xref: /openbsd/gnu/usr.bin/binutils/gdb/stabsread.c (revision 63addd46)
1 /* Support routines for decoding "stabs" debugging information format.
2 
3    Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4    1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
5    Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23 
24 /* Support routines for reading and decoding debugging information in
25    the "stabs" format.  This format is used with many systems that use
26    the a.out object file format, as well as some systems that use
27    COFF or ELF where the stabs data is placed in a special section.
28    Avoid placing any object file format specific code in this file. */
29 
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h"	/* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50 
51 #include <ctype.h>
52 
53 /* Ask stabsread.h to define the vars it normally declares `extern'.  */
54 #define	EXTERN
55 /**/
56 #include "stabsread.h"		/* Our own declarations */
57 #undef	EXTERN
58 
59 extern void _initialize_stabsread (void);
60 
61 /* The routines that read and process a complete stabs for a C struct or
62    C++ class pass lists of data member fields and lists of member function
63    fields in an instance of a field_info structure, as defined below.
64    This is part of some reorganization of low level C++ support and is
65    expected to eventually go away... (FIXME) */
66 
67 struct field_info
68   {
69     struct nextfield
70       {
71 	struct nextfield *next;
72 
73 	/* This is the raw visibility from the stab.  It is not checked
74 	   for being one of the visibilities we recognize, so code which
75 	   examines this field better be able to deal.  */
76 	int visibility;
77 
78 	struct field field;
79       }
80      *list;
81     struct next_fnfieldlist
82       {
83 	struct next_fnfieldlist *next;
84 	struct fn_fieldlist fn_fieldlist;
85       }
86      *fnlist;
87   };
88 
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 		       struct type *, struct objfile *);
92 
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94 
95 static long read_huge_number (char **, int, int *);
96 
97 static struct type *error_type (char **, struct objfile *);
98 
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 		   struct objfile *);
102 
103 static void fix_common_block (struct symbol *, int);
104 
105 static int read_type_number (char **, int *);
106 
107 static struct type *read_type (char **, struct objfile *);
108 
109 static struct type *read_range_type (char **, int[2], struct objfile *);
110 
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112 
113 static struct type *read_sun_floating_type (char **, int[2],
114 					    struct objfile *);
115 
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117 
118 static struct type *rs6000_builtin_type (int);
119 
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 		       struct objfile *);
123 
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 		    struct objfile *);
127 
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 		  struct objfile *);
131 
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 		   struct objfile *);
135 
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137 
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 				  struct objfile *);
140 
141 static struct type *read_struct_type (char **, struct type *,
142                                       enum type_code,
143 				      struct objfile *);
144 
145 static struct type *read_array_type (char **, struct type *,
146 				     struct objfile *);
147 
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149 
150 static void add_undefined_type (struct type *);
151 
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 		 struct objfile *);
155 
156 static char *find_name_end (char *name);
157 
158 static int process_reference (char **string);
159 
160 void stabsread_clear_cache (void);
161 
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164 
165 /* Define this as 1 if a pcc declaration of a char or short argument
166    gives the correct address.  Otherwise assume pcc gives the
167    address of the corresponding int, which is not the same on a
168    big-endian machine.  */
169 
170 #if !defined (BELIEVE_PCC_PROMOTION)
171 #define BELIEVE_PCC_PROMOTION 0
172 #endif
173 
174 static void
invalid_cpp_abbrev_complaint(const char * arg1)175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177   complaint (&symfile_complaints, "invalid C++ abbreviation `%s'", arg1);
178 }
179 
180 static void
reg_value_complaint(int regnum,int num_regs,const char * sym)181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183   complaint (&symfile_complaints,
184 	     "register number %d too large (max %d) in symbol %s",
185              regnum, num_regs - 1, sym);
186 }
187 
188 static void
stabs_general_complaint(const char * arg1)189 stabs_general_complaint (const char *arg1)
190 {
191   complaint (&symfile_complaints, "%s", arg1);
192 }
193 
194 /* Make a list of forward references which haven't been defined.  */
195 
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200 
201 /* Check for and handle cretinous stabs symbol name continuation!  */
202 #define STABS_CONTINUE(pp,objfile)				\
203   do {							\
204     if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205       *(pp) = next_symbol_text (objfile);	\
206   } while (0)
207 
208 
209 /* Look up a dbx type-number pair.  Return the address of the slot
210    where the type for that number-pair is stored.
211    The number-pair is in TYPENUMS.
212 
213    This can be used for finding the type associated with that pair
214    or for associating a new type with the pair.  */
215 
216 static struct type **
dbx_lookup_type(int typenums[2])217 dbx_lookup_type (int typenums[2])
218 {
219   int filenum = typenums[0];
220   int index = typenums[1];
221   unsigned old_len;
222   int real_filenum;
223   struct header_file *f;
224   int f_orig_length;
225 
226   if (filenum == -1)		/* -1,-1 is for temporary types.  */
227     return 0;
228 
229   if (filenum < 0 || filenum >= n_this_object_header_files)
230     {
231       complaint (&symfile_complaints,
232 		 "Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
233 		 filenum, index, symnum);
234       goto error_return;
235     }
236 
237   if (filenum == 0)
238     {
239       if (index < 0)
240 	{
241 	  /* Caller wants address of address of type.  We think
242 	     that negative (rs6k builtin) types will never appear as
243 	     "lvalues", (nor should they), so we stuff the real type
244 	     pointer into a temp, and return its address.  If referenced,
245 	     this will do the right thing.  */
246 	  static struct type *temp_type;
247 
248 	  temp_type = rs6000_builtin_type (index);
249 	  return &temp_type;
250 	}
251 
252       /* Type is defined outside of header files.
253          Find it in this object file's type vector.  */
254       if (index >= type_vector_length)
255 	{
256 	  old_len = type_vector_length;
257 	  if (old_len == 0)
258 	    {
259 	      type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
260 	      type_vector = (struct type **)
261 		xmalloc (type_vector_length * sizeof (struct type *));
262 	    }
263 	  while (index >= type_vector_length)
264 	    {
265 	      type_vector_length *= 2;
266 	    }
267 	  type_vector = (struct type **)
268 	    xrealloc ((char *) type_vector,
269 		      (type_vector_length * sizeof (struct type *)));
270 	  memset (&type_vector[old_len], 0,
271 		  (type_vector_length - old_len) * sizeof (struct type *));
272 	}
273       return (&type_vector[index]);
274     }
275   else
276     {
277       real_filenum = this_object_header_files[filenum];
278 
279       if (real_filenum >= N_HEADER_FILES (current_objfile))
280 	{
281 	  struct type *temp_type;
282 	  struct type **temp_type_p;
283 
284 	  warning ("GDB internal error: bad real_filenum");
285 
286 	error_return:
287 	  temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
288 	  temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
289 	  *temp_type_p = temp_type;
290 	  return temp_type_p;
291 	}
292 
293       f = HEADER_FILES (current_objfile) + real_filenum;
294 
295       f_orig_length = f->length;
296       if (index >= f_orig_length)
297 	{
298 	  while (index >= f->length)
299 	    {
300 	      f->length *= 2;
301 	    }
302 	  f->vector = (struct type **)
303 	    xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
304 	  memset (&f->vector[f_orig_length], 0,
305 		  (f->length - f_orig_length) * sizeof (struct type *));
306 	}
307       return (&f->vector[index]);
308     }
309 }
310 
311 /* Make sure there is a type allocated for type numbers TYPENUMS
312    and return the type object.
313    This can create an empty (zeroed) type object.
314    TYPENUMS may be (-1, -1) to return a new type object that is not
315    put into the type vector, and so may not be referred to by number. */
316 
317 static struct type *
dbx_alloc_type(int typenums[2],struct objfile * objfile)318 dbx_alloc_type (int typenums[2], struct objfile *objfile)
319 {
320   struct type **type_addr;
321 
322   if (typenums[0] == -1)
323     {
324       return (alloc_type (objfile));
325     }
326 
327   type_addr = dbx_lookup_type (typenums);
328 
329   /* If we are referring to a type not known at all yet,
330      allocate an empty type for it.
331      We will fill it in later if we find out how.  */
332   if (*type_addr == 0)
333     {
334       *type_addr = alloc_type (objfile);
335     }
336 
337   return (*type_addr);
338 }
339 
340 /* for all the stabs in a given stab vector, build appropriate types
341    and fix their symbols in given symbol vector. */
342 
343 static void
patch_block_stabs(struct pending * symbols,struct pending_stabs * stabs,struct objfile * objfile)344 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
345 		   struct objfile *objfile)
346 {
347   int ii;
348   char *name;
349   char *pp;
350   struct symbol *sym;
351 
352   if (stabs)
353     {
354 
355       /* for all the stab entries, find their corresponding symbols and
356          patch their types! */
357 
358       for (ii = 0; ii < stabs->count; ++ii)
359 	{
360 	  name = stabs->stab[ii];
361 	  pp = (char *) strchr (name, ':');
362 	  while (pp[1] == ':')
363 	    {
364 	      pp += 2;
365 	      pp = (char *) strchr (pp, ':');
366 	    }
367 	  sym = find_symbol_in_list (symbols, name, pp - name);
368 	  if (!sym)
369 	    {
370 	      /* FIXME-maybe: it would be nice if we noticed whether
371 	         the variable was defined *anywhere*, not just whether
372 	         it is defined in this compilation unit.  But neither
373 	         xlc or GCC seem to need such a definition, and until
374 	         we do psymtabs (so that the minimal symbols from all
375 	         compilation units are available now), I'm not sure
376 	         how to get the information.  */
377 
378 	      /* On xcoff, if a global is defined and never referenced,
379 	         ld will remove it from the executable.  There is then
380 	         a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
381 	      sym = (struct symbol *)
382 		obstack_alloc (&objfile->objfile_obstack,
383 			       sizeof (struct symbol));
384 
385 	      memset (sym, 0, sizeof (struct symbol));
386 	      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
387 	      SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
388 	      DEPRECATED_SYMBOL_NAME (sym) =
389 		obsavestring (name, pp - name, &objfile->objfile_obstack);
390 	      pp += 2;
391 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
392 		{
393 		  /* I don't think the linker does this with functions,
394 		     so as far as I know this is never executed.
395 		     But it doesn't hurt to check.  */
396 		  SYMBOL_TYPE (sym) =
397 		    lookup_function_type (read_type (&pp, objfile));
398 		}
399 	      else
400 		{
401 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
402 		}
403 	      add_symbol_to_list (sym, &global_symbols);
404 	    }
405 	  else
406 	    {
407 	      pp += 2;
408 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
409 		{
410 		  SYMBOL_TYPE (sym) =
411 		    lookup_function_type (read_type (&pp, objfile));
412 		}
413 	      else
414 		{
415 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 		}
417 	    }
418 	}
419     }
420 }
421 
422 
423 /* Read a number by which a type is referred to in dbx data,
424    or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
425    Just a single number N is equivalent to (0,N).
426    Return the two numbers by storing them in the vector TYPENUMS.
427    TYPENUMS will then be used as an argument to dbx_lookup_type.
428 
429    Returns 0 for success, -1 for error.  */
430 
431 static int
read_type_number(char ** pp,int * typenums)432 read_type_number (char **pp, int *typenums)
433 {
434   int nbits;
435   if (**pp == '(')
436     {
437       (*pp)++;
438       typenums[0] = read_huge_number (pp, ',', &nbits);
439       if (nbits != 0)
440 	return -1;
441       typenums[1] = read_huge_number (pp, ')', &nbits);
442       if (nbits != 0)
443 	return -1;
444     }
445   else
446     {
447       typenums[0] = 0;
448       typenums[1] = read_huge_number (pp, 0, &nbits);
449       if (nbits != 0)
450 	return -1;
451     }
452   return 0;
453 }
454 
455 
456 #define VISIBILITY_PRIVATE	'0'	/* Stabs character for private field */
457 #define VISIBILITY_PROTECTED	'1'	/* Stabs character for protected fld */
458 #define VISIBILITY_PUBLIC	'2'	/* Stabs character for public field */
459 #define VISIBILITY_IGNORE	'9'	/* Optimized out or zero length */
460 
461 /* Structure for storing pointers to reference definitions for fast lookup
462    during "process_later". */
463 
464 struct ref_map
465 {
466   char *stabs;
467   CORE_ADDR value;
468   struct symbol *sym;
469 };
470 
471 #define MAX_CHUNK_REFS 100
472 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
473 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
474 
475 static struct ref_map *ref_map;
476 
477 /* Ptr to free cell in chunk's linked list. */
478 static int ref_count = 0;
479 
480 /* Number of chunks malloced. */
481 static int ref_chunk = 0;
482 
483 /* This file maintains a cache of stabs aliases found in the symbol
484    table. If the symbol table changes, this cache must be cleared
485    or we are left holding onto data in invalid obstacks. */
486 void
stabsread_clear_cache(void)487 stabsread_clear_cache (void)
488 {
489   ref_count = 0;
490   ref_chunk = 0;
491 }
492 
493 /* Create array of pointers mapping refids to symbols and stab strings.
494    Add pointers to reference definition symbols and/or their values as we
495    find them, using their reference numbers as our index.
496    These will be used later when we resolve references. */
497 void
ref_add(int refnum,struct symbol * sym,char * stabs,CORE_ADDR value)498 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
499 {
500   if (ref_count == 0)
501     ref_chunk = 0;
502   if (refnum >= ref_count)
503     ref_count = refnum + 1;
504   if (ref_count > ref_chunk * MAX_CHUNK_REFS)
505     {
506       int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
507       int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
508       ref_map = (struct ref_map *)
509 	xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
510       memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
511       ref_chunk += new_chunks;
512     }
513   ref_map[refnum].stabs = stabs;
514   ref_map[refnum].sym = sym;
515   ref_map[refnum].value = value;
516 }
517 
518 /* Return defined sym for the reference REFNUM.  */
519 struct symbol *
ref_search(int refnum)520 ref_search (int refnum)
521 {
522   if (refnum < 0 || refnum > ref_count)
523     return 0;
524   return ref_map[refnum].sym;
525 }
526 
527 /* Parse a reference id in STRING and return the resulting
528    reference number.  Move STRING beyond the reference id.  */
529 
530 static int
process_reference(char ** string)531 process_reference (char **string)
532 {
533   char *p;
534   int refnum = 0;
535 
536   if (**string != '#')
537     return 0;
538 
539   /* Advance beyond the initial '#'.  */
540   p = *string + 1;
541 
542   /* Read number as reference id. */
543   while (*p && isdigit (*p))
544     {
545       refnum = refnum * 10 + *p - '0';
546       p++;
547     }
548   *string = p;
549   return refnum;
550 }
551 
552 /* If STRING defines a reference, store away a pointer to the reference
553    definition for later use.  Return the reference number.  */
554 
555 int
symbol_reference_defined(char ** string)556 symbol_reference_defined (char **string)
557 {
558   char *p = *string;
559   int refnum = 0;
560 
561   refnum = process_reference (&p);
562 
563   /* Defining symbols end in '=' */
564   if (*p == '=')
565     {
566       /* Symbol is being defined here. */
567       *string = p + 1;
568       return refnum;
569     }
570   else
571     {
572       /* Must be a reference.   Either the symbol has already been defined,
573          or this is a forward reference to it.  */
574       *string = p;
575       return -1;
576     }
577 }
578 
579 struct symbol *
define_symbol(CORE_ADDR valu,char * string,int desc,int type,struct objfile * objfile)580 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
581 	       struct objfile *objfile)
582 {
583   struct symbol *sym;
584   char *p = (char *) find_name_end (string);
585   int deftype;
586   int synonym = 0;
587   int i;
588 
589   /* We would like to eliminate nameless symbols, but keep their types.
590      E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
591      to type 2, but, should not create a symbol to address that type. Since
592      the symbol will be nameless, there is no way any user can refer to it. */
593 
594   int nameless;
595 
596   /* Ignore syms with empty names.  */
597   if (string[0] == 0)
598     return 0;
599 
600   /* Ignore old-style symbols from cc -go  */
601   if (p == 0)
602     return 0;
603 
604   while (p[1] == ':')
605     {
606       p += 2;
607       p = strchr (p, ':');
608     }
609 
610   /* If a nameless stab entry, all we need is the type, not the symbol.
611      e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
612   nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
613 
614   current_symbol = sym = (struct symbol *)
615     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
616   memset (sym, 0, sizeof (struct symbol));
617 
618   switch (type & N_TYPE)
619     {
620     case N_TEXT:
621       SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
622       break;
623     case N_DATA:
624       SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
625       break;
626     case N_BSS:
627       SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
628       break;
629     }
630 
631   if (processing_gcc_compilation)
632     {
633       /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
634          number of bytes occupied by a type or object, which we ignore.  */
635       SYMBOL_LINE (sym) = desc;
636     }
637   else
638     {
639       SYMBOL_LINE (sym) = 0;	/* unknown */
640     }
641 
642   if (is_cplus_marker (string[0]))
643     {
644       /* Special GNU C++ names.  */
645       switch (string[1])
646 	{
647 	case 't':
648 	  DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
649 					    &objfile->objfile_obstack);
650 	  break;
651 
652 	case 'v':		/* $vtbl_ptr_type */
653 	  /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
654 	  goto normal;
655 
656 	case 'e':
657 	  DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
658 					    &objfile->objfile_obstack);
659 	  break;
660 
661 	case '_':
662 	  /* This was an anonymous type that was never fixed up.  */
663 	  goto normal;
664 
665 #ifdef STATIC_TRANSFORM_NAME
666 	case 'X':
667 	  /* SunPRO (3.0 at least) static variable encoding.  */
668 	  goto normal;
669 #endif
670 
671 	default:
672 	  complaint (&symfile_complaints, "Unknown C++ symbol name `%s'",
673 		     string);
674 	  goto normal;		/* Do *something* with it */
675 	}
676     }
677   else
678     {
679     normal:
680       SYMBOL_LANGUAGE (sym) = current_subfile->language;
681       SYMBOL_SET_NAMES (sym, string, p - string, objfile);
682     }
683   p++;
684 
685   /* Determine the type of name being defined.  */
686 #if 0
687   /* Getting GDB to correctly skip the symbol on an undefined symbol
688      descriptor and not ever dump core is a very dodgy proposition if
689      we do things this way.  I say the acorn RISC machine can just
690      fix their compiler.  */
691   /* The Acorn RISC machine's compiler can put out locals that don't
692      start with "234=" or "(3,4)=", so assume anything other than the
693      deftypes we know how to handle is a local.  */
694   if (!strchr ("cfFGpPrStTvVXCR", *p))
695 #else
696   if (isdigit (*p) || *p == '(' || *p == '-')
697 #endif
698     deftype = 'l';
699   else
700     deftype = *p++;
701 
702   switch (deftype)
703     {
704     case 'c':
705       /* c is a special case, not followed by a type-number.
