1 /*	$NetBSD: kern_time.c,v 1.188 2016/07/07 06:55:43 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.188 2016/07/07 06:55:43 msaitoh Exp $");
65 
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80 
81 static void	timer_intr(void *);
82 static void	itimerfire(struct ptimer *);
83 static void	itimerfree(struct ptimers *, int);
84 
85 kmutex_t	timer_lock;
86 
87 static void	*timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89 
90 struct pool ptimer_pool, ptimers_pool;
91 
92 #define	CLOCK_VIRTUAL_P(clockid)	\
93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94 
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99 
100 #define	DELAYTIMER_MAX	32
101 
102 /*
103  * Initialize timekeeping.
104  */
105 void
time_init(void)106 time_init(void)
107 {
108 
109 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 	    &pool_allocator_nointr, IPL_NONE);
111 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 	    &pool_allocator_nointr, IPL_NONE);
113 }
114 
115 void
time_init2(void)116 time_init2(void)
117 {
118 
119 	TAILQ_INIT(&timer_queue);
120 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 	    timer_intr, NULL);
123 }
124 
125 /* Time of day and interval timer support.
126  *
127  * These routines provide the kernel entry points to get and set
128  * the time-of-day and per-process interval timers.  Subroutines
129  * here provide support for adding and subtracting timeval structures
130  * and decrementing interval timers, optionally reloading the interval
131  * timers when they expire.
132  */
133 
134 /* This function is used by clock_settime and settimeofday */
135 static int
settime1(struct proc * p,const struct timespec * ts,bool check_kauth)136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 	struct timespec delta, now;
139 	int s;
140 
141 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 	s = splclock();
143 	nanotime(&now);
144 	timespecsub(ts, &now, &delta);
145 
146 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 		splx(s);
150 		return (EPERM);
151 	}
152 
153 #ifdef notyet
154 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 		splx(s);
156 		return (EPERM);
157 	}
158 #endif
159 
160 	tc_setclock(ts);
161 
162 	timespecadd(&boottime, &delta, &boottime);
163 
164 	resettodr();
165 	splx(s);
166 
167 	return (0);
168 }
169 
170 int
settime(struct proc * p,struct timespec * ts)171 settime(struct proc *p, struct timespec *ts)
172 {
173 	return (settime1(p, ts, true));
174 }
175 
176 /* ARGSUSED */
177 int
sys___clock_gettime50(struct lwp * l,const struct sys___clock_gettime50_args * uap,register_t * retval)178 sys___clock_gettime50(struct lwp *l,
179     const struct sys___clock_gettime50_args *uap, register_t *retval)
180 {
181 	/* {
182 		syscallarg(clockid_t) clock_id;
183 		syscallarg(struct timespec *) tp;
184 	} */
185 	int error;
186 	struct timespec ats;
187 
188 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 	if (error != 0)
190 		return error;
191 
192 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 }
194 
195 /* ARGSUSED */
196 int
sys___clock_settime50(struct lwp * l,const struct sys___clock_settime50_args * uap,register_t * retval)197 sys___clock_settime50(struct lwp *l,
198     const struct sys___clock_settime50_args *uap, register_t *retval)
199 {
200 	/* {
201 		syscallarg(clockid_t) clock_id;
202 		syscallarg(const struct timespec *) tp;
203 	} */
204 	int error;
205 	struct timespec ats;
206 
207 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 		return error;
209 
210 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 }
212 
213 
214 int
clock_settime1(struct proc * p,clockid_t clock_id,const struct timespec * tp,bool check_kauth)215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216     bool check_kauth)
217 {
218 	int error;
219 
220 	switch (clock_id) {
221 	case CLOCK_REALTIME:
222 		if ((error = settime1(p, tp, check_kauth)) != 0)
223 			return (error);
224 		break;
225 	case CLOCK_MONOTONIC:
226 		return (EINVAL);	/* read-only clock */
227 	default:
228 		return (EINVAL);
229 	}
230 
231 	return 0;
232 }
233 
234 int
sys___clock_getres50(struct lwp * l,const struct sys___clock_getres50_args * uap,register_t * retval)235 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
236     register_t *retval)
237 {
238 	/* {
239 		syscallarg(clockid_t) clock_id;
240 		syscallarg(struct timespec *) tp;
241 	} */
242 	struct timespec ts;
243 	int error;
244 
245 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
246 		return error;
247 
248 	if (SCARG(uap, tp))
249 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250 
251 	return error;
252 }
253 
254 int
clock_getres1(clockid_t clock_id,struct timespec * ts)255 clock_getres1(clockid_t clock_id, struct timespec *ts)
256 {
257 
258 	switch (clock_id) {
259 	case CLOCK_REALTIME:
260 	case CLOCK_MONOTONIC:
261 		ts->tv_sec = 0;
262 		if (tc_getfrequency() > 1000000000)
263 			ts->tv_nsec = 1;
264 		else
265 			ts->tv_nsec = 1000000000 / tc_getfrequency();
266 		break;
267 	default:
268 		return EINVAL;
269 	}
270 
271 	return 0;
272 }
273 
274 /* ARGSUSED */
275 int
sys___nanosleep50(struct lwp * l,const struct sys___nanosleep50_args * uap,register_t * retval)276 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
277     register_t *retval)
278 {
279 	/* {
280 		syscallarg(struct timespec *) rqtp;
