,        /* The SELECT statement */
1439   SortCtx *pSort,   /* Information on the ORDER BY clause */
1440   int nColumn,      /* Number of columns of data */
1441   SelectDest *pDest /* Write the sorted results here */
1442 ){
1443   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1444   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1445   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1446   int addr;                       /* Top of output loop. Jump for Next. */
1447   int addrOnce = 0;
1448   int iTab;
1449   ExprList *pOrderBy = pSort->pOrderBy;
1450   int eDest = pDest->eDest;
1451   int iParm = pDest->iSDParm;
1452   int regRow;
1453   int regRowid;
1454   int iCol;
1455   int nKey;                       /* Number of key columns in sorter record */
1456   int iSortTab;                   /* Sorter cursor to read from */
1457   int i;
1458   int bSeq;                       /* True if sorter record includes seq. no. */
1459   int nRefKey = 0;
1460   struct ExprList_item *aOutEx = p->pEList->a;
1461 
1462   assert( addrBreak<0 );
1463   if( pSort->labelBkOut ){
1464     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1465     sqlite3VdbeGoto(v, addrBreak);
1466     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1467   }
1468 
1469 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1470   /* Open any cursors needed for sorter-reference expressions */
1471   for(i=0; i<pSort->nDefer; i++){
1472     Table *pTab = pSort->aDefer[i].pTab;
1473     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1474     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1475     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1476   }
1477 #endif
1478 
1479   iTab = pSort->iECursor;
1480   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1481     regRowid = 0;
1482     regRow = pDest->iSdst;
1483   }else{
1484     regRowid = sqlite3GetTempReg(pParse);
1485     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1486       regRow = sqlite3GetTempReg(pParse);
1487       nColumn = 0;
1488     }else{
1489       regRow = sqlite3GetTempRange(pParse, nColumn);
1490     }
1491   }
1492   nKey = pOrderBy->nExpr - pSort->nOBSat;
1493   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1494     int regSortOut = ++pParse->nMem;
1495     iSortTab = pParse->nTab++;
1496     if( pSort->labelBkOut ){
1497       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1498     }
1499     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1500         nKey+1+nColumn+nRefKey);
1501     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1502     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1503     VdbeCoverage(v);
1504     codeOffset(v, p->iOffset, addrContinue);
1505     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1506     bSeq = 0;
1507   }else{
1508     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1509     codeOffset(v, p->iOffset, addrContinue);
1510     iSortTab = iTab;
1511     bSeq = 1;
1512   }
1513   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1514 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1515     if( aOutEx[i].bSorterRef ) continue;
1516 #endif
1517     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1518   }
1519 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1520   if( pSort->nDefer ){
1521     int iKey = iCol+1;
1522     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1523 
1524     for(i=0; i<pSort->nDefer; i++){
1525       int iCsr = pSort->aDefer[i].iCsr;
1526       Table *pTab = pSort->aDefer[i].pTab;
1527       int nKey = pSort->aDefer[i].nKey;
1528 
1529       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1530       if( HasRowid(pTab) ){
1531         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1532         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1533             sqlite3VdbeCurrentAddr(v)+1, regKey);
1534       }else{
1535         int k;
1536         int iJmp;
1537         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1538         for(k=0; k<nKey; k++){
1539           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1540         }
1541         iJmp = sqlite3VdbeCurrentAddr(v);
1542         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1543         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1544         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1545       }
1546     }
1547     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1548   }
1549 #endif
1550   for(i=nColumn-1; i>=0; i--){
1551 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1552     if( aOutEx[i].bSorterRef ){
1553       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1554     }else
1555 #endif
1556     {
1557       int iRead;
1558       if( aOutEx[i].u.x.iOrderByCol ){
1559         iRead = aOutEx[i].u.x.iOrderByCol-1;
1560       }else{
1561         iRead = iCol--;
1562       }
1563       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1564       VdbeComment((v, "%s", aOutEx[i].zEName));
1565     }
1566   }
1567   switch( eDest ){
1568     case SRT_Table:
1569     case SRT_EphemTab: {
1570       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1571       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1572       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1573       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1574       break;
1575     }
1576 #ifndef SQLITE_OMIT_SUBQUERY
1577     case SRT_Set: {
1578       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1579       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1580                         pDest->zAffSdst, nColumn);
1581       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1582       break;
1583     }
1584     case SRT_Mem: {
1585       /* The LIMIT clause will terminate the loop for us */
1586       break;
1587     }
1588 #endif
1589     default: {
1590       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1591       testcase( eDest==SRT_Output );
1592       testcase( eDest==SRT_Coroutine );
1593       if( eDest==SRT_Output ){
1594         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1595       }else{
1596         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1597       }
1598       break;
1599     }
1600   }
1601   if( regRowid ){
1602     if( eDest==SRT_Set ){
1603       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1604     }else{
1605       sqlite3ReleaseTempReg(pParse, regRow);
1606     }
1607     sqlite3ReleaseTempReg(pParse, regRowid);
1608   }
1609   /* The bottom of the loop
1610   */
1611   sqlite3VdbeResolveLabel(v, addrContinue);
1612   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1613     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1614   }else{
1615     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1616   }
1617   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1618   sqlite3VdbeResolveLabel(v, addrBreak);
1619 }
1620 
1621 /*
1622 ** Return a pointer to a string containing the 'declaration type' of the
1623 ** expression pExpr. The string may be treated as static by the caller.
1624 **
1625 ** Also try to estimate the size of the returned value and return that
1626 ** result in *pEstWidth.
1627 **
1628 ** The declaration type is the exact datatype definition extracted from the
1629 ** original CREATE TABLE statement if the expression is a column. The
1630 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1631 ** is considered a column can be complex in the presence of subqueries. The
1632 ** result-set expression in all of the following SELECT statements is
1633 ** considered a column by this function.
1634 **
1635 **   SELECT col FROM tbl;
1636 **   SELECT (SELECT col FROM tbl;
1637 **   SELECT (SELECT col FROM tbl);
1638 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1639 **
1640 ** The declaration type for any expression other than a column is NULL.
1641 **
1642 ** This routine has either 3 or 6 parameters depending on whether or not
1643 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1644 */
1645 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1646 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1647 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1648 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1649 #endif
columnTypeImpl(NameContext * pNC,Expr * pExpr)1650 static const char *columnTypeImpl(
1651   NameContext *pNC,
1652 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1653   Expr *pExpr
1654 #else
1655   Expr *pExpr,
1656   const char **pzOrigDb,
1657   const char **pzOrigTab,
1658   const char **pzOrigCol
1659 #endif
1660 ){
1661   char const *zType = 0;
1662   int j;
1663 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1664   char const *zOrigDb = 0;
1665   char const *zOrigTab = 0;
1666   char const *zOrigCol = 0;
1667 #endif
1668 
1669   assert( pExpr!=0 );
1670   assert( pNC->pSrcList!=0 );
1671   switch( pExpr->op ){
1672     case TK_COLUMN: {
1673       /* The expression is a column. Locate the table the column is being
1674       ** extracted from in NameContext.pSrcList. This table may be real
1675       ** database table or a subquery.
1676       */
1677       Table *pTab = 0;            /* Table structure column is extracted from */
1678       Select *pS = 0;             /* Select the column is extracted from */
1679       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1680       while( pNC && !pTab ){
1681         SrcList *pTabList = pNC->pSrcList;
1682         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1683         if( j<pTabList->nSrc ){
1684           pTab = pTabList->a[j].pTab;
1685           pS = pTabList->a[j].pSelect;
1686         }else{
1687           pNC = pNC->pNext;
1688         }
1689       }
1690 
1691       if( pTab==0 ){
1692         /* At one time, code such as "SELECT new.x" within a trigger would
1693         ** cause this condition to run.  Since then, we have restructured how
1694         ** trigger code is generated and so this condition is no longer
1695         ** possible. However, it can still be true for statements like
1696         ** the following:
1697         **
1698         **   CREATE TABLE t1(col INTEGER);
1699         **   SELECT (SELECT t1.col) FROM FROM t1;
1700         **
1701         ** when columnType() is called on the expression "t1.col" in the
1702         ** sub-select. In this case, set the column type to NULL, even
1703         ** though it should really be "INTEGER".
1704         **
1705         ** This is not a problem, as the column type of "t1.col" is never
1706         ** used. When columnType() is called on the expression
1707         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1708         ** branch below.  */
1709         break;
1710       }
1711 
1712       assert( pTab && pExpr->y.pTab==pTab );
1713       if( pS ){
1714         /* The "table" is actually a sub-select or a view in the FROM clause
1715         ** of the SELECT statement. Return the declaration type and origin
1716         ** data for the result-set column of the sub-select.
1717         */
1718         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1719           /* If iCol is less than zero, then the expression requests the
1720           ** rowid of the sub-select or view. This expression is legal (see
1721           ** test case misc2.2.2) - it always evaluates to NULL.
1722           */
1723           NameContext sNC;
1724           Expr *p = pS->pEList->a[iCol].pExpr;
1725           sNC.pSrcList = pS->pSrc;
1726           sNC.pNext = pNC;
1727           sNC.pParse = pNC->pParse;
1728           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1729         }
1730       }else{
1731         /* A real table or a CTE table */
1732         assert( !pS );
1733 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1734         if( iCol<0 ) iCol = pTab->iPKey;
1735         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1736         if( iCol<0 ){
1737           zType = "INTEGER";
1738           zOrigCol = "rowid";
1739         }else{
1740           zOrigCol = pTab->aCol[iCol].zName;
1741           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1742         }
1743         zOrigTab = pTab->zName;
1744         if( pNC->pParse && pTab->pSchema ){
1745           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1746           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1747         }
1748 #else
1749         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1750         if( iCol<0 ){
1751           zType = "INTEGER";
1752         }else{
1753           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1754         }
1755 #endif
1756       }
1757       break;
1758     }
1759 #ifndef SQLITE_OMIT_SUBQUERY
1760     case TK_SELECT: {
1761       /* The expression is a sub-select. Return the declaration type and
1762       ** origin info for the single column in the result set of the SELECT
1763       ** statement.
1764       */
1765       NameContext sNC;
1766       Select *pS = pExpr->x.pSelect;
1767       Expr *p = pS->pEList->a[0].pExpr;
1768       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1769       sNC.pSrcList = pS->pSrc;
1770       sNC.pNext = pNC;
1771       sNC.pParse = pNC->pParse;
1772       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1773       break;
1774     }
1775 #endif
1776   }
1777 
1778 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1779   if( pzOrigDb ){
1780     assert( pzOrigTab && pzOrigCol );
1781     *pzOrigDb = zOrigDb;
1782     *pzOrigTab = zOrigTab;
1783     *pzOrigCol = zOrigCol;
1784   }
1785 #endif
1786   return zType;
1787 }
1788 
1789 /*
1790 ** Generate code that will tell the VDBE the declaration types of columns
1791 ** in the result set.
1792 */
generateColumnTypes(Parse * pParse,SrcList * pTabList,ExprList * pEList)1793 static void generateColumnTypes(
1794   Parse *pParse,      /* Parser context */
1795   SrcList *pTabList,  /* List of tables */
1796   ExprList *pEList    /* Expressions defining the result set */
1797 ){
1798 #ifndef SQLITE_OMIT_DECLTYPE
1799   Vdbe *v = pParse->pVdbe;
1800   int i;
1801   NameContext sNC;
1802   sNC.pSrcList = pTabList;
1803   sNC.pParse = pParse;
1804   sNC.pNext = 0;
1805   for(i=0; i<pEList->nExpr; i++){
1806     Expr *p = pEList->a[i].pExpr;
1807     const char *zType;
1808 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1809     const char *zOrigDb = 0;
1810     const char *zOrigTab = 0;
1811     const char *zOrigCol = 0;
1812     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1813 
1814     /* The vdbe must make its own copy of the column-type and other
1815     ** column specific strings, in case the schema is reset before this
1816     ** virtual machine is deleted.
1817     */
1818     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1819     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1820     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1821 #else
1822     zType = columnType(&sNC, p, 0, 0, 0);
1823 #endif
1824     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1825   }
1826 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1827 }
1828 
1829 
1830 /*
1831 ** Compute the column names for a SELECT statement.
1832 **
1833 ** The only guarantee that SQLite makes about column names is that if the
1834 ** column has an AS clause assigning it a name, that will be the name used.
1835 ** That is the only documented guarantee.  However, countless applications
1836 ** developed over the years have made baseless assumptions about column names
1837 ** and will break if those assumptions changes.  Hence, use extreme caution
1838 ** when modifying this routine to avoid breaking legacy.
1839 **
1840 ** See Also: sqlite3ColumnsFromExprList()
1841 **
1842 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1843 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1844 ** applications should operate this way.  Nevertheless, we need to support the
1845 ** other modes for legacy:
1846 **
1847 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1848 **                              originally appears in the SELECT statement.  In
1849 **                              other words, the zSpan of the result expression.
1850 **
1851 **    short=ON, full=OFF:       (This is the default setting).  If the result
1852 **                              refers directly to a table column, then the
1853 **                              result column name is just the table column
1854 **                              name: COLUMN.  Otherwise use zSpan.
1855 **
1856 **    full=ON, short=ANY:       If the result refers directly to a table column,
1857 **                              then the result column name with the table name
1858 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1859 */
generateColumnNames(Parse * pParse,Select * pSelect)1860 static void generateColumnNames(
1861   Parse *pParse,      /* Parser context */
1862   Select *pSelect     /* Generate column names for this SELECT statement */
1863 ){
1864   Vdbe *v = pParse->pVdbe;
1865   int i;
1866   Table *pTab;
1867   SrcList *pTabList;
1868   ExprList *pEList;
1869   sqlite3 *db = pParse->db;
1870   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1871   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1872 
1873 #ifndef SQLITE_OMIT_EXPLAIN
1874   /* If this is an EXPLAIN, skip this step */
1875   if( pParse->explain ){
1876     return;
1877   }
1878 #endif
1879 
1880   if( pParse->colNamesSet ) return;
1881   /* Column names are determined by the left-most term of a compound select */
1882   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1883   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1884   pTabList = pSelect->pSrc;
1885   pEList = pSelect->pEList;
1886   assert( v!=0 );
1887   assert( pTabList!=0 );
1888   pParse->colNamesSet = 1;
1889   fullName = (db->flags & SQLITE_FullColNames)!=0;
1890   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1891   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1892   for(i=0; i<pEList->nExpr; i++){
1893     Expr *p = pEList->a[i].pExpr;
1894 
1895     assert( p!=0 );
1896     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1897     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1898     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1899       /* An AS clause always takes first priority */
1900       char *zName = pEList->a[i].zEName;
1901       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1902     }else if( srcName && p->op==TK_COLUMN ){
1903       char *zCol;
1904       int iCol = p->iColumn;
1905       pTab = p->y.pTab;
1906       assert( pTab!=0 );
1907       if( iCol<0 ) iCol = pTab->iPKey;
1908       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1909       if( iCol<0 ){
1910         zCol = "rowid";
1911       }else{
1912         zCol = pTab->aCol[iCol].zName;
1913       }
1914       if( fullName ){
1915         char *zName = 0;
1916         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1917         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1918       }else{
1919         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1920       }
1921     }else{
1922       const char *z = pEList->a[i].zEName;
1923       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1924       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1925     }
1926   }
1927   generateColumnTypes(pParse, pTabList, pEList);
1928 }
1929 
1930 /*
1931 ** Given an expression list (which is really the list of expressions
1932 ** that form the result set of a SELECT statement) compute appropriate
1933 ** column names for a table that would hold the expression list.
1934 **
1935 ** All column names will be unique.
1936 **
1937 ** Only the column names are computed.  Column.zType, Column.zColl,
1938 ** and other fields of Column are zeroed.
1939 **
1940 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1941 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1942 **
1943 ** The only guarantee that SQLite makes about column names is that if the
1944 ** column has an AS clause assigning it a name, that will be the name used.
1945 ** That is the only documented guarantee.  However, countless applications
1946 ** developed over the years have made baseless assumptions about column names
1947 ** and will break if those assumptions changes.  Hence, use extreme caution
1948 ** when modifying this routine to avoid breaking legacy.
1949 **
1950 ** See Also: generateColumnNames()
1951 */
sqlite3ColumnsFromExprList(Parse * pParse,ExprList * pEList,i16 * pnCol,Column ** paCol)1952 int sqlite3ColumnsFromExprList(
1953   Parse *pParse,          /* Parsing context */
1954   ExprList *pEList,       /* Expr list from which to derive column names */
1955   i16 *pnCol,             /* Write the number of columns here */
1956   Column **paCol          /* Write the new column list here */
1957 ){
1958   sqlite3 *db = pParse->db;   /* Database connection */
1959   int i, j;                   /* Loop counters */
1960   u32 cnt;                    /* Index added to make the name unique */
1961   Column *aCol, *pCol;        /* For looping over result columns */
1962   int nCol;                   /* Number of columns in the result set */
1963   char *zName;                /* Column name */
1964   int nName;                  /* Size of name in zName[] */
1965   Hash ht;                    /* Hash table of column names */
1966 
1967   sqlite3HashInit(&ht);
1968   if( pEList ){
1969     nCol = pEList->nExpr;
1970     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1971     testcase( aCol==0 );
1972     if( nCol>32767 ) nCol = 32767;
1973   }else{
1974     nCol = 0;
1975     aCol = 0;
1976   }
1977   assert( nCol==(i16)nCol );
1978   *pnCol = nCol;
1979   *paCol = aCol;
1980 
1981   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1982     /* Get an appropriate name for the column
1983     */
1984     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1985       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1986     }else{
1987       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1988       while( pColExpr->op==TK_DOT ){
1989         pColExpr = pColExpr->pRight;
1990         assert( pColExpr!=0 );
1991       }
1992       if( pColExpr->op==TK_COLUMN ){
1993         /* For columns use the column name name */
1994         int iCol = pColExpr->iColumn;
1995         Table *pTab = pColExpr->y.pTab;
1996         assert( pTab!=0 );
1997         if( iCol<0 ) iCol = pTab->iPKey;
1998         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1999       }else if( pColExpr->op==TK_ID ){
2000         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2001         zName = pColExpr->u.zToken;
2002       }else{
2003         /* Use the original text of the column expression as its name */
2004         zName = pEList->a[i].zEName;
2005       }
2006     }
2007     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2008       zName = sqlite3DbStrDup(db, zName);
2009     }else{
2010       zName = sqlite3MPrintf(db,"column%d",i+1);
2011     }
2012 
2013     /* Make sure the column name is unique.  If the name is not unique,
2014     ** append an integer to the name so that it becomes unique.
2015     */
2016     cnt = 0;
2017     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2018       nName = sqlite3Strlen30(zName);
2019       if( nName>0 ){
2020         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2021         if( zName[j]==':' ) nName = j;
2022       }
2023       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2024       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2025     }
2026     pCol->zName = zName;
2027     sqlite3ColumnPropertiesFromName(0, pCol);
2028     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2029       sqlite3OomFault(db);
2030     }
2031   }
2032   sqlite3HashClear(&ht);
2033   if( db->mallocFailed ){
2034     for(j=0; j<i; j++){
2035       sqlite3DbFree(db, aCol[j].zName);
2036     }
2037     sqlite3DbFree(db, aCol);
2038     *paCol = 0;
2039     *pnCol = 0;
2040     return SQLITE_NOMEM_BKPT;
2041   }
2042   return SQLITE_OK;
2043 }
2044 
2045 /*
2046 ** Add type and collation information to a column list based on
2047 ** a SELECT statement.
2048 **
2049 ** The column list presumably came from selectColumnNamesFromExprList().
2050 ** The column list has only names, not types or collations.  This
2051 ** routine goes through and adds the types and collations.
2052 **
2053 ** This routine requires that all identifiers in the SELECT
2054 ** statement be resolved.
2055 */
sqlite3SelectAddColumnTypeAndCollation(Parse * pParse,Table * pTab,Select * pSelect,char aff)2056 void sqlite3SelectAddColumnTypeAndCollation(
2057   Parse *pParse,        /* Parsing contexts */
2058   Table *pTab,          /* Add column type information to this table */
2059   Select *pSelect,      /* SELECT used to determine types and collations */
2060   char aff              /* Default affinity for columns */
2061 ){
2062   sqlite3 *db = pParse->db;
2063   NameContext sNC;
2064   Column *pCol;
2065   CollSeq *pColl;
2066   int i;
2067   Expr *p;
2068   struct ExprList_item *a;
2069 
2070   assert( pSelect!=0 );
2071   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2072   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2073   if( db->mallocFailed ) return;
2074   memset(&sNC, 0, sizeof(sNC));
2075   sNC.pSrcList = pSelect->pSrc;
2076   a = pSelect->pEList->a;
2077   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2078     const char *zType;
2079     int n, m;
2080     p = a[i].pExpr;
2081     zType = columnType(&sNC, p, 0, 0, 0);
2082     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2083     pCol->affinity = sqlite3ExprAffinity(p);
2084     if( zType ){
2085       m = sqlite3Strlen30(zType);
2086       n = sqlite3Strlen30(pCol->zName);
2087       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2088       if( pCol->zName ){
2089         memcpy(&pCol->zName[n+1], zType, m+1);
2090         pCol->colFlags |= COLFLAG_HASTYPE;
2091       }
2092     }
2093     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2094     pColl = sqlite3ExprCollSeq(pParse, p);
2095     if( pColl && pCol->zColl==0 ){
2096       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2097     }
2098   }
2099   pTab->szTabRow = 1; /* Any non-zero value works */
2100 }
2101 
2102 /*
2103 ** Given a SELECT statement, generate a Table structure that describes
2104 ** the result set of that SELECT.
2105 */
sqlite3ResultSetOfSelect(Parse * pParse,Select * pSelect,char aff)2106 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2107   Table *pTab;
2108   sqlite3 *db = pParse->db;
2109   u64 savedFlags;
2110 
2111   savedFlags = db->flags;
2112   db->flags &= ~(u64)SQLITE_FullColNames;
2113   db->flags |= SQLITE_ShortColNames;
2114   sqlite3SelectPrep(pParse, pSelect, 0);
2115   db->flags = savedFlags;
2116   if( pParse->nErr ) return 0;
2117   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2118   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2119   if( pTab==0 ){
2120     return 0;
2121   }
2122   pTab->nTabRef = 1;
2123   pTab->zName = 0;
2124   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2125   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2126   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2127   pTab->iPKey = -1;
2128   if( db->mallocFailed ){
2129     sqlite3DeleteTable(db, pTab);
2130     return 0;
2131   }
2132   return pTab;
2133 }
2134 
2135 /*
2136 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2137 ** If an error occurs, return NULL and leave a message in pParse.