706          SYMBOL:c=iVALUE for an integer constant symbol.
707          SYMBOL:c=rVALUE for a floating constant symbol.
708          SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
709          e.g. "b:c=e6,0" for "const b = blob1"
710          (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
711       if (*p != '=')
712 	{
713 	  SYMBOL_CLASS (sym) = LOC_CONST;
714 	  SYMBOL_TYPE (sym) = error_type (&p, objfile);
715 	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
716 	  add_symbol_to_list (sym, &file_symbols);
717 	  return sym;
718 	}
719       ++p;
720       switch (*p++)
721 	{
722 	case 'r':
723 	  {
724 	    double d = atof (p);
725 	    char *dbl_valu;
726 
727 	    /* FIXME-if-picky-about-floating-accuracy: Should be using
728 	       target arithmetic to get the value.  real.c in GCC
729 	       probably has the necessary code.  */
730 
731 	    /* FIXME: lookup_fundamental_type is a hack.  We should be
732 	       creating a type especially for the type of float constants.
733 	       Problem is, what type should it be?
734 
735 	       Also, what should the name of this type be?  Should we
736 	       be using 'S' constants (see stabs.texinfo) instead?  */
737 
738 	    SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
739 							 FT_DBL_PREC_FLOAT);
740 	    dbl_valu = (char *)
741 	      obstack_alloc (&objfile->objfile_obstack,
742 			     TYPE_LENGTH (SYMBOL_TYPE (sym)));
743 	    store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
744 	    SYMBOL_VALUE_BYTES (sym) = dbl_valu;
745 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
746 	  }
747 	  break;
748 	case 'i':
749 	  {
750 	    /* Defining integer constants this way is kind of silly,
751 	       since 'e' constants allows the compiler to give not
752 	       only the value, but the type as well.  C has at least
753 	       int, long, unsigned int, and long long as constant
754 	       types; other languages probably should have at least
755 	       unsigned as well as signed constants.  */
756 
757 	    /* We just need one int constant type for all objfiles.
758 	       It doesn't depend on languages or anything (arguably its
759 	       name should be a language-specific name for a type of
760 	       that size, but I'm inclined to say that if the compiler
761 	       wants a nice name for the type, it can use 'e').  */
762 	    static struct type *int_const_type;
763 
764 	    /* Yes, this is as long as a *host* int.  That is because we
765 	       use atoi.  */
766 	    if (int_const_type == NULL)
767 	      int_const_type =
768 		init_type (TYPE_CODE_INT,
769 			   sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
770 			   "integer constant",
771 			     (struct objfile *) NULL);
772 	    SYMBOL_TYPE (sym) = int_const_type;
773 	    SYMBOL_VALUE (sym) = atoi (p);
774 	    SYMBOL_CLASS (sym) = LOC_CONST;
775 	  }
776 	  break;
777 	case 'e':
778 	  /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
779 	     can be represented as integral.
780 	     e.g. "b:c=e6,0" for "const b = blob1"
781 	     (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
782 	  {
783 	    SYMBOL_CLASS (sym) = LOC_CONST;
784 	    SYMBOL_TYPE (sym) = read_type (&p, objfile);
785 
786 	    if (*p != ',')
787 	      {
788 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
789 		break;
790 	      }
791 	    ++p;
792 
793 	    /* If the value is too big to fit in an int (perhaps because
794 	       it is unsigned), or something like that, we silently get
795 	       a bogus value.  The type and everything else about it is
796 	       correct.  Ideally, we should be using whatever we have
797 	       available for parsing unsigned and long long values,
798 	       however.  */
799 	    SYMBOL_VALUE (sym) = atoi (p);
800 	  }
801 	  break;
802 	default:
803 	  {
804 	    SYMBOL_CLASS (sym) = LOC_CONST;
805 	    SYMBOL_TYPE (sym) = error_type (&p, objfile);
806 	  }
807 	}
808       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
809       add_symbol_to_list (sym, &file_symbols);
810       return sym;
811 
812     case 'C':
813       /* The name of a caught exception.  */
814       SYMBOL_TYPE (sym) = read_type (&p, objfile);
815       SYMBOL_CLASS (sym) = LOC_LABEL;
816       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
817       SYMBOL_VALUE_ADDRESS (sym) = valu;
818       add_symbol_to_list (sym, &local_symbols);
819       break;
820 
821     case 'f':
822       /* A static function definition.  */
823       SYMBOL_TYPE (sym) = read_type (&p, objfile);
824       SYMBOL_CLASS (sym) = LOC_BLOCK;
825       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
826       add_symbol_to_list (sym, &file_symbols);
827       /* fall into process_function_types.  */
828 
829     process_function_types:
830       /* Function result types are described as the result type in stabs.
831          We need to convert this to the function-returning-type-X type
832          in GDB.  E.g. "int" is converted to "function returning int".  */
833       if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
834 	SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
835 
836       /* All functions in C++ have prototypes.  Stabs does not offer an
837          explicit way to identify prototyped or unprototyped functions,
838          but both GCC and Sun CC emit stabs for the "call-as" type rather
839          than the "declared-as" type for unprototyped functions, so
840          we treat all functions as if they were prototyped.  This is used
841          primarily for promotion when calling the function from GDB.  */
842       TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
843 
844       /* fall into process_prototype_types */
845 
846     process_prototype_types:
847       /* Sun acc puts declared types of arguments here.  */
848       if (*p == ';')
849 	{
850 	  struct type *ftype = SYMBOL_TYPE (sym);
851 	  int nsemi = 0;
852 	  int nparams = 0;
853 	  char *p1 = p;
854 
855 	  /* Obtain a worst case guess for the number of arguments
856 	     by counting the semicolons.  */
857 	  while (*p1)
858 	    {
859 	      if (*p1++ == ';')
860 		nsemi++;
861 	    }
862 
863 	  /* Allocate parameter information fields and fill them in. */
864 	  TYPE_FIELDS (ftype) = (struct field *)
865 	    TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
866 	  while (*p++ == ';')
867 	    {
868 	      struct type *ptype;
869 
870 	      /* A type number of zero indicates the start of varargs.
871 	         FIXME: GDB currently ignores vararg functions.  */
872 	      if (p[0] == '0' && p[1] == '\0')
873 		break;
874 	      ptype = read_type (&p, objfile);
875 
876 	      /* The Sun compilers mark integer arguments, which should
877 	         be promoted to the width of the calling conventions, with
878 	         a type which references itself. This type is turned into
879 	         a TYPE_CODE_VOID type by read_type, and we have to turn
880 	         it back into builtin_type_int here.
881 	         FIXME: Do we need a new builtin_type_promoted_int_arg ?  */
882 	      if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
883 		ptype = builtin_type_int;
884 	      TYPE_FIELD_TYPE (ftype, nparams) = ptype;
885 	      TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
886 	    }
887 	  TYPE_NFIELDS (ftype) = nparams;
888 	  TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
889 	}
890       break;
891 
892     case 'F':
893       /* A global function definition.  */
894       SYMBOL_TYPE (sym) = read_type (&p, objfile);
895       SYMBOL_CLASS (sym) = LOC_BLOCK;
896       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
897       add_symbol_to_list (sym, &global_symbols);
898       goto process_function_types;
899 
900     case 'G':
901       /* For a class G (global) symbol, it appears that the
902          value is not correct.  It is necessary to search for the
903          corresponding linker definition to find the value.
904          These definitions appear at the end of the namelist.  */
905       SYMBOL_TYPE (sym) = read_type (&p, objfile);
906       SYMBOL_CLASS (sym) = LOC_STATIC;
907       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
908       /* Don't add symbol references to global_sym_chain.
909          Symbol references don't have valid names and wont't match up with
910          minimal symbols when the global_sym_chain is relocated.
911          We'll fixup symbol references when we fixup the defining symbol.  */
912       if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
913 	{
914 	  i = hashname (DEPRECATED_SYMBOL_NAME (sym));
915 	  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
916 	  global_sym_chain[i] = sym;
917 	}
918       add_symbol_to_list (sym, &global_symbols);
919       break;
920 
921       /* This case is faked by a conditional above,
922          when there is no code letter in the dbx data.
923          Dbx data never actually contains 'l'.  */
924     case 's':
925     case 'l':
926       SYMBOL_TYPE (sym) = read_type (&p, objfile);
927       SYMBOL_CLASS (sym) = LOC_LOCAL;
928       SYMBOL_VALUE (sym) = valu;
929       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930       add_symbol_to_list (sym, &local_symbols);
931       break;
932 
933     case 'p':
934       if (*p == 'F')
935 	/* pF is a two-letter code that means a function parameter in Fortran.
936 	   The type-number specifies the type of the return value.
937 	   Translate it into a pointer-to-function type.  */
938 	{
939 	  p++;
940 	  SYMBOL_TYPE (sym)
941 	    = lookup_pointer_type
942 	    (lookup_function_type (read_type (&p, objfile)));
943 	}
944       else
945 	SYMBOL_TYPE (sym) = read_type (&p, objfile);
946 
947       SYMBOL_CLASS (sym) = LOC_ARG;
948       SYMBOL_VALUE (sym) = valu;
949       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
950       add_symbol_to_list (sym, &local_symbols);
951 
952       if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
953 	{
954 	  /* On little-endian machines, this crud is never necessary,
955 	     and, if the extra bytes contain garbage, is harmful.  */
956 	  break;
957 	}
958 
959       /* If it's gcc-compiled, if it says `short', believe it.  */
960       if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
961 	break;
962 
963       if (!BELIEVE_PCC_PROMOTION)
964 	{
965 	  /* This is the signed type which arguments get promoted to.  */
966 	  static struct type *pcc_promotion_type;
967 	  /* This is the unsigned type which arguments get promoted to.  */
968 	  static struct type *pcc_unsigned_promotion_type;
969 
970 	  /* Call it "int" because this is mainly C lossage.  */
971 	  if (pcc_promotion_type == NULL)
972 	    pcc_promotion_type =
973 	      init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
974 			 0, "int", NULL);
975 
976 	  if (pcc_unsigned_promotion_type == NULL)
977 	    pcc_unsigned_promotion_type =
978 	      init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
979 			 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
980 
981 	  /* If PCC says a parameter is a short or a char, it is
982 	     really an int.  */
983 	  if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
984 	      && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
985 	    {
986 	      SYMBOL_TYPE (sym) =
987 		TYPE_UNSIGNED (SYMBOL_TYPE (sym))
988 		? pcc_unsigned_promotion_type
989 		: pcc_promotion_type;
990 	    }
991 	  break;
992 	}
993 
994     case 'P':
995       /* acc seems to use P to declare the prototypes of functions that
996          are referenced by this file.  gdb is not prepared to deal
997          with this extra information.  FIXME, it ought to.  */
998       if (type == N_FUN)
999 	{
1000 	  SYMBOL_TYPE (sym) = read_type (&p, objfile);
1001 	  goto process_prototype_types;
1002 	}
1003       /*FALLTHROUGH */
1004 
1005     case 'R':
1006       /* Parameter which is in a register.  */
1007       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1008       SYMBOL_CLASS (sym) = LOC_REGPARM;
1009       SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1010       if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1011 	{
1012 	  reg_value_complaint (SYMBOL_VALUE (sym),
1013 			       NUM_REGS + NUM_PSEUDO_REGS,
1014 			       SYMBOL_PRINT_NAME (sym));
1015 	  SYMBOL_VALUE (sym) = SP_REGNUM;	/* Known safe, though useless */
1016 	}
1017       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1018       add_symbol_to_list (sym, &local_symbols);
1019       break;
1020 
1021     case 'r':
1022       /* Register variable (either global or local).  */
1023       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1024       SYMBOL_CLASS (sym) = LOC_REGISTER;
1025       SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1026       if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1027 	{
1028 	  reg_value_complaint (SYMBOL_VALUE (sym),
1029 			       NUM_REGS + NUM_PSEUDO_REGS,
1030 			       SYMBOL_PRINT_NAME (sym));
1031 	  SYMBOL_VALUE (sym) = SP_REGNUM;	/* Known safe, though useless */
1032 	}
1033       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034       if (within_function)
1035 	{
1036 	  /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1037 	     the same name to represent an argument passed in a
1038 	     register.  GCC uses 'P' for the same case.  So if we find
1039 	     such a symbol pair we combine it into one 'P' symbol.
1040 	     For Sun cc we need to do this regardless of
1041 	     stabs_argument_has_addr, because the compiler puts out
1042 	     the 'p' symbol even if it never saves the argument onto
1043 	     the stack.
1044 
1045 	     On most machines, we want to preserve both symbols, so
1046 	     that we can still get information about what is going on
1047 	     with the stack (VAX for computing args_printed, using
1048 	     stack slots instead of saved registers in backtraces,
1049 	     etc.).
1050 
1051 	     Note that this code illegally combines
1052 	     main(argc) struct foo argc; { register struct foo argc; }
1053 	     but this case is considered pathological and causes a warning
1054 	     from a decent compiler.  */
1055 
1056 	  if (local_symbols
1057 	      && local_symbols->nsyms > 0
1058 	      && gdbarch_stabs_argument_has_addr (current_gdbarch,
1059 						  SYMBOL_TYPE (sym)))
1060 	    {
1061 	      struct symbol *prev_sym;
1062 	      prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1063 	      if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1064 		   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1065 		  && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1066 			     DEPRECATED_SYMBOL_NAME (sym)) == 0)
1067 		{
1068 		  SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1069 		  /* Use the type from the LOC_REGISTER; that is the type
1070 		     that is actually in that register.  */
1071 		  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1072 		  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1073 		  sym = prev_sym;
1074 		  break;
1075 		}
1076 	    }
1077 	  add_symbol_to_list (sym, &local_symbols);
1078 	}
1079       else
1080 	add_symbol_to_list (sym, &file_symbols);
1081       break;
1082 
1083     case 'S':
1084       /* Static symbol at top level of file */
1085       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1086       SYMBOL_CLASS (sym) = LOC_STATIC;
1087       SYMBOL_VALUE_ADDRESS (sym) = valu;
1088 #ifdef STATIC_TRANSFORM_NAME
1089       if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1090 	{
1091 	  struct minimal_symbol *msym;
1092 	  msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1093 	  if (msym != NULL)
1094 	    {
1095 	      DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1096 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1097 	    }
1098 	}
1099 #endif
1100       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1101       add_symbol_to_list (sym, &file_symbols);
1102       break;
1103 
1104     case 't':
1105       /* Typedef */
1106       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1107 
1108       /* For a nameless type, we don't want a create a symbol, thus we
1109          did not use `sym'. Return without further processing. */
1110       if (nameless)
1111 	return NULL;
1112 
1113       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1114       SYMBOL_VALUE (sym) = valu;
1115       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1116       /* C++ vagaries: we may have a type which is derived from
1117          a base type which did not have its name defined when the
1118          derived class was output.  We fill in the derived class's
1119          base part member's name here in that case.  */
1120       if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1121 	if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1122 	     || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1123 	    && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1124 	  {
1125 	    int j;
1126 	    for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1127 	      if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1128 		TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1129 		  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1130 	  }
1131 
1132       if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1133 	{
1134 	  /* gcc-2.6 or later (when using -fvtable-thunks)
1135 	     emits a unique named type for a vtable entry.
1136 	     Some gdb code depends on that specific name. */
1137 	  extern const char vtbl_ptr_name[];
1138 
1139 	  if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1140 	       && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1141 	      || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1142 	    {
1143 	      /* If we are giving a name to a type such as "pointer to
1144 	         foo" or "function returning foo", we better not set
1145 	         the TYPE_NAME.  If the program contains "typedef char
1146 	         *caddr_t;", we don't want all variables of type char
1147 	         * to print as caddr_t.  This is not just a
1148 	         consequence of GDB's type management; PCC and GCC (at
1149 	         least through version 2.4) both output variables of
1150 	         either type char * or caddr_t with the type number
1151 	         defined in the 't' symbol for caddr_t.  If a future
1152 	         compiler cleans this up it GDB is not ready for it
1153 	         yet, but if it becomes ready we somehow need to
1154 	         disable this check (without breaking the PCC/GCC2.4
1155 	         case).