281 		syscallarg(struct timespec *) rmtp;
282 	} */
283 	struct timespec rmt, rqt;
284 	int error, error1;
285 
286 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
287 	if (error)
288 		return (error);
289 
290 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
291 	    SCARG(uap, rmtp) ? &rmt : NULL);
292 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
293 		return error;
294 
295 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296 	return error1 ? error1 : error;
297 }
298 
299 /* ARGSUSED */
300 int
sys_clock_nanosleep(struct lwp * l,const struct sys_clock_nanosleep_args * uap,register_t * retval)301 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
302     register_t *retval)
303 {
304 	/* {
305 		syscallarg(clockid_t) clock_id;
306 		syscallarg(int) flags;
307 		syscallarg(struct timespec *) rqtp;
308 		syscallarg(struct timespec *) rmtp;
309 	} */
310 	struct timespec rmt, rqt;
311 	int error, error1;
312 
313 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
314 	if (error)
315 		goto out;
316 
317 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
318 	    SCARG(uap, rmtp) ? &rmt : NULL);
319 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
320 		goto out;
321 
322 	if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
323 		error = error1;
324 out:
325 	*retval = error;
326 	return 0;
327 }
328 
329 int
nanosleep1(struct lwp * l,clockid_t clock_id,int flags,struct timespec * rqt,struct timespec * rmt)330 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
331     struct timespec *rmt)
332 {
333 	struct timespec rmtstart;
334 	int error, timo;
335 
336 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
337 		if (error == ETIMEDOUT) {
338 			error = 0;
339 			if (rmt != NULL)
340 				rmt->tv_sec = rmt->tv_nsec = 0;
341 		}
342 		return error;
343 	}
344 
345 	/*
346 	 * Avoid inadvertently sleeping forever
347 	 */
348 	if (timo == 0)
349 		timo = 1;
350 again:
351 	error = kpause("nanoslp", true, timo, NULL);
352 	if (rmt != NULL || error == 0) {
353 		struct timespec rmtend;
354 		struct timespec t0;
355 		struct timespec *t;
356 
357 		(void)clock_gettime1(clock_id, &rmtend);
358 		t = (rmt != NULL) ? rmt : &t0;
359 		if (flags & TIMER_ABSTIME) {
360 			timespecsub(rqt, &rmtend, t);
361 		} else {
362 			timespecsub(&rmtend, &rmtstart, t);
363 			timespecsub(rqt, t, t);
364 		}
365 		if (t->tv_sec < 0)
366 			timespecclear(t);
367 		if (error == 0) {
368 			timo = tstohz(t);
369 			if (timo > 0)
370 				goto again;
371 		}
372 	}
373 
374 	if (error == ERESTART)
375 		error = EINTR;
376 	if (error == EWOULDBLOCK)
377 		error = 0;
378 
379 	return error;
380 }
381 
382 int
sys_clock_getcpuclockid2(struct lwp * l,const struct sys_clock_getcpuclockid2_args * uap,register_t * retval)383 sys_clock_getcpuclockid2(struct lwp *l,
384     const struct sys_clock_getcpuclockid2_args *uap,
385     register_t *retval)
386 {
387 	/* {
388 		syscallarg(idtype_t idtype;
389 		syscallarg(id_t id);
390 		syscallarg(clockid_t *)clock_id;
391 	} */
392 	pid_t pid;
393 	lwpid_t lid;
394 	clockid_t clock_id;
395 	id_t id = SCARG(uap, id);
396 
397 	switch (SCARG(uap, idtype)) {
398 	case P_PID:
399 		pid = id == 0 ? l->l_proc->p_pid : id;
400 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
401 		break;
402 	case P_LWPID:
403 		lid = id == 0 ? l->l_lid : id;
404 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
405 		break;
406 	default:
407 		return EINVAL;
408 	}
409 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
410 }
411 
412 /* ARGSUSED */
413 int
sys___gettimeofday50(struct lwp * l,const struct sys___gettimeofday50_args * uap,register_t * retval)414 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
415     register_t *retval)
416 {
417 	/* {
418 		syscallarg(struct timeval *) tp;
419 		syscallarg(void *) tzp;		really "struct timezone *";
420 	} */
421 	struct timeval atv;
422 	int error = 0;
423 	struct timezone tzfake;
424 
425 	if (SCARG(uap, tp)) {
426 		microtime(&atv);
427 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
428 		if (error)
429 			return (error);
430 	}
431 	if (SCARG(uap, tzp)) {
432 		/*
433 		 * NetBSD has no kernel notion of time zone, so we just
434 		 * fake up a timezone struct and return it if demanded.
435 		 */
436 		tzfake.tz_minuteswest = 0;
437 		tzfake.tz_dsttime = 0;
438 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
439 	}
440 	return (error);
441 }
442 
443 /* ARGSUSED */
444 int
sys___settimeofday50(struct lwp * l,const struct sys___settimeofday50_args * uap,register_t * retval)445 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
446     register_t *retval)
447 {
448 	/* {
449 		syscallarg(const struct timeval *) tv;
450 		syscallarg(const void *) tzp; really "const struct timezone *";
451 	} */
452 
453 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
454 }
455 
456 int
settimeofday1(const struct timeval * utv,bool userspace,const void * utzp,struct lwp * l,bool check_kauth)457 settimeofday1(const struct timeval *utv, bool userspace,
458     const void *utzp, struct lwp *l, bool check_kauth)
459 {
460 	struct timeval atv;
461 	struct timespec ts;
462 	int error;
463 
464 	/* Verify all parameters before changing time. */
465 
466 	/*
467 	 * NetBSD has no kernel notion of time zone, and only an
468 	 * obsolete program would try to set it, so we log a warning.