2138 */
sqlite3GetVdbe(Parse * pParse)2139 Vdbe *sqlite3GetVdbe(Parse *pParse){
2140   if( pParse->pVdbe ){
2141     return pParse->pVdbe;
2142   }
2143   if( pParse->pToplevel==0
2144    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2145   ){
2146     pParse->okConstFactor = 1;
2147   }
2148   return sqlite3VdbeCreate(pParse);
2149 }
2150 
2151 
2152 /*
2153 ** Compute the iLimit and iOffset fields of the SELECT based on the
2154 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2155 ** that appear in the original SQL statement after the LIMIT and OFFSET
2156 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2157 ** are the integer memory register numbers for counters used to compute
2158 ** the limit and offset.  If there is no limit and/or offset, then
2159 ** iLimit and iOffset are negative.
2160 **
2161 ** This routine changes the values of iLimit and iOffset only if
2162 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2163 ** and iOffset should have been preset to appropriate default values (zero)
2164 ** prior to calling this routine.
2165 **
2166 ** The iOffset register (if it exists) is initialized to the value
2167 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2168 ** iOffset+1 is initialized to LIMIT+OFFSET.
2169 **
2170 ** Only if pLimit->pLeft!=0 do the limit registers get
2171 ** redefined.  The UNION ALL operator uses this property to force
2172 ** the reuse of the same limit and offset registers across multiple
2173 ** SELECT statements.
2174 */
computeLimitRegisters(Parse * pParse,Select * p,int iBreak)2175 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2176   Vdbe *v = 0;
2177   int iLimit = 0;
2178   int iOffset;
2179   int n;
2180   Expr *pLimit = p->pLimit;
2181 
2182   if( p->iLimit ) return;
2183 
2184   /*
2185   ** "LIMIT -1" always shows all rows.  There is some
2186   ** controversy about what the correct behavior should be.
2187   ** The current implementation interprets "LIMIT 0" to mean
2188   ** no rows.
2189   */
2190   if( pLimit ){
2191     assert( pLimit->op==TK_LIMIT );
2192     assert( pLimit->pLeft!=0 );
2193     p->iLimit = iLimit = ++pParse->nMem;
2194     v = sqlite3GetVdbe(pParse);
2195     assert( v!=0 );
2196     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2197       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2198       VdbeComment((v, "LIMIT counter"));
2199       if( n==0 ){
2200         sqlite3VdbeGoto(v, iBreak);
2201       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2202         p->nSelectRow = sqlite3LogEst((u64)n);
2203         p->selFlags |= SF_FixedLimit;
2204       }
2205     }else{
2206       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2207       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2208       VdbeComment((v, "LIMIT counter"));
2209       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2210     }
2211     if( pLimit->pRight ){
2212       p->iOffset = iOffset = ++pParse->nMem;
2213       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2214       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2215       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2216       VdbeComment((v, "OFFSET counter"));
2217       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2218       VdbeComment((v, "LIMIT+OFFSET"));
2219     }
2220   }
2221 }
2222 
2223 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2224 /*
2225 ** Return the appropriate collating sequence for the iCol-th column of
2226 ** the result set for the compound-select statement "p".  Return NULL if
2227 ** the column has no default collating sequence.
2228 **
2229 ** The collating sequence for the compound select is taken from the
2230 ** left-most term of the select that has a collating sequence.
2231 */
multiSelectCollSeq(Parse * pParse,Select * p,int iCol)2232 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2233   CollSeq *pRet;
2234   if( p->pPrior ){
2235     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2236   }else{
2237     pRet = 0;
2238   }
2239   assert( iCol>=0 );
2240   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2241   ** have been thrown during name resolution and we would not have gotten
2242   ** this far */
2243   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2244     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2245   }
2246   return pRet;
2247 }
2248 
2249 /*
2250 ** The select statement passed as the second parameter is a compound SELECT
2251 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2252 ** structure suitable for implementing the ORDER BY.
2253 **
2254 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2255 ** function is responsible for ensuring that this structure is eventually
2256 ** freed.
2257 */
multiSelectOrderByKeyInfo(Parse * pParse,Select * p,int nExtra)2258 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2259   ExprList *pOrderBy = p->pOrderBy;
2260   int nOrderBy = p->pOrderBy->nExpr;
2261   sqlite3 *db = pParse->db;
2262   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2263   if( pRet ){
2264     int i;
2265     for(i=0; i<nOrderBy; i++){
2266       struct ExprList_item *pItem = &pOrderBy->a[i];
2267       Expr *pTerm = pItem->pExpr;
2268       CollSeq *pColl;
2269 
2270       if( pTerm->flags & EP_Collate ){
2271         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2272       }else{
2273         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2274         if( pColl==0 ) pColl = db->pDfltColl;
2275         pOrderBy->a[i].pExpr =
2276           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2277       }
2278       assert( sqlite3KeyInfoIsWriteable(pRet) );
2279       pRet->aColl[i] = pColl;
2280       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2281     }
2282   }
2283 
2284   return pRet;
2285 }
2286 
2287 #ifndef SQLITE_OMIT_CTE
2288 /*
2289 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2290 ** query of the form:
2291 **
2292 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2293 **                         \___________/             \_______________/
2294 **                           p->pPrior                      p
2295 **
2296 **
2297 ** There is exactly one reference to the recursive-table in the FROM clause
2298 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2299 **
2300 ** The setup-query runs once to generate an initial set of rows that go
2301 ** into a Queue table.  Rows are extracted from the Queue table one by
2302 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2303 ** extracted row (now in the iCurrent table) becomes the content of the
2304 ** recursive-table for a recursive-query run.  The output of the recursive-query
2305 ** is added back into the Queue table.  Then another row is extracted from Queue
2306 ** and the iteration continues until the Queue table is empty.
2307 **
2308 ** If the compound query operator is UNION then no duplicate rows are ever
2309 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2310 ** that have ever been inserted into Queue and causes duplicates to be
2311 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2312 **
2313 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2314 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2315 ** an ORDER BY, the Queue table is just a FIFO.
2316 **
2317 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2318 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2319 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2320 ** with a positive value, then the first OFFSET outputs are discarded rather
2321 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2322 ** rows have been skipped.
2323 */
generateWithRecursiveQuery(Parse * pParse,Select * p,SelectDest * pDest)2324 static void generateWithRecursiveQuery(
2325   Parse *pParse,        /* Parsing context */
2326   Select *p,            /* The recursive SELECT to be coded */
2327   SelectDest *pDest     /* What to do with query results */
2328 ){
2329   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2330   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2331   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2332   Select *pSetup = p->pPrior;   /* The setup query */
2333   int addrTop;                  /* Top of the loop */
2334   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2335   int iCurrent = 0;             /* The Current table */
2336   int regCurrent;               /* Register holding Current table */
2337   int iQueue;                   /* The Queue table */
2338   int iDistinct = 0;            /* To ensure unique results if UNION */
2339   int eDest = SRT_Fifo;         /* How to write to Queue */
2340   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2341   int i;                        /* Loop counter */
2342   int rc;                       /* Result code */
2343   ExprList *pOrderBy;           /* The ORDER BY clause */
2344   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2345   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2346 
2347 #ifndef SQLITE_OMIT_WINDOWFUNC
2348   if( p->pWin ){
2349     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2350     return;
2351   }
2352 #endif
2353 
2354   /* Obtain authorization to do a recursive query */
2355   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2356 
2357   /* Process the LIMIT and OFFSET clauses, if they exist */
2358   addrBreak = sqlite3VdbeMakeLabel(pParse);
2359   p->nSelectRow = 320;  /* 4 billion rows */
2360   computeLimitRegisters(pParse, p, addrBreak);
2361   pLimit = p->pLimit;
2362   regLimit = p->iLimit;
2363   regOffset = p->iOffset;
2364   p->pLimit = 0;
2365   p->iLimit = p->iOffset = 0;
2366   pOrderBy = p->pOrderBy;
2367 
2368   /* Locate the cursor number of the Current table */
2369   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2370     if( pSrc->a[i].fg.isRecursive ){
2371       iCurrent = pSrc->a[i].iCursor;
2372       break;
2373     }
2374   }
2375 
2376   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2377   ** the Distinct table must be exactly one greater than Queue in order
2378   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2379   iQueue = pParse->nTab++;
2380   if( p->op==TK_UNION ){
2381     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2382     iDistinct = pParse->nTab++;
2383   }else{
2384     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2385   }
2386   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2387 
2388   /* Allocate cursors for Current, Queue, and Distinct. */
2389   regCurrent = ++pParse->nMem;
2390   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2391   if( pOrderBy ){
2392     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2393     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2394                       (char*)pKeyInfo, P4_KEYINFO);
2395     destQueue.pOrderBy = pOrderBy;
2396   }else{
2397     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2398   }
2399   VdbeComment((v, "Queue table"));
2400   if( iDistinct ){
2401     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2402     p->selFlags |= SF_UsesEphemeral;
2403   }
2404 
2405   /* Detach the ORDER BY clause from the compound SELECT */
2406   p->pOrderBy = 0;
2407 
2408   /* Store the results of the setup-query in Queue. */
2409   pSetup->pNext = 0;
2410   ExplainQueryPlan((pParse, 1, "SETUP"));
2411   rc = sqlite3Select(pParse, pSetup, &destQueue);
2412   pSetup->pNext = p;
2413   if( rc ) goto end_of_recursive_query;
2414 
2415   /* Find the next row in the Queue and output that row */
2416   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2417 
2418   /* Transfer the next row in Queue over to Current */
2419   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2420   if( pOrderBy ){
2421     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2422   }else{
2423     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2424   }
2425   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2426 
2427   /* Output the single row in Current */
2428   addrCont = sqlite3VdbeMakeLabel(pParse);
2429   codeOffset(v, regOffset, addrCont);
2430   selectInnerLoop(pParse, p, iCurrent,
2431       0, 0, pDest, addrCont, addrBreak);
2432   if( regLimit ){
2433     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2434     VdbeCoverage(v);
2435   }
2436   sqlite3VdbeResolveLabel(v, addrCont);
2437 
2438   /* Execute the recursive SELECT taking the single row in Current as
2439   ** the value for the recursive-table. Store the results in the Queue.
2440   */
2441   if( p->selFlags & SF_Aggregate ){
2442     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2443   }else{
2444     p->pPrior = 0;
2445     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2446     sqlite3Select(pParse, p, &destQueue);
2447     assert( p->pPrior==0 );
2448     p->pPrior = pSetup;
2449   }
2450 
2451   /* Keep running the loop until the Queue is empty */
2452   sqlite3VdbeGoto(v, addrTop);
2453   sqlite3VdbeResolveLabel(v, addrBreak);
2454 
2455 end_of_recursive_query:
2456   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2457   p->pOrderBy = pOrderBy;
2458   p->pLimit = pLimit;
2459   return;
2460 }
2461 #endif /* SQLITE_OMIT_CTE */
2462 
2463 /* Forward references */
2464 static int multiSelectOrderBy(
2465   Parse *pParse,        /* Parsing context */
2466   Select *p,            /* The right-most of SELECTs to be coded */
2467   SelectDest *pDest     /* What to do with query results */
2468 );
2469 
2470 /*
2471 ** Handle the special case of a compound-select that originates from a
2472 ** VALUES clause.  By handling this as a special case, we avoid deep
2473 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2474 ** on a VALUES clause.
2475 **
2476 ** Because the Select object originates from a VALUES clause:
2477 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2478 **   (2) All terms are UNION ALL
2479 **   (3) There is no ORDER BY clause
2480 **
2481 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2482 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2483 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2484 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2485 */
multiSelectValues(Parse * pParse,Select * p,SelectDest * pDest)2486 static int multiSelectValues(
2487   Parse *pParse,        /* Parsing context */
2488   Select *p,            /* The right-most of SELECTs to be coded */
2489   SelectDest *pDest     /* What to do with query results */
2490 ){
2491   int nRow = 1;
2492   int rc = 0;
2493   int bShowAll = p->pLimit==0;
2494   assert( p->selFlags & SF_MultiValue );
2495   do{
2496     assert( p->selFlags & SF_Values );
2497     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2498     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2499 #ifndef SQLITE_OMIT_WINDOWFUNC
2500     if( p->pWin ) return -1;
2501 #endif
2502     if( p->pPrior==0 ) break;
2503     assert( p->pPrior->pNext==p );
2504     p = p->pPrior;
2505     nRow += bShowAll;
2506   }while(1);
2507   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2508                     nRow==1 ? "" : "S"));
2509   while( p ){
2510     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2511     if( !bShowAll ) break;
2512     p->nSelectRow = nRow;
2513     p = p->pNext;
2514   }
2515   return rc;
2516 }
2517 
2518 /*
2519 ** This routine is called to process a compound query form from
2520 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2521 ** INTERSECT
2522 **
2523 ** "p" points to the right-most of the two queries.  the query on the
2524 ** left is p->pPrior.  The left query could also be a compound query
2525 ** in which case this routine will be called recursively.
2526 **
2527 ** The results of the total query are to be written into a destination
2528 ** of type eDest with parameter iParm.
2529 **
2530 ** Example 1:  Consider a three-way compound SQL statement.
2531 **
2532 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2533 **
2534 ** This statement is parsed up as follows:
2535 **
2536 **     SELECT c FROM t3
2537 **      |
2538 **      `----->  SELECT b FROM t2
2539 **                |
2540 **                `------>  SELECT a FROM t1
2541 **
2542 ** The arrows in the diagram above represent the Select.pPrior pointer.
2543 ** So if this routine is called with p equal to the t3 query, then
2544 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2545 **
2546 ** Notice that because of the way SQLite parses compound SELECTs, the
2547 ** individual selects always group from left to right.
2548 */
multiSelect(Parse * pParse,Select * p,SelectDest * pDest)2549 static int multiSelect(
2550   Parse *pParse,        /* Parsing context */
2551   Select *p,            /* The right-most of SELECTs to be coded */
2552   SelectDest *pDest     /* What to do with query results */
2553 ){
2554   int rc = SQLITE_OK;   /* Success code from a subroutine */
2555   Select *pPrior;       /* Another SELECT immediately to our left */
2556   Vdbe *v;              /* Generate code to this VDBE */
2557   SelectDest dest;      /* Alternative data destination */
2558   Select *pDelete = 0;  /* Chain of simple selects to delete */
2559   sqlite3 *db;          /* Database connection */
2560 
2561   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2562   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2563   */
2564   assert( p && p->pPrior );  /* Calling function guarantees this much */
2565   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2566   assert( p->selFlags & SF_Compound );
2567   db = pParse->db;
2568   pPrior = p->pPrior;
2569   dest = *pDest;
2570   if( pPrior->pOrderBy || pPrior->pLimit ){
2571     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2572       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2573     rc = 1;
2574     goto multi_select_end;
2575   }
2576 
2577   v = sqlite3GetVdbe(pParse);
2578   assert( v!=0 );  /* The VDBE already created by calling function */
2579 
2580   /* Create the destination temporary table if necessary
2581   */
2582   if( dest.eDest==SRT_EphemTab ){
2583     assert( p->pEList );
2584     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2585     dest.eDest = SRT_Table;
2586   }
2587 
2588   /* Special handling for a compound-select that originates as a VALUES clause.
2589   */
2590   if( p->selFlags & SF_MultiValue ){
2591     rc = multiSelectValues(pParse, p, &dest);
2592     if( rc>=0 ) goto multi_select_end;
2593     rc = SQLITE_OK;
2594   }
2595 
2596   /* Make sure all SELECTs in the statement have the same number of elements
2597   ** in their result sets.
2598   */
2599   assert( p->pEList && pPrior->pEList );
2600   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2601 
2602 #ifndef SQLITE_OMIT_CTE
2603   if( p->selFlags & SF_Recursive ){
2604     generateWithRecursiveQuery(pParse, p, &dest);
2605   }else
2606 #endif
2607 
2608   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2609   */
2610   if( p->pOrderBy ){
2611     return multiSelectOrderBy(pParse, p, pDest);
2612   }else{
2613 
2614 #ifndef SQLITE_OMIT_EXPLAIN
2615     if( pPrior->pPrior==0 ){
2616       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2617       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2618     }
2619 #endif
2620 
2621     /* Generate code for the left and right SELECT statements.
2622     */
2623     switch( p->op ){
2624       case TK_ALL: {
2625         int addr = 0;
2626         int nLimit;
2627         assert( !pPrior->pLimit );
2628         pPrior->iLimit = p->iLimit;
2629         pPrior->iOffset = p->iOffset;
2630         pPrior->pLimit = p->pLimit;
2631         rc = sqlite3Select(pParse, pPrior, &dest);
2632         p->pLimit = 0;
2633         if( rc ){
2634           goto multi_select_end;
2635         }
2636         p->pPrior = 0;
2637         p->iLimit = pPrior->iLimit;
2638         p->iOffset = pPrior->iOffset;
2639         if( p->iLimit ){
2640           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2641           VdbeComment((v, "Jump ahead if LIMIT reached"));
2642           if( p->iOffset ){
2643             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2644                               p->iLimit, p->iOffset+1, p->iOffset);
2645           }
2646         }
2647         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2648         rc = sqlite3Select(pParse, p, &dest);
2649         testcase( rc!=SQLITE_OK );
2650         pDelete = p->pPrior;
2651         p->pPrior = pPrior;
2652         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2653         if( pPrior->pLimit
2654          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2655          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2656         ){
2657           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2658         }
2659         if( addr ){
2660           sqlite3VdbeJumpHere(v, addr);
2661         }
2662         break;
2663       }
2664       case TK_EXCEPT:
2665       case TK_UNION: {
2666         int unionTab;    /* Cursor number of the temp table holding result */
2667         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2668         int priorOp;     /* The SRT_ operation to apply to prior selects */
2669         Expr *pLimit;    /* Saved values of p->nLimit  */
2670         int addr;
2671         SelectDest uniondest;
2672 
2673         testcase( p->op==TK_EXCEPT );
2674         testcase( p->op==TK_UNION );
2675         priorOp = SRT_Union;
2676         if( dest.eDest==priorOp ){
2677           /* We can reuse a temporary table generated by a SELECT to our
2678           ** right.
2679           */
2680           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2681           unionTab = dest.iSDParm;
2682         }else{
2683           /* We will need to create our own temporary table to hold the
2684           ** intermediate results.
2685           */
2686           unionTab = pParse->nTab++;
2687           assert( p->pOrderBy==0 );
2688           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2689           assert( p->addrOpenEphm[0] == -1 );
2690           p->addrOpenEphm[0] = addr;
2691           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2692           assert( p->pEList );
2693         }
2694 
2695         /* Code the SELECT statements to our left
2696         */
2697         assert( !pPrior->pOrderBy );
2698         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2699         rc = sqlite3Select(pParse, pPrior, &uniondest);
2700         if( rc ){
2701           goto multi_select_end;
2702         }
2703 
2704         /* Code the current SELECT statement
2705         */
2706         if( p->op==TK_EXCEPT ){
2707           op = SRT_Except;
2708         }else{
2709           assert( p->op==TK_UNION );
2710           op = SRT_Union;
2711         }
2712         p->pPrior = 0;
2713         pLimit = p->pLimit;
2714         p->pLimit = 0;
2715         uniondest.eDest = op;
2716         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2717                           selectOpName(p->op)));
2718         rc = sqlite3Select(pParse, p, &uniondest);
2719         testcase( rc!=SQLITE_OK );
2720         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2721         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2722         sqlite3ExprListDelete(db, p->pOrderBy);
2723         pDelete = p->pPrior;
2724         p->pPrior = pPrior;
2725         p->pOrderBy = 0;
2726         if( p->op==TK_UNION ){
2727           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2728         }
2729         sqlite3ExprDelete(db, p->pLimit);
2730         p->pLimit = pLimit;
2731         p->iLimit = 0;
2732         p->iOffset = 0;
2733 
2734         /* Convert the data in the temporary table into whatever form
2735         ** it is that we currently need.
2736         */
2737         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2738         assert( p->pEList || db->mallocFailed );
2739         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2740           int iCont, iBreak, iStart;
2741           iBreak = sqlite3VdbeMakeLabel(pParse);
2742           iCont = sqlite3VdbeMakeLabel(pParse);
2743           computeLimitRegisters(pParse, p, iBreak);
2744           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2745           iStart = sqlite3VdbeCurrentAddr(v);
2746           selectInnerLoop(pParse, p, unionTab,
2747                           0, 0, &dest, iCont, iBreak);
2748           sqlite3VdbeResolveLabel(v, iCont);
2749           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2750           sqlite3VdbeResolveLabel(v, iBreak);
2751           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2752         }
2753         break;
2754       }
2755       default: assert( p->op==TK_INTERSECT ); {
2756         int tab1, tab2;
2757         int iCont, iBreak, iStart;
2758         Expr *pLimit;
2759         int addr;
2760         SelectDest intersectdest;
2761         int r1;
2762 
2763         /* INTERSECT is different from the others since it requires
2764         ** two temporary tables.  Hence it has its own case.  Begin
2765         ** by allocating the tables we will need.
2766         */
2767         tab1 = pParse->nTab++;
2768         tab2 = pParse->nTab++;
2769         assert( p->pOrderBy==0 );
2770 
2771         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2772         assert( p->addrOpenEphm[0] == -1 );
2773         p->addrOpenEphm[0] = addr;
2774         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2775         assert( p->pEList );
2776 
2777         /* Code the SELECTs to our left into temporary table "tab1".
2778         */
2779         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2780         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2781         if( rc ){
2782           goto multi_select_end;
2783         }
2784 
2785         /* Code the current SELECT into temporary table "tab2"
2786         */
2787         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2788         assert( p->addrOpenEphm[1] == -1 );
2789         p->addrOpenEphm[1] = addr;
2790         p->pPrior = 0;
2791         pLimit = p->pLimit;
2792         p->pLimit = 0;
2793         intersectdest.iSDParm = tab2;
2794         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2795                           selectOpName(p->op)));
2796         rc = sqlite3Select(pParse, p, &intersectdest);
2797         testcase( rc!=SQLITE_OK );
2798         pDelete = p->pPrior;
2799         p->pPrior = pPrior;
2800         if( p->nSelectRow>pPrior->nSelectRow ){
2801           p->nSelectRow = pPrior->nSelectRow;
2802         }
2803         sqlite3ExprDelete(db, p->pLimit);
2804         p->pLimit = pLimit;
2805 
2806         /* Generate code to take the intersection of the two temporary
2807         ** tables.
