xref: /openbsd/sys/dev/pci/if_stge.c (revision 0f9891f1)
1 /*	$OpenBSD: if_stge.c,v 1.74 2024/05/24 06:02:57 jsg Exp $	*/
2 /*	$NetBSD: if_stge.c,v 1.27 2005/05/16 21:35:32 bouyer Exp $	*/
3 
4 /*-
5  * Copyright (c) 2001 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Device driver for the Sundance Tech. TC9021 10/100/1000
35  * Ethernet controller.
36  */
37 
38 #include "bpfilter.h"
39 #include "vlan.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/timeout.h>
44 #include <sys/mbuf.h>
45 #include <sys/ioctl.h>
46 #include <sys/errno.h>
47 #include <sys/device.h>
48 #include <sys/queue.h>
49 
50 #include <net/if.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/if_ether.h>
54 
55 #include <net/if_media.h>
56 
57 #if NBPFILTER > 0
58 #include <net/bpf.h>
59 #endif
60 
61 #include <machine/bus.h>
62 #include <machine/intr.h>
63 
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stgereg.h>
72 
73 void	stge_start(struct ifnet *);
74 void	stge_watchdog(struct ifnet *);
75 int	stge_ioctl(struct ifnet *, u_long, caddr_t);
76 int	stge_init(struct ifnet *);
77 void	stge_stop(struct ifnet *, int);
78 
79 void	stge_reset(struct stge_softc *);
80 void	stge_rxdrain(struct stge_softc *);
81 int	stge_add_rxbuf(struct stge_softc *, int);
82 void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
83 void	stge_tick(void *);
84 
85 void	stge_stats_update(struct stge_softc *);
86 
87 void	stge_iff(struct stge_softc *);
88 
89 int	stge_intr(void *);
90 void	stge_txintr(struct stge_softc *);
91 void	stge_rxintr(struct stge_softc *);
92 
93 int	stge_mii_readreg(struct device *, int, int);
94 void	stge_mii_writereg(struct device *, int, int, int);
95 void	stge_mii_statchg(struct device *);
96 
97 int	stge_mediachange(struct ifnet *);
98 void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
99 
100 int	stge_match(struct device *, void *, void *);
101 void	stge_attach(struct device *, struct device *, void *);
102 
103 int	stge_copy_small = 0;
104 
105 const struct cfattach stge_ca = {
106 	sizeof(struct stge_softc), stge_match, stge_attach,
107 };
108 
109 struct cfdriver stge_cd = {
110 	NULL, "stge", DV_IFNET
111 };
112 
113 uint32_t stge_mii_bitbang_read(struct device *);
114 void	stge_mii_bitbang_write(struct device *, uint32_t);
115 
116 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
117 	stge_mii_bitbang_read,
118 	stge_mii_bitbang_write,
119 	{
120 		PC_MgmtData,		/* MII_BIT_MDO */
121 		PC_MgmtData,		/* MII_BIT_MDI */
122 		PC_MgmtClk,		/* MII_BIT_MDC */
123 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
124 		0,			/* MII_BIT_DIR_PHY_HOST */
125 	}
126 };
127 
128 /*
129  * Devices supported by this driver.
130  */
131 const struct pci_matchid stge_devices[] = {
132 	{ PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021 },
133 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T },
134 	{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST1023 },
135 	{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST2021 },
136 	{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021 },
137 	{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021_ALT },
138 	{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021 },
139 	{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT }
140 };
141 
142 int
stge_match(struct device * parent,void * match,void * aux)143 stge_match(struct device *parent, void *match, void *aux)
144 {
145 	return (pci_matchbyid((struct pci_attach_args *)aux, stge_devices,
146 	    sizeof(stge_devices) / sizeof(stge_devices[0])));
147 }
148 
149 void
stge_attach(struct device * parent,struct device * self,void * aux)150 stge_attach(struct device *parent, struct device *self, void *aux)
151 {
152 	struct stge_softc *sc = (struct stge_softc *) self;
153 	struct pci_attach_args *pa = aux;
154 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
155 	pci_chipset_tag_t pc = pa->pa_pc;
156 	pci_intr_handle_t ih;
157 	const char *intrstr = NULL;
158 	bus_space_tag_t iot, memt;
159 	bus_space_handle_t ioh, memh;
160 	bus_dma_segment_t seg;
161 	bus_size_t iosize;
162 	int ioh_valid, memh_valid;
163 	int i, rseg, error;
164 
165 	timeout_set(&sc->sc_timeout, stge_tick, sc);
166 
167 	sc->sc_rev = PCI_REVISION(pa->pa_class);
168 
169 	/*
170 	 * Map the device.
171 	 */
172 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
173 	    PCI_MAPREG_TYPE_IO, 0,
174 	    &iot, &ioh, NULL, &iosize, 0) == 0);
175 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
176 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
177 	    &memt, &memh, NULL, &iosize, 0) == 0);
178 
179 	if (memh_valid) {
180 		sc->sc_st = memt;
181 		sc->sc_sh = memh;
182 	} else if (ioh_valid) {
183 		sc->sc_st = iot;
184 		sc->sc_sh = ioh;
185 	} else {
186 		printf(": unable to map device registers\n");
187 		return;
188 	}
189 
190 	sc->sc_dmat = pa->pa_dmat;
191 
192 	/* Get it out of power save mode if needed. */
193 	pci_set_powerstate(pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
194 
195 	/*
196 	 * Map and establish our interrupt.
197 	 */
198 	if (pci_intr_map(pa, &ih)) {
199 		printf(": unable to map interrupt\n");
200 		goto fail_0;
201 	}
202 	intrstr = pci_intr_string(pc, ih);
203 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc,
204 				       sc->sc_dev.dv_xname);
205 	if (sc->sc_ih == NULL) {
206 		printf(": unable to establish interrupt");
207 		if (intrstr != NULL)
208 			printf(" at %s", intrstr);
209 		printf("\n");
210 		goto fail_0;
211 	}
212 	printf(": %s", intrstr);
213 
214 	/*
215 	 * Allocate the control data structures, and create and load the
216 	 * DMA map for it.