469 	 */
470 	if (utzp)
471 		log(LOG_WARNING, "pid %d attempted to set the "
472 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
473 
474 	if (utv == NULL)
475 		return 0;
476 
477 	if (userspace) {
478 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
479 			return error;
480 		utv = &atv;
481 	}
482 
483 	TIMEVAL_TO_TIMESPEC(utv, &ts);
484 	return settime1(l->l_proc, &ts, check_kauth);
485 }
486 
487 int	time_adjusted;			/* set if an adjustment is made */
488 
489 /* ARGSUSED */
490 int
sys___adjtime50(struct lwp * l,const struct sys___adjtime50_args * uap,register_t * retval)491 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
492     register_t *retval)
493 {
494 	/* {
495 		syscallarg(const struct timeval *) delta;
496 		syscallarg(struct timeval *) olddelta;
497 	} */
498 	int error;
499 	struct timeval atv, oldatv;
500 
501 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
502 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
503 		return error;
504 
505 	if (SCARG(uap, delta)) {
506 		error = copyin(SCARG(uap, delta), &atv,
507 		    sizeof(*SCARG(uap, delta)));
508 		if (error)
509 			return (error);
510 	}
511 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
512 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
513 	if (SCARG(uap, olddelta))
514 		error = copyout(&oldatv, SCARG(uap, olddelta),
515 		    sizeof(*SCARG(uap, olddelta)));
516 	return error;
517 }
518 
519 void
adjtime1(const struct timeval * delta,struct timeval * olddelta,struct proc * p)520 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
521 {
522 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
523 
524 	if (olddelta) {
525 		mutex_spin_enter(&timecounter_lock);
526 		olddelta->tv_sec = time_adjtime / 1000000;
527 		olddelta->tv_usec = time_adjtime % 1000000;
528 		if (olddelta->tv_usec < 0) {
529 			olddelta->tv_usec += 1000000;
530 			olddelta->tv_sec--;
531 		}
532 		mutex_spin_exit(&timecounter_lock);
533 	}
534 
535 	if (delta) {
536 		mutex_spin_enter(&timecounter_lock);
537 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
538 
539 		if (time_adjtime) {
540 			/* We need to save the system time during shutdown */
541 			time_adjusted |= 1;
542 		}
543 		mutex_spin_exit(&timecounter_lock);
544 	}
545 }
546 
547 /*
548  * Interval timer support. Both the BSD getitimer() family and the POSIX
549  * timer_*() family of routines are supported.
550  *
551  * All timers are kept in an array pointed to by p_timers, which is
552  * allocated on demand - many processes don't use timers at all. The
553  * first four elements in this array are reserved for the BSD timers:
554  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
555  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
556  * allocated by the timer_create() syscall.
557  *
558  * Realtime timers are kept in the ptimer structure as an absolute
559  * time; virtual time timers are kept as a linked list of deltas.
560  * Virtual time timers are processed in the hardclock() routine of
561  * kern_clock.c.  The real time timer is processed by a callout
562  * routine, called from the softclock() routine.  Since a callout may
563  * be delayed in real time due to interrupt processing in the system,
564  * it is possible for the real time timeout routine (realtimeexpire,
565  * given below), to be delayed in real time past when it is supposed
566  * to occur.  It does not suffice, therefore, to reload the real timer
567  * .it_value from the real time timers .it_interval.  Rather, we
568  * compute the next time in absolute time the timer should go off.  */
569 
570 /* Allocate a POSIX realtime timer. */
571 int
sys_timer_create(struct lwp * l,const struct sys_timer_create_args * uap,register_t * retval)572 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
573     register_t *retval)
574 {
575 	/* {
576 		syscallarg(clockid_t) clock_id;
577 		syscallarg(struct sigevent *) evp;
578 		syscallarg(timer_t *) timerid;
579 	} */
580 
581 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
582 	    SCARG(uap, evp), copyin, l);
583 }
584 
585 int
timer_create1(timer_t * tid,clockid_t id,struct sigevent * evp,copyin_t fetch_event,struct lwp * l)586 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
587     copyin_t fetch_event, struct lwp *l)
588 {
589 	int error;
590 	timer_t timerid;
591 	struct ptimers *pts;
592 	struct ptimer *pt;
593 	struct proc *p;
594 
595 	p = l->l_proc;
596 
597 	if ((u_int)id > CLOCK_MONOTONIC)
598 		return (EINVAL);
599 
600 	if ((pts = p->p_timers) == NULL)
601 		pts = timers_alloc(p);
602 
603 	pt = pool_get(&ptimer_pool, PR_WAITOK);
604 	if (evp != NULL) {
605 		if (((error =
606 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
607 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
608 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
609 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
610 			 (pt->pt_ev.sigev_signo <= 0 ||
611 			  pt->pt_ev.sigev_signo >= NSIG))) {
612 			pool_put(&ptimer_pool, pt);
613 			return (error ? error : EINVAL);
614 		}
615 	}
616 
617 	/* Find a free timer slot, skipping those reserved for setitimer(). */
618 	mutex_spin_enter(&timer_lock);