2808         */
2809         assert( p->pEList );
2810         iBreak = sqlite3VdbeMakeLabel(pParse);
2811         iCont = sqlite3VdbeMakeLabel(pParse);
2812         computeLimitRegisters(pParse, p, iBreak);
2813         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2814         r1 = sqlite3GetTempReg(pParse);
2815         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2816         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2817         VdbeCoverage(v);
2818         sqlite3ReleaseTempReg(pParse, r1);
2819         selectInnerLoop(pParse, p, tab1,
2820                         0, 0, &dest, iCont, iBreak);
2821         sqlite3VdbeResolveLabel(v, iCont);
2822         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2823         sqlite3VdbeResolveLabel(v, iBreak);
2824         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2825         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2826         break;
2827       }
2828     }
2829 
2830   #ifndef SQLITE_OMIT_EXPLAIN
2831     if( p->pNext==0 ){
2832       ExplainQueryPlanPop(pParse);
2833     }
2834   #endif
2835   }
2836   if( pParse->nErr ) goto multi_select_end;
2837 
2838   /* Compute collating sequences used by
2839   ** temporary tables needed to implement the compound select.
2840   ** Attach the KeyInfo structure to all temporary tables.
2841   **
2842   ** This section is run by the right-most SELECT statement only.
2843   ** SELECT statements to the left always skip this part.  The right-most
2844   ** SELECT might also skip this part if it has no ORDER BY clause and
2845   ** no temp tables are required.
2846   */
2847   if( p->selFlags & SF_UsesEphemeral ){
2848     int i;                        /* Loop counter */
2849     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2850     Select *pLoop;                /* For looping through SELECT statements */
2851     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2852     int nCol;                     /* Number of columns in result set */
2853 
2854     assert( p->pNext==0 );
2855     nCol = p->pEList->nExpr;
2856     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2857     if( !pKeyInfo ){
2858       rc = SQLITE_NOMEM_BKPT;
2859       goto multi_select_end;
2860     }
2861     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2862       *apColl = multiSelectCollSeq(pParse, p, i);
2863       if( 0==*apColl ){
2864         *apColl = db->pDfltColl;
2865       }
2866     }
2867 
2868     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2869       for(i=0; i<2; i++){
2870         int addr = pLoop->addrOpenEphm[i];
2871         if( addr<0 ){
2872           /* If [0] is unused then [1] is also unused.  So we can
2873           ** always safely abort as soon as the first unused slot is found */
2874           assert( pLoop->addrOpenEphm[1]<0 );
2875           break;
2876         }
2877         sqlite3VdbeChangeP2(v, addr, nCol);
2878         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2879                             P4_KEYINFO);
2880         pLoop->addrOpenEphm[i] = -1;
2881       }
2882     }
2883     sqlite3KeyInfoUnref(pKeyInfo);
2884   }
2885 
2886 multi_select_end:
2887   pDest->iSdst = dest.iSdst;
2888   pDest->nSdst = dest.nSdst;
2889   sqlite3SelectDelete(db, pDelete);
2890   return rc;
2891 }
2892 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2893 
2894 /*
2895 ** Error message for when two or more terms of a compound select have different
2896 ** size result sets.
2897 */
sqlite3SelectWrongNumTermsError(Parse * pParse,Select * p)2898 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2899   if( p->selFlags & SF_Values ){
2900     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2901   }else{
2902     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2903       " do not have the same number of result columns", selectOpName(p->op));
2904   }
2905 }
2906 
2907 /*
2908 ** Code an output subroutine for a coroutine implementation of a
2909 ** SELECT statment.
2910 **
2911 ** The data to be output is contained in pIn->iSdst.  There are
2912 ** pIn->nSdst columns to be output.  pDest is where the output should
2913 ** be sent.
2914 **
2915 ** regReturn is the number of the register holding the subroutine
2916 ** return address.
2917 **
2918 ** If regPrev>0 then it is the first register in a vector that
2919 ** records the previous output.  mem[regPrev] is a flag that is false
2920 ** if there has been no previous output.  If regPrev>0 then code is
2921 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2922 ** keys.
2923 **
2924 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2925 ** iBreak.
2926 */
generateOutputSubroutine(Parse * pParse,Select * p,SelectDest * pIn,SelectDest * pDest,int regReturn,int regPrev,KeyInfo * pKeyInfo,int iBreak)2927 static int generateOutputSubroutine(
2928   Parse *pParse,          /* Parsing context */
2929   Select *p,              /* The SELECT statement */
2930   SelectDest *pIn,        /* Coroutine supplying data */
2931   SelectDest *pDest,      /* Where to send the data */
2932   int regReturn,          /* The return address register */
2933   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2934   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2935   int iBreak              /* Jump here if we hit the LIMIT */
2936 ){
2937   Vdbe *v = pParse->pVdbe;
2938   int iContinue;
2939   int addr;
2940 
2941   addr = sqlite3VdbeCurrentAddr(v);
2942   iContinue = sqlite3VdbeMakeLabel(pParse);
2943 
2944   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2945   */
2946   if( regPrev ){
2947     int addr1, addr2;
2948     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2949     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2950                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2951     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2952     sqlite3VdbeJumpHere(v, addr1);
2953     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2954     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2955   }
2956   if( pParse->db->mallocFailed ) return 0;
2957 
2958   /* Suppress the first OFFSET entries if there is an OFFSET clause
2959   */
2960   codeOffset(v, p->iOffset, iContinue);
2961 
2962   assert( pDest->eDest!=SRT_Exists );
2963   assert( pDest->eDest!=SRT_Table );
2964   switch( pDest->eDest ){
2965     /* Store the result as data using a unique key.
2966     */
2967     case SRT_EphemTab: {
2968       int r1 = sqlite3GetTempReg(pParse);
2969       int r2 = sqlite3GetTempReg(pParse);
2970       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2971       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2972       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2973       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2974       sqlite3ReleaseTempReg(pParse, r2);
2975       sqlite3ReleaseTempReg(pParse, r1);
2976       break;
2977     }
2978 
2979 #ifndef SQLITE_OMIT_SUBQUERY
2980     /* If we are creating a set for an "expr IN (SELECT ...)".
2981     */
2982     case SRT_Set: {
2983       int r1;
2984       testcase( pIn->nSdst>1 );
2985       r1 = sqlite3GetTempReg(pParse);
2986       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2987           r1, pDest->zAffSdst, pIn->nSdst);
2988       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2989                            pIn->iSdst, pIn->nSdst);
2990       sqlite3ReleaseTempReg(pParse, r1);
2991       break;
2992     }
2993 
2994     /* If this is a scalar select that is part of an expression, then
2995     ** store the results in the appropriate memory cell and break out
2996     ** of the scan loop.  Note that the select might return multiple columns
2997     ** if it is the RHS of a row-value IN operator.
2998     */
2999     case SRT_Mem: {
3000       if( pParse->nErr==0 ){
3001         testcase( pIn->nSdst>1 );
3002         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3003       }
3004       /* The LIMIT clause will jump out of the loop for us */
3005       break;
3006     }
3007 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3008 
3009     /* The results are stored in a sequence of registers
3010     ** starting at pDest->iSdst.  Then the co-routine yields.
3011     */
3012     case SRT_Coroutine: {
3013       if( pDest->iSdst==0 ){
3014         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3015         pDest->nSdst = pIn->nSdst;
3016       }
3017       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3018       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3019       break;
3020     }
3021 
3022     /* If none of the above, then the result destination must be
3023     ** SRT_Output.  This routine is never called with any other
3024     ** destination other than the ones handled above or SRT_Output.
3025     **
3026     ** For SRT_Output, results are stored in a sequence of registers.
3027     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3028     ** return the next row of result.
3029     */
3030     default: {
3031       assert( pDest->eDest==SRT_Output );
3032       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3033       break;
3034     }
3035   }
3036 
3037   /* Jump to the end of the loop if the LIMIT is reached.
3038   */
3039   if( p->iLimit ){
3040     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3041   }
3042 
3043   /* Generate the subroutine return
3044   */
3045   sqlite3VdbeResolveLabel(v, iContinue);
3046   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3047 
3048   return addr;
3049 }
3050 
3051 /*
3052 ** Alternative compound select code generator for cases when there
3053 ** is an ORDER BY clause.
3054 **
3055 ** We assume a query of the following form:
3056 **
3057 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3058 **
3059 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3060 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3061 ** co-routines.  Then run the co-routines in parallel and merge the results
3062 ** into the output.  In addition to the two coroutines (called selectA and
3063 ** selectB) there are 7 subroutines:
3064 **
3065 **    outA:    Move the output of the selectA coroutine into the output
3066 **             of the compound query.
3067 **
3068 **    outB:    Move the output of the selectB coroutine into the output
3069 **             of the compound query.  (Only generated for UNION and
3070 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3071 **             appears only in B.)
3072 **
3073 **    AltB:    Called when there is data from both coroutines and A<B.
3074 **
3075 **    AeqB:    Called when there is data from both coroutines and A==B.
3076 **
3077 **    AgtB:    Called when there is data from both coroutines and A>B.
3078 **
3079 **    EofA:    Called when data is exhausted from selectA.
3080 **
3081 **    EofB:    Called when data is exhausted from selectB.
3082 **
3083 ** The implementation of the latter five subroutines depend on which
3084 ** <operator> is used:
3085 **
3086 **
3087 **             UNION ALL         UNION            EXCEPT          INTERSECT
3088 **          -------------  -----------------  --------------  -----------------
3089 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3090 **
3091 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3092 **
3093 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3094 **
3095 **   EofA:   outB, nextB      outB, nextB          halt             halt
3096 **
3097 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3098 **
3099 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3100 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3101 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3102 ** following nextX causes a jump to the end of the select processing.
3103 **
3104 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3105 ** within the output subroutine.  The regPrev register set holds the previously
3106 ** output value.  A comparison is made against this value and the output
3107 ** is skipped if the next results would be the same as the previous.
3108 **
3109 ** The implementation plan is to implement the two coroutines and seven
3110 ** subroutines first, then put the control logic at the bottom.  Like this:
3111 **
3112 **          goto Init
3113 **     coA: coroutine for left query (A)
3114 **     coB: coroutine for right query (B)
3115 **    outA: output one row of A
3116 **    outB: output one row of B (UNION and UNION ALL only)
3117 **    EofA: ...
3118 **    EofB: ...
3119 **    AltB: ...
3120 **    AeqB: ...
3121 **    AgtB: ...
3122 **    Init: initialize coroutine registers
3123 **          yield coA
3124 **          if eof(A) goto EofA
3125 **          yield coB
3126 **          if eof(B) goto EofB
3127 **    Cmpr: Compare A, B
3128 **          Jump AltB, AeqB, AgtB
3129 **     End: ...
3130 **
3131 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3132 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3133 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3134 ** and AgtB jump to either L2 or to one of EofA or EofB.
3135 */
3136 #ifndef SQLITE_OMIT_COMPOUND_SELECT
multiSelectOrderBy(Parse * pParse,Select * p,SelectDest * pDest)3137 static int multiSelectOrderBy(
3138   Parse *pParse,        /* Parsing context */
3139   Select *p,            /* The right-most of SELECTs to be coded */
3140   SelectDest *pDest     /* What to do with query results */
3141 ){
3142   int i, j;             /* Loop counters */
3143   Select *pPrior;       /* Another SELECT immediately to our left */
3144   Vdbe *v;              /* Generate code to this VDBE */
3145   SelectDest destA;     /* Destination for coroutine A */
3146   SelectDest destB;     /* Destination for coroutine B */
3147   int regAddrA;         /* Address register for select-A coroutine */
3148   int regAddrB;         /* Address register for select-B coroutine */
3149   int addrSelectA;      /* Address of the select-A coroutine */
3150   int addrSelectB;      /* Address of the select-B coroutine */
3151   int regOutA;          /* Address register for the output-A subroutine */
3152   int regOutB;          /* Address register for the output-B subroutine */
3153   int addrOutA;         /* Address of the output-A subroutine */
3154   int addrOutB = 0;     /* Address of the output-B subroutine */
3155   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3156   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3157   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3158   int addrAltB;         /* Address of the A<B subroutine */
3159   int addrAeqB;         /* Address of the A==B subroutine */
3160   int addrAgtB;         /* Address of the A>B subroutine */
3161   int regLimitA;        /* Limit register for select-A */
3162   int regLimitB;        /* Limit register for select-A */
3163   int regPrev;          /* A range of registers to hold previous output */
3164   int savedLimit;       /* Saved value of p->iLimit */
3165   int savedOffset;      /* Saved value of p->iOffset */
3166   int labelCmpr;        /* Label for the start of the merge algorithm */
3167   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3168   int addr1;            /* Jump instructions that get retargetted */
3169   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3170   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3171   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3172   sqlite3 *db;          /* Database connection */
3173   ExprList *pOrderBy;   /* The ORDER BY clause */
3174   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3175   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3176 
3177   assert( p->pOrderBy!=0 );
3178   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3179   db = pParse->db;
3180   v = pParse->pVdbe;
3181   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3182   labelEnd = sqlite3VdbeMakeLabel(pParse);
3183   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3184 
3185 
3186   /* Patch up the ORDER BY clause
3187   */
3188   op = p->op;
3189   pPrior = p->pPrior;
3190   assert( pPrior->pOrderBy==0 );
3191   pOrderBy = p->pOrderBy;
3192   assert( pOrderBy );
3193   nOrderBy = pOrderBy->nExpr;
3194 
3195   /* For operators other than UNION ALL we have to make sure that
3196   ** the ORDER BY clause covers every term of the result set.  Add
3197   ** terms to the ORDER BY clause as necessary.
3198   */
3199   if( op!=TK_ALL ){
3200     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3201       struct ExprList_item *pItem;
3202       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3203         assert( pItem->u.x.iOrderByCol>0 );
3204         if( pItem->u.x.iOrderByCol==i ) break;
3205       }
3206       if( j==nOrderBy ){
3207         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3208         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3209         pNew->flags |= EP_IntValue;
3210         pNew->u.iValue = i;
3211         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3212         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3213       }
3214     }
3215   }
3216 
3217   /* Compute the comparison permutation and keyinfo that is used with
3218   ** the permutation used to determine if the next
3219   ** row of results comes from selectA or selectB.  Also add explicit
3220   ** collations to the ORDER BY clause terms so that when the subqueries
3221   ** to the right and the left are evaluated, they use the correct
3222   ** collation.
3223   */
3224   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3225   if( aPermute ){
3226     struct ExprList_item *pItem;
3227     aPermute[0] = nOrderBy;
3228     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3229       assert( pItem->u.x.iOrderByCol>0 );
3230       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3231       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3232     }
3233     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3234   }else{
3235     pKeyMerge = 0;
3236   }
3237 
3238   /* Reattach the ORDER BY clause to the query.
3239   */
3240   p->pOrderBy = pOrderBy;
3241   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3242 
3243   /* Allocate a range of temporary registers and the KeyInfo needed
3244   ** for the logic that removes duplicate result rows when the
3245   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3246   */
3247   if( op==TK_ALL ){
3248     regPrev = 0;
3249   }else{
3250     int nExpr = p->pEList->nExpr;
3251     assert( nOrderBy>=nExpr || db->mallocFailed );
3252     regPrev = pParse->nMem+1;
3253     pParse->nMem += nExpr+1;
3254     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3255     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3256     if( pKeyDup ){
3257       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3258       for(i=0; i<nExpr; i++){
3259         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3260         pKeyDup->aSortFlags[i] = 0;
3261       }
3262     }
3263   }
3264 
3265   /* Separate the left and the right query from one another
3266   */
3267   p->pPrior = 0;
3268   pPrior->pNext = 0;
3269   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3270   if( pPrior->pPrior==0 ){
3271     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3272   }
3273 
3274   /* Compute the limit registers */
3275   computeLimitRegisters(pParse, p, labelEnd);
3276   if( p->iLimit && op==TK_ALL ){
3277     regLimitA = ++pParse->nMem;
3278     regLimitB = ++pParse->nMem;
3279     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3280                                   regLimitA);
3281     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3282   }else{
3283     regLimitA = regLimitB = 0;
3284   }
3285   sqlite3ExprDelete(db, p->pLimit);
3286   p->pLimit = 0;
3287 
3288   regAddrA = ++pParse->nMem;
3289   regAddrB = ++pParse->nMem;
3290   regOutA = ++pParse->nMem;
3291   regOutB = ++pParse->nMem;
3292   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3293   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3294 
3295   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3296 
3297   /* Generate a coroutine to evaluate the SELECT statement to the
3298   ** left of the compound operator - the "A" select.
3299   */
3300   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3301   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3302   VdbeComment((v, "left SELECT"));
3303   pPrior->iLimit = regLimitA;
3304   ExplainQueryPlan((pParse, 1, "LEFT"));
3305   sqlite3Select(pParse, pPrior, &destA);
3306   sqlite3VdbeEndCoroutine(v, regAddrA);
3307   sqlite3VdbeJumpHere(v, addr1);
3308 
3309   /* Generate a coroutine to evaluate the SELECT statement on
3310   ** the right - the "B" select
3311   */
3312   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3313   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3314   VdbeComment((v, "right SELECT"));
3315   savedLimit = p->iLimit;
3316   savedOffset = p->iOffset;
3317   p->iLimit = regLimitB;
3318   p->iOffset = 0;
3319   ExplainQueryPlan((pParse, 1, "RIGHT"));
3320   sqlite3Select(pParse, p, &destB);
3321   p->iLimit = savedLimit;
3322   p->iOffset = savedOffset;
3323   sqlite3VdbeEndCoroutine(v, regAddrB);
3324 
3325   /* Generate a subroutine that outputs the current row of the A
3326   ** select as the next output row of the compound select.
3327   */
3328   VdbeNoopComment((v, "Output routine for A"));
3329   addrOutA = generateOutputSubroutine(pParse,
3330                  p, &destA, pDest, regOutA,
3331                  regPrev, pKeyDup, labelEnd);
3332 
3333   /* Generate a subroutine that outputs the current row of the B
3334   ** select as the next output row of the compound select.
3335   */
3336   if( op==TK_ALL || op==TK_UNION ){
3337     VdbeNoopComment((v, "Output routine for B"));
3338     addrOutB = generateOutputSubroutine(pParse,
3339                  p, &destB, pDest, regOutB,
3340                  regPrev, pKeyDup, labelEnd);
3341   }
3342   sqlite3KeyInfoUnref(pKeyDup);
3343 
3344   /* Generate a subroutine to run when the results from select A
3345   ** are exhausted and only data in select B remains.
3346   */
3347   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3348     addrEofA_noB = addrEofA = labelEnd;
3349   }else{
3350     VdbeNoopComment((v, "eof-A subroutine"));
3351     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3352     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3353                                      VdbeCoverage(v);
3354     sqlite3VdbeGoto(v, addrEofA);
3355     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3356   }
3357 
3358   /* Generate a subroutine to run when the results from select B
3359   ** are exhausted and only data in select A remains.
3360   */
3361   if( op==TK_INTERSECT ){
3362     addrEofB = addrEofA;
3363     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3364   }else{
3365     VdbeNoopComment((v, "eof-B subroutine"));
3366     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3367     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3368     sqlite3VdbeGoto(v, addrEofB);
3369   }
3370 
3371   /* Generate code to handle the case of A<B
3372   */
3373   VdbeNoopComment((v, "A-lt-B subroutine"));
3374   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3375   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3376   sqlite3VdbeGoto(v, labelCmpr);
3377 
3378   /* Generate code to handle the case of A==B
3379   */
3380   if( op==TK_ALL ){
3381     addrAeqB = addrAltB;
3382   }else if( op==TK_INTERSECT ){
3383     addrAeqB = addrAltB;
3384     addrAltB++;
3385   }else{
3386     VdbeNoopComment((v, "A-eq-B subroutine"));
3387     addrAeqB =
3388     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3389     sqlite3VdbeGoto(v, labelCmpr);
3390   }
3391 
3392   /* Generate code to handle the case of A>B
3393   */
3394   VdbeNoopComment((v, "A-gt-B subroutine"));
3395   addrAgtB = sqlite3VdbeCurrentAddr(v);
3396   if( op==TK_ALL || op==TK_UNION ){
3397     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3398   }
3399   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3400   sqlite3VdbeGoto(v, labelCmpr);
3401 
3402   /* This code runs once to initialize everything.
3403   */
3404   sqlite3VdbeJumpHere(v, addr1);
3405   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3406   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3407 
3408   /* Implement the main merge loop
3409   */
3410   sqlite3VdbeResolveLabel(v, labelCmpr);
3411   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3412   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3413                          (char*)pKeyMerge, P4_KEYINFO);
3414   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3415   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3416 
3417   /* Jump to the this point in order to terminate the query.
3418   */
3419   sqlite3VdbeResolveLabel(v, labelEnd);
3420 
3421   /* Reassembly the compound query so that it will be freed correctly
3422   ** by the calling function */
3423   if( p->pPrior ){
3424     sqlite3SelectDelete(db, p->pPrior);
3425   }
3426   p->pPrior = pPrior;
3427   pPrior->pNext = p;
3428 
3429   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3430   **** subqueries ****/
3431   ExplainQueryPlanPop(pParse);
3432   return pParse->nErr!=0;
3433 }
3434 #endif
3435 
3436 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3437 
3438 /* An instance of the SubstContext object describes an substitution edit
3439 ** to be performed on a parse tree.
3440 **
3441 ** All references to columns in table iTable are to be replaced by corresponding
3442 ** expressions in pEList.
3443 */
3444 typedef struct SubstContext {
3445   Parse *pParse;            /* The parsing context */
3446   int iTable;               /* Replace references to this table */
3447   int iNewTable;            /* New table number */
3448   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3449   ExprList *pEList;         /* Replacement expressions */
3450 } SubstContext;
3451 
3452 /* Forward Declarations */
3453 static void substExprList(SubstContext*, ExprList*);
3454 static void substSelect(SubstContext*, Select*, int);
3455 
3456 /*
3457 ** Scan through the expression pExpr.  Replace every reference to
3458 ** a column in table number iTable with a copy of the iColumn-th
3459 ** entry in pEList.  (But leave references to the ROWID column
3460 ** unchanged.)