1156 
1157 	         Sigh.
1158 
1159 	         Fortunately, this check seems not to be necessary
1160 	         for anything except pointers or functions.  */
1161               /* ezannoni: 2000-10-26. This seems to apply for
1162 		 versions of gcc older than 2.8. This was the original
1163 		 problem: with the following code gdb would tell that
1164 		 the type for name1 is caddr_t, and func is char()
1165 	         typedef char *caddr_t;
1166 		 char *name2;
1167 		 struct x
1168 		 {
1169 		 char *name1;
1170 		 } xx;
1171 		 char *func()
1172 		 {
1173 		 }
1174 		 main () {}
1175 		 */
1176 
1177 	      /* Pascal accepts names for pointer types. */
1178 	      if (current_subfile->language == language_pascal)
1179 		{
1180 		  TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1181           	}
1182 	    }
1183 	  else
1184 	    TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1185 	}
1186 
1187       add_symbol_to_list (sym, &file_symbols);
1188       break;
1189 
1190     case 'T':
1191       /* Struct, union, or enum tag.  For GNU C++, this can be be followed
1192          by 't' which means we are typedef'ing it as well.  */
1193       synonym = *p == 't';
1194 
1195       if (synonym)
1196 	p++;
1197 
1198       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1199 
1200       /* For a nameless type, we don't want a create a symbol, thus we
1201          did not use `sym'. Return without further processing. */
1202       if (nameless)
1203 	return NULL;
1204 
1205       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1206       SYMBOL_VALUE (sym) = valu;
1207       SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1208       if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1209 	TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1210 	  = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1211       add_symbol_to_list (sym, &file_symbols);
1212 
1213       if (synonym)
1214 	{
1215 	  /* Clone the sym and then modify it. */
1216 	  struct symbol *typedef_sym = (struct symbol *)
1217 	  obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1218 	  *typedef_sym = *sym;
1219 	  SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1220 	  SYMBOL_VALUE (typedef_sym) = valu;
1221 	  SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1222 	  if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1223 	    TYPE_NAME (SYMBOL_TYPE (sym))
1224 	      = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1225 	  add_symbol_to_list (typedef_sym, &file_symbols);
1226 	}
1227       break;
1228 
1229     case 'V':
1230       /* Static symbol of local scope */
1231       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1232       SYMBOL_CLASS (sym) = LOC_STATIC;
1233       SYMBOL_VALUE_ADDRESS (sym) = valu;
1234 #ifdef STATIC_TRANSFORM_NAME
1235       if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1236 	{
1237 	  struct minimal_symbol *msym;
1238 	  msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1239 	  if (msym != NULL)
1240 	    {
1241 	      DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1242 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1243 	    }
1244 	}
1245 #endif
1246       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1247 	add_symbol_to_list (sym, &local_symbols);
1248       break;
1249 
1250     case 'v':
1251       /* Reference parameter */
1252       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1253       SYMBOL_CLASS (sym) = LOC_REF_ARG;
1254       SYMBOL_VALUE (sym) = valu;
1255       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1256       add_symbol_to_list (sym, &local_symbols);
1257       break;
1258 
1259     case 'a':
1260       /* Reference parameter which is in a register.  */
1261       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1262       SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1263       SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1264       if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1265 	{
1266 	  reg_value_complaint (SYMBOL_VALUE (sym),
1267 			       NUM_REGS + NUM_PSEUDO_REGS,
1268 			       SYMBOL_PRINT_NAME (sym));
1269 	  SYMBOL_VALUE (sym) = SP_REGNUM;	/* Known safe, though useless */
1270 	}
1271       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1272       add_symbol_to_list (sym, &local_symbols);
1273       break;
1274 
1275     case 'X':
1276       /* This is used by Sun FORTRAN for "function result value".
1277          Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1278          that Pascal uses it too, but when I tried it Pascal used
1279          "x:3" (local symbol) instead.  */
1280       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1281       SYMBOL_CLASS (sym) = LOC_LOCAL;
1282       SYMBOL_VALUE (sym) = valu;
1283       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1284       add_symbol_to_list (sym, &local_symbols);
1285       break;
1286 
1287     default:
1288       SYMBOL_TYPE (sym) = error_type (&p, objfile);
1289       SYMBOL_CLASS (sym) = LOC_CONST;
1290       SYMBOL_VALUE (sym) = 0;
1291       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1292       add_symbol_to_list (sym, &file_symbols);
1293       break;
1294     }
1295 
1296   /* Some systems pass variables of certain types by reference instead
1297      of by value, i.e. they will pass the address of a structure (in a
1298      register or on the stack) instead of the structure itself.  */
1299 
1300   if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1301       && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1302     {
1303       /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1304          variables passed in a register).  */
1305       if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1306 	SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1307       /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1308 	 and subsequent arguments on SPARC, for example).  */
1309       else if (SYMBOL_CLASS (sym) == LOC_ARG)
1310 	SYMBOL_CLASS (sym) = LOC_REF_ARG;
1311     }
1312 
1313   return sym;
1314 }
1315 
1316 /* Skip rest of this symbol and return an error type.
1317 
1318    General notes on error recovery:  error_type always skips to the
1319    end of the symbol (modulo cretinous dbx symbol name continuation).
1320    Thus code like this:
1321 
1322    if (*(*pp)++ != ';')
1323    return error_type (pp, objfile);
1324 
1325    is wrong because if *pp starts out pointing at '\0' (typically as the
1326    result of an earlier error), it will be incremented to point to the
1327    start of the next symbol, which might produce strange results, at least
1328    if you run off the end of the string table.  Instead use
1329 
1330    if (**pp != ';')
1331    return error_type (pp, objfile);
1332    ++*pp;
1333 
1334    or
1335 
1336    if (**pp != ';')
1337    foo = error_type (pp, objfile);
1338    else
1339    ++*pp;
1340 
1341    And in case it isn't obvious, the point of all this hair is so the compiler
1342    can define new types and new syntaxes, and old versions of the
1343    debugger will be able to read the new symbol tables.  */
1344 
1345 static struct type *
error_type(char ** pp,struct objfile * objfile)1346 error_type (char **pp, struct objfile *objfile)
1347 {
1348   complaint (&symfile_complaints, "couldn't parse type; debugger out of date?");
1349   while (1)
1350     {
1351       /* Skip to end of symbol.  */
1352       while (**pp != '\0')
1353 	{
1354 	  (*pp)++;
1355 	}
1356 
1357       /* Check for and handle cretinous dbx symbol name continuation!  */
1358       if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1359 	{
1360 	  *pp = next_symbol_text (objfile);
1361 	}
1362       else
1363 	{
1364 	  break;
1365 	}
1366     }
1367   return (builtin_type_error);
1368 }
1369 
1370 
1371 /* Read type information or a type definition; return the type.  Even
1372    though this routine accepts either type information or a type
1373    definition, the distinction is relevant--some parts of stabsread.c
1374    assume that type information starts with a digit, '-', or '(' in
1375    deciding whether to call read_type.  */
1376 
1377 static struct type *
read_type(char ** pp,struct objfile * objfile)1378 read_type (char **pp, struct objfile *objfile)
1379 {
1380   struct type *type = 0;
1381   struct type *type1;
1382   int typenums[2];
1383   char type_descriptor;
1384 
1385   /* Size in bits of type if specified by a type attribute, or -1 if
1386      there is no size attribute.  */
1387   int type_size = -1;
1388 
1389   /* Used to distinguish string and bitstring from char-array and set. */
1390   int is_string = 0;
1391 
1392   /* Used to distinguish vector from array. */
1393   int is_vector = 0;
1394 
1395   /* Read type number if present.  The type number may be omitted.
1396      for instance in a two-dimensional array declared with type
1397      "ar1;1;10;ar1;1;10;4".  */
1398   if ((**pp >= '0' && **pp <= '9')
1399       || **pp == '('
1400       || **pp == '-')
1401     {
1402       if (read_type_number (pp, typenums) != 0)
1403 	return error_type (pp, objfile);
1404 
1405       if (**pp != '=')
1406         {
1407           /* Type is not being defined here.  Either it already
1408              exists, or this is a forward reference to it.
1409              dbx_alloc_type handles both cases.  */
1410           type = dbx_alloc_type (typenums, objfile);
1411 
1412           /* If this is a forward reference, arrange to complain if it
1413              doesn't get patched up by the time we're done
1414              reading.  */
1415           if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1416             add_undefined_type (type);
1417 
1418           return type;
1419         }
1420 
1421       /* Type is being defined here.  */
1422       /* Skip the '='.
1423          Also skip the type descriptor - we get it below with (*pp)[-1].  */
1424       (*pp) += 2;
1425     }
1426   else
1427     {
1428       /* 'typenums=' not present, type is anonymous.  Read and return
1429          the definition, but don't put it in the type vector.  */
1430       typenums[0] = typenums[1] = -1;
1431       (*pp)++;
1432     }
1433 
1434 again:
1435   type_descriptor = (*pp)[-1];
1436   switch (type_descriptor)
1437     {
1438     case 'x':
1439       {
1440 	enum type_code code;
1441 
1442 	/* Used to index through file_symbols.  */
1443 	struct pending *ppt;
1444 	int i;
1445 
1446 	/* Name including "struct", etc.  */
1447 	char *type_name;
1448 
1449 	{
1450 	  char *from, *to, *p, *q1, *q2;
1451 
1452 	  /* Set the type code according to the following letter.  */
1453 	  switch ((*pp)[0])
1454 	    {
1455 	    case 's':
1456 	      code = TYPE_CODE_STRUCT;
1457 	      break;
1458 	    case 'u':
1459 	      code = TYPE_CODE_UNION;
1460 	      break;
1461 	    case 'e':
1462 	      code = TYPE_CODE_ENUM;
1463 	      break;
1464 	    default:
1465 	      {
1466 		/* Complain and keep going, so compilers can invent new
1467 		   cross-reference types.  */
1468 		complaint (&symfile_complaints,
1469 			   "Unrecognized cross-reference type `%c'", (*pp)[0]);
1470 		code = TYPE_CODE_STRUCT;
1471 		break;
1472 	      }
1473 	    }
1474 
1475 	  q1 = strchr (*pp, '<');
1476 	  p = strchr (*pp, ':');
1477 	  if (p == NULL)
1478 	    return error_type (pp, objfile);
1479 	  if (q1 && p > q1 && p[1] == ':')
1480 	    {
1481 	      int nesting_level = 0;
1482 	      for (q2 = q1; *q2; q2++)
1483 		{
1484 		  if (*q2 == '<')
1485 		    nesting_level++;
1486 		  else if (*q2 == '>')
1487 		    nesting_level--;
1488 		  else if (*q2 == ':' && nesting_level == 0)
1489 		    break;
1490 		}
1491 	      p = q2;
1492 	      if (*p != ':')
1493 		return error_type (pp, objfile);
1494 	    }
1495 	  to = type_name =
1496 	    (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1497 
1498 	  /* Copy the name.  */
1499 	  from = *pp + 1;
1500 	  while (from < p)
1501 	    *to++ = *from++;
1502 	  *to = '\0';
1503 
1504 	  /* Set the pointer ahead of the name which we just read, and
1505 	     the colon.  */
1506 	  *pp = from + 1;
1507 	}
1508 
1509         /* If this type has already been declared, then reuse the same
1510            type, rather than allocating a new one.  This saves some
1511            memory.  */
1512 
1513 	for (ppt = file_symbols; ppt; ppt = ppt->next)
1514 	  for (i = 0; i < ppt->nsyms; i++)
1515 	    {
1516 	      struct symbol *sym = ppt->symbol[i];
1517 
1518 	      if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1519 		  && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1520 		  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1521 		  && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1522 		{
1523 		  obstack_free (&objfile->objfile_obstack, type_name);
1524 		  type = SYMBOL_TYPE (sym);
1525 	          if (typenums[0] != -1)
1526 	            *dbx_lookup_type (typenums) = type;
1527 		  return type;
1528 		}
1529 	    }
1530 
1531 	/* Didn't find the type to which this refers, so we must
1532 	   be dealing with a forward reference.  Allocate a type
1533 	   structure for it, and keep track of it so we can
1534 	   fill in the rest of the fields when we get the full
1535 	   type.  */
1536 	type = dbx_alloc_type (typenums, objfile);
1537 	TYPE_CODE (type) = code;
1538 	TYPE_TAG_NAME (type) = type_name;
1539 	INIT_CPLUS_SPECIFIC (type);
1540 	TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1541 
1542 	add_undefined_type (type);
1543 	return type;
1544       }
1545 
1546     case '-':			/* RS/6000 built-in type */
1547     case '0':
1548     case '1':
1549     case '2':
1550     case '3':
1551     case '4':
1552     case '5':
1553     case '6':
1554     case '7':
1555     case '8':
1556     case '9':
1557     case '(':
1558       (*pp)--;
1559 
1560       /* We deal with something like t(1,2)=(3,4)=... which
1561          the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1562 
1563       /* Allocate and enter the typedef type first.
1564          This handles recursive types. */
1565       type = dbx_alloc_type (typenums, objfile);
1566       TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1567       {
1568 	struct type *xtype = read_type (pp, objfile);
1569 	if (type == xtype)
1570 	  {
1571 	    /* It's being defined as itself.  That means it is "void".  */
1572 	    TYPE_CODE (type) = TYPE_CODE_VOID;
1573 	    TYPE_LENGTH (type) = 1;
1574 	  }
1575 	else if (type_size >= 0 || is_string)
1576 	  {
1577 	    /* This is the absolute wrong way to construct types.  Every
1578 	       other debug format has found a way around this problem and
1579 	       the related problems with unnecessarily stubbed types;
1580 	       someone motivated should attempt to clean up the issue
1581 	       here as well.  Once a type pointed to has been created it
1582 	       should not be modified.
1583 
1584                Well, it's not *absolutely* wrong.  Constructing recursive
1585                types (trees, linked lists) necessarily entails modifying
1586                types after creating them.  Constructing any loop structure
1587                entails side effects.  The Dwarf 2 reader does handle this
1588                more gracefully (it never constructs more than once
1589                instance of a type object, so it doesn't have to copy type
1590                objects wholesale), but it still mutates type objects after
1591                other folks have references to them.
1592 
1593                Keep in mind that this circularity/mutation issue shows up
1594                at the source language level, too: C's "incomplete types",
1595                for example.  So the proper cleanup, I think, would be to
1596                limit GDB's type smashing to match exactly those required
1597                by the source language.  So GDB could have a
1598                "complete_this_type" function, but never create unnecessary
1599                copies of a type otherwise.  */
1600 	    replace_type (type, xtype);
1601 	    TYPE_NAME (type) = NULL;
1602 	    TYPE_TAG_NAME (type) = NULL;
1603 	  }
1604 	else
1605 	  {
1606 	    TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1607 	    TYPE_TARGET_TYPE (type) = xtype;
1608 	  }
1609       }
1610       break;
1611 
1612       /* In the following types, we must be sure to overwrite any existing
1613          type that the typenums refer to, rather than allocating a new one
1614          and making the typenums point to the new one.  This is because there
1615          may already be pointers to the existing type (if it had been
1616          forward-referenced), and we must change it to a pointer, function,
1617          reference, or whatever, *in-place*.  */
1618 
1619     case '*':			/* Pointer to another type */
1620       type1 = read_type (pp, objfile);
1621       type = make_pointer_type (type1, dbx_lookup_type (typenums));
1622       break;
1623 
1624     case '&':			/* Reference to another type */
1625       type1 = read_type (pp, objfile);
1626       type = make_reference_type (type1, dbx_lookup_type (typenums));
1627       break;
1628 
1629     case 'f':			/* Function returning another type */
1630       type1 = read_type (pp, objfile);
1631       type = make_function_type (type1, dbx_lookup_type (typenums));
1632       break;
1633 
1634     case 'g':                   /* Prototyped function.  (Sun)  */
1635       {
1636         /* Unresolved questions:
1637 
1638            - According to Sun's ``STABS Interface Manual'', for 'f'
1639            and 'F' symbol descriptors, a `0' in the argument type list
1640            indicates a varargs function.  But it doesn't say how 'g'
1641            type descriptors represent that info.  Someone with access
1642            to Sun's toolchain should try it out.
