xref: /openbsd/gnu/usr.bin/binutils/gdb/solib-sunos.c (revision 11efff7f)
1 /* Handle SunOS shared libraries for GDB, the GNU Debugger.
2 
3    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4    2000, 2001, 2004 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22 
23 #include "defs.h"
24 
25 #include <sys/types.h>
26 #include <signal.h>
27 #include "gdb_string.h"
28 #include <sys/param.h>
29 #include <fcntl.h>
30 
31 /* SunOS shared libs need the nlist structure.  */
32 #include <a.out.h>
33 #include <link.h>
34 
35 #include "symtab.h"
36 #include "bfd.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbcore.h"
40 #include "inferior.h"
41 #include "solist.h"
42 #include "bcache.h"
43 #include "regcache.h"
44 
45 /* The shared library implementation found on BSD a.out systems is
46    very similar to the SunOS implementation.  However, the data
47    structures defined in <link.h> are named very differently.  Make up
48    for those differences here.  */
49 
50 #ifdef HAVE_STRUCT_SO_MAP_WITH_SOM_MEMBERS
51 
52 /* FIXME: Temporary until the equivalent defines have been removed
53    from all nm-*bsd*.h files.  */
54 #ifndef link_dynamic
55 
56 /* Map `struct link_map' and its members.  */
57 #define link_map	so_map
58 #define lm_addr		som_addr
59 #define lm_name		som_path
60 #define lm_next		som_next
61 
62 /* Map `struct link_dynamic_2' and its members.  */
63 #define link_dynamic_2	section_dispatch_table
64 #define ld_loaded	sdt_loaded
65 
66 /* Map `struct rtc_symb' and its members.  */
67 #define rtc_symb	rt_symbol
68 #define rtc_sp		rt_sp
69 #define rtc_next	rt_next
70 
71 /* Map `struct ld_debug' and its members.  */
72 #define ld_debug	so_debug
73 #define ldd_in_debugger	dd_in_debugger
74 #define ldd_bp_addr	dd_bpt_addr
75 #define ldd_bp_inst	dd_bpt_shadow
76 #define ldd_cp		dd_cc
77 
78 /* Map `struct link_dynamic' and its members.  */
79 #define link_dynamic	_dynamic
80 #define ld_version	d_version
81 #define ldd		d_debug
82 #define ld_un		d_un
83 #define ld_2		d_sdt
84 
85 #endif
86 
87 #endif
88 
89 /* Link map info to include in an allocated so_list entry */
90 
91 struct lm_info
92   {
93     /* Pointer to copy of link map from inferior.  The type is char *
94        rather than void *, so that we may use byte offsets to find the
95        various fields without the need for a cast.  */
96     char *lm;
97   };
98 
99 
100 /* Symbols which are used to locate the base of the link map structures. */
101 
102 static char *debug_base_symbols[] =
103 {
104   "_DYNAMIC",
105   "_DYNAMIC__MGC",
106   NULL
107 };
108 
109 static char *main_name_list[] =
110 {
111   "main_$main",
112   NULL
113 };
114 
115 /* Macro to extract an address from a solib structure.  When GDB is
116    configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
117    configured to handle 64-bit targets, so CORE_ADDR is 64 bits.  We
118    have to extract only the significant bits of addresses to get the
119    right address when accessing the core file BFD.