3461 **
3462 ** This routine is part of the flattening procedure.  A subquery
3463 ** whose result set is defined by pEList appears as entry in the
3464 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3465 ** FORM clause entry is iTable.  This routine makes the necessary
3466 ** changes to pExpr so that it refers directly to the source table
3467 ** of the subquery rather the result set of the subquery.
3468 */
substExpr(SubstContext * pSubst,Expr * pExpr)3469 static Expr *substExpr(
3470   SubstContext *pSubst,  /* Description of the substitution */
3471   Expr *pExpr            /* Expr in which substitution occurs */
3472 ){
3473   if( pExpr==0 ) return 0;
3474   if( ExprHasProperty(pExpr, EP_FromJoin)
3475    && pExpr->iRightJoinTable==pSubst->iTable
3476   ){
3477     pExpr->iRightJoinTable = pSubst->iNewTable;
3478   }
3479   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3480     if( pExpr->iColumn<0 ){
3481       pExpr->op = TK_NULL;
3482     }else{
3483       Expr *pNew;
3484       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3485       Expr ifNullRow;
3486       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3487       assert( pExpr->pRight==0 );
3488       if( sqlite3ExprIsVector(pCopy) ){
3489         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3490       }else{
3491         sqlite3 *db = pSubst->pParse->db;
3492         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3493           memset(&ifNullRow, 0, sizeof(ifNullRow));
3494           ifNullRow.op = TK_IF_NULL_ROW;
3495           ifNullRow.pLeft = pCopy;
3496           ifNullRow.iTable = pSubst->iNewTable;
3497           pCopy = &ifNullRow;
3498         }
3499         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3500         pNew = sqlite3ExprDup(db, pCopy, 0);
3501         if( pNew && pSubst->isLeftJoin ){
3502           ExprSetProperty(pNew, EP_CanBeNull);
3503         }
3504         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3505           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3506           ExprSetProperty(pNew, EP_FromJoin);
3507         }
3508         sqlite3ExprDelete(db, pExpr);
3509         pExpr = pNew;
3510 
3511         /* Ensure that the expression now has an implicit collation sequence,
3512         ** just as it did when it was a column of a view or sub-query. */
3513         if( pExpr ){
3514           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3515             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3516             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3517                 (pColl ? pColl->zName : "BINARY")
3518             );
3519           }
3520           ExprClearProperty(pExpr, EP_Collate);
3521         }
3522       }
3523     }
3524   }else{
3525     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3526       pExpr->iTable = pSubst->iNewTable;
3527     }
3528     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3529     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3530     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3531       substSelect(pSubst, pExpr->x.pSelect, 1);
3532     }else{
3533       substExprList(pSubst, pExpr->x.pList);
3534     }
3535 #ifndef SQLITE_OMIT_WINDOWFUNC
3536     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3537       Window *pWin = pExpr->y.pWin;
3538       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3539       substExprList(pSubst, pWin->pPartition);
3540       substExprList(pSubst, pWin->pOrderBy);
3541     }
3542 #endif
3543   }
3544   return pExpr;
3545 }
substExprList(SubstContext * pSubst,ExprList * pList)3546 static void substExprList(
3547   SubstContext *pSubst, /* Description of the substitution */
3548   ExprList *pList       /* List to scan and in which to make substitutes */
3549 ){
3550   int i;
3551   if( pList==0 ) return;
3552   for(i=0; i<pList->nExpr; i++){
3553     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3554   }
3555 }
substSelect(SubstContext * pSubst,Select * p,int doPrior)3556 static void substSelect(
3557   SubstContext *pSubst, /* Description of the substitution */
3558   Select *p,            /* SELECT statement in which to make substitutions */
3559   int doPrior           /* Do substitutes on p->pPrior too */
3560 ){
3561   SrcList *pSrc;
3562   struct SrcList_item *pItem;
3563   int i;
3564   if( !p ) return;
3565   do{
3566     substExprList(pSubst, p->pEList);
3567     substExprList(pSubst, p->pGroupBy);
3568     substExprList(pSubst, p->pOrderBy);
3569     p->pHaving = substExpr(pSubst, p->pHaving);
3570     p->pWhere = substExpr(pSubst, p->pWhere);
3571     pSrc = p->pSrc;
3572     assert( pSrc!=0 );
3573     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3574       substSelect(pSubst, pItem->pSelect, 1);
3575       if( pItem->fg.isTabFunc ){
3576         substExprList(pSubst, pItem->u1.pFuncArg);
3577       }
3578     }
3579   }while( doPrior && (p = p->pPrior)!=0 );
3580 }
3581 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3582 
3583 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3584 /*
3585 ** This routine attempts to flatten subqueries as a performance optimization.
3586 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3587 **
3588 ** To understand the concept of flattening, consider the following
3589 ** query:
3590 **
3591 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3592 **
3593 ** The default way of implementing this query is to execute the
3594 ** subquery first and store the results in a temporary table, then
3595 ** run the outer query on that temporary table.  This requires two
3596 ** passes over the data.  Furthermore, because the temporary table
3597 ** has no indices, the WHERE clause on the outer query cannot be
3598 ** optimized.
3599 **
3600 ** This routine attempts to rewrite queries such as the above into
3601 ** a single flat select, like this:
3602 **
3603 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3604 **
3605 ** The code generated for this simplification gives the same result
3606 ** but only has to scan the data once.  And because indices might
3607 ** exist on the table t1, a complete scan of the data might be
3608 ** avoided.
3609 **
3610 ** Flattening is subject to the following constraints:
3611 **
3612 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3613 **        The subquery and the outer query cannot both be aggregates.
3614 **
3615 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3616 **        (2) If the subquery is an aggregate then
3617 **        (2a) the outer query must not be a join and
3618 **        (2b) the outer query must not use subqueries
3619 **             other than the one FROM-clause subquery that is a candidate
3620 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3621 **             from 2015-02-09.)
3622 **
3623 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3624 **        (3a) the subquery may not be a join and
3625 **        (3b) the FROM clause of the subquery may not contain a virtual
3626 **             table and
3627 **        (3c) the outer query may not be an aggregate.
3628 **        (3d) the outer query may not be DISTINCT.
3629 **
3630 **   (4)  The subquery can not be DISTINCT.
3631 **
3632 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3633 **        sub-queries that were excluded from this optimization. Restriction
3634 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3635 **
3636 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3637 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3638 **
3639 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3640 **        A FROM clause, consider adding a FROM clause with the special
3641 **        table sqlite_once that consists of a single row containing a
3642 **        single NULL.
3643 **
3644 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3645 **
3646 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3647 **
3648 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3649 **        accidently carried the comment forward until 2014-09-15.  Original
3650 **        constraint: "If the subquery is aggregate then the outer query
3651 **        may not use LIMIT."
3652 **
3653 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3654 **
3655 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3656 **        a separate restriction deriving from ticket #350.
3657 **
3658 **  (13)  The subquery and outer query may not both use LIMIT.
3659 **
3660 **  (14)  The subquery may not use OFFSET.
3661 **
3662 **  (15)  If the outer query is part of a compound select, then the
3663 **        subquery may not use LIMIT.
3664 **        (See ticket #2339 and ticket [02a8e81d44]).
3665 **
3666 **  (16)  If the outer query is aggregate, then the subquery may not
3667 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3668 **        until we introduced the group_concat() function.
3669 **
3670 **  (17)  If the subquery is a compound select, then
3671 **        (17a) all compound operators must be a UNION ALL, and
3672 **        (17b) no terms within the subquery compound may be aggregate
3673 **              or DISTINCT, and
3674 **        (17c) every term within the subquery compound must have a FROM clause
3675 **        (17d) the outer query may not be
3676 **              (17d1) aggregate, or
3677 **              (17d2) DISTINCT, or
3678 **              (17d3) a join.
3679 **        (17e) the subquery may not contain window functions
3680 **
3681 **        The parent and sub-query may contain WHERE clauses. Subject to
3682 **        rules (11), (13) and (14), they may also contain ORDER BY,
3683 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3684 **        operator other than UNION ALL because all the other compound
3685 **        operators have an implied DISTINCT which is disallowed by
3686 **        restriction (4).
3687 **
3688 **        Also, each component of the sub-query must return the same number
3689 **        of result columns. This is actually a requirement for any compound
3690 **        SELECT statement, but all the code here does is make sure that no
3691 **        such (illegal) sub-query is flattened. The caller will detect the
3692 **        syntax error and return a detailed message.
3693 **
3694 **  (18)  If the sub-query is a compound select, then all terms of the
3695 **        ORDER BY clause of the parent must be simple references to
3696 **        columns of the sub-query.
3697 **
3698 **  (19)  If the subquery uses LIMIT then the outer query may not
3699 **        have a WHERE clause.
3700 **
3701 **  (20)  If the sub-query is a compound select, then it must not use
3702 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3703 **        somewhat by saying that the terms of the ORDER BY clause must
3704 **        appear as unmodified result columns in the outer query.  But we
3705 **        have other optimizations in mind to deal with that case.
3706 **
3707 **  (21)  If the subquery uses LIMIT then the outer query may not be
3708 **        DISTINCT.  (See ticket [752e1646fc]).
3709 **
3710 **  (22)  The subquery may not be a recursive CTE.
3711 **
3712 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3713 **        a recursive CTE, then the sub-query may not be a compound query.
3714 **        This restriction is because transforming the
3715 **        parent to a compound query confuses the code that handles
3716 **        recursive queries in multiSelect().
3717 **
3718 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3719 **        The subquery may not be an aggregate that uses the built-in min() or
3720 **        or max() functions.  (Without this restriction, a query like:
3721 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3722 **        return the value X for which Y was maximal.)
3723 **
3724 **  (25)  If either the subquery or the parent query contains a window
3725 **        function in the select list or ORDER BY clause, flattening
3726 **        is not attempted.
3727 **
3728 **
3729 ** In this routine, the "p" parameter is a pointer to the outer query.
3730 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3731 ** uses aggregates.
3732 **
3733 ** If flattening is not attempted, this routine is a no-op and returns 0.
3734 ** If flattening is attempted this routine returns 1.
3735 **
3736 ** All of the expression analysis must occur on both the outer query and
3737 ** the subquery before this routine runs.
3738 */
flattenSubquery(Parse * pParse,Select * p,int iFrom,int isAgg)3739 static int flattenSubquery(
3740   Parse *pParse,       /* Parsing context */
3741   Select *p,           /* The parent or outer SELECT statement */
3742   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3743   int isAgg            /* True if outer SELECT uses aggregate functions */
3744 ){
3745   const char *zSavedAuthContext = pParse->zAuthContext;
3746   Select *pParent;    /* Current UNION ALL term of the other query */
3747   Select *pSub;       /* The inner query or "subquery" */
3748   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3749   SrcList *pSrc;      /* The FROM clause of the outer query */
3750   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3751   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3752   int iNewParent = -1;/* Replacement table for iParent */
3753   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3754   int i;              /* Loop counter */
3755   Expr *pWhere;                    /* The WHERE clause */
3756   struct SrcList_item *pSubitem;   /* The subquery */
3757   sqlite3 *db = pParse->db;
3758 
3759   /* Check to see if flattening is permitted.  Return 0 if not.
3760   */
3761   assert( p!=0 );
3762   assert( p->pPrior==0 );
3763   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3764   pSrc = p->pSrc;
3765   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3766   pSubitem = &pSrc->a[iFrom];
3767   iParent = pSubitem->iCursor;
3768   pSub = pSubitem->pSelect;
3769   assert( pSub!=0 );
3770 
3771 #ifndef SQLITE_OMIT_WINDOWFUNC
3772   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3773 #endif
3774 
3775   pSubSrc = pSub->pSrc;
3776   assert( pSubSrc );
3777   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3778   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3779   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3780   ** became arbitrary expressions, we were forced to add restrictions (13)
3781   ** and (14). */
3782   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3783   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3784   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3785     return 0;                                            /* Restriction (15) */
3786   }
3787   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3788   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3789   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3790      return 0;         /* Restrictions (8)(9) */
3791   }
3792   if( p->pOrderBy && pSub->pOrderBy ){
3793      return 0;                                           /* Restriction (11) */
3794   }
3795   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3796   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3797   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3798      return 0;         /* Restriction (21) */
3799   }
3800   if( pSub->selFlags & (SF_Recursive) ){
3801     return 0; /* Restrictions (22) */
3802   }
3803 
3804   /*
3805   ** If the subquery is the right operand of a LEFT JOIN, then the
3806   ** subquery may not be a join itself (3a). Example of why this is not
3807   ** allowed:
3808   **
3809   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3810   **
3811   ** If we flatten the above, we would get
3812   **
3813   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3814   **
3815   ** which is not at all the same thing.
3816   **
3817   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3818   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3819   ** aggregates are processed - there is no mechanism to determine if
3820   ** the LEFT JOIN table should be all-NULL.
3821   **
3822   ** See also tickets #306, #350, and #3300.
3823   */
3824   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3825     isLeftJoin = 1;
3826     if( pSubSrc->nSrc>1                   /* (3a) */
3827      || isAgg                             /* (3b) */
3828      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3829      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3830     ){
3831       return 0;
3832     }
3833   }
3834 #ifdef SQLITE_EXTRA_IFNULLROW
3835   else if( iFrom>0 && !isAgg ){
3836     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3837     ** every reference to any result column from subquery in a join, even
3838     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3839     ** opcode. */
3840     isLeftJoin = -1;
3841   }
3842 #endif
3843 
3844   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3845   ** use only the UNION ALL operator. And none of the simple select queries
3846   ** that make up the compound SELECT are allowed to be aggregate or distinct
3847   ** queries.
3848   */
3849   if( pSub->pPrior ){
3850     if( pSub->pOrderBy ){
3851       return 0;  /* Restriction (20) */
3852     }
3853     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3854       return 0; /* (17d1), (17d2), or (17d3) */
3855     }
3856     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3857       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3858       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3859       assert( pSub->pSrc!=0 );
3860       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3861       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3862        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3863        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3864 #ifndef SQLITE_OMIT_WINDOWFUNC
3865        || pSub1->pWin                                          /* (17e) */
3866 #endif
3867       ){
3868         return 0;
3869       }
3870       testcase( pSub1->pSrc->nSrc>1 );
3871     }
3872 
3873     /* Restriction (18). */
3874     if( p->pOrderBy ){
3875       int ii;
3876       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3877         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3878       }
3879     }
3880   }
3881 
3882   /* Ex-restriction (23):
3883   ** The only way that the recursive part of a CTE can contain a compound
3884   ** subquery is for the subquery to be one term of a join.  But if the
3885   ** subquery is a join, then the flattening has already been stopped by
3886   ** restriction (17d3)
3887   */
3888   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3889 
3890   /***** If we reach this point, flattening is permitted. *****/
3891   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3892                    pSub->selId, pSub, iFrom));
3893 
3894   /* Authorize the subquery */
3895   pParse->zAuthContext = pSubitem->zName;
3896   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3897   testcase( i==SQLITE_DENY );
3898   pParse->zAuthContext = zSavedAuthContext;
3899 
3900   /* If the sub-query is a compound SELECT statement, then (by restrictions
3901   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3902   ** be of the form:
3903   **
3904   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3905   **
3906   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3907   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3908   ** OFFSET clauses and joins them to the left-hand-side of the original
3909   ** using UNION ALL operators. In this case N is the number of simple
3910   ** select statements in the compound sub-query.
3911   **
3912   ** Example:
3913   **
3914   **     SELECT a+1 FROM (
3915   **        SELECT x FROM tab
3916   **        UNION ALL
3917   **        SELECT y FROM tab
3918   **        UNION ALL
3919   **        SELECT abs(z*2) FROM tab2
3920   **     ) WHERE a!=5 ORDER BY 1
3921   **
3922   ** Transformed into:
3923   **
3924   **     SELECT x+1 FROM tab WHERE x+1!=5
3925   **     UNION ALL
3926   **     SELECT y+1 FROM tab WHERE y+1!=5
3927   **     UNION ALL
3928   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3929   **     ORDER BY 1
3930   **
3931   ** We call this the "compound-subquery flattening".
3932   */
3933   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3934     Select *pNew;
3935     ExprList *pOrderBy = p->pOrderBy;
3936     Expr *pLimit = p->pLimit;
3937     Select *pPrior = p->pPrior;
3938     p->pOrderBy = 0;
3939     p->pSrc = 0;
3940     p->pPrior = 0;
3941     p->pLimit = 0;
3942     pNew = sqlite3SelectDup(db, p, 0);
3943     p->pLimit = pLimit;
3944     p->pOrderBy = pOrderBy;
3945     p->pSrc = pSrc;
3946     p->op = TK_ALL;
3947     if( pNew==0 ){
3948       p->pPrior = pPrior;
3949     }else{
3950       pNew->pPrior = pPrior;
3951       if( pPrior ) pPrior->pNext = pNew;
3952       pNew->pNext = p;
3953       p->pPrior = pNew;
3954       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3955                               " creates %u as peer\n",pNew->selId));
3956     }
3957     if( db->mallocFailed ) return 1;
3958   }
3959 
3960   /* Begin flattening the iFrom-th entry of the FROM clause
3961   ** in the outer query.
3962   */
3963   pSub = pSub1 = pSubitem->pSelect;
3964 
3965   /* Delete the transient table structure associated with the
3966   ** subquery
3967   */
3968   sqlite3DbFree(db, pSubitem->zDatabase);
3969   sqlite3DbFree(db, pSubitem->zName);
3970   sqlite3DbFree(db, pSubitem->zAlias);
3971   pSubitem->zDatabase = 0;
3972   pSubitem->zName = 0;
3973   pSubitem->zAlias = 0;
3974   pSubitem->pSelect = 0;
3975 
3976   /* Defer deleting the Table object associated with the
3977   ** subquery until code generation is
3978   ** complete, since there may still exist Expr.pTab entries that
3979   ** refer to the subquery even after flattening.  Ticket #3346.
3980   **
3981   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3982   */
3983   if( ALWAYS(pSubitem->pTab!=0) ){
3984     Table *pTabToDel = pSubitem->pTab;
3985     if( pTabToDel->nTabRef==1 ){
3986       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3987       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3988       pToplevel->pZombieTab = pTabToDel;
3989     }else{
3990       pTabToDel->nTabRef--;
3991     }
3992     pSubitem->pTab = 0;
3993   }
3994 
3995   /* The following loop runs once for each term in a compound-subquery
3996   ** flattening (as described above).  If we are doing a different kind
3997   ** of flattening - a flattening other than a compound-subquery flattening -
3998   ** then this loop only runs once.
3999   **
4000   ** This loop moves all of the FROM elements of the subquery into the
4001   ** the FROM clause of the outer query.  Before doing this, remember
4002   ** the cursor number for the original outer query FROM element in
4003   ** iParent.  The iParent cursor will never be used.  Subsequent code
4004   ** will scan expressions looking for iParent references and replace
4005   ** those references with expressions that resolve to the subquery FROM
4006   ** elements we are now copying in.
4007   */
4008   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4009     int nSubSrc;
4010     u8 jointype = 0;
4011     assert( pSub!=0 );
4012     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4013     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4014     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4015 
4016     if( pSrc ){
4017       assert( pParent==p );  /* First time through the loop */
4018       jointype = pSubitem->fg.jointype;
4019     }else{
4020       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
4021       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
4022       if( pSrc==0 ) break;
4023       pParent->pSrc = pSrc;
4024     }
4025 
4026     /* The subquery uses a single slot of the FROM clause of the outer
4027     ** query.  If the subquery has more than one element in its FROM clause,
4028     ** then expand the outer query to make space for it to hold all elements
4029     ** of the subquery.
4030     **
4031     ** Example:
4032     **
4033     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4034     **
4035     ** The outer query has 3 slots in its FROM clause.  One slot of the
4036     ** outer query (the middle slot) is used by the subquery.  The next
4037     ** block of code will expand the outer query FROM clause to 4 slots.
4038     ** The middle slot is expanded to two slots in order to make space
4039     ** for the two elements in the FROM clause of the subquery.
4040     */
4041     if( nSubSrc>1 ){
4042       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4043       if( pSrc==0 ) break;
4044       pParent->pSrc = pSrc;
4045     }
4046 
4047     /* Transfer the FROM clause terms from the subquery into the
4048     ** outer query.
4049     */
4050     for(i=0; i<nSubSrc; i++){
4051       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4052       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4053       pSrc->a[i+iFrom] = pSubSrc->a[i];
4054       iNewParent = pSubSrc->a[i].iCursor;
4055       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4056     }
4057     pSrc->a[iFrom].fg.jointype = jointype;
4058 
4059     /* Now begin substituting subquery result set expressions for
4060     ** references to the iParent in the outer query.
4061     **
4062     ** Example:
4063     **
4064     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4065     **   \                     \_____________ subquery __________/          /
4066     **    \_____________________ outer query ______________________________/
4067     **
4068     ** We look at every expression in the outer query and every place we see
4069     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4070     */
4071     if( pSub->pOrderBy ){
4072       /* At this point, any non-zero iOrderByCol values indicate that the
4073       ** ORDER BY column expression is identical to the iOrderByCol'th
4074       ** expression returned by SELECT statement pSub. Since these values
4075       ** do not necessarily correspond to columns in SELECT statement pParent,
4076       ** zero them before transfering the ORDER BY clause.
4077       **
4078       ** Not doing this may cause an error if a subsequent call to this
4079       ** function attempts to flatten a compound sub-query into pParent
4080       ** (the only way this can happen is if the compound sub-query is
4081       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4082       ExprList *pOrderBy = pSub->pOrderBy;
4083       for(i=0; i<pOrderBy->nExpr; i++){
4084         pOrderBy->a[i].u.x.iOrderByCol = 0;
4085       }
4086       assert( pParent->pOrderBy==0 );
4087       pParent->pOrderBy = pOrderBy;
4088       pSub->pOrderBy = 0;
4089     }
4090     pWhere = pSub->pWhere;
4091     pSub->pWhere = 0;
4092     if( isLeftJoin>0 ){
4093       sqlite3SetJoinExpr(pWhere, iNewParent);
4094     }
4095     pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere);
4096     if( db->mallocFailed==0 ){
4097       SubstContext x;
4098       x.pParse = pParse;
4099       x.iTable = iParent;
4100       x.iNewTable = iNewParent;
4101       x.isLeftJoin = isLeftJoin;
4102       x.pEList = pSub->pEList;
4103       substSelect(&x, pParent, 0);
4104     }
4105 
4106     /* The flattened query is a compound if either the inner or the
4107     ** outer query is a compound. */
4108     pParent->selFlags |= pSub->selFlags & SF_Compound;
4109     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4110 
4111     /*
4112     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4113     **
4114     ** One is tempted to try to add a and b to combine the limits.  But this
4115     ** does not work if either limit is negative.