619 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
620 		if (pts->pts_timers[timerid] == NULL)
621 			break;
622 	if (timerid == TIMER_MAX) {
623 		mutex_spin_exit(&timer_lock);
624 		pool_put(&ptimer_pool, pt);
625 		return EAGAIN;
626 	}
627 	if (evp == NULL) {
628 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
629 		switch (id) {
630 		case CLOCK_REALTIME:
631 		case CLOCK_MONOTONIC:
632 			pt->pt_ev.sigev_signo = SIGALRM;
633 			break;
634 		case CLOCK_VIRTUAL:
635 			pt->pt_ev.sigev_signo = SIGVTALRM;
636 			break;
637 		case CLOCK_PROF:
638 			pt->pt_ev.sigev_signo = SIGPROF;
639 			break;
640 		}
641 		pt->pt_ev.sigev_value.sival_int = timerid;
642 	}
643 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
644 	pt->pt_info.ksi_errno = 0;
645 	pt->pt_info.ksi_code = 0;
646 	pt->pt_info.ksi_pid = p->p_pid;
647 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
648 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
649 	pt->pt_type = id;
650 	pt->pt_proc = p;
651 	pt->pt_overruns = 0;
652 	pt->pt_poverruns = 0;
653 	pt->pt_entry = timerid;
654 	pt->pt_queued = false;
655 	timespecclear(&pt->pt_time.it_value);
656 	if (!CLOCK_VIRTUAL_P(id))
657 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
658 	else
659 		pt->pt_active = 0;
660 
661 	pts->pts_timers[timerid] = pt;
662 	mutex_spin_exit(&timer_lock);
663 
664 	return copyout(&timerid, tid, sizeof(timerid));
665 }
666 
667 /* Delete a POSIX realtime timer */
668 int
sys_timer_delete(struct lwp * l,const struct sys_timer_delete_args * uap,register_t * retval)669 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
670     register_t *retval)
671 {
672 	/* {
673 		syscallarg(timer_t) timerid;
674 	} */
675 	struct proc *p = l->l_proc;
676 	timer_t timerid;
677 	struct ptimers *pts;
678 	struct ptimer *pt, *ptn;
679 
680 	timerid = SCARG(uap, timerid);
681 	pts = p->p_timers;
682 
683 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
684 		return (EINVAL);
685 
686 	mutex_spin_enter(&timer_lock);
687 	if ((pt = pts->pts_timers[timerid]) == NULL) {
688 		mutex_spin_exit(&timer_lock);
689 		return (EINVAL);
690 	}
691 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
692 		if (pt->pt_active) {
693 			ptn = LIST_NEXT(pt, pt_list);
694 			LIST_REMOVE(pt, pt_list);
695 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
696 				timespecadd(&pt->pt_time.it_value,
697 				    &ptn->pt_time.it_value,
698 				    &ptn->pt_time.it_value);
699 			pt->pt_active = 0;
700 		}
701 	}
702 	itimerfree(pts, timerid);
703 
704 	return (0);
705 }
706 
707 /*
708  * Set up the given timer. The value in pt->pt_time.it_value is taken
709  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
710  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
711  */
712 void
timer_settime(struct ptimer * pt)713 timer_settime(struct ptimer *pt)
714 {
715 	struct ptimer *ptn, *pptn;
716 	struct ptlist *ptl;
717 
718 	KASSERT(mutex_owned(&timer_lock));
719 
720 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
721 		callout_halt(&pt->pt_ch, &timer_lock);
722 		if (timespecisset(&pt->pt_time.it_value)) {
723 			/*
724 			 * Don't need to check tshzto() return value, here.
725 			 * callout_reset() does it for us.
726 			 */
727 			callout_reset(&pt->pt_ch,
728 			    pt->pt_type == CLOCK_MONOTONIC ?
729 			    tshztoup(&pt->pt_time.it_value) :
730 			    tshzto(&pt->pt_time.it_value),
731 			    realtimerexpire, pt);
732 		}
733 	} else {
734 		if (pt->pt_active) {
735 			ptn = LIST_NEXT(pt, pt_list);
736 			LIST_REMOVE(pt, pt_list);
737 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
738 				timespecadd(&pt->pt_time.it_value,
739 				    &ptn->pt_time.it_value,
740 				    &ptn->pt_time.it_value);
741 		}
742 		if (timespecisset(&pt->pt_time.it_value)) {
743 			if (pt->pt_type == CLOCK_VIRTUAL)
744 				ptl = &pt->pt_proc->p_timers->pts_virtual;
745 			else
746 				ptl = &pt->pt_proc->p_timers->pts_prof;
747 
748 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
749 			     ptn && timespeccmp(&pt->pt_time.it_value,
750 				 &ptn->pt_time.it_value, >);
751 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
752 				timespecsub(&pt->pt_time.it_value,
753 				    &ptn->pt_time.it_value,
754 				    &pt->pt_time.it_value);
755 
756 			if (pptn)
757 				LIST_INSERT_AFTER(pptn, pt, pt_list);
758 			else
759 				LIST_INSERT_HEAD(ptl, pt, pt_list);
760 
761 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
762 				timespecsub(&ptn->pt_time.it_value,
763 				    &pt->pt_time.it_value,
764 				    &ptn->pt_time.it_value);
765 
766 			pt->pt_active = 1;
767 		} else
768 			pt->pt_active = 0;
769 	}
770 }
771 
772 void
timer_gettime(struct ptimer * pt,struct itimerspec * aits)773 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
774 {
775 	struct timespec now;
776 	struct ptimer *ptn;
777 
778 	KASSERT(mutex_owned(&timer_lock));
779 
780 	*aits = pt->pt_time;
781 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
782 		/*
783 		 * Convert from absolute to relative time in .it_value
784 		 * part of real time timer.  If time for real time
785 		 * timer has passed return 0, else return difference
786 		 * between current time and time for the timer to go
787 		 * off.