1643 
1644            - According to the comment in define_symbol (search for
1645            `process_prototype_types:'), Sun emits integer arguments as
1646            types which ref themselves --- like `void' types.  Do we
1647            have to deal with that here, too?  Again, someone with
1648            access to Sun's toolchain should try it out and let us
1649            know.  */
1650 
1651         const char *type_start = (*pp) - 1;
1652         struct type *return_type = read_type (pp, objfile);
1653         struct type *func_type
1654           = make_function_type (return_type, dbx_lookup_type (typenums));
1655         struct type_list {
1656           struct type *type;
1657           struct type_list *next;
1658         } *arg_types = 0;
1659         int num_args = 0;
1660 
1661         while (**pp && **pp != '#')
1662           {
1663             struct type *arg_type = read_type (pp, objfile);
1664             struct type_list *new = alloca (sizeof (*new));
1665             new->type = arg_type;
1666             new->next = arg_types;
1667             arg_types = new;
1668             num_args++;
1669           }
1670         if (**pp == '#')
1671           ++*pp;
1672         else
1673           {
1674 	    complaint (&symfile_complaints,
1675 		       "Prototyped function type didn't end arguments with `#':\n%s",
1676 		       type_start);
1677           }
1678 
1679         /* If there is just one argument whose type is `void', then
1680            that's just an empty argument list.  */
1681         if (arg_types
1682             && ! arg_types->next
1683             && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1684           num_args = 0;
1685 
1686         TYPE_FIELDS (func_type)
1687           = (struct field *) TYPE_ALLOC (func_type,
1688                                          num_args * sizeof (struct field));
1689         memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1690         {
1691           int i;
1692           struct type_list *t;
1693 
1694           /* We stuck each argument type onto the front of the list
1695              when we read it, so the list is reversed.  Build the
1696              fields array right-to-left.  */
1697           for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1698             TYPE_FIELD_TYPE (func_type, i) = t->type;
1699         }
1700         TYPE_NFIELDS (func_type) = num_args;
1701         TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1702 
1703         type = func_type;
1704         break;
1705       }
1706 
1707     case 'k':			/* Const qualifier on some type (Sun) */
1708       type = read_type (pp, objfile);
1709       type = make_cv_type (1, TYPE_VOLATILE (type), type,
1710 			   dbx_lookup_type (typenums));
1711       break;
1712 
1713     case 'B':			/* Volatile qual on some type (Sun) */
1714       type = read_type (pp, objfile);
1715       type = make_cv_type (TYPE_CONST (type), 1, type,
1716 			   dbx_lookup_type (typenums));
1717       break;
1718 
1719     case '@':
1720       if (isdigit (**pp) || **pp == '(' || **pp == '-')
1721 	{			/* Member (class & variable) type */
1722 	  /* FIXME -- we should be doing smash_to_XXX types here.  */
1723 
1724 	  struct type *domain = read_type (pp, objfile);
1725 	  struct type *memtype;
1726 
1727 	  if (**pp != ',')
1728 	    /* Invalid member type data format.  */
1729 	    return error_type (pp, objfile);
1730 	  ++*pp;
1731 
1732 	  memtype = read_type (pp, objfile);
1733 	  type = dbx_alloc_type (typenums, objfile);
1734 	  smash_to_member_type (type, domain, memtype);
1735 	}
1736       else
1737 	/* type attribute */
1738 	{
1739 	  char *attr = *pp;
1740 	  /* Skip to the semicolon.  */
1741 	  while (**pp != ';' && **pp != '\0')
1742 	    ++(*pp);
1743 	  if (**pp == '\0')
1744 	    return error_type (pp, objfile);
1745 	  else
1746 	    ++ * pp;		/* Skip the semicolon.  */
1747 
1748 	  switch (*attr)
1749 	    {
1750 	    case 's':		/* Size attribute */
1751 	      type_size = atoi (attr + 1);
1752 	      if (type_size <= 0)
1753 		type_size = -1;
1754 	      break;
1755 
1756 	    case 'S':		/* String attribute */
1757 	      /* FIXME: check to see if following type is array? */
1758 	      is_string = 1;
1759 	      break;
1760 
1761 	    case 'V':		/* Vector attribute */
1762 	      /* FIXME: check to see if following type is array? */
1763 	      is_vector = 1;
1764 	      break;
1765 
1766 	    default:
1767 	      /* Ignore unrecognized type attributes, so future compilers
1768 	         can invent new ones.  */
1769 	      break;
1770 	    }
1771 	  ++*pp;
1772 	  goto again;
1773 	}
1774       break;
1775 
1776     case '#':			/* Method (class & fn) type */
1777       if ((*pp)[0] == '#')
1778 	{
1779 	  /* We'll get the parameter types from the name.  */
1780 	  struct type *return_type;
1781 
1782 	  (*pp)++;
1783 	  return_type = read_type (pp, objfile);
1784 	  if (*(*pp)++ != ';')
1785 	    complaint (&symfile_complaints,
1786 		       "invalid (minimal) member type data format at symtab pos %d.",
1787 		       symnum);
1788 	  type = allocate_stub_method (return_type);
1789 	  if (typenums[0] != -1)
1790 	    *dbx_lookup_type (typenums) = type;
1791 	}
1792       else
1793 	{
1794 	  struct type *domain = read_type (pp, objfile);
1795 	  struct type *return_type;
1796 	  struct field *args;
1797 	  int nargs, varargs;
1798 
1799 	  if (**pp != ',')
1800 	    /* Invalid member type data format.  */
1801 	    return error_type (pp, objfile);
1802 	  else
1803 	    ++(*pp);
1804 
1805 	  return_type = read_type (pp, objfile);
1806 	  args = read_args (pp, ';', objfile, &nargs, &varargs);
1807 	  type = dbx_alloc_type (typenums, objfile);
1808 	  smash_to_method_type (type, domain, return_type, args,
1809 				nargs, varargs);
1810 	}
1811       break;
1812 
1813     case 'r':			/* Range type */
1814       type = read_range_type (pp, typenums, objfile);
1815       if (typenums[0] != -1)
1816 	*dbx_lookup_type (typenums) = type;
1817       break;
1818 
1819     case 'b':
1820 	{
1821 	  /* Sun ACC builtin int type */
1822 	  type = read_sun_builtin_type (pp, typenums, objfile);
1823 	  if (typenums[0] != -1)
1824 	    *dbx_lookup_type (typenums) = type;
1825 	}
1826       break;
1827 
1828     case 'R':			/* Sun ACC builtin float type */
1829       type = read_sun_floating_type (pp, typenums, objfile);
1830       if (typenums[0] != -1)
1831 	*dbx_lookup_type (typenums) = type;
1832       break;
1833 
1834     case 'e':			/* Enumeration type */
1835       type = dbx_alloc_type (typenums, objfile);
1836       type = read_enum_type (pp, type, objfile);
1837       if (typenums[0] != -1)
1838 	*dbx_lookup_type (typenums) = type;
1839       break;
1840 
1841     case 's':			/* Struct type */
1842     case 'u':			/* Union type */
1843       {
1844         enum type_code type_code = TYPE_CODE_UNDEF;
1845         type = dbx_alloc_type (typenums, objfile);
1846         switch (type_descriptor)
1847           {
1848           case 's':
1849             type_code = TYPE_CODE_STRUCT;
1850             break;
1851           case 'u':
1852             type_code = TYPE_CODE_UNION;
1853             break;
1854           }
1855         type = read_struct_type (pp, type, type_code, objfile);
1856         break;
1857       }
1858 
1859     case 'a':			/* Array type */
1860       if (**pp != 'r')
1861 	return error_type (pp, objfile);
1862       ++*pp;
1863 
1864       type = dbx_alloc_type (typenums, objfile);
1865       type = read_array_type (pp, type, objfile);
1866       if (is_string)
1867 	TYPE_CODE (type) = TYPE_CODE_STRING;
1868       if (is_vector)
1869 	TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1870       break;
1871 
1872     case 'S':			/* Set or bitstring  type */
1873       type1 = read_type (pp, objfile);
1874       type = create_set_type ((struct type *) NULL, type1);
1875       if (is_string)
1876 	TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1877       if (typenums[0] != -1)
1878 	*dbx_lookup_type (typenums) = type;
1879       break;
1880 
1881     default:
1882       --*pp;			/* Go back to the symbol in error */
1883       /* Particularly important if it was \0! */
1884       return error_type (pp, objfile);
1885     }
1886 
1887   if (type == 0)
1888     {
1889       warning ("GDB internal error, type is NULL in stabsread.c\n");
1890       return error_type (pp, objfile);
1891     }
1892 
1893   /* Size specified in a type attribute overrides any other size.  */
1894   if (type_size != -1)
1895     TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1896 
1897   return type;
1898 }
1899 
1900 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1901    Return the proper type node for a given builtin type number. */
1902 
1903 static struct type *
rs6000_builtin_type(int typenum)1904 rs6000_builtin_type (int typenum)
1905 {
1906   /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
1907 #define NUMBER_RECOGNIZED 34
1908   /* This includes an empty slot for type number -0.  */
1909   static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1910   struct type *rettype = NULL;
1911 
1912   if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1913     {
1914       complaint (&symfile_complaints, "Unknown builtin type %d", typenum);
1915       return builtin_type_error;
1916     }
1917   if (negative_types[-typenum] != NULL)
1918     return negative_types[-typenum];
1919 
1920 #if TARGET_CHAR_BIT != 8
1921 #error This code wrong for TARGET_CHAR_BIT not 8
1922   /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
1923      that if that ever becomes not true, the correct fix will be to
1924      make the size in the struct type to be in bits, not in units of
1925      TARGET_CHAR_BIT.  */
1926 #endif
1927 
1928   switch (-typenum)
1929     {
1930     case 1:
1931       /* The size of this and all the other types are fixed, defined
1932          by the debugging format.  If there is a type called "int" which
1933          is other than 32 bits, then it should use a new negative type
1934          number (or avoid negative type numbers for that case).
1935          See stabs.texinfo.  */
1936       rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1937       break;
1938     case 2:
1939       rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1940       break;
1941     case 3:
1942       rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1943       break;
1944     case 4:
1945       rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1946       break;
1947     case 5:
1948       rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1949 			   "unsigned char", NULL);
1950       break;
1951     case 6:
1952       rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1953       break;
1954     case 7:
1955       rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1956 			   "unsigned short", NULL);
1957       break;
1958     case 8:
1959       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1960 			   "unsigned int", NULL);
1961       break;
1962     case 9:
1963       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1964 			   "unsigned", NULL);
1965     case 10:
1966       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1967 			   "unsigned long", NULL);
1968       break;
1969     case 11:
1970       rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1971       break;
1972     case 12:
1973       /* IEEE single precision (32 bit).  */
1974       rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1975       break;
1976     case 13:
1977       /* IEEE double precision (64 bit).  */
1978       rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1979       break;
1980     case 14:
1981       /* This is an IEEE double on the RS/6000, and different machines with
1982          different sizes for "long double" should use different negative
1983          type numbers.  See stabs.texinfo.  */
1984       rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1985       break;
1986     case 15:
1987       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1988       break;
1989     case 16:
1990       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1991 			   "boolean", NULL);
1992       break;
1993     case 17:
1994       rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1995       break;
1996     case 18:
1997       rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1998       break;
1999     case 19:
2000       rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2001       break;
2002     case 20:
2003       rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2004 			   "character", NULL);
2005       break;
2006     case 21:
2007       rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2008 			   "logical*1", NULL);
2009       break;
2010     case 22:
2011       rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2012 			   "logical*2", NULL);
2013       break;
2014     case 23:
2015       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2016 			   "logical*4", NULL);
2017       break;
2018     case 24:
2019       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2020 			   "logical", NULL);
2021       break;
2022     case 25:
2023       /* Complex type consisting of two IEEE single precision values.  */
2024       rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2025       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2026 					      NULL);
2027       break;
2028     case 26:
2029       /* Complex type consisting of two IEEE double precision values.  */
2030       rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2031       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2032 					      NULL);
2033       break;
2034     case 27:
2035       rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2036       break;
2037     case 28:
2038       rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2039       break;
2040     case 29:
2041       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2042       break;
2043     case 30:
2044       rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2045       break;
2046     case 31:
2047       rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2048       break;
2049     case 32:
2050       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2051 			   "unsigned long long", NULL);
2052       break;
2053     case 33:
2054       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2055 			   "logical*8", NULL);
2056       break;
2057     case 34:
2058       rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2059       break;
2060     }
2061   negative_types[-typenum] = rettype;
2062   return rettype;
2063 }
2064 
2065 /* This page contains subroutines of read_type.  */
2066 
2067 /* Replace *OLD_NAME with the method name portion of PHYSNAME.  */
2068 
2069 static void
update_method_name_from_physname(char ** old_name,char * physname)2070 update_method_name_from_physname (char **old_name, char *physname)
2071 {
2072   char *method_name;
2073 
2074   method_name = method_name_from_physname (physname);
2075 
2076   if (method_name == NULL)
2077     {
2078       complaint (&symfile_complaints,
2079 		 "Method has bad physname %s\n", physname);
2080       return;
2081     }
2082 
2083   if (strcmp (*old_name, method_name) != 0)
2084     {
2085       xfree (*old_name);
2086       *old_name = method_name;
2087     }
2088   else
2089     xfree (method_name);
2090 }
2091 
2092 /* Read member function stabs info for C++ classes.  The form of each member
2093    function data is:
2094 
2095    NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2096 
2097    An example with two member functions is:
2098 
2099    afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2100 
2101    For the case of overloaded operators, the format is op$::*.funcs, where
2102    $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2103    name (such as `+=') and `.' marks the end of the operator name.
2104 
2105    Returns 1 for success, 0 for failure.  */
2106 
2107 static int
read_member_functions(struct field_info * fip,char ** pp,struct type * type,struct objfile * objfile)2108 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2109 		       struct objfile *objfile)
2110 {
2111   int nfn_fields = 0;
2112   int length = 0;
2113   /* Total number of member functions defined in this class.  If the class
2114      defines two `f' functions, and one `g' function, then this will have
2115      the value 3.  */
2116   int total_length = 0;
2117   int i;
2118   struct next_fnfield
2119     {
2120       struct next_fnfield *next;
2121       struct fn_field fn_field;
2122     }
2123    *sublist;
2124   struct type *look_ahead_type;
2125   struct next_fnfieldlist *new_fnlist;
2126   struct next_fnfield *new_sublist;
2127   char *main_fn_name;
2128   char *p;
2129 
2130   /* Process each list until we find something that is not a member function
2131      or find the end of the functions. */
2132 
2133   while (**pp != ';')
2134     {
2135       /* We should be positioned at the start of the function name.
2136          Scan forward to find the first ':' and if it is not the
2137          first of a "::" delimiter, then this is not a member function. */
2138       p = *pp;
2139       while (*p != ':')
2140 	{
2141 	  p++;
2142 	}
2143       if (p[1] != ':')
2144 	{
2145 	  break;
2146 	}
2147 
2148       sublist = NULL;
2149       look_ahead_type = NULL;
2150       length = 0;
2151 
2152       new_fnlist = (struct next_fnfieldlist *)
2153 	xmalloc (sizeof (struct next_fnfieldlist));
2154       make_cleanup (xfree, new_fnlist);
2155       memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2156 
2157       if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2158 	{
2159 	  /* This is a completely wierd case.  In order to stuff in the
2160 	     names that might contain colons (the usual name delimiter),
2161 	     Mike Tiemann defined a different name format which is
2162 	     signalled if the identifier is "op$".  In that case, the
2163 	     format is "op$::XXXX." where XXXX is the name.  This is
2164 	     used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
2165 	  /* This lets the user type "break operator+".
2166 	     We could just put in "+" as the name, but that wouldn't
2167 	     work for "*".  */
2168 	  static char opname[32] = "op$";
2169 	  char *o = opname + 3;
2170 
2171 	  /* Skip past '::'.  */
2172 	  *pp = p + 2;
2173 
2174 	  STABS_CONTINUE (pp, objfile);
2175 	  p = *pp;
2176 	  while (*p != '.')
2177 	    {
2178 	      *o++ = *p++;
2179 	    }
2180 	  main_fn_name = savestring (opname, o - opname);
2181 	  /* Skip past '.'  */
2182 	  *pp = p + 1;
2183 	}
2184       else
2185 	{
2186 	  main_fn_name = savestring (*pp, p - *pp);
2187 	  /* Skip past '::'.  */
2188 	  *pp = p + 2;
2189 	}
2190       new_fnlist->fn_fieldlist.name = main_fn_name;
2191 
2192       do
2193 	{
2194 	  new_sublist =
2195 	    (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2196 	  make_cleanup (xfree, new_sublist);
2197 	  memset (new_sublist, 0, sizeof (struct next_fnfield));
2198 
2199 	  /* Check for and handle cretinous dbx symbol name continuation!  */
2200 	  if (look_ahead_type == NULL)
2201 	    {
2202 	      /* Normal case. */
2203 	      STABS_CONTINUE (pp, objfile);
2204 
2205 	      new_sublist->fn_field.type = read_type (pp, objfile);
2206 	      if (**pp != ':')
2207 		{
2208 		  /* Invalid symtab info for member function.  */
2209 		  return 0;
2210 		}
2211 	    }
2212 	  else
2213 	    {
2214 	      /* g++ version 1 kludge */
2215 	      new_sublist->fn_field.type = look_ahead_type;
2216 	      look_ahead_type = NULL;
2217 	    }
2218 
2219 	  (*pp)++;
2220 	  p = *pp;
2221 	  while (*p != ';')
2222 	    {
2223 	      p++;
2224 	    }
2225 
2226 	  /* If this is just a stub, then we don't have the real name here. */
2227 
2228 	  if (TYPE_STUB (new_sublist->fn_field.type))
2229 	    {
2230 	      if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2231 		TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2232 	      new_sublist->fn_field.is_stub = 1;
2233 	    }
2234 	  new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2235 	  *pp = p + 1;
2236 
2237 	  /* Set this member function's visibility fields.  */
2238 	  switch (*(*pp)++)
2239 	    {
2240 	    case VISIBILITY_PRIVATE:
2241 	      new_sublist->fn_field.is_private = 1;
2242 	      break;
2243 	    case VISIBILITY_PROTECTED:
2244 	      new_sublist->fn_field.is_protected = 1;
2245 	      break;
2246 	    }
2247 
2248 	  STABS_CONTINUE (pp, objfile);
2249 	  switch (**pp)
2250 	    {
2251 	    case 'A':		/* Normal functions. */
2252 	      new_sublist->fn_field.is_const = 0;
2253 	      new_sublist->fn_field.is_volatile = 0;
2254 	      (*pp)++;
2255 	      break;
2256 	    case 'B':		/* `const' member functions. */
2257 	      new_sublist->fn_field.is_const = 1;
2258 	      new_sublist->fn_field.is_volatile = 0;
2259 	      (*pp)++;
2260 	      break;
2261 	    case 'C':		/* `volatile' member function. */
2262 	      new_sublist->fn_field.is_const = 0;
2263 	      new_sublist->fn_field.is_volatile = 1;
2264 	      (*pp)++;
2265 	      break;
2266 	    case 'D':		/* `const volatile' member function. */
2267 	      new_sublist->fn_field.is_const = 1;
2268 	      new_sublist->fn_field.is_volatile = 1;
2269 	      (*pp)++;
2270 	      break;
2271 	    case '*':		/* File compiled with g++ version 1 -- no info */
2272 	    case '?':
2273 	    case '.':
2274 	      break;
2275 	    default:
2276 	      complaint (&symfile_complaints,
2277 			 "const/volatile indicator missing, got '%c'", **pp);
2278 	      break;
2279 	    }
2280 
2281 	  switch (*(*pp)++)
2282 	    {
2283 	    case '*':
2284 	      {
2285 		int nbits;
2286 		/* virtual member function, followed by index.