4116     */
4117     if( pSub->pLimit ){
4118       pParent->pLimit = pSub->pLimit;
4119       pSub->pLimit = 0;
4120     }
4121   }
4122 
4123   /* Finially, delete what is left of the subquery and return
4124   ** success.
4125   */
4126   sqlite3SelectDelete(db, pSub1);
4127 
4128 #if SELECTTRACE_ENABLED
4129   if( sqlite3SelectTrace & 0x100 ){
4130     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4131     sqlite3TreeViewSelect(0, p, 0);
4132   }
4133 #endif
4134 
4135   return 1;
4136 }
4137 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4138 
4139 /*
4140 ** A structure to keep track of all of the column values that are fixed to
4141 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4142 */
4143 typedef struct WhereConst WhereConst;
4144 struct WhereConst {
4145   Parse *pParse;   /* Parsing context */
4146   int nConst;      /* Number for COLUMN=CONSTANT terms */
4147   int nChng;       /* Number of times a constant is propagated */
4148   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4149 };
4150 
4151 /*
4152 ** Add a new entry to the pConst object.  Except, do not add duplicate
4153 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4154 **
4155 ** The caller guarantees the pColumn is a column and pValue is a constant.
4156 ** This routine has to do some additional checks before completing the
4157 ** insert.
4158 */
constInsert(WhereConst * pConst,Expr * pColumn,Expr * pValue,Expr * pExpr)4159 static void constInsert(
4160   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4161   Expr *pColumn,       /* The COLUMN part of the constraint */
4162   Expr *pValue,        /* The VALUE part of the constraint */
4163   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4164 ){
4165   int i;
4166   assert( pColumn->op==TK_COLUMN );
4167   assert( sqlite3ExprIsConstant(pValue) );
4168 
4169   if( !ExprHasProperty(pValue, EP_FixedCol) && sqlite3ExprAffinity(pValue)!=0 ){
4170     return;
4171   }
4172   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4173     return;
4174   }
4175 
4176   /* 2018-10-25 ticket [cf5ed20f]
4177   ** Make sure the same pColumn is not inserted more than once */
4178   for(i=0; i<pConst->nConst; i++){
4179     const Expr *pE2 = pConst->apExpr[i*2];
4180     assert( pE2->op==TK_COLUMN );
4181     if( pE2->iTable==pColumn->iTable
4182      && pE2->iColumn==pColumn->iColumn
4183     ){
4184       return;  /* Already present.  Return without doing anything. */
4185     }
4186   }
4187 
4188   pConst->nConst++;
4189   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4190                          pConst->nConst*2*sizeof(Expr*));
4191   if( pConst->apExpr==0 ){
4192     pConst->nConst = 0;
4193   }else{
4194     if( ExprHasProperty(pValue, EP_FixedCol) ){
4195       pValue = pValue->pLeft;
4196     }
4197     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4198     pConst->apExpr[pConst->nConst*2-1] = pValue;
4199   }
4200 }
4201 
4202 /*
4203 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4204 ** is a constant expression and where the term must be true because it
4205 ** is part of the AND-connected terms of the expression.  For each term
4206 ** found, add it to the pConst structure.
4207 */
findConstInWhere(WhereConst * pConst,Expr * pExpr)4208 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4209   Expr *pRight, *pLeft;
4210   if( pExpr==0 ) return;
4211   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4212   if( pExpr->op==TK_AND ){
4213     findConstInWhere(pConst, pExpr->pRight);
4214     findConstInWhere(pConst, pExpr->pLeft);
4215     return;
4216   }
4217   if( pExpr->op!=TK_EQ ) return;
4218   pRight = pExpr->pRight;
4219   pLeft = pExpr->pLeft;
4220   assert( pRight!=0 );
4221   assert( pLeft!=0 );
4222   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4223     constInsert(pConst,pRight,pLeft,pExpr);
4224   }
4225   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4226     constInsert(pConst,pLeft,pRight,pExpr);
4227   }
4228 }
4229 
4230 /*
4231 ** This is a Walker expression callback.  pExpr is a candidate expression
4232 ** to be replaced by a value.  If pExpr is equivalent to one of the
4233 ** columns named in pWalker->u.pConst, then overwrite it with its
4234 ** corresponding value.
4235 */
propagateConstantExprRewrite(Walker * pWalker,Expr * pExpr)4236 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4237   int i;
4238   WhereConst *pConst;
4239   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4240   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4241     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4242     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4243     return WRC_Continue;
4244   }
4245   pConst = pWalker->u.pConst;
4246   for(i=0; i<pConst->nConst; i++){
4247     Expr *pColumn = pConst->apExpr[i*2];
4248     if( pColumn==pExpr ) continue;
4249     if( pColumn->iTable!=pExpr->iTable ) continue;
4250     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4251     /* A match is found.  Add the EP_FixedCol property */
4252     pConst->nChng++;
4253     ExprClearProperty(pExpr, EP_Leaf);
4254     ExprSetProperty(pExpr, EP_FixedCol);
4255     assert( pExpr->pLeft==0 );
4256     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4257     break;
4258   }
4259   return WRC_Prune;
4260 }
4261 
4262 /*
4263 ** The WHERE-clause constant propagation optimization.
4264 **
4265 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4266 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4267 ** part of a ON clause from a LEFT JOIN, then throughout the query
4268 ** replace all other occurrences of COLUMN with CONSTANT.
4269 **
4270 ** For example, the query:
4271 **
4272 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4273 **
4274 ** Is transformed into
4275 **
4276 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4277 **
4278 ** Return true if any transformations where made and false if not.
4279 **
4280 ** Implementation note:  Constant propagation is tricky due to affinity
4281 ** and collating sequence interactions.  Consider this example:
4282 **
4283 **    CREATE TABLE t1(a INT,b TEXT);
4284 **    INSERT INTO t1 VALUES(123,'0123');
4285 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4286 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4287 **
4288 ** The two SELECT statements above should return different answers.  b=a
4289 ** is alway true because the comparison uses numeric affinity, but b=123
4290 ** is false because it uses text affinity and '0123' is not the same as '123'.
4291 ** To work around this, the expression tree is not actually changed from
4292 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4293 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4294 ** routines know to generate the constant "123" instead of looking up the
4295 ** column value.  Also, to avoid collation problems, this optimization is
4296 ** only attempted if the "a=123" term uses the default BINARY collation.
4297 */
propagateConstants(Parse * pParse,Select * p)4298 static int propagateConstants(
4299   Parse *pParse,   /* The parsing context */
4300   Select *p        /* The query in which to propagate constants */
4301 ){
4302   WhereConst x;
4303   Walker w;
4304   int nChng = 0;
4305   x.pParse = pParse;
4306   do{
4307     x.nConst = 0;
4308     x.nChng = 0;
4309     x.apExpr = 0;
4310     findConstInWhere(&x, p->pWhere);
4311     if( x.nConst ){
4312       memset(&w, 0, sizeof(w));
4313       w.pParse = pParse;
4314       w.xExprCallback = propagateConstantExprRewrite;
4315       w.xSelectCallback = sqlite3SelectWalkNoop;
4316       w.xSelectCallback2 = 0;
4317       w.walkerDepth = 0;
4318       w.u.pConst = &x;
4319       sqlite3WalkExpr(&w, p->pWhere);
4320       sqlite3DbFree(x.pParse->db, x.apExpr);
4321       nChng += x.nChng;
4322     }
4323   }while( x.nChng );
4324   return nChng;
4325 }
4326 
4327 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4328 /*
4329 ** Make copies of relevant WHERE clause terms of the outer query into
4330 ** the WHERE clause of subquery.  Example:
4331 **
4332 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4333 **
4334 ** Transformed into:
4335 **
4336 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4337 **     WHERE x=5 AND y=10;
4338 **
4339 ** The hope is that the terms added to the inner query will make it more
4340 ** efficient.
4341 **
4342 ** Do not attempt this optimization if:
4343 **
4344 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4345 **           disallow this optimization for aggregate subqueries, but now
4346 **           it is allowed by putting the extra terms on the HAVING clause.
4347 **           The added HAVING clause is pointless if the subquery lacks
4348 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4349 **           so there does not appear to be any reason to add extra logic
4350 **           to suppress it. **)
4351 **
4352 **   (2) The inner query is the recursive part of a common table expression.
4353 **
4354 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4355 **       clause would change the meaning of the LIMIT).
4356 **
4357 **   (4) The inner query is the right operand of a LEFT JOIN and the
4358 **       expression to be pushed down does not come from the ON clause
4359 **       on that LEFT JOIN.
4360 **
4361 **   (5) The WHERE clause expression originates in the ON or USING clause
4362 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4363 **       left join.  An example:
4364 **
4365 **           SELECT *
4366 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4367 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4368 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4369 **
4370 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4371 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4372 **       then the (1,1,NULL) row would be suppressed.
4373 **
4374 **   (6) The inner query features one or more window-functions (since
4375 **       changes to the WHERE clause of the inner query could change the
4376 **       window over which window functions are calculated).
4377 **
4378 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4379 ** terms are duplicated into the subquery.
4380 */
pushDownWhereTerms(Parse * pParse,Select * pSubq,Expr * pWhere,int iCursor,int isLeftJoin)4381 static int pushDownWhereTerms(
4382   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4383   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4384   Expr *pWhere,         /* The WHERE clause of the outer query */
4385   int iCursor,          /* Cursor number of the subquery */
4386   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4387 ){
4388   Expr *pNew;
4389   int nChng = 0;
4390   if( pWhere==0 ) return 0;
4391   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4392 
4393 #ifndef SQLITE_OMIT_WINDOWFUNC
4394   if( pSubq->pWin ) return 0;    /* restriction (6) */
4395 #endif
4396 
4397 #ifdef SQLITE_DEBUG
4398   /* Only the first term of a compound can have a WITH clause.  But make
4399   ** sure no other terms are marked SF_Recursive in case something changes
4400   ** in the future.
4401   */
4402   {
4403     Select *pX;
4404     for(pX=pSubq; pX; pX=pX->pPrior){
4405       assert( (pX->selFlags & (SF_Recursive))==0 );
4406     }
4407   }
4408 #endif
4409 
4410   if( pSubq->pLimit!=0 ){
4411     return 0; /* restriction (3) */
4412   }
4413   while( pWhere->op==TK_AND ){
4414     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4415                                 iCursor, isLeftJoin);
4416     pWhere = pWhere->pLeft;
4417   }
4418   if( isLeftJoin
4419    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4420          || pWhere->iRightJoinTable!=iCursor)
4421   ){
4422     return 0; /* restriction (4) */
4423   }
4424   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4425     return 0; /* restriction (5) */
4426   }
4427   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4428     nChng++;
4429     while( pSubq ){
4430       SubstContext x;
4431       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4432       unsetJoinExpr(pNew, -1);
4433       x.pParse = pParse;
4434       x.iTable = iCursor;
4435       x.iNewTable = iCursor;
4436       x.isLeftJoin = 0;
4437       x.pEList = pSubq->pEList;
4438       pNew = substExpr(&x, pNew);
4439       if( pSubq->selFlags & SF_Aggregate ){
4440         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4441       }else{
4442         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4443       }
4444       pSubq = pSubq->pPrior;
4445     }
4446   }
4447   return nChng;
4448 }
4449 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4450 
4451 /*
4452 ** The pFunc is the only aggregate function in the query.  Check to see
4453 ** if the query is a candidate for the min/max optimization.
4454 **
4455 ** If the query is a candidate for the min/max optimization, then set
4456 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4457 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4458 ** whether pFunc is a min() or max() function.
4459 **
4460 ** If the query is not a candidate for the min/max optimization, return
4461 ** WHERE_ORDERBY_NORMAL (which must be zero).
4462 **
4463 ** This routine must be called after aggregate functions have been
4464 ** located but before their arguments have been subjected to aggregate
4465 ** analysis.
4466 */
minMaxQuery(sqlite3 * db,Expr * pFunc,ExprList ** ppMinMax)4467 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4468   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4469   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4470   const char *zFunc;                    /* Name of aggregate function pFunc */
4471   ExprList *pOrderBy;
4472   u8 sortFlags;
4473 
4474   assert( *ppMinMax==0 );
4475   assert( pFunc->op==TK_AGG_FUNCTION );
4476   assert( !IsWindowFunc(pFunc) );
4477   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4478     return eRet;
4479   }
4480   zFunc = pFunc->u.zToken;
4481   if( sqlite3StrICmp(zFunc, "min")==0 ){
4482     eRet = WHERE_ORDERBY_MIN;
4483     sortFlags = KEYINFO_ORDER_BIGNULL;
4484   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4485     eRet = WHERE_ORDERBY_MAX;
4486     sortFlags = KEYINFO_ORDER_DESC;
4487   }else{
4488     return eRet;
4489   }
4490   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4491   assert( pOrderBy!=0 || db->mallocFailed );
4492   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4493   return eRet;
4494 }
4495 
4496 /*
4497 ** The select statement passed as the first argument is an aggregate query.
4498 ** The second argument is the associated aggregate-info object. This
4499 ** function tests if the SELECT is of the form:
4500 **
4501 **   SELECT count(*) FROM <tbl>
4502 **
4503 ** where table is a database table, not a sub-select or view. If the query
4504 ** does match this pattern, then a pointer to the Table object representing
4505 ** <tbl> is returned. Otherwise, 0 is returned.
4506 */
isSimpleCount(Select * p,AggInfo * pAggInfo)4507 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4508   Table *pTab;
4509   Expr *pExpr;
4510 
4511   assert( !p->pGroupBy );
4512 
4513   if( p->pWhere || p->pEList->nExpr!=1
4514    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4515   ){
4516     return 0;
4517   }
4518   pTab = p->pSrc->a[0].pTab;
4519   pExpr = p->pEList->a[0].pExpr;
4520   assert( pTab && !pTab->pSelect && pExpr );
4521 
4522   if( IsVirtual(pTab) ) return 0;
4523   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4524   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4525   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4526   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4527 
4528   return pTab;
4529 }
4530 
4531 /*
4532 ** If the source-list item passed as an argument was augmented with an
4533 ** INDEXED BY clause, then try to locate the specified index. If there
4534 ** was such a clause and the named index cannot be found, return
4535 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4536 ** pFrom->pIndex and return SQLITE_OK.
4537 */
sqlite3IndexedByLookup(Parse * pParse,struct SrcList_item * pFrom)4538 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4539   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4540     Table *pTab = pFrom->pTab;
4541     char *zIndexedBy = pFrom->u1.zIndexedBy;
4542     Index *pIdx;
4543     for(pIdx=pTab->pIndex;
4544         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4545         pIdx=pIdx->pNext
4546     );
4547     if( !pIdx ){
4548       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4549       pParse->checkSchema = 1;
4550       return SQLITE_ERROR;
4551     }
4552     pFrom->pIBIndex = pIdx;
4553   }
4554   return SQLITE_OK;
4555 }
4556 /*
4557 ** Detect compound SELECT statements that use an ORDER BY clause with
4558 ** an alternative collating sequence.
4559 **
4560 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4561 **
4562 ** These are rewritten as a subquery:
4563 **
4564 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4565 **     ORDER BY ... COLLATE ...
4566 **
4567 ** This transformation is necessary because the multiSelectOrderBy() routine
4568 ** above that generates the code for a compound SELECT with an ORDER BY clause
4569 ** uses a merge algorithm that requires the same collating sequence on the
4570 ** result columns as on the ORDER BY clause.  See ticket
4571 ** http://www.sqlite.org/src/info/6709574d2a
4572 **
4573 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4574 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4575 ** there are COLLATE terms in the ORDER BY.
4576 */
convertCompoundSelectToSubquery(Walker * pWalker,Select * p)4577 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4578   int i;
4579   Select *pNew;
4580   Select *pX;
4581   sqlite3 *db;
4582   struct ExprList_item *a;
4583   SrcList *pNewSrc;
4584   Parse *pParse;
4585   Token dummy;
4586 
4587   if( p->pPrior==0 ) return WRC_Continue;
4588   if( p->pOrderBy==0 ) return WRC_Continue;
4589   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4590   if( pX==0 ) return WRC_Continue;
4591   a = p->pOrderBy->a;
4592   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4593     if( a[i].pExpr->flags & EP_Collate ) break;
4594   }
4595   if( i<0 ) return WRC_Continue;
4596 
4597   /* If we reach this point, that means the transformation is required. */
4598 
4599   pParse = pWalker->pParse;
4600   db = pParse->db;
4601   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4602   if( pNew==0 ) return WRC_Abort;
4603   memset(&dummy, 0, sizeof(dummy));
4604   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4605   if( pNewSrc==0 ) return WRC_Abort;
4606   *pNew = *p;
4607   p->pSrc = pNewSrc;
4608   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4609   p->op = TK_SELECT;
4610   p->pWhere = 0;
4611   pNew->pGroupBy = 0;
4612   pNew->pHaving = 0;
4613   pNew->pOrderBy = 0;
4614   p->pPrior = 0;
4615   p->pNext = 0;
4616   p->pWith = 0;
4617 #ifndef SQLITE_OMIT_WINDOWFUNC
4618   p->pWinDefn = 0;
4619 #endif
4620   p->selFlags &= ~SF_Compound;
4621   assert( (p->selFlags & SF_Converted)==0 );
4622   p->selFlags |= SF_Converted;
4623   assert( pNew->pPrior!=0 );
4624   pNew->pPrior->pNext = pNew;
4625   pNew->pLimit = 0;
4626   return WRC_Continue;
4627 }
4628 
4629 /*
4630 ** Check to see if the FROM clause term pFrom has table-valued function
4631 ** arguments.  If it does, leave an error message in pParse and return
4632 ** non-zero, since pFrom is not allowed to be a table-valued function.
4633 */
cannotBeFunction(Parse * pParse,struct SrcList_item * pFrom)4634 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4635   if( pFrom->fg.isTabFunc ){
4636     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4637     return 1;
4638   }
4639   return 0;
4640 }
4641 
4642 #ifndef SQLITE_OMIT_CTE
4643 /*
4644 ** Argument pWith (which may be NULL) points to a linked list of nested
4645 ** WITH contexts, from inner to outermost. If the table identified by
4646 ** FROM clause element pItem is really a common-table-expression (CTE)
4647 ** then return a pointer to the CTE definition for that table. Otherwise
4648 ** return NULL.
4649 **
4650 ** If a non-NULL value is returned, set *ppContext to point to the With
4651 ** object that the returned CTE belongs to.
4652 */
searchWith(With * pWith,struct SrcList_item * pItem,With ** ppContext)4653 static struct Cte *searchWith(
4654   With *pWith,                    /* Current innermost WITH clause */
4655   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4656   With **ppContext                /* OUT: WITH clause return value belongs to */
4657 ){
4658   const char *zName;
4659   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4660     With *p;
4661     for(p=pWith; p; p=p->pOuter){
4662       int i;
4663       for(i=0; i<p->nCte; i++){
4664         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4665           *ppContext = p;
4666           return &p->a[i];
4667         }
4668       }
4669     }
4670   }
4671   return 0;
4672 }
4673 
4674 /* The code generator maintains a stack of active WITH clauses
4675 ** with the inner-most WITH clause being at the top of the stack.
4676 **
4677 ** This routine pushes the WITH clause passed as the second argument
4678 ** onto the top of the stack. If argument bFree is true, then this
4679 ** WITH clause will never be popped from the stack. In this case it
4680 ** should be freed along with the Parse object. In other cases, when
4681 ** bFree==0, the With object will be freed along with the SELECT
4682 ** statement with which it is associated.
4683 */
sqlite3WithPush(Parse * pParse,With * pWith,u8 bFree)4684 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4685   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4686   if( pWith ){
4687     assert( pParse->pWith!=pWith );
4688     pWith->pOuter = pParse->pWith;
4689     pParse->pWith = pWith;
4690     if( bFree ) pParse->pWithToFree = pWith;
4691   }
4692 }
4693 
4694 /*
4695 ** This function checks if argument pFrom refers to a CTE declared by
4696 ** a WITH clause on the stack currently maintained by the parser. And,
4697 ** if currently processing a CTE expression, if it is a recursive
4698 ** reference to the current CTE.
4699 **
4700 ** If pFrom falls into either of the two categories above, pFrom->pTab
4701 ** and other fields are populated accordingly. The caller should check
4702 ** (pFrom->pTab!=0) to determine whether or not a successful match
4703 ** was found.
4704 **
4705 ** Whether or not a match is found, SQLITE_OK is returned if no error
4706 ** occurs. If an error does occur, an error message is stored in the
4707 ** parser and some error code other than SQLITE_OK returned.