120 
121    Assume that the address is unsigned.  */
122 
123 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
124 	extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
125 
126 /* local data declarations */
127 
128 static struct link_dynamic dynamic_copy;
129 static struct link_dynamic_2 ld_2_copy;
130 static struct ld_debug debug_copy;
131 static CORE_ADDR debug_addr;
132 static CORE_ADDR flag_addr;
133 
134 #ifndef offsetof
135 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
136 #endif
137 #define fieldsize(TYPE, MEMBER) (sizeof (((TYPE *)0)->MEMBER))
138 
139 /* link map access functions */
140 
141 static CORE_ADDR
LM_ADDR(struct so_list * so)142 LM_ADDR (struct so_list *so)
143 {
144   int lm_addr_offset = offsetof (struct link_map, lm_addr);
145   int lm_addr_size = fieldsize (struct link_map, lm_addr);
146 
147   return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lm_addr_offset,
148 					     lm_addr_size);
149 }
150 
151 static CORE_ADDR
LM_NEXT(struct so_list * so)152 LM_NEXT (struct so_list *so)
153 {
154   int lm_next_offset = offsetof (struct link_map, lm_next);
155   int lm_next_size = fieldsize (struct link_map, lm_next);
156 
157   /* Assume that the address is unsigned.  */
158   return extract_unsigned_integer (so->lm_info->lm + lm_next_offset,
159 				   lm_next_size);
160 }
161 
162 static CORE_ADDR
LM_NAME(struct so_list * so)163 LM_NAME (struct so_list *so)
164 {
165   int lm_name_offset = offsetof (struct link_map, lm_name);
166   int lm_name_size = fieldsize (struct link_map, lm_name);
167 
168   /* Assume that the address is unsigned.  */
169   return extract_unsigned_integer (so->lm_info->lm + lm_name_offset,
170 				   lm_name_size);
171 }
172 
173 static CORE_ADDR debug_base;	/* Base of dynamic linker structures */
174 
175 /* Local function prototypes */
176 
177 static int match_main (char *);
178 
179 /* Allocate the runtime common object file.  */
180 
181 static void
allocate_rt_common_objfile(void)182 allocate_rt_common_objfile (void)
183 {
184   struct objfile *objfile;
185   struct objfile *last_one;
186 
187   objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
188   memset (objfile, 0, sizeof (struct objfile));
189   objfile->md = NULL;
190   objfile->psymbol_cache = bcache_xmalloc ();
191   objfile->macro_cache = bcache_xmalloc ();
192   obstack_init (&objfile->objfile_obstack);
193   objfile->name = xstrdup ("rt_common");
194 
195   /* Add this file onto the tail of the linked list of other such files. */
196 
197   objfile->next = NULL;
198   if (object_files == NULL)
199     object_files = objfile;
200   else
201     {
202       for (last_one = object_files;
203 	   last_one->next;
204 	   last_one = last_one->next);
205       last_one->next = objfile;
206     }
207 
208   rt_common_objfile = objfile;
209 }
210 
211 /* Read all dynamically loaded common symbol definitions from the inferior
212    and put them into the minimal symbol table for the runtime common
213    objfile.  */
214 
215 static void
solib_add_common_symbols(CORE_ADDR rtc_symp)216 solib_add_common_symbols (CORE_ADDR rtc_symp)
217 {
218   struct rtc_symb inferior_rtc_symb;
219   struct nlist inferior_rtc_nlist;
220   int len;
221   char *name;
222 
223   /* Remove any runtime common symbols from previous runs.  */
224 
225   if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
226     {
227       obstack_free (&rt_common_objfile->objfile_obstack, 0);
228       obstack_init (&rt_common_objfile->objfile_obstack);
229       rt_common_objfile->minimal_symbol_count = 0;
230       rt_common_objfile->msymbols = NULL;
231       terminate_minimal_symbol_table (rt_common_objfile);
232     }
233 
234   init_minimal_symbol_collection ();
235   make_cleanup_discard_minimal_symbols ();
236 
237   while (rtc_symp)
238     {
239       read_memory (rtc_symp,
240 		   (char *) &inferior_rtc_symb,
241 		   sizeof (inferior_rtc_symb));
242       read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
243 		   (char *) &inferior_rtc_nlist,
244 		   sizeof (inferior_rtc_nlist));
245       if (inferior_rtc_nlist.n_type == N_COMM)
246 	{
247 	  /* FIXME: The length of the symbol name is not available, but in the
248 	     current implementation the common symbol is allocated immediately
249 	     behind the name of the symbol. */
250 	  len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
251 
252 	  name = xmalloc (len);
253 	  read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
254 		       name, len);
255 
256 	  /* Allocate the runtime common objfile if necessary. */
257 	  if (rt_common_objfile == NULL)
258 	    allocate_rt_common_objfile ();
259 
260 	  prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
261 				      mst_bss, rt_common_objfile);
262 	  xfree (name);
263 	}
264       rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
265     }
266 
267   /* Install any minimal symbols that have been collected as the current
268      minimal symbols for the runtime common objfile.  */
269 
270   install_minimal_symbols (rt_common_objfile);
271 }
272 
273 
274 /*
275 
276    LOCAL FUNCTION
277 
278    locate_base -- locate the base address of dynamic linker structs
279 
280    SYNOPSIS
281 
282    CORE_ADDR locate_base (void)
283 
284    DESCRIPTION
285 
286    For both the SunOS and SVR4 shared library implementations, if the
287    inferior executable has been linked dynamically, there is a single
288    address somewhere in the inferior's data space which is the key to
289    locating all of the dynamic linker's runtime structures.  This
290    address is the value of the debug base symbol.  The job of this
291    function is to find and return that address, or to return 0 if there
292    is no such address (the executable is statically linked for example).