2287 		   The sign bit is set to distinguish pointers-to-methods
2288 		   from virtual function indicies.  Since the array is
2289 		   in words, the quantity must be shifted left by 1
2290 		   on 16 bit machine, and by 2 on 32 bit machine, forcing
2291 		   the sign bit out, and usable as a valid index into
2292 		   the array.  Remove the sign bit here.  */
2293 		new_sublist->fn_field.voffset =
2294 		  (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2295 		if (nbits != 0)
2296 		  return 0;
2297 
2298 		STABS_CONTINUE (pp, objfile);
2299 		if (**pp == ';' || **pp == '\0')
2300 		  {
2301 		    /* Must be g++ version 1.  */
2302 		    new_sublist->fn_field.fcontext = 0;
2303 		  }
2304 		else
2305 		  {
2306 		    /* Figure out from whence this virtual function came.
2307 		       It may belong to virtual function table of
2308 		       one of its baseclasses.  */
2309 		    look_ahead_type = read_type (pp, objfile);
2310 		    if (**pp == ':')
2311 		      {
2312 			/* g++ version 1 overloaded methods. */
2313 		      }
2314 		    else
2315 		      {
2316 			new_sublist->fn_field.fcontext = look_ahead_type;
2317 			if (**pp != ';')
2318 			  {
2319 			    return 0;
2320 			  }
2321 			else
2322 			  {
2323 			    ++*pp;
2324 			  }
2325 			look_ahead_type = NULL;
2326 		      }
2327 		  }
2328 		break;
2329 	      }
2330 	    case '?':
2331 	      /* static member function.  */
2332 	      {
2333 		int slen = strlen (main_fn_name);
2334 
2335 		new_sublist->fn_field.voffset = VOFFSET_STATIC;
2336 
2337 		/* For static member functions, we can't tell if they
2338 		   are stubbed, as they are put out as functions, and not as
2339 		   methods.
2340 		   GCC v2 emits the fully mangled name if
2341 		   dbxout.c:flag_minimal_debug is not set, so we have to
2342 		   detect a fully mangled physname here and set is_stub
2343 		   accordingly.  Fully mangled physnames in v2 start with
2344 		   the member function name, followed by two underscores.
2345 		   GCC v3 currently always emits stubbed member functions,
2346 		   but with fully mangled physnames, which start with _Z.  */
2347 		if (!(strncmp (new_sublist->fn_field.physname,
2348 			       main_fn_name, slen) == 0
2349 		      && new_sublist->fn_field.physname[slen] == '_'
2350 		      && new_sublist->fn_field.physname[slen + 1] == '_'))
2351 		  {
2352 		    new_sublist->fn_field.is_stub = 1;
2353 		  }
2354 		break;
2355 	      }
2356 
2357 	    default:
2358 	      /* error */
2359 	      complaint (&symfile_complaints,
2360 			 "member function type missing, got '%c'", (*pp)[-1]);
2361 	      /* Fall through into normal member function.  */
2362 
2363 	    case '.':
2364 	      /* normal member function.  */
2365 	      new_sublist->fn_field.voffset = 0;
2366 	      new_sublist->fn_field.fcontext = 0;
2367 	      break;
2368 	    }
2369 
2370 	  new_sublist->next = sublist;
2371 	  sublist = new_sublist;
2372 	  length++;
2373 	  STABS_CONTINUE (pp, objfile);
2374 	}
2375       while (**pp != ';' && **pp != '\0');
2376 
2377       (*pp)++;
2378       STABS_CONTINUE (pp, objfile);
2379 
2380       /* Skip GCC 3.X member functions which are duplicates of the callable
2381 	 constructor/destructor.  */
2382       if (strcmp (main_fn_name, "__base_ctor") == 0
2383 	  || strcmp (main_fn_name, "__base_dtor") == 0
2384 	  || strcmp (main_fn_name, "__deleting_dtor") == 0)
2385 	{
2386 	  xfree (main_fn_name);
2387 	}
2388       else
2389 	{
2390 	  int has_stub = 0;
2391 	  int has_destructor = 0, has_other = 0;
2392 	  int is_v3 = 0;
2393 	  struct next_fnfield *tmp_sublist;
2394 
2395 	  /* Various versions of GCC emit various mostly-useless
2396 	     strings in the name field for special member functions.
2397 
2398 	     For stub methods, we need to defer correcting the name
2399 	     until we are ready to unstub the method, because the current
2400 	     name string is used by gdb_mangle_name.  The only stub methods
2401 	     of concern here are GNU v2 operators; other methods have their
2402 	     names correct (see caveat below).
2403 
2404 	     For non-stub methods, in GNU v3, we have a complete physname.
2405 	     Therefore we can safely correct the name now.  This primarily
2406 	     affects constructors and destructors, whose name will be
2407 	     __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
2408 	     operators will also have incorrect names; for instance,
2409 	     "operator int" will be named "operator i" (i.e. the type is
2410 	     mangled).
2411 
2412 	     For non-stub methods in GNU v2, we have no easy way to
2413 	     know if we have a complete physname or not.  For most
2414 	     methods the result depends on the platform (if CPLUS_MARKER
2415 	     can be `$' or `.', it will use minimal debug information, or
2416 	     otherwise the full physname will be included).
2417 
2418 	     Rather than dealing with this, we take a different approach.
2419 	     For v3 mangled names, we can use the full physname; for v2,
2420 	     we use cplus_demangle_opname (which is actually v2 specific),
2421 	     because the only interesting names are all operators - once again
2422 	     barring the caveat below.  Skip this process if any method in the
2423 	     group is a stub, to prevent our fouling up the workings of
2424 	     gdb_mangle_name.
2425 
2426 	     The caveat: GCC 2.95.x (and earlier?) put constructors and
2427 	     destructors in the same method group.  We need to split this
2428 	     into two groups, because they should have different names.
2429 	     So for each method group we check whether it contains both
2430 	     routines whose physname appears to be a destructor (the physnames
2431 	     for and destructors are always provided, due to quirks in v2
2432 	     mangling) and routines whose physname does not appear to be a
2433 	     destructor.  If so then we break up the list into two halves.
2434 	     Even if the constructors and destructors aren't in the same group
2435 	     the destructor will still lack the leading tilde, so that also
2436 	     needs to be fixed.
2437 
2438 	     So, to summarize what we expect and handle here:
2439 
2440 	        Given         Given          Real         Real       Action
2441 	     method name     physname      physname   method name
2442 
2443 	     __opi            [none]     __opi__3Foo  operator int    opname
2444 	                                                           [now or later]
2445 	     Foo              _._3Foo       _._3Foo      ~Foo       separate and
2446 	                                                               rename
2447 	     operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
2448 	     __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
2449 	  */
2450 
2451 	  tmp_sublist = sublist;
2452 	  while (tmp_sublist != NULL)
2453 	    {
2454 	      if (tmp_sublist->fn_field.is_stub)
2455 		has_stub = 1;
2456 	      if (tmp_sublist->fn_field.physname[0] == '_'
2457 		  && tmp_sublist->fn_field.physname[1] == 'Z')
2458 		is_v3 = 1;
2459 
2460 	      if (is_destructor_name (tmp_sublist->fn_field.physname))
2461 		has_destructor++;
2462 	      else
2463 		has_other++;
2464 
2465 	      tmp_sublist = tmp_sublist->next;
2466 	    }
2467 
2468 	  if (has_destructor && has_other)
2469 	    {
2470 	      struct next_fnfieldlist *destr_fnlist;
2471 	      struct next_fnfield *last_sublist;
2472 
2473 	      /* Create a new fn_fieldlist for the destructors.  */
2474 
2475 	      destr_fnlist = (struct next_fnfieldlist *)
2476 		xmalloc (sizeof (struct next_fnfieldlist));
2477 	      make_cleanup (xfree, destr_fnlist);
2478 	      memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2479 	      destr_fnlist->fn_fieldlist.name
2480 		= obconcat (&objfile->objfile_obstack, "", "~",
2481 			    new_fnlist->fn_fieldlist.name);
2482 
2483 	      destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2484 		obstack_alloc (&objfile->objfile_obstack,
2485 			       sizeof (struct fn_field) * has_destructor);
2486 	      memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2487 		  sizeof (struct fn_field) * has_destructor);
2488 	      tmp_sublist = sublist;
2489 	      last_sublist = NULL;
2490 	      i = 0;
2491 	      while (tmp_sublist != NULL)
2492 		{
2493 		  if (!is_destructor_name (tmp_sublist->fn_field.physname))
2494 		    {
2495 		      tmp_sublist = tmp_sublist->next;
2496 		      continue;
2497 		    }
2498 
2499 		  destr_fnlist->fn_fieldlist.fn_fields[i++]
2500 		    = tmp_sublist->fn_field;
2501 		  if (last_sublist)
2502 		    last_sublist->next = tmp_sublist->next;
2503 		  else
2504 		    sublist = tmp_sublist->next;
2505 		  last_sublist = tmp_sublist;
2506 		  tmp_sublist = tmp_sublist->next;
2507 		}
2508 
2509 	      destr_fnlist->fn_fieldlist.length = has_destructor;
2510 	      destr_fnlist->next = fip->fnlist;
2511 	      fip->fnlist = destr_fnlist;
2512 	      nfn_fields++;
2513 	      total_length += has_destructor;
2514 	      length -= has_destructor;
2515 	    }
2516 	  else if (is_v3)
2517 	    {
2518 	      /* v3 mangling prevents the use of abbreviated physnames,
2519 		 so we can do this here.  There are stubbed methods in v3
2520 		 only:
2521 		 - in -gstabs instead of -gstabs+
2522 		 - or for static methods, which are output as a function type
2523 		   instead of a method type.  */
2524 
2525 	      update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2526 						sublist->fn_field.physname);
2527 	    }
2528 	  else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2529 	    {
2530 	      new_fnlist->fn_fieldlist.name = concat ("~", main_fn_name, NULL);
2531 	      xfree (main_fn_name);
2532 	    }
2533 	  else if (!has_stub)
2534 	    {
2535 	      char dem_opname[256];
2536 	      int ret;
2537 	      ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2538 					      dem_opname, DMGL_ANSI);
2539 	      if (!ret)
2540 		ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2541 					     dem_opname, 0);
2542 	      if (ret)
2543 		new_fnlist->fn_fieldlist.name
2544 		  = obsavestring (dem_opname, strlen (dem_opname),
2545 				  &objfile->objfile_obstack);
2546 	    }
2547 
2548 	  new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2549 	    obstack_alloc (&objfile->objfile_obstack,
2550 			   sizeof (struct fn_field) * length);
2551 	  memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2552 		  sizeof (struct fn_field) * length);
2553 	  for (i = length; (i--, sublist); sublist = sublist->next)
2554 	    {
2555 	      new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2556 	    }
2557 
2558 	  new_fnlist->fn_fieldlist.length = length;
2559 	  new_fnlist->next = fip->fnlist;
2560 	  fip->fnlist = new_fnlist;
2561 	  nfn_fields++;
2562 	  total_length += length;
2563 	}
2564     }
2565 
2566   if (nfn_fields)
2567     {
2568       ALLOCATE_CPLUS_STRUCT_TYPE (type);
2569       TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2570 	TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2571       memset (TYPE_FN_FIELDLISTS (type), 0,
2572 	      sizeof (struct fn_fieldlist) * nfn_fields);
2573       TYPE_NFN_FIELDS (type) = nfn_fields;
2574       TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2575     }
2576 
2577   return 1;
2578 }
2579 
2580 /* Special GNU C++ name.
2581 
2582    Returns 1 for success, 0 for failure.  "failure" means that we can't
2583    keep parsing and it's time for error_type().  */
2584 
2585 static int
read_cpp_abbrev(struct field_info * fip,char ** pp,struct type * type,struct objfile * objfile)2586 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2587 		 struct objfile *objfile)
2588 {
2589   char *p;
2590   char *name;
2591   char cpp_abbrev;
2592   struct type *context;
2593 
2594   p = *pp;
2595   if (*++p == 'v')
2596     {
2597       name = NULL;
2598       cpp_abbrev = *++p;
2599 
2600       *pp = p + 1;
2601 
2602       /* At this point, *pp points to something like "22:23=*22...",
2603          where the type number before the ':' is the "context" and
2604          everything after is a regular type definition.  Lookup the
2605          type, find it's name, and construct the field name. */
2606 
2607       context = read_type (pp, objfile);
2608 
2609       switch (cpp_abbrev)
2610 	{
2611 	case 'f':		/* $vf -- a virtual function table pointer */
2612 	  name = type_name_no_tag (context);
2613 	  if (name == NULL)
2614 	  {
2615 		  name = "";
2616 	  }
2617 	  fip->list->field.name =
2618 	    obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2619 	  break;
2620 
2621 	case 'b':		/* $vb -- a virtual bsomethingorother */
2622 	  name = type_name_no_tag (context);
2623 	  if (name == NULL)
2624 	    {
2625 	      complaint (&symfile_complaints,
2626 			 "C++ abbreviated type name unknown at symtab pos %d",
2627 			 symnum);
2628 	      name = "FOO";
2629 	    }
2630 	  fip->list->field.name =
2631 	    obconcat (&objfile->objfile_obstack, vb_name, name, "");
2632 	  break;
2633 
2634 	default:
2635 	  invalid_cpp_abbrev_complaint (*pp);
2636 	  fip->list->field.name =
2637 	    obconcat (&objfile->objfile_obstack,
2638 		      "INVALID_CPLUSPLUS_ABBREV", "", "");
2639 	  break;
2640 	}
2641 
2642       /* At this point, *pp points to the ':'.  Skip it and read the
2643          field type. */
2644 
2645       p = ++(*pp);
2646       if (p[-1] != ':')
2647 	{
2648 	  invalid_cpp_abbrev_complaint (*pp);
2649 	  return 0;
2650 	}
2651       fip->list->field.type = read_type (pp, objfile);
2652       if (**pp == ',')
2653 	(*pp)++;		/* Skip the comma.  */
2654       else
2655 	return 0;
2656 
2657       {
2658 	int nbits;
2659 	FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
2660 	if (nbits != 0)
2661 	  return 0;
2662       }
2663       /* This field is unpacked.  */
2664       FIELD_BITSIZE (fip->list->field) = 0;
2665       fip->list->visibility = VISIBILITY_PRIVATE;
2666     }
2667   else
2668     {
2669       invalid_cpp_abbrev_complaint (*pp);
2670       /* We have no idea what syntax an unrecognized abbrev would have, so
2671          better return 0.  If we returned 1, we would need to at least advance
2672          *pp to avoid an infinite loop.  */
2673       return 0;
2674     }
2675   return 1;
2676 }
2677 
2678 static void
read_one_struct_field(struct field_info * fip,char ** pp,char * p,struct type * type,struct objfile * objfile)2679 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2680 		       struct type *type, struct objfile *objfile)
2681 {
2682   fip->list->field.name =
2683     obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2684   *pp = p + 1;
2685 
2686   /* This means we have a visibility for a field coming. */
2687   if (**pp == '/')
2688     {
2689       (*pp)++;
2690       fip->list->visibility = *(*pp)++;
2691     }
2692   else
2693     {
2694       /* normal dbx-style format, no explicit visibility */
2695       fip->list->visibility = VISIBILITY_PUBLIC;
2696     }
2697 
2698   fip->list->field.type = read_type (pp, objfile);
2699   if (**pp == ':')
2700     {
2701       p = ++(*pp);
2702 #if 0
2703       /* Possible future hook for nested types. */
2704       if (**pp == '!')
2705 	{
2706 	  fip->list->field.bitpos = (long) -2;	/* nested type */
2707 	  p = ++(*pp);
2708 	}
2709       else
2710 	...;
2711 #endif
2712       while (*p != ';')
2713 	{
2714 	  p++;
2715 	}
2716       /* Static class member.  */
2717       SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2718       *pp = p + 1;
2719       return;
2720     }
2721   else if (**pp != ',')
2722     {
2723       /* Bad structure-type format.  */
2724       stabs_general_complaint ("bad structure-type format");
2725       return;
2726     }
2727 
2728   (*pp)++;			/* Skip the comma.  */
2729 
2730   {
2731     int nbits;
2732     FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
2733     if (nbits != 0)
2734       {
2735 	stabs_general_complaint ("bad structure-type format");
2736 	return;
2737       }
2738     FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
2739     if (nbits != 0)
2740       {
2741 	stabs_general_complaint ("bad structure-type format");
2742 	return;
2743       }
2744   }
2745 
2746   if (FIELD_BITPOS (fip->list->field) == 0
2747       && FIELD_BITSIZE (fip->list->field) == 0)
2748     {
2749       /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2750          it is a field which has been optimized out.  The correct stab for
2751          this case is to use VISIBILITY_IGNORE, but that is a recent
2752          invention.  (2) It is a 0-size array.  For example
2753          union { int num; char str[0]; } foo.  Printing "<no value>" for
2754          str in "p foo" is OK, since foo.str (and thus foo.str[3])
2755          will continue to work, and a 0-size array as a whole doesn't
2756          have any contents to print.
2757 
2758          I suspect this probably could also happen with gcc -gstabs (not
2759          -gstabs+) for static fields, and perhaps other C++ extensions.