4708 */
withExpand(Walker * pWalker,struct SrcList_item * pFrom)4709 static int withExpand(
4710   Walker *pWalker,
4711   struct SrcList_item *pFrom
4712 ){
4713   Parse *pParse = pWalker->pParse;
4714   sqlite3 *db = pParse->db;
4715   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4716   With *pWith;                    /* WITH clause that pCte belongs to */
4717 
4718   assert( pFrom->pTab==0 );
4719   if( pParse->nErr ){
4720     return SQLITE_ERROR;
4721   }
4722 
4723   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4724   if( pCte ){
4725     Table *pTab;
4726     ExprList *pEList;
4727     Select *pSel;
4728     Select *pLeft;                /* Left-most SELECT statement */
4729     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4730     With *pSavedWith;             /* Initial value of pParse->pWith */
4731 
4732     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4733     ** recursive reference to CTE pCte. Leave an error in pParse and return
4734     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4735     ** In this case, proceed.  */
4736     if( pCte->zCteErr ){
4737       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4738       return SQLITE_ERROR;
4739     }
4740     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4741 
4742     assert( pFrom->pTab==0 );
4743     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4744     if( pTab==0 ) return WRC_Abort;
4745     pTab->nTabRef = 1;
4746     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4747     pTab->iPKey = -1;
4748     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4749     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4750     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4751     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4752     assert( pFrom->pSelect );
4753 
4754     /* Check if this is a recursive CTE. */
4755     pSel = pFrom->pSelect;
4756     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4757     if( bMayRecursive ){
4758       int i;
4759       SrcList *pSrc = pFrom->pSelect->pSrc;
4760       for(i=0; i<pSrc->nSrc; i++){
4761         struct SrcList_item *pItem = &pSrc->a[i];
4762         if( pItem->zDatabase==0
4763          && pItem->zName!=0
4764          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4765           ){
4766           pItem->pTab = pTab;
4767           pItem->fg.isRecursive = 1;
4768           pTab->nTabRef++;
4769           pSel->selFlags |= SF_Recursive;
4770         }
4771       }
4772     }
4773 
4774     /* Only one recursive reference is permitted. */
4775     if( pTab->nTabRef>2 ){
4776       sqlite3ErrorMsg(
4777           pParse, "multiple references to recursive table: %s", pCte->zName
4778       );
4779       return SQLITE_ERROR;
4780     }
4781     assert( pTab->nTabRef==1 ||
4782             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4783 
4784     pCte->zCteErr = "circular reference: %s";
4785     pSavedWith = pParse->pWith;
4786     pParse->pWith = pWith;
4787     if( bMayRecursive ){
4788       Select *pPrior = pSel->pPrior;
4789       assert( pPrior->pWith==0 );
4790       pPrior->pWith = pSel->pWith;
4791       sqlite3WalkSelect(pWalker, pPrior);
4792       pPrior->pWith = 0;
4793     }else{
4794       sqlite3WalkSelect(pWalker, pSel);
4795     }
4796     pParse->pWith = pWith;
4797 
4798     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4799     pEList = pLeft->pEList;
4800     if( pCte->pCols ){
4801       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4802         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4803             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4804         );
4805         pParse->pWith = pSavedWith;
4806         return SQLITE_ERROR;
4807       }
4808       pEList = pCte->pCols;
4809     }
4810 
4811     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4812     if( bMayRecursive ){
4813       if( pSel->selFlags & SF_Recursive ){
4814         pCte->zCteErr = "multiple recursive references: %s";
4815       }else{
4816         pCte->zCteErr = "recursive reference in a subquery: %s";
4817       }
4818       sqlite3WalkSelect(pWalker, pSel);
4819     }
4820     pCte->zCteErr = 0;
4821     pParse->pWith = pSavedWith;
4822   }
4823 
4824   return SQLITE_OK;
4825 }
4826 #endif
4827 
4828 #ifndef SQLITE_OMIT_CTE
4829 /*
4830 ** If the SELECT passed as the second argument has an associated WITH
4831 ** clause, pop it from the stack stored as part of the Parse object.
4832 **
4833 ** This function is used as the xSelectCallback2() callback by
4834 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4835 ** names and other FROM clause elements.
4836 */
selectPopWith(Walker * pWalker,Select * p)4837 static void selectPopWith(Walker *pWalker, Select *p){
4838   Parse *pParse = pWalker->pParse;
4839   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4840     With *pWith = findRightmost(p)->pWith;
4841     if( pWith!=0 ){
4842       assert( pParse->pWith==pWith || pParse->nErr );
4843       pParse->pWith = pWith->pOuter;
4844     }
4845   }
4846 }
4847 #else
4848 #define selectPopWith 0
4849 #endif
4850 
4851 /*
4852 ** The SrcList_item structure passed as the second argument represents a
4853 ** sub-query in the FROM clause of a SELECT statement. This function
4854 ** allocates and populates the SrcList_item.pTab object. If successful,
4855 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4856 ** SQLITE_NOMEM.
4857 */
sqlite3ExpandSubquery(Parse * pParse,struct SrcList_item * pFrom)4858 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4859   Select *pSel = pFrom->pSelect;
4860   Table *pTab;
4861 
4862   assert( pSel );
4863   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4864   if( pTab==0 ) return SQLITE_NOMEM;
4865   pTab->nTabRef = 1;
4866   if( pFrom->zAlias ){
4867     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4868   }else{
4869     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4870   }
4871   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4872   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4873   pTab->iPKey = -1;
4874   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4875   pTab->tabFlags |= TF_Ephemeral;
4876 
4877   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4878 }
4879 
4880 /*
4881 ** This routine is a Walker callback for "expanding" a SELECT statement.
4882 ** "Expanding" means to do the following:
4883 **
4884 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4885 **         element of the FROM clause.
4886 **
4887 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4888 **         defines FROM clause.  When views appear in the FROM clause,
4889 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4890 **         that implements the view.  A copy is made of the view's SELECT
4891 **         statement so that we can freely modify or delete that statement
4892 **         without worrying about messing up the persistent representation
4893 **         of the view.
4894 **
4895 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4896 **         on joins and the ON and USING clause of joins.
4897 **
4898 **    (4)  Scan the list of columns in the result set (pEList) looking
4899 **         for instances of the "*" operator or the TABLE.* operator.
4900 **         If found, expand each "*" to be every column in every table
4901 **         and TABLE.* to be every column in TABLE.
4902 **
4903 */
selectExpander(Walker * pWalker,Select * p)4904 static int selectExpander(Walker *pWalker, Select *p){
4905   Parse *pParse = pWalker->pParse;
4906   int i, j, k;
4907   SrcList *pTabList;
4908   ExprList *pEList;
4909   struct SrcList_item *pFrom;
4910   sqlite3 *db = pParse->db;
4911   Expr *pE, *pRight, *pExpr;
4912   u16 selFlags = p->selFlags;
4913   u32 elistFlags = 0;
4914 
4915   p->selFlags |= SF_Expanded;
4916   if( db->mallocFailed  ){
4917     return WRC_Abort;
4918   }
4919   assert( p->pSrc!=0 );
4920   if( (selFlags & SF_Expanded)!=0 ){
4921     return WRC_Prune;
4922   }
4923   if( pWalker->eCode ){
4924     /* Renumber selId because it has been copied from a view */
4925     p->selId = ++pParse->nSelect;
4926   }
4927   pTabList = p->pSrc;
4928   pEList = p->pEList;
4929   sqlite3WithPush(pParse, p->pWith, 0);
4930 
4931   /* Make sure cursor numbers have been assigned to all entries in
4932   ** the FROM clause of the SELECT statement.
4933   */
4934   sqlite3SrcListAssignCursors(pParse, pTabList);
4935 
4936   /* Look up every table named in the FROM clause of the select.  If
4937   ** an entry of the FROM clause is a subquery instead of a table or view,
4938   ** then create a transient table structure to describe the subquery.
4939   */
4940   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4941     Table *pTab;
4942     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4943     if( pFrom->fg.isRecursive ) continue;
4944     assert( pFrom->pTab==0 );
4945 #ifndef SQLITE_OMIT_CTE
4946     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4947     if( pFrom->pTab ) {} else
4948 #endif
4949     if( pFrom->zName==0 ){
4950 #ifndef SQLITE_OMIT_SUBQUERY
4951       Select *pSel = pFrom->pSelect;
4952       /* A sub-query in the FROM clause of a SELECT */
4953       assert( pSel!=0 );
4954       assert( pFrom->pTab==0 );
4955       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4956       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4957 #endif
4958     }else{
4959       /* An ordinary table or view name in the FROM clause */
4960       assert( pFrom->pTab==0 );
4961       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4962       if( pTab==0 ) return WRC_Abort;
4963       if( pTab->nTabRef>=0xffff ){
4964         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4965            pTab->zName);
4966         pFrom->pTab = 0;
4967         return WRC_Abort;
4968       }
4969       pTab->nTabRef++;
4970       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4971         return WRC_Abort;
4972       }
4973 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
4974       if( IsVirtual(pTab) || pTab->pSelect ){
4975         i16 nCol;
4976         u8 eCodeOrig = pWalker->eCode;
4977         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4978         assert( pFrom->pSelect==0 );
4979         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
4980           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
4981             pTab->zName);
4982         }
4983 #ifndef SQLITE_OMIT_VIRTUALTABLE
4984         if( IsVirtual(pTab)
4985          && pFrom->fg.fromDDL
4986          && ALWAYS(pTab->pVTable!=0)
4987          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
4988         ){
4989           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
4990                                   pTab->zName);
4991         }
4992 #endif
4993         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4994         nCol = pTab->nCol;
4995         pTab->nCol = -1;
4996         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
4997         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4998         pWalker->eCode = eCodeOrig;
4999         pTab->nCol = nCol;
5000       }
5001 #endif
5002     }
5003 
5004     /* Locate the index named by the INDEXED BY clause, if any. */
5005     if( sqlite3IndexedByLookup(pParse, pFrom) ){
5006       return WRC_Abort;
5007     }
5008   }
5009 
5010   /* Process NATURAL keywords, and ON and USING clauses of joins.
5011   */
5012   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5013     return WRC_Abort;
5014   }
5015 
5016   /* For every "*" that occurs in the column list, insert the names of
5017   ** all columns in all tables.  And for every TABLE.* insert the names
5018   ** of all columns in TABLE.  The parser inserted a special expression
5019   ** with the TK_ASTERISK operator for each "*" that it found in the column
5020   ** list.  The following code just has to locate the TK_ASTERISK
5021   ** expressions and expand each one to the list of all columns in
5022   ** all tables.
5023   **
5024   ** The first loop just checks to see if there are any "*" operators
5025   ** that need expanding.
5026   */
5027   for(k=0; k<pEList->nExpr; k++){
5028     pE = pEList->a[k].pExpr;
5029     if( pE->op==TK_ASTERISK ) break;
5030     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5031     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5032     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5033     elistFlags |= pE->flags;
5034   }
5035   if( k<pEList->nExpr ){
5036     /*
5037     ** If we get here it means the result set contains one or more "*"
5038     ** operators that need to be expanded.  Loop through each expression
5039     ** in the result set and expand them one by one.
5040     */
5041     struct ExprList_item *a = pEList->a;
5042     ExprList *pNew = 0;
5043     int flags = pParse->db->flags;
5044     int longNames = (flags & SQLITE_FullColNames)!=0
5045                       && (flags & SQLITE_ShortColNames)==0;
5046 
5047     for(k=0; k<pEList->nExpr; k++){
5048       pE = a[k].pExpr;
5049       elistFlags |= pE->flags;
5050       pRight = pE->pRight;
5051       assert( pE->op!=TK_DOT || pRight!=0 );
5052       if( pE->op!=TK_ASTERISK
5053        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5054       ){
5055         /* This particular expression does not need to be expanded.
5056         */
5057         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5058         if( pNew ){
5059           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5060           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5061           a[k].zEName = 0;
5062         }
5063         a[k].pExpr = 0;
5064       }else{
5065         /* This expression is a "*" or a "TABLE.*" and needs to be
5066         ** expanded. */
5067         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5068         char *zTName = 0;       /* text of name of TABLE */
5069         if( pE->op==TK_DOT ){
5070           assert( pE->pLeft!=0 );
5071           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5072           zTName = pE->pLeft->u.zToken;
5073         }
5074         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5075           Table *pTab = pFrom->pTab;
5076           Select *pSub = pFrom->pSelect;
5077           char *zTabName = pFrom->zAlias;
5078           const char *zSchemaName = 0;
5079           int iDb;
5080           if( zTabName==0 ){
5081             zTabName = pTab->zName;
5082           }
5083           if( db->mallocFailed ) break;
5084           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5085             pSub = 0;
5086             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5087               continue;
5088             }
5089             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5090             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5091           }
5092           for(j=0; j<pTab->nCol; j++){
5093             char *zName = pTab->aCol[j].zName;
5094             char *zColname;  /* The computed column name */
5095             char *zToFree;   /* Malloced string that needs to be freed */
5096             Token sColname;  /* Computed column name as a token */
5097 
5098             assert( zName );
5099             if( zTName && pSub
5100              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5101             ){
5102               continue;
5103             }
5104 
5105             /* If a column is marked as 'hidden', omit it from the expanded
5106             ** result-set list unless the SELECT has the SF_IncludeHidden
5107             ** bit set.
5108             */
5109             if( (p->selFlags & SF_IncludeHidden)==0
5110              && IsHiddenColumn(&pTab->aCol[j])
5111             ){
5112               continue;
5113             }
5114             tableSeen = 1;
5115 
5116             if( i>0 && zTName==0 ){
5117               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5118                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5119               ){
5120                 /* In a NATURAL join, omit the join columns from the
5121                 ** table to the right of the join */
5122                 continue;
5123               }
5124               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5125                 /* In a join with a USING clause, omit columns in the
5126                 ** using clause from the table on the right. */
5127                 continue;
5128               }
5129             }
5130             pRight = sqlite3Expr(db, TK_ID, zName);
5131             zColname = zName;
5132             zToFree = 0;
5133             if( longNames || pTabList->nSrc>1 ){
5134               Expr *pLeft;
5135               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5136               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5137               if( zSchemaName ){
5138                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5139                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5140               }
5141               if( longNames ){
5142                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5143                 zToFree = zColname;
5144               }
5145             }else{
5146               pExpr = pRight;
5147             }
5148             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5149             sqlite3TokenInit(&sColname, zColname);
5150             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5151             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5152               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5153               sqlite3DbFree(db, pX->zEName);
5154               if( pSub ){
5155                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5156                 testcase( pX->zEName==0 );
5157               }else{
5158                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5159                                            zSchemaName, zTabName, zColname);
5160                 testcase( pX->zEName==0 );
5161               }
5162               pX->eEName = ENAME_TAB;
5163             }
5164             sqlite3DbFree(db, zToFree);
5165           }
5166         }
5167         if( !tableSeen ){
5168           if( zTName ){
5169             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5170           }else{
5171             sqlite3ErrorMsg(pParse, "no tables specified");
5172           }
5173         }
5174       }
5175     }
5176     sqlite3ExprListDelete(db, pEList);
5177     p->pEList = pNew;
5178   }
5179   if( p->pEList ){
5180     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5181       sqlite3ErrorMsg(pParse, "too many columns in result set");
5182       return WRC_Abort;
5183     }
5184     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5185       p->selFlags |= SF_ComplexResult;
5186     }
5187   }
5188   return WRC_Continue;
5189 }
5190 
5191 /*
5192 ** No-op routine for the parse-tree walker.
5193 **
5194 ** When this routine is the Walker.xExprCallback then expression trees
5195 ** are walked without any actions being taken at each node.  Presumably,
5196 ** when this routine is used for Walker.xExprCallback then
5197 ** Walker.xSelectCallback is set to do something useful for every
5198 ** subquery in the parser tree.
5199 */
sqlite3ExprWalkNoop(Walker * NotUsed,Expr * NotUsed2)5200 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5201   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5202   return WRC_Continue;
5203 }
5204 
5205 /*
5206 ** No-op routine for the parse-tree walker for SELECT statements.
5207 ** subquery in the parser tree.
5208 */
sqlite3SelectWalkNoop(Walker * NotUsed,Select * NotUsed2)5209 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5210   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5211   return WRC_Continue;
5212 }
5213 
5214 #if SQLITE_DEBUG
5215 /*
5216 ** Always assert.  This xSelectCallback2 implementation proves that the
5217 ** xSelectCallback2 is never invoked.
5218 */
sqlite3SelectWalkAssert2(Walker * NotUsed,Select * NotUsed2)5219 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5220   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5221   assert( 0 );
5222 }
5223 #endif
5224 /*
5225 ** This routine "expands" a SELECT statement and all of its subqueries.
5226 ** For additional information on what it means to "expand" a SELECT
5227 ** statement, see the comment on the selectExpand worker callback above.
5228 **
5229 ** Expanding a SELECT statement is the first step in processing a
5230 ** SELECT statement.  The SELECT statement must be expanded before
5231 ** name resolution is performed.
5232 **
5233 ** If anything goes wrong, an error message is written into pParse.
5234 ** The calling function can detect the problem by looking at pParse->nErr
5235 ** and/or pParse->db->mallocFailed.
5236 */
sqlite3SelectExpand(Parse * pParse,Select * pSelect)5237 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5238   Walker w;
5239   w.xExprCallback = sqlite3ExprWalkNoop;
5240   w.pParse = pParse;
5241   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5242     w.xSelectCallback = convertCompoundSelectToSubquery;
5243     w.xSelectCallback2 = 0;
5244     sqlite3WalkSelect(&w, pSelect);
5245   }
5246   w.xSelectCallback = selectExpander;
5247   w.xSelectCallback2 = selectPopWith;
5248   w.eCode = 0;
5249   sqlite3WalkSelect(&w, pSelect);
5250 }
5251 
5252 
5253 #ifndef SQLITE_OMIT_SUBQUERY
5254 /*
5255 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5256 ** interface.
5257 **
5258 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5259 ** information to the Table structure that represents the result set
5260 ** of that subquery.
5261 **
5262 ** The Table structure that represents the result set was constructed
5263 ** by selectExpander() but the type and collation information was omitted
5264 ** at that point because identifiers had not yet been resolved.  This
5265 ** routine is called after identifier resolution.
5266 */
selectAddSubqueryTypeInfo(Walker * pWalker,Select * p)5267 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5268   Parse *pParse;
5269   int i;
5270   SrcList *pTabList;
5271   struct SrcList_item *pFrom;
5272 
5273   assert( p->selFlags & SF_Resolved );
5274   if( p->selFlags & SF_HasTypeInfo ) return;
5275   p->selFlags |= SF_HasTypeInfo;
5276   pParse = pWalker->pParse;
5277   pTabList = p->pSrc;
5278   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5279     Table *pTab = pFrom->pTab;
5280     assert( pTab!=0 );
5281     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5282       /* A sub-query in the FROM clause of a SELECT */
5283       Select *pSel = pFrom->pSelect;
5284       if( pSel ){
5285         while( pSel->pPrior ) pSel = pSel->pPrior;
5286         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5287                                                SQLITE_AFF_NONE);
5288       }
5289     }
5290   }
5291 }
5292 #endif
5293 
5294 
5295 /*
5296 ** This routine adds datatype and collating sequence information to
5297 ** the Table structures of all FROM-clause subqueries in a
5298 ** SELECT statement.
5299 **
5300 ** Use this routine after name resolution.
5301 */
sqlite3SelectAddTypeInfo(Parse * pParse,Select * pSelect)5302 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5303 #ifndef SQLITE_OMIT_SUBQUERY
5304   Walker w;
5305   w.xSelectCallback = sqlite3SelectWalkNoop;
5306   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5307   w.xExprCallback = sqlite3ExprWalkNoop;
5308   w.pParse = pParse;
5309   sqlite3WalkSelect(&w, pSelect);
5310 #endif
5311 }
5312 
5313 
5314 /*
5315 ** This routine sets up a SELECT statement for processing.  The
5316 ** following is accomplished:
5317 **
5318 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5319 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5320 **     *  ON and USING clauses are shifted into WHERE statements
5321 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5322 **     *  Identifiers in expression are matched to tables.
5323 **
5324 ** This routine acts recursively on all subqueries within the SELECT.
5325 */
sqlite3SelectPrep(Parse * pParse,Select * p,NameContext * pOuterNC)5326 void sqlite3SelectPrep(
5327   Parse *pParse,         /* The parser context */
5328   Select *p,             /* The SELECT statement being coded. */
5329   NameContext *pOuterNC  /* Name context for container */
5330 ){
5331   assert( p!=0 || pParse->db->mallocFailed );
5332   if( pParse->db->mallocFailed ) return;
5333   if( p->selFlags & SF_HasTypeInfo ) return;
5334   sqlite3SelectExpand(pParse, p);
5335   if( pParse->nErr || pParse->db->mallocFailed ) return;
5336   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5337   if( pParse->nErr || pParse->db->mallocFailed ) return;
5338   sqlite3SelectAddTypeInfo(pParse, p);
5339 }
5340 
5341 /*
5342 ** Reset the aggregate accumulator.
5343 **
5344 ** The aggregate accumulator is a set of memory cells that hold
5345 ** intermediate results while calculating an aggregate.  This
5346 ** routine generates code that stores NULLs in all of those memory
5347 ** cells.
5348 */
resetAccumulator(Parse * pParse,AggInfo * pAggInfo)5349 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5350   Vdbe *v = pParse->pVdbe;
5351   int i;
5352   struct AggInfo_func *pFunc;
5353   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5354   if( nReg==0 ) return;
5355   if( pParse->nErr ) return;
5356 #ifdef SQLITE_DEBUG
5357   /* Verify that all AggInfo registers are within the range specified by
5358   ** AggInfo.mnReg..AggInfo.mxReg */
5359   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5360   for(i=0; i<pAggInfo->nColumn; i++){
5361     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5362          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5363   }
5364   for(i=0; i<pAggInfo->nFunc; i++){
5365     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5366          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5367   }
5368 #endif
5369   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5370   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5371     if( pFunc->iDistinct>=0 ){
5372       Expr *pE = pFunc->pExpr;
5373       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5374       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5375         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5376            "argument");
5377         pFunc->iDistinct = -1;
5378       }else{
5379         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5380         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5381                           (char*)pKeyInfo, P4_KEYINFO);
5382       }
5383     }
5384   }
5385 }
5386 
5387 /*
5388 ** Invoke the OP_AggFinalize opcode for every aggregate function
5389 ** in the AggInfo structure.
5390 */
finalizeAggFunctions(Parse * pParse,AggInfo * pAggInfo)5391 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5392   Vdbe *v = pParse->pVdbe;
5393   int i;
5394   struct AggInfo_func *pF;
5395   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5396     ExprList *pList = pF->pExpr->x.pList;
5397     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5398     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5399     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5400   }
5401 }
5402 
5403 
5404 /*
5405 ** Update the accumulator memory cells for an aggregate based on
5406 ** the current cursor position.
5407 **
5408 ** If regAcc is non-zero and there are no min() or max() aggregates
5409 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5410 ** registers if register regAcc contains 0. The caller will take care
5411 ** of setting and clearing regAcc.