788 		 */
789 		if (timespecisset(&aits->it_value)) {
790 			if (pt->pt_type == CLOCK_REALTIME) {
791 				getnanotime(&now);
792 			} else { /* CLOCK_MONOTONIC */
793 				getnanouptime(&now);
794 			}
795 			if (timespeccmp(&aits->it_value, &now, <))
796 				timespecclear(&aits->it_value);
797 			else
798 				timespecsub(&aits->it_value, &now,
799 				    &aits->it_value);
800 		}
801 	} else if (pt->pt_active) {
802 		if (pt->pt_type == CLOCK_VIRTUAL)
803 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
804 		else
805 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
806 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
807 			timespecadd(&aits->it_value,
808 			    &ptn->pt_time.it_value, &aits->it_value);
809 		KASSERT(ptn != NULL); /* pt should be findable on the list */
810 	} else
811 		timespecclear(&aits->it_value);
812 }
813 
814 
815 
816 /* Set and arm a POSIX realtime timer */
817 int
sys___timer_settime50(struct lwp * l,const struct sys___timer_settime50_args * uap,register_t * retval)818 sys___timer_settime50(struct lwp *l,
819     const struct sys___timer_settime50_args *uap,
820     register_t *retval)
821 {
822 	/* {
823 		syscallarg(timer_t) timerid;
824 		syscallarg(int) flags;
825 		syscallarg(const struct itimerspec *) value;
826 		syscallarg(struct itimerspec *) ovalue;
827 	} */
828 	int error;
829 	struct itimerspec value, ovalue, *ovp = NULL;
830 
831 	if ((error = copyin(SCARG(uap, value), &value,
832 	    sizeof(struct itimerspec))) != 0)
833 		return (error);
834 
835 	if (SCARG(uap, ovalue))
836 		ovp = &ovalue;
837 
838 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
839 	    SCARG(uap, flags), l->l_proc)) != 0)
840 		return error;
841 
842 	if (ovp)
843 		return copyout(&ovalue, SCARG(uap, ovalue),
844 		    sizeof(struct itimerspec));
845 	return 0;
846 }
847 
848 int
dotimer_settime(int timerid,struct itimerspec * value,struct itimerspec * ovalue,int flags,struct proc * p)849 dotimer_settime(int timerid, struct itimerspec *value,
850     struct itimerspec *ovalue, int flags, struct proc *p)
851 {
852 	struct timespec now;
853 	struct itimerspec val, oval;
854 	struct ptimers *pts;
855 	struct ptimer *pt;
856 	int error;
857 
858 	pts = p->p_timers;
859 
860 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
861 		return EINVAL;
862 	val = *value;
863 	if ((error = itimespecfix(&val.it_value)) != 0 ||
864 	    (error = itimespecfix(&val.it_interval)) != 0)
865 		return error;
866 
867 	mutex_spin_enter(&timer_lock);
868 	if ((pt = pts->pts_timers[timerid]) == NULL) {
869 		mutex_spin_exit(&timer_lock);
870 		return EINVAL;
871 	}
872 
873 	oval = pt->pt_time;
874 	pt->pt_time = val;
875 
876 	/*
877 	 * If we've been passed a relative time for a realtime timer,
878 	 * convert it to absolute; if an absolute time for a virtual
879 	 * timer, convert it to relative and make sure we don't set it
880 	 * to zero, which would cancel the timer, or let it go
881 	 * negative, which would confuse the comparison tests.
882 	 */
883 	if (timespecisset(&pt->pt_time.it_value)) {
884 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
885 			if ((flags & TIMER_ABSTIME) == 0) {
886 				if (pt->pt_type == CLOCK_REALTIME) {
887 					getnanotime(&now);
888 				} else { /* CLOCK_MONOTONIC */
889 					getnanouptime(&now);
890 				}
891 				timespecadd(&pt->pt_time.it_value, &now,
892 				    &pt->pt_time.it_value);
893 			}
894 		} else {
895 			if ((flags & TIMER_ABSTIME) != 0) {
896 				getnanotime(&now);
897 				timespecsub(&pt->pt_time.it_value, &now,
898 				    &pt->pt_time.it_value);
899 				if (!timespecisset(&pt->pt_time.it_value) ||
900 				    pt->pt_time.it_value.tv_sec < 0) {
901 					pt->pt_time.it_value.tv_sec = 0;
902 					pt->pt_time.it_value.tv_nsec = 1;
903 				}
904 			}
905 		}
906 	}
907 
908 	timer_settime(pt);
909 	mutex_spin_exit(&timer_lock);
910 
911 	if (ovalue)
912 		*ovalue = oval;
913 
914 	return (0);
915 }
916 
917 /* Return the time remaining until a POSIX timer fires. */
918 int
sys___timer_gettime50(struct lwp * l,const struct sys___timer_gettime50_args * uap,register_t * retval)919 sys___timer_gettime50(struct lwp *l,
920     const struct sys___timer_gettime50_args *uap, register_t *retval)
921 {
922 	/* {
923 		syscallarg(timer_t) timerid;
924 		syscallarg(struct itimerspec *) value;
925 	} */
926 	struct itimerspec its;
927 	int error;
928 
929 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
930 	    &its)) != 0)
931 		return error;
932 
933 	return copyout(&its, SCARG(uap, value), sizeof(its));
934 }
935 
936 int
dotimer_gettime(int timerid,struct proc * p,struct itimerspec * its)937 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
938 {
939 	struct ptimer *pt;
940 	struct ptimers *pts;
941 
942 	pts = p->p_timers;
943 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
944 		return (EINVAL);
945 	mutex_spin_enter(&timer_lock);
946 	if ((pt = pts->pts_timers[timerid]) == NULL) {
947 		mutex_spin_exit(&timer_lock);
948 		return (EINVAL);
949 	}
950 	timer_gettime(pt, its);
951 	mutex_spin_exit(&timer_lock);
952 
953 	return 0;
954 }
955 
956 /*
957  * Return the count of the number of times a periodic timer expired
958  * while a notification was already pending. The counter is reset when
959  * a timer expires and a notification can be posted.
960  */
961 int
sys_timer_getoverrun(struct lwp * l,const struct sys_timer_getoverrun_args * uap,register_t * retval)962 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
963     register_t *retval)
964 {
965 	/* {
966 		syscallarg(timer_t) timerid;
967 	} */
968 	struct proc *p = l->l_proc;
969 	struct ptimers *pts;
970 	int timerid;
971 	struct ptimer *pt;
972 
973 	timerid = SCARG(uap, timerid);
974 
975 	pts = p->p_timers;
976 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
977 		return (EINVAL);
978 	mutex_spin_enter(&timer_lock);
979 	if ((pt = pts->pts_timers[timerid]) == NULL) {
980 		mutex_spin_exit(&timer_lock);
981 		return (EINVAL);
982 	}
983 	*retval = pt->pt_poverruns;
984 	if (*retval >= DELAYTIMER_MAX)
985 		*retval = DELAYTIMER_MAX;
986 	mutex_spin_exit(&timer_lock);
987 
988 	return (0);
989 }
990 
991 /*
992  * Real interval timer expired:
993  * send process whose timer expired an alarm signal.