217 	 */
218 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
219 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
220 	    0)) != 0) {
221 		printf("%s: unable to allocate control data, error = %d\n",
222 		    sc->sc_dev.dv_xname, error);
223 		goto fail_0;
224 	}
225 
226 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
227 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
228 	    BUS_DMA_COHERENT)) != 0) {
229 		printf("%s: unable to map control data, error = %d\n",
230 		    sc->sc_dev.dv_xname, error);
231 		goto fail_1;
232 	}
233 
234 	if ((error = bus_dmamap_create(sc->sc_dmat,
235 	    sizeof(struct stge_control_data), 1,
236 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
237 		printf("%s: unable to create control data DMA map, "
238 		    "error = %d\n", sc->sc_dev.dv_xname, error);
239 		goto fail_2;
240 	}
241 
242 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
243 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
244 	    0)) != 0) {
245 		printf("%s: unable to load control data DMA map, error = %d\n",
246 		    sc->sc_dev.dv_xname, error);
247 		goto fail_3;
248 	}
249 
250 	/*
251 	 * Create the transmit buffer DMA maps.  Note that rev B.3
252 	 * and earlier seem to have a bug regarding multi-fragment
253 	 * packets.  We need to limit the number of Tx segments on
254 	 * such chips to 1.
255 	 */
256 	for (i = 0; i < STGE_NTXDESC; i++) {
257 		if ((error = bus_dmamap_create(sc->sc_dmat,
258 		    STGE_JUMBO_FRAMELEN, STGE_NTXFRAGS, MCLBYTES, 0, 0,
259 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
260 			printf("%s: unable to create tx DMA map %d, "
261 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
262 			goto fail_4;
263 		}
264 	}
265 
266 	/*
267 	 * Create the receive buffer DMA maps.
268 	 */
269 	for (i = 0; i < STGE_NRXDESC; i++) {
270 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
271 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
272 			printf("%s: unable to create rx DMA map %d, "
273 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
274 			goto fail_5;
275 		}
276 		sc->sc_rxsoft[i].ds_mbuf = NULL;
277 	}
278 
279 	/*
280 	 * Determine if we're copper or fiber.  It affects how we
281 	 * reset the card.
282 	 */
283 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
284 		sc->sc_usefiber = 1;
285 	else
286 		sc->sc_usefiber = 0;
287 
288 	/*
289 	 * Reset the chip to a known state.
290 	 */
291 	stge_reset(sc);
292 
293 	/*
294 	 * Reading the station address from the EEPROM doesn't seem
295 	 * to work, at least on my sample boards.  Instead, since
296 	 * the reset sequence does AutoInit, read it from the station
297 	 * address registers. For Sundance 1023 you can only read it
298 	 * from EEPROM.
299 	 */
300 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_SUNDANCE_ST1023) {
301 		sc->sc_arpcom.ac_enaddr[0] = CSR_READ_2(sc,
302 		    STGE_StationAddress0) & 0xff;
303 		sc->sc_arpcom.ac_enaddr[1] = CSR_READ_2(sc,
304 		    STGE_StationAddress0) >> 8;
305 		sc->sc_arpcom.ac_enaddr[2] = CSR_READ_2(sc,
306 		    STGE_StationAddress1) & 0xff;
307 		sc->sc_arpcom.ac_enaddr[3] = CSR_READ_2(sc,
308 		    STGE_StationAddress1) >> 8;
309 		sc->sc_arpcom.ac_enaddr[4] = CSR_READ_2(sc,
310 		    STGE_StationAddress2) & 0xff;
311 		sc->sc_arpcom.ac_enaddr[5] = CSR_READ_2(sc,
312 		    STGE_StationAddress2) >> 8;
313 		sc->sc_stge1023 = 0;
314 	} else {
315 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
316 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
317 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
318 			    &myaddr[i]);
319 			myaddr[i] = letoh16(myaddr[i]);
320 		}
321 		(void)memcpy(sc->sc_arpcom.ac_enaddr, myaddr,
322 		    sizeof(sc->sc_arpcom.ac_enaddr));
323 		sc->sc_stge1023 = 1;
324 	}
325 
326 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
327 
328 	/*
329 	 * Read some important bits from the PhyCtrl register.
330 	 */
331 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
332 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
333 
334 	/*
335 	 * Initialize our media structures and probe the MII.
336 	 */
337 	sc->sc_mii.mii_ifp = ifp;
338 	sc->sc_mii.mii_readreg = stge_mii_readreg;
339 	sc->sc_mii.mii_writereg = stge_mii_writereg;
340 	sc->sc_mii.mii_statchg = stge_mii_statchg;
341 	ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
342 	    stge_mediastatus);
343 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
344 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
345 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
346 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
347 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
348 	} else
349 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
350 
351 	ifp = &sc->sc_arpcom.ac_if;
352 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname);
353 	ifp->if_softc = sc;
354 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
355 	ifp->if_ioctl = stge_ioctl;
356 	ifp->if_start = stge_start;
357 	ifp->if_watchdog = stge_watchdog;
358 #ifdef STGE_JUMBO
359 	ifp->if_hardmtu = STGE_JUMBO_MTU;
360 #endif
361 	ifq_init_maxlen(&ifp->if_snd, STGE_NTXDESC - 1);
362 
363 	ifp->if_capabilities = IFCAP_VLAN_MTU;
364 
365 #if NVLAN > 0
366 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
367 #endif
368 
369 	/*
370 	 * The manual recommends disabling early transmit, so we
371 	 * do.  It's disabled anyway, if using IP checksumming,
372 	 * since the entire packet must be in the FIFO in order
373 	 * for the chip to perform the checksum.
374 	 */
375 	sc->sc_txthresh = 0x0fff;
376 
377 	/*
378 	 * Disable MWI if the PCI layer tells us to.
379 	 */
380 	sc->sc_DMACtrl = 0;
381 #ifdef fake
382 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
383 		sc->sc_DMACtrl |= DMAC_MWIDisable;
384 #endif
385 
386 #ifdef STGE_CHECKSUM
387 	/*
388 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
389 	 */
390 	sc->sc_arpcom.ac_if.if_capabilities |= IFCAP_CSUM_IPv4 |
391 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
392 #endif
393 
394 	/*
395 	 * Attach the interface.