5412 */
updateAccumulator(Parse * pParse,int regAcc,AggInfo * pAggInfo)5413 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5414   Vdbe *v = pParse->pVdbe;
5415   int i;
5416   int regHit = 0;
5417   int addrHitTest = 0;
5418   struct AggInfo_func *pF;
5419   struct AggInfo_col *pC;
5420 
5421   pAggInfo->directMode = 1;
5422   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5423     int nArg;
5424     int addrNext = 0;
5425     int regAgg;
5426     ExprList *pList = pF->pExpr->x.pList;
5427     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5428     assert( !IsWindowFunc(pF->pExpr) );
5429     if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
5430       Expr *pFilter = pF->pExpr->y.pWin->pFilter;
5431       if( pAggInfo->nAccumulator
5432        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5433       ){
5434         if( regHit==0 ) regHit = ++pParse->nMem;
5435         /* If this is the first row of the group (regAcc==0), clear the
5436         ** "magnet" register regHit so that the accumulator registers
5437         ** are populated if the FILTER clause jumps over the the
5438         ** invocation of min() or max() altogether. Or, if this is not
5439         ** the first row (regAcc==1), set the magnet register so that the
5440         ** accumulators are not populated unless the min()/max() is invoked and
5441         ** indicates that they should be.  */
5442         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5443       }
5444       addrNext = sqlite3VdbeMakeLabel(pParse);
5445       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5446     }
5447     if( pList ){
5448       nArg = pList->nExpr;
5449       regAgg = sqlite3GetTempRange(pParse, nArg);
5450       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5451     }else{
5452       nArg = 0;
5453       regAgg = 0;
5454     }
5455     if( pF->iDistinct>=0 ){
5456       if( addrNext==0 ){
5457         addrNext = sqlite3VdbeMakeLabel(pParse);
5458       }
5459       testcase( nArg==0 );  /* Error condition */
5460       testcase( nArg>1 );   /* Also an error */
5461       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5462     }
5463     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5464       CollSeq *pColl = 0;
5465       struct ExprList_item *pItem;
5466       int j;
5467       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5468       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5469         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5470       }
5471       if( !pColl ){
5472         pColl = pParse->db->pDfltColl;
5473       }
5474       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5475       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5476     }
5477     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5478     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5479     sqlite3VdbeChangeP5(v, (u8)nArg);
5480     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5481     if( addrNext ){
5482       sqlite3VdbeResolveLabel(v, addrNext);
5483     }
5484   }
5485   if( regHit==0 && pAggInfo->nAccumulator ){
5486     regHit = regAcc;
5487   }
5488   if( regHit ){
5489     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5490   }
5491   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5492     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5493   }
5494 
5495   pAggInfo->directMode = 0;
5496   if( addrHitTest ){
5497     sqlite3VdbeJumpHere(v, addrHitTest);
5498   }
5499 }
5500 
5501 /*
5502 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5503 ** count(*) query ("SELECT count(*) FROM pTab").
5504 */
5505 #ifndef SQLITE_OMIT_EXPLAIN
explainSimpleCount(Parse * pParse,Table * pTab,Index * pIdx)5506 static void explainSimpleCount(
5507   Parse *pParse,                  /* Parse context */
5508   Table *pTab,                    /* Table being queried */
5509   Index *pIdx                     /* Index used to optimize scan, or NULL */
5510 ){
5511   if( pParse->explain==2 ){
5512     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5513     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5514         pTab->zName,
5515         bCover ? " USING COVERING INDEX " : "",
5516         bCover ? pIdx->zName : ""
5517     );
5518   }
5519 }
5520 #else
5521 # define explainSimpleCount(a,b,c)
5522 #endif
5523 
5524 /*
5525 ** sqlite3WalkExpr() callback used by havingToWhere().
5526 **
5527 ** If the node passed to the callback is a TK_AND node, return
5528 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5529 **
5530 ** Otherwise, return WRC_Prune. In this case, also check if the
5531 ** sub-expression matches the criteria for being moved to the WHERE
5532 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5533 ** within the HAVING expression with a constant "1".
5534 */
havingToWhereExprCb(Walker * pWalker,Expr * pExpr)5535 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5536   if( pExpr->op!=TK_AND ){
5537     Select *pS = pWalker->u.pSelect;
5538     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5539       sqlite3 *db = pWalker->pParse->db;
5540       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5541       if( pNew ){
5542         Expr *pWhere = pS->pWhere;
5543         SWAP(Expr, *pNew, *pExpr);
5544         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5545         pS->pWhere = pNew;
5546         pWalker->eCode = 1;
5547       }
5548     }
5549     return WRC_Prune;
5550   }
5551   return WRC_Continue;
5552 }
5553 
5554 /*
5555 ** Transfer eligible terms from the HAVING clause of a query, which is
5556 ** processed after grouping, to the WHERE clause, which is processed before
5557 ** grouping. For example, the query:
5558 **
5559 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5560 **
5561 ** can be rewritten as:
5562 **
5563 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5564 **
5565 ** A term of the HAVING expression is eligible for transfer if it consists
5566 ** entirely of constants and expressions that are also GROUP BY terms that
5567 ** use the "BINARY" collation sequence.
5568 */
havingToWhere(Parse * pParse,Select * p)5569 static void havingToWhere(Parse *pParse, Select *p){
5570   Walker sWalker;
5571   memset(&sWalker, 0, sizeof(sWalker));
5572   sWalker.pParse = pParse;
5573   sWalker.xExprCallback = havingToWhereExprCb;
5574   sWalker.u.pSelect = p;
5575   sqlite3WalkExpr(&sWalker, p->pHaving);
5576 #if SELECTTRACE_ENABLED
5577   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5578     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5579     sqlite3TreeViewSelect(0, p, 0);
5580   }
5581 #endif
5582 }
5583 
5584 /*
5585 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5586 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5587 ** then return 0.
5588 */
isSelfJoinView(SrcList * pTabList,struct SrcList_item * pThis)5589 static struct SrcList_item *isSelfJoinView(
5590   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5591   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5592 ){
5593   struct SrcList_item *pItem;
5594   for(pItem = pTabList->a; pItem<pThis; pItem++){
5595     Select *pS1;
5596     if( pItem->pSelect==0 ) continue;
5597     if( pItem->fg.viaCoroutine ) continue;
5598     if( pItem->zName==0 ) continue;
5599     assert( pItem->pTab!=0 );
5600     assert( pThis->pTab!=0 );
5601     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5602     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5603     pS1 = pItem->pSelect;
5604     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5605       /* The query flattener left two different CTE tables with identical
5606       ** names in the same FROM clause. */
5607       continue;
5608     }
5609     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5610      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5611     ){
5612       /* The view was modified by some other optimization such as
5613       ** pushDownWhereTerms() */
5614       continue;
5615     }
5616     return pItem;
5617   }
5618   return 0;
5619 }
5620 
5621 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5622 /*
5623 ** Attempt to transform a query of the form
5624 **
5625 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5626 **
5627 ** Into this:
5628 **
5629 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5630 **
5631 ** The transformation only works if all of the following are true:
5632 **
5633 **   *  The subquery is a UNION ALL of two or more terms
5634 **   *  The subquery does not have a LIMIT clause
5635 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5636 **   *  The outer query is a simple count(*) with no WHERE clause or other
5637 **      extraneous syntax.
5638 **
5639 ** Return TRUE if the optimization is undertaken.
5640 */
countOfViewOptimization(Parse * pParse,Select * p)5641 static int countOfViewOptimization(Parse *pParse, Select *p){
5642   Select *pSub, *pPrior;
5643   Expr *pExpr;
5644   Expr *pCount;
5645   sqlite3 *db;
5646   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5647   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5648   if( p->pWhere ) return 0;
5649   if( p->pGroupBy ) return 0;
5650   pExpr = p->pEList->a[0].pExpr;
5651   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5652   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5653   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5654   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5655   pSub = p->pSrc->a[0].pSelect;
5656   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5657   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5658   do{
5659     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5660     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5661     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5662     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5663     pSub = pSub->pPrior;                              /* Repeat over compound */
5664   }while( pSub );
5665 
5666   /* If we reach this point then it is OK to perform the transformation */
5667 
5668   db = pParse->db;
5669   pCount = pExpr;
5670   pExpr = 0;
5671   pSub = p->pSrc->a[0].pSelect;
5672   p->pSrc->a[0].pSelect = 0;
5673   sqlite3SrcListDelete(db, p->pSrc);
5674   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5675   while( pSub ){
5676     Expr *pTerm;
5677     pPrior = pSub->pPrior;
5678     pSub->pPrior = 0;
5679     pSub->pNext = 0;
5680     pSub->selFlags |= SF_Aggregate;
5681     pSub->selFlags &= ~SF_Compound;
5682     pSub->nSelectRow = 0;
5683     sqlite3ExprListDelete(db, pSub->pEList);
5684     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5685     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5686     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5687     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5688     if( pExpr==0 ){
5689       pExpr = pTerm;
5690     }else{
5691       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5692     }
5693     pSub = pPrior;
5694   }
5695   p->pEList->a[0].pExpr = pExpr;
5696   p->selFlags &= ~SF_Aggregate;
5697 
5698 #if SELECTTRACE_ENABLED
5699   if( sqlite3SelectTrace & 0x400 ){
5700     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5701     sqlite3TreeViewSelect(0, p, 0);
5702   }
5703 #endif
5704   return 1;
5705 }
5706 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5707 
5708 /*
5709 ** Generate code for the SELECT statement given in the p argument.
5710 **
5711 ** The results are returned according to the SelectDest structure.
5712 ** See comments in sqliteInt.h for further information.
5713 **
5714 ** This routine returns the number of errors.  If any errors are
5715 ** encountered, then an appropriate error message is left in
5716 ** pParse->zErrMsg.
5717 **
5718 ** This routine does NOT free the Select structure passed in.  The
5719 ** calling function needs to do that.
5720 */
sqlite3Select(Parse * pParse,Select * p,SelectDest * pDest)5721 int sqlite3Select(
5722   Parse *pParse,         /* The parser context */
5723   Select *p,             /* The SELECT statement being coded. */
5724   SelectDest *pDest      /* What to do with the query results */
5725 ){
5726   int i, j;              /* Loop counters */
5727   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5728   Vdbe *v;               /* The virtual machine under construction */
5729   int isAgg;             /* True for select lists like "count(*)" */
5730   ExprList *pEList = 0;  /* List of columns to extract. */
5731   SrcList *pTabList;     /* List of tables to select from */
5732   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5733   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5734   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5735   int rc = 1;            /* Value to return from this function */
5736   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5737   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5738   AggInfo sAggInfo;      /* Information used by aggregate queries */
5739   int iEnd;              /* Address of the end of the query */
5740   sqlite3 *db;           /* The database connection */
5741   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5742   u8 minMaxFlag;                 /* Flag for min/max queries */
5743 
5744   db = pParse->db;
5745   v = sqlite3GetVdbe(pParse);
5746   if( p==0 || db->mallocFailed || pParse->nErr ){
5747     return 1;
5748   }
5749   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5750   memset(&sAggInfo, 0, sizeof(sAggInfo));
5751 #if SELECTTRACE_ENABLED
5752   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5753   if( sqlite3SelectTrace & 0x100 ){
5754     sqlite3TreeViewSelect(0, p, 0);
5755   }
5756 #endif
5757 
5758   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5759   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5760   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5761   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5762   if( IgnorableOrderby(pDest) ){
5763     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5764            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5765            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5766            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5767     /* If ORDER BY makes no difference in the output then neither does
5768     ** DISTINCT so it can be removed too. */
5769     sqlite3ExprListDelete(db, p->pOrderBy);
5770     p->pOrderBy = 0;
5771     p->selFlags &= ~SF_Distinct;
5772   }
5773   sqlite3SelectPrep(pParse, p, 0);
5774   if( pParse->nErr || db->mallocFailed ){
5775     goto select_end;
5776   }
5777   assert( p->pEList!=0 );
5778 #if SELECTTRACE_ENABLED
5779   if( sqlite3SelectTrace & 0x104 ){
5780     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5781     sqlite3TreeViewSelect(0, p, 0);
5782   }
5783 #endif
5784 
5785   if( pDest->eDest==SRT_Output ){
5786     generateColumnNames(pParse, p);
5787   }
5788 
5789 #ifndef SQLITE_OMIT_WINDOWFUNC
5790   rc = sqlite3WindowRewrite(pParse, p);
5791   if( rc ){
5792     assert( db->mallocFailed || pParse->nErr>0 );
5793     goto select_end;
5794   }
5795 #if SELECTTRACE_ENABLED
5796   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
5797     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5798     sqlite3TreeViewSelect(0, p, 0);
5799   }
5800 #endif
5801 #endif /* SQLITE_OMIT_WINDOWFUNC */
5802   pTabList = p->pSrc;
5803   isAgg = (p->selFlags & SF_Aggregate)!=0;
5804   memset(&sSort, 0, sizeof(sSort));
5805   sSort.pOrderBy = p->pOrderBy;
5806 
5807   /* Try to various optimizations (flattening subqueries, and strength
5808   ** reduction of join operators) in the FROM clause up into the main query
5809   */
5810 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5811   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5812     struct SrcList_item *pItem = &pTabList->a[i];
5813     Select *pSub = pItem->pSelect;
5814     Table *pTab = pItem->pTab;
5815 
5816     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5817     ** of the LEFT JOIN used in the WHERE clause.
5818     */
5819     if( (pItem->fg.jointype & JT_LEFT)!=0
5820      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5821      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5822     ){
5823       SELECTTRACE(0x100,pParse,p,
5824                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5825       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5826       unsetJoinExpr(p->pWhere, pItem->iCursor);
5827     }
5828 
5829     /* No futher action if this term of the FROM clause is no a subquery */
5830     if( pSub==0 ) continue;
5831 
5832     /* Catch mismatch in the declared columns of a view and the number of
5833     ** columns in the SELECT on the RHS */
5834     if( pTab->nCol!=pSub->pEList->nExpr ){
5835       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5836                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5837       goto select_end;
5838     }
5839 
5840     /* Do not try to flatten an aggregate subquery.
5841     **
5842     ** Flattening an aggregate subquery is only possible if the outer query
5843     ** is not a join.  But if the outer query is not a join, then the subquery
5844     ** will be implemented as a co-routine and there is no advantage to
5845     ** flattening in that case.
5846     */
5847     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5848     assert( pSub->pGroupBy==0 );
5849 
5850     /* If the outer query contains a "complex" result set (that is,
5851     ** if the result set of the outer query uses functions or subqueries)
5852     ** and if the subquery contains an ORDER BY clause and if
5853     ** it will be implemented as a co-routine, then do not flatten.  This
5854     ** restriction allows SQL constructs like this:
5855     **
5856     **  SELECT expensive_function(x)
5857     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5858     **
5859     ** The expensive_function() is only computed on the 10 rows that
5860     ** are output, rather than every row of the table.
5861     **
5862     ** The requirement that the outer query have a complex result set
5863     ** means that flattening does occur on simpler SQL constraints without
5864     ** the expensive_function() like:
5865     **
5866     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5867     */
5868     if( pSub->pOrderBy!=0
5869      && i==0
5870      && (p->selFlags & SF_ComplexResult)!=0
5871      && (pTabList->nSrc==1
5872          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5873     ){
5874       continue;
5875     }
5876 
5877     if( flattenSubquery(pParse, p, i, isAgg) ){
5878       if( pParse->nErr ) goto select_end;
5879       /* This subquery can be absorbed into its parent. */
5880       i = -1;
5881     }
5882     pTabList = p->pSrc;
5883     if( db->mallocFailed ) goto select_end;
5884     if( !IgnorableOrderby(pDest) ){
5885       sSort.pOrderBy = p->pOrderBy;
5886     }
5887   }
5888 #endif
5889 
5890 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5891   /* Handle compound SELECT statements using the separate multiSelect()
5892   ** procedure.
5893   */
5894   if( p->pPrior ){
5895     rc = multiSelect(pParse, p, pDest);
5896 #if SELECTTRACE_ENABLED
5897     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5898     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5899       sqlite3TreeViewSelect(0, p, 0);
5900     }
5901 #endif
5902     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5903     return rc;
5904   }
5905 #endif
5906 
5907   /* Do the WHERE-clause constant propagation optimization if this is
5908   ** a join.  No need to speed time on this operation for non-join queries
5909   ** as the equivalent optimization will be handled by query planner in
5910   ** sqlite3WhereBegin().
5911   */
5912   if( pTabList->nSrc>1
5913    && OptimizationEnabled(db, SQLITE_PropagateConst)
5914    && propagateConstants(pParse, p)
5915   ){
5916 #if SELECTTRACE_ENABLED
5917     if( sqlite3SelectTrace & 0x100 ){
5918       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5919       sqlite3TreeViewSelect(0, p, 0);
5920     }
5921 #endif
5922   }else{
5923     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5924   }
5925 
5926 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5927   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5928    && countOfViewOptimization(pParse, p)
5929   ){
5930     if( db->mallocFailed ) goto select_end;
5931     pEList = p->pEList;
5932     pTabList = p->pSrc;
5933   }
5934 #endif
5935 
5936   /* For each term in the FROM clause, do two things:
5937   ** (1) Authorized unreferenced tables
5938   ** (2) Generate code for all sub-queries
5939   */
5940   for(i=0; i<pTabList->nSrc; i++){
5941     struct SrcList_item *pItem = &pTabList->a[i];
5942     SelectDest dest;
5943     Select *pSub;
5944 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5945     const char *zSavedAuthContext;
5946 #endif
5947 
5948     /* Issue SQLITE_READ authorizations with a fake column name for any
5949     ** tables that are referenced but from which no values are extracted.
5950     ** Examples of where these kinds of null SQLITE_READ authorizations
5951     ** would occur:
5952     **
5953     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5954     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5955     **
5956     ** The fake column name is an empty string.  It is possible for a table to
5957     ** have a column named by the empty string, in which case there is no way to
5958     ** distinguish between an unreferenced table and an actual reference to the
5959     ** "" column. The original design was for the fake column name to be a NULL,
5960     ** which would be unambiguous.  But legacy authorization callbacks might
5961     ** assume the column name is non-NULL and segfault.  The use of an empty
5962     ** string for the fake column name seems safer.
5963     */
5964     if( pItem->colUsed==0 && pItem->zName!=0 ){
5965       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5966     }
5967 
5968 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5969     /* Generate code for all sub-queries in the FROM clause
5970     */
5971     pSub = pItem->pSelect;
5972     if( pSub==0 ) continue;
5973 
5974     /* The code for a subquery should only be generated once, though it is
5975     ** technically harmless for it to be generated multiple times. The
5976     ** following assert() will detect if something changes to cause
5977     ** the same subquery to be coded multiple times, as a signal to the
5978     ** developers to try to optimize the situation.
5979     **
5980     ** Update 2019-07-24:
5981     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
5982     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
5983     ** coded twice.  So this assert() now becomes a testcase().  It should
5984     ** be very rare, though.
5985     */
5986     testcase( pItem->addrFillSub!=0 );
5987 
5988     /* Increment Parse.nHeight by the height of the largest expression
5989     ** tree referred to by this, the parent select. The child select
5990     ** may contain expression trees of at most
5991     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5992     ** more conservative than necessary, but much easier than enforcing
5993     ** an exact limit.
5994     */
5995     pParse->nHeight += sqlite3SelectExprHeight(p);
5996 
5997     /* Make copies of constant WHERE-clause terms in the outer query down
5998     ** inside the subquery.  This can help the subquery to run more efficiently.
5999     */
6000     if( OptimizationEnabled(db, SQLITE_PushDown)
6001      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6002                            (pItem->fg.jointype & JT_OUTER)!=0)
6003     ){
6004 #if SELECTTRACE_ENABLED
6005       if( sqlite3SelectTrace & 0x100 ){
6006         SELECTTRACE(0x100,pParse,p,
6007             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6008         sqlite3TreeViewSelect(0, p, 0);
6009       }
6010 #endif
6011     }else{
6012       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6013     }
6014 
6015     zSavedAuthContext = pParse->zAuthContext;
6016     pParse->zAuthContext = pItem->zName;
6017 
6018     /* Generate code to implement the subquery
6019     **
6020     ** The subquery is implemented as a co-routine if the subquery is
6021     ** guaranteed to be the outer loop (so that it does not need to be
6022     ** computed more than once)
6023     **
6024     ** TODO: Are there other reasons beside (1) to use a co-routine
6025     ** implementation?
6026     */
6027     if( i==0
6028      && (pTabList->nSrc==1
6029             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6030     ){
6031       /* Implement a co-routine that will return a single row of the result
6032       ** set on each invocation.
6033       */
6034       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6035 
6036       pItem->regReturn = ++pParse->nMem;
6037       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6038       VdbeComment((v, "%s", pItem->pTab->zName));
6039       pItem->addrFillSub = addrTop;
6040       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6041       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6042       sqlite3Select(pParse, pSub, &dest);
6043       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6044       pItem->fg.viaCoroutine = 1;
6045       pItem->regResult = dest.iSdst;
6046       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6047       sqlite3VdbeJumpHere(v, addrTop-1);
6048       sqlite3ClearTempRegCache(pParse);
6049     }else{
6050       /* Generate a subroutine that will fill an ephemeral table with
6051       ** the content of this subquery.  pItem->addrFillSub will point
6052       ** to the address of the generated subroutine.  pItem->regReturn
6053       ** is a register allocated to hold the subroutine return address
6054       */
6055       int topAddr;
6056       int onceAddr = 0;
6057       int retAddr;
6058       struct SrcList_item *pPrior;
6059 
6060       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6061       pItem->regReturn = ++pParse->nMem;
6062       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6063       pItem->addrFillSub = topAddr+1;
6064       if( pItem->fg.isCorrelated==0 ){
6065         /* If the subquery is not correlated and if we are not inside of
6066         ** a trigger, then we only need to compute the value of the subquery
6067         ** once. */
6068         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6069         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6070       }else{
6071         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6072       }
6073       pPrior = isSelfJoinView(pTabList, pItem);
6074       if( pPrior ){
6075         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6076         assert( pPrior->pSelect!=0 );
6077         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6078       }else{
6079         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6080         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6081         sqlite3Select(pParse, pSub, &dest);
6082       }
6083       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6084       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6085       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6086       VdbeComment((v, "end %s", pItem->pTab->zName));
6087       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6088       sqlite3ClearTempRegCache(pParse);
6089     }
6090     if( db->mallocFailed ) goto select_end;
6091     pParse->nHeight -= sqlite3SelectExprHeight(p);
6092     pParse->zAuthContext = zSavedAuthContext;
6093 #endif
6094   }
6095 
6096   /* Various elements of the SELECT copied into local variables for
6097   ** convenience */
6098   pEList = p->pEList;
6099   pWhere = p->pWhere;
6100   pGroupBy = p->pGroupBy;
6101   pHaving = p->pHaving;
6102   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6103 
6104 #if SELECTTRACE_ENABLED
6105   if( sqlite3SelectTrace & 0x400 ){
6106     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6107     sqlite3TreeViewSelect(0, p, 0);
6108   }
6109 #endif
6110 
6111   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6112   ** if the select-list is the same as the ORDER BY list, then this query
6113   ** can be rewritten as a GROUP BY. In other words, this:
6114   **
6115   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6116   **
6117   ** is transformed to:
6118   **
6119   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6120   **
6121   ** The second form is preferred as a single index (or temp-table) may be
6122   ** used for both the ORDER BY and DISTINCT processing. As originally
6123   ** written the query must use a temp-table for at least one of the ORDER
6124   ** BY and DISTINCT, and an index or separate temp-table for the other.