2760          Hopefully few people use -gstabs with gdb, since it is intended
2761          for dbx compatibility.  */
2762 
2763       /* Ignore this field.  */
2764       fip->list->visibility = VISIBILITY_IGNORE;
2765     }
2766   else
2767     {
2768       /* Detect an unpacked field and mark it as such.
2769          dbx gives a bit size for all fields.
2770          Note that forward refs cannot be packed,
2771          and treat enums as if they had the width of ints.  */
2772 
2773       struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2774 
2775       if (TYPE_CODE (field_type) != TYPE_CODE_INT
2776 	  && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2777 	  && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2778 	  && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2779 	{
2780 	  FIELD_BITSIZE (fip->list->field) = 0;
2781 	}
2782       if ((FIELD_BITSIZE (fip->list->field)
2783 	   == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2784 	   || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2785 	       && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2786 	  )
2787 	  &&
2788 	  FIELD_BITPOS (fip->list->field) % 8 == 0)
2789 	{
2790 	  FIELD_BITSIZE (fip->list->field) = 0;
2791 	}
2792     }
2793 }
2794 
2795 
2796 /* Read struct or class data fields.  They have the form:
2797 
2798    NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2799 
2800    At the end, we see a semicolon instead of a field.
2801 
2802    In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2803    a static field.
2804 
2805    The optional VISIBILITY is one of:
2806 
2807    '/0' (VISIBILITY_PRIVATE)
2808    '/1' (VISIBILITY_PROTECTED)
2809    '/2' (VISIBILITY_PUBLIC)
2810    '/9' (VISIBILITY_IGNORE)
2811 
2812    or nothing, for C style fields with public visibility.
2813 
2814    Returns 1 for success, 0 for failure.  */
2815 
2816 static int
read_struct_fields(struct field_info * fip,char ** pp,struct type * type,struct objfile * objfile)2817 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2818 		    struct objfile *objfile)
2819 {
2820   char *p;
2821   struct nextfield *new;
2822 
2823   /* We better set p right now, in case there are no fields at all...    */
2824 
2825   p = *pp;
2826 
2827   /* Read each data member type until we find the terminating ';' at the end of
2828      the data member list, or break for some other reason such as finding the
2829      start of the member function list. */
2830   /* Stab string for structure/union does not end with two ';' in
2831      SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2832 
2833   while (**pp != ';' && **pp != '\0')
2834     {
2835       STABS_CONTINUE (pp, objfile);
2836       /* Get space to record the next field's data.  */
2837       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2838       make_cleanup (xfree, new);
2839       memset (new, 0, sizeof (struct nextfield));
2840       new->next = fip->list;
2841       fip->list = new;
2842 
2843       /* Get the field name.  */
2844       p = *pp;
2845 
2846       /* If is starts with CPLUS_MARKER it is a special abbreviation,
2847          unless the CPLUS_MARKER is followed by an underscore, in
2848          which case it is just the name of an anonymous type, which we
2849          should handle like any other type name.  */
2850 
2851       if (is_cplus_marker (p[0]) && p[1] != '_')
2852 	{
2853 	  if (!read_cpp_abbrev (fip, pp, type, objfile))
2854 	    return 0;
2855 	  continue;
2856 	}
2857 
2858       /* Look for the ':' that separates the field name from the field
2859          values.  Data members are delimited by a single ':', while member
2860          functions are delimited by a pair of ':'s.  When we hit the member
2861          functions (if any), terminate scan loop and return. */
2862 
2863       while (*p != ':' && *p != '\0')
2864 	{
2865 	  p++;
2866 	}
2867       if (*p == '\0')
2868 	return 0;
2869 
2870       /* Check to see if we have hit the member functions yet.  */
2871       if (p[1] == ':')
2872 	{
2873 	  break;
2874 	}
2875       read_one_struct_field (fip, pp, p, type, objfile);
2876     }
2877   if (p[0] == ':' && p[1] == ':')
2878     {
2879       /* (the deleted) chill the list of fields: the last entry (at
2880          the head) is a partially constructed entry which we now
2881          scrub. */
2882       fip->list = fip->list->next;
2883     }
2884   return 1;
2885 }
2886 /* *INDENT-OFF* */
2887 /* The stabs for C++ derived classes contain baseclass information which
2888    is marked by a '!' character after the total size.  This function is
2889    called when we encounter the baseclass marker, and slurps up all the
2890    baseclass information.
2891 
2892    Immediately following the '!' marker is the number of base classes that
2893    the class is derived from, followed by information for each base class.
2894    For each base class, there are two visibility specifiers, a bit offset
2895    to the base class information within the derived class, a reference to
2896    the type for the base class, and a terminating semicolon.
2897 
2898    A typical example, with two base classes, would be "!2,020,19;0264,21;".
2899    						       ^^ ^ ^ ^  ^ ^  ^
2900 	Baseclass information marker __________________|| | | |  | |  |
2901 	Number of baseclasses __________________________| | | |  | |  |
2902 	Visibility specifiers (2) ________________________| | |  | |  |
2903 	Offset in bits from start of class _________________| |  | |  |
2904 	Type number for base class ___________________________|  | |  |
2905 	Visibility specifiers (2) _______________________________| |  |
2906 	Offset in bits from start of class ________________________|  |
2907 	Type number of base class ____________________________________|
2908 
2909   Return 1 for success, 0 for (error-type-inducing) failure.  */
2910 /* *INDENT-ON* */
2911 
2912 
2913 
2914 static int
read_baseclasses(struct field_info * fip,char ** pp,struct type * type,struct objfile * objfile)2915 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2916 		  struct objfile *objfile)
2917 {
2918   int i;
2919   struct nextfield *new;
2920 
2921   if (**pp != '!')
2922     {
2923       return 1;
2924     }
2925   else
2926     {
2927       /* Skip the '!' baseclass information marker. */
2928       (*pp)++;
2929     }
2930 
2931   ALLOCATE_CPLUS_STRUCT_TYPE (type);
2932   {
2933     int nbits;
2934     TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2935     if (nbits != 0)
2936       return 0;
2937   }
2938 
2939 #if 0
2940   /* Some stupid compilers have trouble with the following, so break
2941      it up into simpler expressions.  */
2942   TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2943     TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2944 #else
2945   {
2946     int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2947     char *pointer;
2948 
2949     pointer = (char *) TYPE_ALLOC (type, num_bytes);
2950     TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2951   }
2952 #endif /* 0 */
2953 
2954   B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2955 
2956   for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2957     {
2958       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2959       make_cleanup (xfree, new);
2960       memset (new, 0, sizeof (struct nextfield));
2961       new->next = fip->list;
2962       fip->list = new;
2963       FIELD_BITSIZE (new->field) = 0;	/* this should be an unpacked field! */
2964 
2965       STABS_CONTINUE (pp, objfile);
2966       switch (**pp)
2967 	{
2968 	case '0':
2969 	  /* Nothing to do. */
2970 	  break;
2971 	case '1':
2972 	  SET_TYPE_FIELD_VIRTUAL (type, i);
2973 	  break;
2974 	default:
2975 	  /* Unknown character.  Complain and treat it as non-virtual.  */
2976 	  {
2977 	    complaint (&symfile_complaints,
2978 		       "Unknown virtual character `%c' for baseclass", **pp);
2979 	  }
2980 	}
2981       ++(*pp);
2982 
2983       new->visibility = *(*pp)++;
2984       switch (new->visibility)
2985 	{
2986 	case VISIBILITY_PRIVATE:
2987 	case VISIBILITY_PROTECTED:
2988 	case VISIBILITY_PUBLIC:
2989 	  break;
2990 	default:
2991 	  /* Bad visibility format.  Complain and treat it as
2992 	     public.  */
2993 	  {
2994 	    complaint (&symfile_complaints,
2995 		       "Unknown visibility `%c' for baseclass",
2996 		       new->visibility);
2997 	    new->visibility = VISIBILITY_PUBLIC;
2998 	  }
2999 	}
3000 
3001       {
3002 	int nbits;
3003 
3004 	/* The remaining value is the bit offset of the portion of the object
3005 	   corresponding to this baseclass.  Always zero in the absence of
3006 	   multiple inheritance.  */
3007 
3008 	FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3009 	if (nbits != 0)
3010 	  return 0;
3011       }
3012 
3013       /* The last piece of baseclass information is the type of the
3014          base class.  Read it, and remember it's type name as this
3015          field's name. */
3016 
3017       new->field.type = read_type (pp, objfile);
3018       new->field.name = type_name_no_tag (new->field.type);
3019 
3020       /* skip trailing ';' and bump count of number of fields seen */
3021       if (**pp == ';')
3022 	(*pp)++;
3023       else
3024 	return 0;
3025     }
3026   return 1;
3027 }
3028 
3029 /* The tail end of stabs for C++ classes that contain a virtual function
3030    pointer contains a tilde, a %, and a type number.
3031    The type number refers to the base class (possibly this class itself) which
3032    contains the vtable pointer for the current class.
3033 
3034    This function is called when we have parsed all the method declarations,
3035    so we can look for the vptr base class info.  */
3036 
3037 static int
read_tilde_fields(struct field_info * fip,char ** pp,struct type * type,struct objfile * objfile)3038 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3039 		   struct objfile *objfile)
3040 {
3041   char *p;
3042 
3043   STABS_CONTINUE (pp, objfile);
3044 
3045   /* If we are positioned at a ';', then skip it. */
3046   if (**pp == ';')
3047     {
3048       (*pp)++;
3049     }
3050 
3051   if (**pp == '~')
3052     {
3053       (*pp)++;
3054 
3055       if (**pp == '=' || **pp == '+' || **pp == '-')
3056 	{
3057 	  /* Obsolete flags that used to indicate the presence
3058 	     of constructors and/or destructors. */
3059 	  (*pp)++;
3060 	}
3061 
3062       /* Read either a '%' or the final ';'.  */
3063       if (*(*pp)++ == '%')
3064 	{
3065 	  /* The next number is the type number of the base class
3066 	     (possibly our own class) which supplies the vtable for
3067 	     this class.  Parse it out, and search that class to find
3068 	     its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3069 	     and TYPE_VPTR_FIELDNO.  */
3070 
3071 	  struct type *t;
3072 	  int i;
3073 
3074 	  t = read_type (pp, objfile);
3075 	  p = (*pp)++;
3076 	  while (*p != '\0' && *p != ';')
3077 	    {
3078 	      p++;
3079 	    }
3080 	  if (*p == '\0')
3081 	    {
3082 	      /* Premature end of symbol.  */
3083 	      return 0;
3084 	    }
3085 
3086 	  TYPE_VPTR_BASETYPE (type) = t;
3087 	  if (type == t)	/* Our own class provides vtbl ptr */
3088 	    {
3089 	      for (i = TYPE_NFIELDS (t) - 1;
3090 		   i >= TYPE_N_BASECLASSES (t);
3091 		   --i)
3092 		{
3093 		  char *name = TYPE_FIELD_NAME (t, i);
3094 		  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3095 		      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3096 		    {
3097 		      TYPE_VPTR_FIELDNO (type) = i;
3098 		      goto gotit;
3099 		    }
3100 		}
3101 	      /* Virtual function table field not found.  */
3102 	      complaint (&symfile_complaints,
3103 			 "virtual function table pointer not found when defining class `%s'",
3104 			 TYPE_NAME (type));
3105 	      return 0;
3106 	    }
3107 	  else
3108 	    {
3109 	      TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3110 	    }
3111 
3112 	gotit:
3113 	  *pp = p + 1;
3114 	}
3115     }
3116   return 1;
3117 }
3118 
3119 static int
attach_fn_fields_to_type(struct field_info * fip,struct type * type)3120 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3121 {
3122   int n;
3123 
3124   for (n = TYPE_NFN_FIELDS (type);
3125        fip->fnlist != NULL;
3126        fip->fnlist = fip->fnlist->next)
3127     {
3128       --n;			/* Circumvent Sun3 compiler bug */
3129       TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3130     }
3131   return 1;
3132 }
3133 
3134 /* Create the vector of fields, and record how big it is.
3135    We need this info to record proper virtual function table information
3136    for this class's virtual functions.  */
3137 
3138 static int
attach_fields_to_type(struct field_info * fip,struct type * type,struct objfile * objfile)3139 attach_fields_to_type (struct field_info *fip, struct type *type,
3140 		       struct objfile *objfile)
3141 {
3142   int nfields = 0;
3143   int non_public_fields = 0;
3144   struct nextfield *scan;
3145 
3146   /* Count up the number of fields that we have, as well as taking note of
3147      whether or not there are any non-public fields, which requires us to
3148      allocate and build the private_field_bits and protected_field_bits
3149      bitfields. */
3150 
3151   for (scan = fip->list; scan != NULL; scan = scan->next)
3152     {
3153       nfields++;
3154       if (scan->visibility != VISIBILITY_PUBLIC)
3155 	{
3156 	  non_public_fields++;
3157 	}
3158     }
3159 
3160   /* Now we know how many fields there are, and whether or not there are any
3161      non-public fields.  Record the field count, allocate space for the
3162      array of fields, and create blank visibility bitfields if necessary. */
3163 
3164   TYPE_NFIELDS (type) = nfields;
3165   TYPE_FIELDS (type) = (struct field *)
3166     TYPE_ALLOC (type, sizeof (struct field) * nfields);
3167   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3168 
3169   if (non_public_fields)
3170     {
3171       ALLOCATE_CPLUS_STRUCT_TYPE (type);
3172 
3173       TYPE_FIELD_PRIVATE_BITS (type) =
3174 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3175       B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3176 
3177       TYPE_FIELD_PROTECTED_BITS (type) =
3178 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3179       B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3180 
3181       TYPE_FIELD_IGNORE_BITS (type) =
3182 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3183       B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3184     }
3185 
3186   /* Copy the saved-up fields into the field vector.  Start from the head
3187      of the list, adding to the tail of the field array, so that they end
3188      up in the same order in the array in which they were added to the list. */
3189 
3190   while (nfields-- > 0)
3191     {
3192       TYPE_FIELD (type, nfields) = fip->list->field;
3193       switch (fip->list->visibility)
3194 	{
3195 	case VISIBILITY_PRIVATE:
3196 	  SET_TYPE_FIELD_PRIVATE (type, nfields);
3197 	  break;
3198 
3199 	case VISIBILITY_PROTECTED:
3200 	  SET_TYPE_FIELD_PROTECTED (type, nfields);
3201 	  break;
3202 
3203 	case VISIBILITY_IGNORE:
3204 	  SET_TYPE_FIELD_IGNORE (type, nfields);
3205 	  break;
3206 
3207 	case VISIBILITY_PUBLIC:
3208 	  break;
3209 
3210 	default:
3211 	  /* Unknown visibility.  Complain and treat it as public.  */
3212 	  {
3213 	    complaint (&symfile_complaints, "Unknown visibility `%c' for field",
3214 		       fip->list->visibility);
3215 	  }
3216 	  break;
3217 	}
3218       fip->list = fip->list->next;
3219     }
3220   return 1;
3221 }
3222 
3223 
3224 /* Complain that the compiler has emitted more than one definition for the
3225    structure type TYPE.  */
3226 static void
complain_about_struct_wipeout(struct type * type)3227 complain_about_struct_wipeout (struct type *type)
3228 {
3229   char *name = "";
3230   char *kind = "";
3231 
3232   if (TYPE_TAG_NAME (type))
3233     {
3234       name = TYPE_TAG_NAME (type);
3235       switch (TYPE_CODE (type))
3236         {
3237         case TYPE_CODE_STRUCT: kind = "struct "; break;
3238         case TYPE_CODE_UNION:  kind = "union ";  break;
3239         case TYPE_CODE_ENUM:   kind = "enum ";   break;
3240         default: kind = "";
3241         }
3242     }
3243   else if (TYPE_NAME (type))
3244     {
3245       name = TYPE_NAME (type);
3246       kind = "";
3247     }
3248   else
3249     {
3250       name = "<unknown>";
3251       kind = "";
3252     }
3253 
3254   complaint (&symfile_complaints,
3255 	     "struct/union type gets multiply defined: %s%s", kind, name);
3256 }
3257 
3258 
3259 /* Read the description of a structure (or union type) and return an object
3260    describing the type.
3261 
3262    PP points to a character pointer that points to the next unconsumed token
3263    in the the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
3264    *PP will point to "4a:1,0,32;;".
3265 
3266    TYPE points to an incomplete type that needs to be filled in.
3267 
3268    OBJFILE points to the current objfile from which the stabs information is
3269    being read.  (Note that it is redundant in that TYPE also contains a pointer
3270    to this same objfile, so it might be a good idea to eliminate it.  FIXME).
3271  */
3272 
3273 static struct type *
read_struct_type(char ** pp,struct type * type,enum type_code type_code,struct objfile * objfile)3274 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3275                   struct objfile *objfile)
3276 {
3277   struct cleanup *back_to;
3278   struct field_info fi;
3279 
3280   fi.list = NULL;
3281   fi.fnlist = NULL;
3282 
3283   /* When describing struct/union/class types in stabs, G++ always drops
3284      all qualifications from the name.  So if you've got:
3285        struct A { ... struct B { ... }; ... };
3286      then G++ will emit stabs for `struct A::B' that call it simply
3287      `struct B'.  Obviously, if you've got a real top-level definition for
3288      `struct B', or other nested definitions, this is going to cause
3289      problems.