396 	 */
397 	if_attach(ifp);
398 	ether_ifattach(ifp);
399 	return;
400 
401 	/*
402 	 * Free any resources we've allocated during the failed attach
403 	 * attempt.  Do this in reverse order and fall through.
404 	 */
405  fail_5:
406 	for (i = 0; i < STGE_NRXDESC; i++) {
407 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
408 			bus_dmamap_destroy(sc->sc_dmat,
409 			    sc->sc_rxsoft[i].ds_dmamap);
410 	}
411  fail_4:
412 	for (i = 0; i < STGE_NTXDESC; i++) {
413 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
414 			bus_dmamap_destroy(sc->sc_dmat,
415 			    sc->sc_txsoft[i].ds_dmamap);
416 	}
417 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
418  fail_3:
419 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
420  fail_2:
421 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
422 	    sizeof(struct stge_control_data));
423  fail_1:
424 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
425  fail_0:
426 	bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
427 	return;
428 }
429 
430 static void
stge_dma_wait(struct stge_softc * sc)431 stge_dma_wait(struct stge_softc *sc)
432 {
433 	int i;
434 
435 	for (i = 0; i < STGE_TIMEOUT; i++) {
436 		delay(2);
437 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
438 			break;
439 	}
440 
441 	if (i == STGE_TIMEOUT)
442 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
443 }
444 
445 /*
446  * stge_start:		[ifnet interface function]
447  *
448  *	Start packet transmission on the interface.
449  */
450 void
stge_start(struct ifnet * ifp)451 stge_start(struct ifnet *ifp)
452 {
453 	struct stge_softc *sc = ifp->if_softc;
454 	struct mbuf *m0;
455 	struct stge_descsoft *ds;
456 	struct stge_tfd *tfd;
457 	bus_dmamap_t dmamap;
458 	int error, firsttx, nexttx, opending, seg, totlen;
459 	uint64_t csum_flags = 0, tfc;
460 
461 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
462 		return;
463 
464 	/*
465 	 * Remember the previous number of pending transmissions
466 	 * and the first descriptor we will use.
467 	 */
468 	opending = sc->sc_txpending;
469 	firsttx = STGE_NEXTTX(sc->sc_txlast);
470 
471 	/*
472 	 * Loop through the send queue, setting up transmit descriptors
473 	 * until we drain the queue, or use up all available transmit
474 	 * descriptors.
475 	 */
476 	for (;;) {
477 		/*
478 		 * Grab a packet off the queue.
479 		 */
480 		m0 = ifq_deq_begin(&ifp->if_snd);
481 		if (m0 == NULL)
482 			break;
483 
484 		/*
485 		 * Leave one unused descriptor at the end of the
486 		 * list to prevent wrapping completely around.
487 		 */
488 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
489 			ifq_deq_rollback(&ifp->if_snd, m0);
490 			break;
491 		}
492 
493 		/*
494 		 * Get the last and next available transmit descriptor.
495 		 */
496 		nexttx = STGE_NEXTTX(sc->sc_txlast);
497 		tfd = &sc->sc_txdescs[nexttx];
498 		ds = &sc->sc_txsoft[nexttx];
499 
500 		dmamap = ds->ds_dmamap;
501 
502 		/*
503 		 * Load the DMA map.  If this fails, the packet either
504 		 * didn't fit in the allotted number of segments, or we
505 		 * were short on resources.  For the too-many-segments
506 		 * case, we simply report an error and drop the packet,
507 		 * since we can't sanely copy a jumbo packet to a single
508 		 * buffer.
509 		 */
510 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
511 		    BUS_DMA_NOWAIT);
512 		if (error) {
513 			if (error == EFBIG) {
514 				printf("%s: Tx packet consumes too many "
515 				    "DMA segments (%u), dropping...\n",
516 				    sc->sc_dev.dv_xname, dmamap->dm_nsegs);
517 				ifq_deq_commit(&ifp->if_snd, m0);
518 				m_freem(m0);
519 				continue;
520 			}
521 			/*
522 			 * Short on resources, just stop for now.
523 			 */
524 			ifq_deq_rollback(&ifp->if_snd, m0);
525 			break;
526 		}
527 
528 		ifq_deq_commit(&ifp->if_snd, m0);
529 
530 		/*
531 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
532 		 */
533 
534 		/* Sync the DMA map. */
535 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
536 		    BUS_DMASYNC_PREWRITE);
537 
538 		/* Initialize the fragment list. */
539 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
540 			tfd->tfd_frags[seg].frag_word0 =
541 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
542 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
543 			totlen += dmamap->dm_segs[seg].ds_len;
544 		}
545 
546 #ifdef STGE_CHECKSUM
547 		/*
548 		 * Initialize checksumming flags in the descriptor.
549 		 * Byte-swap constants so the compiler can optimize.
550 		 */
551 		if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
552 			csum_flags |= TFD_IPChecksumEnable;
553 
554 		if (m0->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
555 			csum_flags |= TFD_TCPChecksumEnable;
556 		else if (m0->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
557 			csum_flags |= TFD_UDPChecksumEnable;
558 #endif
559 
560 		/*
561 		 * Initialize the descriptor and give it to the chip.
562 		 */
563 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
564 		    TFD_FragCount(seg) | csum_flags;
565 		if ((nexttx & STGE_TXINTR_SPACING_MASK) == 0)
566 			tfc |= TFD_TxDMAIndicate;
567 
568 #if NVLAN > 0
569 		/* Check if we have a VLAN tag to insert. */
570 		if (m0->m_flags & M_VLANTAG)
571 			tfc |= (TFD_VLANTagInsert |
572 			    TFD_VID(m0->m_pkthdr.ether_vtag));
573 #endif
574 
575 		tfd->tfd_control = htole64(tfc);
576 
577 		/* Sync the descriptor. */
578 		STGE_CDTXSYNC(sc, nexttx,
579 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
580 
581 		/*
582 		 * Kick the transmit DMA logic.
583 		 */
584 		CSR_WRITE_4(sc, STGE_DMACtrl,
585 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
586 
587 		/*
588 		 * Store a pointer to the packet so we can free it later.