6125   */
6126   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6127    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6128 #ifndef SQLITE_OMIT_WINDOWFUNC
6129    && p->pWin==0
6130 #endif
6131   ){
6132     p->selFlags &= ~SF_Distinct;
6133     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6134     p->selFlags |= SF_Aggregate;
6135     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6136     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6137     ** original setting of the SF_Distinct flag, not the current setting */
6138     assert( sDistinct.isTnct );
6139 
6140 #if SELECTTRACE_ENABLED
6141     if( sqlite3SelectTrace & 0x400 ){
6142       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6143       sqlite3TreeViewSelect(0, p, 0);
6144     }
6145 #endif
6146   }
6147 
6148   /* If there is an ORDER BY clause, then create an ephemeral index to
6149   ** do the sorting.  But this sorting ephemeral index might end up
6150   ** being unused if the data can be extracted in pre-sorted order.
6151   ** If that is the case, then the OP_OpenEphemeral instruction will be
6152   ** changed to an OP_Noop once we figure out that the sorting index is
6153   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6154   ** that change.
6155   */
6156   if( sSort.pOrderBy ){
6157     KeyInfo *pKeyInfo;
6158     pKeyInfo = sqlite3KeyInfoFromExprList(
6159         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6160     sSort.iECursor = pParse->nTab++;
6161     sSort.addrSortIndex =
6162       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6163           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6164           (char*)pKeyInfo, P4_KEYINFO
6165       );
6166   }else{
6167     sSort.addrSortIndex = -1;
6168   }
6169 
6170   /* If the output is destined for a temporary table, open that table.
6171   */
6172   if( pDest->eDest==SRT_EphemTab ){
6173     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6174   }
6175 
6176   /* Set the limiter.
6177   */
6178   iEnd = sqlite3VdbeMakeLabel(pParse);
6179   if( (p->selFlags & SF_FixedLimit)==0 ){
6180     p->nSelectRow = 320;  /* 4 billion rows */
6181   }
6182   computeLimitRegisters(pParse, p, iEnd);
6183   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6184     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6185     sSort.sortFlags |= SORTFLAG_UseSorter;
6186   }
6187 
6188   /* Open an ephemeral index to use for the distinct set.
6189   */
6190   if( p->selFlags & SF_Distinct ){
6191     sDistinct.tabTnct = pParse->nTab++;
6192     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6193                        sDistinct.tabTnct, 0, 0,
6194                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6195                        P4_KEYINFO);
6196     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6197     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6198   }else{
6199     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6200   }
6201 
6202   if( !isAgg && pGroupBy==0 ){
6203     /* No aggregate functions and no GROUP BY clause */
6204     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6205                    | (p->selFlags & SF_FixedLimit);
6206 #ifndef SQLITE_OMIT_WINDOWFUNC
6207     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6208     if( pWin ){
6209       sqlite3WindowCodeInit(pParse, p);
6210     }
6211 #endif
6212     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6213 
6214 
6215     /* Begin the database scan. */
6216     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6217     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6218                                p->pEList, wctrlFlags, p->nSelectRow);
6219     if( pWInfo==0 ) goto select_end;
6220     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6221       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6222     }
6223     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6224       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6225     }
6226     if( sSort.pOrderBy ){
6227       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6228       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6229       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6230         sSort.pOrderBy = 0;
6231       }
6232     }
6233 
6234     /* If sorting index that was created by a prior OP_OpenEphemeral
6235     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6236     ** into an OP_Noop.
6237     */
6238     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6239       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6240     }
6241 
6242     assert( p->pEList==pEList );
6243 #ifndef SQLITE_OMIT_WINDOWFUNC
6244     if( pWin ){
6245       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6246       int iCont = sqlite3VdbeMakeLabel(pParse);
6247       int iBreak = sqlite3VdbeMakeLabel(pParse);
6248       int regGosub = ++pParse->nMem;
6249 
6250       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6251 
6252       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6253       sqlite3VdbeResolveLabel(v, addrGosub);
6254       VdbeNoopComment((v, "inner-loop subroutine"));
6255       sSort.labelOBLopt = 0;
6256       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6257       sqlite3VdbeResolveLabel(v, iCont);
6258       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6259       VdbeComment((v, "end inner-loop subroutine"));
6260       sqlite3VdbeResolveLabel(v, iBreak);
6261     }else
6262 #endif /* SQLITE_OMIT_WINDOWFUNC */
6263     {
6264       /* Use the standard inner loop. */
6265       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6266           sqlite3WhereContinueLabel(pWInfo),
6267           sqlite3WhereBreakLabel(pWInfo));
6268 
6269       /* End the database scan loop.
6270       */
6271       sqlite3WhereEnd(pWInfo);
6272     }
6273   }else{
6274     /* This case when there exist aggregate functions or a GROUP BY clause
6275     ** or both */
6276     NameContext sNC;    /* Name context for processing aggregate information */
6277     int iAMem;          /* First Mem address for storing current GROUP BY */
6278     int iBMem;          /* First Mem address for previous GROUP BY */
6279     int iUseFlag;       /* Mem address holding flag indicating that at least
6280                         ** one row of the input to the aggregator has been
6281                         ** processed */
6282     int iAbortFlag;     /* Mem address which causes query abort if positive */
6283     int groupBySort;    /* Rows come from source in GROUP BY order */
6284     int addrEnd;        /* End of processing for this SELECT */
6285     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6286     int sortOut = 0;    /* Output register from the sorter */
6287     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6288 
6289     /* Remove any and all aliases between the result set and the
6290     ** GROUP BY clause.
6291     */
6292     if( pGroupBy ){
6293       int k;                        /* Loop counter */
6294       struct ExprList_item *pItem;  /* For looping over expression in a list */
6295 
6296       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6297         pItem->u.x.iAlias = 0;
6298       }
6299       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6300         pItem->u.x.iAlias = 0;
6301       }
6302       assert( 66==sqlite3LogEst(100) );
6303       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6304 
6305       /* If there is both a GROUP BY and an ORDER BY clause and they are
6306       ** identical, then it may be possible to disable the ORDER BY clause
6307       ** on the grounds that the GROUP BY will cause elements to come out
6308       ** in the correct order. It also may not - the GROUP BY might use a
6309       ** database index that causes rows to be grouped together as required
6310       ** but not actually sorted. Either way, record the fact that the
6311       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6312       ** variable.  */
6313       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6314         int ii;
6315         /* The GROUP BY processing doesn't care whether rows are delivered in
6316         ** ASC or DESC order - only that each group is returned contiguously.
6317         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6318         ** ORDER BY to maximize the chances of rows being delivered in an
6319         ** order that makes the ORDER BY redundant.  */
6320         for(ii=0; ii<pGroupBy->nExpr; ii++){
6321           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6322           pGroupBy->a[ii].sortFlags = sortFlags;
6323         }
6324         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6325           orderByGrp = 1;
6326         }
6327       }
6328     }else{
6329       assert( 0==sqlite3LogEst(1) );
6330       p->nSelectRow = 0;
6331     }
6332 
6333     /* Create a label to jump to when we want to abort the query */
6334     addrEnd = sqlite3VdbeMakeLabel(pParse);
6335 
6336     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6337     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6338     ** SELECT statement.
6339     */
6340     memset(&sNC, 0, sizeof(sNC));
6341     sNC.pParse = pParse;
6342     sNC.pSrcList = pTabList;
6343     sNC.uNC.pAggInfo = &sAggInfo;
6344     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6345     sAggInfo.mnReg = pParse->nMem+1;
6346     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6347     sAggInfo.pGroupBy = pGroupBy;
6348     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6349     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6350     if( pHaving ){
6351       if( pGroupBy ){
6352         assert( pWhere==p->pWhere );
6353         assert( pHaving==p->pHaving );
6354         assert( pGroupBy==p->pGroupBy );
6355         havingToWhere(pParse, p);
6356         pWhere = p->pWhere;
6357       }
6358       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6359     }
6360     sAggInfo.nAccumulator = sAggInfo.nColumn;
6361     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6362       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6363     }else{
6364       minMaxFlag = WHERE_ORDERBY_NORMAL;
6365     }
6366     for(i=0; i<sAggInfo.nFunc; i++){
6367       Expr *pExpr = sAggInfo.aFunc[i].pExpr;
6368       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6369       sNC.ncFlags |= NC_InAggFunc;
6370       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6371 #ifndef SQLITE_OMIT_WINDOWFUNC
6372       assert( !IsWindowFunc(pExpr) );
6373       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6374         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6375       }
6376 #endif
6377       sNC.ncFlags &= ~NC_InAggFunc;
6378     }
6379     sAggInfo.mxReg = pParse->nMem;
6380     if( db->mallocFailed ) goto select_end;
6381 #if SELECTTRACE_ENABLED
6382     if( sqlite3SelectTrace & 0x400 ){
6383       int ii;
6384       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6385       sqlite3TreeViewSelect(0, p, 0);
6386       for(ii=0; ii<sAggInfo.nColumn; ii++){
6387         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6388             ii, sAggInfo.aCol[ii].iMem);
6389         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6390       }
6391       for(ii=0; ii<sAggInfo.nFunc; ii++){
6392         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6393             ii, sAggInfo.aFunc[ii].iMem);
6394         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6395       }
6396     }
6397 #endif
6398 
6399 
6400     /* Processing for aggregates with GROUP BY is very different and
6401     ** much more complex than aggregates without a GROUP BY.
6402     */
6403     if( pGroupBy ){
6404       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6405       int addr1;          /* A-vs-B comparision jump */
6406       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6407       int regOutputRow;   /* Return address register for output subroutine */
6408       int addrSetAbort;   /* Set the abort flag and return */
6409       int addrTopOfLoop;  /* Top of the input loop */
6410       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6411       int addrReset;      /* Subroutine for resetting the accumulator */
6412       int regReset;       /* Return address register for reset subroutine */
6413 
6414       /* If there is a GROUP BY clause we might need a sorting index to
6415       ** implement it.  Allocate that sorting index now.  If it turns out
6416       ** that we do not need it after all, the OP_SorterOpen instruction
6417       ** will be converted into a Noop.
6418       */
6419       sAggInfo.sortingIdx = pParse->nTab++;
6420       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6421       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6422           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6423           0, (char*)pKeyInfo, P4_KEYINFO);
6424 
6425       /* Initialize memory locations used by GROUP BY aggregate processing
6426       */
6427       iUseFlag = ++pParse->nMem;
6428       iAbortFlag = ++pParse->nMem;
6429       regOutputRow = ++pParse->nMem;
6430       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6431       regReset = ++pParse->nMem;
6432       addrReset = sqlite3VdbeMakeLabel(pParse);
6433       iAMem = pParse->nMem + 1;
6434       pParse->nMem += pGroupBy->nExpr;
6435       iBMem = pParse->nMem + 1;
6436       pParse->nMem += pGroupBy->nExpr;
6437       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6438       VdbeComment((v, "clear abort flag"));
6439       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6440 
6441       /* Begin a loop that will extract all source rows in GROUP BY order.
6442       ** This might involve two separate loops with an OP_Sort in between, or
6443       ** it might be a single loop that uses an index to extract information
6444       ** in the right order to begin with.
6445       */
6446       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6447       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6448       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6449           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6450       );
6451       if( pWInfo==0 ) goto select_end;
6452       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6453         /* The optimizer is able to deliver rows in group by order so
6454         ** we do not have to sort.  The OP_OpenEphemeral table will be
6455         ** cancelled later because we still need to use the pKeyInfo
6456         */
6457         groupBySort = 0;
6458       }else{
6459         /* Rows are coming out in undetermined order.  We have to push
6460         ** each row into a sorting index, terminate the first loop,
6461         ** then loop over the sorting index in order to get the output
6462         ** in sorted order
6463         */
6464         int regBase;
6465         int regRecord;
6466         int nCol;
6467         int nGroupBy;
6468 
6469         explainTempTable(pParse,
6470             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6471                     "DISTINCT" : "GROUP BY");
6472 
6473         groupBySort = 1;
6474         nGroupBy = pGroupBy->nExpr;
6475         nCol = nGroupBy;
6476         j = nGroupBy;
6477         for(i=0; i<sAggInfo.nColumn; i++){
6478           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6479             nCol++;
6480             j++;
6481           }
6482         }
6483         regBase = sqlite3GetTempRange(pParse, nCol);
6484         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6485         j = nGroupBy;
6486         for(i=0; i<sAggInfo.nColumn; i++){
6487           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6488           if( pCol->iSorterColumn>=j ){
6489             int r1 = j + regBase;
6490             sqlite3ExprCodeGetColumnOfTable(v,
6491                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6492             j++;
6493           }
6494         }
6495         regRecord = sqlite3GetTempReg(pParse);
6496         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6497         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6498         sqlite3ReleaseTempReg(pParse, regRecord);
6499         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6500         sqlite3WhereEnd(pWInfo);
6501         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6502         sortOut = sqlite3GetTempReg(pParse);
6503         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6504         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6505         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6506         sAggInfo.useSortingIdx = 1;
6507       }
6508 
6509       /* If the index or temporary table used by the GROUP BY sort
6510       ** will naturally deliver rows in the order required by the ORDER BY
6511       ** clause, cancel the ephemeral table open coded earlier.
6512       **
6513       ** This is an optimization - the correct answer should result regardless.
6514       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6515       ** disable this optimization for testing purposes.  */
6516       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6517        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6518       ){
6519         sSort.pOrderBy = 0;
6520         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6521       }
6522 
6523       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6524       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6525       ** Then compare the current GROUP BY terms against the GROUP BY terms
6526       ** from the previous row currently stored in a0, a1, a2...
6527       */
6528       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6529       if( groupBySort ){
6530         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6531                           sortOut, sortPTab);
6532       }
6533       for(j=0; j<pGroupBy->nExpr; j++){
6534         if( groupBySort ){
6535           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6536         }else{
6537           sAggInfo.directMode = 1;
6538           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6539         }
6540       }
6541       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6542                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6543       addr1 = sqlite3VdbeCurrentAddr(v);
6544       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6545 
6546       /* Generate code that runs whenever the GROUP BY changes.
6547       ** Changes in the GROUP BY are detected by the previous code
6548       ** block.  If there were no changes, this block is skipped.
6549       **
6550       ** This code copies current group by terms in b0,b1,b2,...
6551       ** over to a0,a1,a2.  It then calls the output subroutine
6552       ** and resets the aggregate accumulator registers in preparation
6553       ** for the next GROUP BY batch.
6554       */
6555       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6556       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6557       VdbeComment((v, "output one row"));
6558       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6559       VdbeComment((v, "check abort flag"));
6560       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6561       VdbeComment((v, "reset accumulator"));
6562 
6563       /* Update the aggregate accumulators based on the content of
6564       ** the current row
6565       */
6566       sqlite3VdbeJumpHere(v, addr1);
6567       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6568       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6569       VdbeComment((v, "indicate data in accumulator"));
6570 
6571       /* End of the loop
6572       */
6573       if( groupBySort ){
6574         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6575         VdbeCoverage(v);
6576       }else{
6577         sqlite3WhereEnd(pWInfo);
6578         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6579       }
6580 
6581       /* Output the final row of result
6582       */
6583       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6584       VdbeComment((v, "output final row"));
6585 
6586       /* Jump over the subroutines
6587       */
6588       sqlite3VdbeGoto(v, addrEnd);
6589 
6590       /* Generate a subroutine that outputs a single row of the result
6591       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6592       ** is less than or equal to zero, the subroutine is a no-op.  If
6593       ** the processing calls for the query to abort, this subroutine
6594       ** increments the iAbortFlag memory location before returning in
6595       ** order to signal the caller to abort.
6596       */
6597       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6598       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6599       VdbeComment((v, "set abort flag"));
6600       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6601       sqlite3VdbeResolveLabel(v, addrOutputRow);
6602       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6603       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6604       VdbeCoverage(v);
6605       VdbeComment((v, "Groupby result generator entry point"));
6606       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6607       finalizeAggFunctions(pParse, &sAggInfo);
6608       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6609       selectInnerLoop(pParse, p, -1, &sSort,
6610                       &sDistinct, pDest,
6611                       addrOutputRow+1, addrSetAbort);
6612       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6613       VdbeComment((v, "end groupby result generator"));
6614 
6615       /* Generate a subroutine that will reset the group-by accumulator
6616       */
6617       sqlite3VdbeResolveLabel(v, addrReset);
6618       resetAccumulator(pParse, &sAggInfo);
6619       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6620       VdbeComment((v, "indicate accumulator empty"));
6621       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6622 
6623     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6624     else {
6625 #ifndef SQLITE_OMIT_BTREECOUNT
6626       Table *pTab;
6627       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6628         /* If isSimpleCount() returns a pointer to a Table structure, then
6629         ** the SQL statement is of the form:
6630         **
6631         **   SELECT count(*) FROM <tbl>
6632         **
6633         ** where the Table structure returned represents table <tbl>.
6634         **
6635         ** This statement is so common that it is optimized specially. The
6636         ** OP_Count instruction is executed either on the intkey table that
6637         ** contains the data for table <tbl> or on one of its indexes. It
6638         ** is better to execute the op on an index, as indexes are almost
6639         ** always spread across less pages than their corresponding tables.
6640         */
6641         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6642         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6643         Index *pIdx;                         /* Iterator variable */
6644         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6645         Index *pBest = 0;                    /* Best index found so far */
6646         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6647 
6648         sqlite3CodeVerifySchema(pParse, iDb);
6649         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6650 
6651         /* Search for the index that has the lowest scan cost.
6652         **
6653         ** (2011-04-15) Do not do a full scan of an unordered index.
6654         **
6655         ** (2013-10-03) Do not count the entries in a partial index.
6656         **
6657         ** In practice the KeyInfo structure will not be used. It is only
6658         ** passed to keep OP_OpenRead happy.
6659         */
6660         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6661         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6662           if( pIdx->bUnordered==0
6663            && pIdx->szIdxRow<pTab->szTabRow
6664            && pIdx->pPartIdxWhere==0
6665            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6666           ){
6667             pBest = pIdx;
6668           }
6669         }
6670         if( pBest ){
6671           iRoot = pBest->tnum;
6672           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6673         }
6674 
6675         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6676         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6677         if( pKeyInfo ){
6678           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6679         }
6680         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6681         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6682         explainSimpleCount(pParse, pTab, pBest);
6683       }else
6684 #endif /* SQLITE_OMIT_BTREECOUNT */
6685       {
6686         int regAcc = 0;           /* "populate accumulators" flag */
6687 
6688         /* If there are accumulator registers but no min() or max() functions
6689         ** without FILTER clauses, allocate register regAcc. Register regAcc
6690         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6691         ** The code generated by updateAccumulator() uses this to ensure
6692         ** that the accumulator registers are (a) updated only once if
6693         ** there are no min() or max functions or (b) always updated for the
6694         ** first row visited by the aggregate, so that they are updated at
6695         ** least once even if the FILTER clause means the min() or max()
6696         ** function visits zero rows.  */
6697         if( sAggInfo.nAccumulator ){
6698           for(i=0; i<sAggInfo.nFunc; i++){
6699             if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue;
6700             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6701           }
6702           if( i==sAggInfo.nFunc ){
6703             regAcc = ++pParse->nMem;
6704             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6705           }
6706         }
6707 
6708         /* This case runs if the aggregate has no GROUP BY clause.  The
6709         ** processing is much simpler since there is only a single row
6710         ** of output.
6711         */
6712         assert( p->pGroupBy==0 );
6713         resetAccumulator(pParse, &sAggInfo);
6714 
6715         /* If this query is a candidate for the min/max optimization, then
6716         ** minMaxFlag will have been previously set to either
6717         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6718         ** be an appropriate ORDER BY expression for the optimization.
6719         */
6720         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6721         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6722 
6723         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6724         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6725                                    0, minMaxFlag, 0);
6726         if( pWInfo==0 ){
6727           goto select_end;
6728         }
6729         updateAccumulator(pParse, regAcc, &sAggInfo);
6730         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6731         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6732           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6733           VdbeComment((v, "%s() by index",
6734                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6735         }
6736         sqlite3WhereEnd(pWInfo);
6737         finalizeAggFunctions(pParse, &sAggInfo);
6738       }
6739 
6740       sSort.pOrderBy = 0;
6741       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6742       selectInnerLoop(pParse, p, -1, 0, 0,
6743                       pDest, addrEnd, addrEnd);
6744     }
6745     sqlite3VdbeResolveLabel(v, addrEnd);
6746 
6747   } /* endif aggregate query */
6748 
6749   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6750     explainTempTable(pParse, "DISTINCT");
6751   }
6752 
6753   /* If there is an ORDER BY clause, then we need to sort the results
6754   ** and send them to the callback one by one.
6755   */
6756   if( sSort.pOrderBy ){
6757     explainTempTable(pParse,
6758                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6759     assert( p->pEList==pEList );
6760     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6761   }
6762 
6763   /* Jump here to skip this query
6764   */
6765   sqlite3VdbeResolveLabel(v, iEnd);
6766 
6767   /* The SELECT has been coded. If there is an error in the Parse structure,
6768   ** set the return code to 1. Otherwise 0. */
6769   rc = (pParse->nErr>0);
6770 
6771   /* Control jumps to here if an error is encountered above, or upon
6772   ** successful coding of the SELECT.
6773   */
6774 select_end:
6775   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6776   sqlite3DbFree(db, sAggInfo.aCol);
6777   sqlite3DbFree(db, sAggInfo.aFunc);
6778 #if SELECTTRACE_ENABLED
6779   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6780   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6781     sqlite3TreeViewSelect(0, p, 0);
6782   }
6783 #endif
6784   ExplainQueryPlanPop(pParse);
6785   return rc;
6786 }
6787