994  * If time is not set up to reload, then just return.
995  * Else compute next time timer should go off which is > current time.
996  * This is where delay in processing this timeout causes multiple
997  * SIGALRM calls to be compressed into one.
998  */
999 void
realtimerexpire(void * arg)1000 realtimerexpire(void *arg)
1001 {
1002 	uint64_t last_val, next_val, interval, now_ns;
1003 	struct timespec now, next;
1004 	struct ptimer *pt;
1005 	int backwards;
1006 
1007 	pt = arg;
1008 
1009 	mutex_spin_enter(&timer_lock);
1010 	itimerfire(pt);
1011 
1012 	if (!timespecisset(&pt->pt_time.it_interval)) {
1013 		timespecclear(&pt->pt_time.it_value);
1014 		mutex_spin_exit(&timer_lock);
1015 		return;
1016 	}
1017 
1018 	if (pt->pt_type == CLOCK_MONOTONIC) {
1019 		getnanouptime(&now);
1020 	} else {
1021 		getnanotime(&now);
1022 	}
1023 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1024 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1025 	/* Handle the easy case of non-overflown timers first. */
1026 	if (!backwards && timespeccmp(&next, &now, >)) {
1027 		pt->pt_time.it_value = next;
1028 	} else {
1029 		now_ns = timespec2ns(&now);
1030 		last_val = timespec2ns(&pt->pt_time.it_value);
1031 		interval = timespec2ns(&pt->pt_time.it_interval);
1032 
1033 		next_val = now_ns +
1034 		    (now_ns - last_val + interval - 1) % interval;
1035 
1036 		if (backwards)
1037 			next_val += interval;
1038 		else
1039 			pt->pt_overruns += (now_ns - last_val) / interval;
1040 
1041 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1042 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1043 	}
1044 
1045 	/*
1046 	 * Don't need to check tshzto() return value, here.
1047 	 * callout_reset() does it for us.
1048 	 */
1049 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1050 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1051 	    realtimerexpire, pt);
1052 	mutex_spin_exit(&timer_lock);
1053 }
1054 
1055 /* BSD routine to get the value of an interval timer. */
1056 /* ARGSUSED */
1057 int
sys___getitimer50(struct lwp * l,const struct sys___getitimer50_args * uap,register_t * retval)1058 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1059     register_t *retval)
1060 {
1061 	/* {
1062 		syscallarg(int) which;
1063 		syscallarg(struct itimerval *) itv;
1064 	} */
1065 	struct proc *p = l->l_proc;
1066 	struct itimerval aitv;
1067 	int error;
1068 
1069 	error = dogetitimer(p, SCARG(uap, which), &aitv);
1070 	if (error)
1071 		return error;
1072 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1073 }
1074 
1075 int
dogetitimer(struct proc * p,int which,struct itimerval * itvp)1076 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1077 {
1078 	struct ptimers *pts;
1079 	struct ptimer *pt;
1080 	struct itimerspec its;
1081 
1082 	if ((u_int)which > ITIMER_MONOTONIC)
1083 		return (EINVAL);
1084 
1085 	mutex_spin_enter(&timer_lock);
1086 	pts = p->p_timers;
1087 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1088 		timerclear(&itvp->it_value);
1089 		timerclear(&itvp->it_interval);
1090 	} else {
1091 		timer_gettime(pt, &its);
1092 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1093 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1094 	}
1095 	mutex_spin_exit(&timer_lock);
1096 
1097 	return 0;
1098 }
1099 
1100 /* BSD routine to set/arm an interval timer. */
1101 /* ARGSUSED */
1102 int
sys___setitimer50(struct lwp * l,const struct sys___setitimer50_args * uap,register_t * retval)1103 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1104     register_t *retval)
1105 {
1106 	/* {
1107 		syscallarg(int) which;
1108 		syscallarg(const struct itimerval *) itv;
1109 		syscallarg(struct itimerval *) oitv;
1110 	} */
1111 	struct proc *p = l->l_proc;
1112 	int which = SCARG(uap, which);
1113 	struct sys___getitimer50_args getargs;
1114 	const struct itimerval *itvp;
1115 	struct itimerval aitv;
1116 	int error;
1117 
1118 	if ((u_int)which > ITIMER_MONOTONIC)
1119 		return (EINVAL);
1120 	itvp = SCARG(uap, itv);
1121 	if (itvp &&
1122 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1123 		return (error);
1124 	if (SCARG(uap, oitv) != NULL) {
1125 		SCARG(&getargs, which) = which;
1126 		SCARG(&getargs, itv) = SCARG(uap, oitv);
1127 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1128 			return (error);
1129 	}
1130 	if (itvp == 0)
1131 		return (0);
1132 
1133 	return dosetitimer(p, which, &aitv);
1134 }
1135 
1136 int
dosetitimer(struct proc * p,int which,struct itimerval * itvp)1137 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1138 {
1139 	struct timespec now;
1140 	struct ptimers *pts;
1141 	struct ptimer *pt, *spare;
1142 
1143 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1144 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1145 		return (EINVAL);
1146 
1147 	/*
1148 	 * Don't bother allocating data structures if the process just
1149 	 * wants to clear the timer.