589 		 */
590 		ds->ds_mbuf = m0;
591 
592 		/* Advance the tx pointer. */
593 		sc->sc_txpending++;
594 		sc->sc_txlast = nexttx;
595 
596 #if NBPFILTER > 0
597 		/*
598 		 * Pass the packet to any BPF listeners.
599 		 */
600 		if (ifp->if_bpf)
601 			bpf_mtap_ether(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
602 #endif /* NBPFILTER > 0 */
603 	}
604 
605 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
606 		/* No more slots left; notify upper layer. */
607 		ifq_set_oactive(&ifp->if_snd);
608 	}
609 
610 	if (sc->sc_txpending != opending) {
611 		/*
612 		 * We enqueued packets.  If the transmitter was idle,
613 		 * reset the txdirty pointer.
614 		 */
615 		if (opending == 0)
616 			sc->sc_txdirty = firsttx;
617 
618 		/* Set a watchdog timer in case the chip flakes out. */
619 		ifp->if_timer = 5;
620 	}
621 }
622 
623 /*
624  * stge_watchdog:	[ifnet interface function]
625  *
626  *	Watchdog timer handler.
627  */
628 void
stge_watchdog(struct ifnet * ifp)629 stge_watchdog(struct ifnet *ifp)
630 {
631 	struct stge_softc *sc = ifp->if_softc;
632 
633 	/*
634 	 * Sweep up first, since we don't interrupt every frame.
635 	 */
636 	stge_txintr(sc);
637 	if (sc->sc_txpending != 0) {
638 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
639 		ifp->if_oerrors++;
640 
641 		(void) stge_init(ifp);
642 
643 		/* Try to get more packets going. */
644 		stge_start(ifp);
645 	}
646 }
647 
648 /*
649  * stge_ioctl:		[ifnet interface function]
650  *
651  *	Handle control requests from the operator.
652  */
653 int
stge_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)654 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
655 {
656 	struct stge_softc *sc = ifp->if_softc;
657 	struct ifreq *ifr = (struct ifreq *)data;
658 	int s, error = 0;
659 
660 	s = splnet();
661 
662 	switch (cmd) {
663 	case SIOCSIFADDR:
664 		ifp->if_flags |= IFF_UP;
665 		if (!(ifp->if_flags & IFF_RUNNING))
666 			stge_init(ifp);
667 		break;
668 
669 	case SIOCSIFFLAGS:
670 		if (ifp->if_flags & IFF_UP) {
671 			if (ifp->if_flags & IFF_RUNNING)
672 				error = ENETRESET;
673 			else
674 				stge_init(ifp);
675 		} else {
676 			if (ifp->if_flags & IFF_RUNNING)
677 				stge_stop(ifp, 1);
678 		}
679 		break;
680 
681 	case SIOCSIFMEDIA:
682 	case SIOCGIFMEDIA:
683 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
684 		break;
685 
686 	default:
687 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
688 	}
689 
690 	if (error == ENETRESET) {
691 		if (ifp->if_flags & IFF_RUNNING)
692 			stge_iff(sc);
693 		error = 0;
694 	}
695 
696 	splx(s);
697 	return (error);
698 }
699 
700 /*
701  * stge_intr:
702  *
703  *	Interrupt service routine.
704  */
705 int
stge_intr(void * arg)706 stge_intr(void *arg)
707 {
708 	struct stge_softc *sc = arg;
709 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
710 	uint32_t txstat;
711 	int wantinit;
712 	uint16_t isr;
713 
714 	if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
715 		return (0);
716 
717 	for (wantinit = 0; wantinit == 0;) {
718 		isr = CSR_READ_2(sc, STGE_IntStatusAck);
719 		if ((isr & sc->sc_IntEnable) == 0)
720 			break;
721 
722 		/* Host interface errors. */
723 		if (isr & IS_HostError) {
724 			printf("%s: Host interface error\n",
725 			    sc->sc_dev.dv_xname);
726 			wantinit = 1;
727 			continue;
728 		}
729 
730 		/* Receive interrupts. */
731 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
732 			stge_rxintr(sc);
733 			if (isr & IS_RFDListEnd) {
734 				printf("%s: receive ring overflow\n",
735 				    sc->sc_dev.dv_xname);
736 				/*
737 				 * XXX Should try to recover from this
738 				 * XXX more gracefully.
739 				 */
740 				wantinit = 1;
741 			}
742 		}
743 
744 		/* Transmit interrupts. */
745 		if (isr & (IS_TxDMAComplete|IS_TxComplete))
746 			stge_txintr(sc);
747 
748 		/* Statistics overflow. */
749 		if (isr & IS_UpdateStats)
750 			stge_stats_update(sc);
751 
752 		/* Transmission errors. */
753 		if (isr & IS_TxComplete) {
754 			for (;;) {
755 				txstat = CSR_READ_4(sc, STGE_TxStatus);
756 				if ((txstat & TS_TxComplete) == 0)
757 					break;
758 				if (txstat & TS_TxUnderrun) {
759 					sc->sc_txthresh++;
760 					if (sc->sc_txthresh > 0x0fff)
761 						sc->sc_txthresh = 0x0fff;
762 					printf("%s: transmit underrun, new "
763 					    "threshold: %d bytes\n",
764 					    sc->sc_dev.dv_xname,
765 					    sc->sc_txthresh << 5);
766 				}
767 				if (txstat & TS_MaxCollisions)
768 					printf("%s: excessive collisions\n",
769 					    sc->sc_dev.dv_xname);
770 			}
771 			wantinit = 1;
772 		}
773 
774 	}
775 
776 	if (wantinit)
777 		stge_init(ifp);
778 
779 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
780 
781 	/* Try to get more packets going. */
782 	stge_start(ifp);
783 
784 	return (1);
785 }
786 
787 /*
788  * stge_txintr:
789  *
790  *	Helper; handle transmit interrupts.
791  */
792 void
stge_txintr(struct stge_softc * sc)793 stge_txintr(struct stge_softc *sc)
794 {
795 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
796 	struct stge_descsoft *ds;
797 	uint64_t control;
798 	int i;
799 
800 	ifq_clr_oactive(&ifp->if_snd);
801 
802 	/*
803 	 * Go through our Tx list and free mbufs for those
804 	 * frames which have been transmitted.