293 
294    For SunOS, the job is almost trivial, since the dynamic linker and
295    all of it's structures are statically linked to the executable at
296    link time.  Thus the symbol for the address we are looking for has
297    already been added to the minimal symbol table for the executable's
298    objfile at the time the symbol file's symbols were read, and all we
299    have to do is look it up there.  Note that we explicitly do NOT want
300    to find the copies in the shared library.
301 
302    The SVR4 version is a bit more complicated because the address
303    is contained somewhere in the dynamic info section.  We have to go
304    to a lot more work to discover the address of the debug base symbol.
305    Because of this complexity, we cache the value we find and return that
306    value on subsequent invocations.  Note there is no copy in the
307    executable symbol tables.
308 
309  */
310 
311 static CORE_ADDR
locate_base(void)312 locate_base (void)
313 {
314   struct minimal_symbol *msymbol;
315   CORE_ADDR address = 0;
316   char **symbolp;
317 
318   /* For SunOS, we want to limit the search for the debug base symbol to the
319      executable being debugged, since there is a duplicate named symbol in the
320      shared library.  We don't want the shared library versions. */
321 
322   for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
323     {
324       msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
325       if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
326 	{
327 	  address = SYMBOL_VALUE_ADDRESS (msymbol);
328 	  return (address);
329 	}
330     }
331   return (0);
332 }
333 
334 /*
335 
336    LOCAL FUNCTION
337 
338    first_link_map_member -- locate first member in dynamic linker's map
339 
340    SYNOPSIS
341 
342    static CORE_ADDR first_link_map_member (void)
343 
344    DESCRIPTION
345 
346    Find the first element in the inferior's dynamic link map, and
347    return its address in the inferior.  This function doesn't copy the
348    link map entry itself into our address space; current_sos actually
349    does the reading.  */
350 
351 static CORE_ADDR
first_link_map_member(void)352 first_link_map_member (void)
353 {
354   CORE_ADDR lm = 0;
355 
356   read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
357   if (dynamic_copy.ld_version >= 2)
358     {
359       /* It is a version that we can deal with, so read in the secondary
360          structure and find the address of the link map list from it. */
361       read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
362 		   (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
363       lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
364     }
365   return (lm);
366 }
367 
368 static int
open_symbol_file_object(void * from_ttyp)369 open_symbol_file_object (void *from_ttyp)
370 {
371   return 1;
372 }
373 
374 
375 /* LOCAL FUNCTION
376 
377    current_sos -- build a list of currently loaded shared objects
378 
379    SYNOPSIS
380 
381    struct so_list *current_sos ()
382 
383    DESCRIPTION
384 
385    Build a list of `struct so_list' objects describing the shared
386    objects currently loaded in the inferior.  This list does not
387    include an entry for the main executable file.