3290 
3291      Obviously, GDB can't fix this by itself, but it can at least avoid
3292      scribbling on existing structure type objects when new definitions
3293      appear.  */
3294   if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3295          || TYPE_STUB (type)))
3296     {
3297       complain_about_struct_wipeout (type);
3298 
3299       /* It's probably best to return the type unchanged.  */
3300       return type;
3301     }
3302 
3303   back_to = make_cleanup (null_cleanup, 0);
3304 
3305   INIT_CPLUS_SPECIFIC (type);
3306   TYPE_CODE (type) = type_code;
3307   TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3308 
3309   /* First comes the total size in bytes.  */
3310 
3311   {
3312     int nbits;
3313     TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
3314     if (nbits != 0)
3315       return error_type (pp, objfile);
3316   }
3317 
3318   /* Now read the baseclasses, if any, read the regular C struct or C++
3319      class member fields, attach the fields to the type, read the C++
3320      member functions, attach them to the type, and then read any tilde
3321      field (baseclass specifier for the class holding the main vtable). */
3322 
3323   if (!read_baseclasses (&fi, pp, type, objfile)
3324       || !read_struct_fields (&fi, pp, type, objfile)
3325       || !attach_fields_to_type (&fi, type, objfile)
3326       || !read_member_functions (&fi, pp, type, objfile)
3327       || !attach_fn_fields_to_type (&fi, type)
3328       || !read_tilde_fields (&fi, pp, type, objfile))
3329     {
3330       type = error_type (pp, objfile);
3331     }
3332 
3333   do_cleanups (back_to);
3334   return (type);
3335 }
3336 
3337 /* Read a definition of an array type,
3338    and create and return a suitable type object.
3339    Also creates a range type which represents the bounds of that
3340    array.  */
3341 
3342 static struct type *
read_array_type(char ** pp,struct type * type,struct objfile * objfile)3343 read_array_type (char **pp, struct type *type,
3344 		 struct objfile *objfile)
3345 {
3346   struct type *index_type, *element_type, *range_type;
3347   int lower, upper;
3348   int adjustable = 0;
3349   int nbits;
3350 
3351   /* Format of an array type:
3352      "ar<index type>;lower;upper;<array_contents_type>".
3353      OS9000: "arlower,upper;<array_contents_type>".
3354 
3355      Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3356      for these, produce a type like float[][].  */
3357 
3358     {
3359       index_type = read_type (pp, objfile);
3360       if (**pp != ';')
3361 	/* Improper format of array type decl.  */
3362 	return error_type (pp, objfile);
3363       ++*pp;
3364     }
3365 
3366   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3367     {
3368       (*pp)++;
3369       adjustable = 1;
3370     }
3371   lower = read_huge_number (pp, ';', &nbits);
3372 
3373   if (nbits != 0)
3374     return error_type (pp, objfile);
3375 
3376   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3377     {
3378       (*pp)++;
3379       adjustable = 1;
3380     }
3381   upper = read_huge_number (pp, ';', &nbits);
3382   if (nbits != 0)
3383     return error_type (pp, objfile);
3384 
3385   element_type = read_type (pp, objfile);
3386 
3387   if (adjustable)
3388     {
3389       lower = 0;
3390       upper = -1;
3391     }
3392 
3393   range_type =
3394     create_range_type ((struct type *) NULL, index_type, lower, upper);
3395   type = create_array_type (type, element_type, range_type);
3396 
3397   return type;
3398 }
3399 
3400 
3401 /* Read a definition of an enumeration type,
3402    and create and return a suitable type object.
3403    Also defines the symbols that represent the values of the type.  */
3404 
3405 static struct type *
read_enum_type(char ** pp,struct type * type,struct objfile * objfile)3406 read_enum_type (char **pp, struct type *type,
3407 		struct objfile *objfile)
3408 {
3409   char *p;
3410   char *name;
3411   long n;
3412   struct symbol *sym;
3413   int nsyms = 0;
3414   struct pending **symlist;
3415   struct pending *osyms, *syms;
3416   int o_nsyms;
3417   int nbits;
3418   int unsigned_enum = 1;
3419 
3420 #if 0
3421   /* FIXME!  The stabs produced by Sun CC merrily define things that ought
3422      to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
3423      to do?  For now, force all enum values to file scope.  */
3424   if (within_function)
3425     symlist = &local_symbols;
3426   else
3427 #endif
3428     symlist = &file_symbols;
3429   osyms = *symlist;
3430   o_nsyms = osyms ? osyms->nsyms : 0;
3431 
3432   /* The aix4 compiler emits an extra field before the enum members;
3433      my guess is it's a type of some sort.  Just ignore it.  */
3434   if (**pp == '-')
3435     {
3436       /* Skip over the type.  */
3437       while (**pp != ':')
3438 	(*pp)++;
3439 
3440       /* Skip over the colon.  */
3441       (*pp)++;
3442     }
3443 
3444   /* Read the value-names and their values.
3445      The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3446      A semicolon or comma instead of a NAME means the end.  */
3447   while (**pp && **pp != ';' && **pp != ',')
3448     {
3449       STABS_CONTINUE (pp, objfile);
3450       p = *pp;
3451       while (*p != ':')
3452 	p++;
3453       name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3454       *pp = p + 1;
3455       n = read_huge_number (pp, ',', &nbits);
3456       if (nbits != 0)
3457 	return error_type (pp, objfile);
3458 
3459       sym = (struct symbol *)
3460 	obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3461       memset (sym, 0, sizeof (struct symbol));
3462       DEPRECATED_SYMBOL_NAME (sym) = name;
3463       SYMBOL_LANGUAGE (sym) = current_subfile->language;
3464       SYMBOL_CLASS (sym) = LOC_CONST;
3465       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3466       SYMBOL_VALUE (sym) = n;
3467       if (n < 0)
3468 	unsigned_enum = 0;
3469       add_symbol_to_list (sym, symlist);
3470       nsyms++;
3471     }
3472 
3473   if (**pp == ';')
3474     (*pp)++;			/* Skip the semicolon.  */
3475 
3476   /* Now fill in the fields of the type-structure.  */
3477 
3478   TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3479   TYPE_CODE (type) = TYPE_CODE_ENUM;
3480   TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3481   if (unsigned_enum)
3482     TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3483   TYPE_NFIELDS (type) = nsyms;
3484   TYPE_FIELDS (type) = (struct field *)
3485     TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3486   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3487 
3488   /* Find the symbols for the values and put them into the type.
3489      The symbols can be found in the symlist that we put them on
3490      to cause them to be defined.  osyms contains the old value
3491      of that symlist; everything up to there was defined by us.  */
3492   /* Note that we preserve the order of the enum constants, so
3493      that in something like "enum {FOO, LAST_THING=FOO}" we print
3494      FOO, not LAST_THING.  */
3495 
3496   for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3497     {
3498       int last = syms == osyms ? o_nsyms : 0;
3499       int j = syms->nsyms;
3500       for (; --j >= last; --n)
3501 	{
3502 	  struct symbol *xsym = syms->symbol[j];
3503 	  SYMBOL_TYPE (xsym) = type;
3504 	  TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3505 	  TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3506 	  TYPE_FIELD_BITSIZE (type, n) = 0;
3507 	}
3508       if (syms == osyms)
3509 	break;
3510     }
3511 
3512   return type;
3513 }
3514 
3515 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3516    typedefs in every file (for int, long, etc):
3517 
3518    type = b <signed> <width> <format type>; <offset>; <nbits>
3519    signed = u or s.
3520    optional format type = c or b for char or boolean.
3521    offset = offset from high order bit to start bit of type.
3522    width is # bytes in object of this type, nbits is # bits in type.
3523 
3524    The width/offset stuff appears to be for small objects stored in
3525    larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
3526    FIXME.  */
3527 
3528 static struct type *
read_sun_builtin_type(char ** pp,int typenums[2],struct objfile * objfile)3529 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3530 {
3531   int type_bits;
3532   int nbits;
3533   int signed_type;
3534   enum type_code code = TYPE_CODE_INT;
3535 
3536   switch (**pp)
3537     {
3538     case 's':
3539       signed_type = 1;
3540       break;
3541     case 'u':
3542       signed_type = 0;
3543       break;
3544     default:
3545       return error_type (pp, objfile);
3546     }
3547   (*pp)++;
3548 
3549   /* For some odd reason, all forms of char put a c here.  This is strange
3550      because no other type has this honor.  We can safely ignore this because
3551      we actually determine 'char'acterness by the number of bits specified in
3552      the descriptor.
3553      Boolean forms, e.g Fortran logical*X, put a b here.  */
3554 
3555   if (**pp == 'c')
3556     (*pp)++;
3557   else if (**pp == 'b')
3558     {
3559       code = TYPE_CODE_BOOL;
3560       (*pp)++;
3561     }
3562 
3563   /* The first number appears to be the number of bytes occupied
3564      by this type, except that unsigned short is 4 instead of 2.
3565      Since this information is redundant with the third number,
3566      we will ignore it.  */
3567   read_huge_number (pp, ';', &nbits);
3568   if (nbits != 0)
3569     return error_type (pp, objfile);
3570 
3571   /* The second number is always 0, so ignore it too. */
3572   read_huge_number (pp, ';', &nbits);
3573   if (nbits != 0)
3574     return error_type (pp, objfile);
3575 
3576   /* The third number is the number of bits for this type. */
3577   type_bits = read_huge_number (pp, 0, &nbits);
3578   if (nbits != 0)
3579     return error_type (pp, objfile);
3580   /* The type *should* end with a semicolon.  If it are embedded
3581      in a larger type the semicolon may be the only way to know where
3582      the type ends.  If this type is at the end of the stabstring we
3583      can deal with the omitted semicolon (but we don't have to like
3584      it).  Don't bother to complain(), Sun's compiler omits the semicolon
3585      for "void".  */
3586   if (**pp == ';')
3587     ++(*pp);
3588 
3589   if (type_bits == 0)
3590     return init_type (TYPE_CODE_VOID, 1,
3591 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3592 		      objfile);
3593   else
3594     return init_type (code,
3595 		      type_bits / TARGET_CHAR_BIT,
3596 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3597 		      objfile);
3598 }
3599 
3600 static struct type *
read_sun_floating_type(char ** pp,int typenums[2],struct objfile * objfile)3601 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3602 {
3603   int nbits;
3604   int details;
3605   int nbytes;
3606   struct type *rettype;
3607 
3608   /* The first number has more details about the type, for example
3609      FN_COMPLEX.  */
3610   details = read_huge_number (pp, ';', &nbits);
3611   if (nbits != 0)
3612     return error_type (pp, objfile);
3613 
3614   /* The second number is the number of bytes occupied by this type */
3615   nbytes = read_huge_number (pp, ';', &nbits);
3616   if (nbits != 0)
3617     return error_type (pp, objfile);
3618 
3619   if (details == NF_COMPLEX || details == NF_COMPLEX16
3620       || details == NF_COMPLEX32)
3621     {
3622       rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3623       TYPE_TARGET_TYPE (rettype)
3624 	= init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3625       return rettype;
3626     }
3627 
3628   return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3629 }
3630 
3631 /* Read a number from the string pointed to by *PP.
3632    The value of *PP is advanced over the number.
3633    If END is nonzero, the character that ends the
3634    number must match END, or an error happens;
3635    and that character is skipped if it does match.
3636    If END is zero, *PP is left pointing to that character.
3637 
3638    If the number fits in a long, set *BITS to 0 and return the value.
3639    If not, set *BITS to be the number of bits in the number and return 0.
3640 
3641    If encounter garbage, set *BITS to -1 and return 0.  */
3642 
3643 static long
read_huge_number(char ** pp,int end,int * bits)3644 read_huge_number (char **pp, int end, int *bits)
3645 {
3646   char *p = *pp;
3647   int sign = 1;
3648   long n = 0;
3649   int radix = 10;
3650   char overflow = 0;
3651   int nbits = 0;
3652   int c;
3653   long upper_limit;
3654 
3655   if (*p == '-')
3656     {
3657       sign = -1;
3658       p++;
3659     }
3660 
3661   /* Leading zero means octal.  GCC uses this to output values larger
3662      than an int (because that would be hard in decimal).  */
3663   if (*p == '0')
3664     {
3665       radix = 8;
3666       p++;
3667     }
3668 
3669   upper_limit = LONG_MAX / radix;
3670 
3671   while ((c = *p++) >= '0' && c < ('0' + radix))
3672     {
3673       if (n <= upper_limit)
3674 	{
3675 	  n *= radix;
3676 	  n += c - '0';		/* FIXME this overflows anyway */
3677 	}
3678       else
3679 	overflow = 1;
3680 
3681       /* This depends on large values being output in octal, which is
3682          what GCC does. */
3683       if (radix == 8)
3684 	{
3685 	  if (nbits == 0)
3686 	    {
3687 	      if (c == '0')
3688 		/* Ignore leading zeroes.  */
3689 		;
3690 	      else if (c == '1')
3691 		nbits = 1;
3692 	      else if (c == '2' || c == '3')
3693 		nbits = 2;
3694 	      else
3695 		nbits = 3;
3696 	    }
3697 	  else
3698 	    nbits += 3;
3699 	}
3700     }
3701   if (end)
3702     {
3703       if (c && c != end)
3704 	{
3705 	  if (bits != NULL)
3706 	    *bits = -1;
3707 	  return 0;
3708 	}
3709     }
3710   else
3711     --p;
3712 
3713   *pp = p;
3714   if (overflow)
3715     {
3716       if (nbits == 0)
3717 	{
3718 	  /* Large decimal constants are an error (because it is hard to
3719 	     count how many bits are in them).  */
3720 	  if (bits != NULL)
3721 	    *bits = -1;
3722 	  return 0;
3723 	}
3724 
3725       /* -0x7f is the same as 0x80.  So deal with it by adding one to
3726          the number of bits.  */
3727       if (sign == -1)
3728 	++nbits;
3729       if (bits)
3730 	*bits = nbits;
3731     }
3732   else
3733     {
3734       if (bits)
3735 	*bits = 0;
3736       return n * sign;
3737     }
3738   /* It's *BITS which has the interesting information.  */
3739   return 0;
3740 }
3741 
3742 static struct type *
read_range_type(char ** pp,int typenums[2],struct objfile * objfile)3743 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
3744 {
3745   char *orig_pp = *pp;
3746   int rangenums[2];
3747   long n2, n3;
3748   int n2bits, n3bits;
3749   int self_subrange;
3750   struct type *result_type;
3751   struct type *index_type = NULL;
3752 
3753   /* First comes a type we are a subrange of.
3754      In C it is usually 0, 1 or the type being defined.  */
3755   if (read_type_number (pp, rangenums) != 0)
3756     return error_type (pp, objfile);
3757   self_subrange = (rangenums[0] == typenums[0] &&
3758 		   rangenums[1] == typenums[1]);
3759 
3760   if (**pp == '=')
3761     {
3762       *pp = orig_pp;
3763       index_type = read_type (pp, objfile);
3764     }
3765 
3766   /* A semicolon should now follow; skip it.  */
3767   if (**pp == ';')
3768     (*pp)++;
3769 
3770   /* The remaining two operands are usually lower and upper bounds
3771      of the range.  But in some special cases they mean something else.  */
3772   n2 = read_huge_number (pp, ';', &n2bits);
3773   n3 = read_huge_number (pp, ';', &n3bits);
3774 
3775   if (n2bits == -1 || n3bits == -1)
3776     return error_type (pp, objfile);
3777 
3778   if (index_type)
3779     goto handle_true_range;
3780 
3781   /* If limits are huge, must be large integral type.  */
3782   if (n2bits != 0 || n3bits != 0)
3783     {
3784       char got_signed = 0;
3785       char got_unsigned = 0;
3786       /* Number of bits in the type.  */
3787       int nbits = 0;
3788 
3789       /* Range from 0 to <large number> is an unsigned large integral type.  */
3790       if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3791 	{
3792 	  got_unsigned = 1;
3793 	  nbits = n3bits;
3794 	}
3795       /* Range from <large number> to <large number>-1 is a large signed
3796          integral type.  Take care of the case where <large number> doesn't
3797          fit in a long but <large number>-1 does.  */
3798       else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3799 	       || (n2bits != 0 && n3bits == 0
3800 		   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3801 		   && n3 == LONG_MAX))
3802 	{
3803 	  got_signed = 1;
3804 	  nbits = n2bits;
3805 	}
3806 
3807       if (got_signed || got_unsigned)
3808 	{
3809 	  return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3810 			    got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3811 			    objfile);
3812 	}
3813       else
3814 	return error_type (pp, objfile);
3815     }
3816 
3817   /* A type defined as a subrange of itself, with bounds both 0, is void.  */
3818   if (self_subrange && n2 == 0 && n3 == 0)
3819     return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3820 
3821   /* If n3 is zero and n2 is positive, we want a floating type, and n2
3822      is the width in bytes.
3823 
3824      Fortran programs appear to use this for complex types also.  To
3825      distinguish between floats and complex, g77 (and others?)  seem
3826      to use self-subranges for the complexes, and subranges of int for
3827      the floats.