805 	 */
806 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
807 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
808 		ds = &sc->sc_txsoft[i];
809 
810 		STGE_CDTXSYNC(sc, i,
811 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
812 
813 		control = letoh64(sc->sc_txdescs[i].tfd_control);
814 		if ((control & TFD_TFDDone) == 0)
815 			break;
816 
817 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
818 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
819 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
820 		m_freem(ds->ds_mbuf);
821 		ds->ds_mbuf = NULL;
822 	}
823 
824 	/* Update the dirty transmit buffer pointer. */
825 	sc->sc_txdirty = i;
826 
827 	/*
828 	 * If there are no more pending transmissions, cancel the watchdog
829 	 * timer.
830 	 */
831 	if (sc->sc_txpending == 0)
832 		ifp->if_timer = 0;
833 }
834 
835 /*
836  * stge_rxintr:
837  *
838  *	Helper; handle receive interrupts.
839  */
840 void
stge_rxintr(struct stge_softc * sc)841 stge_rxintr(struct stge_softc *sc)
842 {
843 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
844 	struct stge_descsoft *ds;
845 	struct mbuf *m, *tailm;
846 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
847 	uint64_t status;
848 	int i, len;
849 
850 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
851 		ds = &sc->sc_rxsoft[i];
852 
853 		STGE_CDRXSYNC(sc, i,
854 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
855 
856 		status = letoh64(sc->sc_rxdescs[i].rfd_status);
857 
858 		if ((status & RFD_RFDDone) == 0)
859 			break;
860 
861 		if (__predict_false(sc->sc_rxdiscard)) {
862 			STGE_INIT_RXDESC(sc, i);
863 			if (status & RFD_FrameEnd) {
864 				/* Reset our state. */
865 				sc->sc_rxdiscard = 0;
866 			}
867 			continue;
868 		}
869 
870 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
871 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
872 
873 		m = ds->ds_mbuf;
874 
875 		/*
876 		 * Add a new receive buffer to the ring.
877 		 */
878 		if (stge_add_rxbuf(sc, i) != 0) {
879 			/*
880 			 * Failed, throw away what we've done so
881 			 * far, and discard the rest of the packet.
882 			 */
883 			ifp->if_ierrors++;
884 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
885 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
886 			STGE_INIT_RXDESC(sc, i);
887 			if ((status & RFD_FrameEnd) == 0)
888 				sc->sc_rxdiscard = 1;
889 			m_freem(sc->sc_rxhead);
890 			STGE_RXCHAIN_RESET(sc);
891 			continue;
892 		}
893 
894 #ifdef DIAGNOSTIC
895 		if (status & RFD_FrameStart) {
896 			KASSERT(sc->sc_rxhead == NULL);
897 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
898 		}
899 #endif
900 
901 		STGE_RXCHAIN_LINK(sc, m);
902 
903 		/*
904 		 * If this is not the end of the packet, keep
905 		 * looking.
906 		 */
907 		if ((status & RFD_FrameEnd) == 0) {
908 			sc->sc_rxlen += m->m_len;
909 			continue;
910 		}
911 
912 		/*
913 		 * Okay, we have the entire packet now...
914 		 */
915 		*sc->sc_rxtailp = NULL;
916 		m = sc->sc_rxhead;
917 		tailm = sc->sc_rxtail;
918 
919 		STGE_RXCHAIN_RESET(sc);
920 
921 		/*
922 		 * If the packet had an error, drop it.  Note we
923 		 * count the error later in the periodic stats update.
924 		 */
925 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
926 			      RFD_RxAlignmentError | RFD_RxFCSError |
927 			      RFD_RxLengthError)) {
928 			m_freem(m);
929 			continue;
930 		}
931 
932 		/*
933 		 * No errors.
934 		 *
935 		 * Note we have configured the chip to not include
936 		 * the CRC at the end of the packet.
937 		 */
938 		len = RFD_RxDMAFrameLen(status);
939 		tailm->m_len = len - sc->sc_rxlen;
940 
941 		/*
942 		 * If the packet is small enough to fit in a
943 		 * single header mbuf, allocate one and copy
944 		 * the data into it.  This greatly reduces
945 		 * memory consumption when we receive lots
946 		 * of small packets.
947 		 */
948 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
949 			struct mbuf *nm;
950 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
951 			if (nm == NULL) {
952 				ifp->if_ierrors++;
953 				m_freem(m);
954 				continue;
955 			}
956 			nm->m_data += 2;
957 			nm->m_pkthdr.len = nm->m_len = len;
958 			m_copydata(m, 0, len, mtod(nm, caddr_t));
959 			m_freem(m);
960 			m = nm;
961 		}
962 
963 		/*
964 		 * Set the incoming checksum information for the packet.
965 		 */
966 		if ((status & RFD_IPDetected) &&
967 		    (!(status & RFD_IPError)))
968 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
969 		if ((status & RFD_TCPDetected) &&
970 		    (!(status & RFD_TCPError)))
971 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
972 		else if ((status & RFD_UDPDetected) &&
973 		    (!(status & RFD_UDPError)))
974 			m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
975 
976 #if NVLAN > 0
977 		/* Check for VLAN tagged packets. */
978 		if (status & RFD_VLANDetected) {
979 			m->m_pkthdr.ether_vtag = RFD_TCI(status);
980 			m->m_flags |= M_VLANTAG;
981 		}
982 #endif
983 
984 		m->m_pkthdr.len = len;
985 
986 		ml_enqueue(&ml, m);
987 	}
988 
989 	/* Update the receive pointer. */
990 	sc->sc_rxptr = i;
991 
992 	if_input(ifp, &ml);
993 }
994 
995 /*
996  * stge_tick:
997  *
998  *	One second timer, used to tick the MII.
999  */
1000 void
stge_tick(void * arg)1001 stge_tick(void *arg)
1002 {
1003 	struct stge_softc *sc = arg;
1004 	int s;
1005 
1006 	s = splnet();
1007 	mii_tick(&sc->sc_mii);
1008 	stge_stats_update(sc);
1009 	splx(s);
1010 
1011 	timeout_add_sec(&sc->sc_timeout, 1);
1012 }
1013 
1014 /*
1015  * stge_stats_update:
1016  *
1017  *	Read the TC9021 statistics counters.