388 
389    Note that we only gather information directly available from the
390    inferior --- we don't examine any of the shared library files
391    themselves.  The declaration of `struct so_list' says which fields
392    we provide values for.  */
393 
394 static struct so_list *
sunos_current_sos(void)395 sunos_current_sos (void)
396 {
397   CORE_ADDR lm;
398   struct so_list *head = 0;
399   struct so_list **link_ptr = &head;
400   int errcode;
401   char *buffer;
402 
403   /* Make sure we've looked up the inferior's dynamic linker's base
404      structure.  */
405   if (! debug_base)
406     {
407       debug_base = locate_base ();
408 
409       /* If we can't find the dynamic linker's base structure, this
410 	 must not be a dynamically linked executable.  Hmm.  */
411       if (! debug_base)
412 	return 0;
413     }
414 
415   /* Walk the inferior's link map list, and build our list of
416      `struct so_list' nodes.  */
417   lm = first_link_map_member ();
418   while (lm)
419     {
420       struct so_list *new
421 	= (struct so_list *) xmalloc (sizeof (struct so_list));
422       struct cleanup *old_chain = make_cleanup (xfree, new);
423 
424       memset (new, 0, sizeof (*new));
425 
426       new->lm_info = xmalloc (sizeof (struct lm_info));
427       make_cleanup (xfree, new->lm_info);
428 
429       new->lm_info->lm = xmalloc (sizeof (struct link_map));
430       make_cleanup (xfree, new->lm_info->lm);
431       memset (new->lm_info->lm, 0, sizeof (struct link_map));
432 
433       read_memory (lm, new->lm_info->lm, sizeof (struct link_map));
434 
435       lm = LM_NEXT (new);
436 
437       /* Extract this shared object's name.  */
438       target_read_string (LM_NAME (new), &buffer,
439 			  SO_NAME_MAX_PATH_SIZE - 1, &errcode);
440       if (errcode != 0)
441 	{
442 	  warning ("current_sos: Can't read pathname for load map: %s\n",
443 		   safe_strerror (errcode));
444 	}
445       else
446 	{
447 	  strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
448 	  new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
449 	  xfree (buffer);
450 	  strcpy (new->so_original_name, new->so_name);
451 	}
452 
453       /* If this entry has no name, or its name matches the name
454 	 for the main executable, don't include it in the list.  */
455       if (! new->so_name[0]
456 	  || match_main (new->so_name))
457 	free_so (new);
458       else
459 	{
460 	  new->next = 0;
461 	  *link_ptr = new;
462 	  link_ptr = &new->next;
463 	}
464 
465       discard_cleanups (old_chain);
466     }
467 
468   return head;
469 }
470 
471 
472 /* On some systems, the only way to recognize the link map entry for
473    the main executable file is by looking at its name.  Return
474    non-zero iff SONAME matches one of the known main executable names.  */
475 
476 static int
match_main(char * soname)477 match_main (char *soname)
478 {
479   char **mainp;
480 
481   for (mainp = main_name_list; *mainp != NULL; mainp++)
482     {
483       if (strcmp (soname, *mainp) == 0)
484 	return (1);
485     }
486 
487   return (0);
488 }
489 
490 
491 static int
sunos_in_dynsym_resolve_code(CORE_ADDR pc)492 sunos_in_dynsym_resolve_code (CORE_ADDR pc)
493 {
494   return 0;
495 }
496 
497 /*
498 
499    LOCAL FUNCTION
500 
501    disable_break -- remove the "mapping changed" breakpoint
502 
503    SYNOPSIS
504 
505    static int disable_break ()
506 
507    DESCRIPTION
508 
509    Removes the breakpoint that gets hit when the dynamic linker
510    completes a mapping change.
511 
512  */
513 
514 static int
disable_break(void)515 disable_break (void)
516 {
517   CORE_ADDR breakpoint_addr;	/* Address where end bkpt is set */
518 
519   int in_debugger = 0;
520 
521   /* Read the debugger structure from the inferior to retrieve the
522      address of the breakpoint and the original contents of the
523      breakpoint address.  Remove the breakpoint by writing the original
524      contents back. */
525 
526   read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
527 
528   /* Set `in_debugger' to zero now. */
529 
530   write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
531 
532   breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
533   write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
534 		sizeof (debug_copy.ldd_bp_inst));
535 
536   /* For the SVR4 version, we always know the breakpoint address.  For the
537      SunOS version we don't know it until the above code is executed.
538      Grumble if we are stopped anywhere besides the breakpoint address. */
539 
540   if (stop_pc != breakpoint_addr)
541     {
542       warning ("stopped at unknown breakpoint while handling shared libraries");
543     }
544 
545   return 1;
546 }
547 
548 
549 /*
550 
551    LOCAL FUNCTION
552 
553    enable_break -- arrange for dynamic linker to hit breakpoint
554 
555    SYNOPSIS
556 
557    int enable_break (void)
558 
559    DESCRIPTION
560 
561    Both the SunOS and the SVR4 dynamic linkers have, as part of their
562    debugger interface, support for arranging for the inferior to hit
563    a breakpoint after mapping in the shared libraries.  This function
564    enables that breakpoint.
565 
566    For SunOS, there is a special flag location (in_debugger) which we
567    set to 1.  When the dynamic linker sees this flag set, it will set
568    a breakpoint at a location known only to itself, after saving the
569    original contents of that place and the breakpoint address itself,
570    in it's own internal structures.  When we resume the inferior, it
571    will eventually take a SIGTRAP when it runs into the breakpoint.