1150 	 */
1151 	spare = NULL;
1152 	pts = p->p_timers;
1153  retry:
1154 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1155 	    pts->pts_timers[which] == NULL))
1156 		return (0);
1157 	if (pts == NULL)
1158 		pts = timers_alloc(p);
1159 	mutex_spin_enter(&timer_lock);
1160 	pt = pts->pts_timers[which];
1161 	if (pt == NULL) {
1162 		if (spare == NULL) {
1163 			mutex_spin_exit(&timer_lock);
1164 			spare = pool_get(&ptimer_pool, PR_WAITOK);
1165 			goto retry;
1166 		}
1167 		pt = spare;
1168 		spare = NULL;
1169 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1170 		pt->pt_ev.sigev_value.sival_int = which;
1171 		pt->pt_overruns = 0;
1172 		pt->pt_proc = p;
1173 		pt->pt_type = which;
1174 		pt->pt_entry = which;
1175 		pt->pt_queued = false;
1176 		if (pt->pt_type == CLOCK_REALTIME)
1177 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1178 		else
1179 			pt->pt_active = 0;
1180 
1181 		switch (which) {
1182 		case ITIMER_REAL:
1183 		case ITIMER_MONOTONIC:
1184 			pt->pt_ev.sigev_signo = SIGALRM;
1185 			break;
1186 		case ITIMER_VIRTUAL:
1187 			pt->pt_ev.sigev_signo = SIGVTALRM;
1188 			break;
1189 		case ITIMER_PROF:
1190 			pt->pt_ev.sigev_signo = SIGPROF;
1191 			break;
1192 		}
1193 		pts->pts_timers[which] = pt;
1194 	}
1195 
1196 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1197 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1198 
1199 	if (timespecisset(&pt->pt_time.it_value)) {
1200 		/* Convert to absolute time */
1201 		/* XXX need to wrap in splclock for timecounters case? */
1202 		switch (which) {
1203 		case ITIMER_REAL:
1204 			getnanotime(&now);
1205 			timespecadd(&pt->pt_time.it_value, &now,
1206 			    &pt->pt_time.it_value);
1207 			break;
1208 		case ITIMER_MONOTONIC:
1209 			getnanouptime(&now);
1210 			timespecadd(&pt->pt_time.it_value, &now,
1211 			    &pt->pt_time.it_value);
1212 			break;
1213 		default:
1214 			break;
1215 		}
1216 	}
1217 	timer_settime(pt);
1218 	mutex_spin_exit(&timer_lock);
1219 	if (spare != NULL)
1220 		pool_put(&ptimer_pool, spare);
1221 
1222 	return (0);
1223 }
1224 
1225 /* Utility routines to manage the array of pointers to timers. */
1226 struct ptimers *
timers_alloc(struct proc * p)1227 timers_alloc(struct proc *p)
1228 {
1229 	struct ptimers *pts;
1230 	int i;
1231 
1232 	pts = pool_get(&ptimers_pool, PR_WAITOK);
1233 	LIST_INIT(&pts->pts_virtual);
1234 	LIST_INIT(&pts->pts_prof);
1235 	for (i = 0; i < TIMER_MAX; i++)
1236 		pts->pts_timers[i] = NULL;
1237 	mutex_spin_enter(&timer_lock);
1238 	if (p->p_timers == NULL) {
1239 		p->p_timers = pts;
1240 		mutex_spin_exit(&timer_lock);
1241 		return pts;
1242 	}
1243 	mutex_spin_exit(&timer_lock);
1244 	pool_put(&ptimers_pool, pts);
1245 	return p->p_timers;
1246 }
1247 
1248 /*
1249  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1250  * then clean up all timers and free all the data structures. If
1251  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1252  * by timer_create(), not the BSD setitimer() timers, and only free the
1253  * structure if none of those remain.
1254  */
1255 void
timers_free(struct proc * p,int which)1256 timers_free(struct proc *p, int which)
1257 {
1258 	struct ptimers *pts;
1259 	struct ptimer *ptn;
1260 	struct timespec ts;
1261 	int i;
1262 
1263 	if (p->p_timers == NULL)
1264 		return;
1265 
1266 	pts = p->p_timers;
1267 	mutex_spin_enter(&timer_lock);
1268 	if (which == TIMERS_ALL) {
1269 		p->p_timers = NULL;
1270 		i = 0;
1271 	} else {
1272 		timespecclear(&ts);
1273 		for (ptn = LIST_FIRST(&pts->pts_virtual);
1274 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1275 		     ptn = LIST_NEXT(ptn, pt_list)) {
1276 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1277 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1278 		}
1279 		LIST_FIRST(&pts->pts_virtual) = NULL;
1280 		if (ptn) {
1281 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1282 			timespecadd(&ts, &ptn->pt_time.it_value,
1283 			    &ptn->pt_time.it_value);
1284 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1285 		}
1286 		timespecclear(&ts);
1287 		for (ptn = LIST_FIRST(&pts->pts_prof);
1288 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1289 		     ptn = LIST_NEXT(ptn, pt_list)) {
1290 			KASSERT(ptn->pt_type == CLOCK_PROF);
1291 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1292 		}
1293 		LIST_FIRST(&pts->pts_prof) = NULL;
1294 		if (ptn) {
1295 			KASSERT(ptn->pt_type == CLOCK_PROF);
1296 			timespecadd(&ts, &ptn->pt_time.it_value,
1297 			    &ptn->pt_time.it_value);
1298 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1299 		}
1300 		i = TIMER_MIN;
1301 	}
1302 	for ( ; i < TIMER_MAX; i++) {
1303 		if (pts->pts_timers[i] != NULL) {
1304 			itimerfree(pts, i);
1305 			mutex_spin_enter(&timer_lock);
1306 		}
1307 	}
1308 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1309 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1310 		p->p_timers = NULL;
1311 		mutex_spin_exit(&timer_lock);
1312 		pool_put(&ptimers_pool, pts);
1313 	} else
1314 		mutex_spin_exit(&timer_lock);
1315 }
1316 
1317 static void
itimerfree(struct ptimers * pts,int index)1318 itimerfree(struct ptimers *pts, int index)
1319 {
1320 	struct ptimer *pt;
1321 
1322 	KASSERT(mutex_owned(&timer_lock));
1323 
1324 	pt = pts->pts_timers[index];
1325 	pts->pts_timers[index] = NULL;
1326 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1327 		callout_halt(&pt->pt_ch, &timer_lock);
1328 	if (pt->pt_queued)
1329 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1330 	mutex_spin_exit(&timer_lock);
1331 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1332 		callout_destroy(&pt->pt_ch);
1333 	pool_put(&ptimer_pool, pt);
1334 }
1335 
1336 /*
1337  * Decrement an interval timer by a specified number
1338  * of nanoseconds, which must be less than a second,
1339  * i.e. < 1000000000.  If the timer expires, then reload
1340  * it.  In this case, carry over (nsec - old value) to
1341  * reduce the value reloaded into the timer so that
1342  * the timer does not drift.  This routine assumes
1343  * that it is called in a context where the timers
1344  * on which it is operating cannot change in value.