1018  */
1019 void
stge_stats_update(struct stge_softc * sc)1020 stge_stats_update(struct stge_softc *sc)
1021 {
1022 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1023 
1024 	(void) CSR_READ_4(sc, STGE_OctetRcvOk);
1025 
1026 	ifp->if_ierrors +=
1027 	    (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors);
1028 
1029 	(void) CSR_READ_4(sc, STGE_OctetXmtdOk);
1030 
1031 	ifp->if_collisions +=
1032 	    CSR_READ_4(sc, STGE_LateCollisions) +
1033 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1034 	    CSR_READ_4(sc, STGE_SingleColFrames);
1035 
1036 	ifp->if_oerrors +=
1037 	    (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1038 	    (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal);
1039 }
1040 
1041 /*
1042  * stge_reset:
1043  *
1044  *	Perform a soft reset on the TC9021.
1045  */
1046 void
stge_reset(struct stge_softc * sc)1047 stge_reset(struct stge_softc *sc)
1048 {
1049 	uint32_t ac;
1050 	int i;
1051 
1052 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1053 
1054 	/*
1055 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1056 	 * to be present in order for the reset to complete on fiber
1057 	 * cards.
1058 	 */
1059 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1060 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1061 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1062 	    (sc->sc_usefiber ? AC_RstOut : 0));
1063 
1064 	delay(50000);
1065 
1066 	for (i = 0; i < STGE_TIMEOUT; i++) {
1067 		delay(5000);
1068 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1069 			break;
1070 	}
1071 
1072 	if (i == STGE_TIMEOUT)
1073 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1074 
1075 	delay(1000);
1076 }
1077 
1078 /*
1079  * stge_init:		[ ifnet interface function ]
1080  *
1081  *	Initialize the interface.  Must be called at splnet().
1082  */
1083 int
stge_init(struct ifnet * ifp)1084 stge_init(struct ifnet *ifp)
1085 {
1086 	struct stge_softc *sc = ifp->if_softc;
1087 	struct stge_descsoft *ds;
1088 	int i, error = 0;
1089 
1090 	/*
1091 	 * Cancel any pending I/O.
1092 	 */
1093 	stge_stop(ifp, 0);
1094 
1095 	/*
1096 	 * Reset the chip to a known state.
1097 	 */
1098 	stge_reset(sc);
1099 
1100 	/*
1101 	 * Initialize the transmit descriptor ring.
1102 	 */
1103 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1104 	for (i = 0; i < STGE_NTXDESC; i++) {
1105 		sc->sc_txdescs[i].tfd_next = htole64(
1106 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1107 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1108 	}
1109 	sc->sc_txpending = 0;
1110 	sc->sc_txdirty = 0;
1111 	sc->sc_txlast = STGE_NTXDESC - 1;
1112 
1113 	/*
1114 	 * Initialize the receive descriptor and receive job
1115 	 * descriptor rings.
1116 	 */
1117 	for (i = 0; i < STGE_NRXDESC; i++) {
1118 		ds = &sc->sc_rxsoft[i];
1119 		if (ds->ds_mbuf == NULL) {
1120 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1121 				printf("%s: unable to allocate or map rx "
1122 				    "buffer %d, error = %d\n",
1123 				    sc->sc_dev.dv_xname, i, error);
1124 				/*
1125 				 * XXX Should attempt to run with fewer receive
1126 				 * XXX buffers instead of just failing.
1127 				 */
1128 				stge_rxdrain(sc);
1129 				goto out;
1130 			}
1131 		} else
1132 			STGE_INIT_RXDESC(sc, i);
1133 	}
1134 	sc->sc_rxptr = 0;
1135 	sc->sc_rxdiscard = 0;
1136 	STGE_RXCHAIN_RESET(sc);
1137 
1138 	/* Set the station address. */
1139 	if (sc->sc_stge1023) {
1140 		CSR_WRITE_2(sc, STGE_StationAddress0,
1141 		    sc->sc_arpcom.ac_enaddr[0] | sc->sc_arpcom.ac_enaddr[1] << 8);
1142 		CSR_WRITE_2(sc, STGE_StationAddress1,
1143 		    sc->sc_arpcom.ac_enaddr[2] | sc->sc_arpcom.ac_enaddr[3] << 8);
1144 		CSR_WRITE_2(sc, STGE_StationAddress2,
1145 		    sc->sc_arpcom.ac_enaddr[4] | sc->sc_arpcom.ac_enaddr[5] << 8);
1146 	} else {
1147 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1148 			CSR_WRITE_1(sc, STGE_StationAddress0 + i,
1149 			    sc->sc_arpcom.ac_enaddr[i]);
1150 	}
1151 
1152 	/*
1153 	 * Set the statistics masks.  Disable all the RMON stats,
1154 	 * and disable selected stats in the non-RMON stats registers.
1155 	 */
1156 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
1157 	CSR_WRITE_4(sc, STGE_StatisticsMask,
1158 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1159 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1160 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1161 	    (1U << 21));
1162 
1163 	/* Program promiscuous mode and multicast filters. */
1164 	stge_iff(sc);
1165 
1166 	/*
1167 	 * Give the transmit and receive ring to the chip.
1168 	 */
1169 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1170 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
1171 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1172 
1173 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1174 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
1175 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1176 
1177 	/*
1178 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1179 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1180 	 * transmit engine when there's actually a packet.
1181 	 */
1182 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
1183 
1184 	/* ..and the Rx auto-poll period. */
1185 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
1186 
1187 	/* Initialize the Tx start threshold. */
1188 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
1189 
1190 	/* RX DMA thresholds, from linux */
1191 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
1192 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
1193 
1194 	/* Rx early threshold, from Linux */
1195 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
1196 
1197 	/* Tx DMA thresholds, from Linux */
1198 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
1199 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
1200 
1201 	/*
1202 	 * Initialize the Rx DMA interrupt control register.  We
1203 	 * request an interrupt after every incoming packet, but
1204 	 * defer it for 32us (64 * 512 ns).  When the number of
1205 	 * interrupts pending reaches 8, we stop deferring the
1206 	 * interrupt, and signal it immediately.
1207 	 */
1208 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
1209 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1210 
1211 	/*
1212 	 * Initialize the interrupt mask.