572    We handle this (in a different place) by restoring the contents of
573    the breakpointed location (which is only known after it stops),
574    chasing around to locate the shared libraries that have been
575    loaded, then resuming.
576 
577    For SVR4, the debugger interface structure contains a member (r_brk)
578    which is statically initialized at the time the shared library is
579    built, to the offset of a function (_r_debug_state) which is guaran-
580    teed to be called once before mapping in a library, and again when
581    the mapping is complete.  At the time we are examining this member,
582    it contains only the unrelocated offset of the function, so we have
583    to do our own relocation.  Later, when the dynamic linker actually
584    runs, it relocates r_brk to be the actual address of _r_debug_state().
585 
586    The debugger interface structure also contains an enumeration which
587    is set to either RT_ADD or RT_DELETE prior to changing the mapping,
588    depending upon whether or not the library is being mapped or unmapped,
589    and then set to RT_CONSISTENT after the library is mapped/unmapped.
590  */
591 
592 static int
enable_break(void)593 enable_break (void)
594 {
595   int success = 0;
596   int j;
597   int in_debugger;
598 
599   /* Get link_dynamic structure */
600 
601   j = target_read_memory (debug_base, (char *) &dynamic_copy,
602 			  sizeof (dynamic_copy));
603   if (j)
604     {
605       /* unreadable */
606       return (0);
607     }
608 
609   /* Calc address of debugger interface structure */
610 
611   debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
612 
613   /* Calc address of `in_debugger' member of debugger interface structure */
614 
615   flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
616 					(char *) &debug_copy);
617 
618   /* Write a value of 1 to this member.  */
619 
620   in_debugger = 1;
621   write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
622   success = 1;
623 
624   return (success);
625 }
626 
627 /*
628 
629    LOCAL FUNCTION
630 
631    special_symbol_handling -- additional shared library symbol handling
632 
633    SYNOPSIS
634 
635    void special_symbol_handling ()
636 
637    DESCRIPTION
638 
639    Once the symbols from a shared object have been loaded in the usual
640    way, we are called to do any system specific symbol handling that
641    is needed.
642 
643    For SunOS4, this consists of grunging around in the dynamic
644    linkers structures to find symbol definitions for "common" symbols
645    and adding them to the minimal symbol table for the runtime common
646    objfile.
647 
648  */
649 
650 static void
sunos_special_symbol_handling(void)651 sunos_special_symbol_handling (void)
652 {
653   int j;
654 
655   if (debug_addr == 0)
656     {
657       /* Get link_dynamic structure */
658 
659       j = target_read_memory (debug_base, (char *) &dynamic_copy,
660 			      sizeof (dynamic_copy));
661       if (j)
662 	{
663 	  /* unreadable */
664 	  return;
665 	}
666 
667       /* Calc address of debugger interface structure */
668       /* FIXME, this needs work for cross-debugging of core files
669          (byteorder, size, alignment, etc).  */
670 
671       debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
672     }
673 
674   /* Read the debugger structure from the inferior, just to make sure
675      we have a current copy. */
676 
677   j = target_read_memory (debug_addr, (char *) &debug_copy,
678 			  sizeof (debug_copy));
679   if (j)
680     return;			/* unreadable */
681 
682   /* Get common symbol definitions for the loaded object. */
683 
684   if (debug_copy.ldd_cp)
685     {
686       solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
687     }
688 }
689 
690 /*
691 
692    GLOBAL FUNCTION
693 
694    sunos_solib_create_inferior_hook -- shared library startup support
695 
696    SYNOPSIS
697 
698    void sunos_solib_create_inferior_hook()
699 
700    DESCRIPTION
701 
702    When gdb starts up the inferior, it nurses it along (through the
703    shell) until it is ready to execute it's first instruction.  At this
704    point, this function gets called via expansion of the macro
705    SOLIB_CREATE_INFERIOR_HOOK.
706 
707    For SunOS executables, this first instruction is typically the
708    one at "_start", or a similar text label, regardless of whether
709    the executable is statically or dynamically linked.  The runtime
710    startup code takes care of dynamically linking in any shared
711    libraries, once gdb allows the inferior to continue.
712 
713    For SVR4 executables, this first instruction is either the first
714    instruction in the dynamic linker (for dynamically linked
715    executables) or the instruction at "start" for statically linked
716    executables.  For dynamically linked executables, the system
717    first exec's /lib/libc.so.N, which contains the dynamic linker,
718    and starts it running.  The dynamic linker maps in any needed
719    shared libraries, maps in the actual user executable, and then
720    jumps to "start" in the user executable.