1345  */
1346 static int
itimerdecr(struct ptimer * pt,int nsec)1347 itimerdecr(struct ptimer *pt, int nsec)
1348 {
1349 	struct itimerspec *itp;
1350 
1351 	KASSERT(mutex_owned(&timer_lock));
1352 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1353 
1354 	itp = &pt->pt_time;
1355 	if (itp->it_value.tv_nsec < nsec) {
1356 		if (itp->it_value.tv_sec == 0) {
1357 			/* expired, and already in next interval */
1358 			nsec -= itp->it_value.tv_nsec;
1359 			goto expire;
1360 		}
1361 		itp->it_value.tv_nsec += 1000000000;
1362 		itp->it_value.tv_sec--;
1363 	}
1364 	itp->it_value.tv_nsec -= nsec;
1365 	nsec = 0;
1366 	if (timespecisset(&itp->it_value))
1367 		return (1);
1368 	/* expired, exactly at end of interval */
1369 expire:
1370 	if (timespecisset(&itp->it_interval)) {
1371 		itp->it_value = itp->it_interval;
1372 		itp->it_value.tv_nsec -= nsec;
1373 		if (itp->it_value.tv_nsec < 0) {
1374 			itp->it_value.tv_nsec += 1000000000;
1375 			itp->it_value.tv_sec--;
1376 		}
1377 		timer_settime(pt);
1378 	} else
1379 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1380 	return (0);
1381 }
1382 
1383 static void
itimerfire(struct ptimer * pt)1384 itimerfire(struct ptimer *pt)
1385 {
1386 
1387 	KASSERT(mutex_owned(&timer_lock));
1388 
1389 	/*
1390 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1391 	 * XXX Relying on the clock interrupt is stupid.
1392 	 */
1393 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1394 		return;
1395 	}
1396 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1397 	pt->pt_queued = true;
1398 	softint_schedule(timer_sih);
1399 }
1400 
1401 void
timer_tick(lwp_t * l,bool user)1402 timer_tick(lwp_t *l, bool user)
1403 {
1404 	struct ptimers *pts;
1405 	struct ptimer *pt;
1406 	proc_t *p;
1407 
1408 	p = l->l_proc;
1409 	if (p->p_timers == NULL)
1410 		return;
1411 
1412 	mutex_spin_enter(&timer_lock);
1413 	if ((pts = l->l_proc->p_timers) != NULL) {
1414 		/*
1415 		 * Run current process's virtual and profile time, as needed.
1416 		 */
1417 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1418 			if (itimerdecr(pt, tick * 1000) == 0)
1419 				itimerfire(pt);
1420 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1421 			if (itimerdecr(pt, tick * 1000) == 0)
1422 				itimerfire(pt);
1423 	}
1424 	mutex_spin_exit(&timer_lock);
1425 }
1426 
1427 static void
timer_intr(void * cookie)1428 timer_intr(void *cookie)
1429 {
1430 	ksiginfo_t ksi;
1431 	struct ptimer *pt;
1432 	proc_t *p;
1433 
1434 	mutex_enter(proc_lock);
1435 	mutex_spin_enter(&timer_lock);
1436 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1437 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1438 		KASSERT(pt->pt_queued);
1439 		pt->pt_queued = false;
1440 
1441 		if (pt->pt_proc->p_timers == NULL) {
1442 			/* Process is dying. */
1443 			continue;
1444 		}
1445 		p = pt->pt_proc;
1446 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1447 			continue;
1448 		}
1449 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1450 			pt->pt_overruns++;
1451 			continue;
1452 		}
1453 
1454 		KSI_INIT(&ksi);
1455 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1456 		ksi.ksi_code = SI_TIMER;
1457 		ksi.ksi_value = pt->pt_ev.sigev_value;
1458 		pt->pt_poverruns = pt->pt_overruns;
1459 		pt->pt_overruns = 0;
1460 		mutex_spin_exit(&timer_lock);
1461 		kpsignal(p, &ksi, NULL);
1462 		mutex_spin_enter(&timer_lock);
1463 	}
1464 	mutex_spin_exit(&timer_lock);
1465 	mutex_exit(proc_lock);
1466 }
1467 
1468 /*
1469  * Check if the time will wrap if set to ts.
1470  *
1471  * ts - timespec describing the new time
1472  * delta - the delta between the current time and ts
1473  */
1474 bool
time_wraps(struct timespec * ts,struct timespec * delta)1475 time_wraps(struct timespec *ts, struct timespec *delta)
1476 {
1477 
1478 	/*
1479 	 * Don't allow the time to be set forward so far it
1480 	 * will wrap and become negative, thus allowing an
1481 	 * attacker to bypass the next check below.  The
1482 	 * cutoff is 1 year before rollover occurs, so even
1483 	 * if the attacker uses adjtime(2) to move the time
1484 	 * past the cutoff, it will take a very long time
1485 	 * to get to the wrap point.
1486 	 */
1487 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1488 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1489 		return true;
1490 
1491 	return false;
1492 }
1493