1213 	 */
1214 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1215 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1216 	CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
1217 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1218 
1219 	/*
1220 	 * Configure the DMA engine.
1221 	 * XXX Should auto-tune TxBurstLimit.
1222 	 */
1223 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
1224 	    DMAC_TxBurstLimit(3));
1225 
1226 	/*
1227 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1228 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
1229 	 * in the Rx FIFO.
1230 	 */
1231 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
1232 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
1233 
1234 	/*
1235 	 * Set the maximum frame size.
1236 	 */
1237 #ifdef STGE_JUMBO
1238 	CSR_WRITE_2(sc, STGE_MaxFrameSize, STGE_JUMBO_FRAMELEN);
1239 #else
1240 	CSR_WRITE_2(sc, STGE_MaxFrameSize, ETHER_MAX_LEN);
1241 #endif
1242 
1243 	/*
1244 	 * Initialize MacCtrl -- do it before setting the media,
1245 	 * as setting the media will actually program the register.
1246 	 *
1247 	 * Note: We have to poke the IFS value before poking
1248 	 * anything else.
1249 	 */
1250 	sc->sc_MACCtrl = MC_IFSSelect(0);
1251 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1252 
1253 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1254 		sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1255 
1256 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1257 
1258 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1259 		/* Multi-frag frame bug work-around. */
1260 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1261 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
1262 
1263 		/* Tx Poll Now bug work-around. */
1264 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1265 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
1266 
1267 		/* Rx Poll Now bug work-around. */
1268 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1269 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
1270 	}
1271 
1272 	/*
1273 	 * Set the current media.
1274 	 */
1275 	mii_mediachg(&sc->sc_mii);
1276 
1277 	/*
1278 	 * Start the one second MII clock.
1279 	 */
1280 	timeout_add_sec(&sc->sc_timeout, 1);
1281 
1282 	/*
1283 	 * ...all done!
1284 	 */
1285 	ifp->if_flags |= IFF_RUNNING;
1286 	ifq_clr_oactive(&ifp->if_snd);
1287 
1288  out:
1289 	if (error)
1290 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1291 	return (error);
1292 }
1293 
1294 /*
1295  * stge_drain:
1296  *
1297  *	Drain the receive queue.
1298  */
1299 void
stge_rxdrain(struct stge_softc * sc)1300 stge_rxdrain(struct stge_softc *sc)
1301 {
1302 	struct stge_descsoft *ds;
1303 	int i;
1304 
1305 	for (i = 0; i < STGE_NRXDESC; i++) {
1306 		ds = &sc->sc_rxsoft[i];
1307 		if (ds->ds_mbuf != NULL) {
1308 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1309 			ds->ds_mbuf->m_next = NULL;
1310 			m_freem(ds->ds_mbuf);
1311 			ds->ds_mbuf = NULL;
1312 		}
1313 	}
1314 }
1315 
1316 /*
1317  * stge_stop:		[ ifnet interface function ]
1318  *
1319  *	Stop transmission on the interface.
1320  */
1321 void
stge_stop(struct ifnet * ifp,int disable)1322 stge_stop(struct ifnet *ifp, int disable)
1323 {
1324 	struct stge_softc *sc = ifp->if_softc;
1325 	struct stge_descsoft *ds;
1326 	int i;
1327 
1328 	/*
1329 	 * Stop the one second clock.
1330 	 */
1331 	timeout_del(&sc->sc_timeout);
1332 
1333 	/*
1334 	 * Mark the interface down and cancel the watchdog timer.
1335 	 */
1336 	ifp->if_flags &= ~IFF_RUNNING;
1337 	ifq_clr_oactive(&ifp->if_snd);
1338 	ifp->if_timer = 0;
1339 
1340 	/* Down the MII. */
1341 	mii_down(&sc->sc_mii);
1342 
1343 	/*
1344 	 * Disable interrupts.
1345 	 */
1346 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
1347 
1348 	/*
1349 	 * Stop receiver, transmitter, and stats update.
1350 	 */
1351 	CSR_WRITE_4(sc, STGE_MACCtrl,
1352 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1353 
1354 	/*
1355 	 * Stop the transmit and receive DMA.
1356 	 */
1357 	stge_dma_wait(sc);
1358 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
1359 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
1360 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
1361 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
1362 
1363 	/*
1364 	 * Release any queued transmit buffers.
1365 	 */
1366 	for (i = 0; i < STGE_NTXDESC; i++) {
1367 		ds = &sc->sc_txsoft[i];
1368 		if (ds->ds_mbuf != NULL) {
1369 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1370 			m_freem(ds->ds_mbuf);
1371 			ds->ds_mbuf = NULL;
1372 		}
1373 	}
1374 
1375 	if (disable)
1376 		stge_rxdrain(sc);
1377 }
1378 
1379 static int
stge_eeprom_wait(struct stge_softc * sc)1380 stge_eeprom_wait(struct stge_softc *sc)
1381 {
1382 	int i;
1383 
1384 	for (i = 0; i < STGE_TIMEOUT; i++) {
1385 		delay(1000);
1386 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
1387 			return (0);
1388 	}
1389 	return (1);
1390 }
1391 
1392 /*
1393  * stge_read_eeprom:
1394  *
1395  *	Read data from the serial EEPROM.
1396  */
1397 void
stge_read_eeprom(struct stge_softc * sc,int offset,uint16_t * data)1398 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1399 {
1400 
1401 	if (stge_eeprom_wait(sc))
1402 		printf("%s: EEPROM failed to come ready\n",
1403 		    sc->sc_dev.dv_xname);
1404 
1405 	CSR_WRITE_2(sc, STGE_EepromCtrl,
1406 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1407 	if (stge_eeprom_wait(sc))
1408 		printf("%s: EEPROM read timed out\n",
1409 		    sc->sc_dev.dv_xname);
1410 	*data = CSR_READ_2(sc, STGE_EepromData);
1411 }
1412 
1413 /*
1414  * stge_add_rxbuf:
1415  *
1416  *	Add a receive buffer to the indicated descriptor.