721 
722    For both SunOS shared libraries, and SVR4 shared libraries, we
723    can arrange to cooperate with the dynamic linker to discover the
724    names of shared libraries that are dynamically linked, and the
725    base addresses to which they are linked.
726 
727    This function is responsible for discovering those names and
728    addresses, and saving sufficient information about them to allow
729    their symbols to be read at a later time.
730 
731    FIXME
732 
733    Between enable_break() and disable_break(), this code does not
734    properly handle hitting breakpoints which the user might have
735    set in the startup code or in the dynamic linker itself.  Proper
736    handling will probably have to wait until the implementation is
737    changed to use the "breakpoint handler function" method.
738 
739    Also, what if child has exit()ed?  Must exit loop somehow.
740  */
741 
742 static void
sunos_solib_create_inferior_hook(void)743 sunos_solib_create_inferior_hook (void)
744 {
745   if ((debug_base = locate_base ()) == 0)
746     {
747       /* Can't find the symbol or the executable is statically linked. */
748       return;
749     }
750 
751   if (!enable_break ())
752     {
753       warning ("shared library handler failed to enable breakpoint");
754       return;
755     }
756 
757   /* SCO and SunOS need the loop below, other systems should be using the
758      special shared library breakpoints and the shared library breakpoint
759      service routine.
760 
761      Now run the target.  It will eventually hit the breakpoint, at
762      which point all of the libraries will have been mapped in and we
763      can go groveling around in the dynamic linker structures to find
764      out what we need to know about them. */
765 
766   clear_proceed_status ();
767   stop_soon = STOP_QUIETLY;
768   stop_signal = TARGET_SIGNAL_0;
769   do
770     {
771       target_resume (pid_to_ptid (-1), 0, stop_signal);
772       wait_for_inferior ();
773     }
774   while (stop_signal != TARGET_SIGNAL_TRAP);
775   stop_soon = NO_STOP_QUIETLY;
776 
777   /* We are now either at the "mapping complete" breakpoint (or somewhere
778      else, a condition we aren't prepared to deal with anyway), so adjust
779      the PC as necessary after a breakpoint, disable the breakpoint, and
780      add any shared libraries that were mapped in. */
781 
782   if (DECR_PC_AFTER_BREAK)
783     {
784       stop_pc -= DECR_PC_AFTER_BREAK;
785       write_register (PC_REGNUM, stop_pc);
786     }
787 
788   if (!disable_break ())
789     {
790       warning ("shared library handler failed to disable breakpoint");
791     }
792 
793   solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
794 }
795 
796 static void
sunos_clear_solib(void)797 sunos_clear_solib (void)
798 {
799   debug_base = 0;
800 }
801 
802 static void
sunos_free_so(struct so_list * so)803 sunos_free_so (struct so_list *so)
804 {
805   xfree (so->lm_info->lm);
806   xfree (so->lm_info);
807 }
808 
809 static void
sunos_relocate_section_addresses(struct so_list * so,struct section_table * sec)810 sunos_relocate_section_addresses (struct so_list *so,
811                                  struct section_table *sec)
812 {
813   sec->addr += LM_ADDR (so);
814   sec->endaddr += LM_ADDR (so);
815 }
816 
817 static struct target_so_ops sunos_so_ops;
818 
819 void
_initialize_sunos_solib(void)820 _initialize_sunos_solib (void)
821 {
822   sunos_so_ops.relocate_section_addresses = sunos_relocate_section_addresses;
823   sunos_so_ops.free_so = sunos_free_so;
824   sunos_so_ops.clear_solib = sunos_clear_solib;
825   sunos_so_ops.solib_create_inferior_hook = sunos_solib_create_inferior_hook;
826   sunos_so_ops.special_symbol_handling = sunos_special_symbol_handling;
827   sunos_so_ops.current_sos = sunos_current_sos;
828   sunos_so_ops.open_symbol_file_object = open_symbol_file_object;
829   sunos_so_ops.in_dynsym_resolve_code = sunos_in_dynsym_resolve_code;
830 
831   /* FIXME: Don't do this here.  *_gdbarch_init() should set so_ops. */
832   current_target_so_ops = &sunos_so_ops;
833 }
834