3828 
3829      Also note that for complexes, g77 sets n2 to the size of one of
3830      the member floats, not the whole complex beast.  My guess is that
3831      this was to work well with pre-COMPLEX versions of gdb. */
3832 
3833   if (n3 == 0 && n2 > 0)
3834     {
3835       struct type *float_type
3836 	= init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3837 
3838       if (self_subrange)
3839 	{
3840 	  struct type *complex_type =
3841 	    init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3842 	  TYPE_TARGET_TYPE (complex_type) = float_type;
3843 	  return complex_type;
3844 	}
3845       else
3846 	return float_type;
3847     }
3848 
3849   /* If the upper bound is -1, it must really be an unsigned int.  */
3850 
3851   else if (n2 == 0 && n3 == -1)
3852     {
3853       /* It is unsigned int or unsigned long.  */
3854       /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3855          compatibility hack.  */
3856       return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3857 			TYPE_FLAG_UNSIGNED, NULL, objfile);
3858     }
3859 
3860   /* Special case: char is defined (Who knows why) as a subrange of
3861      itself with range 0-127.  */
3862   else if (self_subrange && n2 == 0 && n3 == 127)
3863     return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3864 
3865   /* We used to do this only for subrange of self or subrange of int.  */
3866   else if (n2 == 0)
3867     {
3868       /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3869          "unsigned long", and we already checked for that,
3870          so don't need to test for it here.  */
3871 
3872       if (n3 < 0)
3873 	/* n3 actually gives the size.  */
3874 	return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3875 			  NULL, objfile);
3876 
3877       /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
3878          unsigned n-byte integer.  But do require n to be a power of
3879          two; we don't want 3- and 5-byte integers flying around.  */
3880       {
3881 	int bytes;
3882 	unsigned long bits;
3883 
3884 	bits = n3;
3885 	for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3886 	  bits >>= 8;
3887 	if (bits == 0
3888 	    && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3889 	  return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3890 			    objfile);
3891       }
3892     }
3893   /* I think this is for Convex "long long".  Since I don't know whether
3894      Convex sets self_subrange, I also accept that particular size regardless
3895      of self_subrange.  */
3896   else if (n3 == 0 && n2 < 0
3897 	   && (self_subrange
3898 	       || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3899     return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3900   else if (n2 == -n3 - 1)
3901     {
3902       if (n3 == 0x7f)
3903 	return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3904       if (n3 == 0x7fff)
3905 	return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3906       if (n3 == 0x7fffffff)
3907 	return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3908     }
3909 
3910   /* We have a real range type on our hands.  Allocate space and
3911      return a real pointer.  */
3912 handle_true_range:
3913 
3914   if (self_subrange)
3915     index_type = builtin_type_int;
3916   else
3917     index_type = *dbx_lookup_type (rangenums);
3918   if (index_type == NULL)
3919     {
3920       /* Does this actually ever happen?  Is that why we are worrying
3921          about dealing with it rather than just calling error_type?  */
3922 
3923       static struct type *range_type_index;
3924 
3925       complaint (&symfile_complaints,
3926 		 "base type %d of range type is not defined", rangenums[1]);
3927       if (range_type_index == NULL)
3928 	range_type_index =
3929 	  init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3930 		     0, "range type index type", NULL);
3931       index_type = range_type_index;
3932     }
3933 
3934   result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3935   return (result_type);
3936 }
3937 
3938 /* Read in an argument list.  This is a list of types, separated by commas
3939    and terminated with END.  Return the list of types read in, or (struct type
3940    **)-1 if there is an error.  */
3941 
3942 static struct field *
read_args(char ** pp,int end,struct objfile * objfile,int * nargsp,int * varargsp)3943 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
3944 	   int *varargsp)
3945 {
3946   /* FIXME!  Remove this arbitrary limit!  */
3947   struct type *types[1024];	/* allow for fns of 1023 parameters */
3948   int n = 0, i;
3949   struct field *rval;
3950 
3951   while (**pp != end)
3952     {
3953       if (**pp != ',')
3954 	/* Invalid argument list: no ','.  */
3955 	return (struct field *) -1;
3956       (*pp)++;
3957       STABS_CONTINUE (pp, objfile);
3958       types[n++] = read_type (pp, objfile);
3959     }
3960   (*pp)++;			/* get past `end' (the ':' character) */
3961 
3962   if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
3963     *varargsp = 1;
3964   else
3965     {
3966       n--;
3967       *varargsp = 0;
3968     }
3969 
3970   rval = (struct field *) xmalloc (n * sizeof (struct field));
3971   memset (rval, 0, n * sizeof (struct field));
3972   for (i = 0; i < n; i++)
3973     rval[i].type = types[i];
3974   *nargsp = n;
3975   return rval;
3976 }
3977 
3978 /* Common block handling.  */
3979 
3980 /* List of symbols declared since the last BCOMM.  This list is a tail
3981    of local_symbols.  When ECOMM is seen, the symbols on the list
3982    are noted so their proper addresses can be filled in later,
3983    using the common block base address gotten from the assembler
3984    stabs.  */
3985 
3986 static struct pending *common_block;
3987 static int common_block_i;
3988 
3989 /* Name of the current common block.  We get it from the BCOMM instead of the
3990    ECOMM to match IBM documentation (even though IBM puts the name both places
3991    like everyone else).  */
3992 static char *common_block_name;
3993 
3994 /* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
3995    to remain after this function returns.  */
3996 
3997 void
common_block_start(char * name,struct objfile * objfile)3998 common_block_start (char *name, struct objfile *objfile)
3999 {
4000   if (common_block_name != NULL)
4001     {
4002       complaint (&symfile_complaints,
4003 		 "Invalid symbol data: common block within common block");
4004     }
4005   common_block = local_symbols;
4006   common_block_i = local_symbols ? local_symbols->nsyms : 0;
4007   common_block_name = obsavestring (name, strlen (name),
4008 				    &objfile->objfile_obstack);
4009 }
4010 
4011 /* Process a N_ECOMM symbol.  */
4012 
4013 void
common_block_end(struct objfile * objfile)4014 common_block_end (struct objfile *objfile)
4015 {
4016   /* Symbols declared since the BCOMM are to have the common block
4017      start address added in when we know it.  common_block and
4018      common_block_i point to the first symbol after the BCOMM in
4019      the local_symbols list; copy the list and hang it off the
4020      symbol for the common block name for later fixup.  */
4021   int i;
4022   struct symbol *sym;
4023   struct pending *new = 0;
4024   struct pending *next;
4025   int j;
4026 
4027   if (common_block_name == NULL)
4028     {
4029       complaint (&symfile_complaints, "ECOMM symbol unmatched by BCOMM");
4030       return;
4031     }
4032 
4033   sym = (struct symbol *)
4034     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4035   memset (sym, 0, sizeof (struct symbol));
4036   /* Note: common_block_name already saved on objfile_obstack */
4037   DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4038   SYMBOL_CLASS (sym) = LOC_BLOCK;
4039 
4040   /* Now we copy all the symbols which have been defined since the BCOMM.  */
4041 
4042   /* Copy all the struct pendings before common_block.  */
4043   for (next = local_symbols;
4044        next != NULL && next != common_block;
4045        next = next->next)
4046     {
4047       for (j = 0; j < next->nsyms; j++)
4048 	add_symbol_to_list (next->symbol[j], &new);
4049     }
4050 
4051   /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
4052      NULL, it means copy all the local symbols (which we already did
4053      above).  */
4054 
4055   if (common_block != NULL)
4056     for (j = common_block_i; j < common_block->nsyms; j++)
4057       add_symbol_to_list (common_block->symbol[j], &new);
4058 
4059   SYMBOL_TYPE (sym) = (struct type *) new;
4060 
4061   /* Should we be putting local_symbols back to what it was?
4062      Does it matter?  */
4063 
4064   i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4065   SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4066   global_sym_chain[i] = sym;
4067   common_block_name = NULL;
4068 }
4069 
4070 /* Add a common block's start address to the offset of each symbol
4071    declared to be in it (by being between a BCOMM/ECOMM pair that uses
4072    the common block name).  */
4073 
4074 static void
fix_common_block(struct symbol * sym,int valu)4075 fix_common_block (struct symbol *sym, int valu)
4076 {
4077   struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4078   for (; next; next = next->next)
4079     {
4080       int j;
4081       for (j = next->nsyms - 1; j >= 0; j--)
4082 	SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4083     }
4084 }
4085 
4086 
4087 
4088 /* What about types defined as forward references inside of a small lexical
4089    scope?  */
4090 /* Add a type to the list of undefined types to be checked through
4091    once this file has been read in.  */
4092 
4093 static void
add_undefined_type(struct type * type)4094 add_undefined_type (struct type *type)
4095 {
4096   if (undef_types_length == undef_types_allocated)
4097     {
4098       undef_types_allocated *= 2;
4099       undef_types = (struct type **)
4100 	xrealloc ((char *) undef_types,
4101 		  undef_types_allocated * sizeof (struct type *));
4102     }
4103   undef_types[undef_types_length++] = type;
4104 }
4105 
4106 /* Go through each undefined type, see if it's still undefined, and fix it
4107    up if possible.  We have two kinds of undefined types:
4108 
4109    TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
4110    Fix:  update array length using the element bounds
4111    and the target type's length.
4112    TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
4113    yet defined at the time a pointer to it was made.
4114    Fix:  Do a full lookup on the struct/union tag.  */
4115 void
cleanup_undefined_types(void)4116 cleanup_undefined_types (void)
4117 {
4118   struct type **type;
4119 
4120   for (type = undef_types; type < undef_types + undef_types_length; type++)
4121     {
4122       switch (TYPE_CODE (*type))
4123 	{
4124 
4125 	case TYPE_CODE_STRUCT:
4126 	case TYPE_CODE_UNION:
4127 	case TYPE_CODE_ENUM:
4128 	  {
4129 	    /* Check if it has been defined since.  Need to do this here
4130 	       as well as in check_typedef to deal with the (legitimate in
4131 	       C though not C++) case of several types with the same name
4132 	       in different source files.  */
4133 	    if (TYPE_STUB (*type))
4134 	      {
4135 		struct pending *ppt;
4136 		int i;
4137 		/* Name of the type, without "struct" or "union" */
4138 		char *typename = TYPE_TAG_NAME (*type);
4139 
4140 		if (typename == NULL)
4141 		  {
4142 		    complaint (&symfile_complaints, "need a type name");
4143 		    break;
4144 		  }
4145 		for (ppt = file_symbols; ppt; ppt = ppt->next)
4146 		  {
4147 		    for (i = 0; i < ppt->nsyms; i++)
4148 		      {
4149 			struct symbol *sym = ppt->symbol[i];
4150 
4151 			if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4152 			    && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4153 			    && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4154 				TYPE_CODE (*type))
4155 			    && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4156                           replace_type (*type, SYMBOL_TYPE (sym));
4157 		      }
4158 		  }
4159 	      }
4160 	  }
4161 	  break;
4162 
4163 	default:
4164 	  {
4165 	    complaint (&symfile_complaints,
4166 		       "forward-referenced types left unresolved, "
4167                        "type code %d.",
4168 		       TYPE_CODE (*type));
4169 	  }
4170 	  break;
4171 	}
4172     }
4173 
4174   undef_types_length = 0;
4175 }
4176 
4177 /* Scan through all of the global symbols defined in the object file,
4178    assigning values to the debugging symbols that need to be assigned
4179    to.  Get these symbols from the minimal symbol table.  */
4180 
4181 void
scan_file_globals(struct objfile * objfile)4182 scan_file_globals (struct objfile *objfile)
4183 {
4184   int hash;
4185   struct minimal_symbol *msymbol;
4186   struct symbol *sym, *prev;
4187   struct objfile *resolve_objfile;
4188 
4189   /* SVR4 based linkers copy referenced global symbols from shared
4190      libraries to the main executable.
4191      If we are scanning the symbols for a shared library, try to resolve
4192      them from the minimal symbols of the main executable first.  */
4193 
4194   if (symfile_objfile && objfile != symfile_objfile)
4195     resolve_objfile = symfile_objfile;
4196   else
4197     resolve_objfile = objfile;
4198 
4199   while (1)
4200     {
4201       /* Avoid expensive loop through all minimal symbols if there are
4202          no unresolved symbols.  */
4203       for (hash = 0; hash < HASHSIZE; hash++)
4204 	{
4205 	  if (global_sym_chain[hash])
4206 	    break;
4207 	}
4208       if (hash >= HASHSIZE)
4209 	return;
4210 
4211       for (msymbol = resolve_objfile->msymbols;
4212 	   msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4213 	   msymbol++)
4214 	{
4215 	  QUIT;
4216 
4217 	  /* Skip static symbols.  */
4218 	  switch (MSYMBOL_TYPE (msymbol))
4219 	    {
4220 	    case mst_file_text:
4221 	    case mst_file_data:
4222 	    case mst_file_bss:
4223 	      continue;
4224 	    default:
4225 	      break;
4226 	    }
4227 
4228 	  prev = NULL;
4229 
4230 	  /* Get the hash index and check all the symbols
4231 	     under that hash index. */
4232 
4233 	  hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4234 
4235 	  for (sym = global_sym_chain[hash]; sym;)
4236 	    {
4237 	      if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4238 		  strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4239 		{
4240 		  /* Splice this symbol out of the hash chain and
4241 		     assign the value we have to it. */
4242 		  if (prev)
4243 		    {
4244 		      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4245 		    }
4246 		  else
4247 		    {
4248 		      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4249 		    }
4250 
4251 		  /* Check to see whether we need to fix up a common block.  */
4252 		  /* Note: this code might be executed several times for
4253 		     the same symbol if there are multiple references.  */
4254 		  if (sym)
4255 		    {
4256 		      if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4257 			{
4258 			  fix_common_block (sym,
4259 					    SYMBOL_VALUE_ADDRESS (msymbol));
4260 			}
4261 		      else
4262 			{
4263 			  SYMBOL_VALUE_ADDRESS (sym)
4264 			    = SYMBOL_VALUE_ADDRESS (msymbol);
4265 			}
4266 		      SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4267 		    }
4268 
4269 		  if (prev)
4270 		    {
4271 		      sym = SYMBOL_VALUE_CHAIN (prev);
4272 		    }
4273 		  else
4274 		    {
4275 		      sym = global_sym_chain[hash];
4276 		    }
4277 		}
4278 	      else
4279 		{
4280 		  prev = sym;
4281 		  sym = SYMBOL_VALUE_CHAIN (sym);
4282 		}
4283 	    }
4284 	}
4285       if (resolve_objfile == objfile)
4286 	break;
4287       resolve_objfile = objfile;
4288     }
4289 
4290   /* Change the storage class of any remaining unresolved globals to
4291      LOC_UNRESOLVED and remove them from the chain.  */
4292   for (hash = 0; hash < HASHSIZE; hash++)
4293     {
4294       sym = global_sym_chain[hash];
4295       while (sym)
4296 	{
4297 	  prev = sym;
4298 	  sym = SYMBOL_VALUE_CHAIN (sym);
4299 
4300 	  /* Change the symbol address from the misleading chain value
4301 	     to address zero.  */
4302 	  SYMBOL_VALUE_ADDRESS (prev) = 0;
4303 
4304 	  /* Complain about unresolved common block symbols.  */
4305 	  if (SYMBOL_CLASS (prev) == LOC_STATIC)
4306 	    SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4307 	  else
4308 	    complaint (&symfile_complaints,
4309 		       "%s: common block `%s' from global_sym_chain unresolved",
4310 		       objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4311 	}
4312     }
4313   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4314 }
4315 
4316 /* Initialize anything that needs initializing when starting to read
4317    a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4318    to a psymtab.  */
4319 
4320 void
stabsread_init(void)4321 stabsread_init (void)
4322 {
4323 }
4324 
4325 /* Initialize anything that needs initializing when a completely new
4326    symbol file is specified (not just adding some symbols from another
4327    file, e.g. a shared library).  */
4328 
4329 void
stabsread_new_init(void)4330 stabsread_new_init (void)
4331 {
4332   /* Empty the hash table of global syms looking for values.  */
4333   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4334 }
4335 
4336 /* Initialize anything that needs initializing at the same time as
4337    start_symtab() is called. */
4338 
4339 void
start_stabs(void)4340 start_stabs (void)
4341 {
4342   global_stabs = NULL;		/* AIX COFF */
4343   /* Leave FILENUM of 0 free for builtin types and this file's types.  */
4344   n_this_object_header_files = 1;
4345   type_vector_length = 0;
4346   type_vector = (struct type **) 0;
4347 
4348   /* FIXME: If common_block_name is not already NULL, we should complain().  */
4349   common_block_name = NULL;
4350 }
4351 
4352 /* Call after end_symtab() */
4353 
4354 void
end_stabs(void)4355 end_stabs (void)
4356 {
4357   if (type_vector)
4358     {
4359       xfree (type_vector);
4360     }
4361   type_vector = 0;
4362   type_vector_length = 0;
4363   previous_stab_code = 0;
4364 }
4365 
4366 void
finish_global_stabs(struct objfile * objfile)4367 finish_global_stabs (struct objfile *objfile)
4368 {
4369   if (global_stabs)
4370     {
4371       patch_block_stabs (global_symbols, global_stabs, objfile);
4372       xfree (global_stabs);
4373       global_stabs = NULL;
4374     }
4375 }
4376 
4377 /* Find the end of the name, delimited by a ':', but don't match
4378    ObjC symbols which look like -[Foo bar::]:bla.  */
4379 static char *
find_name_end(char * name)4380 find_name_end (char *name)
4381 {
4382   char *s = name;
4383   if (s[0] == '-' || *s == '+')
4384     {
4385       /* Must be an ObjC method symbol.  */
4386       if (s[1] != '[')
4387 	{
4388 	  error ("invalid symbol name \"%s\"", name);
4389 	}
4390       s = strchr (s, ']');
4391       if (s == NULL)
4392 	{
4393 	  error ("invalid symbol name \"%s\"", name);
4394 	}
4395       return strchr (s, ':');
4396     }
4397   else
4398     {
4399       return strchr (s, ':');
4400     }
4401 }
4402 
4403 /* Initializer for this module */
4404 
4405 void
_initialize_stabsread(void)4406 _initialize_stabsread (void)
4407 {
4408   undef_types_allocated = 20;
4409   undef_types_length = 0;
4410   undef_types = (struct type **)
4411     xmalloc (undef_types_allocated * sizeof (struct type *));
4412 }
4413