1417  */
1418 int
stge_add_rxbuf(struct stge_softc * sc,int idx)1419 stge_add_rxbuf(struct stge_softc *sc, int idx)
1420 {
1421 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1422 	struct mbuf *m;
1423 	int error;
1424 
1425 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1426 	if (m == NULL)
1427 		return (ENOBUFS);
1428 
1429 	MCLGET(m, M_DONTWAIT);
1430 	if ((m->m_flags & M_EXT) == 0) {
1431 		m_freem(m);
1432 		return (ENOBUFS);
1433 	}
1434 
1435 	m->m_data = m->m_ext.ext_buf + 2;
1436 	m->m_len = MCLBYTES - 2;
1437 
1438 	if (ds->ds_mbuf != NULL)
1439 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1440 
1441 	ds->ds_mbuf = m;
1442 
1443 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1444 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1445 	if (error) {
1446 		printf("%s: can't load rx DMA map %d, error = %d\n",
1447 		    sc->sc_dev.dv_xname, idx, error);
1448 		panic("stge_add_rxbuf");	/* XXX */
1449 	}
1450 
1451 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1452 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1453 
1454 	STGE_INIT_RXDESC(sc, idx);
1455 
1456 	return (0);
1457 }
1458 
1459 /*
1460  * stge_iff:
1461  *
1462  *	Set up the receive filter.
1463  */
1464 void
stge_iff(struct stge_softc * sc)1465 stge_iff(struct stge_softc *sc)
1466 {
1467 	struct arpcom *ac = &sc->sc_arpcom;
1468 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1469 	struct ether_multi *enm;
1470 	struct ether_multistep step;
1471 	uint32_t crc;
1472 	uint32_t mchash[2];
1473 
1474 	memset(mchash, 0, sizeof(mchash));
1475 	ifp->if_flags &= ~IFF_ALLMULTI;
1476 
1477 	/*
1478 	 * Always accept broadcast packets.
1479 	 * Always accept frames destined to our station address.
1480 	 */
1481 	sc->sc_ReceiveMode = RM_ReceiveBroadcast | RM_ReceiveUnicast;
1482 
1483 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
1484 		ifp->if_flags |= IFF_ALLMULTI;
1485 		if (ifp->if_flags & IFF_PROMISC)
1486 			sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1487 		else
1488 			sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1489 	} else {
1490 		/*
1491 		 * Set up the multicast address filter by passing all
1492 		 * multicast addresses through a CRC generator, and then
1493 		 * using the low-order 6 bits as an index into the 64 bit
1494 		 * multicast hash table.  The high order bits select the
1495 		 * register, while the rest of the bits select the bit
1496 		 * within the register.
1497 		 */
1498 		sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1499 
1500 		ETHER_FIRST_MULTI(step, ac, enm);
1501 		while (enm != NULL) {
1502 			crc = ether_crc32_be(enm->enm_addrlo,
1503 			    ETHER_ADDR_LEN);
1504 
1505 			/* Just want the 6 least significant bits. */
1506 			crc &= 0x3f;
1507 
1508 			/* Set the corresponding bit in the hash table. */
1509 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
1510 
1511 			ETHER_NEXT_MULTI(step, enm);
1512 		}
1513 	}
1514 
1515 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
1516 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
1517 	CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
1518 }
1519 
1520 /*
1521  * stge_mii_readreg:	[mii interface function]
1522  *
1523  *	Read a PHY register on the MII of the TC9021.
1524  */
1525 int
stge_mii_readreg(struct device * self,int phy,int reg)1526 stge_mii_readreg(struct device *self, int phy, int reg)
1527 {
1528 
1529 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1530 }
1531 
1532 /*
1533  * stge_mii_writereg:	[mii interface function]
1534  *
1535  *	Write a PHY register on the MII of the TC9021.
1536  */
1537 void
stge_mii_writereg(struct device * self,int phy,int reg,int val)1538 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1539 {
1540 
1541 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1542 }
1543 
1544 /*
1545  * stge_mii_statchg:	[mii interface function]
1546  *
1547  *	Callback from MII layer when media changes.
1548  */
1549 void
stge_mii_statchg(struct device * self)1550 stge_mii_statchg(struct device *self)
1551 {
1552 	struct stge_softc *sc = (struct stge_softc *) self;
1553 	struct mii_data *mii = &sc->sc_mii;
1554 
1555 	sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
1556 	    MC_TxFlowControlEnable);
1557 
1558 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1559 		sc->sc_MACCtrl |= MC_DuplexSelect;
1560 
1561 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1562 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1563 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1564 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1565 
1566 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1567 }
1568 
1569 /*
1570  * sste_mii_bitbang_read: [mii bit-bang interface function]
1571  *
1572  *	Read the MII serial port for the MII bit-bang module.
1573  */
1574 uint32_t
stge_mii_bitbang_read(struct device * self)1575 stge_mii_bitbang_read(struct device *self)
1576 {
1577 	struct stge_softc *sc = (void *) self;
1578 
1579 	return (CSR_READ_1(sc, STGE_PhyCtrl));
1580 }
1581 
1582 /*
1583  * stge_mii_bitbang_write: [mii big-bang interface function]
1584  *
1585  *	Write the MII serial port for the MII bit-bang module.
1586  */
1587 void
stge_mii_bitbang_write(struct device * self,uint32_t val)1588 stge_mii_bitbang_write(struct device *self, uint32_t val)
1589 {
1590 	struct stge_softc *sc = (void *) self;
1591 
1592 	CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
1593 }
1594 
1595 /*
1596  * stge_mediastatus:	[ifmedia interface function]
1597  *
1598  *	Get the current interface media status.
1599  */
1600 void
stge_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)1601 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1602 {
1603 	struct stge_softc *sc = ifp->if_softc;
1604 
1605 	mii_pollstat(&sc->sc_mii);
1606 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1607 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1608 }
1609 
1610 /*
1611  * stge_mediachange:	[ifmedia interface function]
1612  *
1613  *	Set hardware to newly-selected media.
1614  */
1615 int
stge_mediachange(struct ifnet * ifp)1616 stge_mediachange(struct ifnet *ifp)
1617 {
1618 	struct stge_softc *sc = ifp->if_softc;
1619 
1620 	if (ifp->if_flags & IFF_UP)
1621 		mii_mediachg(&sc->sc_mii);
1622 	return (0);
1623 }
1624